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Abstract 19 
 20 

Many transit network layouts imply the operation of multiple routes along a common transit segment 21 
in the busiest area of the city. At some points, these routes branch out to provide spatial coverage to 22 
the city periphery. These schemes allow the more efficient deployment of resources at the expenses of 23 
introducing more complexity into the system operation. 24 
The paper aims to estimate the effect of the branched layout of the corridor, the demand distribution 25 
and the traffic lights on the total cost of the system as well as its service regularity. The transit corridor 26 
is operated by buses, although it can be generalized for other transit modes. A kinematic model to 27 
estimate the natural motion of buses of different routes along the corridor is presented. The model 28 
considers the stochastic effect of the passenger arrivals at stops and vehicle acceleration-deceleration 29 
rates. An optimization procedure is presented to determine the optimal headway and the relative 30 
synchronization of routes that would minimize the total cost incurred by transit agencies and users or 31 
the headways variations in the common route segment. The performance of bus control strategies based 32 
on a combination of holding points and green extensions at traffic signals is also addressed in the H10 33 
cross-town corridor of Barcelona’s new bus network. 34 
 35 
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1 Introduction 1 

 2 
The efficiency of urban transit networks is highly influenced by the spatial configuration of the 3 
different transit routes over the city. Other tactical and operating decisions in the transit planning 4 
problem are based on the network design, previously defined in the logical sequence of planning steps 5 
(Desaulniers and Hickman, 2007; Ceder, 2007). The transit route layout, together with the frequency 6 
setting, present a trade-off between the performance experienced by users (accessibility, temporal 7 
coverage and speed) and the operating costs (mileage, resources) incurred by transit agencies (Ibarra 8 
–Rojas et al., 2015). Therefore, urban decision-makers are required to find the equilibrium point 9 
between route performance and cost, considering economic, social and political constraints. 10 
 11 
The most suitable fixed transit route structure for users and transit agencies has been widely analysed 12 
in the literature under the forms of total cost minimization problems. Continuous approximation and 13 
parsimonious models were developed to estimate both user and agency costs, in idealized route pattern 14 
designs. The best element of each network concept could be chosen by continuous optimization. 15 
Perfect grid networks (Holroyd, 1967) and radial or hub and spoke route schemes (Newell, 1979; 16 
Byrne, 1975) were assessed. The radial designs benefit transit agencies with low infrastructure 17 
investment, while grid structures provide competitive door-to-door travel time for users (Nourbakhsh 18 
and Ouyang, 2012). Recently, hybrid configurations, combining a mesh of routes in the city centre and 19 
branching lines in the city periphery (Daganzo, 2010 and Estrada et al., 2011), were developed to 20 
merge the potentialities of both networks in the same design concept. In all these idealized network 21 
concepts, the demand is assumed to be uniformly distributed on the area of operation, and any trip can 22 
be made transferring at the corridors’ intersections. These designs, complementary to the street 23 
network, shape the physical distribution of trips over the city. Recently, Badia et al. (2016) compared 24 
the performance of the previous models based on transfer, with the corresponding level of service 25 
provided by ubiquitous designs. The latter schemes connect the most demanded trip origin and 26 
destination zones by a direct route, without transfers. They concluded that the transfer-based hybrid 27 
design generally outperforms the total cost of the transit service, mostly when demand is consolidated 28 
in the city centre. Other discrete-based heuristic models (Ceder and Wilson, 1986; Baaj and 29 
Mahmassani, 1990 and 1995; Zhao, 2006) builds the transit network with the aim of serving the highest 30 
number of trips by direct services without transfers, given the O-D trip matrix in the city. In these 31 
contributions, the demand distribution over the region configures the deployment of the transit 32 
infrastructure, creating bus network layouts that result in neither readable nor comprehensive bus 33 
design. These schemes differ from the designs proposed by continuous approximation models, where 34 
the route layout tend to be simple and easy to understand.  35 
 36 
In both discrete-based or continuous-based models, a single transit corridor may be served by multiple 37 
lines. Generally, these lines run along with a shared sketch of the corridor, and at particular points, 38 
they branch out to provide service to the outskirts. When doing this, accessibility in the whole area of 39 
the city is guaranteed. However, the waiting time in the branched parts of the corridor is worsened in 40 
the economic balance between user and agency cost. The design of branched corridors has been widely 41 
used in rail services, due to the high investment cost (Metro of Amsterdam, S-Bahn in Berlin, Tram, 42 
FGC Regional Rail and Metro in Barcelona, L. Underground, L. Overground and DLR in London, 43 
Metro and Tram in Milan and Rome, and Metro and RER in Paris, among others). Branching routes 44 
have begun to be deployed in large, medium and even small bus systems around the world (Barcelona, 45 
Dublin, Lorient, Metz, Nantes, etc).  46 
 47 
The branching scheme reduces the length of the whole corridor and the temporal coverage in the 48 
branches, in comparison to the situation in which we have two parallel lines with their own 49 
infrastructure. Nevertheless, the flow of vehicles belonging to multiple lines along the same corridor 50 
increases the operation’s complexity and contributes to the transit vehicle bunching phenomena, firstly 51 
described by Newell and Potts (1964). The demand at stops, and consequently, the stop boarding time 52 
in the central corridor depends on the real-time headway between consecutive buses. In transit 53 
corridors with high passenger flows, primarily operated by buses, the natural motion of vehicles causes 54 
irregular vehicle arrivals at stops, so that any potential exogenous disturbance is propagated to the 55 
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whole route. Therefore, these multiple routes should be jointly planned. Control strategies are required 1 
to maintain constant headways among buses and alleviate the unstable motion of buses. 2 
 3 
A lot of research regarding control strategies in bus systems have been developed. Some researchers 4 
proposed the introduction of slack times into bus schedules at holding points to control the system 5 
regularity (Barnett, 1974; Turnquist and Blume, 1980; Rossetti and Turitto, 1998). Holding times 6 
allow recovering the target bus headway when vehicles are delayed, at the expenses of increasing the 7 
target roundtrip travel time. However, schedule-based holding points are significantly inefficient since 8 
each bus is controlled without any input of the rest of the vehicles. A dynamic slack introduction was 9 
proposed in several works, to tackle this problem, predicting the evolution of the system in a rolling 10 
horizon (Eberlein et al., 2001, Delgado et al., 2009; Liu et al., 2013).  This control strategy was also 11 
combined along the route with the possibility of skipping some stops (Delgado et al., 2012, Sáez et al., 12 
2012; Cortés et al., 2010) and vehicle overtaking (Fonzone et al., 2015) to recover the desired time-13 
headway. Muñoz et al. (2013), pointed out the capacity problems arisen by holding point strategies 14 
due to the scalable reduction of bus speeds. 15 
 16 
Other contributions proposed adaptive strategies to the actual performance that do not consider system 17 
predictions. Daganzo (2009), presented a new control principle, based on dynamic holding points. 18 
Later, Daganzo and Pilachowski (2011) proposed a control strategy based on variable cruising speeds, 19 
to improve the regularity of transit systems. This procedure, similar to the holding point strategy, 20 
reduces the cruising velocity of buses based on the current headway with the vehicle ahead. 21 
 22 
However, the first analysis of the bus bunching effect and joint operation of multiple routes in the same 23 
corridor was addressed in Hernández et al. (2015). A control system based on dynamic holding points 24 
at stops previously proposed by Delgado et al. (2012) was implemented. It compared the transit system 25 
performance under two scenarios: i) all routes are jointly managed by a central operator that considers 26 
the multiple routes as a whole system and, ii) each route is operated independently to maximize its 27 
profit. The objective function to be minimized was the total travel time of passengers. The join control 28 
strategy demonstrated to reduce the waiting time of passengers by 55% in comparison to the 29 
independent operation of lines. Later, Schmöcker et al. (2016) extended the former Newell and Potts 30 
(1964) propagation model to the motion of buses along corridors operated by two lines when 31 
overtaking is allowed. Under this situation, a new passenger queue distribution for buses was 32 
presented. The overtaking operation always produces a positive effect on the system performance in 33 
terms of total waiting time of passengers and the time-headway variance metrics. Finally, Argote-34 
Cabanero et al. (2015) extended the adaptive control strategy proposed in Daganzo (2009) and 35 
Daganzo and Pilachowski (2011) to complex transit systems, conformed by many lines operating along 36 
the same corridor. The slack time at each stop for a given bus was based on the current deviation of 37 
the vehicle under study and previous vehicles (belonging to different lines) from the target headway. 38 
These deviations were multiplied by a dimensionless parameter responsible for propagating the 39 
bunching effect, which accounted for the expected increase in the dwell time due to boarding when 40 
the one-time unit increases the headway. 41 
 42 
Unfortunately, all these contributions for multiple services assumed that the unstable motion of buses 43 
is caused by exogenous disruption. Their modelling approaches did not consider those key route design 44 
aspects that would generate irregular arrivals of buses in a corridor with multiple bus services, such as 45 
traffic lights, demand distribution and lengths of the branched routes. Besides, a small fraction of these 46 
works addressed the impacts of control strategies on the operating cost incurred by transit agencies, 47 
apart from the combined effect on the user side. 48 
 49 
This paper addresses the bus corridor design problem served by two-branched lines. An optimization 50 
model is presented, aimed at minimizing the total cost incurred by both transit agency and users. The 51 
effects of the length uniformity of the branched segments, the fraction of demand captured by the 52 
branched sections concerning the central sketch, and traffic lights settings on the efficiency and 53 
regularity of the bus corridor are analyzed. The analysis considers a base case scenario when the bus 54 
motion is not controlled and overtaking is not allowed. Results obtained under other plans for control 55 
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strategies based on holding points, speed modification and traffic light priority measures are also 1 
provided. The objective of this work, as Schmöcker et al. (2016) suggested as further research, is to 2 
provide network design recommendations and the implementation of the best control strategy to 3 
alleviate the lack of regularity in a corridor with multiple lines at the minimum operating cost. To the 4 
best of our knowledge, this is the first time that the effect of traffic light settings and the operational 5 
cost variation caused by the deployment of control strategies are considered in corridors operated by 6 
bus branched lines. In Section 2, the formulation for the bus corridor design problem with two bus 7 
services is presented, with the associated constraints, significant assumptions and boundary conditions. 8 
A bus motion model is then developed, with analytical formulations to estimate the time spent in 9 
segments between stops, dwell time at stops and delays intersections due to traffic lights. The model 10 
considers a variable acceleration in the kinematic equations that follows a truncated normal 11 
distribution. This fact outperforms previous simplified models (Estrada et al. 2016) that supposed 12 
instantaneous speed profile changes at stops or intersections. The different metric analysis measuring 13 
the effects in stakeholders, as well as the optimization models, are presented in Section 3. Section 4 14 
gathers the optimization problem and the formulas needed to consider the control strategies in the bus 15 
modelling approach. Later, the numerical results of the optimization process in a set of problem 16 
instances are introduced in Section 5. Finally, in Section 6, several physical network design, control 17 
strategies recommendations and general conclusions are drawn. 18 
  19 

