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Abstract: Material nonlinearity affects the stiffness and consequently the distribution of 10 

internal forces and moments in indeterminate structures. This has a direct impact on their 11 

behaviour and design, particularly in the case of stainless steel, where material nonlinearity 12 

initiates at relatively low stress levels. A method for accounting for the influence of material 13 

nonlinearity in stainless steel frames, including making due allowance for the resulting 14 

amplified second order effects, is presented herein. Proposals have been developed for 15 

austenitic, duplex and ferritic stainless steels. The method was derived based on benchmark 16 

results calculated through second order inelastic analysis with strain limits, defined by the 17 

Continuous Strength Method, using beam finite element models. A comprehensive set of frames 18 

was modelled and the proposed assessment of second order effects in the plastic regime was 19 

also verified against the results of four full-scale stainless steel frame tests. The proposed 20 

method is due to be included in the upcoming revision to Eurocode 3 Part 1.4. 21 
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1. INTRODUCTION 24 

In the global analysis of structures, there are two key types of nonlinearity to consider: (1) 25 

geometric nonlinearity, also referred to as second order effects, and (2) material nonlinearity, 26 

also referred to as yielding or plasticity. The influence of both forms of nonlinearity have been 27 

extensively studied in isolation, but their interaction at system level has been less widely 28 

examined [1]; this is therefore the focus of the present paper, with an emphasis on stainless 29 

steel structures.  30 

The influence of global second order effects is assessed in the Eurocode framework, based on 31 

the critical load factor of the system αcr, which is the factor by which the applied loading would 32 

need to be increased to cause elastic instability of the frame in a global sway mode. Second 33 

order effects are deemed to be sufficiently small to be ignored when the amplification of the 34 

internal forces and moments due to sway second order effects is no more than 10% of the 35 

original internal forces determined according to first order theory – for elastic analysis, this 36 

corresponds to the requirement of αcr > 10 for second order effects to be neglected. Frames that 37 

experience plasticity suffer reduced stiffness and, therefore, have greater susceptibility to 38 

second order effects. This is accounted for in EN 1993-1-1 [2] by defining a stricter limit of  39 

αcr > 15 for second order effects to be ignored in plastically designed frames, but it was 40 

concluded in [3,4] that the use of a single limit is overly-simplistic and cannot reflect the 41 

behaviour of all structures, no matter the structural system or degree of plasticity. A new 42 

methodology to account for the degree of stiffness degradation in the assessment of second 43 

order effects was therefore proposed [3,4]. This initial research is further developed herein and 44 

extended to cover all three main families of stainless steel as well as a range of structural 45 

systems. 46 
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2. EUROCODE 3 DESIGN PROVISIONS 47 

EN 1993-1-1 [2] allows for the use of elastic global analysis in all cases. It is deemed sufficient 48 

to carry out a first order analysis, ignoring the influence of second order effects, if the 49 

amplification of the internal forces and moments due to sway second order effects is no more 50 

than 10% of the original internal forces. This assessment of the stability of structural frames is 51 

made based on the critical load factor αcr. For elastic analysis, this corresponds to a limit of αcr 52 

≥ 10, while for plastic analysis, a stricter limit of αcr ≥ 15 is required allowing for the influence 53 

of plasticity and hence reduced stiffness on the development of second order effects. When αcr 54 

is less than these limits, global second order effects must be considered. As a simplified 55 

approach, for elastic analysis, if αcr > 3 an amplified first order analysis using the amplification 56 

factor kamp, given by Equation (1), may be carried out. 57 

𝑘amp =
1

1 −
1

𝛼cr

 
(1) 

EN 1993-1-4 [5] provides supplementary rules for the design of stainless steel structures that 58 

extend and modify the design rules given for carbon steel in EN 1993-1-1 [2]. No further 59 

guidance is provided in EN 1993-1-4 for the global analysis of stainless steel structures, except 60 

to state that the use of plastic global analysis is not permitted. This restriction is due to be 61 

relaxed though for austenitic and duplex stainless steel in the upcoming revision to EN 1993-62 

1-4, following the findings presented in [6,7]. 63 

A revised approach to the assessment of second order effects when a plastic analysis is 64 

performed is included in the upcoming version of prEN 1993-1-1 [8] based on research carried 65 

out by Wood [9]. In this approach, a reduced critical load factor to account for the increased 66 

susceptibility to second order effects due to plasticity is calculated by carrying out a linear 67 

buckling analysis of the elastic system, but with hinges at the locations of the plastic hinges. 68 
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The limit on αcr of 10 from elastic analysis is retained for plastic analysis. The number and 69 

location of the hinges to be considered correspond either to (1) the plastic hinges formed just 70 

prior to reaching a collapse mechanism (i.e. when the penultimate plastic hinge forms), or, 71 

more accurately, to (2) the plastic hinges formed at the load level of interest [4]. 72 

