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Abstract. In this paper, we consider several problems arising in the theory of thermoelastic bodies with voids. Four particular
cases are considered depending on the choice of the constitutive tensors, assuming different dissipation mechanisms determined
by Moore-Gibson-Thompson-type viscosity. For all of them,the existence and uniqueness of solutions are shown by using
semigroup arguments. The energy decay of the solutions is also analyzed for each case.

Keywords: Thermoviscoelasticity, Existence and uniqueness, Energy decay, Dissipation mechanisms

1. Introduction

It is accepted that the thermoelasticity with voids is the easiest extension of the well-known theory of
thermoelasticity. In this case, the usual variables to takeinto account are the macroscopic deformations,
the temperature and the new variable which is given by the volume fraction. This last component clarifies
the porous structure and it can be seen as the component of themicrostructure of the material. It is worth
recalling that Cowin [1] and Cowin and Nunziato [2] proposedthis theory for the isothermal case and
that Ieşan [3] extended it by including the thermal effectsalso in the linear case. This theory is currently
widely accepted by the scientist community as a model to describe the behavior of thermoelastic solids
with small distributed pores. We can say that the quantity ofcontributions in this theory is huge. In fact,
in recent days there has been a big interest to understand thecase where we can consider a double porous
structure (see [4–7] among others). In view of the kind of materials described by this theory, its physical
applications could include rocks, soils, ceramics and woods, as well as biological materials as dentures
or bones. The study of the decay of perturbations of this kindof materials has been developed in recent
years and we can cite [8–16] among others.

Fourier’s law is usually considered in engineering to describe the heat conduction phenomena; how-
ever, the juxtaposition of this constitutive law with the usual heat equation brings us to the instantaneous
propagation of the thermal waves. That is, the perturbations are instantaneously felt everywhere in the
solid. Of course, this effect violates the causality principle and many scientists have proposed alternative
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constitutive laws to overcome the paradox.The most known lawis the one proposed by Cattaneo and
Maxwell, who introduced a relaxation (or delay) parameter into the Fourier law, bringing to a damped
hyperbolic heat conduction equation. Green and Nagdhi [17–19] proposed three alternative constitutive
laws based on the axioms of the thermomechanics. It is worth saying that the main difference among
them consists in the choice of the independent variables. The most general is the one called “type III
theory”, which contains the other two as limit cases. However, the linear equation for the type III theory
also brings to the instantaneous propagation of the heat. Therefore, it also violates the causality prin-
ciple. That was the reason why in [20] the author proposed theintroduction of a relaxation parameter,
bringing to a heat conduction equation of the type of the one called Moore-Gibson-Thompson. Another
alternative theory was proposed by Gurtin [21], where the equations should satisfy the invariance of
the entropy with respect to the time reversal. Although thistheory has deserved few attention in the
literature, it has been extended to several thermomechanical situations (see [22–24] among others).

In the present contribution, we consider the equations of the porous thermoelasticity invariant under
time reversal, and we specify several examples of constitutive systems. In particular, we recover the
Moore-Gibson-Thompson thermoelasticity [20, 25–30], butwe also obtain some other systems which
are new in the study of porous thermoelasticity. In this paper, we analyze the time decay of four one-
dimensional systems obtained in this way. To be precise, we first consider the case corresponding to
the Moore-Gibson-Thompson heat conduction theory and we obtain that generically we can expect
the exponential decay. The second case corresponds to assume a similar dissipation mechanism on the
volume fraction, but this mechanism (see system (2)) is weakand we see that the solutions do not
decay in an exponential way; however, in the case that we impose a stronger mechanism of dissipation
on the volume fraction (see system (3)) we obtain (generically) again the exponential decay1. The last
case we analyze corresponds to assume the dissipation mechanism on the displacement, where we also
obtain the exponential decay of solutions2. We believe that the interest of our contribution is given by
the introduction of a mechanism of dissipation which is different compared with the usual mechanisms
proposed in porous-thermoelasticity, but, at the same time, it can be obtained from the usual formulations
of thermomechanics. We clarify the implications of the different mechanism when we apply it in each
component of the system.

The structure of this paper is the following. In the next section we obtain the basic equations and
systems we will study. In the other sections, we analyze the decay for each case. In all of them we obtain
the existence and uniqueness of solutions by means of the semigroup arguments, which is also used to
prove the exponential stability of solutions. In order to show the slow decay of solutions, we apply the
Hurwitz rule in a similar way as in [31].

2. Basic Equations

In this section we establish the systems of partial differential equations that we want to study.To this
end,we begin with the evolution equations:

ρüi = ti j, j ,
Jφ̈ = hi,i + g,
T0η̇ = qi,i ,

1In fact, the introduction of a relaxation parameter could also be motivated here to overcome the unbounded speed of propa-
gation of the volume fraction in the viscous case.

2A similar comment to the previous footnote could be also donehere.
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whereρ is the mass density assumed to be positive,ui is the displacement vector,ti j is the stress tensor,
J is the equilibrated inertia,φ is the volume fraction,hi is the equilibrated stress,g is the equilibrated
body force,T0 is the reference temperature (that we assume equal to one to simplify the calculations),η
is the entropy andq is the heat flux vector.

We consider now the thermoelastic theory proposed by Gurtin, where we assume that the entropy
is invariant under time reversal, and we restrict our attention to materials with a center of symmetry.
Therefore, the constitutive equations are (see [21–24]):

ti j =
∫ t

−∞

[

Gi jmn(t − s)ėmn(s) + Bi j(t − s)φ̇(s)− l i j (t − s)θ̇(s)
]

ds,

hi =

∫ t

−∞

[

Ai j(t − s)φ̇, j(s) + Mi j (t − s)θ, j(s)
]

ds,

g =

∫ t

−∞

[

−Bi j(t − s)ėi j(s)− b(t − s)φ̇(s) + m(t − s)θ̇(s)
]

ds,

η =

∫ t

−∞

[

l i j (t − s)ėi j(s) + a(t − s)θ̇(s) + m(t − s)φ̇(s)
]

ds,

qi =

∫ t

−∞

[

ki j(t − s)θ, j(s) + M ji(t − s)φ̇, j(s)
]

ds,

whereei j =
1

2
(ui, j + u j,i) is the linearized strain tensor.

