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Abstract

A set of integers S ⊂ N is an α–strong Sidon set if the pairwise sums of its elements are

far apart by a certain measure depending on α, more specifically if∣∣(x+ w)− (y + z)
∣∣ ≥ max{xα, yα, zα, wα}

for every x, y, z, w ∈ S satisfying max{x,w} 6= max{y, z}. We obtain a new lower bound

for the growth of α–strong infinite Sidon sets when 0 ≤ α < 1. We also further extend that

notion in a natural way by obtaining the first non-trivial bound for α–strong infinite Bh sets.

In both cases, we study the implications of these bounds for the density of, respectively, the

largest Sidon or Bh set contained in a random infinite subset of N. Our theorems improve

on previous results by Kohayakawa, Lee, Moreira and Rödl.

1 Introduction

A set of integers S ⊂ N is called a Sidon set if all pairwise sums of its elements are distinct,

that is x + w 6= y + z for any x, y, z, w ∈ S satisfying x < y ≤ z < w. Results of Chowla [2],

Erdős [6], Erdős and Turán [8], and Singer [14] established that the maximum cardinality of a

Sidon set contained in [n] = {1, 2, . . . , n} is
(
1 + o(1)

)√
n. We will however be interested in

studying the much less understood behaviour of infinite Sidon sets.

Given some set S ⊂ N, let us write S(n) =
∣∣S ∩ [n]

∣∣ for its counting function. Sidon

himself found an infinite Sidon set satisfying S(n) = Ω(n1/4) and Erdős [7] as well as Chowla

and Mian observed that the greedy approach yields a set satisfying S(n) = Ω(n1/3). Ajtai,

Komlós and Szemerédi [1] improved that bound by a factor log1/3(n) and Ruzsa [13] finally

overcame the exponent of 1/3 by proving the existence (by probabilistic arguments) of an
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infinite Sidon sequence with counting function S(n) = n
√

2−1+o(1). Finally, Cilleruelo [3] gave

an explicit construction of an infinite Sidon set with the same exponent as Ruzsa. Regarding

upper bounds, Erdős showed that any infinite Sidon set satisfies lim infn→∞ S(n)/
√
n = 0 (see

also [15]). Note that lim supn→∞ S(n)/
√
n ≤ 1 trivially follows from the finite case, while Erdős

also proved the existence of an infinite Sidon set satisfying lim supn→∞ S(n)/
√
n ≥ 1/2 which

was later improved to 1/
√

2 by Krückeberg [12].

Our first result deals with a generalisation of infinite Sidon sets introduced by Kohayakawa,

Lee, Moreira and Rödl in [9] and then further studied in [10]. Given some fixed 0 ≤ α < 1, they

define an α–strong Sidon set to be an infinite set of integers S ⊂ N for which the pairwise sums

of its elements are not just distinct, but in fact far apart by a certain measure depending on α.

More specifically, one requires that∣∣(x+ w)− (y + z)
∣∣ ≥ max{xα, yα, zα, wα} (1)

for every x, y, z, w ∈ S satisfying max{x,w} 6= max{y, z}. Note that for α = 0 one recovers the

traditional notion of an infinite Sidon set. Also note that this definition is particular to infinite

sets and that Kohayakawa et al. also proposed and studied finite α–strong Sidon sets where

(1) is modified accordingly; see also Section 3. We will however only be interested in bounds

for the infinite case.

Regarding lower bounds, Kohayakawa et al. [10] proved the existence of an α–strong Sidon

set S that satisfies

S(n) ≥ n(
√

2−1+o(1))/(1+32
√
α)

as long as 0 ≤ α ≤ 10−4. They furthermore noted that a simple greedy argument gives a

construction satisfying

S(n) ≥ n(1−α)/3

for any 0 ≤ α < 1, so that the previous bound only constitutes an improvement when α ≤
5.75 · 10−5. We propose the following lower bound that markedly improves both of the two

previous bounds as long as α 6= 0.

Theorem 1.1. For every 0 ≤ α < 1 there exists an α–strong Sidon set S ⊂ N satisfying

S(n) ≥ n
√

(1+α/2)2+1−α−(1+α/2)+o(1).

Our approach to proving this bound is different from that taken in [10] where the existence

of infinite Sidon sets S with density S(n) ≥ n
√

2−1+o(1), as originally proven by Ruzsa, is used

as a black box. Instead, we base our approach on Cilleruelo’s constructive proof of that same

bound (see [3]), making use of some particular properties of the family of sets defined by him.

