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Notation Dictionary

t time

xi cartesian coordinate

ui velocity

ρ density

p hydrostatic pressure

µ dynamic viscosity

ν kinematic viscosity

Re Reynolds number

We Weber number

τij stress tensor

σ surface tension

ωi vorticity

Ω enstrophy

Sij rate-of-strain tensor

ε dissipation rate

η Kolmogorov length scale

Aij velocity gradient tensor

Wij rate-of-rotation tensor

Q second invariant

R third invariant
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Abstract

The systems formed by two immiscible liquids such as emulsions are of great interest in
industrial processes, the emulsion formation process occurs depending on the phenomenon
of the breakup of the drops of one of the fluids within the other, and the properties depend
on how this phenomenon happens. The breakup of drops in turbulent flows is investigated
to determine which mechanisms are those that interact in the breakup and what is the
effect of the viscosity of the drop on the dynamics of the break. For this study we used
the data generated in the simulations of the work "Energetics of drop deformation with
application to turbulence" [1], to make an analysis of the average behavior of the velocity
gradients, comparing one hundred simulations with different initial conditions, to identify
the mechanisms as mentioned previously. In a first analysis we show the importance
of the distance with respect to the interface of the drop in terms of the influence that
the dynamics of the surface has on the rest of the flow. The main analysis of the work
uses tensor invariants to observe how the mechanisms that regulate the dynamics of the
breakup interact and change with viscosity.
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1 Introduction

1.1 Motivation

Gas-liquid or liquid-liquid mixtures, emulsions and dispersions, are of great relevance in
industries such as chemical, oil, pharmaceutical and mining. The phenomenon of droplet
or bubble breaking is found in a wide variety of processes such as mixing, extraction,
absorption, chemical reactions, food industry, water and water treatment, pharmaceuti-
cal synthesis or various other operations in the chemical processing industry. To create
these systems, at least two immiscible liquids must be agitated turbulently to generate
a dispersive flow that ensures good contact between the phases and allows control of the
interficial area. The latter is crucial to achieve rapid heating and mass transfer between
phases [2].

The knowledge of the parameters that can affect the dynamics of the breaking of drops
and bubbles (fluid particles) in dispersive systems is a topic of great relevance in mixing
processes. Understanding drop deformation in turbulent flows is therefore a key process
in many natural phenomena that also take place in industrial applications. A better
understanding of the mechanisms that drives this breakup process is key for developing
models that can predict how and when the breakup occurs.

The objectives that we established for the development of the work and that ideally should
be followed are:

1. First approach to the concept of turbulent flows, forming structures such as eddies
and related concepts such as vortex stretching.

2. Understand the model of drop breakup used in the simulation of the data being
analyzed.

3. First analysis of the velocity gradients to observe how they change in the simulation
cube.

4. In-depth study of the flow dynamics from the invariants of the velocity gradient
tensor to identify the main mechanisms that interact in the breakup by varying the
viscosity of the drop.

1.2 Fundamentals of drop breakup

The conceptual basis of the breakup of a drop immersed in a turbulent flow, forming a
system of two fluid phases, includes the analysis of the local viscous effects in the breakup
of drops smaller than the Kolmogorov scale and the inertial effects in the breakup of drops
larger than the Kolmogorov microscale.

The deformation of the drop prior to its breakup is caused by continuous interactions with
turbulent eddies, the drop responds to these interactions by making changes in its shape
in a oscillatory behavior between stable and unstable structures and the drop breaks when
the deformation reaches a critical value.
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Figure 2: Temporal evolution of a drop at We = 1.8. The frame is fixed at the center of
the drop, and the snapshots correspond consecutive time instants until the drop breakup.
In red the drop and the blue isosurfaces denote regions of intense vorticity. The size of
the computational box is marked in Kolmogorov units.

The breakup of a structure occurs where two fluids or a fluid in a vacuum form a free
surface with a certain surface energy. If there is more surface area in the system than
the minimum required to contain the volume of fluid, the system has an excess of surface
energy. When the system is not in a state of minimum energy it tries to reorganize itself
to return to the state of minimum energy which leads to the breakup of the fluid structure
as such in smaller and separate structures to minimize the energy of the surface of the
system having reduced the surface area.

The exact process of breaking depends on more mechanisms than surface tension such as
viscosity, density or the diameter of the droplet that is broken.

In a later section, the model chosen for the simulations that generate the data used in
our work is explained. At the moment, it should be noted that the flow of the simulation
cube is a homogeneous and isotropic turbulent flow, which implies that the properties of
the flow are invariant with respect to translation and rotation, respectively. This means
that it does not matter in which position of the cube with respect to the walls the drop is
or the orientation of the drop in the flow, the physics and the consequences are the same
as far as this is concerned.

1.3 Experiments on drop breakup

Experimental investigations of individual drop breakup are crucial to develop a description
of the breakup in addition to verifying that the already developed models adjust to real
experience or what changes are necessary to achieve a better model.

Over the years, there have been numerous studies that have investigated the breakup of
fluid particles (droplets or bubbles) in turbulent conditions [3, 4, 5]. These investigations
make use of different techniques and methods to characterize the phenomenon of breakup.
Therefore, they have reached different conclusions regarding different mechanisms and the
effect of operating parameters.

Lately there has been more publication of experimental research on individual droplets
due to a significant improvement in experimental techniques and in the acquisition of
image data. Hasan [6] conducts a review of experimental studies of individual drop and
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bubble breakup in stirred tanks. The reviewed studies are aimed at quantifying the
breakup time, the number and size of the fragments after breakup. This data is then
correlated with flow conditions, fluid properties, and mother drop size. However, there is
still a significant limitation of experimental techniques to spatially and temporally resolve
micron-scale drop events that occur on a timescale of less than one millisecond. The
available results in the breaking of individual drops is in the range of 0.26− 6 mm. These
droplets are relatively large for liquid-liquid emulsions in fields such as food, cosmetics or
oil recovery, where micron-scale droplets and less are desired to ensure emulsion stability.

