
teex
a Toolbox for the Evaluation of Explanations

a bachelor’s degree thesis by
JESÚS M. ANTOÑANZAS [1]

under the supervision of
DR. YUNZHE JIA [2]

tutored by
DR. MARTA ARIAS VICENTE [1]

Data Science and Engineering degree

[1] Universitat Politècnica de Catalunya · BarcelonaTech

FACULTAT D’INFORMÀTICA DE BARCELONA
ESCOLA TÈCNICA SUPERIOR D’ENGINYERIA DE TELECOMUNICACIÓ
DE BARCELONA
FACULTAT DE MATEMÀTIQUES I ESTADÍSTICA

[2] University of Waikato

AI INSTITUTE
DEPARTMENT OF COMPUTER SCIENCE

September 2, 2021

Stamp

Stamp

Stamp

Abstract

In the machine learning (ML) community, models are developed, trained and de-

ployed for many applications. Text-to-speech, product and media recommendation,

medical aiding, environmental protection and many more are examples of current

ML applications. But, more often than not, given the quality requirements for the

applications, these models can become very complex. So complex, in fact, that the

decisions they take are usually not understandable by humans. These are called black

box models.

So, given the clear problem of not trusting models’ decisions because of the rele-

vance of their impact and their low transparency, explanation methods / explainers

were born with the objective of distilling the factors that black box models take into

account when making decisions into ’explanations’, which humans can understand.

There are many categorizations into which explanation methods fall. For example, the

type of explanations they produce, on which models do they work, their mechanisms

for extracting information or if they try to characterize a model’s whole behaviour

(global explanations) or individual predictions (local explanations).

Given the current rise of the field of Explainable AI (XAI), which is driven by

necessity, researchers need a tool to easily and swiftly evaluate the performance of

state-of-the-art explainer methods. On top of current evaluation techniques such as

performing subjective human experiments or manually comparing the quality of ex-

planations, we present a toolbox that will allow to add another layer of credibility to

part of XAI research. The toolbox is aimed at the automatic evaluation of local ex-

planations via comparison to ground-truth explanations. Version 1.0 contains several

evaluation metrics for different explanation types: saliency maps, decision rules and

feature and word importance vectors. Moreover, the library also provides real-world

and artificial data with available ground truth explanations so that users can easily

benchmark local explainer methods.

Keywords— Artificial Intelligence, Explainable Artificial Intelligence, Software

1

Contents

1 Introduction 4

1.1 Into the context . 4

1.1.1 AI everything . 4

1.1.2 Complexity everywhere . 5

1.1.3 On Machine Learning Transparency 5

1.1.4 Explanation methods . 6

1.1.5 Evaluation of explanation methods 9

1.2 Previous work on evaluation software . 10

2 Problem definition: from context to details 11

2.1 Context . 11

2.2 Motivation & justification . 11

2.3 Who teex is for . 12

3 Work objectives 13

3.1 Architectural objectives . 13

3.1.1 Availability (O1) . 13

3.1.2 Plug & play (O2) . 13

3.1.3 Universal API (O3) . 13

3.1.4 Explainer-agnostic (O4) . 13

3.2 Functional objectives . 14

3.2.1 Diverse explanation types (O5) . 14

3.2.2 Diverse quality metrics (O6) . 14

3.2.3 Data availability (O7) . 14

3.3 Quality of life objectives . 15

3.3.1 Test design (O8) . 15

3.3.2 Complete API documentation (O9) 15

3.3.3 Example library (O10) . 16

3.3.4 Open-sourced (O11) . 16

4 teex: meeting the objectives 17

4.1 Architecture . 17

4.1.1 Python as the language of choice (O1) 17

4.1.2 PyPI and Python versions (O2) . 18

4.1.3 Towards a unified API (O3) . 19

4.1.4 Explanations as a proxy for explainer evaluation (O4) 20

4.2 Functionalities . 21

4.2.1 The 4 main explanation types (O5) 21

2

4.2.2 Evaluation metrics & how they can be shared (O6) 23

4.2.3 A whole ecosystem: datasets in teex (O7) 27

4.3 Quality of life measures . 28

4.3.1 Unit testing & error handling (O8) 28

4.3.2 Complete API documentation with Sphinx (O9) 29

4.3.3 Basic example notebooks (O10) . 31

4.3.4 Making teex public (O11) . 31

5 Usage examples 32

5.1 Data classes in teex . 32

5.2 Evaluation in teex . 32

5.3 A more extensive evaluation procedure with teex 33

6 Conclusion 35

7 Appendix 39

3

1 Introduction

1.1 Into the context

This work lies in the edge of current advances in machine learning. So, context is given in

this section for the reader to catch up with the intent of the work and its relevance.

1.1.1 AI everything

These last few years, everything in the field of AI has gained a lot of traction. From

companies trying to incorporate ML into many of their processes to new ones being born

with the premise of solving common problems with these technologies. And, whether

justified or not, this financial drive makes the field one of the most attractive amongst

young people looking into advancing their career prospects. No doubt, AI has transformed

industries and has the potential to do so to many others.

One prime example is the medical industry [9]. In the medical industry, many AI

solutions are appearing for healthcare management, prognosis prediction or risk, amongst

many others.

Figure 1: Examples of applications of AI in the healthcare industry. Source Customer-

Think

Another good example is environmental science. Usually, many issues in this field

arise from complex mechanics which depend on many factors at once and are usually con-

stantly evolving, making analyses harder. The high complexity of these problems makes

AI a good fit for solving them/some, particularly with the enormous computing power

available today, which is one of the big drives behind the rise of AI / ML / DL. To put

4

https://customerthink.com/wp-content/uploads/AI-in-Healthcare.png
https://customerthink.com/wp-content/uploads/AI-in-Healthcare.png

into context this work, this project has been proposed as part of a larger project, TAIAO

(Time-Evolving Data Science and Artificial Intelligence for Advanced Open Environmental

Science, taiao.ai), which focuses on increasing the attention of the community to this field

by creating cutting edge technologies centered around helping the environment in different

ways. From river overflow prediction or automatic critter detection to forest monitoring,

plenty of open sourced projects are being born out of this initiative.

These are only two fields in which AI has application, but there are many. Biological

sciences [21], the automotive industry (see Tesla), agriculture or financial systems are

other examples of fields that are progressively changing towards being AI-centered.

1.1.2 Complexity everywhere

Note From this point forward, we are going to refer to Machine Learning (ML) instead

of AI. ML is the subset of Artificial Intelligence methods that learn from data without

being explicitly programmed to do so. That is, the goal of these methods is to extract

knowledge from data. Ultimately, these methods are the ones addressed within this work,

so referring only to them makes sense.

New ML methods are regularly being developed and adopted by the public. These new

systems are increasingly more able to handle bigger data sets, which more commonly than

not means their complexity also increases (Figure 2). That is, although some exceptions

apply, simpler systems do not usually scale with the amount of data they are to be trained

on. This is a trade-off that, currently, needs to happen if we are to truly take advantage

of our connected world. But ’complexity’ carries some hidden consequences: in many

cases, these ML methods are being implemented as high-stake decision-makers as their

capabilities advance. One might think that if a system has more than enough accuracy,

it should be safe to apply it on any system, but this should not be the case, because we

need to understand the decision-making process of a system if we are to trust it.

1.1.3 On Machine Learning Transparency

As we commented in the previous section 1.1.1, there has been and there is an increasing

number of complex machine learning applications in the real world. The more complex

these systems are, the less transparent they are for us humans. They are black box

models, which means that their decision making process is complexly unknown to us.

So, it only makes sense that, with the adoption of its technologies in production environ-

ments, more and more standards are being put into place to control the possible biases

and inner-workings of these systems. In fact, there are already legal regulations on AI

in the European Union (EUR-Lex - 52021PC0206 - EN - EUR-Lex (europa.eu)). These

5

https://taiao.ai/
https://www.tesla.com/

Figure 2: Number of parameters of state-of-the-art language models throughout the years.

Note the exponential increase in complexity. Source.

regulations are put into place with the intention of understanding how these models be-

have so that, ultimately, we can predict their real life performance and know whether

they are taking reasonable evidence into account when performing predictions (see figure

3). If not put into place, widespread systems could be adopting decisions that we do not

understand, or worse, violating ethical values. For many applications, this is of crucial

importance. And, because ML models are becoming more and more complex, their pre-

dictions and functioning are usually not human-understandable. For this exact reason

explainer/interpretability methods were born. They provide ways for condensing the ‘rea-

soning’ behind a ML model’s prediction, as well as their global (overall) behaviour in some

cases.

1.1.4 Explanation methods

Explanation methods / explainers (from eXplainable Artificial Intelligence or XAI) have

been growing out of necessity. More and more methods are being proposed each month

[2,7,8,16,22,25], because with the rise in popularity of black box ML models, having the

6

https://research.aimultiple.com/gpt/

Figure 3: Imagine we have a ML model that tells whether they contain a husky or a

wolf. It performs quite well on our test dataset, so we might think that it is ready for

production. On a second look, we decide to double check its reasoning with an explainer

method and see that, in reality, the classifier only identifies wolves by looking at the snow

in an image, regardless of the animal in it. Clearly, there is a fundamental flaw in the

classifier’s reasoning and we cannot trust it. Source [19].

system boiled down to its bare essentials is needed for humans to truly trust its predictions.

Here we are going to explain what exactly is as an explanation method and their taxonomy.

An explanation method is any algorithm or system that makes accessible to humans

the underlying logic of black-box ML / AI agents. An explainer can either distill the over-

all logic of a model (global interpretability) or the logic behind particular decisions (local

interpretability). These boiled-down decision processes are referred to as explanations,

and can exist in many different forms.

When we talk about explainers in this work, we are specifically referring to black-box

explainers (there are some ML methods that are intrinsically interpretable, such as Linear

or Logistic Regression), in which the functioning is completely opaque. We now present

several high-level categorizations of explainer methods and explanations.

Explainer methods are usually classified as being:

• Model specific, when they only work on specific model architectures or family of

architectures. For example, GRADCAM [20] only works on CNN-based models.

• Model agnostic, when they work on any machine learning algorithm. They basi-

cally only look at the input data and derive relations with the output of the model.

Modern examples could be SHAP [14] or LIME [19].

The explanations that are generated by the explainer methods also receive their own

categorisations. Mainly:

7

• Global or model explanation: where the overall logic of the model is trying to

be conveyed to the user.

• Local or outcome explanation: where the reasons for a specific outcome are

trying to be explained.

• Black-box inspection: where the aim is to retrieve a visual representation of the

model inner-workings.

And the second one, which is based on the type of explanation that the method pro-

duce, as well as the kind of data they are based on, can be found in figure 4.

Figure 4: Explanation types based on data with which the model works. From [4].

In fact, explainer methods could also be categorized by the type of explanation they

produce, which would be the same categories as in figure 4. Of course, these are the expla-

8

nation types that are popular at the moment. The popularity of the field of explainable

machine learning makes it so that the list will be constructed upon.

1.1.5 Evaluation of explanation methods

Why evaluate explanations? Shortly, there are two main reasons for which one would

want to evaluate explanations.

1. Model quality. Explainer methods exist with the sole purpose of interpreting the

inner workings of black box models. With this in mind, if we assume that the logic

returned to us by the explainer methods accurately represents the model, we can

observe whether the model is making decisions based on good or bad evidence. If we

can distinguish between these two states, then we might have an idea of the model

performance in real life (i.e. its quality and predictive capabilities).

2. Explainer quality. If we are able to quantitatively evaluate the quality of a par-

ticular explainer, we can then compare it to other explainer methods. This provides

a standard benchmark measure that researchers can use in order to show evidence

of superiority between a new explainer method and the previous state-of-the-art, for

example.

Types of evaluation The types of explainer evaluation procedures are usually cate-

gorised as being either quantitative or qualitative.

First, quantitative evaluation measures how close an explanation method can approx-

imate the behaviour of the black box model it’s trying to explain, and they are split into

two completeness measures:

• Completeness with respect to the black box model. Where the evaluation criteria

focuses on measuring how much the explainer method approximates the behaviour of

the black box model. Some metrics that fall in this category are fidelity [28], stability

[26] or faithfulness [3] which measure how much the explainer mimics the behaviour

of the model, how similar are explanations for similar observations, and if importance

scores of feature importance explanations really are important, respectively.

• Completeness with respect to the task at hand. Where the evaluation criteria is

focused on one particular task, like an explanation model in a medical setting or a

continual learning setting. Multiple methods can then be defined as valid for that

specific task.

Secondly, there are the qualitative evaluation measures, which let us understand the

real usability of the explanations. This usability is often bound to the end-user.