The provisions of prEN 1993-1-1 [10] for assessing second order effects in the plastic regime 73 

only apply to plastic hinge analysis. However, idealised plastic hinges do not provide an 74 

accurate reflection of the development of plasticity in stainless steel structures owing to the 75 

rounded stress-strain response, which contrasts the sharply-defined yield point that is 76 

characteristic of hot-rolled carbon steel [1]. Consequently this method is not well suited to 77 

structural stainless steel design. Additionally, the approach can result in very conservative 78 

predictions since it assumes that the stiffness reduction due to the formation of plastic hinges 79 

begins from the onset of loading [4]. 80 

3. FINITE ELEMENT MODELLING 81 

Finite element (FE) modelling is undertaken in order to investigate the influence of geometric 82 

and material nonlinearities on the behaviour and design of stainless steel frames. Figure 1 83 

illustrates the comprehensive set of frames considered in this study, while Table 1 reports the 84 

boundary conditions, horizontal load cases, storey heights and bay widths considered for each 85 

of the frame cases analysed. In total, 279 frames were modelled (93 austenitic, 93 duplex and 86 

93 ferritic stainless steel frames) to cover a full range of boundary conditions, load cases and 87 

frame geometries. Geometrically and materially nonlinear analysis with imperfections 88 

(GMNIA) allows for accurate predictions of the full global behaviour of a structure and is used 89 

herein to calculate the benchmark failure load for each frame αu, as outlined in Section 3.3. 90 

Additionally, first (MNA) and second (GMNA) order plastic analyses (i.e. without member 91 
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imperfections) are utilised to isolate the influence of the geometric and material nonlinearities, 92 

as outlined in Section 3.4. 93 

All models were developed using the general-purpose FE software ABAQUS [11]. The 94 

assessed frames were formed from welded stainless steel I-sections with the cross-section 95 

geometry of a standard European HEB 340 cross-section. This cross-section is Class 1 for all 96 

stainless steel grades and loading conditions considered herein; it is therefore able to reach and 97 

maintain its full plastic moment capacity. All members in the frames were connected via fixed 98 

multi-point constraint ties to provide full continuity, and the systems were fully restrained out-99 

of-plane such that only in-plane major axis bending/buckling was considered. 100 B31OS 100 

beam elements were used to model each of the members [3,12] and the modified Riks method 101 

[11] was used to trace the full load-deformation response of the frames. For each frame, the 102 

elastic critical load factor αcr was determined by performing linear buckling analysis at the load 103 

level corresponding to failure of the system αu, as calculated in Section 3.3.  104 

3.1. Material modelling 105 

Stainless steel alloys present a rounded stress–strain curve, which can be described by the two-106 

stage Ramberg–Osgood material model [13–16]. This model is given by Equations (2) and (3), 107 

and is due to be included in prEN 1993-1-14 [17], where  and   are the strain and stress 108 

respectively, fy is the yield (0.2% proof) stress, E is the Young’s modulus, fu is the ultimate 109 

stress, Ey is the tangent modulus at the yield (0.2% proof) stress, defined by Equation (4), 0.2 110 

is the total strain at the 0.2% proof stress, equal to 0.002 + fy/E, u is the ultimate strain, and n 111 

and m are the strain hardening exponents. 112 

𝜀 =
𝜎

𝐸
+ 0.002 (

𝜎

𝑓y
)

𝑛

      for     σ ≤ 𝑓y (2) 
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𝜀 = 𝜀0.2 +
𝜎 − 𝑓y

𝐸y
+ (𝜀u − 𝜀0.2 −

𝑓u − 𝑓y

𝐸y
) (

𝜎 − 𝑓y

𝑓u − 𝑓y
)

𝑚

      for     𝑓y < σ ≤ 𝑓u (3) 

𝐸y =
𝐸

1 + 0.002𝑛
𝐸
𝑓y

 
(4) 

The standardised material properties for numerical parametric studies defined by Afshan et al. 113 

[18] for the three main families of stainless steel used in construction – austenitic, duplex and 114 

ferritic – were employed in this study; the key material parameters adopted for each stainless 115 

steel family are summarised in Table 2.  116 

3.2. Geometric imperfections and residual stresses 117 

An initial member out-of-straightness in the form of a half-sine wave and with a magnitude of 118 

