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Resum

Des dels inicis d’enviar satèl·lits a l’espai amb l’Sputnik 1 el 1957, la humanitat ha estat
enviant repetidament i despreocupadament més i més naus i satèl·lits fora de l’atmosfera
sense adonar-se’n al principi de les repercusions futures que tindria. Les escombraries
o deixalles espacials són el que s’anomena a les restes de les missions inoperatives.
L’augment de la quantitat no és només rellevant en el camp de l’exploració espacial, sinó
que a la llarga és un problema que afectaria la nostra vida quotidiana i fins i tot al propi
estat del planeta Terra.

Aquest no és un problema ignorat, ja que moltes agències espacials van començar a
tractar amb aquest problema de manera indirecta fent les seves missions espacials amb
parts blindades adicionals per estar segurs de que cap deixalla externa danyés les seves
missions. A més a més, recentment s’han desenvolupat alguns métodes per detectar les
deixalles, aixı́ com lleis espacials que recomanen alguns passos addicionals en les missi-
ons espacials que s’afegeixen a la idea de prevenir i intentar no incrementar el nombre de
deixalles en òrbita.

També es discuteix un enfocament més directe, on en aquest document es presentaran
diverses solucions d’eliminació de deixalles i al final se’n seleccionará una: el sistema de
lligadures. Posteriorment, es presentarà un esquema del sistema, s’obtindran les seves
equacions de moviment i el punt més òptim per alliberar les deixalles a una òrbita més
baixa perquè es desintegri serà l’objectiu principal d’aquest estudi.

Al final s’afegiran les condicions inicials del sistema i, amb això, es discutiran diversos
gràfics i conclusions. Tres d’aquestes condicions inicials se sometran a algunes iteracions
per veure el grau d’afectació en tot el sistema per aquestes variacions en els paràmetres
d’entrada.
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Overview

Since the very beginning of sending satellites into space with Sputnik 1 in 1957, humankind
has been repeatedly and nonchalantly sending more and more spacecrafts outside the
atmosphere without caring at first the future repercussions of that. Space junk or debris
are what the remains of all the inoperative missions are called. The rise in quantity is not
only relevant in the field of space exploration, but in the long run is a problem that would
affect our daily lives and even the state of planet Earth.

This is not an unaware problem, as many space agencies started handling this issue in
an indirect way by making their space missions with extra shielded parts to be positive
that no external debris will damage their missions. Moreover, recently some space debris
detection methods have been developed, as well as space laws that recommend some
extra steps in space missions that add to the idea of prevention and to try not add to the
number of orbiting debris.

A more direct approach is also discussed, where several debris removal solutions will
be presented and at the end one of them is selected: the tether system. Thereafter,
a schematic of the system will be presented, its equations of motion obtained, and the
determination of the optimal point to release the debris into a lower orbit to disintegrate it
will be the overall objective of this study.

At the end, the initial conditions for the system will be added, and with that several graphs
and conclusions will be discussed. Three of these initial conditions will be subjected to
some iterations to see to which degree the whole system is affected by those variations of
the input parameters.





ACKNOWLEDGMENTS

I want to thank my family and friends that stood by my side and tried to cheer me up in
the most difficult moments, and congratulated me as well when things were back on track
after a mental block.

Moreover, a virtual thanks to all the people in the forums of Matlab for helping me endless
times to find the exact answer to the issues I had while typing the code for this project. In
the topic of thanking strangers, part of the interest of delving into this TFG topic comes
from a TV show called ”Planetes”. Acknowledgments to the creative team.

Last but certainly not least, I would like to thank my advisor Santiago Arias Calderón for the
effort and dedication that he put to guide me along this project. From the countless times
that we met to solve any issues and looked for the path forward, to the many suggestions
and corrections that he made over my work. I am truly grateful and could have not asked
for a better advisor.

vii



”We’re in very bad trouble
if we don’t understand

the planet we’re trying to save.”