9

Another taxonomisation of the evaluation measures was proposed in [6], dividing the

evaluation scene into three sections:

• Application-grounded: where the evaluation requires conducting human experiments

in the context of a real task (i.e. doctors performing diagnosis thanks to the expla-

nations provided).

• Human-grounded: where the evaluation requires conducting human experiments in

the context of simplified tasks. These experiments can usually be performed with

lay humans, as the task does not require domain experts. For example, in [19], the

authors perform experiments of this type, amongst others, to evaluate the quality of

their explanations

• Functionality-grounded: where a formal definition of interpretability is laid down

and proxy tasks are created to evaluate the quality of the explanations, without

involving humans. Experiments of this type are also performed in [19].

1.2 Previous work on evaluation software

Given the evaluation techniques presented in the previous section, we search for software

that already meets teex’s objectives and has a proven community. We have manually

analysed 54 individual open-sourced projects that are currently active and related to the

field of XAI. Out of all 54, only Captum [13] (the interpretability library for PyTorch)

contains some evaluation metrics. But, as it is not its real focus, only contains two

of them: infidelity and sensitivity [29]. Moreover, their API only works on PyTorch

models, and, as we will show in section 3, we want to take a broader approach. The

other 53 projects usually compile existing evaluation metrics (like [15]), implement ex-

plainer methods (like github.com/sicara/tf-explain, [12, 17, 27]) or collect XAI resources

(like github.com/EthicalML/awesome-production-machine-learning). Moreover, we have

performed a greedy search amongst hundreds of XAI projects in order to see if they

contained keywords such as ’evaluation’ and found none that seemed to match our re-

quirements. With this investigation, we arrive at the conclusion that there has been no

attempts at developing a general toolbox for the evaluation of explanations, as all of the

efforts have been until now addressed to the creation of new methods.

10

https://github.com/sicara/tf-explain
https://github.com/EthicalML/awesome-production-machine-learning

2 Problem definition: from context to details

In this section of the work we are going to relate the context of the work with the work

itself, all while giving motivation and justifying the work.

2.1 Context

The rise in machine learning usage by industries and the development of new techniques by

the research community in combination with the huge increase in computational resources

and data availability has created a rise in complexity of the systems implemented. These

systems are increasingly being trusted for higher-stake decisions such as medical prognosis

or social purposes, but their inherent complexity make them opaque to humans: we cannot

interpret their decisions. So, explainability methods come into play by boiling down the

logic of complex, black box models into explanations that humans can understand. The

creation of explanation methods implies that we need to have streamlined and easy-to-

use evaluation techniques, so that we can compare them. teex aims to be a part of the

explanation evaluation scene, in particular of the evaluation of local explanations. The

thought process behind teex can be visually inspected in figure 5.

2.2 Motivation & justification

As we have seen in section 1.1.5, there is a real need in the community for an explanation

evaluation toolbox. Current implementations that can be found online all have the same

issue: segmentation. The metrics and methods implemented in each framework are only

a few. That is, in order to compute a good number of them one has to adapt to multiple

frameworks, which can be very time consuming. Moreover, only a few number of imple-

mentations can be found, so the total number of usable methods is low. On top of that,

usually, implementations are not model agnostic, which means that they are bound to a

specific explainer architecture or explanation type.

All of these problems really come from the fact that if explanation methods are new,

evaluation of explanation methods / explanations is an even more recent field, which im-

plies immature implementations roaming the web and allows the opportunity for a unified,

general framework that is the hub for evaluating explanations.

But, why is the evaluation of explanations relevant in the first place? Intu-

itively, a ML model that achieves competitive predictive performance and makes decisions

based on reasonable evidence is better than one that achieves the same level of accuracy

but makes decisions based on circumstantial evidence (figure 3). Given a mechanism for

extracting an explanation from a model, we can investigate what evidence the model uses

for generating a particular prediction. We consider the explanation to be of high quality if

11

Figure 5: The context of teex and what it solves.

it is based on reasonable evidence and of low quality otherwise, and so, we can attempt to

use explanation quality for many purposes: debugging, inform selection of an appropriate

model, inference of patterns and more. On top of the information that the explanation

quality can give, the evaluation of the explanations also provides a way to quantify the

performance of explanation methods and compare them, thus allowing for direct bench-

marking of new explainer architectures and algorithms.

2.3 Who teex is for

The general evaluation framework presented in this work is aimed primarily at researchers

in the field, not because of difficulty of use, but because the public is not too involved

in the task of evaluating explanations. Researchers are the ones that primarily need the

tools, as they are the ones that would like to know if new explanation methods perform

better than previous ones. This does not mean that a more casual public cannot use

the tool, as it can, for example, be a way for users to pick an explainer amongst others

for different purposes (i.e. for communicating the performance / justifying the results of

models in the best way possible).

12

3 Work objectives

Given the context and the motivation behind the software presented in this work, we lay

down the main objectives that needs to satisfy the first release. We believe that these were

the bare requirements for the software to be functional, leaving lots of room to spare. We

consider that the foundation that these objectives provide is strong enough for there to be

interest in the community, which will bring more metrics and methods, in turn generating

more interest and so on. We are going to assign each objective a code so that we can later

refer to them.

3.1 Architectural objectives

First of all, we refer to the architectural objectives, as the first phase is the design of the

software. This step is crucial, because, as they say, a good abstraction with mediocre

implementation can be usable, but a bad abstraction well implemented is useless.

3.1.1 Availability (O1)

We want teex to be available to as many users as possible. For this, we have to develop

it into an already established ecosystem of ML software. If the software is published on a

platform with many users, then the probability of success is simply greater.

3.1.2 Plug & play (O2)

The installation process of teex and its usability to feel natural. If a framework has a

steep learning curve, then users are simply not going to bother using it. Moreover, the

system installing it should not need to meet a lot of requirements, and the few that exist

must be common enough to be met by the majority of systems. These two requirements

both contribute to a good user experience.

3.1.3 Universal API (O3)

What we mean by universal API (Application Programming Interface) is that once a user

learns the basics of teex, everything else should be common sense. That is, the way to

make teex do all of the things that it can has to be similar enough. This way, teex’s API

feels ’universal’, because everything can be performed inside the same paradigm.

3.1.4 Explainer-agnostic (O4)

Another architectural requirement of teex is its agnosticism. If we want the software

to be general enough, with the vast amount of explainer methods that exist and that

are being proposed each year, teex must not be bound to any particular method. That

is, it has to be explainer-agnostic. If we can meet this requirement, then the software

13

will potentially be used in many more cases, and not just in a few ones that meet some

explainer requirements.

3.2 Functional objectives

Now that the architectural objectives (the foundation of the software) are, we present the

functional objectives, or what functionalities we want the software to have (limited to the

version presented in this work).

3.2.1 Diverse explanation types (O5)

We have seen in section 1.1.4 that we can categorize explanation methods by the different

types of explanations they create. We will later see how this point and the explainer-

agnosticism relate to each other, but for now we want teex to be able to work with a

diverse range of explanation types (not the same as explainer architectures). If we meet

this requirement, then teex will be able to be used in the evaluation of explanations in

different contexts (different types of models, such as language models or object detection

models).

3.2.2 Diverse quality metrics (O6)

If the software is going to be used for the evaluation of explanation, then this evaluation

has to be performed in a quantitative way. So, we need metrics. In fact, one could argue

that the amount and importance of metrics implemented is one of the most important

things for the software. Having a broad enough range of options to choose from makes

the software more helpful in general.

3.2.3 Data availability (O7)

The last functional requirement is related with a fundamental problem for the XAI com-

munity. The issue exists because when one computes explanations via explainer methods,

we cannot compare them to anything. Sure, our human brain knows what to expect and

if something looks wrong in an explanation, but in order to implement automatic eval-

uation, ground truth explanations need to exist. A ground truth explanation (figure 6)

represents how an explanation produced by an explainer should look like. The problem is

that it is often up to manual labour to produce these kinds of explanation, although lately

there have been some efforts to publish more and more data with available ground truth

explanations. With this in mind, we want teex to help the user by providing datasets

with available ground truth explanations. In a sense, teex can become a ’hub’ for this

kind of data, which further expands the user base that it could potentially have.

14

Figure 6: An image and its ground truth explanation: the task for the model is to recognize

dogs, so in an ideal scenario the classifier would only look at the highlighted parts of the

image on the right.

3.3 Quality of life objectives

Quality of life are measures put in place that will lengthen the lifespan of the system. This

can be achieved by many means, so we need to be specific about it.

3.3.1 Test design (O8)

We want all of the features added to the system to be stable. In fact, their design will be

directly created with this objective in mind. But, sometimes, bugs arise in situations that

one did not consider in the beginning. Because of this, we want to have a suite of tests

implemented for every functionality of the software. These tests will allow:

1. faster development by allowing bug-checking to be automated.

2. new features to be added while quickly checking if any previous features were broke

in the process.

3.3.2 Complete API documentation (O9)

In order for users to have a complete view of what the software can do, we want teex

to have a complete usage manual: the API documentation itself. This documentation

will contain accurate descriptions of every method implemented in the software as well as

examples, how they are used, parameter descriptions and data types supported. This API

documentation will allow advanced users to extract the full potential of the software as

well as make clear certain nuisances in its usage.

15

3.3.3 Example library (O10)

We do not want the API documentation to be the first experience users have of teex.

Instead, another objective is to create a library of basic usage examples. This library

will be simple enough so that new users can understand the purpose and basis of the

software and allow them to start using it in their own projects. The library will not

contain advanced usage and will not even provide examples of all the functionalities (as of

the first released version). For that, users will have to go to the full API documentation.

3.3.4 Open-sourced (O11)

The last QOL measure is making the software open-sourced. This is not done arbitrarily:

we want teex to grow with the community and users to be able to add their own function-

alities if they like. We believe that the project might be too big for 1 person to manage,

as implementing evaluation metrics, finding datasets, fixing issues and adding requested

functionalities are only a few tasks that will need to be repeatedly done once the software

is published and the community grows. Moreover, the community will decide in which

direction teex should move in terms of purpose. Other advantage of open-sourcing the

project is forking: versions can branch from the one presented in this work and maintained

separately from this one, which is sort of a redundancy measure in case one does not work

out. Moreover, another version might focus on other aspects and they all could become

part of an ecosystem of explanation evaluation software packages.

16

4 teex: meeting the objectives

Now that the initial requirements and objectives of the project have been laid out, we

show how we have solved and implemented each. Before that, though, we would like to

justify a design choice. In particular, we decided that it would not make sense for teex

to be have a graphical interface: in many cases, researchers use software pieces that are

available in programming libraries and not as standalone programs. So, because we want

teex to seamlessly work in the same ecosystem as these libraries, we have decided that

teex needed to be a software library itself, in which methods are accessible as part of

a programming language ecosystem. Also, note that we are not going to go into fine

details because (1) it is not our purpose and (2) the document would be hundreds of pages

long. Instead, we want the reader to have a general idea of how teex is build, its internal

mechanism and some other things. With that said, let’s move on.

4.1 Architecture

4.1.1 Python as the language of choice (O1)

The popularity of Python is undeniable. It contains a plethora of libraries for scientific and

industrial purposes. Although its speed is often questioned, its ease of use often trumps

other disadvantages it may have. In particular, Python is huge in the field of AI / ML

research, XAI included. One quick search shows us that Python is the preferred language

for a big part of programmers, even more for researchers (figure 7). This has made us

decide to use Python as the programming language of choice for the development of teex.

Figure 7: Top programming languages as of 2021, mainly for IEEE users: a representative

sample of our target users. A global programming language ranking does not make sense

in this context, as there are many applications unrelated to our purpose and many users

that do not fit the target demographic. Source IEEE language ranking

17

https://spectrum.ieee.org/top-programming-languages/

4.1.2 PyPI and Python versions (O2)

In order to make teex available to as big of a part of the community as possible we have

decided to publish it on the Python Package Index (PyPI). PyPI hosts the majority of

available Python packages and provides a super simple command-line-interface for users to

install available software. Building the package (transforming separate files into a usable

library) so that it can be uploaded to PyPI needs a few steps. We use Python’s own

setuptools library to build the package. First and foremost, the package needs to be

properly tested and error-free. Then, two files need to be created into the project:

1. setup.cfg. This file needs to contain with all the information for the Python builder

to work. The setup file includes information like the package version, author, contact

details, labels for the package, relevant URLs or Python version required in the

systems. The builder will assign all of this metadata to the built package.

2. pyproject.toml. This file is first read when ’building’ the package and it contains

the requirements for the builder itself, not for the package that is building.