2 Notation and modelling framework 20 

 21 
We consider a ground transit corridor in a given city that runs along the East-West direction. This 22 
corridor presents two routes, route A and B, that operate a central segment between points PE and PW 23 
(Figure 1). At the two edges PE and PW, the corridor branches out into two segments, to provide a 24 
wider accessibility in the peripheral regions. Therefore, four independent branches are identified:  the 25 
West and East branches operated by route A and referred by 𝐴𝑊 and 𝐴𝐸 respectively, and the 26 
corresponding West and East branches only served by route B, denoted by 𝐵𝑊 and 𝐵𝐸. The central 27 
segment is denoted by both AC and BC, depending on the route under analysis.  Let 𝑅 = {𝐴𝑊, 28 
𝐵𝑊, 𝐴𝐶, 𝐵𝐶, 𝐴𝐸, 𝐵𝐸}  be the set of the 6 route segments, while 𝑅஺ = {𝐴𝑊, AC, 𝐴𝑊}, 𝑅஻ = {𝐵𝑊, 29 
BC,𝐵𝐸} capture the set of route segments operated by route A and B respectively (𝑅஺  ∪ 𝑅஻ = 𝑅), and 30 
𝑅஼ = {𝐴𝐶, BC} the route central segments. The term 𝑟(𝑖) returns the bus route A or B that is serving 31 
the segment 𝑖 ∈ 𝑅. Each route segment 𝑖 ∈ 𝑅 is operated in two direction of service: direction East or 32 
West. From this point on, we will use the subscript z to represent the two available directions of service 33 
(z=E towards East or z=W towards West). Therefore, a single roundtrip of route A consists of the 34 
sequence of route segments AW-AC-AE (run in the East and West directions), while in route B is 35 
defined by segments BW-BC-BE (two way of service). Moreover, in order to represent the passenger 36 
transfer movements, we create the subsets 𝑅ௐ = {𝐴𝑊, 𝐵𝑊}, 𝑅ா = {𝐴𝐸, 𝐵𝐸} that contain the 37 
branched route segments in the West and East respectively, and  𝑅்ଵ = {𝐴𝑊, 𝐵𝐸}, 𝑅்ଶ = {𝐵𝑊, 𝐴𝐸} 38 
that contain the branched route segments operated by different routes and located in opposite edges of 39 
the central segment.  40 
 41 
Stops. Each route segment 𝑖 ∈ 𝑅 presents 𝑛௜,௭ stops in direction z. In each route segment, the distance 42 
between stop k and k+1 is labelled by  𝑠௜,௭(𝑘) ൫𝑠௜,௭(𝑘) ≥ 0൯ in direction z (k=1, …, 𝑛௜,௭ − 1). Note that 43 
stop k=1 is equivalent to the starting point of the route segment and stop 𝑘 = 𝑛௜,௭ to the ending point. 44 
Since this variable 𝑠௜,௭(𝑘) is dependent to every stop and route segment, this model can reproduce 45 
variable stop densities in the central and branching segments of the route. Stops are considered to 46 
present one on-line loading area, consequently only one bus can simultaneously perform 47 
boarding/alighting operation. Moreover, all buses must stop over all stops scattered along the branched 48 
and central segments of the route (skip -stop pattern is not allowed).  Therefore, the length of each 49 

route segment i∈ 𝑅 in direction z is computed by 𝑙௜,௭ = ∑ 𝑠௜,௭(𝑘) 
௡೔,೥ିଵ

௞ୀଵ . The characteristics of stops in 50 
the route segments AC and BC referring the central part of the corridor are the same. All vehicles of 51 
route A and B will follow the same stop pattern in AC and BC route segments.  52 

 53 
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 1 

 2 
Figure 1. Scheme of the transit system composed by a branched corridor with two routes (route A and 3 
B).  4 
 5 
Intersections. We assume that there are 𝑚௜,௭ signalized intersections along the route segment i∈ 𝑅, 6 
direction z, and  𝐼௜,௭ represents the set of these intersections. Moreover,  the variable 𝑝௜,௭(𝑘) (k=1, 7 
..,𝑛௜,௭ − 1) captures the number of intersections located in the sketch between two consecutive stops 8 

k and k+1 in route segment i, direction z, so that ∑ 𝑝௜,௭(𝑘) = 𝑚௜,௭ 
௡೔,೥ିଵ

௞ୀଵ . The variable 𝑥௜,௭(𝑚) denotes 9 
the distance between the location of the m-th intersection to the initial stop along the route segment 10 
𝑖 ∈ 𝑅 in direction z ൫𝑚 = 1, … , 𝑚௜,௭൯. We assume that all intersections of the problem present the same 11 
traffic signal cycle time Cp. However, each intersection m ൫𝑚 = 1, … , 𝑚௜,௭൯ in direction z of the route 12 
segment i is defined by its green phase time 𝑔௜,௭(𝑚) and traffic light offset ∆௜,௭(𝑚). The signals 13 
attributes in the intersections along route segments AC and BC are identical.  14 
 15 
Vehicles. The number of transit vehicles required to provide the service in route A and B are, 16 
respectively, MA and MB.  We assume that these vehicles are homogeneous and their vehicle capacity 17 
is C. Each vehicle will run along the length of the segments to be covered in each route, stopping at 18 
each stop and obeying the traffic signal regulation. 19 
 20 
Demand. The total number of boarding passengers in one hour of service along the whole route 21 
segment i (direction z), whose destination is located at any stop of route segment j (i, j∈ 𝑅) is defined 22 

by 𝐵௜,௝,௭. Moreover, 𝛽௜,௝,௭(𝑘)=𝐵௜,௝,௭ 𝐹௜,௝,௭
ఉ

(𝑘) denotes the cumulative number of boarding passengers 23 

per hour at stop k (1< 𝑘 ≤ 𝑛௜,௭)  in direction z of route segment i, with regard to the initial stop, that 24 

will alight in route segment j. Indeed, the variable  0 ≤ 𝐹௜,௝,௭
ఉ

(𝑘) ≤ 1 is the cumulative distribution 25 

function at stop 𝑘of the boarding passengers traveling from route segment i to j, direction z. Similarly, 26 
the term 𝐴௜,௝,௭ captures the total number of alighting passengers per hour along the whole route segment 27 
j (direction z), whose origin was located in a stop of route segment i (i, j∈ 𝑅). In this case, the number 28 
of cumulative alighting passengers from stop 1 to stop k’ (1≤ 𝑘ᇱ ≤ 𝑛௜,௭)  in direction z of route segment 29 
j is estimated by 𝛼௜,௝,௭(𝑘′)=𝐴௜,௝,௭ 𝐹௜,௝,௭

ఈ (𝑘ᇱ), where 𝐹௜,௝,௭
ఈ (𝑘ᇱ)  is the cumulative distribution function of 30 

alighting passengers from stop k=1 to stop k’ (0 ≤ 𝐹௜,௝,௭
ఈ (𝑘ᇱ) ≤ 1).   31 

 32 
Along Section 2, we present an analytical model to reproduce the bus motion in a transit system with 33 
two branched lines. This model will be able to estimate arrival and departure times of buses along the 34 
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route segments and, eventually, several bus route metrics required to assess user performance and 1 
operating cost. To represent feasible transit demand states, the definition of the previous variables must 2 
satisfy some properties. Equation (1) states that the boarding passenger rate in between segments i and 3 
j on both directions of service (E and W) must equal the alighting rate between the same route 4 
segments. Equation (2) states the same conservation condition when the boarding and alighting 5 
operations are made in the same route segment i in direction z. Finally, Equation (3) obliges that the 6 
cumulative number of boarding counts of passengers whose origin and destination are in the same 7 
route segment must be higher or equal to the corresponding number of alighting counts, at a given stop 8 
k.  9 

    𝐵௜,௝,ா + 𝐵௜,௝,ௐ = 𝐴௜,௝,ா + 𝐴௜,௝,ௐ  𝑖 ≠ 𝑗, i, j∈ 𝑅 
 

(1) 

𝐵௜,௜,௭ = 𝐴௜,௜,௭    𝑖 ∈ 𝑅,   𝑧 ∈ {𝐸, 𝑊} 
 

(2) 

𝛽௜,௜,௭(𝑘) ≥ 𝛼௜,௜,௭(𝑘)  i ∈ 𝑅, 𝑧 ∈ {𝐸, 𝑊}, k=1,…, 𝑛௜,௭ 
 

(3) 

2.1 Operational assumptions 10 

 11 
The operation of transit services in the two branching lines is supposed to fulfil the following 12 
operational hypotheses: 13 

i Routes A and B may be operated at different constant headways HA (HA >0) and HB (HB >0) 14 
respectively, according to the potential demand in the branched route segments. 15 

ii For sake of simplicity, the entrance times of the first vehicle trip at the first stop, direction z=E 16 
in route segment AW and BW are referred by 𝑡଴,஺ and 𝑡଴஻ respectively. Indeed, the entrance 17 
times vary in the following domains 0 < 𝑡଴,஺ < 𝐻஺, and 0 < 𝑡଴,஻ < 𝐻஻. Moreover, these 18 
variables also determine the temporal separation of vehicles in the trunk route segment AC,BC 19 
where two routes provide a joint service.  20 

iii The transit operator controls the cost and service performance by means of the headways HA, 21 
HB and the entrance times 𝑡଴,஺, 𝑡଴,஻ of the first vehicle at the first stop in each route A and B. 22 
These four terms are considered as the decision variables of the model. 23 

iv For the sake of generality, we assume that buses operate both transit routes A and B, where the 24 
dwell time at stops is highly affected by the number of boarding and alighting passengers. 25 
However, the model can be also used in other transit technologies if the dwell times are 26 
properly formulated with regard to the particular boarding/alighting process in each system. 27 
We suppose that each passenger needs 𝜏ఉ units of time to get on the bus, and 𝜏ఈ units of time 28 
to alight, depending on the validation technology and other bus features. In Sun et al (2014) 29 
there is a wide review of available modelling approaches to calculate dwell times. We assume 30 
that boarding and alighting operations have different vehicle doors assigned, since this is the 31 
situation that better represents our implementation site. Therefore, since these operations can 32 
be done independently, the dwell time can be calculated as the maximal time spent at each 33 
operation (model II in Sun et al, 2014).  34 

v The arrival of passengers at any stop k in route segment i, direction x, is assumed to follow a 35 
Poisson distribution. Therefore, the number of passengers that get in each vehicle is a random 36 
variable. Therefore, the time interval between two passengers arriving at stop k of route 37 
segment 𝑖 ∈ 𝑅 direction z presents an exponential distribution of term 𝜆௜,௭(𝑘) =38 

∑ ቀ𝛽௜,௝,௭(𝑘) − 𝛽௜,௝,௭(𝑘 − 1)ቁ௝∈ோ , where 𝛽௜,௝,௭(0) = 0.  39 

vi Passengers choose the route path that minimizes the number of transfers to reach their 40 
destination. In the specific case that both the trip origin and destination are included in the 41 
trunk segment (AC or BC), this passenger will get on the next bus of route A or B arriving at 42 
the stop.   43 

vii In trips connecting branched segments AE-BW, AW-BE and vice versa, the passengers transfer 44 
at any potential stop along the central route segment. 45 

viii Each vehicle modifies the instantaneous speed vf due to presence of stops and intersections at 46 
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an acceleration rate af (positive or negative). This acceleration is supposed to follow a Normal 1 
distribution (𝜇௔ , 𝜎௔), of mean 𝜇௔ and standard deviation 𝜎௔, to represent the different driver 2 
sensitivities to the traffic conditions. Nevertheless, the Normal distribution has been truncated 3 
to only accept acceleration and deceleration rates in the domains (0, amax) and (-amin,0), 4 
respectively. The maximal allowable instantaneous speed of buses is vmax (vf≤vmax) along the 5 
whole route segments.  6 

ix The capacity of all vehicles operating on both routes A and B, referred by C is homogeneous. 7 
x In the general version of the analysis, overtaking between buses operating the same bus route 8 

is not allowed. However, overtaking is only permitted between vehicles of different routes A 9 
and B in the central route segment.  10 

xi Transit vehicles are supposed to be benefitted by right of way measures (segregation of lanes) 11 
and the effect of the rest of the traffic is negligible. 12 

2.2 Bus motion  13 

 14 
Let M be a large number, representing the maximal number of vehicle departures from the initial stop 15 
of the segment AE of route A (or segment BE in route B) that we would like to analyze. This term M 16 
may be higher than the fleet size in route A or B, assuming that a single vehicle would complete a 17 
roundtrip and depart from the first stop several times.  Let 𝑎௜,௭(𝑘, 𝑓) be the arrival time at stop k of bus 18 
trip f (f=1,..., M), and 𝑑௜,௭(𝑘, 𝑓) be the dwell time at stop k of bus trip f on the bus route segment i∈ 𝑅 19 
in the direction z (z=East or West). The entrance time 𝑎௜,௭(1, 𝑓)  at the first stop of route segments AW 20 
and BW in direction East of the f-th bus trip are calculated by 𝑎஺ௐ,ா(1, 𝑓) = (𝑓 − 1)𝐻𝐴 + 𝑡଴஺ and 21 
𝑎஻ௐ,ா(1, 𝑓) = (𝑓 − 1)𝐻𝐵 + 𝑡଴஻,  once the entrance times of first vehicles in route A and B have been 22 
defined, based on the assumptions i)-iii). In other segments and directions, these entrance times should 23 
be defined in accordance to the exit times of the vehicle trip at the last stop of the previous segment of 24 
the route, ensuring travel time compatibility between segments. Hence, variables 𝑎௜,௭(1, 𝑓), except for 25 
𝑎஺ௐ,ா(1, 𝑓), 𝑎஻ௐ,ா(1, 𝑓)are defined imposing compatibility of travel times between route segment 26 
boundaries. In Appendix 1, the estimation of these variables is provided.  27 
 28 