The investigations reviewed by Hasan are related to two main aspects, the first refers to
the surface and interface phenomena related to the breaking mechanism and the second
to the effect that different operating parameters have on the phenomenon. Although in-
vestigations have provided important information, they have not been able to precisely
characterize the breaking rate and the phenomenon of the particle breaking surface. Re-
cently, due to the use of high-speed cameras and high-feature capture, they have led to
a deeper understanding of the phenomenon of breakup, especially for concepts related to
the mechanism and behavior of the surface. However, a comprehensive characterization
of the breakup phenomenon is still in its early stages and there are many challenges to
overcome in order to understand the mechanism.

Greater efforts are needed to investigate the breakup phenomenon using high-speed cam-
eras with high technical skills to gain greater depth in the parameters related to the
breakup mechanism and the effect of operating conditions.

1.4 Direct Numerical Simulations (DNS)

A new chapter in turbulence theory began in 1972: Orszag and Patterson demonstrated
that it is possible to perform fully developed turbulent flow computational simulations.
These simulations do not need a model to work, instead they simulate every eddy, from
largest to smallest, is computable. Starting with initial conditions of the Navier-Stokes
equation, it is integrated forward in time for a specified domain. It is like conducting an
experiment, but on the computer rather than in a wind tunnel. So these simulations are
called numerical experiments [7].

The potential benefits are thus immediately clear. The initial conditions can be controlled
in the simulations in such a way that it is not possible in the laboratory. Furthermore,
the amount of data that can be retrieved is overwhelming: in fact, the full history of the
speed field u(x, t) is available for inspection.

However, there was and is a but. When the Reynolds number Re is large, which is always
the case, η is small. From the Kolmogorov scale η = (ν3/ε)1/4 it is possible to estimate
the number of points needed to calculate u and solve all eddy in turbulence. The spatial
separation of the sample points, ∆x, cannot be much greater than the Kolmogorov length
η. The number of points that contain data required for any instant of a three-dimensional
simulation is therefore

N3
x ∼

(
LBOX

∆x

)3

∼
(
LBOX
l

)3

Re9/4 (1.1)

Where Nx is the number of network points (or Fourier modes) in any direction and LBOX
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is a typical linear dimension of the computational domain. We can rewrite the above
equation as

Re ∼
(

l

LBOX

)4/3

N4/3
x (1.2)

So you can immediately see that there is a problem. To obtain data with a large Reynolds
number we need a large number of data points. Following the same reasoning it is found
that the number of computational operations required for a simulation is approximately
proportional to

Computer time ∼ N3
xNt ∼

(
T

l/u

)(
LBOX
l

)3

Re3 (1.3)

Therefore, it is observed that in order to increase the value of Re, the researchers have
generally opted for the simplest possible geometries. Those interested in homogeneous
turbulence, as is the case study, usually choose the so-called triple-periodic cube. This
does not represent a real physical problem well, but like LBOX � l, so the bulk of the
turbulence is not affected by boundary conditions. The great advantage of the periodic
cube is that it allows particularly efficient numerical algorithms to solve the Navier-Stokes
equations, the so-called pseudo-spectral methods, which have been implemented in the
code of the simulations from which the analyzed data comes from. When periodicity
is imposed in all three directions, the turbulence is necessarily homogeneous and solid
boundaries cannot be included in the simulation.
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2 Theoretical Background

2.1 Introduction to turbulence and vorticity dynamics

In recent times, more and more studies are focused on the study of velocity gradients
in turbulent flows because they contain all the necessary information regarding rate of
rotation, stretching and angular deformation of infinitesimal material lines, surfaces and
volumes in fluid flows. Understanding these phenomena is key for elucidating the prop-
erties and dynamics of different mechanisms in turbulent flows such as the dissipation of
kinetic energy on small scales, the generation and evolution of intense vorticity filaments
due to vortex stretching.

In order to understand the topic of turbulence and the magnitudes inspected in this work
it is necessary to begin with the basic equations of fluid dynamics to then be able to
understand the posterior analysis [7, 8, 9].

Suppose we have a incompressible and Newtonian fluid with constant density ρ and con-
stant viscosity µ. Its motion is given by the Navier-Stokes equations

D~u

Dt
= −

~∇p
ρ

+ ν∇2~u (2.1)

where ν is the kinematic viscosity ν = µ/ρ, equation 2.1 can be also written using the
shear stress tensor as

ρ
D~u

Dt
= −~∇p+

∂τij
∂xj

(2.2)

the changed element of the equality represents the viscous forces. We can now relate this
variable called the stress tensor τij to the rate-of-deformation of fluid elements. Most of
them obey Newton’s law of viscosity, which states

τij = ρν

{
∂ui
∂xj

+
∂uj
∂xi

}
. (2.3)

It is now convenient to introduce the rate-of-strain tensor as the quantity

Sij =
1

2

[
∂ui
∂xj

+
∂uj
∂xi

]
(2.4)

and so the most compact form of Newton’s law of viscosity can be written using the
relation between the stress and rate-of-strain tensor as

τij = 2 ρν Sij. (2.5)

We now want to know the rate of work done by these viscous forces or dissipation of
energy in a viscous fluid. Suppose we have a volume V of fluid whose boundary ζ is
subject to viscous stresses 2 ρν Sij then the rate of work on the fluid is given by

Ẇ =

∮
ui(τijdζj) (2.6)
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from Gauss’s theorem we may rewrite Ẇ as

Ẇ =

∫
∂

∂xj
[uiτij]dV (2.7)

and so we conclude that the rate of work of τij per unit volume is

∂

∂xj
[uiτij] =

∂τij
∂xj

ui + τij
∂ui
∂xj

(2.8)

the net viscous forces can be related to the first appearing term since fi = ∂τij/∂xi, the
second term can be rewritten as:

τij
∂ui
∂xj

=
1

2
[τij + τji]

∂ui
∂xj

=
1

2

[
τij
∂ui
∂xj

+ τji
∂uj
∂xi

]
= τijSij (2.9)

since τij = τji because of symmetry, the rate of work on the fluid is

∂[uiτij]