Besides obtaining an improved bound, these ideas allow us to extend our result to study a

commonly studied generalisation of Sidon sets, so-called Bh sets. In a Bh set S ⊂ N all h-fold

sums are required to be distinct, that is x1 + · · ·+xh 6= y1 + · · ·+yh for any x1, y1 . . . , xh, yh ∈ S
satisfying max{x1, . . . , xh} 6= max{y1, . . . , yh}. Note that for h = 2 this notion is the same as a

Sidon set. For a given 0 ≤ α < 1, we now say that a set of integers S ⊂ N is an α–strong Bh

set if

|(x1 + · · ·+ xh)− (y1 + · · ·+ yh)| ≥ max{xα1 , yα1 , . . . , xαh , yαh}
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for any x1, y1 . . . , xh, yh ∈ S satisfying max{x1, . . . , xh} 6= max{y1, . . . , yh}.1 We obtain a

new lower bound for the density of infinite α–strong Bh sets. Note that the following result

generalises Theorem 1.1 for h = 2.

Theorem 1.2. For every 0 ≤ α < 1 and h ≥ 2 there exists an α–strong Bh set S ⊂ N satisfying

S(n) ≥ n
√

(h−1+α/2)2+1−α−(h−1+α/2)+o(1).

Regarding upper bounds, Kohayakawa et al. [10] used the bounds that they obtained for the

finite case to show that any α–strong Sidon set S satisfies S(n) ≤ c n(1−α)/2 for some constant

c = c(α). Taking that same approach, we complement our lower bound for the density of infinite

α–strong Bh sets with the following result.

Theorem 1.3. For every 0 ≤ α < 1 and h ≥ 2 there exists some c = c(α, h) such that for any

α–strong Bh set S ⊂ N satisfies

S(n) ≤ c n(1−α)/h.

While we believe that α–strong Sidon sets are interesting in their own right, Kohayakawa

et al. originally introduced them to study the maximum density of Sidon sets contained in

randomly generated infinite sets of integers. For a fixed constant 0 < δ ≤ 1, let Rδ denote the

random subset of N obtained by picking each m ∈ N independently with probability

pm = 1/m1−δ.

We note that Rδ(n) = nδ+o(1) with probability 1. Kohayakawa et al. were interested in finding

(a) the largest possible constant f(δ) such that, with probability 1, there is a Sidon set S ⊂ Rδ
such that S(n) ≥ nf(δ)+o(1) and

(b) the smallest possible constant g(δ) such that, with probability 1, every Sidon sequence

S ⊂ Rδ satisfies S(n) ≤ ng(δ)+o(1).

It is shown in [9] that the behaviour of f(δ) and g(δ) markedly depends on whether δ falls into

the first, second or last third of the interval (0, 1]. More precisely, they showed that

1A note on our definitions of (α-strong) Sidon and Bh sets: in their definition of α-strong Sidon sets, Ko-

hayakawa et al. require that x < y ≤ z < w. For the case of classic Sidon sets, that is α = 0, this clearly is

equivalent to our requirement that max{x,w} 6= max{y, z}. In the case of α > 0 however, our definition also

covers the possibility that y ≤ x ≤ z < w, that is it defines more obstructions and therefore results in a stricter

notion of α-strong Sidon sets. This comes at no detriment to currently known bounds or the application to

random sets.

While this distinction should be negligible for Sidon sets, we believe ours to be the more natural notion by

the fact that it readily generalises to Bh sets: for α = 0 it might at first seem like we, incorrectly, do not

exclude 4 + 1 + 3 = 4 + 2 + 2 while excluding 1 + 1 + 3 = 1 + 2 + 2 from a set S when h = 3 even though

both contain the same ‘lower-order’ obstruction 1 + 3 = 2 + 2. However, our notion does in fact reduce to that

of a Bh set for α = 0, since a set containing the former must also contain the latter by simply replacing the

max{x1, . . . , xh} = max{y1, . . . , yh} terms on either side with any element of S strictly smaller. Going now to

the case of α > 0, we note that it is essential that the term max{xα1 , yα1 , . . . , xαh , yαh} cannot be artificially inflated

for such lower-order obstructions by simply adding the same arbitrarily large element to both sides, since this

would render such a definition pointless. Requiring max{x1, . . . , xh} 6= max{y1, . . . , yh} prevents this.
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(i) if 0 < δ ≤ 1/3 then f(δ) = g(δ) = δ,

(ii) if 1/3 ≤ δ ≤ 2/3 then f(δ) = g(δ) = 1/3 and

(ii) if 2/3 ≤ δ ≤ 1 then f(δ) ≥ max{1/3,
√

2− 1− (1− δ)} and g(δ) ≤ δ/2.

It follows that there is only a gap between the current bounds for f and g in the last third

where 2/3 ≤ δ ≤ 1.

Generalising the results in [10] regarding the connection between α–strong Sidon sets and

Sidon sets in the infinite random set R1−α, we obtain the following result for Bh sets.

Theorem 1.4. For any h ≥ 2 and 0 < δ ≤ 1 there exists, with probability 1, a Bh set S in the

infinite random set Rδ satisfying

S(n) ≥ n
√

(h−1+(1−δ)/2)2+δ−(h−1+(1−δ)/2)+o(1).