 29 
Figure 2. Motion of vehicle trip f between consecutive stops k,k+1 in route segment i∈ 𝑅; 𝑧 ∈ {𝐸, 𝑊} 30 
 31 
The calculation of travel time of bus trip f between two consecutive stops k, k+1 (𝑘 < 𝑛௜௭) along route 32 
segment i∈ 𝑅 in direction z∈{E,W} can be made by means of Equation (4). The arrival time of bus trip 33 
f at the next stop k+1,  𝑎௜,௭(𝑘 + 1, 𝑓), in the route segment i∈ 𝑅 direction z (z=E or W) is the sum of 34 
the arrival time 𝑎௜,௭(𝑘, 𝑓) at the stop k, the dwell time 𝑑௜,௭(𝑘, 𝑓) at the stop k, and the time needed to 35 
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overcome the distance 𝑠௜,௭(𝑘) between stops k, k+1, 𝑡௜,௭(𝑘, 𝑓). The sum of the two first terms 1 
determines the departure time from stop k, while the third term is affected by the delays caused by 2 
traffic lights. We calculate consecutively the travel time, starting from the first stop (where we have 3 
already defined 𝑎௜,௭(1, 𝑓)) and ending at the last stop 𝑘 = 𝑛௜,௭ of the route segment. Hence, the 4 
trajectory of bus trip f between stops k,k+1 is depicted in a space-time diagram in Figure 2 (trajectory 5 
a), with reference to the variables used in the modeling approach. 6 
 7 

   𝑎௜,௭(𝑘 + 1, 𝑓) = 𝑎௜,௭(𝑘, 𝑓) + 𝑑௜,௭(𝑘, 𝑓) + 𝑡௜,௭(𝑘, 𝑓)  𝑘 = 1, . . . , 𝑛௜,௭ − 1; ∀𝑓, i∈ 𝑅; 𝑧 ∈ {𝐸, 𝑊} (4) 
 8 
The evaluation of term 𝑎௜,௭(𝑘, 𝑓) is known from the analysis in the previous iteration at stop k or by 9 
setting the initial condition when k=1. The evaluation of  the dwell time is addressed separately in 10 
Section 2.2.1. Eventually, the estimation of the travel time 𝑡௜,௭(𝑘, 𝑓) to overcome the distance 𝑠௜௭(𝑘) 11 
is made by Equation (5). We assume that there are 𝑝௜,௭(𝑘) intersections along the sketch between stops 12 
(k, k+1) in route segment i, direction z. The term 𝑐௜,௭(𝑘, 𝑓, 0) captures the travel time to overcome the 13 
distance between stop k and the first intersection m=1 (if 𝑝௜,௭(𝑘)>0);  𝑐௜,௭(𝑘, 𝑓, 𝑚) the travel time to 14 
run the distance between intersections m, m+1 (m=1,.., 𝑝௜,௭(𝑘) − 1); 𝑐௜,௭(𝑘, 𝑓, 𝑝௜,௭(𝑘)) the travel time 15 
to cover the distance between the last intersection m= 𝑝௜,௭(𝑘) and stop k+1, and finally, 𝑤௜,௭(𝑘, 𝑓, 𝑚) 16 
the potential traffic delay caused by the complete detention of vehicle at intersection 𝑚 (𝑚 =17 
1, … , 𝑝௜,௭(𝑘)). The estimation of the first three components of Equation (5) can be developed by means 18 
of the vehicle motion laws under uniform acceleration. 19 
 20 

𝑡௜,௭(𝑘, 𝑓) = 𝑐௜,௭(𝑘, 𝑓, 0) + ෍ 𝑐௜,௭(𝑘, 𝑓, 𝑚)

௣೔,೥(௞)ିଵ

௠ୀଵ

+ 𝑐௜,௭(𝑘, 𝑓, 𝑝௜,௭(𝑘)) + ෍ 𝑤௜,௭(𝑘, 𝑓, 𝑚)

௣೔,೥(௞)

௠ୀଵ

 (5) 

 21 
We introduce a random noise in the three first terms, when vehicle is adapting the speed due to the 22 
presence of traffic lights and stops. In fact, the acceleration af of vehicle trip f can be assumed to be a 23 
random variable with a known probabilistic distribution. This would lead to different 24 
acceleration/deceleration profiles and different cruising speed values among vehicles arriving at the 25 
same traffic light or stop. Based on modeling assumption viii), the acceleration af is assumed to follow 26 
a Normal distribution, whose mean and standard deviation are, respectively, (𝜇௔ , 𝜎௔). Nevertheless, 27 
we truncated the previous distribution to only accept acceleration modules in the domain (0, amax).  28 
 29 
Equation (5) allows calculating the arrival time of the bus at intersections in an increasing order in 30 
route segment i∈ 𝑅 along direction z∈ {𝐸, 𝑊}. This arrival time requires to check whether the traffic 31 
light at intersections will be in green or red phase. In the latter condition, we may expect a delay of a 32 
bus. Therefore, the term 𝑒௜௭(𝑘, 𝑓, 𝑚) denotes the arrival time  at intersection m (m=1,…, 𝑝௜,௭(𝑘)) in 33 
route i in direction z (Equation 6), where the departure time from the last stop k and from the (m-1) 34 
previous intersections are known.  35 

 36 

𝑒௜,௭(𝑘, 𝑓, 𝑚) = 𝑎௜,௭(𝑘, 𝑓) + 𝑑௜,௭(𝑘, 𝑓) + ෍ 𝑐𝑖,𝑧(𝑘, 𝑓, ℎ)

௠ିଵ

௛ୀଵ

+ ෍ 𝑤𝑖,𝑧(𝑘, 𝑓, ℎ)

௠ିଵ

௛ୀଵ

                            (6) 

 37 

Let 𝑞௜,௭(𝑘, 𝑓, 𝑚) = ൤
𝑒𝑖,𝑧(𝑘,𝑓,𝑚)ି∆೔,೥(௠ା∑ ௣೔,೥(௛) ೖషభ

೓సభ )

஼೛
൨

ି

be the number of traffic light cycles that have been 38 

completed from t=0 when the bus trip f under study arrives at the m-th intersection among stops k,k+1. 39 
The term ∆௜,௭(𝑚்) is the global traffic light offset of this intersection m (m=1,..., 𝑝௜,௭(𝑘)) with regard 40 
to the segment origin,  𝑚் = 𝑚 + ∑ 𝑝௜,௭(ℎ)௞ିଵ

௛ୀଵ . Therefore, the delay at intersection m 41 
(m=1,..., 𝑝௜,௭(𝑘)) is estimated by Equation (7), considering the amount of time that the vehicle is 42 
completely stopped at an intersection. Finally, the terms 𝑔௜௭(𝑚்) and ∆𝑔௜,௭(𝑘, 𝑓, 𝑚) are respectively 43 
the green time at intersection m (m=1,…, 𝑝௜,௭(𝑘)) and the green extension parameter to be defined 44 
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when the control strategy S2 is activated (see Section 4). For the base case implementation of the bus 1 
motion modeling, this parameter is set ∆𝑔௜,௭(𝑘, 𝑓, 𝑚) = 0 seconds. 2 

 3 
𝑤௜,௭(𝑘, 𝑓, 𝑚)

= ቊ
0    if    𝑒𝑖,𝑧(𝑘, 𝑓, 𝑚) ≤ 𝐶௣𝑞௜,௭(𝑘, 𝑓, 𝑚) + ∆௜,௭(𝑚்) + 𝑔௜,௭(𝑚்) +  ∆𝑔௜,௭(𝑘, 𝑓, 𝑚)   

൫𝐶௣൫𝑞௜,௭(𝑘, 𝑓, 𝑚) + 1൯ + ∆௜,௭(𝑚்) − 𝑒𝑖,𝑧(𝑘, 𝑓, 𝑚)൯                        otherwise
           

(7) 

2.2.1 Dwell time at stops 4 

 5 
For any stop k (1≤k≤𝑛௜,௭) in the route segment i∈ 𝑅, the dwell time is calculated in a general form by 6 
Equation (8), assuming that buses have independent doors for boarding and alighting (assumption iv).  7 
The first and second parentheses capture, respectively, the total number of boarding and alighting 8 
passengers in/from the bus trip f at stop k in route segment i∈ 𝑅, direction z; while 𝜏ఉ ,  𝜏ఈ  represent 9 
the unit boarding and alighting time per passenger, respectively. 10 

 11 

The term 𝑁௜,௝,௭
ఉ (𝑘, 𝑓)  represents the number of boarding passengers on the bus trip f at stop k of the 12 

route segment i∈ 𝑅, direction z that will get off the bus on route segment j∈ 𝑅. Similarly, 𝑁௝,௜,௭
ఈ (𝑘, 𝑓) 13 

captures the alighting passengers at the bus stop k of route segment i∈ 𝑅, who previously got on the 14 

bus in route segment j∈ 𝑅. Both terms 𝑁௜,௝,௭
ఉ (𝑘, 𝑓) and 𝑁௝,௜,௭

ఈ (𝑘, 𝑓) only capture the initial boarding and 15 
last alighting operations of passengers, without considering transfers between origin and destination. 16 
Nevertheless, any trip between route segments i,j when 𝑖 ∈ 𝑅஺, 𝑗 ∈ 𝑅஻ (or vice versa) implies a transfer 17 
movement between routes A and B. Therefore, the additional boarding and alighting movements due 18 
to transfer operations are captured in the second and third term within the parentheses of Equation (8). 19 
There are two possible transfer movements:  20 
  21 

i) The first transfer movement typology is made when the route segment origin (i) and 22 
destination (j) of the passenger are served by different routes but are located in the same 23 
corridor edge, 𝑖, 𝑗 ∈ 𝑅ா or 𝑖, 𝑗 ∈ 𝑅ௐ, 𝑖 ≠ 𝑗, 𝑟(𝑖) ≠ 𝑟(𝑗). In that case, the transfer 24 
passengers never travel along the trunk segment AC or BC, since the  transfer operation is 25 
only performed at points PE or PW of Figure 3. Let 𝜂௜,௝,௭

ఈ (𝑘, 𝑓) be the number of 26 
transferring passengers that alight from bus trip f at stop k of route segment i (direction z). 27 
This transfer can only be performed at the last stop of segment i (𝜂௜,௝,௭

ఈ (𝑘, 𝑓) = 0 when 28 

k<𝑛௜,௭). Similarly, 𝜂௝,௜,௭
ఉ (𝑘, 𝑓) denotes the number of boarding passengers at transfer stop 29 

k of bus route segment i, that are transferring from route segment j. Due to transfer 30 

compatibility between route segments i and j at points PW or PE, this term is  𝜂௝,௜,௭
ఉ (𝑘, 𝑓) =31 

0 when k>1. This term is also 0 in all stops of the central segment AC or BC.  32 
ii) The second transfer typology happens when the passenger’s origin and destination are 33 

located at opposite branches (i,j) separated by the central segment and served by different 34 
routes, i.e. i,j ∈ 𝑅்ଵ or i,j ∈ 𝑅்ଶ, i≠j, r(i)≠r(j). In these cases, the transfer movements are 35 

   𝑑௜,௭(𝑘, 𝑓) = max

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝜏𝛽

⎝

⎜
⎜
⎜
⎛

෍ 𝑁௜,௝,௭
ఉ (𝑘, 𝑓)

௝∈ோ

+ ෍ 𝜂௝,௜,௭
ఉ (𝑘, 𝑓)

௝∈𝑅𝑊∪𝑅𝐸
𝑗≠𝑖

+ ෍ 𝜁௛,௜,௝,௭(𝑘, 𝑓 )