Once the package is locally built, the only thing left is to identify ourselves in PyPI

and upload the project via CLI. Note that PyPI will host all of the software versions

independently so that users can use whichever they like. Moreover, the name teex is

forever reserved on the index, even if one happens to delete the project accidentally. A

direct link to the PyPI teex entry is pypi.org/project/teex/.

All in all, the huge advantages of having the software hosted on PyPI is that all Python

users use it and its ease of installation (figure 8).

Figure 8: teex as portrayed in its PyPI entry. A single line of code in the terminal and

the library is ready to import and use in any project (pip install teex).

In order to be more accessible to users, we have decided to support versions of Python

≥ 3.6. This has been done via builtin tools in the IDE used to code the software: PyCharm.

It automatically tests which versions are compatible with the software that one is writing,

and we have made sure that all versions from 3.6 are good to go. The current version is

18

https://pypi.org/project/teex/

3.10, so we believe that almost all of our users will have a compatible version. Moreover,

this is the version that the most popular AI packages, such as Pytorch [18], Tensorflow [1]

or Keras [5] support.

4.1.3 Towards a unified API (O3)

We have designed the user API of teex so that it is simple to use and learn. On a

high-level, teex is fundamentally split into modules. In particular, each module contains

methods related to an explanation type (more about this in section 4.2.1). Each module,

though, contains two sub-modules: the evaluation eval and the data sub-modules. The

reasoning behind each sub-modules is the following:

• eval: contains evaluation methods.

• data: contains data classes with available g.t. explanations of that particular expla-

nation type, both synthetic and real.

This first segmentation of teex allows the user to grasp a common structure: for a

particular explanation type, one needs to go to a specific module and use the sub-module

eval or data depending on whether one wants to get data or evaluate explanations. Note

that this segmentation also allows future collaborators to have a clearer view of where im-

plementations for specific explanation types should go in the project: everything is clearly

categorized. See figure 9 for a conceptual view of teex.

Figure 9: Highest abstract view of teex, subdivided into modules for each explanation

type supported. Each module contains two sub-modules, one dedicated to evaluation and

the other for data procurement.

Another design choice that allows for a better user experience in teex is the fact that

in each eval sub-module there is exists one method that is able to compute all of the

evaluation metrics available for that particular explanation type. Moreover, the usage

19

https://pytorch.org/
https://www.tensorflow.org/api_docs/python/tf
https://keras.io/

syntax of this method is the same across the eval sub-modules, i.e. works the same way

regardless of the explanation type that it is processing. These two facts allow for a better

user experience (because all metrics can be computed with just a function call) and for

software scalability, as metrics are all contained and not sparsely implemented. See figure

10 for a high level view of the intended architecture of the eval modules and 11 for the

data modules.

Figure 10: High level view of the intended architecture of the eval modules. Ideally, the

user makes calls to a single method, which in turn calls individual evaluation metrics and

combines the information in a nice package, which is lastly returned to the user.

Lastly, similar to the evaluation metrics, the methods in the data sub-modules also

are implemented to work almost the same across explanation types. That is, they all are

all implemented in the same way and designed to returned data in the same way. In par-

ticular, datasets are implemented as classes. For a user to retrieve data from a particular

dataset, the object has to be instanced. If the dataset is to be retrieved, it will automati-

cally download from the web if it does not exist in the machine, and when the user slices

the instanced object it will return the desired data observations, labels and ground-truth

explanations, respectively. This procedure is illustrated in figure 12.

4.1.4 Explanations as a proxy for explainer evaluation (O4)

The last architectural objective is for teex to be explainer agnostic. The way we have

achieved this objective is by focusing our attention on not the evaluation of explainer

methods themselves, but on explanations. In particular, local explanations. As a re-

minder, local explanations represent the thought process behind a model’s prediction for

a particular observation. The majority of local explanation methods generate explanations

20

Figure 11: High level view of the intended architecture of the data modules. The user

calls the desired data method, which in turn are supported by utility functions. We did

not find appropriate for a single API call to return for any dataset, because each dataset

has its own unique characteristics, and that may make things more complicated rather

than easier for the user.

of similar types regardless of their architecture (more in section 4.2.1), and the quality

of the explanations produced by an explainer is directly correlated with the quality of

the explainer method itself. So, by evaluating local explanations we have a system that is

explainer agnostic and not only evaluates individual local explanations, it also can be used

to evaluate explainer methods themselves via induction. As it is, teex is based on this

premise: evaluating local explanations by comparing them to ground truth explanations.

4.2 Functionalities

4.2.1 The 4 main explanation types (O5)

So, if teex is to support specific local explanation types, which ones should they be? We

have based our choosing criteria mainly on popularity and diversity of data from where

these explanations can be derived. Looking at figure 4, we see that local explanations can

be generated from different data types: tabular, image and language data. Based on this

segmentation, we have chosen Feature Importance vectors, Saliency Maps, Decision Rules

and Word Importance vectors as the explanations supported in the first version of teex.

We are not going to go into implementation details because that would be too lengthy, but

we are going to say how each explanation type is internally represented. Let’s elaborate

on each.

• Feature Importance vectors. They are vectors with one entry per feature. Each

21

Figure 12: High level procedure of data retrieval for any data class in teex.

entry contains a weight that represents a feature’s importance for the observation’s

outcome. Weights are usually in the range [-1, 1]. Popular feature importance model-

agnostic explainers are, for example, SHAP [14] (figure 13) or LIME [19]. Because

weights in each feature importance explanation method represent slightly different

things, we make the assumption that they all mean roughly the same if they are in

the same range (so that we want to compare methods). teex performs this mapping

automatically if necessary.

Feature Importance vectors are treated as float numpy arrays by teex.

• Decision Rule explanations. A Decision Rule is a conjunction of statements that, if

holds true, implies a result. For example, a decision rule could be: ”if it is white and

it quacks, then it’s a duck”. There are two statements in this rule (1-”if it is white”

and 2-”if it quacks”), which if they both hold true imply that what I am seeing is,

indeed, a duck. In the context of tabular data, decision rules explanations contain

statements regarding the values of the features for specific observations, and the

result implied by the rule is usually a statement about the target’s value (i.e. target

will be ≥ 5). In teex, Decision Rule explanations are implemented as standalone

objects, and multiple routines for conversion of strings or other common decision

rule representations to our proprietary decision rule objects have been provided. We

have decided to implement our own Decision Rule class because it provides flexibility

for the implementation of evaluation metrics and data generation routines.

• Saliency Maps. A saliency map is an image that shows each pixel’s unique quality.

In our context, each pixel (feature) contains a score (in the ranges [-1, 1] or [0, 1]

as with feature importance explanations) that represents a likelihood or probability

of each pixel belonging to a particular class. See figure 15 for an example of a

saliency map explanation. In teex, saliency map explanations are represented the

22

same way as feature importance explanations but in 2D, that is, as float numpy

arrays. Saliency maps are one of the most relevant explanation types, as they are

very human-ready and because of the popularity of ML image models across the

industry.

• Word Importance explanations. These explanations are used to explain predic-

tions in the context of sentences. For each word in a sentence / paragraph / text

(observation in general), there is a weight associated that represents its importance

in the context of the model issuing a particular prediction (figure 14). For example,

in a language detection model, these weights would represent how important is each

word for the prediction of that sentence being in a particular language. In teex,

word importance vectors are represented as dictionaries, with each key being a word

in an observation and each value being its associated weight.

Remember that, for each of these explanation types, teex has associated quality eval-

uation metrics and available datasets.

Figure 13: An example of a SHAP feature importance explanation. Each feature of an

observation (names on the vertical axis) is assigned a weight (numbers on top of the colored

blocks) that represents how much that feature contributed to the prediction of the model

(f(x)). Note the negative weights. Source: Medium.com.

4.2.2 Evaluation metrics & how they can be shared (O6)

For each of the explanation type presented in section 4.2.1, we present the metrics that

we have decided to include in the first version of teex. In table 1, one can find the ab-

23

https://medium.com/dataman-in-ai/the-shap-with-more-elegant-charts-bc3e73fa1c0c

Figure 14: A word importance explanation. The text could be in the category ”Computer

Science”, and the weights would represent how important those words are for the catego-

rization of the text into that category. Words that do not appear in the explanation have

0 importance.

Figure 15: An image observation next to the saliency map explanation (overlaid on top

of the original image). Warmer colors represent a higher score for that particular pixel,

which means that the model looked more at that spot for the prediction of a dog being in

the image.

breviation of each metric and the explanation type it is related to, which means that it

is implemented in its respective eval module. Before going into further detail about the

available metrics, we need to first explain one key concept teex takes advantage of.

The universality of explanations in teex. In teex, all explanation types share

metrics. This is made possible by the fact that we can transform all explanation types

into a common representation: a feature importance vector. This way, the metrics imple-

mented for standard feature importance vectors are automatically made available to other

explanation types, adding variety to the quality metrics that one can use to evaluate a

system. But, how exactly is this translation performed for each explanation type? Lets

see it.

• Saliency Maps into Feature Importance vectors. In saliency maps, each pixel

has a weight associated to it. So, we can interpret each pixel as a feature. This way,

the saliency map is just a 2D feature importance vector, which we can flatten and

transform into a standard feature importance explanation.

24

Explanation Type Metrics available

Feature Importance F1, AUC, cs, prec, rec

Decision Rule crq, F1, AUC, cs, prec, rec

Saliency Map F1, AUC, cs, prec, rec

Word Importance F1, AUC, cs, prec, rec

Table 1: Metrics available on the first release of teex for each explanation type. Notice

how many metrics are shared amongst explanation types.

• Decision Rules into Feature Importance vectors. Given the set of all features

in a particular dataset, a decision rule associated with that dataset can be trans-

formed into a feature importance vector. We create a vector with as many entries

as the number of features, where each entry contains a 1 if the decision rule being

translated contains a statement related to that particular feature and 0 otherwise.

See figure 16 for a graphical example.

• Word Importance into Feature Importance vectors. In a similar way to

saliency maps, in word importance explanations, each word represents a feature.

Moreover, similar to decision rules, imagine that there exists a vocabulary of words

(may be all of the words in the ground truth explanation). A word importance

vector will be translated into a feature importance vectors by putting 1s in the vector

entries, which represent the fact the the word importance explanation contained that

particular word, and 0s otherwise.

Figure 16: Translation of a decision rule to a feature importance explanation. In this case,

the features in the dataset are ”height”, ”weight” and ”age”. This particular explanation

does not contain ”age” in any statement, so its feature importance representation contains

a 0 in its third entry.

Now that we know about the ’universal’ explanation representation, we can go into

further detail about the implemented metrics.

• AUC (ROC AUC). A classification metric. Given prediction scores that represent

the likelihood or probability score of a feature pertaining to a given class, we com-

pute the ROC AUC with respect to the ground truth explanation values, which are

binarized to represent classes. ROC AUC is a measure of the performance of a clas-

sification system. A value of 1 indicates a perfect classifier, while 0.5 corresponds to

25

a random classifier. In order to compute this metric, one computes or approximates

the area under the Receiving Operating Curve. We do not describe the procedure

as it is out of scope.

• cs (Cosine Similarity). A metric that measures how similar two vectors that

pertain to the same subspace are to each other in terms of orientation. A value of

-1 means that they are perpendicular to each other, while a value of 1 means that

the vectors are parallel. Note that this measure only takes into account orientation

and not direction.

similarity(A,B) = cos(θ) =
A ·B
‖A‖‖B‖

• prec (Precision). In the classification setting, the precision is the percentage of

correct positive predictions with respect to the total number of positive predictions

made by a classifier. In a binary vector, this translates to the percentage of correct

1’s predicted by the classifier with respect to the total number of 1’s predicted.

precision =
True Positive

True Positive + False Positive

• rec (Recall). In the classification setting, the recall is a measure of how many

correct positive predictions the classifier has issued with respect to the total number

of true positive predictions. In a binary vector, this translates to the percentage of

correct 1’s predicted by the classifier with respect to the number of 1’s in the ground

truth vector.

recall =
True Positive

True Positive + False Negative

• F1 (F1-score). A harmonic average of precision and recall. This is a classification

metric, so both the predicted and the ground truth explanations need to be binary.