In the Sidon case, that is for h = 2, this is a strong improvement over the known lower

bound for f when 5/6 < δ < 1. When h > 2 we believe that Theorem 1.4 constitutes the first

non-trivial bound for Bh sets in infinite random sets.

Outline. Following the approach laid out by Cilleruelo in [3], in Section 2 we will state and

prove a generalised version of Theorem 1.2, which itself already implies Theorem 1.1. Later, in

Section 3 will then first prove a finite version of Theorem 1.3, which we will then use in order

to obtain a proof for the infinite case. Lastly, in Section 4 we will state and prove a generalised

version of a result of Kohayakawa et al. which allows one to use the existence of strong Bh sets

to obtain bounds for Bh sets in the random setting. To conclude, we will also give some further

remarks and state open questions in Section 5.

2 Proof of Theorem 1.1 and Theorem 1.2

Ruzsa [13] and Cilleruelo [3] both based their approach on the observation that the set of

primes P forms a multiplicative Sidon set, so that the set {log p : p ∈ P} is a Sidon set on the

reals. Both therefore considered sets of integers whose elements are indexed by the primes and

which, through the removal of few elements, can be turned into a Sidon set or more generally,

in the case of Cilleruelo’s approach, into a Bh set. In Ruzsa’s approach that removal happens

through a probabilistic argument and in Cilleruelo’s it is explicit when h = 2 and probabilistic

for h > 2. We will limit ourselves to Cilleruelo’s probabilistic argument, which applies for any

h ≥ 2. Let us finally mention that for the case of h = 2 it would be easy to adopt the explicit

construction by Cilleruelo to build a dense α–Strong Sidon set with the counting function given

by Theorem 1.1.

2.1 A generalised statement

We will in fact prove a generalisation of Theorem 1.2, which in itself is already a generalisation

of Theorem 1.1. For a given 0 ≤ α < 1 and γ ≥ 1, we say that a set of integers S ⊂ N is an

(α, γ)–strong Bh set if

|(x1 + · · ·+ xh)− (y1 + · · ·+ yh)| ≥ γmax{xα1 , yα1 , . . . , xαh , yαh} (2)
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for any x1, y1 . . . , xh, yh ∈ S satisfying max{x1, . . . , xh} 6= max{y1, . . . , yh}. Extending the

statement of Theorem 1.2 to cover this notion follows without any real additional effort and

will be a necessary ingredient when proving Theorem 1.4.

Theorem 2.1. For every h ≥ 2 , 0 ≤ α < 1 and γ ≥ 1 there exists an (α, γ)–strong Bh set

S ⊂ N satisfying

S(n) ≥ n
√

(h−1+α/2)2+1−α−(h−1+α/2)+o(1).

Note that the we immediately recover the statement of Theorem 1.2 when setting γ = 1 and

the statement of Theorem 1.1 when setting γ = 1 and h = 2.

2.2 The construction

Our starting point for proving Theorem 2.1 is the same family of infinite sets of integers Aq̄,c,h

constructed by Cilleruelo. For completeness and clarity of the exposition, we briefly recall its

definition; see Sections 2 and 3 in [3] for more details.

We start by fixing 0 < c < 1/2, which roughly speaking determines both the growth and

the ‘Sidon-ness’ of the set we are going to construct in a negatively correlated way. We say that

an ordered set of positive integers q̄ = (q1, q2, q3, . . . ) is a generalised basis. Observe that, for a

fixed q̄, one can uniquely express any given non-negative integer a in the form

a = x1 + x2 q1 + x3 q1q2 + x4 q1q2q3 + · · ·+ xk q1 · · · qk−1, (3)

where 0 ≤ xi < qi−1 for any 1 ≤ i ≤ k, xk 6= 0. We will refer to the numbers xi(a) (or xi(a, q̄)

if the generalised basis q̄ is not clear from the context) as the digits of a in base q̄. Using the

notation in (3), we also write len(a) = k = k(a, q̄) for its length. For notational convenience, we

also let xi(a, q̄) = 0 for any a when i > len(a).

The particular bases used for the construction of Bh sets are of the form

q̄ = q̄(h) = (h2q′1, h
2q′2, h

2q′3, . . . ), (4)

where each q′i is a prime number satisfying the condition

22i−1 < q′i ≤ 22i+1. (5)

Observe that by Bertrand’s Postulate we can always find prime numbers satisfying condition

(5) for each i ≥ 1. Next, we will use P to denote the set of prime numbers. Writing f(c, k) =

ck2/(log k)1/2, we partition the set of primes into disjoint parts P =
⋃
k≥3 Pk,c, where for any

k ≥ 3

Pk,c =
{
p ∈ P : 2c(k−1)2−f(c,k−1) < p ≤ 2ck

2−f(c,k)
}
. (6)

The decisive property of f that will be used later is that f(c, k) = o(k2) but f(c, k) =

ω(k2/ log k). Note that, depending on the value of c, some of the initial parts may be empty.