∂xj
= fiui + τijSij . (2.10)

The two contributions on the right represent changes in the energy of the fluid, as they
must. However, they corresponding to two rather different processes. The first term is the
rate of work of the net viscous force acting on a fluid element. This necessarily represents
the rate of change of mechanical energy of the fluid. The second term must, therefore,
correspond to the rate of change of internal energy (per unit volume) of the fluid. Thus
we conclude that the rate of increase of internal energy per unit mass is

ε = τijSij/ρ = 2νSijSij. (2.11)

The next concept to introduce is the vorticity which is defined as ~ω = ~∇ × ~u, and
ωiωi/2 is called the enstrophy Ω. The reason why so much attention is paid to ω is
that it is determined by the evolution equation which is simpler than the Navier-Stokes
equation and is derived from it. Unlike u, ω cannot be created or destroyed inside a
fluid (unless there are body forces, such as buoyancy) and is carried by the field of flow
by familiar processes such as advection and diffusion. Also, localized distributions of ω
remain localized, which is not the case for the velocity field. Therefore, when we speak of
"eddy" in a turbulent flow we are referring to a vorticity blob and its associated rotational
and irrotational motion.

The vorticity field ω(x, t) can be shown to be twice the intrinsic angular velocity Θ, of a
small blob of fluid located at x at time t:

ω = 2Θ (2.12)

ω is a measure of the local (or intrinsic) rotation, or spin, of fluids elements. Note
that the velocity gradients, ∂ui/∂xj, at any one point can always be decomposed into a
combination of strain and vorticity

∂ui
∂xj

=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
= Sij −

1

2
εijkωk (2.13)
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The symbol εijk is the Levy-Civita symbol which equals 1 if (i, j, k) is an even permutation
of (1, 2, 3), −1 if it is an odd permutation, and 0 if any index is repeated.

Although Sij and ωi represent different processes, one measuring the distortion rate of
fluid elements and the other representing the rotation rate, Sij and ωi are not independent.
This is exemplified by the relationship of each through the Laplacian of the velocity field.

∇2ui = 2
∂Sij
∂xj

= −[∇× ω]i (2.14)

We are now going to derive the governing vorticity equation. Let’s start by rewriting the
Navier-Stokes equation (2.1),

∂u

∂t
= u× ω −∇C + ν∇2u (2.15)

where C is the Bernoulli function. After this we apply the curl to the equation 2.15 which
results in an equation for ω:

∂ω

∂t
= ∇× [u× ω] + ν∇2ω (2.16)

Which is usually written in its alternate form

Dω

Dt
= (ω · ∇)u + ν∇2ω . (2.17)

Observing the resulting equation it appears that the terms on the right represent: (i) the
change in the moment of inertia of a fluid element due to the stretching of that element;
and (ii) the viscous torque on the element. In short, the vorticity of a fluid blob can
change because the blob is stretched, causing a change in the moment of inertia, or the
other way is because the blob is rotated or slowed down by viscous stresses.

Next, we want to explore in particular the evolution of vortex stretching (i.e. enstrophy
production). Our starting point is the vorticity equation 2.17 from which we can obtain
an equation for the enstrophy,

D

Dt

(
ω2

2

)
= ωiωjSij − ν(∇× ω)2 +∇ · [νω × (∇× ω)] (2.18)

For simplicity, we consider the case of freely decaying turbulence (without average veloc-
ity) which is statistically homogeneous. So, taking averages, the divergence on the left
disappears since 〈∼〉 commutes with ∇ · [∼] and ∇ · [〈∼〉] = 0 because both are linear
operators. The same is true for the term u · ∇(ω2/2) = ∇ · (ω2u/2). So we are left with

∂

∂t
〈ω2/2〉 = 〈ωiωjSij〉 − ν〈(∇× ω)2〉 (2.19)

The equation 2.19 tells us that enstrophy can be created or destroyed by the strain field,
and it is destroyed by viscous forces.

In addition, two things need to be highlighted: (i) The stretching of the vorticity over-
weight the compression of the vortex lines so that the net effect of the strain field is
to create enstrophy, i.e. 〈ωiωjSij〉 is positive; and (ii) there is a balance between the
enstrophy production and the viscous dissipation [7].
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2.2 The Weber number

The Weber number is a characteristic parameter used in fluid dynamics, it is a dimen-
sionless quantity that describes the relationship between the deforming inertial forces and
the stabilizing cohesive forces for fluids that flow through a fluid medium, i.e., surface
tension forces.

When a liquid flows through a second fluid phase (gas or liquid), then the fluid-mechanical
or aerodynamic force causes the drop to deform and eventually disperse. The cohesion
force associated with the surface tension or interfacial tension (σ) opposes the increase
of the surface area that is caused by the deformation of the drop. Therefore, the drop is
kept together by the surface or interfacial tension.

The Weber number expresses the relationship between the deforming inertial forces and
stabilizing cohesive forces associated with the surface tension or interfacial tension as

We =
Inertial Force
Cohesion Force

=
ρ v2 l

σ
=

ρε2/3d5/3

σ
(2.20)

where ρ is the density of the fluid, l the characteristic length and v the characteristic
velocity for which we take the Kolmogorov scales for the length and velocity. We end up
with the expression depending on the energy dissipation rate ε and the size of the drop d.
If the Weber number is too large, the inertial forces outweigh the surface tension forces,
to the point where the drop breaks into even smaller drops.

2.3 Description of the problem

2.3.1 Model of the drop breakup

The base of the model of the simulations of single drop breakup is the exchange of energy
between the turbulent flux in which the drop is immerse and the surface energy of the
drop. The magnitudes that characterize these concepts are known as turbulent kinetic
energy (Kt) and surface energy (Eσ)

Kt =
1

2
ρu2 ∼ 1

2
ρu2dd

3 (2.21)

where ud is the characteristic eddy velocity and d is the eddy characteristic length

Eσ = σA (2.22)

the surface energy is proportional to the surface. This surface energy of the drop’s system
increases as the drop splits into smaller drops the volume of which have to be equal to
the volume of the initial one.

