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Abstract: Monitoring electrical power quality has become a priority in the industrial sector back-
ground: avoiding unwanted effects that affect the whole performance at industrial facilities is an
aim. The lack of commercial equipment capable of detecting them is a proven fact. Studies and
research related to these types of grid behaviors are still a subject for which contributions are required.
Although research has been conducted for disturbance detection, most methodologies consider only a
few standardized disturbance combinations. This paper proposes an innovative deep learning-based
diagnosis method to be applied on power quality disturbances, and it is based on three stages. Firstly,
a domain fusion approach is considered in a feature extraction stage to characterize the electrical
power grid. Secondly, an adaptive pattern characterization is carried out by considering a stacked
autoencoder. Finally, a neural network structure is applied to identify disturbances. The proposed
approach relies on the training and validation of the diagnosis system with synthetic data: single,
double and triple disturbances combinations and different noise levels, also validated with avail-
able experimental measurements provided by IEEE 1159.2 Working Group. The proposed method
achieves nearly a 100% hit rate allowing a far more practical application due to its capability of
pattern characterization.

Keywords: autoencoder; deep learning; power quality disturbances; power quality monitoring

1. Introduction

The implementation of recent advanced technologies following the trends of Energy
4.0 and Industry 4.0 allows us to gather, analyze, process, and dispose of a huge amount
of data about the diverse processes involves in the different sectors as the industrial and
energy [1]. The management of energy systems in Industry 4.0 will enable monitoring, ag-
gregation and control of a large number of individual power generation and consumption
units. Energy and electrical systems become more complex with the increase of multiple
load profiles connected, and unexpected electrical events can occur causing the appearance
of power quality disturbances (PQD) [2]. There is still a need for emerging technologies
related to PQD detection and identification to be further developed into cyber-physical
systems to implement smart algorithms and new methodologies for Energy 4.0 condition
monitoring [3]. The future of the monitoring of power quality (PQ) is moving toward
intelligent systems based in the cloud where cyber-physical architectures are implemented.
Thereby, techniques of artificial intelligence, as based in deep learning, suppose an im-
provement in developing structures with higher capabilities of data management.

Power quality on the electrical grid is relevant to industry in light of the harmful,
unwanted effects that an uneven electrical supply network is highly likely to cause upon
the machinery and equipment attached to the grid. PQD represent random deviation
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from an established amplitude and frequency of a sinusoidal waveform for electrical
devices and related systems to make proper, adequate utilization. The electric supply
chain includes generation, transmission, and consumption. Thus, on the consumption
level, commonly ranging between 120 Vac and 600 Vac [4], is where most of the loads are
attached to the grid. Consequently, it is at this level in which a major concern in applying
PQ monitoring procedures can be spotted [5]. The AC power systems are designed to
operate at a sinusoidal voltage at a given magnitude and frequency, typically 50 or 60 Hz.
Based upon the previously stated, the ideal waveform of the voltage is defined formally
by (1):

V(t) = Vm sin(ωt + ϕ), (1)

where V(t) is the sinusoidal voltage, Vm is the peak amplitude of the signal, ω is the angular
frequency, and ϕ is the phase of the signal. Deviations from such an ideal voltage or current
waveform in electrical distribution systems are considered a PQD [6]. Accordingly, the
IEEE Std 1159 norm describes the set of possible single PQD, likely to take place in a power
supply network [7]. Nonetheless, owing to actual industrial scenarios, where different
electrical loads coexist (non-linear loads, lighting devices with electronic ballasts, controlled
heating elements, magnet power supplies, battery chargers, furnaces, adjustable speed
drives, air-conditioning systems, pumps, or elevators, among others), disturbances can
occur within multiple combination forms. Therefore, this leads to complex patterns not
directly represented by classical single disturbance descriptions [8].

The nature of the PQD at the industrial power grid leads to complex patterns—a
non-periodic and uneven combination of disturbances alongside the work cycles of the
related electrical loads connected to the power supply network under monitoring process.
This factful event represents a current challenge in PQ diagnosis, since the number of
possible disturbance patterns and related variants overcome the capabilities of available
methods, usually restricted to a reduced number of single, isolated disturbances [9]. Most
of the related literature sources that scaffold the quoted field, point out that the data-
driven fault detection and identification approach represents the most promising PQ
monitoring strategy [10]. As a whole, the data-driven procedure consists of three steps:
feature extraction, feature reduction, and classification. As for the latter, time-domain,
frequency domain, and time-frequency domain approaches have been applied to compute
significant numerical features characterizing the power line signal. Ref. [11] considers the
computation of statistical features using S-transform based multi-resolution analysis of
signals to characterize several disturbances for further recognition. Furthermore, Ref. [12]
is presents a method based on variational mode decomposition of the original signal
and the recurrence quantification analysis which reaches a proper characterization of the
electrical signals prior to their identification; it follows a data-driven approach. In [13], a
study focused on feature selection explores the performance achieved by different subset
through features extracted from commonly signal processing techniques. In spite of the
good performance achievement, the drawback of this approach is the need to characterize
the signal through several signal processing techniques, the outcome of which is a much
higher computational complexity. In addition, the work depicted in [14] proposes a novel
method to extract the features from the signal by first transforming the 1-dimensional
signal into a 2-dimensional signal. Then, for the classification stage, it assesses different
machine learning models, such as k-nearest neighbor, multilayer perceptron, and support
vector machines, to determine which of these models performs at its best. This work
considers the combination of two and three PQD. Yet, all related works sum up that
no upper domain exists while dealing with signal characterization, but the fusion of
information represents the most promising approach [15]. The reduction of such sets of
numerical indicators, regarding their relevance for characterizing patterns, represents a
critical data-driven step [16]. Accordingly, non-significant and redundant information
must be discarded or attenuated in order to optimize further pattern recognition tasks.
Some works as [13,17,18], consider classical algorithms as Principal Component Analysis
(PCA), k-Nearest Neighbor (kNN), or sequential forward selection methods. However, on
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dealing with an increased variety of patterns—as required by current PQD monitoring
applications—, these approaches bring about a limited performance [19].