Finally, for any given generalised basis q̄(h) = (h2q′1, h
2q′2, h

2q′3, . . . ) and for each i ≥ 1, we also

fix some primitive root gi = gi(q
′
i) of F∗q′i .

We are now ready to define the set Aq̄,c,h. Its elements will be indexed by the set of primes,

that is Aq̄,c,h = {ap : p ∈ P}. The element ap is constructed as follows: we first consider the
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unique subset Pk,c such that p ∈ Pk,c. We set len(ap) = k and let the digit xi(ap) be given as

the unique solution to the equation

g
xi(ap)
i ≡ p mod q′i, (h− 1) q′i + 1 ≤ xi(ap) ≤ h q′i − 1 (7)

for each 0 ≤ i ≤ k. As previously already noted, we set xi(ap) = 0 for any i > k. Also note

that ap 6= ap′ if p 6= p′ by construction.

We conclude this section by stating the asymptotic growth of the set Aq̄,c,h. A proof of this

can be found in [3] for Sidon sets. The extension for Bh sets is straightforward.

Proposition 2.2. For any 0 < c < 1/2 we have Aq̄,c,h(n) = nc+o(1).

2.3 Some auxiliary statements

Three important properties follow immediately from the definition of the sets Aq̄,c,h. The first

one is a direct consequence of the construction of its elements.

Remark 2.3. The length of any element ap is determined by the part its indexing prime falls

in, that is len(ap) = k if and only if p ∈ Pk,c.

The second important observation is that, due to the second condition in (7) and the constant

h2 in the construction of the generalised basis, one can sum any h numbers in Aq̄,c,h, without

having to carry digits.

Remark 2.4. We can add up any h elements from Aq̄,c,h without having to carry digits, that is

xi(ap1 + . . .+ apt) = xi(p1) + . . .+ xi(pt)

for any 1 ≤ t ≤ h, p1, . . . , pt ∈ P and i ≥ 1 and therefore also

len(ap1 + . . .+ apt) = max{len(ap1), . . . , len(apt)}.

Remark 2.5. Let ap1 , . . . , apt ∈ Aq̄,c,h for some 1 ≤ t ≤ h. For any i ≥ 1, one can determine

the number of non-zero i-th digits of the summands in ap1 + . . .+ apt simply by considering the

i-th digit xi(ap1 + . . .+ apt). To see this, write mi =
∣∣{1 ≤ j ≤ t : xi(pj) 6= 0}

∣∣ and note again

that, by (7) we have

mi(h− 1) q′i +mi ≤ xi(ap1 + . . .+ apt) ≤ mih q
′
i −mi.

Clearly we also have mih q
′
i−mi < (mi + 1)(h− 1) q′i + (mi + 1) and hence the possible different

intervals are disjoint. It follows that xi(ap1 + . . .+ apt) uniquely determines the value of mi.

Let us show some additional auxiliary results regarding the bases q̄ and the sets Aq̄,c,h before

proving the bound in Theorem 2.1. For all of these statements, let h ≥ 2 be fixed and let q̄ be

some arbitrary basis satisfying (4) and (5).

Lemma 2.6. For any a ∈ N with k = len(a) we have

h2k−2 2k
2−2k+1 < a < h2k 2k

2+2k.
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Proof. By nature of the generalised basis, we have

h2q′1 · · ·h2q′k−1 ≤ a < h2q′1 · · ·h2q′k

and therefore by (5) we have

a < h2k
k∏
i=1

22i+1 = h2k 2k
2+2k

as well as

a > h2k−2
k−1∏
i=1

22i−1 = h2k−2 2k
2−2k+1,

proving the statement. �

Lemma 2.7. For any γ ≥ 1, 0 ≤ α < 1 and a ∈ N with k = len(a) we have

len
(
bγaαc

)
≤
(
αk2 + (log2 h+ 1) 2αk + log2 γ

)1/2
.

Proof. We have

γaα < γ
(
h2q′1 · · ·h2q′k

)α ≤ γ hα2k 2α(k2+2k)

so that the statement follows by the lower bound in Lemma 2.6. �

The next statement is reminiscent to Proposition 7 in [3].

Proposition 2.8. Let γ ≥ 1, 0 ≤ α < 1 and 0 < c < 1/2. Assume that there are elements

ap1 , ap′1 , . . . , aph , ap′h ∈ Aq̄,c,h satisfying

(1) ap1 ≥ . . . ≥ aph, ap′1 ≥ . . . ≥ ap′h and ap1 > ap′1 as well as

(2)
∣∣(ap1 + · · ·+ aph)− (ap′1 + · · ·+ ap′h)

∣∣ < γ aαp1.

We write ki = len(api) and k′i = len(ap′i) for 1 ≤ i ≤ h as well as

` = max
{

1 ≤ i ≤ k1 : xi(p1) + . . .+ xi(ph) 6= xi(p
′
1) + . . .+ xi(p

′
h)
}
.