We can define different problems by considering particular choices of the constitutive tensorsGi jmn,
Bi j , l i j , Ai j , Mi j , b, m, a andki j . For all choices, we assume that tensorsGi jmn, l i j , Ai j andki j are symmet-
ric, that is,

Gi jmn = Gmni j= G jimn, l i j = l ji , Ai j = Aji , ki j = k ji .

First, we assume that

Gi jmn(x, s) = Gi jmn(x), Bi j(x, s) = Bi j(x), l i j (x, s) = l i j (x),
Ai j (x, s) = Ai j (x), Mi j(x, s) = Mi j (x), m(x, s) = m(x), a(x, s) = a(x),
b(x, s) = b(x), ki j(x, s) = k∗i j(x) + (τ−1ki j (x)− k∗i j(x))e−τ

−1s,

whereτ is a positive constant. From now on, we also assume that the solutions vanish att = −∞ (see
[33]).

If we denotêui = ui + τu̇i andφ̂ = φ+ τφ̇, then we obtain the system:

ρ¨̂ui =
(

Gi jmnûm,n + Bi j φ̂− l i j (θ + τθ̇)
)

, j
,

J¨̂φ =
(

Ai j φ̂, j + Mi j(α, j + τθ, j)
)

,i
− Bi j ûi, j − bφ̂+ m(θ + τθ̇),

τaθ̈ + aθ̇ = −l i j ˙̂ui, j − m ˙̂
φ+

(

M ji φ̂, j + k∗i jα, j + ki jθ, j
)

,i
,

whereα(x, t) = α0(x) +
∫ t

0

θ(x, s)dsdenotes the thermal displacement.

In the rest of paper, in order to simplify the notation, we omit the hat over variablesui andφ.
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This is a system of hyperbolic equations with only a dissipative mechanism which is at the tem-
perature. We could obtain existence, uniqueness and stability of solutions under suitable assumptions
and initial and boundary conditions. To save a very large contribution we focus our attention to one-
dimensional isotropic and homogeneous materials. Thus, our system becomes

ρü = µuxx + Bφx − l(θ + τθ̇)x,

Jφ̈ = Aφxx + M(αxx + τθxx)− Bux − bφ+ m(θ + τθ̇),

τaθ̈ + aθ̇ = −lu̇x − mφ̇+ Mφxx + k∗αxx + kθxx.







(1)

This system will be studied in the next section.
The second system we consider can be obtained if we assume that

Gi jmn(x, s) = Gi jmn(x), Bi j(x, s) = Bi j(x), l i j (x, s) = l i j (x),
Ai j (x, s) = Ai j (x), Mi j(x, s) = Mi j(x), m(x, s) = m(x), a(x, s) = a(x),
b(x, s) = b(x), ki j(x, s) = ki j (x), b(x, s) = b∗(x) + (τ−1b(x)− b∗(x))e−τ

−1s.

So, we obtain the system:

ρüi =
(

Gi jmnum,n + Bi j(φ+ τφ̇)− l i jθ
)

, j
,

τJ
...
φ + Jφ̈ = −Bi jui, j − b∗φ− bφ̇+ mθ +

(

Mi jα, j + Ai jφ, j + τAi j φ̇, j
)

,i
,

aθ̇ = −l i j u̇i, j − m(φ̇+ τφ̈) +
(

M jiφ, j + τMi j φ̇, j + ki jα, j
)

,i
.

The one-dimensional version of this system reads:

ρü = µuxx + B(φx + τφ̇x)− lθx,

τJ
...
φ + Jφ̈ = −Bux − bφ̇+ mθ − b∗φ+ Aφxx + Mαxx + τAφ̇xx,

aθ̇ = −lu̇x − m(φ̇+ τφ̈) + Mφxx + Mτφ̇xx + kαxx.







(2)

It is worth noting that this is a system of three hyperbolic equations with only one dissipative mecha-
nism which is located in the Laplacian of the volume fraction.

The third system we consider corresponds to assume that

Gi jmn(x, s) = Gi jmn(x), Bi j(x, s) = Bi j(x), l i j (x, s) = l i j (x), b(x, s) = b(x),
Mi j (x, s) = Mi j(x), m(x, s) = m(x), a(x, s) = a(x), b(x, s) = b(x),
ki j (x, s) = ki j(x), Ai j (x, s) = A∗

i j (x) + (τ−1Ai j (x)− A∗
i j (x))e−τ

−1s.

Therefore, our system takes the form:

ρüi =
(

Gi jmnum,n + Bi j(φ+ τφ̇)− l i j θ
)

, j
,

τJ
...
φ + Jφ̈ = −Bi jui, j − bφ− bτφ̇+ mθ+

(

Mi jα, j + A∗
i jφ, j + Ai j φ̇, j

)

,i
,

aθ̇ = −l i j u̇i, j − m(φ̇+ τφ̈) +
(

M jiφ, j + Mi jτφ̇, j + ki jα, j
)

,i
,

and its one-dimensional homogeneous version is

ρü = µuxx + B(φx + τφ̇x)− lθx,

τJ
...
φ + Jφ̈ = −Bux − bφ̇+ mθ − b∗φ+ A∗φxx + Aφ̇xx + Mαxx,

aθ̇ = −lu̇x − m(φ̇+ τφ̈) + Mφxx + Mτφ̇xx + kαxx.