Viewed in this way, deep learning techniques are to be considered in multiple in-
dustrial fields of applications that deal with high-dimensional sets of data and multiple
patterns [20]. Application of deep learning has been presenting good performance in areas
like image classification, speech recognition, natural language processing, video processing,
and, recently, in areas related to energy management [21]. Autoencoder, convolutional
neural networks, or recurrent neural networks are the most common techniques to be
used for dealing with complex data involved. There is merely a few works exploring the
suitability of such techniques in electrical network monitoring, but even less applied to
PQD classification [22]. The work presented in [23] submits data-driven approaches on the
grounds of such deep learning techniques. Although the outcoming performances keep
being promising, the lack of a common procedure to configure and tune the algorithms still
represents a shortcoming that avoids its consideration over real industrial applications [24].
The work presented in [23] looks into the capabilities of deep learning in PQD classification
using a convolutional neural network alongside eleven statistical indicators calculated over
the four principal components of the electrical signals by the use of a modified version of
PCA. Likewise, they use the neural network structure to perform the classification stage.
Two classes of multiple, analyzed PQD are regarded by this work as the appearance of the
disturbances because some of those disturbances turn out to be opposite in definition. Nev-
ertheless, the method presents good capabilities with simulated data. Their introduction
as part of the data-driven procedure represents the necessary step forward to reach the
required characterization and management of multiple patterns to be recognized later in
combination with classification algorithms, as the well-known neural networks [25].

Thus, the contributions of this paper rely on the proposal of a novel deep learning-
based diagnosis method applied to PQD. The originality of the work includes the following
key features: (i) a common framework for diagnosis method configuration and tuning of
algorithms based on quantitative metrics, (ii) the validation of the autoencoder as a deep
learning technique capable of characterizing complex power disturbance patterns, (iii)
the consideration of single disturbances, as well as the combination of double and triple
disturbances under different signal to noise ratios, and (iv) the validation of the proposed
method following both, the classical synthetic signal-based approach, and real measure-
ments available from an open-access database. Moreover, it must be emphasized that the
proposed diagnosis method has been validated with the highest number of disturbance
patterns compared with the identified state of the art regarding real measurements consid-
ered. The latter contributes to the validation of the feasibility of the proposed method. In
summary, the contribution of the paper is established on a methodology based on a deep
learning technique seeking to contribute to the process of new algorithms to PQ detection,
in order to attend the challenges paradigm of Energy 4.0.

This paper is organized as stated next: in Section 2, theoretical background related
to the autoencoder as feature reduction approach is presented. Section 3 describes the
proposed method. The considered data sets are introduced in Section 4. Section 5 presents
and discusses the obtained results. Finally, Section 6 shows the conclusions of this work.

2. Autoencoder as Feature Reduction

Traditional Neural Networks (NN) applications represent shallow approaches, being
the three layers feed-forward network (i.e., input, hidden, and output layers), the most
common architecture. In such shallow networks, the inputs must be a carefully curated set
of parameters obtained by means of feature reduction and/or feature engineering because
NN are highly affected by the presence of non-significant and redundant information
making the learning process of complex features and relationship from the data difficult [26].
In contrast, deep learning takes a feature learning approach, i.e., features relationships
are discovered rather than given. This occurs by taking advantage of the deep networks
properties, in which the initial layers extract meaningful features in an unsupervised
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manner and the final layers, map these features to the target [27]. By following this
approach, the resulting network is apt to working with a wider set of inputs, where the
training stage is ideal for the identification of significant features for pattern characterization
and recognition, assigning weights autonomously.