Then, there exists some 1 ≤ t ≤ h such that

(i) ki = k′i ≥ ` for all 1 ≤ i ≤ t,

(ii) `2 ≤ αk2
1 + (log2 h+ 1) 2k1 + log2 γ + 1,

(iii) `2 ≥ (1− c)k2
t − c(k2

1 + · · ·+ k2
t−1) and

(iv) q′`+1 · · · q′k1 |
∏t
i=1(p1 · · · pi − p′1 · · · p′i).

Proof. By Remark 2.5, we must have ki = k′i if ` < max{ki, k′i} for any 1 ≤ i ≤ h. Part (i)

therefore immediately follows by setting

t = max
{

1 ≤ i ≤ h : ` < max{ki, k′i}
}
.

To see that part (ii) holds, we note that by definition of ` we have

`− 1 ≤ len
(
|(ap1 + · · ·+ apt)− (ap′1 + · · ·+ ap′t)|

)
7



and therefore by assumption of the proposition, by the fact that len(n) is an increasing function

in n and by Lemma 2.7 we have

` ≤ len
(
bγaαp1c

)
+ 1 ≤ (αk2

1 + (log2 h+ 1)2αk1 + log2 γ)1/2 + 1.

In order to verify parts (iii) and (iv), we note that by choice of ` we have

g
xi(p1)+...+xi(pt)
i ≡ gxi(p

′
1)+...+xi(p

′
t)

i mod q′i

for any ` < i ≤ k1. By the construction of the digits of the elements in our set and by the

previous observation, we therefore get

p1 · · · pkj ≡ p
′
1 · · · p′kj mod q′i

for any 1 ≤ j ≤ t and kj+1 + 1 ≤ i ≤ kj where we let kt+1 = `. By the fact that the q′i are

distinct primes, it follows that

p1 · · · pkj ≡ p
′
1 · · · p′kj mod q′max{`,kj+1}+1 · · · q

′
kj

for any 1 ≤ j ≤ t, which implies part (iv) when j = t. By (5) and (6) it follows that

2c(k
2
1+...+k2j ) ≥ |p1 · · · pkj − p

′
1 · · · p′kj | ≥ q

′
`+1 · · · q′kj > 2k

2
j−`2 ,

for any 1 ≤ j ≤ t, which proves part (iii) for j = t. �

2.4 Proof of the bound in Theorem 2.1

The set Aq̄,c,h satisfies the growth stated in Theorem 1.2 by Proposition 2.2 if we choose

c =
√

(h− 1 + α/2)2 + 1− α− (h− 1 + α/2). (8)

However, it is unfortunately not guaranteed to be an (α, γ)–strong Bh sequence. The plan is

to therefore remove ap1 for every ap1 , ap′1 , . . . , aph , ap′h ∈ Aq̄,c,h violating condition (2). This

removal clearly turns the initial set into an α–strong Bh. Using Proposition 2.8, we will show

that this alteration does not impact the growth of the infinite set. This will in fact follow

through a probabilistic argument by arguing that this statement is true for almost all choices

of the basis q̄.

Following the notation of Cilleruelo, let Bk(q̄) denote the set of all prime numbers p1 ∈ Pk,c
for which there exist ap′1 , ap2 , a

′
p2 , . . . , apt , ap′t ∈ Aq̄,c,h for some 1 ≤ t ≤ h such that {ap1 ≥ · · · ≥

apt} ∩ {ap′1 ≥ · · · ≥ ap′t} = ∅, ap1 > ap′1 and∣∣(ap1 + · · ·+ apt)− (ap′1 + · · ·+ ap′t)
∣∣ < γ aαp1 . (9)

To see that for

P∗ =
⋃
k≥3

(
Pk,c \ Bk(q̄)

)
the set S = {ap : p ∈ P∗} is an α–strong Bh set, we note that by Proposition 2.8 for any

ap1 , ap′1 , . . . , aph , ap′h ∈ Aq̄,c,h violating condition (2) there exists some t such that (using the

notation of that proposition) ` > max{kt+1, k
′
t+1} if t 6= h. By the definition of `, it follows that
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ap′1 , ap2 , a
′
p2 , . . . , apt , ap′t satisfy condition (9). We can furthermore ensure that {ap1 , . . . , apt} ∩

{ap′1 , . . . , ap′t} = ∅ by removing identical elements from both sides if necessary. It follows that

removing all p1 coming from some set Bk(q̄) destroys all ap1 , ap′1 , . . . , aph , ap′h ∈ Aq̄,c,h violating

condition (2).