Carl Sagan
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INTRODUCTION

Once a space mission’s operative life is over, the people responsible for it can take action
in two ways: one of them is to have planned a re-entry maneuver to get the orbiting object
back to Earth, but often those inoperative missions stay orbiting the Earth, with the objec-
tive of disintegrating them via the atmosphere in the long run. However, in the eyes of other
operative satellites and missions, those forgotten objects are considered space debris.
Those debris are typically pieces of space craft and rockets (result of the collision between
them), inoperative satellites and flecks of paint from spacecrafts that keep increasing in
number every year [1]. The amalgamation of space debris is a problem specially relevant
in LEO orbits, where one could say that they have become an orbital graveyard. Figure
1 shows how the atmosphere is covered in this black layer composed of numerous black
dots; the clutter in these low altitudes is caused by the over saturation of the orbit, as its
closeness to the surface of the Earth allows the satellites to take images of higher resolu-
tion. In addition, telecommunication satellite constellations are usually deployed in LEOs
to cover more regions in Earth as they would in higher altitudes [40].

If we jump into higher orbits as depicted in Figure 2, the over saturation in lower orbits
becomes even more apparent. Moreover, the importance of geosynchronous orbits also
emerge from observing it. That is because any object at that altitude orbits the Earth with
a period of 24h, the same as the rotational motion of the Earth. Thus, the geosynchronous
orbit is a valuable spot for monitoring weather, surveillance or communications over a
specific area of the world [41].

Figure 1: Low Earth Orbit debris illustration [2]
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2 A preliminary study of space debris mitigation based on a swinging tether system

Figure 2: High Earth Orbit debris illustration [2]

To put into perspective the figures above, Table 1 depicts ESA’s updated list of estimated
data about debris and satellites in Earth orbits. The estimated objects go from 34000
objects greater than 10 cm to more than 128 million remains from between 1 mm and 1
cm; there is an exponential increase of debris as we keep decreasing their size.

Perhaps the most concerning fact about these data is that less than 30000 debris objects
are fully tracked, which means that most of the times what can be done to avoid a potential
collision with space debris is reactive avoidance, and not a proactive solution. This first
chapter is about the way that current technology is able to detect those orbiting debris, and
how each region of the world reacts to the space debris issue.

Launches since 1957 ∼ 6020 (excluding failures)
Satellites placed into orbit ∼ 10680

Satellites still in space ∼ 6250
Satellites still functioning ∼ 3600

Tracked debris objects ∼ 28210
Anomalies due to fragmentation >550

Total mass of space objects >9200 tonnes
Debris objects (>10 cm) 34000

Debris objects (>1 cm and <10 cm) 900.000
Debris objects (>1 mm and <1 cm) 128 million

Table 1: Latest estimated numbers about space debris (as of January 8th, 2021) [3]



CHAPTER 1. SPACE DEBRIS: RISKS AND
MITIGATION

One of the first topics to be brought up in space debris history is the so called ”Kessler
Syndrome or Effect”. That is a concept first proposed by Donald J. Kessler in 1978, one
year before NASA began its official Orbital Debris Program, and it tells us that Earth’s
low orbit has so much density of objects that a single collision is enough to develop a
cascade, in which each collision generates space debris that increases the likelihood of
further collisions [4].

Since the discovery of that syndrome, currently it is still unknown formally that such cas-
cade effect has occurred. What we do know is that the mass of the orbital population has
increased by more than three hundred objects each year [4].

The increase in debris not only is worrying due to the congestion of space and consequent
difficulty in doing tasks such as space exploration and astronomical observation, but also
is dangerous for the existing satellites and modules already orbiting the Earth, as debris in
a low earth orbit can achieve velocities of 8 km/s [5], making their collision with satellites a
fatal accident.

1.1. Current detection methods

Nowadays there are more precise methods of detecting and extrapolating the number of
debris orbiting the Earth. For instance, in Europe ESA has the Meteoroid and Space
Debris Terrestrial Environment Reference (MASTER) and the Debris Environment Long-
Term Analysis (DELTA) tools available [6].