1/1000 of the member length was modelled for all columns, while the initial frame out-of-119 

plumbness was applied as an equivalent horizontal force equal to 1/200 times the vertical 120 

loading [2] at each storey load. 121 

The residual stress distribution for welded stainless steel I-sections proposed by Yuan et al. 122 

[19] was incorporated into the benchmark FE models through the SIGINI user subroutine [11]. 123 

The flanges and web of the cross-section were each assigned 41 section points across their 124 

width to ensure that the residual stress distribution was accurately represented. 125 

3.3. Benchmark failure loads αu 126 

In this study, benchmark failure loads were calculated through second order inelastic analysis 127 

(i.e. geometrically and materially nonlinear) with imperfections (GMNIA), performed using 128 

beam finite elements. Strain limits, determined from the Continuous Strength Method (CSM) 129 

[20–23], were applied to the outer-fibre compressive strains εEd of each element in the frame, 130 

to simulate cross-section, and hence structural, failure [20]. The benchmark failure load αu, was 131 

defined as the load level at which the CSM strain limit was reached or, in stability governed 132 
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cases, as the peak load reached during the GMNIA analysis, whichever occurred first [3]. This 133 

method of design by second order inelastic analysis is due to be included in the upcoming prEN 134 

1993-1-4 [10], prEN 1993-1-14 [17] and AISC 370 [24]. 135 

For the global analysis of stainless steel structures, utilising the Ramberg–Osgood material 136 

model, the CSM strain limits are calculated using Equations (5) and (6) for stocky and slender 137 

cross-sections, respectively:  138 

𝜀csm

𝜀y
=

0.25

𝜆̅p
3.6

+
0.002

𝜀y
   but  ≤ Ω for   𝜆̅p ≤ 0.68 (5) 

𝜀csm

𝜀y
= (1 −

0.222

𝜆̅p
1.05

) 
1

𝜆̅p
1.05

+
0.002(𝜎 𝑓y⁄ )

𝑛

𝜀y
    for  0.68 <  𝜆̅p ≤ 1.0 (6) 

where 𝜆̅p is the local cross-sectional slenderness defined in Section 3.3.1, σ is the maximum 139 

compressive stress at the considered cross-section, n is the strain hardening exponent defined 140 

in Section 3.1, εy is the yield strain equal to the yield (0.2% proof) stress fy divided by the 141 

Young’s modulus E, and εu is the ultimate strain, estimated as εu =1 ˗ fy/fu for austenitic and 142 

duplex stainless steels and as εu = 0.6(1 ̠  fy/fu) for ferritic stainless steels, where fu is the ultimate 143 

stress [25,26]. The limit of Ω defines an upper bound to the normalised CSM strain limit and 144 

was taken as equal to 15 in this study [21].  145 

To account for the positive influence of local moment gradients, the CSM strain limit was 146 

applied to an average strain obtained over a characteristic length along the members. This 147 

characteristic length was taken equal to the elastic local buckling half-wavelength of the cross-148 

section Lb,cs, as discussed in Section 3.3.2. The instantaneous CSM strain limit εcsm, based on 149 

the instantaneous stress distribution within the section under consideration at each loading 150 

increment of the global structural analysis, was used as the limiting strain throughout this study. 151 

Note that since forces and moments within a system are redistributed during loading due to 152 
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both member buckling and/or the spread of plasticity, the stress distribution across the cross-153 

sections may change as the load level increases and hence, the location of the critical cross-154 

section may also change throughout the loading history of the structure. It is therefore necessary 155 

to assess all cross-sections in the structure at each loading step.  156 

3.3.1. Cross-section slenderness 𝜆̅p 157 

The cross-section slenderness 𝜆̅p is calculated using Equation (7) and quantifies the 158 

susceptibility of a cross-section to local buckling, where σcr,cs is the local elastic critical 159 

buckling stress of the full cross-section.  160 

𝜆̅p = √
𝑓y

𝜎cr,cs
 (7) 

The elastic critical buckling stress σcr,cs can be calculated using numerical methods, such as 161 

the finite strip method utilised in CUFSM [27], or alternatively approximate analytical 162 

expressions [28,29]; CUFSM was employed in the present paper. 163 

3.3.2. Local buckling half-wavelength Lb,cs 164 

The CSM strain limit is applied to an average strain obtained over the local buckling half-165 

wavelength Lb,cs [21] in order to take account of the beneficial effects of local moment 166 

gradients. As for the elastic critical buckling stress σcr,cs, the elastic local buckling half-167 

wavelength Lb,cs may be determined numerically or according to the expressions defined in 168 

