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Abstract 46 

The purpose of this study was to estimate cardiopulmonary mortality associations for 47 

long-term exposure to PM2.5 species and sources (i.e., components) within the U.S. National 48 

Health Interview Survey cohort. Exposures were estimated through a chemical transport 49 

model for six species (i.e., elemental carbon [EC], primary organic aerosols [POA], 50 

secondary organic aerosols [SOA], sulfate [SO4], ammonium [NO3], nitrate [NH4]) and five 51 

sources of PM2.5 (i.e., vehicles, electricity generating units [EGU], non-EGU industrial 52 

sources, biogenic sources [bio], “other” sources). In single-pollutant models, we found 53 

positive, significant (p < 0.05) mortality associations for all components, except POA. After 54 

adjusting for remaining PM2.5 (total PM2.5 minus component), we found significant mortality 55 

associations for EC (hazard ratio [HR] = 1.36; 95% CI: [1.12, 1.64]), SOA (HR = 1.11; 95% 56 

CI: [1.05, 1.17]), and vehicle sources (HR = 1.06; 95% CI: [1.03, 1.10]). HRs for EC, SOA, 57 

and vehicle sources were significantly larger than for remaining PM2.5 (per unit µg/m3). Our 58 

findings suggest that cardiopulmonary mortality associations vary by species and source, 59 

with evidence that EC, SOA, and vehicle sources are important contributors to the PM2.5 60 

mortality relationship. With further validation, these findings could facilitate targeted 61 

pollution regulations that more efficiently reduce air pollution mortality. 62 

Keywords: air pollution, cardiopulmonary mortality, species, source, cohort study 63 

Synopsis: This study provides evidence that cardiopulmonary mortality associations vary 64 

among PM2.5 species and sources, suggesting that pollution regulations could be improved by 65 

targeting relatively harmful particulate air pollutants.  66 
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Introduction 67 

Air pollution has been estimated as the fourth largest contributor to global burden of 68 

disease.1 Specifically, cardiopulmonary mortality has consistently been associated with fine 69 

particulate air pollution (PM2.5).2-4 PM2.5 is comprised of a complex mixture of chemical 70 

species, each potentially having different effects on mortality. Mortality associations have 71 

also been found to vary across PM2.5 sources,5, 6 which could be driven by differences in 72 

particle mass, number, size, shape, surface area, or chemical composition. Thus, targeting 73 

relatively harmful components (i.e., species or sources) may be more beneficial than simply 74 

reducing total PM2.5. Current regulations, however, focus on total PM2.5, in part due to 75 

uncertainty of component-specific toxicities. 76 

Despite general interest, a limited number of cohort studies have estimated component-77 

specific mortality associations, in part due to difficulties modelling exposures. A few early 78 

cohort studies estimated mortality relationships for sulfates,7, 8 but only recently has a more 79 

comprehensive spectrum of species and sources been considered.5, 9 Moreover, results of 80 

past studies have been somewhat inconsistent, establishing the need for additional analysis.  81 

The purpose of this study was to estimate component-specific mortality associations for 82 

long-term exposure to PM2.5 species and sources. Speciated and source-apportioned PM2.5 83 

exposure estimates were linked to a cohort of >160,000 adults living in metropolitan 84 

statistical areas (MSAs) across the U.S. Within this cohort, cardiopulmonary mortality 85 

associations were estimated for six chemical species (i.e., elemental carbon [EC], primary 86 

organic aerosols [POA], secondary organic aerosols [SOA], sulfates [SO4], ammonium 87 

[NH4], and nitrates [NO3])  and five sources of PM2.5 (i.e., vehicles, electricity generating 88 

units [EGU], non-EGU industrial sources, biogenic sources [bio], and “other” sources). A 89 
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secondary aim of this analysis was to determine if cardiopulmonary mortality associations 90 

differ between primary (i.e., fine particles emitted directly from sources) and secondary 91 

PM2.5 (i.e., fine particles formed from atmospheric oxidation of gaseous precursors). As 92 

such, we separated primary (i.e., EC and POA) and secondary species (i.e., SOA, SO4, NH4, 93 

and NO3) within PM2.5 sources to estimate relative mortality associations. 94 

 95 

Methods 96 

Study Population Data: 97 

For this analysis, a cohort was constructed of adults who participated in the U.S. National 98 

Health Interview Survey (NHIS). The NHIS is an annual cross-sectional survey that 99 

provides a representative sample of the civilian noninstitutionalized U.S. population. NHIS 100 

data are collected continuously throughout each survey year by the U.S. Census Bureau 101 

through in-person and telephone interviews.  Public use NHIS survey data from 1986 to 102 

2001 were linked to the National Death Index, providing mortality follow-up through 103 

December 31, 2015. A detailed description of NHIS sample design, interview procedures, 104 

and data access can be found elsewhere.10, 11  105 

Several exclusion criteria limited the size and determined the composition of the analytic 106 

cohort. Merging individuals to exposure estimates required residential data, which were 107 

available only at the MSA-level and for individuals surveyed before 2002 (n = 587,100 108 

remaining). Limited smoking and BMI data further reduced cohort size (n = 198,955 109 

remaining), resulting in the exclusion of anyone surveyed in 1986, 1989, or 1996. 110 