F1 = 2 · recall · recall

recall + recall

• crq (Complete Rule Quality) [10]. A metric exclusive to decision rules. It is

defined as the proportion of lower and upper bounds in a rule explanation that are

very close to the respective lower and upper bounds (same feature) in the ground

truth rule explanation amongst those that are 6=∞. This metric does not take the

absence of a feature in the predicted decision rule into account: only the features

that do appear are important. Mathematically, given two rules e, ẽ and a similarity

threshold ε, the quality of e with respect to ẽ is:

26

q(e, ẽ) =
1

N6∞

|e|∑
i=1

δε(ei, ẽi),

where

δε(ei, ẽi) =

1 if |ei − ẽi| ≤ ε ∧ |ei| 6=∞∧ |ẽi| 6=∞,

0 otherwise

Where N6∞ is the number of lower and upper bounds that are different from ∞ in

both e and ẽ.

Now that an overview of the implemented metrics has been given, we’d like to take

a moment to talk about binarization. Many of the metrics presented are classification

metrics. So, when they are computed, teex automatically does all of the work. One thing

that it cannot do, though, is decide a binarization threshold (values which > than it will

be set to 1 and 0 otherwise). This is an important hyperparameter for the computation

of metrics, then.

4.2.3 A whole ecosystem: datasets in teex (O7)

The problem of data availability. As we have seen, we need ground truth explanations

in order to evaluate the ones created by explainer methods. Again, this premise is what

teex is ultimately based on. The problem is that, with almost all data sets available

today, ground truth explanations are very hard to get. For example, if we want Saliency

Map ground truth explanations (where individual pixels have class importance, further

explained in section 4.2.1), an expert would have to manually label the areas where he/she

thinks is of importance to the relevant class, for all of the images. Moreover, even when

these datasets are created, there is no standard repository that categorizes whether a

dataset has available ground truth explanations or not.

This is why we have decided for teex to include datasets, particularly all of them with

available ground truth explanations. This will allow users to directly jump into using the

evaluation metrics. All of the datasets are contained in their respective data sub-modules

(depending on the type of the ground truth explanation). Now we explain the datasets

available in this first version of teex.

Feature Importance datasets. An artificial binary classification dataset users can

generate samples from. The procedure for generating the samples is the following: first,

create observations from normal distributions and then add noise to those observations.

Then, generate a random linear expression and classify the previous observations depend-

ing on wether they fall on one side or another of the hyperplane generated by the linear

27

expression. Finally, the ground truth explanation is generated as the gradient of linear

expression evaluated at the point closes to the decision boundary (and of the same class

as the observation we are computing the explanation for). Described in [10].

Decision Rule datasets. As with feature importance, the decision rule dataset

included in this version of teex is artificially generated. The procedure of generation

comprises three steps. First, generate data from a normal distribution. Than, train a

decision tree on that data. Finally, extract the ground truth explanations as the decision

paths learned by the decision tree. Again, this was described in [10].

Saliency Map datasets. teex provides two datasets with available ground truth

explanations. The first one, presented in [11], contains aerial images of forests in New

Zealand. The task is to tell whether the pictures contain a certain tree species (the

Kahikatea) or not. The ground truth explanations have all been labeled by experts (figure

17). The second dataset is artificially generated. It again is a binary classification dataset,

in which only an adjustable proportion of samples contain a randomly generated pattern.

A sample is of class 1 if it contains the pattern and 0 otherwise. The ground truth expla-

nations are images with the areas where the pattern appears highlighted (figure 18). This

method was also presented in [10].

Word Importance datasets. teex provides one word importance dataset. It is a

version of the famous ”Newsgroup” dataset, which contains emails classified as pertaining

to different themes. This version of the dataset has 187 observations, and each observa-

tion pertains to one of two classes. The ground truth explanations are presented to the

users as dictionaries with words as keys and their importance for the prediction as val-

ues. This dataset has been extracted from github.com/SinaMohseni/ML-Interpretability-

Evaluation-Benchmark.

Note that all artificial data generators can be easily customised by the end user, and

they are seedable for reproducibility. All of these data set classes have methods so that

the user can retrieve basic information about the dataset such as the classes it contains or

the number of observations in it.

4.3 Quality of life measures

Quality of life objectives are meant to extend the lifespan of teex.

4.3.1 Unit testing & error handling (O8)

We provide developers with a suite of unit tests. These can be run with a single script call

and will test all of the described evaluation metrics and dataset classes, for all explanation

28

https://github.com/SinaMohseni/ML-Interpretability-Evaluation-Benchmark
https://github.com/SinaMohseni/ML-Interpretability-Evaluation-Benchmark

Figure 17: Sample of the Kahikatea dataset, containing a total of 519 labeled observations.

To the left is the ground truth explanation, with the endemic Kahikatea trees highlighted.

Figure 18: Sample of artificially generated saliency map data. The explanation on the

right highlights where the hidden pattern is in the image. That pattern will also appear

in a proportion of the samples.

types. The suite used to implement them is Python’s builtin unittest. Basically, each

test is meant to test a functionality of the software (i.e. a dataset class), and is subdivided

into atomic tests which are not dependant on each other (one tests the downloading part

of the dataset, the other the unzipping, another the indexing and so on). This way, all

functionalities are tested and the results do not depend on whether other things work or

no. These tests are not presented as part of the library to the end user, as they are part

of the developer’s toolkit.

Moreover, because we wanted debugging to be easy when developing for teex, we

have implemented custom errors that are raised when anything goes wrong. Custom error

classes allow us to have a more descriptive explanation of what caused the error and how

it can be fixed.

4.3.2 Complete API documentation with Sphinx (O9)

Because we want teex to be built upon, there exists the need for extensive code documen-

tation. We have decided to use Sphinx, a documentation generator that is based on the

29

https://www.sphinx-doc.org/en/master/

ReStructuredText (RST) grammar. If one documents the methods following RST gram-

mar (in the code itself), then Sphinx can be applied almost off-the-shelf to automatically

generate formatted code documentation.

Then, we have documented all methods following RST grammar. This markdown-

like grammar allows to specify a method’s description, input parameters (and their types

and descriptions), as well as inline examples and returned objects and their type, all

while supporting the insertion of inline code, LATEXmath grammar and hyperlinks between

methods and data classes. See figure 19 for an example.

Figure 19: On top, specification of a method’s documentation string on the source files.

On the bottom, the corresponding Sphinx representation.

30

The generated final documentation is not private, though. It is hosted on Read The

Docs (teex.readthedocs.io) for everyone to access. Moreover, for completeness, it can be

found in the Appendix of this document.

Note that the project contains upwards of 3000 lines of code, many of which do not

belong to public methods (they are utility functions or custom error classes, for example),

which means that they do not appear on the API documentation published on Read The

Docs. We encourage curious users to look at the code base (find it in section 4.3.4).

4.3.3 Basic example notebooks (O10)

Because the API documentation is not a good place for first time users to start at when

using teex, we have provided Python interactive notebooks with basic usage examples

of the library. These comprise evaluation and generation of explanations of the different

supported types. They can be found alongside with the code. See section 4.3.4 for more

information on where to find it.

4.3.4 Making teex public (O11)

The last QOL objective was for teex to be open sourced. This would allow the community

to more actively participate in the development of teex, as well as pointing out issues and

adding functionalities. We have decided to host it on GitHub (github.com/chus-chus/teex)

for three reasons:

• Popularity. GitHub is arguably the best-known open source platform. More users

imply more interaction.

• Familiarity. We simply know how to use GitHub to its fullest extent. We are not

so familiar with other platforms.

• Web hooks. Web hooks are actions that are triggered in a particular website when

an action on GitHub is triggered. In our case, the API documentation hosted on

Read The Docs is automatically rebuilt when new code is pushed to teex’s GitHub

repository, which saves us a lot of time.

The entirety of the source code is hosted on GitHub, including configuration files,

utility functions, unit tests, requirements and example notebooks. This way, cloning

(downloading) the repository will suffice for other developers to build and test their own

functionalities, which can then be added on top of teex if desired.

31

https://teex.readthedocs.io/en/latest/index.html
https://github.com/chus-chus/teex

5 Usage examples

In this section we provide basic usage examples of teex. Similar and more examples can

be found the Github repository.

5.1 Data classes in teex

As we have previously said, all of the data, be it artificial or from the real world, is in its

core a Python class. These classes have all been implemented to behave in the same way

for the end user. An example of retrieving data with teex can be found in figure 20.

Figure 20: Retrieving observations from the Kahikatea dataset. The user first imports the

method from the appropriate sub-module. Then, an instance of the data is created. In

this case, because it is not an artificial dataset, teex will take care of checking if the files

exist (and are not corrupted) in the system already, downloading it and pre-processing so

that they can be readily loaded into memory. Finally, the user slices the instanced object

to obtain the data. The obtained observations and explanations in this example have been

shown in figure 17.

All data classes in teex return, respectively, the data observations, the target values

and the ground truth explanations when sliced. They all work the same way! The slicing

syntax has been implemented so that it works as with any other sliceable object in Python.

Another feature of data classes in teex is that when instanced, not all observations are

loaded into memory at once. Only the ones requested by the user (in this case 100

observations from the 30th to the 130th) will be loaded into memory, which can save lots

of memory depending on the magnitude of the dataset.

5.2 Evaluation in teex

Let us emulate an evaluation setting. Imagine that we have the data obtained from the

Kahikatea dataset as in figure 20. The explanations, then, are saliency maps. Let us

assume that we also have explanations created by a ML model trained on the data, and

these happen to perfectly match the ground truth explanations. we can evaluate the

metrics like in figure 21. The syntax is followed by all of teex’s eval sub modules:

• Feature Importance: feature importance scores

32

• Saliency Maps: saliency map scores

• Decision Rules: decision rule scores

• Word Importance: word importance scores

Figure 21: Computing evaluation metrics for the emulated scenario where predicted ex-

planations equal ground truth explanations (follows the example on figure 20).

Note that each high level evaluation method has many customization options. For

example, if the user wants to average the metrics across all explanations or not, or what

the binarization threshold (mentioned in section 4.2.2) should be. For more details, please

refer to the API documentation.

5.3 A more extensive evaluation procedure with teex

In this section, we go further from bare basic usage and provide a more complete example

of the functionalities of teex. The source for this experiment can be found in the GitHub

repository. The procedure for the experiment has been the following:

1. Data generation. First, we generate synthetic 5000 image samples with available

saliency maps g.t. explanations. We generate them so that half of them contain a

pattern and half of them not. We split the data into train, validation and test.

2. Training the model. We program and train a Deep Learning model so that it

detects the hidden pattern in the images (with 0.99 F1 in validation and 0.98 F1 in

test).

3. Generating test explanations. We generate local explanations from the test

data via different explainer methods. In particular we use the following methods

from Captum, a library that compiles interpretability techniques for Pytorch models:

Gradient SHAP [14], Integrated Gradients [24], Occlusion [30] and DeepLift [23]. See

a sample for the generated explanations in figure 22. The explanations are computed

only for the test set because the model has never seen it and will make the model

behave the way it would on new, unseen data (i.e. its true performance, without

overfitting).

33

technique auc fscore prec rec cs

gradSHAP 0.489231 0.117196 0.062264 0.995251 0.246058

intGrad 0.481442 0.117204 0.062268 0.995319 0.245174

deepLift 0.454612 0.117253 0.062294 0.995732 0.242507

occlusion 0.489906 0.117245 0.062290 0.995664 0.238931

Table 2: Averaged evaluation metrics for the saliency map explanations generated in the

experiment of section 5.3. We see how DeepLift seems to outperform the other techniques

in this particular case. The scores, though, are very similar, probably due to the limited

capabilities of the classifier itself.

4. Evaluation of explanations. Finally, we evaluate the quality of the explanations

generated with respect to the available ground truth explanations. See table 2 for

the results.

For more experiments and examples, we urge the reader to visit teex’s GitHub repos-

itory.

Figure 22: Generated explanations via different methods next to the observation they

were based on and its associated ground truth explanation.

34

6 Conclusion

In this work, we have presented teex, a Python toolbox for the evaluation of local ex-

planations. The evaluation procedure is performed via comparison to ground-truth expla-

nations. We have described the quality metrics that teex is able to compute, as well as

the types of explanation types it supports as of the first release: feature importance vec-

tors, saliency maps, decision rules and word importance vectors. We have also described

how teex has the potential to act like a ’hub’ of datasets with available ground truth

explanations. These kind of datasets are hard to find, and usually are not readily usable.