Upon the previously stated, the autoencoder is a deep learning technique inspired by
NN structures, trained to replicate its input at its output. Thus, the autoencoder structure
is divided into two main parts: encoder and decoder. Then, the encoder deals with the
representation of the information in the previous layer onto a reduced dimension. Other-
wise, the decoder takes the compressed information resulting from the previous layer and
returns it to its original dimension. The training stage of an autoencoder is unsupervised
and based on the optimization of a cost function to minimize such error between the input
and its resulting reconstruction at the output. However, the consideration of multiple
layers in deep networks rests upon inaccuracies of the classical backpropagation algorithm
failing to update the weights through the layers during the training process as the gradient
becomes too small to influence a change and prevents further learning, a problem known
as the vanishing gradient [26]. One of the best performing solutions is the implementation
of simple three-layers autoencoders trained individually and stacked later, where each
subsequent layer uses the hidden layer of the previous autoencoder as the input. After the
set of autoencoders is stacked, the deep autoencoder is fine-tuned. Thus, the stacking of
different autoencoders is usually considered to reduce or compress the input data to a low
dimensionality without losing relevant information to reconstruct the original signal at the
output of the structure. An example of such a stacked autoencoder is shown in Figure 1,
where the hidden layer with the lowest dimension (i.e., two in this example) represents the
reduced set of information resulting from the feature learning reduction process. Such a
layer is considered to be used as the input of a posterior classification algorithm as a simple
neural network [28].
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Regularized autoencoders use a loss function that encourages the model to have
other properties besides the ability to copy its input to its output: Adding penalties to
the cost function, an autoencoder could include sparsity of the representation, smallness
into the derivative of the representation, and robustness to noise or missing inputs. These
coefficients are the L2W regularization term, the sparsity regularization term, and the
sparsity proportion term. Thus, the cost function, J(x), related to a regularized autoencoder
is presented in (2).

J(x) = L(x, x̂) + λ∗Ωweights + β∗Ωsparsity, (2)
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where L(x, x̂) is a loss function (e.g., Mean Squared Error, MSE), that measures the error
between the input x and the reconstruction x̂. λ is the coefficient for the L2W regularization
term Ωweights, and β is the coefficient for the sparsity regularization term Ωsparsity. The
L2W regularization term is shown in (3):

Ωweights =
L

∑
l

N

∑
j

K

∑
i

(
w(l)

ji

)2
, (3)

where L is the number of hidden layers (i.e., one for a basic autoencoder), N is the number
of samples, K is the number of variables in the training data set, and w(l)

ji represents the
value of the weights indexed by l, j, i = 1, 2, 3 . . . . In addition, following the sparsity
regularization term, the Kullback-Leibler divergence is shown in (4):

Ωsparsity =
D(l)

∑
i=1

KL(ρ ‖ ρ̂i) =
D(l)

∑
i=1

ρ log
(

ρ

ρ̂i

)
+ (1− ρ) log

(
1− ρ

1− ρ̂i

)
; (4)

this Equation (4) takes a large value when the average activation probability value, ρ̂i, of
a neuron i and its desired value, the sparsity proportion term, ρ, are not close [29]. Thus,
such J(x) cost function is approached as an optimization problem during the autoencoder
training process.

3. Proposed Methodology

The proposed data-driven fault detection and identification methodology applied
to PQ monitoring is divided in four stages. The flowchart of Figure 2 depicts the
methodology proposed.
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The first stage of the proposed methodology is related to the definition of the repre-
sentative synthetic electrical signals for each considered condition, that is: the reference
condition, which is the normal operation of the electrical system, and signals including
disturbances in a single or combined mode. As stated in the related literature, the genera-
tion of such synthetic signals, following the corresponding international standards [14],
represents the optimal approach to have a balanced and representative database for train-
ing purposes. It must be noted that this work, however, will be onwards extending the
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validation of the resulting diagnosis structure with both synthetic and experimental signals
provided by a scientific usage database.

The second stage is feature extraction. At this stage, characteristic numerical features
are proposed to be extracted from the three possible domains, that is, time, frequency,
and time-frequency domains. Taking advantage of the feature learning capabilities of the
forthcoming autoencoder structure, the proposed methodology includes such a variety
of domains, as all of them have proved to be relevant in different studies [19]. All in
all, the fast Fourier transform is computed in the frequency-domain. Additionally, the
empirical mode decomposition (EMD) is considered as a signal decomposition approach
in the time-frequency domain. EMD has been selected because it offers the ability to
self-adapt, it does not require predefining some parameters before its application. This
property is a distinguished detail because, unlike other techniques, such as STFT or Wavelet
decomposition, where a window size or resolution has to be defined beforehand, likely
to lead to the risk of attenuating or fading some effects from the signal. Furthermore,
comparisons in the use of these techniques have already been reported showing no general
agreement to which specific technique applies [13]. The drawback of EMD is that the
number of resulting signals is not controlled, and therefore, multiple signals can emerge.
Then, it depends not only on the application but also on the signal to be analyzed, if
it happens to contain any noise level. In this particular case, this issue has no impact
because, following previous research, it has been identified that the consideration of two
to five Intrinsic Mode Functions (IMF) may include significant information for diagnosis
purposes [30], being the first two IMF the most significant ones in most of the cases. Thus,
from each of the four considered signals (i.e., time-based, FFT-frequency spectrum, and
the first two IMF), a set of twenty statistical features are estimated for characterization.
Specifically, a number of statistical features is considered: mean, maximum value, root
mean square, square root mean, deviation standard, variance, rms shape factor, srm
shape factor, crest factor, latitude factor, impulse factor, skewness, kurtosis, 5◦ moment, 6◦

moment, energy, entropy, range, form factor, and log energy entropy. The consideration of
such indicators represents a powerful strategy to characterize multiple patterns at the time
that offer enough generalization capabilities to avoid the risk of overfitting. The detailed
equations of these statistical indicators are reported in several studies, as stated in [31] are
the first fifteen above listed indicators, and in [23] are the last five.