In order to picture better the how the surface energy changes when the single drops splits
into smaller drops we can picture it with the following example. The idea is that we
have a drop with a volume V which has surface energy σd2 which splits into two drops
of volume V1 and V2 which have surface energy σd21 and σd22 respectively. One can check
that σd2 < σd21 + σd22.
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From the relations energetic equivalences it is found, [1], that the temporal derivative of
the surface energy or energy change per unit surface is

∂tEσ = ϑ = −σniSijnj (2.23)

which denotes that the increment of energy depends on the rate-of-strain and we can
search then for how is the temporal evolution of the rate-of-strain using the Navier-Stokes
equations, thus finding that the evolution of Sij is dependent on the surface energy.
Hence, this shows us that there exists a non-linear relation between the surface energy
and velocity gradients, rate-of-strain [1].

2.3.2 Energetics of drop breakup

The study of the energetics of drop breakup has one key takeaway which is what is
observed for the energy change per unit surface ϑ depending on the Weber number, which
symbolizes the ratio between inertial and surface forces. The analysis is performed in
order to observe how the surface energy changes its gradient for two different possible
influences. The study differentiates the outer eddies in the simulation and the inner
eddies from the drop mostly distributed along the interface and how each contribution
changes when the Weber number is increased and thus the inertial forces become less
significant in comparison to the surface tension ones.

On the obtained figure 3a we can see that ϑ > 0 at outer eddies and ϑ < 0 for inner eddies
for values of We smaller than some Wec such that one could interprets it such that there
is an increase of surface energy due to outer eddies while a decrease for inner eddies until
a certain point in We where both contributions are positive at which the breakup of the
drop becomes faster and easier.
(a) (b)

1 2 3 4

-3

-2

-1

0

1

2

3

Figure 3: (a) Mean of ϑ as a function of We. (b) Temporal evolution of the free energy
change per unit surface of the drop. [1]

Thus we are interested in the We < Wec region in order to better understand the mech-
anisms that cause a drop to break, but not instantaneously. We consider these temporal
evolution energy exchanges to be such that the outer eddies exert a force and pass energy
(kinetic) onto the drop’s surface which deforms and in order to get to its minimum energy
state, exchanges this kinetic energy to its inner fluid feeding in this way turbulence and
forming inner eddies.
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We also want to give attention to the plot 3b of how the energy change per unit surface
evolves in time such that one observes an oscillatory behavior for both inner and outer
eddies in a special way. A maximum in the temporal evolution of the contribution of the
outer eddies implies a maximum for the inner eddies but with a small delay. This repre-
sents the energy exchange between outer and inner eddies where the drop relaxes (gets
to the minimum surface energy) transferring this energy onto the outer eddies causing a
minimum of the inner eddies when a maximum of the outer happens. This mechanism
endures in a repetitive manner until the energy increment is so big that the drop can not
dissipate it and breaks.

2.4 Scales in turbulent flow and the energy cascade

Kolmogorov suggested in 1941, [10], that the size of dissipating eddies depends on the
parameters that are relevant to the smaller eddies. These parameters are the rate ε at
which the energy has to be dissipated by the eddies, and the diffusivity ν that dampens
the velocity gradients. Using ε and ν teaches us that the length scale is

η = (ν3/ε)1/4 (2.24)

which is called the Kolmogorov microscale. Therefore a decrease of ν only decreases the
scale at which viscous dissipation takes place, and not the dissipation rate ε.

Now the rate at which kinematic energy dissipates in a fluid is ε = 2νSijSij per unit mass,
where Sij is the rate-of-strain tensor. Therefore dissipation is particularly pronounced in
regions where the instantaneous velocity gradient, and consequently the shear stress, is
large. This suggests that the dissipation of mechanical energy within a turbulent flow is
concentrated in the smallest eddies.

The dissipation rate ε is an extremely important quantity that controls the flow of en-
ergy from the large scales where it is injected to the small scales where it is dissipated
by viscosity. This progressive energy cascade scheme from larger to smaller eddies was
immortalized by Richardson (1922).

Richardson’s energy cascade idea is as follows: larger eddies, which are normally created
the forcing mechanism of turbulence, are themselves subjected to inertial forces and will
quickly ’break-up’ and pass their energy to even smaller eddies. In fact, the life expectancy
of a typical eddy is rather short, on the order of so-called turn-over time (l/u). Of course,
the smaller eddies are themselves transient and in return pass their energy to even smaller
structures, and so on.

Therefore, at every instant, there is a continuous cascade of energy from the large scales to
the small ones. Crucially viscosity plays no role in this cascade. That is, since Re = ul/ν
is large, the viscous stresses acting on large eddies are negligible. This is also true for their
offspring, the whole process is essentially driven by inertial forces. The cascade comes to a
pause however when the size of the eddy becomes so small that Re, based on the size of the
smallest eddies, is on the order of unity. Up to this point dissipation becomes significant
when viscous forces become important. Energy is destroyed only in the later stages of the
process, when the structures are so fine that Re, based on small-scale structures, is of the
order of unity. In this sense, viscosity plays a rather passive role, trapping any cascade of
energy from below from above.
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Let u and v represent typical velocities associated with the largest and smallest eddies
respectively. Also, let l and η be the length scales of the largest and smallest eddies. We
now know that eddies pass most of their energy to smaller structures on a timescale of
their turnover time, and therefore the rate at which energy (per unit mass) is passed down
the energy cascade. of the biggest eddies

Π ∼ u2/(l/u) = u3/l (2.25)

When conditions are statistically stationary this magnitude must be exactly equivalent to
the energy dissipation rate on the smallest scales. If not, then an accumulation of energy
would occur on the intermediate scale, and this possibility is excluded in the explanation
because we want the statistical structure of the turbulence to be the same from one
moment to the next. The energy dissipation rate in smaller eddies is of the order of
ε ∼ νSijSij where Sij is the rate-of-strain associated with eddies smaller, Sij ∼ v/η. This
gives ε ∼ ν(v2/η2), since the dissipation of the turbulence energy, ε, must be equal to the
rate at which the energy enters the cascade Π, we have

u3/l ∼ ν(v2/η2) (2.26)

recovering that Re that is based on v and η is of the order of unity (vη/ν ∼ 1) and
combining the expressions we obtain

η ∼ l Re−3/4 = (ν3/ε)1/4 (2.27)

v ∼ uRe−1/4 = (νε)1/4 (2.28)

This scales η and v are called the Kolmogorov microscales of turbulence, while l is called
the integral scale [7].