(3)
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In the case that we assume

ki j(x, s) = ki j (x), b(x, s) = b(x), Bi j(x, s) = Bi j(x), l i j (x, s) = l i j (x),
Ai j (x, s)Ai j(x), Mi j(x, s) = Mi j(x), m(x, s) = m(x), a(x, s) = a(x),
b(x, s) = b(x), Gi jmn(x, s) = G∗

i jmn(x) +
(

τ−1Gi jmn(x)− G∗
i jmn(x)

)

e−τ
−1s,

we obtain the following system:

τρ
...
u i + ρüi =

(

G∗
i jmnum,n + Gi jmnu̇m,n + Bi jφ− l i jθ

)

, j
,

Jφ̈ = −Bi j(ui, j + τu̇i j )− bφ+ mθ + (Mi jα, j + Ai jφ, j),i ,

aθ̇ = −l i j(u̇i, j + τüi, j)− mφ̇) + (M jiφ, j + ki jα, j),i ,

and its one-dimensional version is

τρ
...
u + ρü = µ∗uxx + µu̇xx + Bφx − lθx,

Jφ̈ = −B(ux + τu̇x)− bφ+ mθ + Aφxx + Mαxx,

aθ̇ = −l(u̇x + üx)− mφ̇+ Mφxx + kαxx.







(4)

Again, we obtain a system of three hyperbolic equations in a way that the only dissipative mechanism is
given by the viscosity.

3. First system

The aim of this section is to analyze the problem obtained by the system (1) we have proposed with
the boundary conditions:

u(0, t) = u(π, t) = φx(0, t) = φx(π, t) = αx(0, t) = αx(π, t) = 0, (5)

and the initial conditions:

u(x, 0) = u0(x), u̇(x, 0) = v0(x), φ(x, 0) = φ0(x), φ̇(x, 0) = ψ0(x),
α(x, 0) = α0(x), α̇(x, 0) = θ0(x), α̈(x, 0) = ξ0(x).

We study this problem assuming also that

∫ π

0

φ0(x)dx=
∫ π

0

ψ0(x)dx=
∫ π

0

α0(x)dx=
∫ π

0

θ0(x)dx=
∫ π

0

ξ0(x)dx= 0.

We note that, in this case, the integrals ofφ, φ̇, α, θ, θ̇ are null for every time.
In this section, we assume that

µ > 0, µb > B2, k∗ > 0, k > k∗τ, ρ > 0, J > 0, a > 0, A > 0,
Ak∗ > M2.

We do not impose any restriction on the sign ofl nor M, but we need to assume that they are different
from zero.
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We study the above problem in the Hilbert space

H = H1
0 × L2 × H1

∗ × L2
∗ × H1

∗ × H1
∗ × L2

∗,

where

L2
∗ = { f ∈ L2 ;

∫ π

0

f (x)dx= 0}, H1
∗ = H1 ∩ L2

∗.

We define the inner product

< (u, v, φ, ψ, α, θ, ξ), (u∗, v∗, φ∗, ψ∗, α∗, θ∗, ξ∗) >=
1

2

∫ π

0

(

ρvv∗ + µuxu∗x + Jψψ∗

+Aφxφ
∗
x + B(uxφ

∗ + u∗xφ) + bφφ∗ + a(τξ + θ)(τξ∗ + θ∗) + M((αx + τθx)φ∗x

+(α∗x + τθ∗x)φx) + k∗(αx + τθx)(α∗x + τθ∗x) + τkθxθ∗x

)

dx,

wherek = k − τk∗ and, in general, a bar over the elements of the Hilbert space represents their conju-
gated. This product is equivalent to the usual one in our space.

If we define the operator

A =























0 I 0 0 0 0 0
µD2

ρ
0 BD

ρ
0 0 − lD

ρ
−lτD
ρ

0 0 0 I 0 0 0
−BD

J 0 AD2−b
J 0 MD2

J
MτD2+m

J
mτ
J

0 0 0 0 0 I 0
0 0 0 0 0 0 I
0 −lD

τa
MD2

τa
−m
τa

k∗D2

τa
kD2

τa −τ−1























,

whereD means the spatial derivative. Thus, we can write our problemas

dU
dt

= AU, U(0) = U0,

whereU = (u, v, φ, ψ, α, θ, ξ) andU0 = (u0, v0, φ0, ψ0, α0, θ0, ξ0).

Theorem 3.1. The operatorA generates a contractive semigroup.

Proof. We first note that the domain of the operator is

v ∈ H1
0 , ψ ∈ H1

∗ , θ ∈ H1
∗ , ξ ∈ H1

∗ ,

Aφ+ Mα+ Mτθ ∈ H2, u ∈ H2,

Mφ+ k∗α+ kθ ∈ H2.

It is clear that the domain is a dense subspace.
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After a direct application of the boundary conditions, keeping in mind thatk > k∗τ (and so,k > 0) we
have, for everyU ∈ D(A),

Re< AU,U >=
−k
2

∫ π

0

|θx|
2 dx6 0.

To finish the proof we only need to show that zero belongs to theresolvent of the operator. Let us
consider( f1, f2, . . . , f7) in the Hilbert space. We need to solve

v = f1, ψ = f3, θ = f5, ξ = f6,
µuxx + Bφx − l(θx + τξx) = ρ f2,
−Bux − bφ+ m(θ + τθ) + M(αxx + τθxx) + Aφxx = J f4,
−lvx − mψ+ Mφxx + k∗αxx + kθxx − aξ = τa f7.