௛∈𝑅𝑇1
௛∈𝑅𝑇2

ℎ≠𝑗; 𝑟(ℎ)≠𝑟(𝑖) ⎠

⎟
⎟
⎟
⎞

;

𝜏𝛼

⎝

⎜
⎜
⎜
⎛

෍ 𝑁௝,௜,௭
ఈ (𝑘, 𝑓)

௝∈ோ

+ ෍ 𝜂௜,௝,௭
ఈ (𝑘, 𝑓) + ෍ 𝜁௛,௜,௝,௭(𝑘, 𝑓)

௛∈𝑅𝑇1
௛∈𝑅𝑇2

ℎ≠𝑗; 𝑟(ℎ)=𝑟(𝑖)

௝∈𝑅𝑊∪𝑅𝐸
𝑗≠𝑖

⎠

⎟
⎟
⎟
⎞

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

           (8) 
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considered to be made at any stop along the whole length of the central route segment. 1 
Hence, the term 𝜁௜,௝,௭

ఈ (𝑘, 𝑓)  captures the number of transferring passengers alighting from 2 
vehicle trip f at stop k of the central route segment operated by the same route that runs 3 

along segment i. Similarly, 𝜁௜,௝,௭
ఉ (𝑘, 𝑓′)  refers the transferring passengers from segment i 4 

that will board for second time on the complementary central segment to finally alight at 5 
route segment j, in bus trip f’.   6 
 7 

The estimation of the first term of Equation (8) is made assuming that 𝑁௜,௝,௭
ఉ (𝑘, 𝑓) follows a Poisson 8 

distribution of parameter ∆𝛽௜,௝,௭(𝑘) considering assumption v), where ∆𝛽௜,௝,௭(𝑘) = 𝛽௜,௝,௭(𝑘) −9 
𝛽௜,௝,௭(𝑘 − 1). Let ℎ(𝑓, 𝑓 − 1) be the time period between the consecutive arrivals of bus trip f-1 and f at 10 
a given stop k.  Hence, passenger arrivals at a stop within this headway ℎ(𝑓, 𝑓 − 1) may be considered 11 
independent. Under this circumstance, the interarrival time between two passenger arrivals follows an 12 
exponential distribution of parameter ∆𝛽௜,௝,௭(𝑘). Thus, if we want to generate variates of this 13 
exponential distribution of parameter ∆𝛽௜,௝,௭(𝑘), the resulting interarrival time can be calculated by 14 

𝑇௜,௝,௭(𝑘) =
ି୪୬ (௎)

∆ఉ೔,ೕ,೥(௞) 
, where U is a random variable with uniform distribution U(0,1). Therefore, the 15 

number of boarding passengers 𝑁௜,௝,௭
ఉ (𝑘, 𝑓)is defined as the integer value 𝑥 that fulfills the condition 16 

of the right hand of Equation (6), where 𝑈௠ are uniform distributed variates in (0,1). 17 

 18 
The previous equation is only valid if the vehicle has enough capacity to allow the service to all waiting 19 
passengers at stops. In the case of both trip origin and destination are located in the central route 20 
segments i,j∈ 𝑅஼ , the headway has to be estimated between consecutive vehicle trips, even if they 21 
belong to different routes.  22 
 23 
The number of alighting and boarding passengers due to a transfer operation between route segments 24 
contained in 𝑅ௐ or 𝑅ா (typology 1) are estimated by Equations (10) and (11) respectively, once 25 

𝑁௜,௝,௭
ఉ (𝑘, 𝑓) terms are known. Note in Equation (8) that the boarding passengers 𝜂௝,௜,௭

ఉ (1, 𝑓′) in vehicle 26 

trip 𝑓ᇱ at the first stop of route segment i would have arrived from different vehicle trips f operating 27 
segment j. It forces that we have to sum up the potential contribution of all bus trips operating route 28 
segment j in Equation (11). For this reason, we define the operator Φ௜,௝,௭(𝑘, 𝑓) to denote the 29 
correspondence of transferring passenger flows between bus trips of different routes. Let’s consider 30 
that the vehicle trip f operating route segment i in direction z is transferring passengers to route segment 31 
j at stop k. Hence, the operator Φ௜,௝,௭(𝑘, 𝑓) = 𝑓ᇱ  returns the vehicle trip f’ operating route segment j 32 
that has arrived at transfer stop k just before vehicle trip f. An example of this transfer operation is 33 
depicted in Figure 3. 34 
 35 

𝜂௜,௝,௭
ఈ ൫𝑛௜,௭, 𝑓൯ = ቊ

∑ 𝑁௜,௝,௭
ఉ (𝑘, 𝑓)

௡೔,೥

௞ୀଵ ,    𝑖, 𝑗 ∈ 𝑅ௐ 𝑜𝑟 𝑖, 𝑗 ∈ 𝑅ா , 𝑖 ≠ 𝑗, ; ∀𝑓

0                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

(10) 
 
 

𝜂௝,௜,௭ᇱ
ఉ (1, 𝑓′) = ൞෍ 𝜂௝,௜,௭

ఈ ൫𝑛௝,௭, 𝑔൯𝜅ଵ(𝑔, 𝑓ᇱ)

ெ

௚ୀଵ

= ෍ ෍ 𝑁௝,௜,௭
ఉ (𝑘, 𝑔)𝜅ଵ(𝑔, 𝑓ᇱ),

௡ೕ,೥

௞ୀଵ

ெ

௚ୀଵ

𝑖, 𝑗 ∈ 𝑅ௐ 𝑜𝑟 𝑖, 𝑗 ∈ 𝑅ா , 𝑖 ≠ 𝑗, ; ∀𝑓′

0                                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

(11) 

 36 

Where 𝜅ଵ(𝑔, 𝑓ᇱ) = ൜
1  𝑖𝑓 Φ௝,௜,௭൫𝑛௝,௭, 𝑔൯ = 𝑓ᇱ + 1

 0                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      and 

Φ௝,௜,௭൫𝑛௝,௭ , 𝑔൯ = max 𝑓′ ቚቀ𝑎௝,௭൫𝑛௝,௭, 𝑔൯ − 𝑎௜,௭ᇱ(1, 𝑓ᇱ)ቁ > 0 when  𝑗, 𝑖 ∉ 𝑅஼. 

 37 

  𝑃 ൬𝑥 =  𝑁௜,௝,௭
ఉ (𝑘, 𝑓)൰ = 𝑃 ൝ ෍

− ln(𝑈௠)

∆𝛽௜,௝,௭(𝑘)

 ௫

௠ୀଵ

≤ ℎ(𝑓, 𝑓 − 1) < ෍
− ln(𝑈௠)

∆𝛽௜,௝,௭(𝑘)

 ௫ାଵ

௠ୀଵ

ൡ  (9) 
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 1 
Figure 3. Example of transferring passengers at station PW from vehicle trips in segment AW to vehicle 2 
trip (f’+1) in segment BW.  3 
 4 
Concerning the second transfer typology, Equation (12a) estimates the alighting passengers 𝜁௜,௝,௭

ఈ (𝑘, 𝑓) 5 

from vehicle trip f at transfer stop k of the central segment h (h =AC if 𝑖 ∈ 𝑅஺ or h=BC if 𝑖 ∈ 𝑅஻) 6 
direction z. These passengers will board on bus trip 𝑓ᇱ = Φ௛,௛ᇲ,௭(𝑘, 𝑓) + 1 operating  the 7 
complementary route h’ in the central route segment. Nevertheless, this bus trip 𝑓ᇱmay find at stop k 8 
transferring passengers that have alighted from different bus trips f operating route segment i. 9 

Therefore, the term 𝜁௜,௝,௭
ఉ (𝑘, 𝑓′) is estimated in Equation (12b) as all boarding passengers at transfer 10 

stop k of the central route segment, direction z, that go to the branched segment j. Figure 4 shows an 11 
example of the transshipment operation in the central route segment. In order to consider assumption 12 
vii), we define 𝐹௭

்(𝑘) as the cumulative distribution of all passengers transferring from the first stop to 13 
stop k of central route segment, where ∆𝐹௭

்(𝑘) = 𝐹௭
்(𝑘) − 𝐹௭

்(𝑘 − 1) and  𝐹௭
்(0) = 0. If 𝐹௭

்(1) = 1, it 14 
means that all passengers will transfer at the first stop of the central route segment. Oppositely, if we 15 
set 𝐹௭

்(𝑘) = 0 (k=1,.., 𝑛஺஼,௭-1) and 𝐹௭
்൫𝑛𝐴𝐶,𝑧൯ = 1, it represents that all passengers will transfer at the 16 

last stop of this route segment AC. 17 
 18 

𝜁௜,௝,௭
ఈ (𝑘, 𝑓)  = ∆𝐹𝑧

𝑇(𝑘) ෍ 𝑁𝑖,𝑗,𝑧
𝛽 (𝑟, 𝑓);   

𝑛𝑖,𝑧

𝑟=1

∀𝑓, 𝑘;  𝑖, 𝑗 ∈ 𝑅𝑇1 𝑜𝑟 𝑖, 𝑗 ∈ 𝑅𝑇2 
 
(12a) 

𝜁௜,௝,௭
ఉ (𝑘, 𝑓′) = ∆𝐹𝑧

𝑇(𝑘) ෍ ෍ 𝑁𝑖,𝑗,𝑧
𝛽 (𝑟, 𝑔) ·

𝑛𝑖,𝑧

𝑟=1

𝜅2(𝑔, 𝑓′)
𝑀

𝑔=1

∀𝑓, 𝑘;  𝑖, 𝑗 ∈ 𝑅𝑇1 𝑜𝑟 𝑖, 𝑗 ∈ 𝑅𝑇2 
 
(12b) 

 19 

Where ℎ = ൜
𝐴𝐶  𝑖𝑓 𝑖 ∈ 𝑅஺

𝐵𝐶 𝑖𝑓 𝑖 ∈ 𝑅஻
, ℎ′ = ൜

𝐵𝐶  𝑖𝑓 𝑖 ∈ 𝑅஺

𝐴𝐶 𝑖𝑓 𝑖 ∈ 𝑅஻
,       𝜅ଶ(𝑔, 𝑓ᇱ) = ൜

1  𝑖𝑓 Φ௛,௛ᇱ,௭(𝑘, 𝑔) = 𝑓ᇱ + 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 and  20 

Φ௛,௛ᇱ,௭(𝑘, 𝑔) = max 𝑓′ ቚቀ𝑎ℎ,𝑧(𝑘, 𝑔) − 𝑎ℎ′,𝑧(𝑘, 𝑓′)ቁ > 0. 21 

 22 
 23 
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 1 
Figure 4. Example of transferring passengers at intermediate stop k from vehicle trips in segment AC 2 
to vehicle trip (f’+1) in segment BC.  3 
 4 
Eventually, the term 𝑁௜,௝,௭

ఈ (𝑘, 𝑓) accounts for the number of alighting passengers from bus f at stop k of 5 
route segment i in the direction of service z (Equation 13). This term does not consider the transfer 6 
movements. The estimation of this term must be consistent to the vehicle occupancy at this stop, and 7 
therefore depends on the stochastic number of boarding passengers that this bus trip f has found along 8 
the previous service. Therefore, the number of alighting passengers is based on the vehicle occupancy 9 
when the vehicle arrives at the stop. The vehicle occupancy is calculated by  𝑂௜,௭(𝑘, 𝑓) = 𝑃௜,௭(𝑘, 𝑓) +10 
𝑄௜,௭(𝑘, 𝑓), considering Equations (14-15). The term 𝑃௜,௭(𝑘, 𝑓) represents the onboard passengers of 11 
bus trip f between stops k, k+1 whose origin and destination are both located along the same route 12 
segment i∈ 𝑅, in direction z. Oppositely, the term 𝑄௜,௭(𝑘, 𝑓) represents the onboard passengers between 13 
stops k,k+1 whose origin or destination are not located along the route segment i in direction z. The 14 
sum of both terms accounts for the real occupancy of the vehicle. Equation (14) overpredicts the 15 
estimation of the alighting of passengers at stop k when the vehicle trip presents a significant higher 16 
time headway than the target one. If trip length distributions of passengers and an OD matrix is 17 
considered, the service irregularity effects would be even further pronounced.  18 
 19 