If we can show that
∣∣Bk(q̄)∣∣ = o(|Pk|), then S(n) = nc+o(1) follows from Proposition 2.2 as

desired, proving the statement. The dependence of the set Bk(q̄) on the choice of basis q̄ is

emphasised as we will argue over the probability space of all bases q̄ = (h2q′1, h
2q′2, . . .) where

each q′i is chosen uniformly at random (and independently) among all prime numbers satisfying

(5). In this probability distribution, we have

P
(
h2q′`+1, . . . , h

2q′k1 ∈ q̄
)

=

k1∏
i=`+1

1

π(22i+1)− π(22i−1)
≤ 2`

2−k21+O(k1 log k1),

for any q′`+1, q
′
`+2, . . . , q

′
k1−1, q

′
k1

satisfying (5) and for some 0 ≤ ` ≤ k1. Now let

Kk =
h⋃
t=1

{
(k1, . . . , kt, `) : 0 ≤ ` ≤ kt ≤ . . . ≤ k1 = k satisfying (ii) and (iii)

}
for any k ≥ 3 and note that clearly |Kk| ≤ h(k+1)h = 2O(log k). Given any k = (k1, . . . , `) ∈ Kk,
we furthermore let

Pk = {(p1, p
′
1, . . . , pt, p

′
t, `) : pi, p

′
i ∈ Pki,c for all 1 ≤ i ≤ t}

and note that

|Pk| ≤ |Pk1,c|2 · · · |Pkt,c|2 ≤ 22c(k21+...+k2t )−2f(c,k1).

Lastly, for any p = (p1, p
′
1, . . . , pt, p

′
t, `) ∈ Pk we let

Qp = {(q′`+1, . . . , q
′
kt) : each q′i satisfies (5) and q′`+1 · · · q′k1 satisfies (iv)}

and note that

|Qp| ≤ τ

(
t∏
i=1

(p1 · · · pi − p′1 · · · p′i)

)
≤ τ

(
2O(k21)

)
= 2O(k21/ log k1),

where τ is divisor function and we have used the fact that it satisfies τ(n) = 2O(logn/ log logn).

By combining the previous bounds and bounding k2
t through (iii) in Proposition 2.8, `2 through

(ii) in Proposition 2.8 and using k2
i ≤ k2

1 for 1 < i < t, we can now conclude that

E
(
|Bk(q̄)|

)
≤
∑
k∈Kk

∑
p∈Pk

∑
q∈Qp

P
(
h2q′`+1, . . . , h

2q′k1 ∈ q̄
)

=
∑
k∈Kk

22c(k21+...+k2t )+`2−k21−2f(c,k1)+O(k21/ log k1)

≤
∑
k∈Kk

2

(
2c(t−1)+(1+c)α

1−c −1
)
k21−2f(c,k1)+O(k21/ log k1)

= 2ck
2−2f(c,k1)+O(k21/ log k1),

where in the last inequality we have used property (ii) and (iii) and in the last equality we have

used that (2c(t− 1) + (1 + c)α)/(1− c)− 1 ≤ c if c satisfies (8), with equality when t = h. Since

|Pk,c| = (1 + o(1)) 2ck
2−f(c,k), it follows that

E

∑
k≥3

|Bk(q̄)|/|Pk,c|

 ≤∑
k≥3

2−f(c,k1)+O(k21/ log k1) =
∑
k≥3

2−ck
2
1/(log k1)1/2 (1+o(1)),
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which is convergent. We therefore have |Bk(q̄)| = o(|Pk,c|) for almost all q̄. This proves the

statement. �

3 Proof of Theorem 1.3

Before proving the upper bound stated in Theorem 1.3, we will first establish a corresponding

result for finite α–strong Bh sets. Later, we can then make the step to the infinite setting.

Let n ≥ 1 and h ≥ 2 be integers and 0 ≤ α < 1. Extending a definition of Kohayakawa et

al. [9, 10], we say that a set S ⊂ [n] is an n–finite α–strong Bh set if

|(x1 + · · ·+ xh)− (y1 + · · ·+ yh)| ≥ nα

for any x1, y1 . . . , xh, yh ∈ S satisfying max{x1, . . . , xh} 6= max{y1, . . . , yh}. For α = 0 this

notion again coincides with that of a classic Bh set.

Proposition 3.1. Let n ≥ 1, h ≥ 2 and 0 ≤ α < 1. Any n–finite α–strong Bh set S ⊂ [n]

satisfies

|S| ≤ 2h1+1/h n(1−α)/h.

Proof. Let A0 = {a1 + . . .+ah : a1 < . . . < ah ∈ S} denote the set of sums of h distinct elements

in S and A1 =
⋃
s∈A0

[s− bnα/2c, s+ dnα/2e) the union of all intervals of size nα around those

elements. We have A0 ⊂ [h, hn] and therefore A1 ⊂ [h− bnα/2c, hn+ dnα/2e), so that

|A1| ≤ hn+ dnα/2e − (h− bnα/2c) + 1 ≤ h(n− 1) + nα + 1. (10)

Since S is an n–finite α–strong Bh set, we also know that the intervals of the form [s−bnα/2c, s+

dnα/2e) are distinct, so that

|A1| =
(
|S|
h

)
nα ≥ nα |S|

h

hh
. (11)

The combination of (10) and (11) implies that

|S|h ≤ hh+1 n1−α + hh+1n−α + hh ≤ 3hh+1 n1−α,

as desired. �

We are now ready to transfer this bound to the infinite setting.