With teex, users can start using these datasets with as little as 2 lines of code. The

evaluation procedure is also extremely simple, as teex is responsible for all of the caveats

(data format, data transformation, error handling or metrics recollection, amongst others)

that an end user should not have to worry about. We have also presented background

information, explained the high level architecture of teex, its functional components and

the most important quality of life measures that we have put into place.

teex is the first piece of software that we know of with the described purposes. It

is the first of its kind, and we really believe has the potential to expand into something

bigger and be useful to XAI researchers because of (1) the novelty of the work and (2)

its growth potential given the increasing importance the XAI field is gaining. Because

of these reasons, the work has been made open-source, so that the community can par-

ticipate in the development of teex if wanted. We have also created plenty of resources

for first-time users to learn how teex works: an initial guide with installation instruc-

tions and an overview of the API, several Python notebooks with sample experiments and

usage of the library, and a full API documentation guide. The software is available on

github.com/chus-chus/teex and the API documentation on teex.readthedocs.io.

We are very satisfied with the work and will continue working on features such as

implementing more evaluation metrics, compiling new data sets, giving support to other

explanation types. Moreover, at the time of writing this, we are preparing an article

presenting the software for the Journal of Machine Learning Research, in particular the

Open Source Software Track. This work has been a process of, above all, learning. First,

diving head-first into the field of XAI, which we were not familiar with in any way. Then,

software development with Python, which is something that we would not have imagined

doing, but has ended up being fun and challenging and will certainly be of use in the

future. We are excited to continue working on this project so that it receives attention

from the community.

35

https://github.com/chus-chus/teex
https://teex.readthedocs.io/en/latest/index.html
https://www.jmlr.org/mloss/mloss-info.html

References

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,

Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Ra-

jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay

Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Mar-

tin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Large-scale machine learning

on heterogeneous distributed systems, 2016.

[2] Rishabh Agarwal, Nicholas Frosst, Xuezhou Zhang, R. Caruana, and Geoffrey E.

Hinton. Neural additive models: Interpretable machine learning with neural nets.

ArXiv, abs/2004.13912, 2020.

[3] David Alvarez Melis and Tommi Jaakkola. Towards Robust Interpretability with

Self-Explaining Neural Networks. In S Bengio, H Wallach, H Larochelle, K Grauman,

N Cesa-Bianchi, and R Garnett, editors, Advances in Neural Information Processing

Systems, volume 31. Curran Associates, Inc., 2018.

[4] Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino Pe-

dreschi, and Salvatore Rinzivillo. Benchmarking and survey of explanation methods

for black box models, 2021.

[5] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[6] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine

learning. arXiv: Machine Learning, 2017.

[7] Jerome H Friedman and Bogdan E Popescu. Predictive learning via rule ensembles.

The Annals of Applied Statistics, 2(3):916–954, 2008.

[8] Kary Främling. Explainable ai without interpretable model. 09 2020.

[9] Emilio Gómez-González, Emilia Gómez, Javier Márquez-Rivas, Manuel Guerrero-

Claro, Isabel Fernández-Lizaranzu, Maŕıa Isabel Relimpio-López, Manuel E. Dorado,

Maŕıa José Mayorga-Buiza, Guillermo Izquierdo-Ayuso, and Luis Capitán-Morales.

Artificial intelligence in medicine and healthcare: a review and classification of

current and near-future applications and their ethical and social impact. CoRR,

abs/2001.09778, 2020.

[10] Riccardo Guidotti. Evaluating local explanation methods on ground truth. Artificial

Intelligence, 291:103428, 02 2021.

36

https://github.com/fchollet/keras

[11] Yunzhe Jia, Eibe Frank, Bernhard Pfahringer, Albert Bifet, and Nick Lim. Studying

and Exploiting the Relationship Between Model Accuracy and Explanation Quality.

Not Published.

[12] Janis Klaise, Arnaud Van Looveren, Giovanni Vacanti, and Alexandru Coca. Alibi

explain: Algorithms for explaining machine learning models. Journal of Machine

Learning Research, 22(181):1–7, 2021.

[13] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh,

Jonathan Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan,

and Orion Reblitz-Richardson. Captum: A unified and generic model interpretability

library for pytorch. 09 2020.

[14] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predic-

tions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, editors, Advances in Neural Information Processing Systems 30,

pages 4765–4774. Curran Associates, Inc., 2017.

[15] Sina Mohseni, Niloofar Zarei, and Eric D Ragan. A multidisciplinary survey and

framework for design and evaluation of explainable ai systems. arXiv preprint

arXiv:1811.11839, 2018.

[16] Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine

learning classifiers through diverse counterfactual explanations. In Proceedings of

the 2020 Conference on Fairness, Accountability, and Transparency, FAT* ’20, page

607–617, New York, NY, USA, 2020. Association for Computing Machinery.

[17] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. Interpretml: A unified

framework for machine learning interpretability. arXiv preprint arXiv:1909.09223,

2019.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani,

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.

Pytorch: An imperative style, high-performance deep learning library, 2019.

[19] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?”:

Explaining the predictions of any classifier, 2016.

[20] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-

tam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep

networks via gradient-based localization. International Journal of Computer Vision,

128(2):336–359, Oct 2019.

37

[21] Andrew W Senior, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre,

Tim Green, Chongli Qin, Augustin Ž́ıdek, Alexander W R Nelson, Alex Bridgland,

Hugo Penedones, Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli,

David T Jones, David Silver, Koray Kavukcuoglu, and Demis Hassabis. Improved pro-

tein structure prediction using potentials from deep learning. Nature, 577(7792):706–

710, 2020.

[22] Mattia Setzu, Riccardo Guidotti, Anna Monreale, and Franco Turini. Global Expla-

nations with Local Scoring, pages 159–171. 03 2020.

[23] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important fea-

tures through propagating activation differences, 2019.

[24] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep

networks, 2017.

[25] Hui Fen Tan, G. Hooker, and M. T. Wells. Tree space prototypes: Another look at

making tree ensembles interpretable. Proceedings of the 2020 ACM-IMS on Founda-

tions of Data Science Conference, 2020.

[26] Giorgio Visani, Enrico Bagli, Federico Chesani, Alessandro Poluzzi, and Davide Ca-

puzzo. Statistical stability indices for lime: Obtaining reliable explanations for ma-

chine learning models. Journal of the Operational Research Society, pages 1–11, 02

2021.

[27] Yulong Wang. Pytorch-visual-attribution. https://github.com/yulongwang12/

visual-attribution, 2018.

[28] Ziqi Yang. Fidelity: A property of deep neural networks to measure the trustwor-

thiness of prediction results. In Proceedings of the 2019 ACM Asia Conference on

Computer and Communications Security, Asia CCS ’19, page 676–678, New York,

NY, USA, 2019. Association for Computing Machinery.

[29] Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Sai Suggala, David I. Inouye, and Pradeep

Ravikumar. On the (in)fidelity and sensitivity of explanations. In NeurIPS, 2019.

[30] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks, 2013.

38

https://github.com/yulongwang12/visual-attribution
https://github.com/yulongwang12/visual-attribution

7 Appendix

39

teex
Release 1.0.0

Jesus Antonanzas

Aug 04, 2021

CONTENTS:

1 teex 3
1.1 teex package . 3

2 Indices and tables 19

Python Module Index 21

Index 23

i

ii

teex, Release 1.0.0

A Python Toolbox for the Evaluation of machine learning Explanations.

This project aims to provide a simple way of evaluating all kinds of individual black box explanations. Moreover, it
contains a collection of easy-to-access datasets with available ground truth explanations.

teex contains a subpackage for each explanation type, and each subpackage contains two modules:

• eval: with methods for explanation evaluation.

• data: with methods for data generation, loading and manipulation.

Visit our GitHub for source, tutorials and more.

CONTENTS: 1

https://github.com/chus-chus/teex

teex, Release 1.0.0

2 CONTENTS:

CHAPTER

ONE

TEEX

1.1 teex package

1.1.1 Subpackages

teex.decisionRule package

Submodules

teex.decisionRule.data module

Module for synthetic and real datasets with available ground truth decision rule explanations. Also contains methods
and classes for decisionRule data manipulation.

All of the datasets must be instanced first. Then, when sliced, they all return the observations, labels and ground truth
explanations, respectively.

class teex.decisionRule.data.DecisionRule(statements=None, result=None)
Bases: object

A conjunction of statements as conditions that imply a result. Internally, the rule is represented as a dictionary
of Statement with the feature names as unique identifiers. A feature cannot have more than one Statement
(Statements can be binary). This class is capable of adapting previous Statement objects depending on new
Statements that are added to it with the upsert method (see upsert_statement() method).

Example

>>> c1 = Statement('a',lowB=2,upperB=3) # 2 < a < 3
>>> r = DecisionRule([c1])
>>> # update the bounds for the feature 'a'
>>> c2 = Statement('a',lowB=3,upperB=5)
>>> r.upsert_statement(c2,updateOperators=False)
>>> # we can also insert new statements via upsert or insert
>>> c3 = Statement('b',lowOp='<=',lowB=3,upperOp='<',upperB=6)
>>> r.upsert_statement(c3)
>>> # a Statement cannot be updated if one of them is different class as the other␣
→˓(binary / unary):
>>> c4 = Statement('b', 3, op='>')
>>> r.upsert_statement(c4) # THIS WILL RAISE AN ERROR!

Parameters

3

teex, Release 1.0.0

• statements – (list-like of Statement objects) Statements as conditions that make the result
be True.

• result (Statement) – Logical implication of the Decision Rule when all of the Statements
are True.

delete_statement(feature)→ None
Deletes a Statement in the rule.

Parameters feature (str) – name of the feature in the Statement to be deleted.

get_features()→ list
Gets features in the Rule.

Return list feature names as identifiers of the Statements in the rule.

insert_statement(statement: teex.decisionRule.data.Statement)→ None
Add Statement inplace to the conjunction.

Parameters statement – Statement object

rename_statement(oldFeature, newFeature)→ None
Changes the identifier of a Statement.

Parameters

• oldFeature (str) – id of the Statement to rename.

• newFeature (str) – new id of the Statement.

replace_statement(oldFeature, newStatement: teex.decisionRule.data.Statement)→ None
Replaces a Statement with another.

Parameters

• oldFeature (str) – identifier of the Statement to replace.

• newStatement (Statement) – new statement.

set_result(result)→ None
Sets the result for the Decision Rule.

Parameters result (Statement) – statement as logical implication.

upsert_statement(statement: teex.decisionRule.data.Statement, updateOperators: bool = True)→ None
If a statement already exists within the rule, updates its bounds (replacing or defining them) and its operators
if specified. If not, inserts the statement as a new condition. If an existing condition is of different type
(binary / non-binary) as the new condition, the update fails. A bound update is only performed if the new
bound/s != np.inf or -np.inf.

Parameters

• statement – Statement object to upsert

• updateOperators – Should the operators be updated too?

class teex.decisionRule.data.SenecaDR(nSamples: int = 1000, nFeatures: int = 3, featureNames=None,
randomState: int = 888)

Bases: teex._baseClasses._baseDatasets._SyntheticDataset

Generate synthetic binary classification data with ground truth decision rule explanations. The returned decision
rule g.t. explanations are instances of the DecisionRule class.

4 Chapter 1. teex

teex, Release 1.0.0

Ground truth explanations are generated with the TransparentRuleClassifier class. The method was pre-
sented in [Evaluating local explanation methods on ground truth, Riccardo Guidotti, 2021]. From this class one
can also obtain a trained transparent model (instance of TransparentRuleClassifier).

When sliced, this object will return

• X (ndarray) of shape (nSamples, nFeatures) or (nFeatures). Generated data.

• y (ndarray) of shape (nSamples,) or int. Binary data labels.

• explanations (list) of DecisionRule objects of length (nSamples) or DecisionRule object. Gener-
ated ground truth explanations.

Parameters

• nSamples (int) – number of samples to be generated.

• nFeatures (int) – total number of features in the generated data.

• featureNames – (array-like) names of the generated features. If not provided, a list with the
generated feature names will be returned by the function (necessary because the g.t. decision
rules use them).

• randomState (int) – random state seed.

class teex.decisionRule.data.Statement(feature, val=inf, op='=', lowOp=None, lowB=- inf,
upperOp=None, upperB=inf)

Bases: object

Class representing the atomic structure of a rule. A Statement follows the structure of ‘feature’ <operator>
‘value’. It can also be binary, like so: value1 <lowOp> feature <upperOp> value2. Valid operators are
{‘=’, ‘!=’, ‘>’, ‘<’, ‘>=’, ‘<=’} or {‘<’, ‘<=’} in the case of a binary statement. The class will store upper and
lower bound values if the lower and upper operators are specified (both, just 1 is not valid). If the upper and
lower operators are not specified, a unary Statement will be created.

Although unary Statements (except ‘!=’) have translation into single binary Statements, they are separately rep-
resented for clarity. Moreover, unary Statements with operators ‘=’ and ‘!=’ are able to represent non-numeric
values.