𝑁௜,௝,௭
ఈ (𝑘, 𝑓) = 𝑃𝑖,𝑧(𝑘 − 1, 𝑓) ·

஺೔,೔,೥(௞)

஻೔,೔,೥(௞)
+ ∑ ∆𝐹𝑗,𝑖,𝑧

𝛼 (𝑘) ∑ 𝑁௝,௜,௭
ఉ (𝑟, 𝑓)

𝑛𝑗,𝑧

௥ୀଵ௝∈ோ
௝ஷ௜

     𝑖, 𝑗 ∈ 𝑅;  𝑘, 𝑓 > 0 (13) 

Hence, the number of passengers alighting at stop k that previously boarded along the same route 20 
segment i is calculated by the first term of Equation (10), as the product between the vehicle occupancy 21 

and the quotient 
𝐴𝑖,𝑖,𝑧(𝑘)

𝐵𝑖,𝑖,𝑧(𝑘)
. Note that this quotient is equal to 1 at the last stop k=𝑛௜,௭. Nevertheless, the 22 

estimation of alighting passengers that have boarded in another route segment is calculated by the 23 
second term of Equation (10), considering the boarding passengers in other route segments j,  𝑗 ≠ 𝑖.  24 
 25 
The estimation of vehicle occupancies terms 𝑃௜,௭(𝑘, 𝑓) and 𝑄௜,௭(𝑘, 𝑓) are provided through Equations 26 
(14) and (15) respectively.  27 
 28 

𝑃௜,௭(𝑘, 𝑓) = 𝑃௜,௭(𝑘 − 1, 𝑓) + 𝑁𝑖,𝑖,𝑧
𝛽 (𝑘, 𝑓) − 𝑃௜,௭(𝑘 − 1, 𝑓)

𝐴𝑖,𝑖,𝑧(𝑘)

𝐵𝑖,𝑖,𝑧(𝑘)
;  𝑖 ∈ 𝑅; 𝑧 ∈

{𝑊, 𝐸}; 𝑘, 𝑓 > 0 

 
(14) 

𝑄௜,௭(𝑘, 𝑓) = 𝑄௜,௭(𝑘 − 1, 𝑓) + ෍ 𝑁௜,௝,௭
ఉ (𝑘, 𝑓)

௝∈ோ
௝ஷ௜

+ ෍ 𝜂௝,௜,௭
ఉ (𝑘, 𝑓)

௝∈ோೈ∪ோಶ

௝ஷ௜

+ ෍ ෍ 𝜁
ℎ,𝑗,𝑧
𝛽 (𝑘, 𝑓)

௛ஷ௝

௥(௝)ୀ௥(௜)

௥(௝)ஷ௥(௛)

௛∈ோ೅భ∪ோ೅మ 

− ෍ ∆𝐹௝,௜,௭
ఈ (𝑘) ෍ 𝑁௝,௜,௭

ఉ (𝑟, 𝑓)

௡ೞ
ೕ೥

௥ୀଵ௝∈ோ
௝ஷ௜

− ෍ 𝜂௜,௝,௭
ఈ (𝑘, 𝑓)

௝∈𝑅𝑊∪𝑅𝐸
𝑗≠𝑖

− ෍ ෍ 𝜁
ℎ,𝑗,𝑧
𝛼 (𝑘, 𝑓)

௛ஷ௝

௥(௝)ஷ௥(௛)
௛∈ோ೅భ∪ோ೅మ

𝑟(ℎ)=𝑟(𝑖)

   

𝑖 ∈ 𝑅; 𝑧 ∈ {𝑊, 𝐸};  𝑘, 𝑓 > 0 
 

 
 

(15) 
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The passenger flow conservation principle has to be imposed between consecutive route segments. In 1 
our model, this principle is formulated at stop k=0 of each route segment i, imposing 𝑄௜,௭(0, 𝑓) = 𝑄଴, 2 
where 𝑄଴ is different for each route segment i, direction z. For instance, 𝑄஺஼,ா(0, 𝑓) =3 

∑ ቀ𝑁𝐴𝑊,𝐴𝐶,𝐸
𝛽 (𝑟, 𝑓) + 𝑁𝐴𝑊,𝐴𝐸,𝐸

𝛽 (𝑟, 𝑓) + 𝑁𝐴𝑊,𝐵𝐸,𝐸
𝛽 (𝑟, 𝑓)ቁ

௡ಲೈ,ಶ

𝑟=1
. Therefore, Appendix 1 shows the boundary 4 

conditions that must prevail.  5 
 6 

3 Optimization 7 

 8 
The key performance indicators to analyze the proper operational design of the corridor as well as the 9 
effects on the user side are presented in Section 3. Compact estimations for the operating cost incurred 10 
by transit agency and the temporal costs experienced by users are provided, based on the modelling 11 
framework presented in Section 2. An optimization procedure of the vehicle synchronization and 12 
headway is developed, aimed at minimizing the total cost of the system.   13 

3.1 Agency metrics 14 

 15 
The operating cost incurred by the bus operator will depend on the fleet size and the distance run by 16 
the whole fleet in the period of analysis. The estimation of the fleet size in route A and B (denoted by 17 
MA and MB respectively) can be obtained through Equation (16). It is computed as the maximal 18 
difference in the number of vehicles trips between a vehicle trip departure (𝑓஺in route A, 𝑓஻ in route B) 19 
from the initial stop of the first route segment, and the previous vehicle trip arriving at the last stop of 20 
the last segment of the route (𝑓௡,஺(𝑓஺)in route A, 𝑓௡,஻(𝑓஻) in route B, where 𝑓௡,஺(𝑓஺) < 𝑓஺; 𝑓௡,஻(𝑓஻) < 𝑓஻). 21 
 22 

𝑀஺ = max
௙ಲ

൛൫𝑓஺ − 𝑓௡,஺(𝑓஺)൯ห𝑎𝐴𝑊,𝐸(1, 𝑓஺) > 𝑎𝐴𝑊,𝑊൫𝑛஺ௐ,ௐ, 𝑓௡,஺(𝑓஺)൯ ≥ 𝑎𝐴𝑊,𝐸(1, 𝑓஺ − 1)ൟ 𝑓஺ = 1, . . , 𝑀        (16) 

𝑀஻ = max
௙ಳ

൛൫𝑓஻ − 𝑓௡,஻(𝑓஻)൯ห𝑎𝐵𝑊,𝐸(1, 𝑓஻) > 𝑎𝐵𝑊,𝑊൫𝑛஻ௐ,ௐ , 𝑓௡,஻(𝑓஻)൯ ≥ 𝑎𝐵𝑊,𝐸(1, 𝑓஻ − 1)ൟ  𝑓஻ = 1, . . , 𝑀 23 

 24 
On the other hand, the distance run in one hour of service by the vehicles of each bus route (𝑉஺ and 25 
𝑉஻ respectively) can be estimated by Equation (19), as the total length of each route divided by the 26 
target headway. The estimation of the fleet size of Equation (16) guarantees that vehicles are 27 
dispatched regularly from the beginning of each route at constant headways.   28 
 29 

𝑉஺ =
∑ ൫௟೔,ಶା௟೔,ೈ൯೔∈ೃಲ

ுಲ
       ;      𝑉஻ =

∑ ൫௟೔,ಶା௟೔,ೈ൯೔∈ೃಳ

ுಳ
    

(17) 

3.2 User performance 30 

 31 
The effects of the bus performance on the user’s side will be mainly evaluated by the total travel time 32 
of users and the coefficient of variation of headways. The former metric is the sum of the time spent 33 
by users in the waiting (Wi), in-vehicle (IVTTi) and transferring (WT,i) components of all user trips in 34 
all route segments 𝑖 ∈ 𝑅 in one hour of operation. The latter, denoted by 𝑐௩ு , is a commonly used 35 
metric to assess the quality of the service, in terms of reliability and time-headway adherence. These 36 
metrics are consistent to Estrada et al. (2016).  37 
 38 
On one hand, the in-vehicle travel time IVTTi   in route segment i∈ 𝑅 is estimated by Equation (21) 39 
during one hour of service. The IVTTi is calculated multiplying the passenger occupancy in each 40 
segment between two stops, times the travel time along this segment. The time 𝑡∗is defined by Equation 41 
(22) and represents the maximal time when the first vehicle trip of route A or B has completed a full 42 
round trip. The second departure (or trip) from the initial stop of the first vehicle is referred by f=𝑀஺ +43 
1 in route A or  f=𝑀஻ + 1 in route B. The time period (0; 𝑡∗) is needed to preposition all vehicles along 44 
the routes A and B. Therefore, Equation (21) only takes into account the travel time of vehicles during 45 
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the next hour after 𝑡∗, i.e. in the time period (𝑡∗; 𝑡∗ + 1) measured in hours. To do this, we introduce 1 
the Heaviside function H(x) in Equation (21), that returns 𝐻(𝑥 ≥ 0) = 1, and 𝐻(𝑥 < 0) = 0.  2 

Moreover, the waiting time of passengers at stops scattered along segment i∈ 𝑅 is denoted by 𝑊௜ and 3 
calculated through Equation (23). To do this, we consider the arrival time 𝜏௜,௝,௭(𝑘, 𝑓, 𝑝) of each 4 

passenger p=1,.., 𝑁௜,௝,௭
ఉ (𝑘, 𝑓) boarding on vehicle trip f at stop k. In Section 2.3.1, we have justified 5 

that the p-th boarding passenger in vehicle trip f at stop k of route segment i (direction z) traveling to 6 

route segment j is assumed to arrive at this stop at time 𝜏௜,௝,௭(𝑘, 𝑓, 𝑝) = 𝜏௜,௝,௭(𝑘, 𝑓, 𝑝 − 1) −
୪୬(௎೘)

∆ఉ೔,ೕ,೥(௞,௙)
; 7 

where 𝜏௜,௝,௭(𝑘, 𝑓, 0) = 𝑎௜,௭(𝑘, 𝑓), and 𝑈௠ is uniform distributed variates in (0,1). Again, we only 8 
consider those passengers that have arrived at stops in the one-hour period after the first vehicles of 9 
route A and B have completed one roundtrip. The transfer time of passengers in a one-hour of service 10 
is evaluated in Equation (24) in a similar way to the estimation of waiting time in the previous equation. 11 
Due to the two different transfer typologies, two formulas are proposed.  12 
 13 
 14 

Eventually, the coefficient of variation of headways is calculated for all segments 𝑖 ∈ 𝑅஺ operated by 15 

route A by 𝑐௩,௛,஺ =
௦ಹ

ுಲ
,  and segments  𝑖 ∈ 𝑅஻ of route B by  𝑐௩,௛,஻ =

௦ಹ

ுಳ
. The term 𝑠ு  is the standard 16 

deviation of the time headways between consecutive buses from the target headway in all stops along 17 

 𝐼𝑉𝑇𝑇௜

= ෍ ෍ ෍ ቄ𝑂𝑖,𝑧൫𝑘, 𝑓൯ · ቀ𝑎௜,௭(𝑘 + 1, 𝑓) − 𝑎௜,௭(𝑘, 𝑓)ቁቅ · 𝐻൫𝑎௜,௭(𝑘, 𝑓) − 𝑡∗൯ ·

௡೔,೥ିଵ

௞ୀଵ

ெ

௙ୀଵ

𝐻 ቀ𝑡∗ + 1 − 𝑎௜,௭(𝑘 + 1, 𝑓)ቁ
௭∈{ா,ௐ}

     

𝑖 ∈ 𝑅 
 

(18) 

𝑡∗ = 𝑚𝑎𝑥൛𝑎𝐴𝑊,𝐸(1, 𝑀஺ + 1); 𝑎𝐵𝑊,𝐸(1, 𝑀஻ + 1)ൟ (19) 
  

𝑊௜ = ෍ ൞෍ ෍ ෍ ቀminൣ𝑎௜,௭(𝑘, 𝑓); 𝑡∗ + 1൧ − 𝜏௜,௝,௭(𝑘, 𝑓, 𝑝)ቁ · 𝐻൫𝜏௜,௝,௭(𝑘, 𝑓, 𝑝) − 𝑡∗൯