Proof of Theorem 1.3. We partition the set S into parts Si = S ∩ (2i, 2i+1] for all i ≥ 0 and

note that each {s − 2i : s ∈ Si} ⊂ [2i] is a 2i–finite α–strong Bh set. Using Proposition 3.1, it

follows that

S(n) ≤
dlog2(n)e∑
i=0

|Si| ≤
dlog2(n)e∑
i=0

2h1+1/h 2i(1−α)/h

= 2h1+1/h 2(dlog2(n)e+1)(1−α)/h − 1

2(1−α)/h − 1
≤ 4h1+1/h

2(1−α)/h − 1
n(1−α)/h,

so that the statement of Theorem 1.3 holds with c = c(α, h) = 4h1+1/h/(2(1−α)/h − 1). �

10



4 Proof of Theorem 1.4

Theorem 1.4 follows immediately from Theorem 2.1 when using the following generalisation

of a result of Kohayakawa et al. (specifically Theorem 12 in [10]). It states that one can use

(1− δ, h21+1/δ)–strong Bh sets to obtain dense Bh sets in Rδ.

Theorem 4.1. Let 0 < δ ≤ 1 and h ≥ 2. If there exists an (1−δ, h21+1/δ)–strong Bh set S ⊂ N
satisfying

S(n) ≥ nu(δ)+o(1)

then, with probability 1, the random subset Rδ of N contains a Bh set S∗ satisfying

S∗(n) ≥ nu(δ)+o(1).

We will follow the approach of Kohayakawa et al. in order to prove Theorem 4.1. We start

by giving some definitions. We partition the set of integers into intervals N =
⋃
i≥1 Ii, where

Ii = N ∩ [i1/δ, (i+ 1)1/δ)

for any i ≥ 1. For a, b ∈ N, we write

a ∼ b

if a, b ∈ Ii for some i ≥ 1. The goal is now to show that Rδ intersects each Ii with some positive

probability whereas, for α = 1− δ and γ = h21+1/δ, the set S given by Theorem 2.1 intersects

each Ii at most once. One then simply shifts each element of S within the respective intervals

Ii so that it lands in the random set Rδ, assuming that Rδ meets that interval. The fact that S

is a (1− δ, h21+1/δ)–strong Bh set gives one enough slack for the resulting subset of Rδ to still

be a Bh set.

In order to follow this approach, we will first need some auxiliary results. A simple proof of

the following statement can be found in the paper of Kohayakawa et al.

Lemma 4.2 (Lemma 13 in [10]). For every 0 < δ ≤ 1 there exists some i0 = i0(δ) such that if

i ≥ i0 then

P(Rδ ∩ Ii 6= ∅) ≥ 1/3.

The following lemma establishes that the intervals Ii are small with respect to the elements

contained in them.

Lemma 4.3. For any 0 < δ ≤ 1 and i ≥ 1 we have |Ii| < 21/δ i1/δ−1.

Proof. Clearly

|Ii| ≤ (i+ 1)1/δ − i1/δ =
(
i (1 + 1/i)1/δ − i

)
i1/δ−1.

We would therefore like to show that i (1 + 1/i)1/δ − i ≤ 21/δ. Let

f(x) = x (1 + 1/x)1/δ − x = x

[(
x+ 1

x

)1/δ

− 1

]
and note that

f ′(x) =

(
x+ 1

x

)1/δ

− 1− 1/δ

x

(
x+ 1

x

)1/δ−1

=
(x+ 1)1/δ − x1/δ − 1/δ (x+ 1)1/δ−1

x1/δ
.

11



We would like to show that f ′(x) ≤ 0 for all x ≥ 1. Clearly x1/δ > 0, so let us show that the

numerator is not positive. Since 1/δ ≥ 1, the function g(x) = x1/δ is convex and therefore

(x+ 1)1/δ − x1/δ = g(x+ 1)− g(x) ≤ g′(x+ 1) = 1/δ (x+ 1)1/δ−1.

It follows f ′(x) ≤ 0 for x ≥ 1 and we therefore have by monotonicity

i (1 + 1/i)1/δ − i ≤ f(1) = 21/δ − 1 < 21/δ,

giving the desired statement. �

Lemma 4.4. Let h ≥ 2 and 0 < δ ≤ 1. If S ⊂ N is a (1 − δ, 21+1/δ)–strong Bh set, then, for

all i ≥ 1,

|S ∩ Ii| ≤ 2.

Proof. Assume to the contrary that there are x > y > z such that x, y, z ∈ S∩Ii for some i ≥ 1.