Individuals missing information on any other covariate were also excluded. After 111 
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exclusions, the analytic cohort consisted of 164,291 adults living within NHIS-sampled 112 

MSAs. 113 

 114 

Air Pollution Data: 115 

Exposure estimates for PM2.5 species and sources were developed via a blending of 116 

simulated and empirical data. Speciated and source-apportioned concentrations for 2001 and 117 

2010 were derived from chemical transport model (CTM) simulations, with bias corrections 118 

to better match speciated monitor data.  119 

A brief description of the CTM simulations follows, with details documented 120 

elsewhere.12 We used the PMCAMx model13-16 and the “source tagging” algorithm PSAT17-121 

21 to estimate species and source concentrations. PMCAMx simulates chemical reactions in 122 

the gas, aqueous, and particulate phases, with an advanced treatment of organic PM2.5 that 123 

accounts for the semi-volatile nature of primary organic emissions and incorporates recent 124 

advances in secondary organic PM chemistry.22-24 Simulations were performed using an 125 

internally consistent set of 2001 and 2010 emissions inventories, developed by Xing et al.25 126 

Emissions inventories were constructed from several activity and emission control 127 

databases, including the State Energy Data System, National Emissions Inventory trends 128 

report, and 2011 National Transportation Statistics.25 Meteorological data used in PMCAMx 129 

were taken from simulations performed with the Weather Research Forecasting model 130 

(WRF v3.6.1).  131 

The PMCAMx model domain covered the continental United States at a horizontal 132 

resolution of 36 kilometers. While coarse, a 36-kilometer resolution was necessary to 133 

maintain computational feasibility. Additionally, increasing simulation resolution from 36 x 134 
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36 to 1 x 1 kilometer grids in a major city (i.e., Pittsburgh) had minimal effect on predicted 135 

exposures (less than 3%).26 136 

Species predicted by the model and used in the health analysis included EC, POA, SOA, 137 

SO4, NH4, and NO3. These species were selected as they are major contributors to total 138 

PM2.5 and were reliably estimated. Concentrations of sodium, chloride, and mineral dust 139 

were also estimated, but not used in the health analysis due to low concentrations or lack of 140 

speciated monitor data. 141 

Source categories were necessarily identical to those from the emissions inventories used 142 

as inputs to the CTM.25 While PM2.5 source categories could be defined in a variety of ways, 143 

the categories used in this study reflect sources that have traditionally been most relevant for 144 

regulatory purposes. The EGU category represents emissions from electricity-generating 145 

units included in the U.S. Environmental Protection Agency’s Integrated Planning Model. 146 

Non-EGU includes all other industrial point sources. Vehicles includes emissions from on-147 

road vehicles in the U.S. and off-road vehicles in the entire domain. Biogenic includes 148 

emissions from vegetation. The “other” source includes on-road vehicles from Canada and 149 

Mexico plus all other emissions.  150 

As with most CTM simulations, the concentrations directly predicted by PMCAMx 151 

exhibited systematic regional biases. Therefore, speciated PM2.5 concentrations predicted by 152 

PMCAMx were adjusted using geographically weighted regression27 to better match 153 

speciated monitor data.28, 29 For each species, a separate regression was used to predict the 154 

bias between CTM predictions and observed concentrations. Regression predictor variables 155 

included speciated CTM concentrations, inverse distance to nearest urban area, average 156 

monitor elevation difference, and local bias between CTM and empirically modelled PM2.5. 157 
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Pollution monitor observations were weighted using a Gaussian function that decays with 158 

distance. Bias predictions were made at the census-tract level to allow for finer resolution 159 

corrections in areas with higher population density. The CTM fields were then corrected 160 

based on predicted biases for each census tract and species. During this process, the 161 

fractional source apportionment for individual species was assumed to be constant.26  162 

In addition to component-specific exposures, multiple estimates of total PM2.5 exposure 163 

were used in this analysis. One estimate of total PM2.5 exposure was defined as the sum of 164 

speciated concentrations (i.e., PM2.5 CTM ‘01, ‘10). An additional estimate of PM2.5 165 

exposure (i.e., PM2.5 IEG ‘01, ‘10) was predicted using an integrated empirical geographic 166 

(IEG) model, which applies pollution monitor measurements within a universal kriging 167 

framework.30 While many IEG model inputs were temporally fixed, year-to-year trends and 168 

variations were accounted for through temporally variable land use data and satellite-derived 169 

pollution estimates.30 170 

Census tract level exposure estimates for PM2.5 and components were aggregated to the 171 

MSA-level as a population weighted average. Details on how MSA borders were defined in 172 

the aggregation process are provided in Supporting Information Appendix A. Individual 173 

exposures were assigned, based on residence at time of survey, as the simple average of 174 

2001 and 2010 MSA-level concentration estimates. To assess the impacts of using only two 175 

annual concentration estimates, an additional measure of total PM2.5 was constructed as the 176 

average of annual, IEG-modelled PM2.5 from 1999-2015 (i.e., PM2.5 IEG ‘99-‘15).  177 
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Mortality Risk Analysis: 178 