Since we have the expressions forv, φ, θ andξ we substitute them into the others to obtain the system:

µuxx + Bφx = ρ f2 − l( f5,x + τ f6,x),
−Bux − bφ+ Mαxx + Aφxx = J f4 − m( f5 + τ f6)− Mτ f5,xx,

Mφxx + k∗αxx = τa f7 + l f1,x + m f3 − k f5,xx + a f6.

It is not difficult to solve this system with the help of the Fourier series. We know that

f1 =
∑

n>1

f n
1 sin nx, f2 =

∑

n>1

f n
2 sin nx, f3 =

∑

n>1

f n
3 cosnx, f4 =

∑

n>1

f n
4 cos nx,

f5 =
∑

n>1

f n
5 cos nx, f6 =

∑

n>1

f n
6 cos nx, f7 =

∑

n>1

f n
7 cos nx,

where
∑

n>1

n2( f n
1 )

2 <∞,
∑

n>1

( f n
2 )

2 <∞,
∑

n>1

n2( f n
3 )

2 < ∞,
∑

n>1

( f n
4 )

2 < ∞, ,

∑

n>1

n2( f n
5 )

2 <∞,
∑

n>1

n2( f n
6 )

2 < ∞,
∑

n>1

( f n
7 )

2 < ∞.

We are looking for solutions of the form:

u =
∑

n>1

un sinnx, v =
∑

n>1

vn sin nx, φ =
∑

n>1

φn cos nx, ψ =
∑

n>1

ψn cos nx,

α =
∑

n>1

αn cosnx, θ =
∑

n>1

θn cos nx, ξ =
∑

n>1

ξn cos nx,

where
∑

n>1

n2(un)2 < ∞,
∑

n>1

n2(φn)2 < ∞,
∑

n>1

n2(αn)2 < ∞,
∑

n>1

(θn)2 < ∞, ,

∑

n>1

(vn)2 <∞,
∑

n>1

(ψn)2 <∞,
∑

n>1

(ξn)2 <∞.
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Therefore, we have to solve the system:

−n2µun − nBφn = ρ f n
2 + nl( f n

5 + τ f n
6 ),

−Bnun − bφn − Mn2αn − An2φn = J fn
4 − m( f n

5 + τ f n
6 ) + n2Mτ f n

5 ,

−Mn2φn − k∗n2αn = τa fn
7 + ln f n

1 + m fn3 + kn2 f n
5 + a fn

6 .

The solution to this system has the following form:

un = (n3(M2 f5l + M2 f6lτ+ BM f5k− A f5k∗l − BM f5k∗τ− A f6k∗lτ)
+n2(−M2 f2ρ+ BM f1l + A f2k∗ρ) + n(BMa f6 − BJ f4k∗ + BM f3m
+B f5k∗m− b f5k∗l + BMa f7τ+ B f6k∗mτ− b f6k∗lτ) + b f2k∗ρ)/(n2∆),
φn = −(n3(M f5kµ− M f5k∗µτ) + M f1lµn2

+n(−B f5k∗l + Ma f6µ− J f4k∗µ+ M f3mµ+ f5k∗mµ
−B f6k∗lτ+ Ma f7µτ+ f6k∗mµτ) + B f2k∗ρ)/(n∆),
αn = (n4(A f5kµ− M2 f5µτ) + A f1lµn3 + n2(−B2 f5k− BM f5l − JM f4µ+ Aa f6µn
+A f3mµ+ M f5mµ+ b f5kµ− BM f6lτ+ Aa f7µτ+ M f6mµτ)
+n(−B2 f1ln + BM f2nρ+ b f1lµn) + b f3mµ− B2 f3m− B2a f6 − B2a f7τ+ ab f6µ
+ab f7µτ)/(n2∆),

where we have dropped the super-indicesn to make easier the presentation, and we denoted∆ =
((µM2 − Ak∗µ)n2 + k∗B2 − bk∗µ).

In view of the convergences off1, f2, . . . , f7 we see thatun, φn andαn satisfy the required conditions.
Hence, we have that zero belongs to the resolvent of the operator

Therefore, in view of the Lumer-Phillips corollary to the Hille-Yosida theorem, we conclude the proof.
2

Thus, we conclude the following existence and uniqueness result.

Theorem 3.2. Assume that U0 ∈ D(A). Then, there exists a unique solution U∈ C1([0,∞);H) ∩
C0([0,∞);D(A)) to system (1) such that the required initial and boundary conditions are satisfied.

We also have the following theorem which states the exponential decay of the solution.

Theorem 3.3. If we assume that l and M are different from zero, then there exist two positive constants
N andω such that

||U(t)‖ 6 N||U(0)||e−ωt .

Proof. To prove this theorem we only need to show that the imaginary axis is contained in the resolvent
of the operatorA and that the asymptotic condition:

lim
|λ|→∞

‖(iλI −A)−1‖ <∞

is satisfied. Our proof follows from the arguments proposed by Liu and Zheng in their book [32]. If
we assume that the imaginary axis is not contained in the resolvent of the operator, then there ex-
ist a sequence of real numbersλn → λ with |λ| > |λn| and a sequence of unitary vectorsUn =
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(un, vn, φn, ψn, αn, θn, ξ) in the domain of the operator such that

iλnun − vn → 0 in H1, (6)

iλnρvn − µD2un − BDφn + lDθn + lτDξn → 0 in L2, (7)

iλnφn − ψn → 0 in H1, (8)

iλnJψn + BDun − AD2φn + bφn − MD2αn − (MτD2 + m)θn

−mτξn → 0 in L2, (9)

iλnαn − θn → 0 in H1, (10)

iλnθn − ξn → 0 in H1, (11)

iτaλnξn + lDvn − MD2φn + mψn − k∗D2αn − kD2θn

+aξn → 0 in L2. (12)

If we take into account the dissipation we obtain thatDθn → 0 in L2. Therefore, we also have that
λnDαn → 0 in L2 andλ−1

n Dξn → 0 in L2. Now, we want to prove thatDφn tends to zero inL2. To this
end, we need to do some steps. The first one is obtained after the multiplication of convergence (9) by
λ−1

n ξn, and so we find thatiJ < ψn, ξn >→ 0. Then, we see that< λnψn, θn > also tends to zero. The
second step follows after multiplication of convergence (12) byφn to obtain:

iλnl < Dun, φn > +M||Dφn‖
2 + imλn‖φn‖

2 → 0.