MASTER uses the information derived from all the known generated debris, and deter-
mines impact flux information for a given satellite. It can cover sizes of debris of the order
of micrometers, and predict their trajectories in the environment until 2050. Figure 1.1 is
a screenshot of MASTER program; in the left the user inputs the thresholds and the de-
sired time intervals to study, and then the program obtains the plot in the right side, which
graphs a spatial density with respect to the altitude and declination (i.e., the angle from
Earth’s equator to a point north or south from that line) of the region of study. A mesh is
created, where the peaks in the surface show the densest regions, in the case of Figure
1.1 being the cases of ∼ 800 km of altitude in the declinations of 80º and -80º.

This program will have an updated version that will also allow to assess the flux charac-
teristics in Lagrange point orbits. These points are valued because they are the locations
where the gravitational pull of two large masses equals the centripetal force required for a
small object to move with them [42]. This means that any satellite sent there will remain in
place.

Another tool that is used especially for long-term forecasts is DELTA, that examines differ-
ent debris environment scenarios if we input some mitigation measures.

DELTA uses a semi-deterministic model that usually extracts the initial population from
the previous program MASTER, then, it forecasts the evolution of the objects larger than
a previously defined size, in low, medium and geosynchronous Earth orbits, for several
decades.
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Figure 1.1: Screenshot of MASTER software tool [6]

The collisions between objects are first predicted with a tool that is target-centred to an
object and it does the prediction stochastically. Then, it is computed via a model used
by NASA: the EVOLVE 4.0 break-up model, that is a program that went through several
iterations [7]; the last one added additional tracking and radar resources, perfected the
estimations, as well as extended the time window period from which to observe the decay
of objects.

Debris of an environment are fragmented due to explosions or collisions, and the number,
size and mass of the fragments are estimated with results that are, with each iteration of
EVOLVE, closer to reality as time flows.

1.2. Space regulation

Any space mission has its launch phase, where it tries to surpass Earth’s gravitational
pull. To do so it is more efficient that launch vehicles have several separate stages. Alas,
it also means that whenever phase separations happen these elements will begin to roam
around Earth’s orbit, unless the stages come back to Earth [8], with a consequent chance
of falling into Earth’s surface while not being able to disintegrate fully.

The Inter-Agency Space Debris Mitigation Coordination Committee (IADC) is an interna-
tional forum of governmental bodies for the coordination of activities related to debris in
space. 13 space agencies are the members of this committee, including names such as
NASA, ESA and JAXA. In 2002 the IADC created the Space Debris Mitigation Guidelines,
which every mission should consider in every phase of an operation (launch, mission and
disposal). This list, however, is not mandatory. Each country (regardless of it being a part
of IADC or not) has the right to follow or to ignore some or all of these guidelines; a sum-
mary of the seven of them is described in Table 1.1.
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IADC, in its guidelines document, also states that in case a space object needs to de-
orbit and burn into the atmosphere, it should not take longer than 25 years to do so, to
minimize the possible collisions it would produce [11].

The aforementioned rules are all referring to the mitigation solutions; the indirect approach;
the prevention aspect of the problem. However, the Committee also tells us what to do
when the objective is to launch a system to remove debris [10].

The theory states that if a space object damages one of another country, if the action can
be proven, the culprit must take responsibilities. It is also stated that a country, currently,
is not responsible for its own debris in outer space. In the future, though, when a series
of countries will have their own space debris removal objects, it will be essential the co-
operation between countries to allow the removal of other countries’ debris, as well as to
encourage each of them to control their debris and to remove them as much as possible.

Guideline Comments

Limit debris released
If by design the not release is not feasible, at least the
debris should be minimized.

Minimize the potential for break-ups
Failure modes that lead to accidental break-ups
should be replaced with disposal and prevention mea-
sures.

Limit the probability of accidental
collisions

The probability should be estimated and limited. If
a potential collision is detected, an adjustment of the
launch time should be considered.