2.5 Study of invariants of velocity gradient related tensors

In the study of turbulent flows we find an intrinsic difficulty when it comes to conceptually
visualizing three dimensional steady and unsteady flow patterns. This is why the use of
critical point concepts to describe flow patterns provides a framework and a methodology
for overcoming these difficulties [11]. Critical point theory (also known as "phase plane" or
"phase space" theory) has been widely used to examine solutions of autonomous ordinary
differential equations in many fields of physics [12].

A critical point is a point in the flow where all three components of velocity are zero relative
to an appropriate observer and therefore the slope of the streamline is indeterminate.
Asymptotically exact solutions of the Navier-Stokes equations can be derived near the
critical points, and these give a series of standard flow patterns [13].

In the past, topologies derived from critical points in three-dimensional flows have been
examined using simple two-dimensional phase-plane analysis. The methodology used in
different studies, and that has been chosen for our case, makes use of the fact that in
three dimensions there are planes (called eigenvector planes) that contain certain solution
trajectories.

Starting from the consideration of each one of the eigenvectors, in return the velocity field
is expressed as a set of linearlized Taylor series expansions that make use of 2x2 matrices
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[14]. These matrices have two invariants, p and q, and these invariants are used to define
various types of critical points.

The planes of the eigenvectors in many of the previously studied cases were easily identified
and located, particularly if there were planes of symmetry involved or if a solid surface
was specified as a boundary condition in the flow pattern. In the most general case,
these characteristics that simplify the problem are not present, and therefore it becomes
important to use an analysis based on three invariants of a 3x3 tensor to be able to identify
the planes of the eigenvectors. These three invariants are sufficient to fully classify any
flow pattern topology in three dimensions.

The set of three first-order differential equations can be written as

ẋ1ẋ2
ẋ3

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33


x1x2
x3

 (2.29)

where aij are real constants. In the case of a fluid flow the aij are the elements velocity
gradient or rate-of-deformation tensor ∂ẋi/∂xj evaluated at (x1, x2, x3). If the flow is
unsteady, which is our case of study, then solution trajectories correspond to particle
paths.

The eigenvalues of A are λ1, λ2 and λ3 and therefore it follows

[A− λi1]~ei = 0 (2.30)

where ~e is the corresponding eigenvector. The eigenvectors can be determined by solving
the characteristic equation, which for a 3x3 matrix can be written as

det(A− λi1) = λ3i + Pλ2i +Qλi +R = 0 (2.31)

where
P = −(a11 + a22 + a33) = −tr [A] = 0 (2.32)

by the incompressibility condition,

Q =

∣∣∣∣∣a11 a12
a21 a22

∣∣∣∣∣+

∣∣∣∣∣a11 a13
a31 a33

∣∣∣∣∣+

∣∣∣∣∣a22 a23
a32 a33

∣∣∣∣∣ =
1

2
(P 2 − tr

[
A2
]
) = −1

2
tr
[
A2
]

(2.33)

and

R =

∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣ = −det [A] =
1

3
(−P 3 + 3PQ− tr

[
A3
]
) = −1

3
tr
[
A3
]

(2.34)

which are the first, second and third invariants of the velocity gradient tensor respectively.

This approach to the study of the velocity gradient in turbulent flow from the investigation
of its second and third invariants i.e. Q and R respectively, is known as topological
methodology [11].
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Let the rate-of-deformation of velocity gradient tensor (Aij = ∂ẋi/∂xj) be broken up into
a symmetric and antisymmetric (or skew-symmetric) component

Aij = Sij +Wij (2.35)

where Sij = (∂ẋi/∂xj + ∂ẋj/∂xi)/2 is the symmetric tensor or rate of strain tensor which
we previously already introduced and explained, and Wij = (∂ẋi/∂xj − ∂ẋj/∂xi)/2 the
skew-symmetric or rate-of-rotation tensor.

In a similar way to the previous definition of the three invariants of Aij, one can define
in an equivalent way the three invariants for the symmetric tensor Sij (PS, QS, RS) and
three corresponding to the antisymmetric Wij (PW , QW , RW ) that are defined by their
respective characteristic equations. It should be noted that PS = PW = PA = 0 in
addition to RW = 0. If the previous steps are done it can also be shown that QS is
negative definite while QW is positive definite.

There are different reasons for studying the invariants of the velocity gradient tensor.
The first is because working with invariants means that the results obtained are invari-
ant with respect to the coordinates (invariant with respect to an affine transformation).
Furthermore, the invariants of the velocity gradient are independent of the frame of refer-
ence of a moving observer (Galilean invariance). Second, in the case of an incompressible
fluid for which the first invariant is zero (our case study), the three-dimensional field col-
lapses into a compact region of a two-dimensional space. And finally, turbulent flows are
characterized by a wide range of scales that we want to study [15, 16, 17].

In relation to this, we know that relatively small velocity gradients of the order of U/δ
occur on large scales, and much larger velocity gradients of the order of U/δ(Rδ)

1/2 occur
on smaller scales. The quantities U and δ are the integral velocity and length scales and
Rδ is the Reynolds number of the flow. The distribution of the different length scales in
the different regions of the invariant figures makes it easy to identify general topological
characteristics at different scales.

To finish introducing the study of the velocity gradient invariants, it is necessary to explain
how the plots are constructed to visualize the features that these invariants describe. The
invariant plot method for analyzing flow fields was introduced by Chen et.al. [18]. The
procedure for the construction of the plots can be summarized with the following points:
(i) the nine derivatives of the velocity gradient tensor are evaluated at each point of the
computed field, (ii) the invariants (Q,R) and of the other tensors of interest are determined
at each point, (iii) the resulting pairs of the phase-plane (Q,R) are cross-plotted resulting
in a scatter plot.