In order to prove thatDφn tends to zero, it will be sufficient to show that< Dun, φn > tends to a real
number. To show it, we multiply convergence (9) byφn to find that

−J‖ψn‖
2 + B < Dun, φn > +A‖Dφn‖

2 + b‖φn‖
2 → 0. (13)

We see that< Dun, φn > tends to a number with null imaginary part. It then follows that Dφn → 0 in L2.
We have that convergence (13) implies thatψn → 0 in L2. Now, we multiply convergence (12) byλ−1

n ξn

and we find that

iτa‖ξn‖
2 + il < Dun, ξn >→ 0.

Since

< Dun, ξn >= − < un,Dξn >= − lim <
vn

iλn
, λniDθn >= − lim <

vn

i
, iDθn >= 0,

therefore we also obtain that‖ξn‖ → 0.
Now, we want to prove thatDun tends to zero. To this end we multiply convergence (12) byλ−1

n Dun

and we find that

il‖Dun‖
2+ < MDψn + k∗Dαn + kDθn, λ

−1
n D2un >→ 0.
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From convergence (7) we see thatλ−1
n D2un is bounded. It then follows that‖Dun‖ → 0. We only need

to multiply convergence (7) byun to prove thatvn → 0 in L2.
Therefore, we have arrived to a contradiction because we hadassumed that the elements of the se-

quence have a unit norm. Hence, we conclude that the imaginary axis is contained in the resolvent of the
operator.

Now, we need to prove the asymptotic condition. If we assume again that this is not true, then there
exist a sequence of real numbers such that its absolute valuetends to infinity and a sequence of unit
vectors in the domain such that convergences (6)-(12) hold.So, we can use the arguments used above
because we have only required in the proof thatλn does not tend to zero. The proof is complete.2

4. Second system

In this section we analyze the system (2) with the same boundary conditions used in the previous
section but with the following initial conditions:

u(x, 0) = u0(x), u̇(x, 0) = v0(x), φ(x, 0) = φ0(x), φ̇(x, 0) = ψ0(x),
φ̈(x, 0) = ξ0(x), α(x, 0) = α0(x), α̇(x, 0) = θ0(x).

(14)

Again, we assume that
∫ π

0

φ0(x)dx=
∫ π

0

ψ0(x)dx=
∫ π

0

ξ0(x)dx=
∫ π

0

α0(x)dx=
∫ π

0

θ0(x)dx= 0.

Therefore, the integrals ofφ, φ̇, φ̈, α andθ vanish for every time and we can apply Poincare’s inequality.
In this section, we assume that

µ > 0, µb∗ > B2, b∗ > 0, b > b∗τ, ρ > 0, J > 0, a > 0, A > 0,
Ak> M2.

In this case, we can study the existence of solutions in the space:

H = H1
0 × L2 × H1

∗ × H1
∗ × L2

∗ × H1
∗ × L2

∗,

and the inner product is given by

< (u, v, φ, ψ, ξ, α, θ), (u∗, v∗, φ∗, ψ∗, ξ∗, α∗, θ∗) >=
1

2

∫ π

0

(

ρvv∗ + µuxu∗x

+J(ψ+ τξ)(ψ∗ + τξ∗) + B(ux(φ∗ + τψ∗) + u∗x(φ+ τψ)) + τbψψ∗ + aθ2

+k∗αxα∗x + b∗(φ+ τψ)(φ∗ + τψ∗) + A(φx + τψx)(φ∗x + τψ∗
x)

+M(αx(φ∗x + τψ∗) + α∗x(φx + τψx))
)

dx,

whereb = b − τb∗ is positive due to the assumptionb > τb∗. Again, the product is equivalent to the
usual one inH. We can write our problem in the form

dU
dt

= AU, U(0) = U0,
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whereU = (u, v, φ, ψ, ξ, α, θ) andU0 = (u0, v0, φ0, ψ0, ξ0, α0, θ0), and the matrix operatorA is now
given by

A =























0 I 0 0 0 0 0
µD2

ρ
0 BD

ρ
τBD
ρ

0 0 −lD
ρ

0 0 0 I 0 0 0
0 0 0 0 I 0 0

−BD
τJ 0 AD2−b∗

τJ
τAD2−b

τJ −τ−1 MD2

τJ
m
τJ

0 0 0 0 0 0 I
0 −lD

a
MD2

a
τMD2−m

a
−mτ

a
kD2

a 0























.

The domain of this operator is determined by the elements of the Hilbert space such that

v ∈ H1
0 , ψ ∈ H1

∗ , θ ∈ H1
∗ , u ∈ H2,

Mα+ Aφ+ τAψ ∈ H2,

Mφ+ Mτψ+ k∗α ∈ H2.

We also note that

Re< AU,U >=
−b
2

∫ π

0

|ψ|2 dx.

Following the arguments of the previous section it is not difficult to prove that zero belongs to the
resolvent of the operatorA. Therefore, we conclude thatA generates a contractive semigroup and so,
the following existence and uniqueness result.

Theorem 4.1. Assume that U0 ∈ D(A). Then, there exists a unique solution U∈ C1([0,∞);H) ∩
C0([0,∞);D(A)) to system (2) such the required initial and boundary conditions are satisfied.