Cardiopulmonary mortality associations were quantified as adjusted hazard ratios (HRs) 179 

from Cox proportional hazards models (PHREG procedure in SAS; version 9.4; SAS 180 

Institute Inc.). Concentration-response curves were not estimated, as a previous analysis 181 

with the NHIS cohort found that the concentration-response relationship between PM2.5 and 182 

cardiopulmonary mortality was approximately linear.2 183 

Cardiopulmonary mortality was defined, based on the tenth revision of the International 184 

Classification of Diseases (ICD-10), to include deaths from cardiovascular disease (ICD-10 185 

codes: I00-I09, I11, I13, I20-I51), cerebrovascular disease (I60-I69), chronic lower 186 

respiratory disease (J40-J47), and influenza or pneumonia (J09-J18). Causes of death 187 

corresponding to the preceding ICD-10 codes are specified in Table S1. For 188 

cardiopulmonary mortality, survival times were calculated as the difference between year of 189 

death and survey year. Otherwise, survival times were censored at date of non-190 

cardiopulmonary mortality or end of follow-up (i.e., 2015). 191 

Control variables were chosen a priori based on past research conducted with the NHIS 192 

cohort.2, 31  The following control variables were used in each model. Age, sex, and race-193 

ethnicity were controlled for by allowing each combination of age (one year), sex, and race-194 

ethnicity, to be assigned their own baseline hazard (using the STRATA statement of the 195 

PHREG procedure in SAS). Models also included categorical variables for family income 196 

($0-35,000; $35,000-50,000; $50,000-75,000; > $75,000); marital status (married, divorced, 197 

separated, never married, widowed); educational attainment (less than high school graduate, 198 

high school graduate, some college, college graduate, more than college graduate); BMI 199 

(<20, 20-25, 25-30, 30-35, >35 kg/m2); smoking status (current, former, never); census 200 
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region (Northeast, South, Midwest, West); and survey year. For details on how control 201 

variables were harmonized across survey years, see Supporting Information Appendix B. 202 

While control variables were consistent across models, specifications differed in how 203 

they accounted for relationships between PM2.5 components. Single-pollutant models 204 

included all control variables along with a single component of PM2.5. This approach 205 

provides greater statistical power as it is less affected by multi-collinearity, yet it yields 206 

inherently biased estimates due to component correlation with total PM2.5. Mass-adjusted 207 

models addressed this issue by including remaining PM2.5 (i.e., CTM predicted total PM2.5 208 

minus PM2.5 component). Moreover, mass-adjusted models provide a formal structure for 209 

estimating the likelihood that mortality associations differ between components. That is, for 210 

each component a Wald hypothesis test was conducted, with the null hypothesis that 211 

component and remaining PM2.5 HRs were equivalent.  212 

Mortality associations were also estimated for primary and secondary PM2.5, within 213 

sources. While several source categories were almost entirely primary or secondary, total 214 

PM2.5, vehicle sources, and “other” sources had sizable portions of both primary and 215 

secondary species. Thus, only total PM2.5, vehicle sources, and “other” sources were 216 

separated into primary and secondary species. Source-specific primary PM2.5 was defined as 217 

the sum of EC and POA from a given source, whereas secondary PM2.5 was defined as the 218 

sum of SOA, SO4, NH4, and NO3. Single-pollutant models were estimated, along with a 219 

two-pollutant model that separately included primary and secondary PM2.5 from a given 220 

source (e.g., primary vehicles and secondary vehicles). 221 

In all cases, pollution exposures were measured in micrograms per cubic meter (µg/m3) 222 

and modelled as continuous variables. Exposures were scaled such that HRs were relative to 223 
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either a unit or mean µg/m3 increase in exposure. When scaled per unit, HRs more 224 

accurately reflect relative toxicities, especially after adjusting for remaining PM2.5. Scaling 225 

exposures per mean incorporates a component’s relative contribution to total PM2.5 and 226 

accounts for differential scaling bias in single-pollutant models.  227 

 228 

Results 229 

Data Summary: 230 

Individuals within our cohort were predominantly female (56.6%), white non-Hispanic 231 

(66%), married (50.8%), high-school graduates (30.7%), and never smokers (51.7%) (Table 232 

1). Figure S1 maps pollution exposure estimates for PM2.5 mass and components across 233 

NHIS surveyed MSAs, displaying the spatial distribution of exposures. Spatial variation for 234 

some components (e.g., EGU and SO4) was mostly regional, which reduced statistical power 235 

when controlling for census region. Additionally, Figure 1 depicts the relative species 236 

composition of each source. Some sources (e.g., bio) were primarily comprised of a single 237 

species (e.g., SOA), whereas vehicle source PM2.5 was a mixture of all species. 238 

Additional exposure summary statistics are provided in Table 2, including means, 239 

standard deviations, and pairwise correlations between components. On average, CTM 240 

estimates for PM2.5 exposure were about 2 µg/m3 lower than IEG estimates, as the former 241 

did not model species such as road dust and sea salt; nevertheless, all measures of total 242 

PM2.5 were highly correlated (r > 0.94). Correlations were also high between PM2.5 243 

components, which presented difficulties in isolating independent mortality associations. 244 