[30]; in this study, CUFSM was used to estimate Lb,cs, with a value of Lb,cs = 580 mm 169 

determined for the studied cross-section under pure bending. 170 

3.4. First and second order plastic collapse load factors  171 

The first order plastic collapse load factor αp1 is calculated through a first order plastic (or 172 

materially nonlinear) analysis (MNA), while the second order plastic collapse load factor αp2 173 
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is calculated through a second order plastic (geometrically and materially nonlinear) analysis 174 

(GMNA). As for the benchmark ultimate loads in Section 3.3, the CSM strain limits were used 175 

to define cross-section failure. Note that for the first order analyses, since global instability 176 

effects are not captured, the strain limits govern failure of the frames in all cases.  177 

4. INFLUENCE OF ROUNDED STRESS-STRAIN RESPONSE ON INTERNAL FORCES 178 

AND MOMENTS 179 

As discussed in Section 2, the current frame stability design provisions for stainless steel follow 180 

those for carbon steel, with elastic global analysis allowed in all cases. While this is appropriate 181 

for carbon steel, which is accurately characterised by an elastic, perfectly plastic stress–strain 182 

response, it is less suitable for stainless steel, owing to the rounded nature of the stress–strain 183 

curve. The guidance on material nonlinearities in EN 1993-1-1 is based predominately on the 184 

occurrence of idealised plastic hinges. Again, while this is appropriate for carbon steel 185 

structures, in stainless steel structures, due to the rounded stress–strain response, idealised 186 

plastic hinges do not occur and instead, zones of plasticity with gradually reducing stiffness 187 

are displayed.  188 

The degradation of stiffness due to material nonlinearity, which occurs at relatively low stress 189 

levels for stainless steel, can significantly affect the behaviour of a structural system and 190 

consequently, the distribution of internal forces and moments [4]. It is therefore important that 191 

an elastic global analysis is only permitted when all members contributing to the global stability 192 

of the structure remain predominately elastic under the design loading and when the loss of 193 

stiffness due to material nonlinearity has a negligible effect on the internal forces. In cases 194 

where the stiffness reduction due to the material nonlinearity of stainless steel increases the 195 

action effects significantly or modifies significantly the structural behaviour, it is necessary to 196 

perform a plastic zone analysis.  197 
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Figure 2 shows the ratio of bending moments obtained from first (MLA) and second order 198 

(MMNA) plastic zone analyses using the two-stage Ramberg–Osgood material model [13] of an 199 

example austenitic stainless steel single-bay single-storey portal frame with fixed-ended 200 

support conditions plotted against the ratio of the secant modulus Es to elastic modulus E of 201 

the most heavily stressed point of the frame under increasing load levels. Depending on the 202 

location of the analysed cross-section within the frame and the design load level, ignoring 203 

material nonlinearity can results in both over-estimations (MMNA/MLA < 1) and under-204 

estimations (MMNA/MLA > 1) of internal bending moments (and internal forces). When the ratio 205 

of Es/E is less than 0.2, these differences approach 10%; the simplification of assuming that the 206 

behaviour of the structure remains elastic at all stress levels is not appropriate (taking 10% as 207 

the approximate acceptable error threshold, as for the case of second order effects) beyond this 208 

corresponding stress level. Although the percentage error will vary between frames and load 209 

combinations, as seen in Figure 3, which shows the maximum ratio of internal moments 210 

obtained from a first order plastic (MNA) and elastic (LA) analysis for 21 austenitic stainless 211 

steel portal frames (Frame case 1a), there is clear justification for the need to consider material 212 

nonlinearity in the global analysis of stainless steel frames to avoid unsafe predictions of 213 

internal forces and moments. It is recommended herein that if Equation (8) – also shown in 214 

Figures 2 and 3 – is satisfied, then an elastic analysis is acceptable; if Equation (8) is not 215 

satisfied, Equation (9) applies and the effects of material nonlinearity are significant enough to 216 

require a plastic zone analysis.  217 

If  
𝐸s

𝐸
> 0.2, elastic analysis is acceptable (8) 

If  
𝐸s

𝐸
≤ 0.2, plastic zone analysis is required (9) 
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In Equations (8) and (9), Es is the secant modulus corresponding to the maximum stress σEd, 218 

obtained from a first order elastic analysis in the cross-section of any member contributing to 219 

the global stability of the structure at the design load level, as calculated using Equation (10). 220 