The third stage corresponds to feature learning and reduction. In this stage, the
autoencoder is considered to reduce the original 80-dimensional set of numerical features
into a lower-dimensional representation.

In order to reach a numerical feature reduction (i.e., codification), the autoencoder
configuration must be carried out. First, the depth, L, and size, l, of each layer for the
autoencoder structure must be defined. These two values involve how the input feature
vector is codified from an initial D-dimensional set of features to a d-dimensional represen-
tation. The selection of various layers intends to preserve the most relevant information
and relationships between features, since reducing the information in a single layer could
remove important affinities in the input feature vector. The values for the hyperparam-
eters mentioned at the end of section two for the autoencoder configuration, that is, the
coefficient λ for the L2W regularization term Ωweights, the coefficient β for the sparsity reg-
ularization term Ωsparsity, and ρ, the sparsity proportion term, also need to be selected. The
coefficients for the L2W regularization term and the sparsity regularization term, as well as
the sparsity proportion term, are involved with the cost function presented in Equation (2)
to be minimized. These hyperparameters allow yielding a model that could learn useful
features of the input furthermore to perform the encoding task. A proper selection of values
for these parameters will be reflected at the end of the autoencoder structure. The cost
function to be minimized is the error resulting from the comparison between the original
signal and the result of the decoding process of the codification stage. Therefore, low error
values means that the codification process (i.e., pattern characterization), is being carried
out properly.
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As aforementioned, the selection of optimal values to each one of the main autoen-
coder configuration parameters represents a limitation to its application that is being
tackled following empirical approaches. Yet, this option engages the feasibility for practical
implementation, since the tuning process becomes unaffordable by non-specialists about
the use of autoencoder algorithms. The proposed scheme in this research work, though, in-
cludes an autoencoder configuration procedure supported by updated research experience
in the field, which provides an accessible and reproducible configuration methodology to
promote its application.

Accordingly, in order to obtain a proper configuration, three steps to be followed
are proposed. These steps include the definition of the number of hidden layers, the size
of each hidden layer, the coefficients for the L2W regularization term and the sparsity
regularization term, and the sparsity proportion term. All these parameters are proposed
to be determined according to the resulting reconstruction performance optimizing so, the
characterization capabilities of the signal. Specifically, the three steps proposed are:

1. Firstly, the selection of the number of hidden layers. A deep network is proposed
based on the reduction of the features through the hidden layers’ size. The number of
layers has to be selected considering the number of inputs. Taking into account the
field of the application and following previous research, it is recommended a number
between three and five hidden layers [26].

2. Secondly, the size of the hidden layers. This parameter represents the reduction ratio
between layers and is also related to the number of features as input. Typical values
of proportion between consecutive layers are between one-third and one-tenth of
neurons [32]. This range of reduction ratio is supported by [33], which points out that
lower values could lead to a poor generalization of the autoencoder.

3. Thirdly, the selection of the values for the coefficients to the regularization terms in
the cost function. A search strategy based on coarse fine grid search is considered.
With this procedure, a local minimum from the error of reconstruction is certainly
expected to be achieved, which means the obtention of a valid representation in the
autoencoder structure. Although the set up process depends on several application
features, the different patterns related or other hyperparameters considered it could
be started by firstly searching any of the terms. In this study, it is proposed as a
first step, the search for the values from L2W and sparsity regularization in a range
of values between 10 to 1 × 10−6 in a log scale. Then, the selection of the sparsity
proportion term in a range between 0.5 and 0.05 with steps of 0.05.

The proposed autoencoder configuration procedure begins with a set of default values
for each of the five parameters. These values are typically considered in different appli-
cations [26]. Thus, following the proposed three-step procedure, just one parameter is
modified each time, seeking the value as a result of the best MSE value. Once identified,
the selection of the next parameter proceeds. It must be of full awareness that the proposed
procedure can be iteratively repeated in order to fine-tune the autoencoder.

Finally, the fourth stage of the methodology is related to the classification task. For
this purpose, a three softmax layers NN is proposed so as to be trained by the use of
the resulting encoded representation from the autoencoder as inputs, and the number of
considered classes as output [27].