Each component was less correlated with remaining PM2.5 than total PM2.5, which justified 245 

including the former in mass-adjusted models.  246 
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 247 

Table 1: Cohort Summary Statistics 
 
Characteristic n % 
Full Cohort 164,291 100.00 
Cardiopulmonary 
Deaths 13,732 8.36 
Age (mean, std) 44.12 17.14 
Sex   

Female  93,015 56.62 
Male 71,276 43.38 

Race-Ethnicity   
Black Non-Hispanic 25,823 15.72 

Hispanic 23,128 14.08 
Other/Unknown 6,892 4.19 

White Non-Hispanic 108,448 66.01 
Income   

$0 - 35,000 52,713 32.09 
$35,000 - 50,000 23,934 14.57 
$50,000 - 75,000 32,689 19.90 
$75,000 and over 54,955 33.45 

Marital Status   
Married 83,435 50.78 

Never married 39,431 24.00 
Divorced 20,462 12.45 
Widowed 14,529 8.84 
Separated 6,434 3.92 

Educational Attainment   
< High-school Graduate 30,891 18.80 

High-school Graduate 50,491 30.73 
Some College 40,837 24.86 

College Graduate 25,280 15.39 
Post-College Graduate 16,792 10.22 

BMI   
< 20 14,955 9.10 

20-25 69,175 42.11 
25-30 53,810 32.75 
30-35 18,212 11.09 

> 35 8,139 4.95 
Smoking Status   

Current 41,400 25.20 
Former 37,894 23.07 
Never 84,997 51.74 

 248 

  249 
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 250 

Figure 1: Average species composition within PM2.5 sources. Averages were calculated 251 

after assigning individual exposures.  252 
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a. For each component, remaining PM2.5 was calculated as total PM2.5 mass minus component-specific mass. 
b. All statistics were cohort-weighted, as they were calculated after assigning individual-level exposures. 

Table 2: Exposure Means, Standard Deviations (SD), and Pearson Correlation Coefficients a, b  
 
 PM2.5 Species Sources 

 
IEG 

(99-15) 

IEG 
(01,10) 

CTM 
(01,10) EC POA SOA SO4 NH4 NO3 EGU 

Non-
EGU Vehicles Bio Other 

Mean µg/m3 
(SD) 

11.32 
(1.93) 

11.64 
(2.28) 

9.75 
(2.25) 

0.69 
(0.20) 

0.54 
(0.17) 

2.75 
(0.71) 

2.60 
(0.92) 

1.25 
(0.42) 

1.92 
(0.96) 

1.46 
(0.90) 

0.61 
(0.23) 

2.12 
(0.97) 

0.35 
(0.16) 

3.59 
(0.90) 

Correlations               
PM2.5               

IEG (99-15) 1.00 -- -- -- -- -- -- -- -- -- -- -- -- -- 
IEG (01,10) 0.98 1.00 -- -- -- -- -- -- -- -- -- -- -- -- 

CTM (01,10) 0.95 0.95 1.00 -- -- -- -- -- -- -- -- -- -- -- 
Species               

EC 0.70 0.69 0.72 1.00 -- -- -- -- -- -- -- -- --  
POA 0.41 0.41 0.47 0.75 1.00 -- -- -- -- -- -- -- -- -- 
SOA 0.72 0.73 0.79 0.81 0.59 1.00 -- -- -- -- -- -- -- -- 
SO4 0.41 0.39 0.39 -0.05 -0.30 -0.12 1.00 -- -- -- -- -- -- -- 
NH4 0.80 0.80 0.84 0.35 0.11 0.37 0.75 1.00 -- -- -- -- -- -- 
NO3 0.71 0.74 0.77 0.65 0.56 0.78 -0.22 0.45 1.00 -- -- -- -- -- 

Sources               
EGU 0.30 0.29 0.31 -0.19 -0.39 -0.20 0.96 0.71 -0.24 1.00 -- -- -- -- 

Non-EGU 0.68 0.65 0.60 0.06 -0.11 0.14 0.73 0.80 0.25 0.70 1.00 -- -- -- 
Vehicles 0.73 0.74 0.77 0.86 0.69 0.89 -0.24 0.35 0.91 -0.33 0.08 1.00 -- -- 

Bio 0.55 0.52 0.57 0.35 0.16 0.43 0.55 0.62 0.11 0.54 0.45 0.17 1.00 -- 
Other 0.91 0.91 0.97 0.74 0.54 0.81 0.27 0.78 0.81 0.17 0.50 0.80 0.48 1.00 

Remaining 
PM2.5 

-- -- -- 0.68 0.41 0.61 -0.02 0.77 0.47 -0.09 0.52 0.47 0.52 0.92 

 253 

Measures of temporal consistency and exposure modelling accuracy for PM2.5 254 

components are reported in Table 3. For each component, temporal consistency was 255 

assessed in two ways. First, by comparing the 2001 and 2010 concentration means, and 256 

second, by considering the correlation between 2001 and 2010 concentrations. Temporal 257 

consistency was relatively low for EC and POA, suggesting that these components may 258 

exhibit higher exposure measurement error. Specifically, the within component correlations 259 

between 2001 and 2010 exposures was 0.78 for both EC and POA, while all other 260 

component intertemporal correlations were 0.87 or higher. Exposure modelling accuracy 261 

was assessed through a ten-fold cross-validation (CV) R2 comparison of CTM predictions 262 

and ground-level monitor data. In general, exposure modelling was more accurate for 263 

secondary species. For 2001 exposures, CV R2 ranged from 0.63 for EC to 0.97 for SO4. 264 