Example

>>> Statement('a',1.5) # a = 1.5
>>> Statement('a',1.5,op='!=') # a != 1.5
>>> Statement('a',lowOp='<',lowB=2,upperOp='<',upperB=5) # 2 < a < 5
>>> Statement('a',lowOp='<',lowB=2) # 2 < a Wrong. Need to␣
→˓explicitly specify upper op
>>> Statement('a',lowOp='<',lowB=2,upperOp='<') # 2 < a < np.inf

Parameters

• feature (str) – name of the feature for the Statement

• val – (float or str) Value for the statement (if not binary). Default np.inf.

• op (str) – Operator for the statement (if not binary)

• lowOp (str) – Operator for the lower bound (if binary)

• lowB (float) – Value of the upper bound (if binary). Default -np.inf.

• upperOp (str) – Operator for the upper bound (if binary)

• upperB (float) – Value of the lower bound (if binary). Default np.inf.

1.1. teex package 5

teex, Release 1.0.0

class teex.decisionRule.data.TransparentRuleClassifier(**kwargs)
Bases: teex._baseClasses._baseClassifier._BaseClassifier

Used on the higher level data generation class teex.featureImportance.data.SenecaFI (use that and get
it from there preferably).

Transparent, rule-based classifier with decision rules as explanations. For each prediction, the associated ground
truth explanation is available with the explain() method. Follows the sklean API. Presented in [Evaluating
local explanation methods on ground truth, Riccardo Guidotti, 2021].

explain(obs)
Explain observations’ predictions with decision rules.

Parameters obs – array of n observations with m features and shape (n, m)

Returns list with n DecisionRule objects

fit(data, target, featureNames=None)
Fits the classifier and automatically parses the learned tree structure into statements.

Parameters

• data – (array-like) of shape (n_samples, n_features) The training input samples. Internally,
it will be converted to dtype=np.float32.

• target – (array-like of shape (n_samples,) or (n_samples, n_outputs)) The target values
(class labels) as integers or strings.

• featureNames – (array-like) names of the features in the data. If not specified, they will
be created. Stored in self.featureNames.

predict(obs)
Predicts the class for each observation.

Parameters obs – (array-like) of n observations with m features and shape (n, m)

Return np.ndarray array of n predicted labels

predict_proba(obs)
Predicts probability that each observation belongs to each of the c classes.

Parameters obs – array of n observations with m features and shape (n, m)

Return np.ndarray array of n probability tuples of length c

teex.decisionRule.data.rule_to_feature_importance(rules, allFeatures)→ numpy.ndarray
Converts one or more DecisionRule objects to feature importance vector/s. For each feature in allFeatures, the
feature importance representation contains a 1 if there is a :class:’Statement’ with that particular feature in the
decision rule and 0 otherwise.

Parameters

• rules – (DecisionRule or (1, r) array-like of DecisionRule) Rule/s to convert to feature
importance vectors.

• allFeatures – (array-like of str) List with m features (same as the rule features) whose
order the returned array will follow. The features must match the ones used in the decision
rules.

Returns (binary ndarray of shape (n_features,) or shape (n_rules, n_features)).

teex.decisionRule.data.rulefit_to_decision_rule(rules, minImportance: float = 0.0, minSupport: float
= 0.0)→ list

Transforms rules computed with the RuleFit algorithm (only from this implementation) into DecisionRule ob-
jects.

6 Chapter 1. teex

https://github.com/christophM/rulefit

teex, Release 1.0.0

Example

>>> import pandas as pd
>>> from rulefit import RuleFit
>>> from teex.decisionRule.eval import rule_scores
>>>
>>> boston_data = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/
→˓master/BostonHousing.csv')
>>> y = boston_data.medv.values
>>> features = boston_data.columns
>>> X = boston_data.drop("medv", axis=1).values
>>>
>>> rf = RuleFit()
>>> rf.fit(X, y, feature_names=features)
>>> rf.predict(X)
>>>
>>> dRules, _ = rulefit_to_decision_rule(rf.get_rules())
>>> rule_scores(dRules, dRules, allFeatures=features, metrics=['crq', 'fscore'])

Parameters

• rules (pd.DataFrame) – rules computed with the .get_rules() method of RuleFit. Default
0.

• minImportance (float) – minimum importance for a rule to have to be transformed. De-
fault 0.

• minSupport (float) – minimum support for a rule to have to be transformed.

Returns

• (list) parsed DecisionRules

• (list) indexes of skipped rows (because of exceptions such as ‘home < 1 & home > 3’).

teex.decisionRule.data.str_to_decision_rule(strRule: str, ruleType: str = 'binary')→
teex.decisionRule.data.DecisionRule

Converts a string representing a rule into a DecisionRule object. The string must contain the individual feature
bounds separated by ‘&’. For each feature bound, the feature must appear first. If ruleType='binary', it is
not necessary to explicitly specify both bounds: the missing one will be induced. To imply a result, use ‘->’ and
follow it with a statement representation. This method is robust to situations like feature > 3 & feature >
4 and missing whitespaces.

Example

>>> r = 'a != 2.5 -> res > 3'
>>> print(str_to_decision_rule(r,'unary'))
>>> r = 'a <= 2.5 & a > 1 -> res > 3'
>>> print(str_to_decision_rule(r,'binary'))
>>> r = 'a <= 2.5 & a > 1 & b > 1 -> res > 3 & res <= 5'
>>> print(str_to_decision_rule(r,'binary'))
>>> r = 'a <= 2.5 & a > 1 & b > 1 -> res = class0'
>>> print(str_to_decision_rule(r,'binary'))
>>> print(str_to_decision_rule('d > 1 & d > 3 & d >= 4 & c < 4 & c < 3 & c <= 2->␣
→˓home > 1 & home < 3')) # is robust

Parameters

1.1. teex package 7

teex, Release 1.0.0

• strRule (str) – string to convert to rule.

• ruleType (str) – type of the Statement objects contained within the generated Decision-
Rule object.

teex.decisionRule.eval module

Module for evaluation of decision rule explanations.

teex.decisionRule.eval.complete_rule_quality(gts: teex.decisionRule.data.DecisionRule, rules:
teex.decisionRule.data.DecisionRule, eps: float = 0.1)→
float

Computes the complete rule quality (crq) between two decision rules. All ‘Statements’ in both rules must be
binary (have upper and lower bounds). The metric is defined as the proportion of lower and upper bounds in a
rule explanation whose that are eps-close to the respective lower and upper bounds (same feature) in the ground
truth rule explanation amongst those that are ̸= ∞. Mathematically, given two rules 𝑒, 𝑒 and a similarity threshold
𝜀, the quality of 𝑒 with respect to 𝑒 is:

𝑞(𝑒, 𝑒) =
1

𝑁̸∞

|𝑒|∑︁
𝑖=1

𝛿𝜀(𝑒𝑖, 𝑒𝑖),

where

𝛿𝜀(𝑒𝑖, 𝑒𝑖) =

{︃
1 if |𝑒𝑖 − 𝑒𝑖| ≤ 𝜀 ∧ |𝑒𝑖| ≠ ∞∧ |𝑒𝑖| ≠ ∞, 0

otherwise

Where 𝑁 ̸∞ is the number of lower and upper bounds that are different from ∞ in both 𝑒 and 𝑒. More about this
metric can be found in [Evaluating local explanation methods on ground truth, Riccardo Guidotti, 2021].

Example

>>> c1 = Statement('a',lowB=2,upperB=1)
>>> c2 = Statement('a',lowB=2.2,upperB=1.1)
>>> r1 = DecisionRule([c1])
>>> r2 = DecisionRule([c2]) # both rules contain the feature 'a'

>>> print(complete_rule_quality(r1, r2, eps=0.01))
>>> print(complete_rule_quality(r1, r2, eps=0.1))
>>> print(complete_rule_quality(r1, r2, eps=0.2))

>>> c3 = Statement('b',lowB=2.2,upperB=1.1)
>>> r3 = DecisionRule([c3])

>>> print(complete_rule_quality(r1, r3, eps=0.2))

>>> # The metric does not take the absence of a feature into account
>>> r3 = DecisionRule([c3, c2])
>>> print(complete_rule_quality(r1, r3, eps=0.2))

Parameters

• gts – (DecisionRule or array-like of DecisionRules) ground truth rule w.r.t. which to com-
pute the quality

8 Chapter 1. teex

teex, Release 1.0.0

• rules – (DecisionRule or array-like of DecisionRules) rule to compute the quality for

• eps – (float) threshold 𝜀 for the bounds to be taken into account in the metric, with precision
up to 3 decimal places.

Returns (float or ndarray of shape (n_samples,)) Complete rule quality.

teex.decisionRule.eval.rule_scores(gts: teex.decisionRule.data.DecisionRule, rules:
teex.decisionRule.data.DecisionRule, allFeatures, metrics=None,
average=True, crqParams=None)→ float

Quality metrics for teex.decisionRule.data.DecisionRule objects.

Parameters

• gts – (DecisionRule or array-like of DecisionRules) ground truth decision rule/s.

• rules – (DecisionRule or array-like of DecisionRules) approximated decision rule/s.

• allFeatures – (array-like) names of all of the relevant features (i.e. featureNames of
teex.decisionRule.data.SenecaDR object.)

• metrics – (array-like of str, default ['fscore']) metrics to compute. Available:

– ’fscore’: Computes the F1 Score between the ground truths and the predicted vectors.

– ’prec’: Computes the Precision Score between the ground truths and the predicted vectors.

– ’rec’: Computes the Recall Score between the ground truths and the predicted vectors.

– ’crq’: Computes the Complete Rule Quality of rule w.r.t. gt.

– ’auc’: Computes the ROC AUC Score between the two rules.

– ’cs’: Computes the Cosine Similarity between the two rules.

Note that for ‘fscore’, ‘prec’, ‘rec’, ‘auc’ and ‘cs’ the rules are transformed to binary vectors
where there is one entry per possible feature and that entry contains a 1 if the feature is
present in the rule, otherwise 0.

• average – (bool, default True) Used only if gts and rule are array-like. Should the com-
puted metrics be averaged across all of the samples?

• crqParams (dict) – Extra parameters complete rule quality.

Returns

(ndarray) specified metric/s in the original order. Can be of shape

• (n_metrics,) if only one DecisionRule has been provided in both gts and rules or when
both are array-like and average=True.

• (n_metrics, n_samples) if gts and rules are array-like and average=False.

Module contents

teex.featureImportance package

Submodules

1.1. teex package 9

teex, Release 1.0.0

teex.featureImportance.data module

Module for synthetic and real datasets with available ground truth feature importance explanations. Also contains
methods and classes for decisionRule data manipulation.

All of the datasets must be instanced first. Then, when sliced, they all return the observations, labels and ground truth
explanations, respectively.

class teex.featureImportance.data.SenecaFI(nSamples: int = 200, nFeatures: int = 3,
featureNames=None, randomState: int = 888)

Bases: teex._baseClasses._baseDatasets._SyntheticDataset

Generate synthetic binary classification tabular data with ground truth feature importance explanations. This
method was presented in [Evaluating local explanation methods on ground truth, Riccardo Guidotti, 2021].

From this class one can also obtain a trained transparent model (instance of TransparentLinearClassifier).
When sliced, this object will return

• X (ndarray) of shape (nSamples, nFeatures) or (nFeatures). Generated data.

• y (ndarray) of shape (nSamples,) or int. Generated binary data labels.

• explanations (ndarray) of shape (nSamples, nFeatures) or (nFeatures). Generated g.t. feature importance
explanations. For each explanation, the values are normalised to the [-1, 1] range.

Parameters

• nSamples – (int) number of samples to be generated.

• nFeatures – (int) total number of features in the generated data.

• featureNames – (array-like) names of the generated features. If not provided, a list with
the generated feature names will be returned by the function.

• randomState – (int) random state seed.

class teex.featureImportance.data.TransparentLinearClassifier(randomState: int = 888)
Bases: teex._baseClasses._baseClassifier._BaseClassifier

Used on the higher level data generation class SenecaFI (use that and get it from there preferably).

Transparent, linear classifier with feature importances as explanations. This class also generates labeled data
according to the generated random linear expression. Presented in [Evaluating local explanation methods on
ground truth, Riccardo Guidotti, 2021].

explain(data, newLabels=None)
Get feature importance explanation as the gradient of the expression evaluated at the point (from the n
‘training’ observations) with the same class as ‘obs’ and closest to the decision boundary f = 0.