ே೔,ೕ,೥
ഁ

(௞,௙)

௣ୀଵ

௡೔,೥

௞ୀଵ

ெ

௙ୀଵ௭∈{ா;ௐ}

· 𝐻 ቀ𝑡∗ + 1 − 𝜏௜,௝,௭(𝑘, 𝑓, 𝑝)ቁൢ   𝑖 ∈ 𝑅  

(20) 

𝑊்,௜ = ෍

⎩
⎪
⎨

⎪
⎧

෍ ෍ 𝜂
𝑖,𝑗,𝑧
𝛼 (𝑘, 𝑓) · ቀminൣ𝑎௝,௨൫1, Φ௜,௝(𝑓) + 1൯; 𝑡∗ + 1൧ − 𝑎௜,௭൫𝑛௜,௭, 𝑓൯ቁ

௝∈ோ
௝ஷ஺஼;஻஼

ெ

௙ୀଵ௭∈{ா,ௐ}

·   𝐻൫𝑎௜,௭൫𝑛௜,௭, 𝑓൯ − 𝑡∗൯ · 𝐻 ቀ𝑡∗ + 1 − 𝑎௜,௭൫𝑛௜,௭, 𝑓൯ቁ

⎭
⎪
⎬

⎪
⎫

      𝑖 ∈ 𝑅 − 𝑅஼;        𝑢 = ൜
𝐸  𝑖𝑓 𝑧 = 𝑊
𝑊 𝑖𝑓 𝑧 = 𝐸

 

 
 

(21) 
 
 
 
 
 
 
 

𝑊்,௜ = ∑

⎩
⎪⎪
⎨

⎪⎪
⎧

∑ ∑ ∑ ∑ 𝜁
ℎ,𝑖,𝑗,𝑧

(𝑘, 𝑓) ቀminൣ𝑎௜ᇲ,௭൫𝑘, Φ௜,௜ᇲ,௭(𝑓) + 1൯; 𝑡∗ + 1൧ −
௡೔೥
௞ୀଵℎ∈𝑅𝑇1

ℎ∈𝑅𝑇2
ℎ≠𝑗;

 𝑟൫ℎ൯=𝑟(𝑖)

𝑗∈𝑅𝑇1
𝑗∈𝑅𝑇2

ெ
௙ୀଵ௭∈{ௐ,ா}

𝑎௜,௭(𝑘, 𝑓)ቁ 𝐻൫𝑎௜,௭(𝑘, 𝑓) − 𝑡∗൯ · 𝐻 ቀ𝑡∗ + 1 − 𝑎௜,௭(𝑘, 𝑓)ቁ

⎭
⎪⎪
⎬

⎪⎪
⎫

           𝑖 ∈ 𝑅஼; 𝑖ᇱ ∈ 𝑅஼ − {𝑖}      
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segment. According to the value of this coefficient of variation, TRB (2013) proposes 6 different levels 1 
of service domains to assess the regularity of service. This classification will be used in the numerical 2 
instances to rank the bus performance in terms of time headway adherence. 3 
 4 

3.3 Optimization procedure 5 

 6 
The problem optimization aimed at minimizing the user and agency costs is defined by means of 7 
Equations (22)-(24). The agency cost component 𝑍஺, expressed in EUR/h, considers the number of 8 
resources and distance travelled by the whole fleet, multiplied by the unit temporal and unit distance 9 
cost parameters, ct (€/veh-h) and cd (€/veh-km). User costs 𝑍௎ (EUR/h) are computed as the product 10 
of waiting and in-vehicle travel times of all passengers by the value of the time parameter 𝜇ே(€/pax −11 
h). This parameter accounts for the monetary value of one hour spent by an average user in the system.  12 
 13 
  min

ுಲ,ுಳ,௧బಲ,௧బಳ  
𝑍 = 𝑍஺ + 𝑍௎ = (𝑀஺ + 𝑀஻)𝑐௧ + (𝑉஺ + 𝑉஻)𝑐ௗ + 𝜇ே൛∑ ൫𝑊௜ + 𝐼𝑉𝑇𝑇௜ + 𝑊்,௜൯௜∈ோ ൟ 

𝑠. 𝑡.  
 0 ≤ 𝑡଴஺ ≤ 𝐻஺; 0 ≤ 𝑡଴஻ ≤ 𝐻஻ 

𝑂௜,௭(𝑘, 𝑓) ≤ 𝐶; ∀𝑘, 𝑓, 𝑖, 𝑧   

(22) 
 
(23) 
(24) 

 14 
Equation (26) states the non-negative nature of the decision variables of the problem: time-headways 15 
(𝐻஺ and 𝐻஻) and the entrance time of buses at the beginning of segments AW and BW in direction E 16 
(variables 𝑡଴஺ and 𝑡଴஻). This problem must also verify the capacity constraint stated in Equation (27).  17 
 18 
Nevertheless, the optimal set of 𝐻஺

∗, 𝐻஻
∗ , (𝑡0𝐴)∗, (𝑡0𝐵)∗ minimizing the objective function may cause a 19 

poor regularity in the central segment. In fact, this situation may occur when the transfer time 20 
component 𝑊் of the objective function is quite important due to the significant demand between 21 
branched segments. Hence, we also propose to estimate those optimal values of the decision variables 22 
that provide the minimal coefficient of variation of headways. 23 
  24 
The optimization procedure followed was based on a grid search of the objective function Z (𝐻஺

ᇱ , 𝐻஻
ᇱ ,  25 

𝑡଴஺′, 𝑡଴஻′), enumerating Z for constant intervals in the domain of the decision variables. The headways 26 
𝐻஺

ᇱ , 𝐻஻
ᇱ ,  are enumerate every minute. For other decision variables, we define an enumeration interval 27 

of =5-20 seconds, depending on the problem size. The entrance times of vehicles in segment AW=1 28 
(route A) and segment BW (route B) are then calculated respectively as 𝑡଴஺′ = 𝑘1 · ∆ and 𝑡଴஻′ = 𝑘2 · ∆;  29 
𝑘ଵ, 𝑘ଶ  integers.  30 
 31 

4 Control strategies 32 

 33 
As it is explained in section 2, there are different sources of instability in the definition of the problem 34 
that will cause a low level of service in route segments, especially in the central segment, in terms of 35 
regularity. To tackle this problem, we consider three potential bus control strategies to alleviate the 36 
lack of time headway adherence, in addition to the “do nothing” or no control strategy defined as 37 
Strategy S0. They are enumerated in the following lines. 38 
 39 
Strategy S0. This strategy resembles the assumptions listed in Section 2.1 where there is no key 40 
constraint to the bus motion. It considers that buses do not have holding points along the route and 41 
overtaking between buses of the same route is not allowed.  42 
 43 
Strategy S1. We consider the provision of slacks at holding points (stops) in the route A and B. This 44 
strategy is aimed at maintaining constant the target headway of HA and HB in all segments of the route, 45 
at the expenses of enlarging bus travel times. We assume that the maximal slack (i.e. available 46 
synchronization time at any stop) is maxTherefore, we allow that a vehicle trip f at stop k of route 47 
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segment i, running at rear of a delayed vehicle, may wait 𝜃௜,௭(𝑘, 𝑓) units of time (𝜃௜,௭(𝑘, 𝑓)<maxto 1 
recover the target headway. The modeling formulation modification to represent this strategy is 2 
presented in the following lines.  3 
 4 
Consider that the arrival time of vehicle trip f at stop k of route segment i is 𝑎௜,௭(𝑘, 𝑓). The vehicle trip 5 
(f-1) of the same route (A or B) running ahead would have arrived at time 𝑎௜,௭(𝑘, 𝑓 − 1). Hence, the 6 
real time headway between these vehicles is  𝑎௜,௭(𝑘, 𝑓) − 𝑎௜,௭(𝑘, 𝑓 − 1). The control strategy forces 7 
vehicle trip f of this route segment i to wait 𝜃௜,௭(𝑘, 𝑓) at stop k when the previous real headway is lower 8 
than the target HA or HB value. The determination of these slacks is estimated by Equation (28) 9 
depending on the difference between real and target headways.  10 
 11 
Let 𝜀௙ିଵ,௙ = 𝑎௜,௭(𝑘, 𝑓) − 𝑎௜,௭(𝑘, 𝑓 − 1) − 𝐻௫ be the forward time headway adjustment between 12 
vehicle trip f and the vehicle ahead (f-1) at this stop k (𝑥 = 𝐴 if 𝑖 ∈ 𝑅஺ and 𝑥 = 𝐵 if 𝑖 ∈ 𝑅஻). We can 13 
also define the corresponding time headway adjustment between vehicles f and f+1 by 𝜀௙,௙ାଵ =14 
𝑎௜,௭(𝑘௣, 𝑓 + 1) − 𝑎௜,௭(𝑘௣, 𝑓) − 𝐻௫. Nevertheless, the latter headway adherence metric must be 15 
evaluated at the last stop 𝑘௣ < 𝑘 already visited by vehicle trip f+1.The first and second conditions of 16 
Equation (28) hold the vehicle trip f an amount of time 𝜃௜,௭(𝑘, 𝑓)  at stop k of route i in direction z. Since 17 
the deviation of the headway with regard the vehicle at rear is higher than the corresponding value 18 
with the vehicle ahead, this slack helps reducing the headway with the vehicle at rear. The slack to be 19 
introduced depends on the relative value of  ൫𝜀௙,௙ାଵ − 𝜀௙ିଵ,௙൯ and 𝜃௠௔௫.  If the maximal slack time  is 20 
not sufficient to correct the real time headway ൫𝜀௙,௙ାଵ − 𝜀௙ିଵ,௙൯ ≥ 𝜃௠௔௫, we hold vehicle trip f an 21 
amount of 𝜃௠௔௫. On the contrary, when the headway deviation is lower than maximal slack 22 
൫𝜀௙,௙ାଵ − 𝜀௙ିଵ,௙൯ ≥ 𝜃௠௔௫, we only hold vehicles this deviation. Under other situations (third 23 
condition), the slack to be introduced is 0. If we would hold the vehicle at this stop, we would worsen 24 
the system regularity.  25 
 26 

 27 
These slacks must be added into the formulation of vehicle dwell times at stop k of route segment 𝑖 ∈28 
𝑅 defined by Equation (5).  It will suppose an extra dwell time of the vehicle trajectory a) depicted in 29 
Figure 2. 30 
 31 
Strategy S2. This strategy extends the duration of the green phase at traffic lights to avoid delayed 32 
buses to stop at intersections. Therefore, we assume that the trajectories of vehicles are monitored to 33 
activate traffic light priority to buses in real time. Let G be the maximal extension time of the green 34 
phase allowed by traffic conditions. In fact, this green extension should be defined by a maximal 35 

percentage 𝜓 of the total traffic light cycle, 
ீ

஼೛
< 𝜓. However, this green extension time is only 36 

provided to those buses whose time headway with the regard to the vehicle ahead is higher than the 37 
value corresponding to the vehicle at rear. Therefore, the extension parameter ∆𝑔௜,௭(𝑘, 𝑓, 𝑚) of 38 
Equation (18) for the vehicle trip f at intersection m (m=1,…, 𝑝௜,௭(𝑘)) between stops k,k+1 of the route 39 
segment i, direction z, is replaced by the value  given in Equation (29).The resulting bus motion under 40 
this strategy is depicted by trajectory b) in Figure 2 41 
 42 

 
Strategy S3. This strategy is a combination of Strategy S1 and S2. It extends the duration of the green 43 
phase at traffic lights (G>0) and introduces some slack at each stop (max>0). As suggested in Estrada 44 

𝜃௜,௭(𝑘, 𝑓)

= ቐ

𝜃𝑚𝑎𝑥                                          𝑖𝑓𝜀𝑓,𝑓+1 > 𝜀𝑓−1,𝑓  𝑎𝑛𝑑 𝜀𝑓,𝑓+1 >  0 𝑎𝑛𝑑 ൫𝜀𝑓,𝑓+1 − 𝜀𝑓−1,𝑓൯ ≥ 𝜃𝑚𝑎𝑥   