 

a. Measures of temporal consistency included cohort-weighted annual exposure means (e.g., ‘01 Mean) and 
Pearson correlation coefficients between 2001 and 2010 exposures (i.e., ‘01 ‘10 Corr.). 

b. Exposure accuracy was measured through a ten-fold cross validation (CV) R2 comparison of predicted 
concentrations and ground-level monitor observations. 

SO4 also had the highest CV R2 for 2010 exposures, whereas organic aerosols were 265 

modelled relatively imprecisely (2010 CV R2 = 0.50). 266 

 267 

Table 3:  Temporal Consistencya and Accuracyb of Predicted Exposures 268 

Pollutant 
’01 ’10 
Corr. 

’01 
Mean 

’10 
Mean  

 ’01 
CV R2 

 ’10 
CV R2 

PM2.5      
IEG 0.70 13.62 9.67 -- -- 

CTM 0.93 11.56 7.94 -- -- 
Species      

EC 0.78 0.67 0.72 0.63 0.68 
POA 0.78 0.66 0.42 0.74 0.50 
SOA 0.87 3.21 2.28 0.74 0.50 
SO4 0.92 3.23 1.98 0.97 0.90 
NH4 0.90 1.50 0.99 0.93 0.82 
NO3 0.89 2.29 1.54 0.82 0.83 

Sources      

EGU 0.96 1.95 0.96 -- -- 
Non-EGU 0.97 0.70 0.52 -- -- 

Vehicles  0.98 2.66 1.58 -- -- 
Bio 0.92 0.36 0.35 -- -- 

Other 0.90 4.14 3.03 -- -- 
 

 269 

Mortality Risk Analysis: 270 

Single-pollutant HRs, per unit µg/m3 (panel A) and per relative mean µg/m3 (panel B), 271 

are displayed in Figure 2. Numeric equivalents of these estimates, along with HRs scaled per 272 

interquartile range, are reported in Table S2. In single-pollutant models, there were positive, 273 

significant (p < 0.05) mortality associations for PM2.5 mass and each component, except 274 

POA. Relative effect sizes differed between scaling methods, as each approach answers a 275 

distinct question. When scaled per unit, HRs provide information about per mass 276 

concentration harmfulness, whereas scaling per mean reflects a component’s aggregate 277 

contribution to mortality risk. 278 



 

 

Per unit µg/m3 (panel A), single-pollutant HRs were relatively large for EC, non-EGU, 279 

and bio. These differences are difficult to interpret due to confounding from correlation with 280 

total PM2.5. That is, in single-pollutant models components with higher correlation with total 281 

PM2.5 likely exhibit a larger positive bias. Moreover, this bias is greater for components with 282 

lower exposure means (e.g., EC, non-EGU, bio) when estimates are scaled per unit µg/m3. 283 

Figure 2: Single-pollutant hazards ratios and 95% confidence intervals (CI) per unit µg/m3 284 

(panel A) and per relative mean µg/m3 (panel B) increase in exposure285 

 286 

Scaling single-pollutant HRs per mean increase in exposure (panel B) partially accounts 287 

for this problem, while allowing estimates to reflect a component’s relative contribution to 288 

total PM2.5 exposure. Of the three estimates of total PM2.5 exposure, the seventeen-year 289 

average (i.e., 1999-2015) of IEG-modelled PM2.5 was associated with the largest increase in 290 



 

 

mortality risk (HR = 1.41; 95% CI [1.26, 1.56]; per 11.32 µg/m3). Despite having a similar 291 

mean exposure, the estimated HR for the two-year average (i.e., 2001 and 2010) of IEG-292 

modelled PM2.5 was 26% smaller (HR = 1.30; 95% CI [1.19, 1.43]; per 11.64 µg/m3) than its 293 

seventeen-year counterpart. This suggests that assigning component exposures as the 294 

average of two annual concentrations resulted in conservative mortality risk estimates. 295 

Among PM2.5 components, EC (HR = 1.27; 95% CI [1.18, 1.37]; per 0.69 µg/m3) and SOA 296 

(HR = 1.30; 95% CI [1.20, 1.41]; per 2.75 µg/m3) had the highest HRs per relative mean 297 

increase in exposure. 298 

 299 

  300 

Figure 3: parameter estimates (i.e., natural log of hazard ratio) and 95% confidence 301 

intervals (CI) from single-pollutant models plotted according to component correlation with 302 

PM2.5 mass. Estimates are relative to a component mean increase in exposure. 303 

 304 

To account for bias from correlation between component and total PM2.5 exposure, 305 