The procedure is as follows: for each data observation x to explain, get the observation z from the ‘training’
data that is closer to the decision boundary and is of different class than x. Then, get the observation t from
the ‘training’ data that is closer to z but of the same class as x. Finally, return the explanation for x as the
gradient vector of f evaluated at t.

Parameters

• data – (ndarray) array of k observations and m features, shape (k, m).

• newLabels – (ndarray, optional) precomputed data labels (binary ints) for ‘data’. Shape
(k).

Returns (ndarray) (k, m) array of feature importance explanations.

10 Chapter 1. teex

teex, Release 1.0.0

fit(nFeatures=None, featureNames=None, nSamples=100)→ None
Generates a random linear expression and random data labeled by the linear expression as a binary dataset.

Parameters

• nFeatures – (int) number of features in the data.

• featureNames – (array-like) names of the features in the data.

• nSamples – (int) number of samples for the generated data.

Returns (ndarray, ndarray) data of shape (n, m) and their respective labels of shape (n)

predict(data)
Predicts label for observations. Class 1 if f(x) > 0 and 0 otherwise where x is a point to label and f() is the
generated classification expression.

Parameters data – (ndarray) observations to label, shape (k, m).

Returns (ndarray) array of length n with binary labels.

predict_proba(data)
Get class probabilities by evaluating the expression f at ‘data’, normalizing the result and setting the prob-
abilities as 1 - norm(f(data)), norm(f(data)).

Parameters data – (ndarray) observations for which to obtain probabilities, shape (k, m).

Returns (ndarray) array of shape (n, 2) with predicted class probabilities.

teex.featureImportance.eval module

Module for evaluation of feature importance explanations.

teex.featureImportance.eval.cosine_similarity(u, v, bounding: str = 'abs')→ float
Computes cosine similarity between two real valued arrays. If negative, returns 0.

Parameters

• u – (array-like), real valued array of dimension n.

• v – (array-like), real valued array of dimension n.

• bounding (str) – if the CS is < 0, bound it in [0, 1] via absolute val (‘abs’) or max(0, val)
(‘max’)

Return float (0, 1) cosine similarity.

teex.featureImportance.eval.feature_importance_scores(gts, preds, metrics=None, average=True,
thresholdType='abs', binThreshold=0.5,
verbose=1)

Computes quality metrics between one or more feature importance vectors. The values in the vectors must be
bounded in [0, 1] or [-1, 1] (to indicate negative importances in the second case). If they are not, the values will
be mapped.

For the computation of the precision, recall and FScore, the vectors are binarized to simulate a classification
setting depending on the param. thresholdType. In the case of ROC AUC, the ground truth feature importance
vector will be binarized as in the case of ‘precision’, ‘recall’ and ‘FScore’ and the predicted feature importance
vector entries will be considered as prediction scores. If the predicted vectors contain negative values, these will
be either mapped to 0 or taken their absolute val (depending on the chosen option in the param. thresholdType).

Edge cases: Edge cases for when metrics are not defined have been accounted for:

1.1. teex package 11

teex, Release 1.0.0

• When computing classification scores (‘fscore’, ‘prec’, ‘rec’), if there is only one class in the ground truth
and / or the prediction, one random feature will be flipped (same feature in both). Note that some metrics
such as ‘auc’ may still be undefined in this case if there is only 1 feature per data observation.

• For ‘auc’, although the ground truth is binarized, the prediction vector represents scores, and so, if both
contain only one value, only in the ground truth a feature will be flipped. In the prediction, a small amount
(1−4) will be summed to a random feature if no value is != 0.

• When computing cosine similarity, if there is no value != 0 in the ground truth and / or prediction, one
random feature will be summed 1e-4.

On vector ranges: If the ground truth array or the predicted array have values that are not bounded in [−1, 1]
or [0, 1], they will be mapped accordingly. Note that if the values lie within [−1, 1] or [0, 1] no mapping will be
performed, so it is assumed that the scores represent feature importances in those ranges. These are the cases
considered for the mapping:

• if values in the [0,∞] range: map to [0, 1]

• if values in the [−∞, 0] range: map to [−1, 1]

• if values in the [−∞,∞] range: map to [−1, 1]

Parameters

• gts (np.ndarray) – (1d np.ndarray or 2d np.ndarray of shape (n_features, n_samples))
ground truth feature importance vectors.

• preds (np.ndarray) – (1d np.ndarray or 2d np.ndarray of shape (n_features, n_samples))
predicted feature importance vectors.

• metrics – (str or array-like of str) metric/s to be computed. Available metrics are

– ’fscore’: Computes the F1 Score between the ground truths and the predicted vectors.

– ’prec’: Computes the Precision Score between the ground truths and the predicted vectors.

– ’rec’: Computes the Recall Score between the ground truths and the predicted vectors.

– ’auc’: Computes the ROC AUC Score between the ground truths and the predicted vectors.

– ’cs’: Computes the Cosine Similarity between the ground truths and the predicted vectors.

The vectors are automatically binarized for computing recall, precision and fscore.

• average (bool) – (default True) Used only if gt and rule contain multiple observations.
Should the computed metrics be averaged across all the samples?

• thresholdType (str) – Options for the binarization of the features for the computation of
‘fscore’, ‘prec’, ‘rec’ and ‘auc’.

– ’abs’: features with absolute val <= binThreshold will be set to 0 and 1 otherwise. For
the predicted feature importances in the case of ‘auc’, their absolute val will be taken.

– ’thres’: features <= binThreshold will be set to 0, 1 otherwise. For the predicted feature
importances in the case of ‘auc’, negative values will be cast to 0 and the others left as-is.

• binThreshold (float) – (in [-1, 1]) Threshold for the binarization of the features for the
computation of ‘fscore’, ‘prec’, ‘rec’ and ‘auc’. The binarization depends on both this pa-
rameter and thresholdType. If thresholdType = 'abs', binThreshold cannot be
negative.

• verbose (int) – Verbosity level of warnings. 1 will report warnings, else will not.

Returns (ndarray of shape (n_metrics,) or (n_samples, n_metrics)) specified metric/s in the indicated
order.

12 Chapter 1. teex

teex, Release 1.0.0

Module contents

teex.saliencyMap package

Submodules

teex.saliencyMap.data module

Module for synthetic and real datasets with available ground truth saliency map explanations. Also contains methods
and classes for saliency map data manipulation.

All of the datasets must be instanced first. Then, when sliced, they all return the observations, labels and ground truth
explanations, respectively.

class teex.saliencyMap.data.Kahikatea
Bases: teex._baseClasses._baseDatasets._ClassificationDataset

Binary classification dataset from [Y. Jia et al. (2021) Studying and Exploiting the Relationship Between Model
Accuracy and Explanation Quality, ECML-PKDD 2021].

This dataset contains images for Kahikatea (an endemic tree in New Zealand) classification. Positive examples
(in which Kahikatea trees can be identified) are annotated with true explanations such that the Kahikatea trees
are highlighted. If an image belongs to the negative class, None is provided as an explanation.

Example

>>> kDataset = Kahikatea()
>>> img, label, exp = kDataset[1]

where img is a PIL Image, label is an int and exp is a PIL Image. When a slice is performed, obs, label and
exp are lists of the objects described above.

class teex.saliencyMap.data.SenecaSM(nSamples=1000, imageH=32, imageW=32, patternH=16,
patternW=16, cellH=4, cellW=4, patternProp=0.5, fillPct=0.4,
colorDev=0.1, randomState=888)

Bases: teex._baseClasses._baseDatasets._SyntheticDataset

Synthetic dataset with available saliency map explanations.

Images and g.t. explanations generated following the procedure presented in [Evaluating local explanation meth-
ods on ground truth, Riccardo Guidotti, 2021]. The g.t. explanations are binary ndarray masks of shape (imageH,
imageW) that indicate the position of the pattern in an image (zero array if the pattern is not present) and are
generated The generated RGB images belong to one class if they contain a certain generated pattern and to the
other if not. The images are composed of homogeneous cells of size (cellH, cellW), which in turn compose a
certain pattern of shape (patternH, patternW) that is inserted on some of the generated images.

From this class one can also obtain a trained transparent model (instance of TransparentImageClassifier).

When sliced, this object will return

• X (ndarray) of shape (nSamples, imageH, imageW, 3) or (imageH, imageW, 3). Generated image data.

• y (ndarray) of shape (nSamples,) or int. Image labels. 1 if an image contains the pattern and 0 otherwise.

• explanations (ndarray) of shape (nSamples, imageH, imageW) or (imageH, imageW). Ground truth expla-
nations.

Parameters

• nSamples (int) – number of images to generate.

1.1. teex package 13

teex, Release 1.0.0

• imageH (int) – height in pixels of the images. Must be multiple of cellH.

• imageW (int) – width in pixels of the images. Must be multiple of cellW.

• patternH (int) – height in pixels of the pattern. Must be <= imageH and multiple of cellH.

• patternW (int) – width in pixels of the pattern. Must be <= imageW and multiple of cellW.

• cellH (int) – height in pixels of each cell.

• cellW (int) – width in pixels of each cell.

• patternProp (float) – ([0, 1]) percentage of appearance of the pattern in the dataset.

• fillPct (float) – ([0, 1]) percentage of cells filled (not black) in each image.

• colorDev (float) – ([0, 0.5]) maximum val summed to 0 valued channels and minimum
val substracted to 1 valued channels of filled cells. If 0, each cell will be completely red,
green or blue. If > 0, colors may be a mix of the three channels (one ~1, the other two ~0).

• randomState (int) – random seed.

class teex.saliencyMap.data.TransparentImageClassifier
Bases: teex._baseClasses._baseClassifier._BaseClassifier

Used on the higher level data generation class SenecaSM (use that and get it from there preferably).

Transparent, pixel-based classifier with pixel (features) importances as explanations. Predicts the class of the
images based on whether they contain a certain specified pattern or not. Class 1 if they contain the pattern, 0
otherwise. To be trained only a pattern needs to be fed. Follows the sklean API. Presented in [Evaluating local
explanation methods on ground truth, Riccardo Guidotti, 2021].

explain(obs: numpy.ndarray)→ numpy.ndarray
Explain observations’ predictions with binary masks (pixel importance arrays).

Parameters obs (np.ndarray) – array of n images as ndarrays.

Returns list with n binary masks as explanations.

fit(pattern: numpy.ndarray, cellH: int = 1, cellW: int = 1)→ None
Fits the model.

predict(obs: numpy.ndarray)→ numpy.ndarray
Predicts the class for each observation.

Parameters obs (np.ndarray) – array of n images as ndarrays of np.float32 type.

Returns array of n predicted labels.

predict_proba(obs: numpy.ndarray)→ numpy.ndarray
Predicts probability that each observation belongs to class 1 or 0. Probability of class 1 will be 1 if the
image contains the pattern and 0 otherwise.

Parameters obs (np.ndarray) – array of n images as ndarrays.

Returns array of n probability tuples of length 2.

teex.saliencyMap.data.binarize_rgb_mask(img, bgValue='high')→ numpy.array
Binarizes a RGB binary mask, letting the background (negative class) be 0. Use this function when the image to
binarize has a very defined background.

Parameters

• img – (ndarray) of shape (imageH, imageW, 3), RGB mask to binarize.

• bgValue – (str) Intensity of the negative class of the image to binarize: {‘high’, ‘low’}

14 Chapter 1. teex

teex, Release 1.0.0

Returns (ndarray) a binary mask.

teex.saliencyMap.data.rgb_to_grayscale(img)
Transforms a 3 channel RGB image into a grayscale image (1 channel).

Parameters img (np.ndarray) – of shape (imageH, imageW, 3)

Return np.ndarray of shape (imageH, imageW)

teex.saliencyMap.eval module

Module for evaluation of saliency map explanations.

teex.saliencyMap.eval.saliency_map_scores(gts, sMaps, metrics=None, binThreshold=0.01,
gtBackgroundVals='high', average=True)

Quality metrics for saliency map explanations, where each pixel is considered as a feature. Computes different
scores of a saliency map explanation w.r.t. its ground truth explanation (a binary mask).

Parameters

• gts (np.ndarray) – ground truth RGB or binary mask/s. Accepted shapes are

– (imageH, imageW) A single grayscale mask, where each pixel should be 1 if it is part of
the salient class and 0 otherwise.

– (imageH, imageW, 3) A single RGB mask, where pixels that do not contain the salient
class are all either black (all channels set to 0) or white (all channels set to max.).

– (nSamples, imageH, imageW) Multiple grayscale masks, where for each where, in each
image, each pixel should be 1 if it is part of the salient class and 0 otherwise.

– (nSamples, imageH, imageW, 3) Multiple RGB masks, where for each image, pixels that
do not contain the salient class are all either black (all channels set to 0) or white (all
channels set to max.).