4. Power Quality Disturbance Data Sets

In order to validate the proposed methodology, a challenging scenario has been consid-
ered, including multiple classes, combinatorial disturbances patterns, and different levels
of noise. It must be pointed out that most of the available studies related to PQ monitoring
deal with single disturbances as a basic framework for validating their methodology. Upon
these grounds, just a few of them consider PQ scenarios, including the combination of
two disturbances—or even fewer—considering the combination of three disturbance: they
represent a challenge and a current industrial requirement. Thus, the set of considered
conditions in this study are: C1: Normal, C2: Sag, C3: Swell, C4: Interruption, C5: Flicker,
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C6: Harmonics, C7: Oscillatory Transient, C8: Notching, C9: Sag with Harmonics, C10:
Sag with Oscillatory Transient, C11: Swell with Harmonics, C12: Swell with Oscillatory
Transient, C13: Harmonics with Oscillatory Transient, C14: Harmonics with Flicker, C15:
Harmonics with Notching, C16: Sag with Harmonics and with Oscillatory Transient, and
C17: Swell with Harmonics and with Oscillatory Transient. These signals are based on the
equations and parameters to model them reported in [19,34].

Following such definition and according to the IEEE Std 1159 [7] and related to this
work, seven main disturbances patterns are described. Therefore, in the category of short-
duration root-mean-square variations, the sag and swell disturbances are firstly defined.
Specifically, a sag is defined as a decrease in the RMS voltage between 0.1 per unit (pu),
and 0.9 pu, and a swell as the increase in the RMS voltage above 1.1 pu. In both cases,
the duration of these disturbances range from 0.5 cycles to 1 min. The third disturbance
considered is the interruption: this disturbance is also related to the amplitude of the signal,
specifically when the signal decrease less than 0.1 pu for a period not exceeding 1 min.
The next disturbance is related to sinusoidal voltages or currents waveforms containing
harmonics of the main frequency. These disturbances are referred to as harmonics and
are included in the category of waveform distortion. The fifth disturbance is described as
voltage fluctuations, which consists of systematic variations of the voltage envelope (or a
series of random voltage changes), in which the magnitude does not exceed the voltage
in the range between 0.95 pu to 1.05 pu according to [7]. It is important to highlight that
voltage fluctuations and term flicker are linked in ANSI/IEEE standards, and, due to
this, the literature found in the detection and identification of disturbances regards flicker
as a disturbance and continuing in that line also this work. However, it is important to
clarify that the flicker is the effect on lightning from these voltage fluctuations phenomena.
The sixth disturbance described is the oscillatory transient, which is a sudden, nonpower
frequency change in the steady-state condition of voltage, current, or both, which includes
positive and negative polarity. Finally, the disturbance named notching is described as a
periodic voltage disturbance caused by the normal operation of power electronics devices
when current is commutated from one phase to another.

Such set of disturbances has been defined considering multiple studies available in
literature sources, as well as excluding those nonsensical conditions in terms of timely, si-
multaneous appearance over the power line signal (e.g., such as sag with swell, flicker with
interruption, interruption with swell, or flicker with interruption with sag, among others).

4.1. Synthetic Data Set

The training stage of the proposed methodology is supported by a set of 1000 synthetic
signals for each of the considered conditions, that is, a total training data set of 17,000 time
signals. The common parameters of the signals are 60 Hz to its fundamental frequency and
an amplitude per unit (pu) aiming at allowing the latter application to different datasets.
Each and every one of the different classes is represented for a random generation signal
between the ranges of each one of the boundaries that represent the condition related. The
signal generation process, as well as the proposed methodology implementation, have
been supported by MATLAB 2019b. The signals are created with a time window, which is
equivalent to ten periods of the main one. This window size is chosen because the voltage
is usually measured on a cycle-by-cycle basis according to [7]. The sampling frequency
is 15.36 kHz. Noiseless and three signal-to-noise ratios (i.e., SNR of 50 dB, 40 dB, and
30 dB) are also considered. Figure 3 depicts some of the resulting synthetic disturbances. It
must be pointed out that the start and duration length of the disturbance are established
randomly within the time window size which provides better generalization capabilities to
the final model.
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Figure 3. Detail of electrical signals synthetically generated. (a) Normal with SNR of 40 dB; (b) Interruption noiseless;
(c) Harmonics with SNR of 30 dB; (d) Sag with Harmonics with SNR of 50 dB; (e) Swell with Oscillatory Transient with SNR
of 40 dB; (f) Sag with Harmonics and Oscillatory Transient with SNR of 30 dB.

Following the proposed methodology, a set of 80 statistical features are estimated for
each signal, resulting from the time, frequency, and time-frequency domains processing.
Once the numerical feature database is generated, a training set and test set are defined.
The training set includes 90% of the samples and the test set the remaining 10%. Both sets
will keep a balanced representation of each class and a 10-fold-cross validation approach is
taken into account throughout the training process. Thus, the final data sets are defined
by a matrix of (c ∗m) ∗ n, where c is the number of classes considered (i.e., 17), m is the
number of signals, 900 for each class in the training set and 100 for each class in the test
set, and finally, and n is the number of estimated features, that is, the 80 statistical features
considered in this methodology.