Figure 3 plots single-pollutant parameter estimates (i.e., natural log of HR) according to 306 

component correlation with PM2.5 mass. The plotted diagonal provides a baseline 307 

comparison by indicating the effect size one would expect to see solely from component 308 

correlation with PM2.5 exposure. Thus, distance from the plotted diagonal serves as a basic 309 



 

 

metric for whether single-pollutant mortality associations are relatively high or low. As 310 

such, Figure 3 provides some indication that EC, SOA, and SO4 have relatively high single-311 

pollutant associations with cardiopulmonary mortality. 312 

While Figure 3 is useful for interpreting single-pollutant estimates, a more thorough 313 

attempt at estimating component-specific mortality associations is to explicitly control for 314 

remaining mass. Figure 4 plots HRs from mass-adjusted models, which included a given 315 

PM2.5 component (black circle point estimates) and remaining PM2.5 mass (white square 316 

point estimates). Estimates are reported per unit µg/m3 to reflect relative toxicities. Numeric 317 

equivalents of these estimates are provided in Table S3. 318 

For several components, controlling for remaining PM2.5 reduced the magnitude of 319 

single-pollutant HRs. Specifically, for POA, SO4, NH4, EGU, and non-EGU, positive single-320 

pollutant risk estimates became either null or negative after controlling for remaining PM2.5.  321 

In contrast, EC maintained an elevated HR when controlling for remaining mass (HR = 322 

1.36; 95% CI [1.12, 1.64]; per unit µg/m3), with risk estimates ten times greater than total 323 

PM2.5 (per unit µg/m3). Similarly, SOA mortality risk estimates remained large after 324 

controlling for remaining mass (HR = 1.11; 95% CI [1.05, 1.17]; per unit µg/m3). For PM2.5 325 

sources, controlling for remaining mass generally reduced the magnitude of single-pollutant 326 

HRs, except for vehicle sources. That is, vehicle source HRs were nearly identical in single-327 

pollutant (HR = 1.07; 95% CI [1.05, 1.10]; per unit µg/m3) and mass-adjusted models (HR = 328 

1.06; 95% CI [1.03, 1.10]; per unit µg/m3). 329 



 

 

Figure 4: Remaining PM2.5 mass adjusted hazard ratios (HRs) and 95% confidence intervals 330 

(CI) per unit µg/m3. For each component, a separate model was specified to include two 331 

pollutants: the component (black circle point estimates) and remaining PM2.5 mass (i.e., total 332 

PM2.5 minus component) (white square point estimates). Stars reflect p-values from a 333 

hypothesis test with the null hypothesis that component and remaining PM2.5 HRs were 334 

equivalent (* p < 0.10; ** p < 0.05; *** p < 0.01). 335 



 

 

In Figure 4, component HRs are plotted adjacent to remaining PM2.5 mass HRs to 336 

facilitate a comparison of relative toxicities. For species, both EC and SOA had higher HRs 337 

than their remaining PM2.5 mass. A formal hypothesis test revealed that these differences 338 

were statistically significant, with p-values of 0.004 and 0.005 for EC and SOA respectively. 339 

Source-specific HRs were generally lower than HRs for remaining mass. However, the HR 340 

for vehicle source pollution was significantly larger (p = 0.03) than its respective remaining 341 

mass term.  342 

In addition to component-specific HRs, an aim of this analysis was to estimate mortality 343 

associations for primary and secondary PM2.5. Figure 5 plots single-pollutant (black point 344 

estimates) and two-pollutant HRs (red point estimates) for primary (circle point estimates) 345 

and secondary species (diamond point estimates) from total PM2.5, vehicles, and “other” 346 

sources. Estimates are reported per unit (panel A) and per mean µg/m3 (panel B) increase in 347 

exposure. Numeric equivalents of these estimates are provided in Table S4. 348 

Per unit µg/m3, single-pollutant HRs were consistently larger for primary species. This 349 

was likely due to confounding from correlated components, as the same did not hold in two-350 

pollutant specifications. In two-pollutant models, HRs were similar for total primary and 351 

total secondary PM2.5, as well as for primary and secondary PM2.5 from vehicle sources. For 352 

“other” sources, the primary PM2.5 HR was significantly smaller, as “other” source primary 353 

PM2.5 was predominantly POA (see Figure 1). 354 



 

 

 355 

Figure 5: Hazard ratios and 95% confidence intervals (CI) for primary (circle point 356 

estimates) and secondary species (diamond point estimates) within PM2.5 sources. Single-357 

pollutant models (black point estimates) included one pollutant (e.g., primary vehicles), 358 

whereas two-pollutant models (red point estimates) included both primary and secondary 359 

species from a given source (e.g., primary vehicles and secondary vehicles). Estimates are 360 

reported per unit µg/m3 (panel A) and per mean µg/m3 (panel B) increase in exposure. 361 

 362 

When scaled per mean, HRs for primary and secondary PM2.5 from vehicle sources were 363 

nearly identical, in both single-pollutant and two-pollutant specifications. In contrast, for 364 

total PM2.5 and “other” sources, HRs were larger for secondary species. Specifically, in a 365 

two-pollutant model, the HR for secondary total PM2.5 (HR = 1.26; 95% CI [1.12, 1.41]; per 366 