𝐸s =
𝐸

1 + 0.002
𝐸

𝜎Ed
(

𝜎Ed

𝑓y
)

𝑛 
(10) 

5. INFLUENCE OF PLASTICITY ON SECOND ORDER EFFECTS 221 

In the elastic regime, second order effects may be approximately accounted for by either 222 

amplifying the internal moments or by reducing the ultimate load of a first order analysis. The 223 

amplification factor kamp, as given by Equation (1), may be used to amplify horizontal loads to 224 

provide an estimate for the influence of second order effects, while the reduction factor 225 

(αe2/αe1), as defined by the Merchant–Rankine formula [31,32] given by Equation (11), may be 226 

used to reduce the failure load factor obtained from a first order elastic analysis and design 227 

checks αe1 to allow for second order effects to give αe2.  228 

(
𝛼e2

𝛼e1
) =

𝛼cr − 1

𝛼cr
 (11) 

As concluded in [3,4], in the elastic regime, these expressions apply at all load levels and 229 

accurately relate the results of first and second order analyses. However, in the plastic regime 230 

these expressions are no longer sufficient and must instead be based on a reduced critical load 231 

factor. This is illustrated in Figures 4 and 5 for the 279 frames assessed herein. In Figure 4, the 232 

amplification factors kamp for each frame are plotted against the elastic buckling load factors 233 

αcr, as well as the expression for predicting the amplification of the horizontal loads given by 234 

Equation (1). Note that the amplification factors kamp for the frames were calculated by 235 

determining the magnitude of the amplification of the horizontal loading in a first order plastic 236 

analysis (MNA) required to align the sway deflections to those in a second order plastic 237 
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analysis (GMNA) at the benchmark ultimate load factor αu, following the procedure detailed 238 

in [3]. The results in Figure 4 do not match well with the elastic amplification factor and lie on 239 

the unsafe side of the curve (by 15% on average and by up to almost 80% for particular cases). 240 

In all cases, at the limit of αcr = 15, where second order effects are currently deemed in EN 241 

1993-1-1 [2] (and by extension in EN 1993-1-4 [5]) to be sufficiently small to ignore, the 242 

amplification of the internal forces and moments due to sway second order effects is 243 

significantly more than 10% of the internal forces according to first order theory. Similar results 244 

can be seen in Figure 5, which shows the ratios of the second order plastic (GMNA) collapse 245 

load factor αp2 to the first order plastic (MNA) collapse load factor αp1, alongside the Merchant–246 

Rankine formula (Equation (11)), against the elastic critical load factors αcr. The FE results do 247 

not match well with the reduction factor predicted by Equation (11) and the majority of the 248 

points lie on the unsafe side relative to the Merchant–Rankine formula, with an average value 249 

of (αp2/αp1)/((αcr-1)/αcr) = 0.95 and a minimum value of 0.72. The results shown in these two 250 

figures clearly illustrate the need for the definition of a modified elastic buckling load factor 251 

αcr,mod to account for the loss of stiffness due to material nonlinearities and second order effects. 252 

The influence of material nonlinearity on the sway stiffness of frames may be considered 253 

through the modified elastic buckling load factor σcr,mod, as derived in [3,4], and given by 254 

Equation (12), where cr is the elastic buckling load factor, calculated through a linear buckling 255 

analysis at the applied load level and Ks/K is the ratio of the secant lateral stiffness Ks at the 256 

design value of the loading on the structure (as obtained from a first order plastic zone analysis) 257 

to the initial lateral stiffness K of the structure. As discussed in [3,4], it is not possible to predict 258 

from a first order analysis whether, at a given load level, additional plastification will occur 259 

due to second order effects. Therefore, as well as the secant stiffness reduction factor, an 260 

additional factor Y is needed to approximate the further loss of stiffness due to second order 261 

effects.  262 
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𝛼cr,mod = 𝑌
𝐾s

𝐾
𝛼cr (12) 

Based on this modified load factor αcr,mod, a modified amplification factor kamp,mod, as given by 263 

Equation (13), and a modified reduction factor (αp2/αp1)mod, as given by Equation (14) may be 264 

defined for use in the plastic regime, where αp2 is the predicted second order plastic (GMNA) 265 

collapse load factor and αp1 is the first order plastic (MNA) collapse load factor. 266 

𝑘amp,mod =
1

1 −
1

𝛼cr,mod

 
(13) 

(
𝛼p2

𝛼p1
)

mod

=
𝛼cr,mod − 1

𝛼cr,mod
 (14) 