4.2. Experimental Data Set

With the purpose to extend the validation of the submitted methodology, a real data
set has additionally been considered for test purposes over the trained diagnosis model.
Such experimental database contains representative signals of some of the PQ scenarios
considered. The experimental database accounted in this study is supplied by the IEEE
P1159.2 working group and referred to by some studies in the field: in [24], in order to
verify the effectiveness of his proposed for the classification of PQD signals waveforms;
in [34], eleven waveforms signals from this database have been utilized to demonstrate the
successful classification with his method; and, in [35], five real signals have been used to
demonstrate the ability of the proposed approach to identify the disturbances signals. All
in all, these real signals have been used to validate the approaches presented in PQ studies.

The signals of such database are sampled at 15,360 Hz and contain six cycles at 60 Hz
operation frequency, an amplitude in pu, and an SNR estimated at 45 dB [24]. Although
most of the related studies consider less than 10 samples of such database, in this particular
endeavor, which pursues to validate the generalization capabilities and performance of the
proposed methodology, a total of 48 signals have been considered. It must be remarked
on that the signals in this database are not originally labeled. Thus, the labeling process
is achieved by the scientific community who observed the signal features. Consequently,
the set of 48 measurements considered in this study, is representative of eight different
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conditions related to the PQD considered, specifically: C2, C4, C9, C10, C12, C13, C16, and
C17. Figure 4 depicts two signals from this real database.
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Figure 4. Real database signal. (a) Sag disturbance; (b) Sag with harmonics.

5. Results and Discussion

Applying the proposed method previously described, the selection of optimal values
for the autoencoder configuration is carried out to begin with. Table 1 summarizes the
resulting hyperparameters.

Table 1. Resulting hyperparameters for the implementation of the stacked autoencoder.

Hyperparameter Value Selected

Number of autoencoders 3

Hidden layer sizes

Layer Size
1 70
2 50
3 30

L2W Regularization 1 × 10−6

Sparsity Regularization 1
Sparsity Proportion 0.2

5.1. Feature Learning Process

Broadly speaking, a number of statistical indicators taken from the literature are ex-
tracted from the time, frequency and time-frequency domains of an electrical signal. These
numerical indicators (80 actually) are the input to the autoencoder model to be encoded.
The autoencoder aims to extract, automatically, useful characteristics to properly encode
and decode input signals by minimizing reconstruction error. In this regard, a qualitative
and quantitative analysis of such reconstruction task is proposed, in order to validate the
effectiveness of the feature learning process. For this purpose, some representative mea-
surements have been selected to analyze the reconstruction performance from a qualitative
point of view. Two examples of such reconstruction can be observed in Figure 5, where
the input vector containing the 80 statistical features, its resulting reconstruction, and the
corresponding error are depicted.
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Figure 5. Original feature signals, its reconstruction and the resulting errors. (a) Signal including
flicker disturbance; (b) Signal including harmonic and oscillatory transient disturbances. In x-axis,
1–20: Time features; 21–40: Frequency features; 41:80 Time-frequency features. In y-axis, numerical
value of statistical features.

The qualitative inspection of such results shows that the autoencoder properly per-
forms the characterization of the original signals since neither significant deviation nor
averaged patterns are delivered. This fact is especially positive considering the differences
among considered signals. From a quantitative point of view, the feature learning per-
formance is also validated, as the resulting reconstruction error estimated through MSE
is 0.0143 for Figure 5a and 0.002 for Figure 5b. Such values are representative, owing to
the fact that the average MSE of the whole data set is 0.0327, in all cases with a very low
resulting error [24].

5.2. Classification Performance

As aforementioned, pattern recognition is carried out by adding one single neural
layer to the end of the stacked autoencoder structure. The number of neurons of this last
layer must be equal to the number of considered conditions (i.e., seventeen). Accordingly,
once trained, the result of the test stage is shown in Table 2, in which the classification
accuracy for each one of the considered conditions is detailed.
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Table 2. Classification accuracy of PQ disturbance conditions applying the stacked autoencoder-
neural network method.

PQ Disturbance Condition Accuracy (%)

C1: Normal 100
C2: Sag 99
C3: Swell 100
C4: Interruption 100
C5: Flicker 100
C6: Harmonics 100
C7: Oscillatory Transient 100
C8: Notching 99
C9: Sag with Harmonics 98
C10: Sag with Oscillatory Transient 100
C11: Swell with Harmonics 99
C12: Swell with Oscillatory Transient 100
C13: Harmonics with Oscillatory Transient 99
C14: Harmonics with Flicker 99
C15: Harmonics with Notching 100
C16: Sag with Harmonics and with Oscillatory Transient 98
C17: Swell with Harmonics and with Oscillatory Transient 100