8.52 µg/m3) was significantly larger (p = 0.05) than for primary total PM2.5 (HR = 1.01; 95% 367 

CI [0.89, 1.14]; per 1.23 µg/m3). While this can be attributed to higher exposure levels for 368 



 

 

secondary species, it does suggest that secondary PM2.5 contributes more than primary PM2.5 369 

to actualized risk of cardiopulmonary mortality. 370 

Measures of model fit from single-pollutant models, along with two additional 371 

specifications that included all species (six pollutants) or all sources (five pollutants) 372 

simultaneously, are provided in Table S5. IEG estimates fit mortality outcomes better than 373 

CTM estimates of total PM2.5 exposure. Single-pollutant models for EC, SOA, and vehicles 374 

fit mortality better than both (i.e., IEG and CTM) two-year averages of PM2.5, but not the 375 

seventeen-year average of IEG-modelled PM2.5. Including all species or all sources 376 

separately did not improve model fit over aggregate PM2.5 specifications. 377 

 378 

Discussion 379 

 In this analysis, there were positive, significant (p < 0.05) single-pollutant mortality 380 

associations for PM2.5 and all components, except POA. While most associations became 381 

insignificant after controlling for remaining PM2.5, we found evidence that EC, SOA, and 382 

vehicle sources are important contributors to risk of cardiopulmonary mortality. 383 

 384 

Species: 385 

Of the considered components, we found that EC was associated with the largest increase 386 

in cardiopulmonary mortality risk (per unit µg/m3), with and without controlling for 387 

remaining PM2.5. Moreover, in a mass-adjusted model the HR for EC was significantly 388 

larger (p = 0.004) than for remaining PM2.5 mass.  389 

In past studies, EC has shown elevated single-pollutant mortality associations that lose 390 

significance after adjusting for other pollutants.9, 32, 33 A previous analysis of the American 391 



 

 

Cancer Society (ACS) cohort estimated eight times greater cardiopulmonary mortality risk 392 

for EC than PM2.5 in single-pollutant models (per unit µg/m3), with EC HRs substantially 393 

reduced and insignificant in multi-pollutant models.32 Similarly, in the California Teacher’s 394 

Study (CTS) cohort, Ostro et al.9 found that significant (p < 0.05), single-pollutant EC 395 

mortality associations became insignificant after adjusting for NO3. 396 

Instability in the EC mortality association has been attributed to EC’s complex, 397 

heterogenous nature.9, 34 Specifically, high spatial variation presents difficulties in accurately 398 

modeling EC exposures. While EC was modelled relatively imprecisely (see Table 3), we 399 

observed significant EC HRs when controlling for remaining PM2.5, providing some 400 

evidence that EC has a direct relationship with cardiopulmonary mortality. 401 

In addition to EC, our results suggest that SOA may be a key contributor to the PM2.5 402 

mortality relationship. That is, in a mass-adjusted model the HR for SOA was significantly 403 

larger (p = 0.005) than for remaining PM2.5 (per unit µg/m3). Similarly, in the CTS cohort 404 

anthropogenic SOA was significantly (p < 0.05) associated with ischemic heart disease 405 

(IHD) mortality in single-pollutant models.9 Moreover, they found that mortality 406 

associations for anthropogenic SOA in the ultrafine range remained significant in all 407 

combinations of two-pollutant models.9 Short-term analyses have found similar results, with 408 

a study in Xi’an, China reporting significant cardiovascular and respiratory mortality 409 

associations for organic carbon, with and without adjusting for PM2.5 mass.35 410 

While EC and SOA maintained relatively high HRs, single-pollutant mortality 411 

associations for SO4 vanished after controlling for remaining PM2.5, suggesting that SO4 is, 412 

at least in part, a tracer of other harmful pollutants. SO4, along with its precursor SO2, has 413 

been significantly associated with mortality in several observational cohort studies, 32, 36 414 



 

 

including some of the earliest to consider speciated PM2.5.7, 37 However, the plausibility of a 415 

causal link between SO4 and mortality is not supported by toxicology studies, which 416 

collectively report minimal biological potency in humans or animals at environmentally 417 

relevant levels.38 Thus, observational associations could represent the mortality relationship 418 

of particulate species and co-pollutants correlated with SO4, not SO4 alone.32   419 

Similarly, mortality associations were relatively low for POA and NH4, as exposures 420 

were inversely associated with cardiopulmonary mortality risk in mass-adjusted models. 421 

With high correlations between remaining and total PM2.5, mass-adjusted HRs could reflect 422 

changes in the PM2.5 composition, not an aggregate decrease in PM2.5 exposure. Specifically, 423 

inverse NH4 and POA mortality associations could represent a decrease in average PM2.5 424 

toxicity when the fractional PM2.5 composition has larger proportions of these species. 425 

Alternatively, inverse NH4 and POA mortality associations could be the result of statistical 426 

noise or some unobserved confounder. In any case, it remains unlikely that exposure to NH4 427 

or POA decreases risk of cardiopulmonary mortality. 428 

 429 

Sources: 430 

While each considered source was significantly (p < 0.05) associated with mortality in 431 

single-pollutant models, only vehicle sources remained significant after adjusting for 432 

remaining PM2.5 mass. In mass-adjusted models, the estimated increase in cardiopulmonary 433 

mortality risk from exposure to vehicle source PM2.5 was eight times greater (per unit 434 