By Lemma 4.3 it follows that∣∣(x+ z
)
−
(
y + y

)∣∣ ≤ |x− y|+ |z − y| ≤ 2|Ii| < 21+1/δ i1/δ−1 ≤ 21+1/δ x1−δ.

This is in contradiction to the fact that S is of course a (1− δ, 21+1/δ)–strong Sidon set since it

is a (1− δ, 21+1/δ)–strong Bh set. �

Lemma 4.5. Let h ≥ 2 and 0 < δ ≤ 1. If S = {si : i > 0} ⊂ N is a (1− δ, h21+1/δ)–strong Bh

set, then any set S̃ = {s̃i : i > 0} satisfying s̃i ∼ si for all i ≥ 1 is a Bh set.

Proof. Assume to the contrary that there are x̃1, ỹ1, . . . , x̃h, ỹh ∈ S̃ satisfying max{x̃1, . . . , x̃h} 6=
max{ỹ1, . . . , ỹh} and x̃1+. . .+x̃h = ỹ1+. . .+ỹh. Let xi ∼ x̃i and yi ∼ ỹi denote the corresponding

elements in S for all 1 ≤ i ≤ h. We may assume x1 ≥ . . . ≥ xh, y1 ≥ . . . ≥ yh as well as x1 > y1

and let i1 ≥ 1 such that x1 ∈ Ii1 . By Lemma 4.3, we have

|(x1 + . . .+ xh)− (y1 + . . .+ yh)| ≤ h2|Ii1 | < h21+1/δ i
1/δ−1
1 ≤ h21+1/δx1−δ

1 ,

contradicting the fact that S is a (1− δ, h21+1/δ)–strong Bh set. �

We are now ready to prove Theorem 4.1 along the lines of the proof of Theorem 12 in [10].

Proof of Theorem 4.1. Let S ⊂ N be some fixed (1−δ, h21+1/δ)–strong Bh set satisfying S(n) =

nu(δ)+o(1). By Lemma 4.4 we may without loss of generality assume that |S ∩ Ii| ≤ 1 for all

i ≥ 1: observe that we can remove one element for each Ii such that |Ii ∩ S| = 2 without

impacting the growth condition of the resulting set.

Write S = {si : i > 0} and for each index j, let ij be such that sj ∈ Iij . Let i0 = i0(δ) be

as given by Lemma 4.2 and define the random set

J = {j ∈ N : ij ≥ i0 and Rδ ∩ Iij 6= ∅}.

For each j ∈ J , let s̃j denote an element in Rδ satisfying s̃j ∼ sj . By construction S? = {s̃j :

j ∈ J} is a subset of Rδ and by Lemma 4.5 it is a Bh set.

12



Let us show that, with probability 1, this set still satisfies S?(n) = nu(δ)+O(1). By Chernoff’s

bound and Lemma 4.2, we know that for any ε > 0 there exists some n0 = n0(ε) such that, for

any n ≥ n0 we have

P
(
S∗(n) < nu(δ)−ε) ≤ 2 exp

(
− nu(δ)−2ε/3

)
≤ 1/n2.

Using now Borel–Cantelli Lemma and the fact that
∑∞

n=1 1/n2 < ∞, it follows that with

probability 1 there exists some n1 = n1(Rδ) such that S?(n) ≥ nu(δ)−ε for any n ≥ n1. The

desired statement therefore follows. �

5 Remarks and Open Questions

We believe that the lower bound obtained in Theorem 1.1 is a natural extension of the results

of Ruzsa and Cilleruelo and that any advance in closing the gap between the upper and lower

bounds for strong infinite Sidon sets should probably come as a result of an improvement on

either bound in the case of normal ‘non-strong’ Sidon sets. Unfortunately, this problem has

proven surprisingly defiant despite a fair amount of attention.

Concerning the question of the maximum size of Sidon or Bh sets in infinite random sets

of integers, Theorem 1.4 currently gives the best lower bound when h = 2 and 5/6 < δ < 1.

In the case of h > 2 no other bounds are known, though we believe that using results of

Dellamonica et al. [4, 5] for the case of finite random sets, one can establish exact exponents

whenever 0 < δ < h/(2h − 1). Note that Kohayakawa et al. [9] also made use of the case of

finite random sets established in [11]. When δ is large enough, we believe that Theorem 1.4

again gives the best lower bound that can be obtained without requiring significant new insight

into the non-strong and non-random case.

Kohayakawa et al. [10] also asked if their upper bound on the size of infinite α-strong Sidon

sets can be strengthened along the lines of the results of Erdős as well as Stöhr [15] mentioned in

the introduction. We extend this question to any α-strong Bh set along the lines of Theorem 1.3.

Question 5.1. Let 0 ≤ α < 1 and h ≥ 2. Does any α-strong Bh set S satisfy

lim inf
n→∞

S(n)/n(1−α)/h = 0?
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