It has been obtained as an outcome a 99.47%, considering the proposed diagnosis
method for the seventeen conditions. Related to this, it can be observed that the classifica-
tion accuracy reaches its high in the vast majority of the conditions. However, some classes
exhibit misclassification between one and two percent. In the case of single disturbance con-
ditions, that is, from C1 to C8, the observed misclassifications are related to low-intensity
severities of the corresponding disturbances. Thus, the single misclassification observed
in the sag condition (i.e., C2), emerges from misclassification as interruption condition
(i.e., C4). This response, however, is coherent with the underlying physical effect of the
disturbance characterized by the features. So, the misclassified sag disturbance sample is
due to the extremely low value of the corresponding severity (i.e., less than 0.1 pu), which
is recognized as an interruption. As for two combined disturbances, that is, from C9 to
C15, the condition presenting the highest misclassification error (i.e., 2%), is over the C11
disturbance corresponding to sag with harmonics. For the complex cases referred to as
the combination of three disturbances—C16 and C17—, the observed misclassification
(i.e., 2% in C16 condition) results from the assignment to simpler disturbance conditions.
This means that the misclassified samples are recognized as a single disturbance condition
(i.e., C9), or two combined disturbance conditions (i.e., C10), but, in all cases, conditions
that include some of the disturbances present in the original samples. In addition to all
this discussion, it is important to remark on the fact that all samples corresponding to the
normal condition are properly classified.

5.3. Validation of the Method at Different SNR

The electrical noise caused by measurement equipment, instrumentation devices, or
electrical loads connected to the power electrical system is typical and, in consequence,
represents an important aspect to consider in the assessment of a power disturbance
monitoring solution. Owing to the previously stated, different signal-to-noise ratios have
been considered. Following other studies in the field for comparison purposes, low,
medium, and high ratios have been considered over the test sets of the proposed method,
that is, 50 dB, 40 dB, and 30 dB, respectively [36]. Table 3 shows the resulting overall
classification accuracy at these three signals-to-noise ratios.
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Table 3. Resulting classification accuracy at different SNR.

SNR

50 dB 40 dB 30 dB Average

Performance 98.35% 98.37% 97.48% 98.06%

It should be noted that the obtained results indicate that the performance of the
proposed stacked autoencoder-neural network structure is almost unaffected (i.e., less than
2%), by the SNR appearance over the measurements. The performance decay throughout
the three SNR occurs because of a slight increase in the misclassification of the complex
signals with three combined disturbances. Yet, like in the previous noiseless scenario, the
misclassifications meet connection with simpler conditions including, at least, one of the
disturbances in the considered measurement.

5.4. Validation of the Method with Real Signals

In order to validate the proposed method, a challenging set of 48 signals from a
real database have been considered. Table 4 shows the resulting confusion matrix of
the classification.

Table 4. Confusion matrix for the real signals analyzed.

Actual Condition

2 4 5 9 10 12 13 16 17

Predicted Condition

2 17
4 1
5 2 1
9 11 1

10 1
12 1
13 2
16 5
17 6

The confusion matrix displays a classification accuracy of 91.66% in regard to the
48 signals with disturbances in the real database. An example of the correct classification is
the signal shown in Section IV, Figure 4 contains a sag disturbance as it is observed due
to the amplitude of 0.5 pu. Next, as expected, the resulting classification also indicates
that it corresponds to a sag disturbance. Most of the misclassifications (i.e., three of the
four) are related to a flicker disturbance due to a low level of the correct disturbance
that is misclassified with the flicker condition. Besides, there is another misclassified
signal: a sample of C13 is assigned as C9. In this case, the condition misclassified is the
combination of the condition predicted and another single disturbance, the sample contains
more characteristics from C9 than C13. In this sense, the misclassification is expected as
seen in Figure 5, where the disturbance recognized in the signal is the combination of sag
with harmonics and even it could be considered an interruption in the part of the third
cycle. Nevertheless, it is classified as a flicker disturbance.

5.5. Comparative with Other Recent Publications in the Field

Finally, so as to set the potentiality of the proposed methodology in context, some of
the most significant works previously published in the related literature sources have been
compiled and organized, as shown in Table 5.
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Table 5. Performance comparison with recent literature.

Ref. Year
Feature

Extraction
Technique

Classification
Technique Data Type

Type of
Multiple

PQD

Number of
Disturbances
Considered

Accuracy
Synthetic/Real

[33] 2019 MST PSSAE Synthetic/Emulated double 12/8 99.46/94.8
[36] 2019 1-D ST+TT DT Synthetic/Real double 14/7 99.93/98.57

[35] 2019 EWT SVM Synthetic/Emulated
and Real double 15/5 95.56/-

[37] 2019 ST DT Synthetic/Real double * 16/3 99.47/-

[23] 2019 IPCA 1-D CNN Synthetic double *,
triple * 11 99.92

[14] 2020 2D-RT KNN Synthetic/Emulated double, triple 17/17 99.26/97.62

[38] 2018 High-Order
Statistics Neuro-Tree Synthetic/Emulated

and Real double, triple 19/19 97.8/100 **

Proposed 2020 FFT+EMD NN Synthetic/Real double, triple 16/8 99.47/91.66

-: Not reported; *: Some of the reported disturbances are not in a simultaneous apparition; **: Not detail of the proportion from the
real conditions.