In practice, while scatter diagrams are very useful for revealing topological characters of
the finer scales of motion, which are characterized by the largest gradients of the flow,
the lower gradients of motion that characterize large or intermediate scales are observed
by superimposing layers and layers of dots.

To solve this, these scatter diagrams are replaced by contour diagrams of the number of
density of points (joint probability distribution function) that belong within an area of
the invariant space. These diagrams are essentially equivalent to unnormalized diagrams
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of joint probability distribution functions. Due to extreme variations in the number of
densities that occur, the levels of the contour diagram are chosen based on the number of
points that each level we want to contain. This is done in order to ensure that the isolated
points are captured in such a way that the properties of the scatter diagram are preserved
far from the origin, while providing information on the distribution of the invariants near
the origin which they correspond to large and intermediate scales of motion.

So that later the comprehension of the plots is more clear, it is now necessary to explain
what is the physical meaning of each of the invariants of interest, what each invariant
measures. For this, if the previous expressions are developed for each component of the
tensor, an equivalent expression can be obtained with the vorticity and the rate-of-strain
[19, 7].

For the invariants derived from the strain tensor or the velocity gradient tensor we have
the following.

QA = −1

2
tr
[
A2
]

= −1

2
SijSij +

1

4
ωiωi (2.36)

RA = −1

3
tr
[
A3
]

= −1

3
(SijSjkSki +

3

4
ωiSijωj) (2.37)

The second invariant we can see that it has the sum of the product of the strain rate that
symbolizes the intensity of the strain field and the second component the square of the
vorticity and therefore the intensity of the field of this. For the third invariant it is the
sum of the strain to the cube that symbolizes the self-amplification of the strain, that is,
the production of the strain as a result of self interactions as a feedback mechanism that
causes the regions of the strain field to become even more intense. The second term that
combines the vorticity with the strain field symbolizes the vortex stretching.

In the case of the invariants of the rate-of-strain tensor they are simpler,

QS = −1

2
SijSij (2.38)

RS = −1

3
SijSjkSki (2.39)

the second tensor symbolizes the intensity of the field and the third its self-amplification.
And for the skew-symmetric component we can see that the second invariant is the inten-
sity of the vorticity.

QW =
1

4
ωiωi (2.40)

It should be noted that in this case the third invariant is zero, as are the first invariants
of each of the tensors.
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3 Study of magnitude of velocity gradients of the flow

Once all these theoretical concepts are established, we perform a first analysis on the
velocity gradient related magnitudes, vorticity and rate-of-strain, to observe how its mag-
nitudes changes with respect to the distance to the interface of the drop. The magnitude
of the fields is given by the square of these gradients, since it measures the strength of
the vorticity and rate-of-strain fields without a vector implication, which are calculated
from the velocity field at all points in the flow.

After calculating the square of the vorticity and strain tensor at all points, we do the
analysis for different regions considering these fields at different distances from the drop
interface as a reference point, which will be our zero. Therefore we will define the intensity
of the vorticity at a distance from the interface as

ω′ = G(x; ∆)ω (3.1)

where G(x; ∆) is defined by

G(x; ∆) = 1 if |x− xs| < ∆ and x ∈ O
G(x; ∆) = 0 if otherwise.

(3.2)

G is the mask that defines the points of the field that we want to take according to the
distance they are from the interface. xs represents the coordinates of the surface and O
represents all the points of the flow which lay outside the drop. In the same way, a mask
can be defined for the case of the interior of the drop.

(a) (b)

Figure 4: Vorticity to the square for (a) the outside of the drop and (b) the inside of the
drop. The red line represents the interface of the drop and the magenta dotted is at a
distance ∆ ∼ 6.67η from the interface of the drop.

To obtain the magnitude of the gradients at the different distances with respect to the
interface of the drop, we use the definition of the mask to obtain consecutive sections of
the flow, which we achieve by superimposing two masks with ∆ and ∆+ δ∆, that is, with
different distances from the interface of the drop. As we can see in 4, the desired section is
between the red line and the magenta dashed line, in this region is where we calculate the
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square of the gradients and we average the points to have a mean value of the magnitude
of vorticity and rate-of-strain. We repeat this process for consecutive sections outward
and inward of the drop with a section width of δ∆ ∼ 1.67η.

(a) (b)

Figure 5: (a,b) average of the magnitude of the (a) the vorticity field and (b) the rate-of-
strain tensor of the flow field at different distances from the interface of the drop.

The result of the analysis of the mean of the square of the vorticity and the strain tensor
for different Weber numbers at different distances to the drop’s interface is given at figure
5. It is observed in both cases that there is a nominal value both inside and outside the
drop and as we get closer to the drop there is a substantial increase up to the interface of
the drop where there is a maximum that increases as the Weber number decreases. The
maxima in the gradients occurs at the interface because the mechanism for producing the
gradients in this case is not only turbulence, but also the surface tension of the drop that
occurs at the interface of the drop. This results in a maxima of the gradients which varies
depending on the Weber number, since the adimensional number regulates the interplay
between surface and kinetic forces, and for lower Weber number the surface forces are
more dominant and therefore the maximum has a greater magnitude.

To present the plot, we have normalized the distance with respect to the Kolmogorov
length scale and the gradients with the Kolmogorov time scale, both Kolmogorov scales
are defined from the characteristics scales of small eddies as explained in 2.4.

One of the key aspects to emphasize in this first analysis is that the vorticity and the
rate-of-strain decay outside the drop to an asymptotic value of one in a different spatial
range. Resulting in the fact that, at a certain distance from the drop interface, there is
no longer influence of the drop surface dynamics on the average turbulent flow. Therefore
we take the distance at which the dynamics of the drop surface no longer has effect on
the outside flow the limit range of the strain tensor, since it is the largest. This distance
is ∼ 10η which agrees with study of Vela-Martin & Avila [1].