By accounting for the influence of plasticity on second order effects through the reduction of 267 

the critical load factor, as in prEN 1993-1-1 [8,9], the limit of 10 may be used for plastic 268 

analysis, as for elastic analysis. When αcr,mod ≥ 10, it may be assumed that second order effects 269 

are sufficiently small to be ignored and a first order analysis is adequate, while for αcr,mod < 10, 270 

second order effects must be considered in the analysis, as they may be significant.  271 

For multi-storey structures, the effects of material nonlinearity on the reduction in global sway 272 

stiffness should be assessed on a storey-by-storey basis, as illustrated in Figure 6. The storey 273 

that gives the greatest secant stiffness reduction (i.e. the lowest value of Ks/K) should be taken 274 

as the most critical storey and used to represent the overall frame; in Figure 6, this is the bottom 275 

storey. This prevents the deleterious influence of plasticity on frame stability from being 276 

‘averaged out’ through the inclusion of the displacements of the storeys in which less plasticity 277 

occurs, thereby ensuring safe sided estimates of αcr,mod.  278 

Table 3 presents the Y factors derived in this study for the 279 austenitic, duplex and ferritic 279 

stainless steel frames assessed herein. The lower values of Y for austenitic stainless steel, 280 
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increasing for duplex and ferritic stainless steels reflects the greater degree of roundedness of 281 

the stress-strain response and hence the earlier material softening and greater second order 282 

effects. The lower Y values for the more complex frames reflect the fact that with increased 283 

complexity the potential for more plasticity and redistribution, at a given load level, between a 284 

first order and second order analysis, is greater. The Y factors proposed for ferritic stainless 285 

steel alloys in Table 3 are equal to the factors derived in [3,4] for carbon steel frames; this 286 

reflects the fact that ferritic stainless steel has the least rounded stress-strain response among 287 

the considered stainless steel families and most closely matches the behaviour of carbon steel. 288 

It is also worth noting that the proposed Y factors for single storey frames for the different 289 

stainless steel families are similar to the ratio of the 0.05% proof stress 0.05 to the 0.2% proof 290 

(or yield) stress fy, noting that the 0.05/fy ratio is linked to the degree of roundedness of the 291 

stress-strain curve, with lower 0.05/fy values signifying greater roundedness; the 0.05% proof 292 

stress corresponds to the stress at which a relatively small plastic strain of 0.05% is reached, so 293 

represents approximately the limit of proportionality in stainless steels [13]. The 0.05/fy ratios 294 

(based on the material properties selected herein, as reported in Table 2) are equal to 0.81 (= 295 

250/310), 0.86 (= 456/530) and 0.92 (= 295/320) for the austenitic, duplex and ferritic grades, 296 

respectively.  297 

Figures 7 and 8 show the amplification factors kamp and ratios of the second order plastic 298 

(GMNA) collapse load factor αp2 to the first order plastic (MNA) collapse load factor αp1, 299 

respectively, now plotted against the proposed modified elastic buckling load factor αcr,mod, 300 

calculated from Equation (12), with the Y factors reported in Table 3 for all frames considered 301 

in this study. Good agreement is seen between the results and the amplification factor and 302 

reduction factor, respectively. Note that the anomalous results in Figure 7 that lie substantially 303 

above the curve are due to the non-sway effects being significant; when non-sway effects are 304 
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significant, amplifying the horizontal loads in a first order plastic analysis will not result in the 305 

same forces and moments in a corresponding second order plastic analysis [4,33].  306 

The proposed modified critical load factor αcr,mod for assessing the severity of second order 307 

effects on global stability provides accurate results and, through the secant stiffness reduction 308 

Ks/K, allows a rational assessment of the influence of material nonlinearity to be performed on 309 

a frame-by-frame basis depending on the level of plastic deformation under the applied load 310 

level. When αcr,mod ≥ 10, the amplification of the internal forces and moments due to sway 311 

second order effects (with suitable allowance for plasticity) is no more than 10% of the original 312 

internal forces according to first order theory, and a first order plastic analysis may be carried 313 

out. When αcr,mod < 10, second order effects (with suitable allowance for plasticity) significantly 314 

modify the structural behaviour and a second order plastic analysis must be carried out.  315 