It can be observed that there is a clear difference between works limited to combina-
tions of two disturbances and those that include combinations of three disturbances. The
complexity of the electrical systems is being increased and, as a consequence, most recent
studies tend to consider the appearance of three combined disturbances at the very same
moment as this proposed method does. From such studies that consider three combined
disturbances, there is also a clear difference between those using emulated signals and
those considering real ones. In this regard, although emulated signals represent a proper
approach to validate proposed methods, the challenge facing real signals provides a greater
validation of the method generalization and its eventful impact on real applications. An
ultimate consideration is the fact that the methods and techniques applied in the related
literature sources require higher specialization and proficiency. Furthermore, they do not
provide a common procedure to configure or adjust the parameters involves restricting its
application to technical and industrial sectors.

Two main aspects must be discussed related to the advantages and limitations of
the proposed methodology. Firstly, those related to the proposed feature-fusion scheme
included in the methodology. Although related literature does not prioritize the use of
one domain over the others (i.e., time, frequency, or time-frequency domains), it is clear
that the consideration of the three domains increases the electrical signal characterization
possibilities and, then, the forthcoming pattern recognition accuracy. In this regard, the
proposed methodology provides an adaptive fault detection and identification scheme in
which the feature calculation can be tackled fusing multiple domains, even, if required,
by introducing multiple domain’s techniques. Secondly, those related with the use of
an autoencoder as deep learning feature reduction. The main limitation related to the
consideration of such technique is the tuning of the corresponding hyperparameters. This
fact implies that an optimization procedure must be carried out during the off-line stage
related to the model training. The proposed methodology considers a classical coarse-
fine grid search taking advantage of the most significant value ranges identified for each
hyperparameter in the literature. In spite of the fact that the proposed methodology exhibits
good results in terms of autoencoder performances, the obtained values correspond to local
minimum in the reconstruction error cost function. Related to the computational burden,
the proposed algorithm has a computational time required for the execution, on average,
16.5 milliseconds, considering a personal computer with the following characteristics: Intel
(R) Core (TM) i5-6500 CPU @3.2 GHz, 16 GB RAM, and NVIDIA Quadro P620 GPU. This
computation time for monitoring is sufficient, perhaps not for control, as this work is not
intended to cover the control area. This detection time is much shorter than the time needed
to make decisions regarding the production and network’s distribution actions owing to
their slower dynamics. To sum up, these types of algorithms have not been designed in
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terms of real-time. Nevertheless, they are helpful for the controller of the grid or power
system to make a decision as soon as possible.

6. Conclusions

This work contributes to the development of an algorithm as a proposal in the towards
the management of PQD that may arise in the context of Industry 4.0 through a novel
deep learning-based diagnosis method applied to PQD. There are three important aspects
of this approach. The first one being the use of a stacked autoencoder-neural network
based structure in the methodology for PQD characterization, detection and identification.
In this regard, the capabilities of the stacked autoencoder are validated as deep learning
tools, the purpose of which is to learn significant features from the electrical signals
considering different disturbances. The feature learning process is supported by a domain-
fusion approach, including time, frequency, and time-frequency domains through the
consideration of two signal processing techniques: the FFT and the EMD. The second
important aspect is the consideration of multiple conditions of disturbance, above all, the
complexity caused by the combination of three different disturbances. There must be a
strong emphasis on the favorable performance of all sorts of considered SNR. Finally, the
achievement of high performances. In spite of the fact that some of the measurements
corresponding to complex scenarios with three combined disturbances are misclassified,
it ought to be made of awareness that the assigned condition always includes single or
combined disturbances that are present in the original signal. Another important aspect
about the proposed method to bear in mind is its flexibility. It means that other features
different from those considered in the proposal could be added since the method shows
good feature learning capabilities during the characterization stage. The contribution of the
work is the fact that it presents a different approach to PQ monitoring for the identification
of disturbances. The validation of this work was carried out in two ways: with synthetic
signals and with real signals. The synthetic signals have been generated using a set of
definitions provided by the standard and developed by software. The second part of
the validation has been performed considering real signals from an IEEE database. All
in all, the performance of the proposed method is validated through the consideration
of 17 conditions, 4 noise levels, and synthetic and real signals, achieving a performance
of 99.47% and 91.66%, accordingly. Such proposed method involves the validation of
a solution for the detection and classification of PQD that allows the consideration of
multiple patterns, including a configuration procedure for its application. Therefore, future
works consider the evolution towards incremental learning systems: they also embrace far
more complex data and new functionalities, leading the research towards the integration
of Novelty Detection and Incremental Learning that have been proposed in other fields
of application. Under this framework, it is intended to extend the research towards the
performance of this methodology in different industrial applications, in which different
disturbance patterns could be found resulting from specific industrial processes. Thus,
facing one of the future challenges in the field, that is, the detection of novel disturbances
and their learning for latter recognition. For this purpose, the methodology needs to be
implemented on digital platforms to optimize computational performance, with online
and real-time applications to have in mind.
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