Once we have these first plots and after subsequent checks with the tensor invariants, we
decided to perform the analysis of invariants on four different regions where the dynamics
are appreciably different because of the average value of the gradients shown. As seen in
figure 6, the division is done in four regions with respect to the surface of the drop. The
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(a)

(b)

Figure 6: (a,b) average of the magnitude of the (a) the vorticity field and (b) the rate-
of-strain tensor of the flow field at different distances from the interface of the drop with
vertical lines separating the four regions of interest for the tensor invariant study.

interior region of the drop designated as "inside", the area of the interface of the drop
that bears the same name, the area outside the drop but in a range in which it still can be
appreciated an influence of the dynamics of the surface of the drop on the turbulent flow,
up to the 10η distance, that we will call “near outside”. And finally, the outer region away
from the drop, called "far outside", that comprises all the outer points of the simulation
cube at least 10η away from the surface.
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4 Study of the velocity gradient tensor invariants

4.1 Comparing Weber numbers

We start by showing the contour plots of the invariants RA, QA for different Weber
numbers in the region away from the drop at figure 7. This plot can be seen in multiple
papers as the representative of an average turbulent flow, some say that it is a universal
shape [20, 21], the characteristic shape of "teardrop" where the maximum is at the origin
and the points are distributed around in an almost elliptical shape but with a preference
of the points for the second and fourth quadrants.

We see that the different cases of Weber number collapse at the same contour levels, as
one could expect far outside from the drop, the dynamics of the drop does not influence
the flow, and therefore the presence of the drop in the flow, and all the dynamics that
accompany it, do not alter the behavior of the turbulence far away from the drop.

Figure 7: Contour plot of the second and third invariant of the velocity gradient tensor
Aij for different Weber numbers at the regions far outside the drop.

As we mentioned before, QA gives us the magnitude of the relative intensity of the vorticity
and the rate-of-strain. The large negative values indicate regions of strong strain and little
vorticity and large positive ones regions of intense enstrophy and therefore dominance of
vorticity. For large values of QA then RA ∼ ωiSijωj and positive values of RA symbolize
vortex stretching and negative ones vortex compression. For the case when QA has large
negative values RA ∼ SijSjkSki, and looking at the plot of figure 7 for positive values of
RA where the contours stretching along the curve DA = 0, in this area of the plot the
rate-of-strain field is strong and therefore 〈SijSjkSki〉 � 0 which means that the strain
self-amplification mechanism acts significantly, so that the intensity of the strain causes
the strain field to remain intense. [7, 20].
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Next, at figure 8, we observe plots of simulations for different Weber numbers comparing
the region inside the drop and far outside the drop, we see differences that may indicate
differences in the flow dynamics. It can clearly be observed that inside the drop there is
less intensity of the vorticity field for smaller Weber numbers.

(a) (b)

(c)

Figure 8: Contour plots of the second and third invariant of the velocity gradient tensor
Aij comparing the contours at the inside and far outside region of the drop for Weber
numbers (a) We = 1.8, (b) We = 3.6 and (c) We = 5.4.

For 8a the region of QA > 0 is almost symmetric while we still see that for negative values
the contours embrace the curve DA = 0 which indicates that the self-amplification of the
strain is still present. The symmetry for the region of vorticity dominance may indicate
that inside the drop, intense vorticity can not be stretched into elongated structures that
do not fit, which prevents intense vorticity events. Outside, the vorticity can be stretched
freely, leading to intense events, because of the predominance of inertial forces. Therefore
for the larger Weber number, as can be seen in at 8c, as the inertial forces exceed the
surface forces, the dynamics inside the drop get more similar to the turbulent flow outside.

The next plots to examine are in which we compare the interface region of the drop with
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far outside the drop, this for different Weber numbers at figure 9. For the case of the
invariants in the interface, again we see some differences in the structure of the contours
with respect to the average turbulent flow, although we do not see a difference between
the simulated Weber numbers. In the interface we see that although we still have a

(a) (b)

(c)
(d)

Figure 9: Contour plots of the second and third invariant of the velocity gradient tensor
Aij comparing the contours at the interface of the drop and at the far outside of the drop
for Weber numbers (a) We = 1.8, (b) We = 3.6 and (c) We = 5.4, and (d) comparing
the different Weber numbers only for the interface region.

preference for the second quadrant where QA > 0 and RA < 0 this time there are not so
many points stretching along the zero discriminant curve, which means less importance of
the mechanism of strain self-amplification. Despite this, the major observation is the fact
that the relationship between inertial forces and surface tension influence in the dynamics
of the drop interface cannot be appreciated in an obvious way from the invariants, at least
in this range of Weber numbers.

To try to elucidate what happens in the interface more clearly and to confirm if there
are differences in the mechanisms of gradient production, we show the invariants of the
tensor rate-of-strain.
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The following plots at figure 10 are the contours of the pair of rate-of-strain tensor invari-
ants, so that we only analyze the dynamics of the rate-of-strain without the vorticity. In
this case we compare again between the interface and the far outside the drop. For this
plots again we see a substantial difference with regard to the mechanisms that influence
the dynamics of the systems. We see that for the interface the contour of the invariants
are almost symmetric with respect to RS, while for far outside from the drop the points
embrace the zero discriminant for positive value of the third invariant, indicating that
most flow regions are stretched in two orthogonal directions and contracted in the third.
The results of the plots indicate that at the interface there is a reduced self-amplification
of the strain, although the gradients are large, in fact the intensity of the strain field is
greater at the interface than at the far outside from the drop. Also, no changes are seen
according to the Weber number, only maybe in 9d where we observe that the symmetry is
more pronounced for smaller Weber values as well as with larger magnitude of strain. The
effect of the Weber number on the mechanisms that affect the dynamics of the interface,
from the analysis of the invariants, is still inconclusive.