The remaining objective of this section is to show that the solution to this problem does not decay
uniformly in an exponential way.

Let us suppose that there exists a solution to system (2) withthe above boundary and initial conditions
of the form

u = A∗eωt sin(nx), φ = B∗eωt cos(nx), α = C∗eωt cos(nx), (15)

such that Re(ω) > −ǫ for all positiveǫ small enough. This fact implies that a solutionω as near as
desired to the imaginary axis can be found, and, hence, it is impossible to have uniform exponential
decay on the solutions to problem (2), (5) and (14).

Imposing thatu, φ andα in system (2) are as above, we obtain the following homogeneous system on
the unknownsA∗, B∗ andC∗:





µn2 + ρω2 Bn(τω+ 1) −lnω
Bn Jτω3 + Jω2 + bω+ An2(τω+ 1) + b∗ Mn2 − mω
lnω M(τω+ 1)n2 + mτω2 + mω kn2 + aω2









A∗

B∗

C∗



 =





0
0
0



 . (16)
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This linear system has nontrivial solutions if and only if the determinant of the coefficients matrix is
zero. In that case,ω would be a root of the following seventh degree polynomial:

p(z) = a0z
7 + a1z

6 + a2z
5 + a3z

4 + a4z
3 + a5z

2 + a6z+ a7, (17)

where

a0 = aJρτ,
a1 = aJρ,
a2 = τ

(

n2
(

aAρ+ J
(

aµ+ kρ+ l2
))

+ m2ρ
)

+ abρ,
a3 = n2

(

aAρ+ J
(

aµ+ kρ+ l2
))

+ ab∗ρ+ m2ρ,

a4 = n2
(

τ
(

a
(

Aµn2 − B2
)

+ n2
(

Akρ+ Al2 + Jkµ− M2ρ
)

− 2Blm+ µm2
)

+ b
(

aµ+ kρ+ l2
))

,

a5 = n2
(

a
(

Aµn2 − B2
)

+ b∗
(

aµ+ kρ+ l2
)

+ n2
(

A
(

kρ+ l2
)

+ Jkµ− M2ρ
)

− 2Blm+ µm2
)

,

a6 = n4
(

bkµ− τ
(

µn2
(

M2 − Ak
)

+ B2k
))

,

a7 = n4
(

µn2
(

Ak− M2
)

+ k(b∗µ− B2)
)

.

We want to prove that there are roots ofp(z) as near to the complex axis as desired. Equivalently, we
would prove that, for anyǫ > 0, there are roots located on the right side of the vertical line Re(z) = −ǫ.
So, it will be sufficient to show that there exists a root with positive real part for polynomialp(z− ǫ). We
use the Routh-Hurwitz theorem to show it (see, for example, Dieudonné [34]). It claims that, ifa0 > 0,
then all the roots of polynomialp(z) have negative real part if and only ifa7 and all the leading diagonal
minors of matrix

Ã =





















a1 a0 0 0 0 0 0
a3 a2 a1 a0 0 0 0
a5 a4 a3 a2 a1 a0 0
a7 a6 a5 a4 a3 a2 a1
0 0 a7 a6 a5 a4 a3
0 0 0 0 a7 a6 a5
0 0 0 0 0 0 a7





















are positive. From the assumptions over the coefficients, itis clear thata7 is positive. LetΛi for i =
1, 2, . . . , 7 be the leading diagonal minors of matrix̃A corresponding to polynomialp(z− ǫ).

Direct calculations prove that there existsn large enough that makesΛ2 < 0. In fact, this minor is a
second degree polynomial with respect ton. To be precise,

Λ2 = −2aJρτ2ǫ
(

aAρ+ J
(

aµ+ kρ+ l2
))

n2 + a2Jρ2 (b− b∗τ)− 112a2J2ρ2τ2ǫ3

+ 48a2J2ρ2τǫ2 − 2aJρ2ǫ
(

abτ+ 3aJ+ m2τ2
)

.

Notice that the main coefficient ofΛ2 is negative.
This argument proves that a uniform rate of decay of exponential type cannot be obtained for all the

solutions and, hence, the decay of the solutions is slow.
It is worth noting that in reference [10] the authors proved the exponential stability of the solutions in

the case of type II thermo-porous-elasticity with weak porous dissipation. Therefore, we have seen a dif-
ference in the behavior when we change the usual porous dissipation by the Moore-Gibson-Thompson-
porous dissipation.
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5. Third system

We now consider the third system (3) with the same initial andboundary conditions employed in the
previous section. We also assume the conditions on the initial data forφ0, ψ0, ξ0, α0 andθ0.

In this section we assume the following conditions on the constitutive coefficients:

µ > 0, µb > B2, A∗ > 0, A > A∗τ, ρ > 0, J > 0, a > 0,
A∗k > M2,

and we also use the previous definition for the Hilbert spaceH; however, the inner product is slightly
different:

< (u, v, φ, ψ, ξ, α, θ), (u∗, v∗, φ∗, ψ∗, ξ∗, α∗, θ∗) >=
1

2

∫ π

0

(

ρvv∗ + µuxu∗x

+J(ψ+ τξ)(ψ∗ + τξ∗) + B(ux(φ∗ + τψ∗) + u∗x(φ+ τψ))

+A∗(φx + τψx)(φ∗x + τψ∗)x + τAψxψ∗
x + b(φ+ τψ)(φ + τψ)

+M(αx(φ∗x + τψ∗) + α∗x(φx + τψx)) + aθ2 + kαxα∗x

)

dx,

whereA = A − τA∗ is positive due to the conditionA > A∗τ. The problem is really similar to the one
studied in the previous section but, in this case, the matrixoperatorA is given by

A =























0 I 0 0 0 0 0
µD2

ρ
0 BD

ρ
τBD
ρ

0 0 −lD
ρ

0 0 0 I 0 0 0
0 0 0 0 I 0 0

−BD
τJ 0 A∗D2−b

τJ
τAD2−bτ

J −τ−1 MD2

τJ
m
τJ

0 0 0 0 0 0 I
0 −lD

a
MD2

a
τMD2−m

a
−mτ

a
kD2

a 0























.