6. EXPERIMENTAL VALIDATION OF PROPOSED ASSESSMENT METHOD 316 

Validation of the proposed method for assessing the influence of second order effects in the 317 

plastic domain against four full-scale stainless steel frame tests [34,35] is presented in this 318 

section. The tests were performed on austenitic stainless steel single-bay portal frames with 319 

rectangular hollow section members. The four frames had the same overall geometry (spans 320 

equal to 4 m and column heights equal to 2 m) but comprised different cross-sections, ranging 321 

from Class 1 to Class 4, and had varying boundary conditions at the supports, to allow for the 322 

assessment of different levels of interaction between second order effects, material nonlinearity 323 

and local buckling effects.  324 

The frames were subjected to varying ratios of static horizontal-to-vertical loading throughout 325 

the tests. The loading was introduced in a two-step process: first the vertical loading was 326 

applied, then, while the vertical loading remained constant, the horizontal loading was 327 

increased. Consequently, the susceptibility of the frames to second order effects also varied as 328 
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the horizontal loading was introduced. The effect of this variation in the loading ratio on the 329 

behaviour of the structure was investigated in [34,35] by considering two different ratios of 330 

loading in the calculation of the critical load factor: (1) the vertical load plus half of the 331 

maximum recorded horizontal load (Fv,max+0.5Fh,max), and (2) the vertical load plus the 332 

maximum recorded horizontal load ( Fv,max+1.0Fh,max). The results in [34,35] showed that 333 

varying the horizontal-to-vertical load ratio had little effect on the calculated critical load 334 

factors. Therefore, only the results corresponding to the maximum horizontal loading scenario 335 

(Fv,max+1.0Fh,max) have been considered in the present paper. 336 

To assess the accuracy of using the elastic critical load factor αcr (as currently employed in EN 337 

1993-1-1 [2] and EN 1993-1-4 [5]) to predict the amplification of internal moments (through 338 

the kamp factor given by Equation (1)) and the reduction in ultimate load from a first order 339 

plastic analysis (through the αp2/αp1 factor given by Equation (11)) due to second order effects, 340 

the experimental results, based on the maximum applied loads reported in [34,35], have been 341 

plotted in Figures 4 and 5. Note that, since some of the frames were made up of members with 342 

slender cross-sections, and consequently failure was dominated by local buckling effects, the 343 

first order plastic collapse loads were calculated using a shell FE second order analysis but with 344 

a horizontal force applied in the counter direction to remove the influence of global second 345 

order effects. In general, it can be seen that the experimental results show a similar trend to the 346 

FE data and both the kamp and αp2/αp1 predictions generally lie on the unsafe side. However, 347 

when αcr,mod is used in place of αcr, as shown in Figures 7 and 8, considerably better agreement 348 

between the experimental results and the predictive expressions – Equation (13) for kamp,mod 349 

and Equation (14) for (αp2/αp1)mod – is achieved, as found for the numerical results. Thus, it can 350 

be concluded that use of the proposed modified critical load factor αcr,mod enables the accurate 351 

assessment of the interaction of geometric and material nonlinearities (i.e. second order effects 352 

and plasticity) in stainless steel frames. 353 
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7. CONCLUSIONS 354 

Degradation of stiffness due to material nonlinearity, which occurs at relatively low stress 355 

levels for stainless steel, can significantly affect the distribution of internal forces and moments 356 

in a structural system. It is therefore important that an elastic global analysis is only permitted 357 

when all members contributing to the global stability remain predominantly elastic under the 358 

design loading and when the loss of stiffness due to material nonlinearity has a negligible effect 359 

on the distribution of internal forces. A limit is proposed herein, expressed through the secant-360 

to-Young’s modulus ratio (Es/E), to determine whether an elastic analysis is acceptable or the 361 

effects of material nonlinearity are significant enough to require a plastic zone analysis.   362 

A second consequence of the degradation of stiffness due to material nonlinearity is enhanced 363 

second order effects. The influence of global second order effects is assessed in the Eurocode 364 

framework on the basis of the critical load factor of the system αcr. A modified critical load 365 

factor αcr,mod is proposed herein to assess the severity of second order effects on the global 366 

stability of stainless steel frames in the plastic regime. Through a secant stiffness reduction 367 

factor, the proposal allows a rational assessment of second order effects to be performed on a 368 

frame-by-frame basis depending on the level of plasticity experienced at the design load level. 369 

An additional factor Y accounts for the varying influence of material nonlinearity depending 370 

on the frame type and stainless steel family, with lower values (i.e. greater reductions in 371 

stiffness) employed for more complex frames and more rounded stress-strain curves. Second 372 

order effects are deemed to be sufficiently small to be ignored for cases in which the modified 373 

critical load factor αcr,mod > 10 i.e. the same limit as used for elastic analysis is retained. The 374 

applicability and accuracy of the proposed method is demonstrated through comparisons with 375 

numerical results on a comprehensive series of stainless steel frames, as well as test results 376 

from [34,35]. The findings and resulting proposals are consistent with those made in [4] for 377 
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carbon steel frames and the proposed design method is due to be included in the upcoming 378 

version of prEN 1993-1-4 [10].  379 
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Table 1: Frame cases considered for each stainless steel family 

Frame 

case No. 