Avoid intentional destruction
If intentional break-ups are necessary, they should be
conducted at low altitudes to limit the lifetime of the
resulting fragments.

Minimize post-mission break-ups
resulting from stored energy

All on-board sources of stored energy should be de-
pleted when they are no longer required for mission
operations.

Limit the long-term presence of
stages in LEO region after a mis-
sion’s end

Low Earth Orbit graveyards should only be planned as
long as the disposed objects have a short-term pres-
ence.

Limit the long-term presence of
stages in GEO region after a mis-
sion’s end

Leaving objects in orbits above the GEO region should
be considered, to avoid future potential collisions near
the GEO region.

Table 1.1: Main guidelines proposed by the IADC in Vienna, 2010 [9]

1.3. Prevention and mitigation

As seen before with the space debris guidelines, the focus right now is on the mitigation of
debris with upcoming missions, not in removing the existing ones.

Apart from the aforementioned IADC, each individual space agency around the world is
trying, each one with its own differences, methods to try to decrease the amount of debris
created, or procedures to avoid them.
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Russia for instance, alongside the previous guidelines, kept track of the detected objects
with distances less than 50 km from each mission, as well as also tracking the events with
distances less than 10 km. Finally, they focused on one of their missions, the Express
AM-11, and they performed the necessary correction maneuvers to then extract some
conclusions that later would be proposed as additions to the already established IADC
guidelines [12], as seen in Table 1.2.

Project Title The Proposal
Unmanned spacecraft, estimating mass
of remaining usable propellant

Measurements of fuel remainders should
be included as reference

Management for Debris Mitigation
To harmonize the Standard with STSC
Space Debris Mitigation Document

Disposal of Satellites Operating at
Geosynchronous Altitude

The Standard should be based on the
�IADC Space Debris Mitigation Guide-
lines�

Table 1.2: Russian proposals for space debris mitigation [12]

ISRO, the Indian Space Research Organisation, initiated in 2019 Project NETRA [13],
which is a warning collision system in LEO orbits for their satellites, and it can track and
catalogue objects as small as 10 cm. Although their priority is to develop that tracking
system to be able to detect collisions in GEO orbits and also to protect their satellites from
other’s countries range, the focus on mitigating space debris to protect their missions is
also there.

Although the majority of countries in the world meet and even expand the Space Debris
Mitigation Guidelines, there are some countries that opt for not following them to some
degree. That could be due to, for instance, the space agency determining that other mis-
sion requirements are more important, and leaving the debris mitigation in a lower position
within the priority list.

This is the case of China: in April of this year 2021 they launched a rocket, the Long
March 5B, which was not programmed to make a reentry into the Earth and land properly.
Instead, they planned to let the rocket fall and disintegrate into the atmosphere. However,
as the rocket was out-of-control, in practice it was considered as space debris [14]. The
European Space Agency estimated a ”risk zone” that affected several countries, but in the
end the debris landed south of India in the sea, as can be seen in the estimated area of
landing of Figure 1.2.
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Figure 1.2: Estimated area of landing of the Chinese rocket Long March 5B [14]

NASA and other space agencies criticized China for not planning a so-called ”graveyard
orbit” to place their rocket once its usage was over, or try and effectuate a controlled reentry
mission, where the rocket would be re-used as the ones Space-X creates. This shows that
although the guidelines are optional, that does not mean that this issue can be taken lightly,
as many political issues and human lives are taken into account in this regard. And as time
passes those regulations will tend to be less and less optional due to the problem of space
debris being increasingly more worrying.
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Besides prevention and mitigation, there are some Agencies such as JAXA in Japan with
its Debris Removal Satellite ELSA planned to be tested [15], and SpaceX with its Starship
mission [16], that are already looking up a direct approach to clean up space debris using
their missions. In that regard, NASA proposed a classification of the active debris removal
methods and their viability in the nearby future [17].