൫𝜀𝑓,𝑓+1 − 𝜀𝑓−1,𝑓൯       𝑖𝑓 𝜀𝑓,𝑓+1 > 𝜀𝑓−1,𝑓  𝑎𝑛𝑑 𝜀𝑓,𝑓+1 >  0 𝑎𝑛𝑑 ൫𝜀𝑓,𝑓+1 − 𝜀𝑓−1,𝑓൯ < 𝜃𝑚𝑎𝑥

0                                                                                                                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(25) 

∆𝑔௜,௭(𝑘, 𝑓, 𝑚) = ൜
𝐺      𝑖𝑓 𝜀௙,௙ାଵ  ≤ 𝜀௙ିଵ,௙

0     𝑖𝑓 𝜀௙,௙ାଵ > 𝜀௙ିଵ,௙ 
 

 
(26) 
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et al (2016), this was the most efficient control strategy for minimizing the total cost of the system, in 1 
corridors operated by a single line with exogenous bus disruptions. 2 
 3 
The optimization procedure is able to obtain the best solution of the problem by a grid search 4 
considering only one control strategy from the previous list at each execution. Therefore, the sequences 5 
of travel times of buses along the route are particular to the strategy chosen in each execution. 6 

5 Numerical  analysis 7 

 8 
Formulas (1)-(29) reproduce the transit vehicle motion and were coded in Visual Basic programming 9 
language, compatible to the input files developed in Microsoft Excel. The model was implemented in 10 
the corridor layout of the H10 route of the Barcelona bus network, to analyse how the total cost and 11 
the selected metrics regarding the performance of the branched transit routes are influenced by transit 12 
layout, vehicle entrance synchronization and control strategies.  13 
 14 

 
Figure 5. Barcelona’s H10 bus corridor layout, with the section lengths and the matrix showing the 

demand distribution through its five sections 
 

The current layout of this corridor does not show any branched segment and it is operated at H= 6 15 
minutes. The occupancy at the edges of the route is significantly low at this headway. Therefore, a 16 
potential modification of the current bus corridor H10 into two branched routes in the edges (H10-A 17 
and H10-B) is proposed to correct this malfunction. In Figure 5, the layouts of the two the routes are 18 
depicted. Route H10-A is 13.175 km long, from Badal St. to Olimpic de Badalona Station (roundtrip 19 
distance 26.3km), while the length of route H10-B trip, from Pl. de Sants St. to Sant Adrià St., is 14.00 20 
km. The branches of route H10-B run closer to the sea front. The corridor layout, the length of each 21 
branch as well as demand matrix are depicted in Figure 5. In this physical problem, we considered a 22 
demand matrix that has been obtained from the actual ridership in the central corridor of H10 and in 23 
other lines currently operating the branched segments (TMB, 2018). From the available data, the total 24 
demand estimation along the corridor was supposed to be 3410 pax/h. Moreover, the cycle time in the 25 
Barcelona neighbourhood where the corridor run along is Cp=90 s and the green phase time 𝑔௜௭(𝑚) of 26 
intersection m in route segment i (direction z) ranges between 36-60 seconds. The kinematic and 27 
economic input parameters are the following: the maximal cruising speed, vmax=50 km/h, mean 28 
acceleration rate 𝜇௔=1.1 m/s2, standard deviation of the acceleration rate a=0.3m/s2, vehicle capacity 29 
C=120 pax/veh, unit distance cost cd=5 EUR/veh-km, unit temporal cost ct=60 EUR/veh-h, unit 30 
boarding time  =2.73 sec/pax, unit alighting time =1.73 sec/pax and value of time N=10 EUR/pax-31 
h.  32 

5.1 Effect of the stochastic processes on the cost and bus performance   33 

 34 
We have repeated the optimization process aimed at minimizing Equation (22)-(24) in 16 different 35 
multirandom runs, considering different variants of the demand and acceleration random variables of 36 

Route A

Route B

Route A

Route B

AC/BC
AW

BW AE

BE

Section Length
AW 1.450

AC/BC 8.750
AE 2.975
BW 0.645
BE 4.600

Section lengths (km)

Section AW AC/BC AE BW BE
AW 100 150 50 10 20

AC/BC 150 1,805 100 100 100
AE 50 100 30 20 50
BW 10 100 20 25 25
BE 20 100 50 25 200

Demand matrix (pax/h)
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the H10 problem. These variables are the number of boarding passengers on bus at stops and 1 
acceleration rates. Considering the implementation of Strategy S0, we have obtained that the optimal 2 
headways are 𝐻஺

∗=7 min and 𝐻஻
∗ =6 minutes for the situation represented by the input parameters. 3 

 4 
In Figure 6a, we plot the best ten combinations of entrance times  (𝑡଴஺)  and (𝑡଴஻)  that provide the 5 
lowest total cost of the system in the 16 problem instances under Strategy (S0). The points labelled by 6 
numbers p=1,..,16 represent the pair of optimal values (𝑡଴஺)∗,(𝑡଴஻)∗ corresponding to the p-th set of 7 
random instance. The results show that there is no a well-defined subdomain of 𝑡଴஺ and 𝑡଴஻ that 8 
recurrently minimizes the total cost for all random variable sets. Nevertheless, the pair of  (𝑡଴஺)  and 9 
(𝑡଴஻)  in the same random execution that produce the lowest cost of the system are usually located 10 
along a line of unitary slope in the diagram. It means that the optimal domain of time entrances is 11 
identified for a constant offset between these entrance times, i.e.  (𝑡଴஻) − (𝑡଴஺) =ct. This constant 12 
offset is particular for each random execution, hence, it depends on the random variable demand 13 
boarding at stops. For example, the vast majority of best combinations of entrance times in Random 14 
Execution #5 (blue crosses) are found when (𝑡଴஻) − (𝑡଴஺) =0 seconds (blue line). However, in 15 
Random Execution #11, the best pairs of entrance times maintain the following offsets (𝑡଴஻) − 16 
(𝑡଴஺) = −120; 80; 140 (three red lines). On the other hand, Figure 6b depicts the main cost and 17 
performance metrics for the optimal solution in each of the 16 random executions.  18 
 19 
The maximal difference between the best solution among random instances is less than 10%. A fact 20 
that deserves comment is the fleet size required to operate the bus route. There is a maximal variation 21 
of  4 buses among test instances. In real implementations, depending on the stochastic boarding and 22 
acceleration process, some instances would theoretically require additional buses to operate at the 23 
given headway. If these buses are not provided (we only deploy the fleet size requried in the best 24 
solutions), it would mean that some buses would present higher roundtrip travel times than expected. 25 
Therefore, the buses experiencing higher roundtrip travel times will initiate the next roundtrip with 26 
delays regarding the timetable, not satisfying the target headways. The maximal variation of coefficient 27 
of headway variation is 0.26 and 0.33 in route A and B respectively. Therefore, the synchronization of 28 
the entrances in the corridor highly influences the time headway adherence of buses along the 29 
corridors. Nevertheless, it does not imply a large increment of operating cost in the bus route.   30 
 31 

 

 

Figure 6a. (𝑡଴஺, 𝑡଴஻) pairs of the 10 lowest solutions in 
terms of total cost for the 16 random instances. 

Figure 6b. Box plot of the optimal cost 
and performance metrics in the 16 
random instances. 
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 1 

5.2 Effect of traffic signals and control strategies 2 

 3 
We compared the route performance under the same control strategies defined in Section 4, although 4 
we considered more combinations of parameters in Strategy S3 (max=5 sec, G=5sec in option a; max 5 
=5 sec, G=5sec in option b; max =5 sec, G=20sec in option c; and max =10 sec, G=10sec in option d). 6 
 7 
The results obtained are summarized in Figures 7a and 7b for the random set of parameters #1 and the 8 
optimal values of the decision variables (𝑡଴஺ = 0 𝑠, 𝑡଴஻ = 40 𝑠, 𝐻஺ = 420 s, 𝐻஻ = 360 𝑠). The 9 
operation under the no-control strategy (S0) requires 28 vehicles (13 buses in route A and 15 in route 10 
B) and presents a total cost of 20,297 EUR/h. The headway adherence is not satisfactory. According 11 
to the assessment criterion of TRB (2013) and the values of the coefficient of variation of headways 12 
in routes A (𝑐௩ு,஺ = 0.44) and B (𝑐௩ு,஻ = 0.60), the level of service can be cathegorized as D and E 13 
respectively.  Strategy S1 based on slacks is able to marginally reduce the variation of headways (level 14 
of service) at the expenses of increasing the roundtrip travel time of vehicles. Therefore, the operational 15 
cost of transit agency is increased (two additional vehicles with regard to Strategy S0) as well as the 16 
in-vehicle travel time of users. It resulted to be the most expensive strategy among the set of strategies 17 
under analysis. Strategy S2 based on traffic signal extension is able to reduce the total cost of the 18 
system by 5.5% with regard to Strategy S0. However, this strategy presents a very poor service 19 
regularity, with a cvh metric even 15% higher than the strategy with no control (S0). The provision of 20 
the discrete green extension strategy to delayed buses increases the instability of the system (poorer 21 
cvh), but allows minimizing travel times. To fix this effect, hybrid strategy S3 (combining short slack 22 
times at holding points and the green extension measure) is able to provide similar results in terms of 23 
total cost to the best strategy S2, while improving the variation of headways. Strategy S3c is the most 24 
cost-efficient control strategy, being able to reduce the total cost by 3.99% with regard to S0 25 
counterpart, maintaining the coefficient of variation of headways below 0.38 (level of service C).  26 
 27 

Figure 7a. Total cost and coefficient of 
variation of headways corresponding to each 
control strategy 

Figure 7b. Fleet size and route entrance times  
corresponding to each control strategy 

 28 
The second best solution in terms of total cost is Strategy S3b, only 1.5% higher than S3c. 29 
Nevertheless, this strategy is able to maintain the level of service within the A domain (cvh <0.2). 30 
Figure 7a also exhibits the lowerbound of the coefficient of variation of headways corresponding to 31 
route A and B. These curves are obtained by the enumeration of the coefficient of variation of headways 32 
for different entrance times 𝑡଴஺, 𝑡଴஻. Generally, the pair (𝑡଴஺, 𝑡଴஻) that outperforms the service 33 
regularity in route A and B is not the same that minimizes the objective function defined in Equation 34 
(25). As it was suggested in Estrada et al (2016), the most recommendable control strategy is the hybrid 35 
one, with small holding points distributed along the line and the possibility of the green extension of 36 
traffic lights. Nevertheless, the branched layout of routes and the inclusion of the stochastic effects 37 
reduce the potential savings (around 30% of cost reduction) reported in Estrada et al (2016). 38 
 39 
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5.3 Effect of unit boarding times and total demand  1 

 2 
The results presented in section 5.1 are calculated with a given unit boarding time and average hourly 3 
demand rates, based on the real data gathered by the bus agency in Barcelona. In this subsection we 4 
carry out a sensitivity analysis of the cost and bus performance with regard to these input parameters, 5 
since they are the ones that present more uncertainty. The cost and coefficient of variation of headways 6 
have been evaluated when the current unit boarding time (𝜏ఉ=2.73 s/pax) is scaled by factors 0; 0.5; 7 
1.0; 1.25 and 1.5 while the current hourly demand rates between route segment i,j ∈ 𝑅,  direction z 8 
(𝐵௜,௝,௭) are magnified by the scaling factors =1.0; 1.25 and 1.50. In fact, the assumption that 𝜏ఉ=0 9 
represents the situation when the source of instability is due to the different acceleration of vehicles. 10 
The arrival rate of boarding passengers does not have any effect on the disturbance propagation and 11 
the headway adherence. 12 
 13 
Figure 8a depicts the evolution of the total cost of users and transit agency in the domain of variation 14 
of the aforementioned parameters when no control strategy is considered (S0). As it is expected, the 15 
higher the unit boarding time and demand rates are, the more expensive the service becomes. 16 
Nevertheless, the monotonically increasing function of total cost with regard to unit boarding time is 17 
not linear. In the most crowded route scenario, the total cost increment rate is significantly larger for 18 
high values of unit boarding times. In fact, this domain embraces the situations when the system is 19 
more irregular. Indeed, any stochastic effect may vary the relative time spacing among two consecutive 20 
vehicles with regard to the target headway. This variation is propagated and increased by the term  21 
Δ𝛽