If the g.t. masks are RGB they will be binarized (see param gtBackground to specify the
color of the pixels that pertain to the non-salient class).

• sMaps (np.ndarray) – grayscale saliency map explanation/s ([0, 1] or [-1, 1] normalised).
Supported shapes are

– (imageH, imageW) A single explanation

– (nSamples, imageH, imageW) Multiple explanations

• metrics – (str / array-like of str, default=[‘auc’]) Quality metric/s to compute. Available:

– ’auc’: ROC AUC score. The val of each pixel of each saliency map in sMaps is considered
as a prediction probability of the pixel pertaining to the salient class.

– ’fscore’: F1 Score.

– ’prec’: Precision Score.

– ’rec’: Recall score.

– ’cs’: Cosine Similarity.

For ‘fscore’, ‘prec’, ‘rec’ and ‘cs’, the saliency maps in sMaps are binarized (see param
binThreshold).

• binThreshold (float) – (in [0, 1]) pixels of images in sMaps with a val bigger than this
will be set to 1 and 0 otherwise when binarizing for the computation of ‘fscore’, ‘prec’, ‘rec’
and ‘auc’.

1.1. teex package 15

teex, Release 1.0.0

• gtBackgroundVals (str) – Only used when provided ground truth explanations are RGB.
Color of the background of the g.t. masks ‘low’ if pixels in the mask representing the non-
salient class are dark, ‘high’ otherwise).

• average (bool) – (default True) Used only if gts and sMaps contain multiple observations.
Should the computed metrics be averaged across all of the samples?

Returns

specified metric/s in the original order. Can be of shape

• (n_metrics,) if only one image has been provided in both gts and sMaps or when both are
contain multiple observations and average=True.

• (n_metrics, n_samples) if gts and sMaps contain multiple observations and
average=False.

Return type np.ndarray

Module contents

teex.wordImportance package

Submodules

teex.wordImportance.data module

Module for real datasets with available ground truth word importance explanations. Also contains methods and classes
for word importance data manipulation.

class teex.wordImportance.data.Newsgroup
Bases: teex._baseClasses._baseDatasets._ClassificationDataset

20 Newsgroup dataset from https://github.com/SinaMohseni/ML-Interpretability-Evaluation-Benchmark

Contains 188 human annotaded newsgroup texts belonging to two categories.

Example

>>> nDataset = Newsgroup()
>>> obs, label, exp = nDataset[1]

where obs is a str, label is an int and exp is a dict. containing a score for each important word in obs. When a
slice is performed, obs, label and exp are lists of the objects described above.

teex.wordImportance.eval module

Module for evaluation of word importance explanations.

teex.wordImportance.eval.word_importance_scores(gts: Union[Dict[str, float], List[Dict[str, float]]],
preds: Union[Dict[str, float], List[Dict[str, float]]],
vocabWords: Optional[Union[List[str],
List[List[str]]]] = None, metrics: Optional[Union[str,
List[str]]] = None, binThreshold: float = 0.5,
average: bool = True)→ numpy.ndarray

Quality metrics for word importance explanations, where each word is considered as a feature. An example of
an explanation:

16 Chapter 1. teex

https://github.com/SinaMohseni/ML-Interpretability-Evaluation-Benchmark

teex, Release 1.0.0

>>> {'skate': 0.7, 'to': 0.2, 'me': 0.5}

Parameters

• gts – (dict, array-like of dicts) ground truth word importance/s, where each BOW is repre-
sented as a dictionary with words as keys and floats as importances. Importances must be in
[0, 1] or + [−1, 1].

• preds – (dict, array-like of dicts) predicted word importance/s, where each BOW is repre-
sented as a dictionary with words as keys and floats as importances. Importances must be in
the same scale as param. gts.

• vocabWords – (array-like of str 1D or 2D for multiple reference vocabularies, default None)
Vocabulary words. If None, the union of the words in each ground truth and predicted ex-
planation will be interpreted as the vocabulary words. This is needed for when explanations
are converted to feature importance vectors. If this parameter is provided as a 1D list, the
vocabulary words will be the same for all explanations, but if not provided or given as a
2D array-like (same number of reference vocabularies as there are explanations), different
vocabulary words will be considered for each explanation.

• metrics – (str / array-like of str, default=[‘prec’]) Quality metric/s to compute. Available:

– All metrics in teex.featureImportance.eval.feature_importance_scores().

• binThreshold (float) – (in [0, 1], default .5) pixels of images in sMaps with a val bigger
than this will be set to 1 and 0 otherwise when binarizing for the computation of ‘fscore’,
‘prec’, ‘rec’ and ‘auc’.

• average (bool) – (default True) Used only if gts and preds contain multiple observations.
Should the computed metrics be averaged across all samples?

Returns

specified metric/s in the original order. Can be of shape:

• (n_metrics,) if only one image has been provided in both gts and preds or when both are
contain multiple observations and average=True.

• (n_metrics, n_samples) if gts and preds contain multiple observations and
average=False.

Return type np.ndarray

teex.wordImportance.eval.word_to_feature_importance(wordImportances, vocabWords)→ list
Maps words with importance weights into a feature importance vector.

Parameters

• wordImportances – (dict or array-like of dicts) words with feature importances as values
with the same format as described in the method word_importance_scores().

• vocabWords – (array-like of str, 1D or 2D for multiple reference vocabularies) 𝑚 words that
should be taken into account when transforming into vector representations. Their order will
be followed.

Returns

Word importances as feature importance vectors. Return types:

• list of np.ndarray, if multiple vocabularies because of the possible difference in size of the
reference vocabularies in each explanation.

1.1. teex package 17

teex, Release 1.0.0

• np.ndarray, if only 1 vocabulary

Example

>>> word_to_feature_importance({'a': 1, 'b': .5},['a', 'b', 'c'])
>>> [1, .5, 0]
>>> word_to_feature_importance([{'a': 1, 'b': .5}, {'b': .5, 'c': .9}],['a', 'b', 'c
→˓'])
>>> [[1, .5, 0.], [0, .5, .9]]

Module contents

1.1.2 Module contents

18 Chapter 1. teex

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

19

teex, Release 1.0.0

20 Chapter 2. Indices and tables

PYTHON MODULE INDEX

t
teex, 18
teex.decisionRule, 9
teex.decisionRule.data, 3
teex.decisionRule.eval, 8
teex.featureImportance, 13
teex.featureImportance.data, 10
teex.featureImportance.eval, 11
teex.saliencyMap, 16
teex.saliencyMap.data, 13
teex.saliencyMap.eval, 15
teex.wordImportance, 18
teex.wordImportance.data, 16
teex.wordImportance.eval, 16

21

teex, Release 1.0.0

22 Python Module Index

INDEX

B
binarize_rgb_mask() (in module

teex.saliencyMap.data), 14

C
complete_rule_quality() (in module

teex.decisionRule.eval), 8
cosine_similarity() (in module

teex.featureImportance.eval), 11

D
DecisionRule (class in teex.decisionRule.data), 3
delete_statement() (teex.decisionRule.data.DecisionRule

method), 4

E
explain() (teex.decisionRule.data.TransparentRuleClassifier

method), 6
explain() (teex.featureImportance.data.TransparentLinearClassifier

method), 10
explain() (teex.saliencyMap.data.TransparentImageClassifier

method), 14

F
feature_importance_scores() (in module

teex.featureImportance.eval), 11
fit() (teex.decisionRule.data.TransparentRuleClassifier

method), 6
fit() (teex.featureImportance.data.TransparentLinearClassifier

method), 10
fit() (teex.saliencyMap.data.TransparentImageClassifier

method), 14

G
get_features() (teex.decisionRule.data.DecisionRule

method), 4

I
insert_statement() (teex.decisionRule.data.DecisionRule

method), 4

K
Kahikatea (class in teex.saliencyMap.data), 13

M
module

teex, 18
teex.decisionRule, 9
teex.decisionRule.data, 3
teex.decisionRule.eval, 8
teex.featureImportance, 13
teex.featureImportance.data, 10
teex.featureImportance.eval, 11
teex.saliencyMap, 16
teex.saliencyMap.data, 13
teex.saliencyMap.eval, 15
teex.wordImportance, 18
teex.wordImportance.data, 16
teex.wordImportance.eval, 16

N
Newsgroup (class in teex.wordImportance.data), 16

P
predict() (teex.decisionRule.data.TransparentRuleClassifier

method), 6
predict() (teex.featureImportance.data.TransparentLinearClassifier

method), 11
predict() (teex.saliencyMap.data.TransparentImageClassifier

method), 14
predict_proba() (teex.decisionRule.data.TransparentRuleClassifier

method), 6
predict_proba() (teex.featureImportance.data.TransparentLinearClassifier

method), 11
predict_proba() (teex.saliencyMap.data.TransparentImageClassifier

method), 14

R
rename_statement() (teex.decisionRule.data.DecisionRule

method), 4
replace_statement()

(teex.decisionRule.data.DecisionRule method),
4

23

teex, Release 1.0.0

rgb_to_grayscale() (in module
teex.saliencyMap.data), 15

rule_scores() (in module teex.decisionRule.eval), 9
rule_to_feature_importance() (in module

teex.decisionRule.data), 6
rulefit_to_decision_rule() (in module

teex.decisionRule.data), 6

S
saliency_map_scores() (in module

teex.saliencyMap.eval), 15
SenecaDR (class in teex.decisionRule.data), 4
SenecaFI (class in teex.featureImportance.data), 10
SenecaSM (class in teex.saliencyMap.data), 13
set_result() (teex.decisionRule.data.DecisionRule

method), 4
Statement (class in teex.decisionRule.data), 5
str_to_decision_rule() (in module

teex.decisionRule.data), 7

T
teex

module, 18
teex.decisionRule

module, 9
teex.decisionRule.data

module, 3
teex.decisionRule.eval

module, 8
teex.featureImportance

module, 13
teex.featureImportance.data

module, 10
teex.featureImportance.eval

module, 11
teex.saliencyMap

module, 16
teex.saliencyMap.data

module, 13
teex.saliencyMap.eval

module, 15
teex.wordImportance

module, 18
teex.wordImportance.data

module, 16
teex.wordImportance.eval

module, 16
TransparentImageClassifier (class in

teex.saliencyMap.data), 14
TransparentLinearClassifier (class in

teex.featureImportance.data), 10
TransparentRuleClassifier (class in

teex.decisionRule.data), 6

U
upsert_statement() (teex.decisionRule.data.DecisionRule

method), 4

W
word_importance_scores() (in module

teex.wordImportance.eval), 16
word_to_feature_importance() (in module

teex.wordImportance.eval), 17

24 Index

	Introduction
	Into the context
	AI everything
	Complexity everywhere
	On Machine Learning Transparency
	Explanation methods
	Evaluation of explanation methods

	Previous work on evaluation software

	Problem definition: from context to details
	Context
	Motivation & justification
	Who teex is for

	Work objectives
	Architectural objectives
	Availability (O1)
	Plug & play (O2)
	Universal API (O3)
	Explainer-agnostic (O4)

	Functional objectives
	Diverse explanation types (O5)
	Diverse quality metrics (O6)
	Data availability (O7)

	Quality of life objectives
	Test design (O8)
	Complete API documentation (O9)
	Example library (O10)
	Open-sourced (O11)

	teex: meeting the objectives
	Architecture
	Python as the language of choice (O1)
	PyPI and Python versions (O2)
	Towards a unified API (O3)
	Explanations as a proxy for explainer evaluation (O4)

	Functionalities
	The 4 main explanation types (O5)
	Evaluation metrics & how they can be shared (O6)
	A whole ecosystem: datasets in teex (O7)

	Quality of life measures
	Unit testing & error handling (O8)
	Complete API documentation with Sphinx (O9)
	Basic example notebooks (O10)
	Making teex public (O11)

	Usage examples
	Data classes in teex
	Evaluation in teex
	A more extensive evaluation procedure with teex

	Conclusion
	Appendix
	teex
	teex package
	Subpackages
	teex.decisionRule package
	Submodules
	teex.decisionRule.data module
	teex.decisionRule.eval module
	Module contents

	teex.featureImportance package
	Submodules
	teex.featureImportance.data module
	teex.featureImportance.eval module
	Module contents

	teex.saliencyMap package
	Submodules
	teex.saliencyMap.data module
	teex.saliencyMap.eval module
	Module contents

	teex.wordImportance package
	Submodules
	teex.wordImportance.data module
	teex.wordImportance.eval module
	Module contents

	Module contents

	Indices and tables
	Python Module Index
	Index