µg/m3) than from remaining PM2.5 mass. This difference was statistically significant (p = 435 

0.03) when formally testing for equality of vehicle source and remaining PM2.5 HRs. 436 



 

 

Past analyses have supported a relationship between mortality and long-term exposure to 437 

vehicle source PM2.5, although uncertainty remains due to a limited number of studies.39 In 438 

the CTS cohort, there were statistically significant (p < 0.05) single-pollutant associations 439 

between IHD mortality and four subgroups of vehicle source PM2.5.9 Short-term analyses 440 

have also reported significant associations between adverse health effects and vehicle source 441 

PM2.5. An analysis in Barcelona, Spain found that traffic related PM2.5 was associated with a 442 

more than 8% increase in daily cardiovascular mortality (per 9.7 µg/m3 with 2-day lag), in 443 

single and multi-source models.40 Similarly, a U.S. study found that 10 µg/m3 of mobile 444 

source PM2.5 increased daily mortality by 3.4%.41 In addition to daily mortality, a series of 445 

short-term studies in New York State found that vehicle source PM2.5 was significantly 446 

associated with hospitalizations and emergency department visits for influenza, cardiac 447 

arrythmia, ischemic stroke, and congestive heart failure.42, 43 These studies, combined with 448 

the present analysis, provide suggestive evidence that vehicle sources are an important 449 

contributor to the PM2.5 morbidity and mortality relationship. 450 

 451 

Primary vs. Secondary:  452 

Estimating the relative mortality associations of primary and secondary PM2.5 yielded 453 

little insight beyond what can be explained by component-specific mortality associations 454 

and differences in exposure means. That is, differences in source-specific primary and 455 

secondary mortality associations were driven either by the species composition within 456 

source (see Figure 3) or relative exposure means. Ultimately, our results suggest that 457 

mortality associations differ more within primary and secondary designations (e.g., EC vs. 458 

POA) than between primary and secondary designations (e.g., primary vehicles vs. 459 



 

 

secondary vehicles). Nevertheless, with a significantly larger HR per mean exposure, total 460 

secondary PM2.5 likely contributes more than total primary PM2.5 to actualized risk of 461 

cardiopulmonary mortality. 462 

 463 

Limitations: 464 

An inherent limitation of observational air pollution analyses is imperfect assignment of 465 

pollution exposures. In our analysis, individuals were assigned an MSA-level average of 466 

2001 and 2010 concentration estimates, as a proxy for lifetime exposure. Assigning lifetime 467 

exposure as the average of two annual estimates fails to account for the temporal complexity 468 

of component levels and composition. However, we found that intertemporal correlations for 469 

PM2.5 components were consistently high (r > 0.78), which suggests that incorporating 470 

additional years of CTM exposure estimates would provide only marginal improvements in 471 

exposure accuracy. If anything, using the average of 2001 and 2010 concentrations resulted 472 

in conservative mortality risk estimates. For a thorough analysis on the influence of 473 

temporal exposure windows in the NHIS cohort, see Lefler et al.31 474 

Additionally, NHIS public-use residential data included only MSA of residence, which 475 

required assigning exposures at the MSA level. For this reason, along with the 36-kilometer 476 

resolution in the CTM, we were unable to account for local variations in PM2.5 components. 477 

This is particularly problematic for components with high spatial variability, such as EC.  478 

Another limitation is that differences in component mortality associations could have 479 

been driven by statistical factors aside from toxicity. As previously mentioned, exposure 480 

modelling accuracy, observed variation, and component intercorrelation all affect the 481 

precision and magnitude of mortality risk estimates. While these factors vary between 482 



 

 

components, they are likely independent of relative toxicity. Thus, differences in effect size 483 

and statistical significance could simply reflect varying statistical advantages, not 484 

differential mortality associations. 485 

A final limitation is potential confounding from unobserved or inadequately controlled 486 

for risk factors. If correlated with pollution and cardiopulmonary mortality, unobserved 487 

characteristics such as dietary habits, physical activity, and climate could have resulted in 488 

spurious findings. Additionally, dynamic risk factors such as smoking status, BMI, income, 489 

and residence were reported only at time of survey, providing an imperfect measure of the 490 

lifetime pathway of these variables. 491 

Notwithstanding these limitations, our findings suggest that there are differences in 492 

mortality associations across PM2.5 species and sources. These differences appear to be 493 

driven by factors other than whether PM2.5 is primary or secondary. After controlling for 494 

remaining PM2.5, the mortality association for EC was ten times greater (per unit µg/m3) 495 

than for total PM2.5. Similarly, SOA and vehicle sources had significantly larger HRs than 496 

remaining PM2.5 mass (per unit µg/m3). These findings suggest that targeted abatement 497 

strategies could be more beneficial to public health than simply reducing total PM2.5. If 498 

corroborated in other studies, this analysis could help inform a targeted, efficient approach 499 

to reducing air pollution mortality.500 

  501 
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