𝑖,𝑗,𝑧
(𝑘) · 𝜏ఉ, where Δ𝛽

𝑖,𝑗,𝑧
(𝑘) is the arrival passenger rate at stop k of route segment i traveling to 22 

route segment j. In this figure, we have also provided the curve of the minimal total cost of the system 23 
when Strategy S3 is implemented only in the most crowded scenario when =1.50. The estimation has 24 
been made considering the optimal values of slacks and green extension time in the domain max , 25 
𝐺 ∈{0,30} seconds. Strategy S3 is able to reduce the total cost of the system by 9-19%, when demand 26 
is scaled up by =1.50.  27 
 28 

   
Figure 8. Total cost of the system (a), Coefficient of variation of headways in route A (b), and in 
route B (c)  with regard to unit boarding time for different demand scaling factors (). Input 
parameters: vmax= 50 km/h, 𝜇௔=1.1 m/s2, a=0.3m/s2, C= 120 pax/veh, cd=5 EUR/veh-km, ct=60 
EUR/veh-h, =1.73 sec/pax, N=10 EUR/pax 

 29 
Moreover, Figure 8b and 8c plot the coefficient of variation of headways as a function of the unit 30 
boarding time. Although the tendency is similar to the total cost behavior, the curves estimating the 31 
headway adherence do not present a monotonically non-decreasing increment with regard to the unit 32 
boarding times. In these figures, we have also plotted the best coefficient of variation of headways 33 
obtained by the implementation of Strategy S3. The optimal green extension time and slack is not the 34 
same as the calculated in Figure 6a to obtain the minimal total cost. The control strategy S3 depicted 35 
in Figure 6a is aimed at minimizing total cost and it is able to fulfill 𝑐௩,ு ≤0.5 in the whole domain of 36 
analysis when G=10s and max=30s. If the goal is modified and we will maximize the headway 37 
adherence, strategy S3 is able to maintain the level of service within region A (𝑐௩,ு ≤ 0.32), incurring 38 
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a similar total cost to the Strategy S0. These situations are achieved when the Strategy S3 is 1 
implemented with the highest green extension times and slacks (G=30s and max=30s). The idealistic 2 
situation that 𝜏௕=0 sec will imply that the coefficient of headway variation will be maintained below 3 
𝑐௩,ு=0.9. In that case, the total cost of the system is practically the same in Strategy S3 and Strategy 4 
S0 (no control).  5 

5.4 Effect of demand distribution between route segments  6 

 7 
In this subsection, we analyse the effect that a different spatial demand distribution between the trunk 8 
and branched route segments would have on the bus service performance. Hence, the passenger flows 9 
between route segments (𝐵𝑖,𝑗,𝑧) have been modified to represent relative passenger flows between the 10 
central trunk segment and the rest of the branched segment, and the flow captured by the two routes A 11 
and B under study.  Each demand scenario is controlled by two scaling factors. The central scaling 12 
factor 𝜙஼ generates a new demand rate of passengers whose trip origin and destination are located in 13 
route segment i=AC or BC, i.e. 𝐵஺஼,஺஼,௭

ᇱ = 𝜙𝐶 · 𝐵஺஼,஺஼,௭
଴ , assuming that 𝐵஺஼,஺஼,௭

଴ is the demand rate 14 
provided by the transit operator in the current situation (base case).  This term increases the dependency of 15 
the coupled service between the two routes, since these passengers may board on both routes. The second 16 
scaling factor, 𝜙஺, is aimed at varying the demand to be captured by route A, so that the new demand 17 
rates are calculated by 𝐵௜,௝,௭

ᇱ = 𝜙஺ · 𝐵௜,௝,௭
଴, where 𝐵௜,௝,௭

଴are the demand rates in the base case scenario. 18 
This formula is only applied for the following relationship of origin and destination route segments:  19 
𝑖, 𝑗 ∈ 𝑅஺, except when i=j=AC. Figures 9-11 summarize the results obtained by the optimization of 20 
Equation (25) in the domain of scaling factors 0.25≤ 𝜙஼ ≤ 1.25 and 0.25≤ 𝜙஺ ≤ 3. The results are 21 
obtained when no control strategy is considered. The terms into brackets in the horizontal axis present 22 

the value of the quotient of 
୻ಲ

୻ಳ
,  that estimates the percentage of passengers that can only be served by 23 

route A with regard to those only served by route B.  Therefore, the term Γ஺ is the sum of the boarding 24 
terms between the route segments 𝑖, 𝑗 ∈ 𝑅஺, except when i=j=AC. On the other hand, Γ஻ is the 25 
corresponding sum of boarding terms 𝑖, 𝑗 ∈ 𝑅஻, except when i=j=BC.  26 

  
Figure 9. Total cost with regard to the demand 
scaling factors 

Figure 10. Total fleet size in the system with 
regard to the demand scaling factors 

  
Figure 11. Required fleet size in the coupled routes A (left) and B (right) to minimize the total cost, 27 
with regard to the demand scaling factors 28 
 29 
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Both entrance times in route A and B (decision variables) are determined to be fixed at 𝑡଴஺ = 𝑡଴஻ =40s 1 
to reduce the computational time of the problem. Figure 9 reasonable shows that the total cost of the 2 
system is increased when the boarding passenger demand rates are also magnified in the central 3 
segment as well as in the segments covered by route A. Despite the stochastic effect of the problem, 4 
well-defined iso-cost curves are obtained in the domain of analysis. In addition, Figure 10 depicts the 5 
fleet size needed in both coupled bus routes (whole system) to run the service, while Figure 11a)-b) 6 
depicts the number of vehicles and headways, respectively, in each route (Route A left, Route B, right). 7 
The number of vehicles presents a more unstable behaviour that depends on the vehicle sequence of 8 
operation along the central segment. If 𝜙஼ > 0.60, the central segment captures the vast majority of 9 
trip origins and destinations in the whole system. Under this situation, both route A and B present 10 
similar number of vehicles to be allocated and similar headways. It happens because both routes 11 
contribute to serve the crowded segments of the system and the travel time to run this segment is 12 
practically the same in both routes. Nevertheless, when 𝜙஼ < 0.60 the contribution of the branched 13 
segments 𝑖 ∈ 𝑅ௐ ∪ 𝑅ா in the performance of the system is more dominant. For very small values of 14 
central scaling factor (𝜙஼ < 0.25), the routes A and B are operated decoupled, and both routes present 15 
headways according to the expected demand this line would independently capture. In this domain 16 
𝜙஼ < 0.25, both lines present headways ranging from 8.5 to 15 minutes. This situation seldom justifies 17 
the operation of the corridor with coupled lines, since it would be better operated by independent 18 
routes, with just one providing service in the central segment.  19 
 20 
Nevertheless, in the domain 0.25<𝜙஼ < 0.60 we clearly identify a coupled effect between lines. When 21 
𝜙஺<<1.00, the optimization procedure reasonably allocates the minimal number of vehicles to route 22 
A, and therefore, we obtain the highest headways in this route, while in route B the headways are 23 
competitive, around 6-7 minutes.  However, even if the demand that can exclusively be served by route 24 
A is 2.16 times higher than the corresponding to route B (𝜙஺ >2.0), the number of vehicles assigned 25 
to route B is higher than the fleet size in route A. Therefore, the headway in route B is lower than the 26 
route A counterpart. In that case, route B contributes to provide service to the central segment.  Indeed, 27 
the presence of more frequent service in route B is identified in the whole domain of analysis. 28 
 29 
 30 

  
Figure 12. Best combination of headways in coupled routes A (left) and B (right) with regard to the 31 
demand scaling factors, in seconds. 32 
 33 

6 Conclusions 34 

A transit corridor operated by two routes needs joint scheduling and dispatching of resources in order 35 
to guarantee a proper level of service. An operational model such as the presented in this paper is 36 
required to find out the optimal headways, vehicle entrance times in the corridor and control strategies 37 
that minimize the total cost of the system. The total cost should encompass the total time of users spent 38 
in the system as well as the operating cost incurred by transit agencies. The latter depends on the 39 
control strategies to tackle bus bunching, since most of these measures improve time headway 40 
adherence at the expenses of reducing the commercial speed of buses.  41 
 42 
The random effect of the boarding operation and acceleration phase in the motion of a single bus 43 
generates variability in the roundtrip travel times. This fact does not enable maintaining a perfect time 44 
headway adherence between vehicles. It has been corroborated by the model’s results in the base case 45 
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scenario of bus route H10 of Barcelona, when we suppose that there is no control strategy (S0). The 1 
implementations of the model in different random sets of the stochastic variables generate solutions 2 
that diverge by 10%, concerning the total cost. Nevertheless, the coefficient of variation of headways 3 
in the solution that minimizes the total cost of the system ranges between 0.32 to values higher than 4 
0.8 in the different random tests. It is also impossible to generate an optimal synchronization of 5 
between the entrance time of vehicles at the first stop of the branched segment of route A and B. 6 
Nevertheless, if the dwell times are predefined off-line (high enough to allow boarding an alighting 7 
operations), there is a well-defined domain of the pair of entrance times in route A and B that always 8 
provide cost-efficient solutions, similar to the best case.  9 
 10 
The comparison of the bus performance and total cost among the different control strategies under 11 
analysis clearly recommends Strategy S3, based on a combination of short slacks in the timetable and 12 
traffic light priority for delayed buses. It is able to maintain an excellent bus regularity (coefficients of 13 
headway variation below 0.25) and reduces the total cost by 5%, in comparison with no control. It may 14 
allow transit agencies reduce the fleet size by 1-2 units. Strategies based on introducing slacks at 15 
holding points increases the fleet size needed and are not competitive in terms of operating cost. On 16 
the other hand, strategies only based on the green extension at traffic lights reduce the total cost at the 17 
expenses of increasing the lack of regularity of the service.   18 
 19 
In this paper we have also corroborated the hypothetical effect that an increase of the route demand 20 
rates and the unit boarding time would have on the system metrics. This situation is likely to happen 21 
if more passenger car restrictions are implemented by city councils and dwell times are affected by 22 
new validation systems or access control (COVID-free protocols). In fact, the product of the boarding 23 
demand rates and unit boarding times is the term that propagates and amplifies any potential 24 
disturbance in the whole line. Results demonstrate that the unstable motion of buses is essentially 25 
affected by the unit boarding time. If we consider instantaneous boarding operations, the performance 26 
of the uncontrolled bus motion would present similar results to S3 control strategy. Nevertheless, the 27 
increment rate of the cost and the variation of headways with regard the unit boarding time is higher 28 
for large values of boarding times. Increments in the demand rates worsen the cost and regularity 29 
performance of bus system in the uncontrolled scenario. However, the implementation of hybrid 30 
control strategies based on slacks and traffic green extension is able to unbalance the increment on the 31 
total cost and maintains an outstanding level of service in terms of headway adherence.  32 
 33 
The results also demonstrate that if the central trunk segment concentrates the vast majority of trip 34 
origins and destinations, both routes present similar headways and number of resources. Nevertheless, 35 
in the hypothetical situation that the central segment would not capture an important number of trips  36 
and, there would be one route whose branched segments concentrate more trips than the other coupled 37 
route, the assignment of resources is not obvious. The model tends to assign more resources to the less 38 
crowded route, to increase the frequency and capture the demand along the central segment. Doing 39 
this, the resources of the less crowded route can capture the demand of the central segment and both 40 
routes are balanced in terms of travel times and commercial speed. Finally, in the case that the central 41 
segment of the route would not practically generate or capture any trip, the coupled effect among lines 42 
would not be identified. Each line would be managed independently and, probably, other route 43 
schemes can provide a better service in terms of travel time and operating cost. 44 
 45 
The model presented in this paper is aimed to reproduce the motion of buses with variable dwell times 46 
at stops in branched corridor layouts. Nevertheless, several parts of the modeling framework can be 47 
easily replaced by other formulation to better adapt to other vehicle technologies. The forecasting or, 48 
at least, the detection of passengers waiting at stops in real time may be crucial to estimate the time 49 
lost at stops. Based on this information, transit agencies may determine the best parameters of the 50 
control strategies, to tackle the potential deviations caused by the next boarding events.  51 