The domain of this operator is determined by the elements of the Hilbert space such that

v ∈ H1
0 , ψ ∈ H1

∗ , θ ∈ H1
∗ , u ∈ H2,

Mα+ A∗φ+ Aψ ∈ H2,

Mφ+ Mτψ+ kα ∈ H2,

which is a dense subspace inH. We also have

Re< AU,U >= −
A
2

∫ π

0

|ψx|
2 dx.

Again, we can prove that zero belongs to the resolvent of the operator, and we obtain an existence and
uniqueness result for the solutions to this problem that we state in the following.

Theorem 5.1. Assume that U0 ∈ D(A). Then, there exists a unique solution U∈ C1([0,∞);H) ∩
C0([0,∞);D(A)) to system (3) such that the required initial and boundary conditions are satisfied.
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Now, we prove the main result of this section; that is, the exponential stability of the solutions.

Theorem 5.2. If we assume that l and M are different from zero, then the solutions to the problem
determined by system (3) decay in an exponential way; that is, there exist two positive constants N and
ω such that

||U(t)| 6 N||U(0)||e−ωt.

Proof. The proof follows a structure which is rather similar to the one shown in Theorem 3.3. In this
case, we have

iλnun − vn → 0 in H1, (18)

iλnρvn − µD2un − τBDφn − BDφn + lDθn → 0 in L2, (19)

iλnφn − ψn → 0 in H1, (20)

iλnψn − ξn → 0 in H1, (21)

iJλnξn + BDun − A∗D2φn + bφn − AD2ψn + bτψn + Jξn

−MD2αn − mθn → 0 in L2, (22)

iλnαn − θn → 0 in H1, (23)

iaλnθn + lDvn − MD2φn − τMD2ξn + mψn + mτξn

−kD2αn → 0 in L2. (24)

We note that the dissipation implies thatψn → 0 in H1, and thenλnφn → 0 in H1 andλ−1
n ξn also

tends to zero inH1. If we multiply convergence (24) byλ−1
n ξn, we obtain that< θn, ξn >→ 0 and then

< αn, λnξn >→ 0. Now, we multiply convergence (22) byαn to see that

B < Dun, αn > +M‖Dαn‖
2 − iλnm‖αn‖

2 → 0.

We will conclude thatDαn → 0 if we show that the real part of< Dun, αn > tends to zero. To this end,
we multiply convergence (24) byαn to see that

−a‖θn‖
2 + iλnl < Dun, αn > +k‖Dαn‖

2 → 0.

Then, we have thatRe< Dun, αn >→ 0 and thereforeDαn, θn → 0 in L2.
If we multiply convergence (22) byλ−1

n ξn we get

iτJ‖ξn‖
2 + B < Dun, λ

−1
n ξn >→ 0.

Since< Dun, λ
−1
n ξn >→ 0, it follows thatξn → 0 in L2.

In order to prove thatDun tends to zero, we multiply convergence (24) byλ−1
n Dun to see

il‖Dun‖
2+ < MDφn + τMDψn + kDαn, λ

−1
n D2un >→ 0.
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Moreover, we can see from convergence (19) thatλ−1
n D2un is bounded to obtain thatDun → 0 in L2.

We also obtain from here thatvn → 0 in L2
∗.

Again, we obtain a contradiction and we see that the imaginary axis is contained in the resolvent of the
operator. We can show the asymptotic condition by using the same arguments employed in the proof of
Theorem 3.3 because the key feature is thatλn does not tend to zero. Therefore, the proof is finished.2

6. Fourth system

To conclude the analysis of this paper we consider the fourthsystem (4); however, in order to simplify
the calculations, we modify slightly the boundary conditions in the following form:

ux(0, t) = ux(π, t) = φ(0, t) = φ(π, t) = α(0, t) = α(π, t) = 0,

with the initial conditions:

u(x, 0) = u0(x), u̇(x, 0) = v0(x), ü(x, 0) = d0(x), φ(x, 0) = φ0(x),
φ̇(x, 0) = ψ0(x), α(x, 0) = α0(x), α̇(x, 0) = θ0(x).

In this case, we assume that

∫ π

0

u0(x)dx=
∫ π

0

v0(x)dx=
∫ π

0

d0(x)dx= 0.

Again, the integrals ofu, u̇ andü vanish for every time.
Regarding the constitutive coefficients, we assume that

µ∗ > 0, µ > τµ∗, µ∗b > B2, ρ > 0, J > 0, a > 0, A > 0, Ak> M2,

and we use the Hilbert space

H = H1
∗ × H1

∗ × L2
∗ × H1

0 × L2 × H1
0 × L2,

with the inner product given by

< (u, v,d, φ, ψ, α, θ), (u∗, v∗,d∗, φ∗, ψ∗, α∗, θ∗) >=
1

2

∫ π

0

(

ρ(τd + v)(τd∗ + v∗)

+µvxv∗x + Jψψ∗ + µ∗(ux + τvx)(u∗x + τv∗x) + Aφxφ∗x + bφφ∗ + aθθ∗

+B((ux + τvx)φ∗ + (u∗x + τv∗x)φ) + kαxα
∗
x + M(αxφ

∗
x + α∗xφx)

)

dx,

whereµ = µ − τµ∗ is positive due to the assumptionµ > τµ∗. Again, this product is equivalent to the
usual one inH. As in the previous section, we can write our problem in the form

dU
dt

= AU, U(0) = U0,
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whereU = (u, v,d, φ, ψ, α, θ) andU0 = (u0, v0,d0, φ0, ψ0, α0, θ0), andA being the matrix operator
given by

A =























0 I 0 0 0 0 0
0 0 I 0 0 0 0

µ∗D2

τρ

µD2

τρ
−τ−1 BD

τρ
0 0 −lD

τρ

0 0 0 0 I 0 0
−BD

J
−τBD

J 0 AD2−b
J 0 MD2

J
m
J

0 0 0 0 0 0 I
0 −lD

a − τlD
a

MD2

a −m
a

kD2

a 0























.