(a) (b)

(c) (d)

Figure 10: Contour plots of the second and third invariant of the rate-of-strain tensor Sij
comparing the contours at the interface of the drop and at the far outside of the drop for
Weber numbers (a) We = 1.8, (b) We = 3.6 and (c) We = 5.4, and (d) comparing the
different Weber numbers only for the interface region.
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4.2 Comparing Viscosities

From here we focus the analysis on what is the central point of the work, the study of
the invariants according to the viscosity of the drop. The parameter with which we refer
to the viscosity is λν , which gives the relationship between the viscosity of the fluid that
makes up the drop and that of the exterior turbulent flow. We consider two cases: one in
which the viscosity is the same for both, and another where the viscosity of the drop is
four times that of the outside flow.

(a)

(b) (c)

Figure 11: Contour plots of the second and third invariant of the velocity gradient tensor
Aij comparing the contours (a) inside the drop and for different viscosities λν = 1 and
λν = 4, (b) the inside and far outside region of the drop for viscosity λν = 1 and (c) the
inside and far outside region of the drop for viscosity λν = 4.
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The most important and significant result is the one shown in the figure 11a, where we
can see the invariants corresponding to the tensor of the velocity gradient Aij inside the
drop for different viscosities. Clear differences can be observed.

For the case of viscosity relation one, the structure of the contours has for a teardrop simi-
lar shape and negative values of QA have a predominance to stretch along the discriminant
zero for positive values RA, which means that the strain self-amplification mechanism is
present, as we can see for a average turbulent flow. In fact, at 11b one can see that
both inside and far outside the drop they have a more or less a similar structure of the
invariants.

While for the viscosity four times greater than the drop, λν , there is a clear symmetry
with respect to the RA axis, with strain field values also much smaller than the λν case
at 11a or outside the drop at 11c. This symmetry indicates that if we make the integral
of the strain to the cube (SijSjkSki) it would give us zero. This means that there is no
strain self-amplification inside the drop, even though there is a intense strain field. Thus,
there is no turbulence self-amplification inside the drop.

This difference in symmetry of both cases of viscosity can be observed even better in 11b
and 11c in which we compare the joint pdf between the inside of the drop and the far
outside for the different viscosities.

The next plots to show are those of the figure 12 where it compares different viscosities
for the area of the interface of the drop in 12a, and we compare the interface with far
outside the drop in 12b and 12c.

(a)
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(b) (c)

Figure 12: Contour plots of the second and third invariant of the velocity gradient tensor
Aij comparing the contours (a) at the interface of the drop and for different viscosities
λν = 1 and λν = 4, (b) the interface and far outside region of the drop for viscosity λν = 1
and (c) the interface and far outside region of the drop for viscosity λν = 4.

In this case, first in 12a we observe that changing the viscosity of the drop with respect
to the external flow does not change the structure of the invariants, which means that the
same mechanisms interact in the dynamics of the interface regardless of the viscosity of
the drop . The dynamics at the interface depend on the surface tension but not on the
viscosity.

We can observe this again in the plots 12b and 12c where, despite the fact that no
difference is seen between viscosities, we again see that for the interface there is a less
predominance of the strain self-amplification mechanism.

Finally, we show in the figure 13 the diagrams of the invariants for different viscosities
between the regions far outside and near outside the drop.

(a)
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(b) (c)

Figure 13: Contour plots of the second and third invariant of the velocity gradient tensor
Aij comparing the contours (a) near outside the drop and for different viscosities λν = 1
and λν = 4, (b) the near and far outside region of the drop for viscosity λν = 1 and (c)
the near and far outside region of the drop for viscosity λν = 4.

In these graphs we could say that for the case it is seen that close outside the drop that
for negative values of QA, that is, for regions of intense strain, we see that it indicates
that the vortex compression mechanism appears in the dynamics (negative values of RA

stretching along DA = 0). The problem is that the contours are not fine enough, this is
because the regions that are not the far outside of the drop include few points. To solve
this, it is necessary to carry out a study with averages of the invariants of more than one
hundred fields (up to a thousand different fields) to see if this structure is maintained.

In addition, it can be observed that for the different viscosities the plots practically
collapse, that is, the viscosity does not influence the dynamics of the external flow near
the drop. Contours may collapse better by normalizing with a unit that takes viscosity into
account. We can only speculate about it since we use the Kolmogorov scale to normalize
the gradients, and we do not have data for different Reynolds number. This can be seen
when observing that for the levels that represent more density of points, the contours are
almost equal, while the fewer points the contour represents, the more different and diffuse
they are.
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5 Conclusions and further research

To finish this report, it is necessary to present the main conclusions of the work, in
addition to proposing improvements for the work and elucidating future research.

One of the clear points that we have taken from the analysis of the flow field gradients
is that there is a clear range of influence up to which the drop affects the turbulent
flow in which it is immerse, this distance is 10η and it coincides with the study of Vela-
Martín & Avila [1]. We also see that the turbulence inside and outside the drop have
different intensity and structure in addition to different mechanisms that are responsible
for maintaining the turbulent flow.

The most striking result is the fact that the invariants of the gradient tensors tell us that
even if the viscosity influences the breakup of the drop the mechanisms of the breakup
are similar even when we change the viscosity of the drop. The viscosity plays a role
in increasing the rate at which the energy dissipates within the drop. This results in a
damping of the intensity of the gradients that come from the interface and outside the
drop, which is observed in the fact that the vorticity is weaker and there are less vortices
inside the drop and get dissipated more efficiently. Inside a drop with a high viscosity
the flow relaminarises due the strong dissipation. The mechanisms by which turbulence
interacts with the interface, which are relevant to drop breakup, do not change with the
viscosity of the drop.

As a last point, it is necessary to comment on possible improvements to the work. Much
remains to be done and that it will be done. One of the clearest improvements is regarding
the analysis comparing different viscosities, an analysis should be done with a normaliza-
tion choosing a unit that depends on the viscosity and the Reynolds number, in addition
to making a study of the gradients with the number of Reynolds used in the simulation.
As for future research, given the great potential of the topic, there are both possible im-
provements in terms of experimental research and monitoring tools of the experiments
carried out, as well as improvements in the models used to make the simulations of drop
breakup.
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