No. of 

frames 

Boundary 

conditions 

Horizontal loading 

H 

Storey height(s) 

h [m] 

Bay width(s) 

L [m] 

1 21 Fixed 0.05V, 0.2V, 0.5V 5, 6, 7, 8, 9, 10, 15 10 

2 7 Pinned 0.2V 5, 6, 7, 8, 9, 10, 15 10 

3 6 Fixed 0.05V, 0.2V, 0.5V 5, 10 10 

4 12 Fixed 0.05V, 0.2V, 0.5V 5, 8, 10, 15 10 

5 3 Fixed 0.05V, 0.2V, 0.5V 5 10 

6 3 Fixed 0.05V, 0.1V, 0.2V 5 10 

7 6 Fixed 0.05V, 0.2V, 0.5V 5, 10 10 

8 7 Fixed 0.2V 5, 6, 7, 8, 9, 10, 15 10 

9 3 Fixed 0.1V, 0.2V, 0.41V 10 10 

10 1 Fixed 0.2V 5 10 

11 6 Fixed 0.05V, 0.2V, 0.5V 5, 10 10 - 5 

12 6 Fixed 0.05V, 0.2V, 0.5V 5, 10 5 - 10 

13 1 Fixed 0.13V 10 10 

14  1 Pinned 0.13V 10 10 

15 6 Fixed 0.13V, 0.2V 5, 8, 10 10 

16 2 Fixed 0.13V, 0.27V 5 10 

17 2 Fixed 0.2V, 0.5V 5 10 

 

Table 2: Definition of material properties for parametric studies 

Stainless steel 

family 

E 

[N/mm2] 

fy 

[N/mm2] 

fu 

[N/mm2] 
u 

[mm/mm] 
n m 

Austenitic 200000 310 670 0.54 6.3 2.6 

Duplex 200000 530 770 0.30 9.3 3.6 

Ferritic 200000 320 480 0.16 17.2 2.8 
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Table 3: Proposed Y factors to account for the additional loss in stiffness 

Stainless steel family For single storey portal frames For all other frames 

Austenitic 0.80 0.55 

Duplex 0.85 0.60 

Ferritic 0.90 0.65 
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Figure 1: Details of modelled frames, where  is the load factor. 
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Figure 1 (cont.): Details of modelled frames, where  is the load factor. 
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Figure 1 (cont.): Details of modelled frames, where  is the load factor. 
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Figure 2: Ratio of internal moments obtained from a first order plastic (MMNA) and elastic 

(MLA) analysis at different locations in an example 5×10 m austenitic stainless steel portal 

frame plotted against the ratio of the secant modulus Es to the elastic modulus E at the most 

heavily stressed point in the frame (as indicated by the red circle). 
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Figure 3: Maximum ratio of internal moments obtained from a first order plastic (MMNA) and 

elastic (MLA) analysis for 21 austenitic stainless steel portal frames (Frame case 1a) plotted 

against the ratio of the secant modulus Es to the elastic modulus E at the most heavily stressed 

point in the frame. 
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Figure 4: Amplification factor kamp on the applied horizontal loading to obtain the same sway 

deflections from first (MNA) to second order plastic (GMNA) analyses at αu versus αcr. The 

predictive kamp expression is based on αcr and hence makes no allowance for material 

nonlinearity; as a consequence, the vast majority of results are on the unsafe side. 
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Figure 5: Ratio of second order plastic (GMNA) collapse load factor αp2 to first order plastic 

(MNA) collapse load factor αp1 versus αcr. No allowance is made for material nonlinearity 

and the vast majority of results are on the unsafe side. 
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Figure 6: Example austenitic stainless steel two-storey frame where L=10 m and h = 5 m and 

H = 0.2V. 
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Figure 7: Amplification factor kamp on the applied horizontal loading to obtain the same sway 

deflections from first (MNA) to second order plastic (GMNA) analyses at αu versus αcr,mod; 

αcr,mod is used to allow for the influence of material nonlinearity on frame stability.  
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Figure 8: Ratio of second order plastic (GMNA) collapse load factor αp2 to first order plastic 

(MNA) collapse load factor αp1 versus αcr,mod; αcr,mod is used to allow for the influence of 

material nonlinearity on frame stability.  
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