We note that the domain of the operatorA is given

d ∈ H1
∗ , ψ ∈ H1

0 , θ ∈ H1
0 , α, φ ∈ H2,

µ∗u+ µv ∈ H2.

We also note that

Re< AU,U >= −
1

2

∫ π

0

µ|vx|
2 dx,

and we can prove that zero belongs to the resolvent of the operatorA by using similar arguments to the
ones proposed in Section 3. Therefore, we can prove thatA generates a contractive semigroup, which
gives us the existence and uniqueness of solutions to our problem. It is stated in the following.

Theorem 6.1. Assume that U0 ∈ D(A). Then, there exists a unique solution U∈ C1([0,∞);H) ∩
C0([0,∞);D(A)) to system (4) such that the required initial and boundary conditions are satisfied.

Our next aim is to prove the exponential decay of solutions tothis problem. To this end, we need the
following lemmata.

Lemma 6.2. The imaginary axis is contained in the resolvent of the operator A.

Proof. As in the previous sections, we assume that the thesis of the lemma is not true. Therefore, there
exist a sequence of real numberλn → λ 6= 0 and a sequence of elements in the domain of the operator
such that

iλnun − vn → 0 in H1, (25)

iλnvn − dn → 0 in H1, (26)

iτρλndn − µ∗D2un − µD2vn + ρdn − BDφn − lDθn → 0 in L2, (27)

iλnφn − ψn → 0 in H1, (28)

iJλnψn + BDun + τBDvn − AD2φn + bφn − MD2αn

−mθn → 0 in L2, (29)
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iλnαn − θn → 0 in H1, (30)

iaλnθn + lDvn + τlDdn − MD2φn + mψn − kD2αn → 0 in L2. (31)

In view of the dissipation we see thatDvn → 0 in L2 and therefore,λnDun → 0 in L2 andλ−1
n Ddn also

tends to zero inL2.
We first note that

Bφn − lθn → 0 in L2. (32)

After the multiplication of convergence (27) byλ−1
n Dαn we get

− < µ∗D2un + µD2vn, λ
−1
n Dαn > +B < Dφn, λ

−1
n Dαn > −l < Dθn, λ

−1
n Dαn >→ 0.

Moreover, since

< µ∗D2un + µD2vn, λ
−1
n Dαn >= − < µ∗Dun + µDvn, λ

−1
n D2αn >

andλ−1
n D2αn is bounded, we obtain that

lim
il
B
‖Dαn‖

2 = lim λ−1
n < Dφn,Dαn > .

The caseB = 0 implies thatDαn → 0 in L2. In the generic case, we multiply convergence (29) byφn to
see that

iλnJ < ψn, φn > +A‖Dφn‖
2 + b‖φn‖

2 + M < Dαn,Dφn > −m< θn, φn >→ 0.

Then,in view of (32)we see that the imaginary part of< Dαn,Dφn > tends to zero. Therefore, we also
obtain thatDαn → 0 in L2. If we multiply convergence (31) byαn we also see thatθn → 0 in L2.

Now, we have to prove thatφn also tends to zero. If we multiply convergence (31) byφn we see

iaλn < θn, φn > +M‖Dφn‖
2 + iλnm‖φn‖

2 → 0.

So we also see thatDφn → 0 in L2 and, after multiplication of convergence (29) byφn, we find that
ψn → 0 in L2. Since we have arrived at a contradiction, the lemma is proved.

2

Lemma 6.3. The operatorA satisfies the following asymptotic condition:

lim
|λ|→∞

‖(iλI −A)−1‖ < ∞. (33)

Proof. Again, we use a contradiction argument. Assuming that the thesis does not hold, there exist
a sequence of real numbersλn such that its absolute value becomes unbounded, and a sequence of
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elements in the domain of the operatorA with unit norm satisfying the asymptotic condition (33). From
the dissipation we find that

λnDun,Dvn, λ
−1
n Ddn → 0 in L2.

If we multiply convergence (27) byλ−1
n dn we see thatdn → 0 in L2. Now, we consider the product of

convergence (27) byλ−1
n Dαn (keeping in mind thatλ−1

n D2αn is bounded), and we get

iτρ < dn,Dαn > −λ−1
n B < Dφn,Dαn > −iρ‖Dαn‖

2 → 0.

The second term clearly tends to zero and

lim < dn,Dαn >= − lim < Ddn, αn >= − lim < λ−1
n Ddn, iθn > .

Thus, we also see that< dn,Dαn >→ 0 and therefore,‖Dαn‖ → 0. Then, we can proceed as in the proof
of the previous lemma to obtain thatθn, Dφn andψn tend to zero inL2. Again, it leads to a contradiction
and the lemma is proved.2

As a consequence of the previous lemmata, we derive the following stability result.

Theorem 6.4. If we assume that l and M are different from zero, then the solutions to the problem
determined by system (4) decay in an exponential way; that is, there exist two positive constants N and
ω such that

||U(t)‖ 6 N||U(0)||e−ωt .
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