It must be noted that the methods listed in this classification are not the only ones currently
being studied. Methods such as solar sails and solid rocket propulsion modules could
also be listed, but they will not be considered due to the lack of information and higher
complexity with respect to the other solutions.

All the technologies aiming to remove space debris ideally would want to clear the higher
amount of objects possible, i.e., the smaller ones. That is because the number of them is
several orders of magnitude higher, as seen in Table 1. However, with our current technol-
ogy, the removal of the small-sized debris is out of the scope of any solution. That is why
all the listed removal methods focus on the larger objects: because they are easier to be
detected, are more stable in their shape, and their number is several orders of magnitude
less than the smaller debris objects.

2.1. Lasers

Lasers emit light through a process of optical amplification, that is based on the stimulation
of electromagnetic radiation. That process is the reason why the beam of light can be so
focused in a point. In the case of aiming to space debris with it, the intention of destroying a
large debris object with it would not be feasible, as the laser would need to be steadily and
slowly disintegrating every inch of the object. Instead, letting the beam deviate or displace
debris from its original orbit would be an easier task, and it would reduce the application
time of the laser.

The physics behind this deviation phenomenon are the following: the beam would add
an extra force to the equations of motion of the irradiated piece of debris; that addition
would result in a modification in the semi-major axis of the debris, lowering or raising it
depending on the orientation of the beam at the moment of the application. While it is true
that the most interesting solution would be to lower debris orbits to eventually cease the
trajectory of the object, the act of raising a target’s orbit could be used as a way to, in short
terms, bring that debris into a space region less cluttered and with less risk of colliding
with another object.

The laser methodology is depicted in Figure 2.1, where from a given point in space, and
throughout a certain arc of the trajectory, the laser keeps applying a net force to the target,
that at the end results in the debris raising (or in this case, lowering) the altitude of its orbit.

This beam solution is quite troublesome because it interferes with space law and generates
possible conflicts with the potential shooting of an undesired space object property of
another country. Nevertheless, the debris contemplated in the methodology are large
enough to be tracked without any possible mistake. The same could not be said if instead,
the laser was aimed towards a smaller-sized debris, which would result in a higher chance
of accidentally impacting another object.

9
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Figure 2.1: Schematic of a laser facility operating onto a debris target [18].

A study has been made that evaluated how a 5 kW and 10 kW beam deviated debris
in Antarctica, the ideal location to install a facility that contained the laser, as that location
has the maximum engagement opportunities with debris thanks to being situated in a pole,
as well as due to the reduction of atmospheric beam losses and turbulence effects [18].
However, due to the unfeasibility of installing a laser in a harsh-environmental place such
as the Antarctica, 3 other feasible locations were tested.

The modus operandi of this experiment is the following: the beam would be assigned to
one target at a time for an average time of 103 minutes per day. Moreover, it would only be
operative to engage an average of 10 objects per day, which makes the system one that
still needs more research and optimizations to cope with the sheer amount of debris in low
earth orbits.

Table 2.1 shows the locations and their altitude in the globe, for each power level of the
laser; success rates are defined then to each of these scenarios. They are the number of
space objects deviated from 50 to 1000 meters away. Objects deviated 50 to 100 meters
have a mass of more than 100 kg, thus being comparatively less affected in their trajectory
as opposed to the smaller-sized debris, which comprises from 200 m to 1 km of deviation.
These smaller debris sizes vary from locations, but the smallest size to be detected is
around 10 cm in diameter.

Site Parameters Success Rates
Power Location Altitude 50 m 100 m 200 m 500 m 1000 m
5 kW PLATO, Antarctica 4.09 km 74 56 43 13 5
5 kW AMOS, Hawaii 3.00 km 30 13 5 4 2
5 kW Mt. Stromlo, Australia 0.77 km 11 4 4 3 0
5 kW Eielson AFB, Alaska 0.50 km 31 12 5 4 2
10 kW PLATO, Antarctica 4.09 km 89 74 56 34 13
10 kW AMOS, Hawaii 3.00 km 42 30 13 5 4
10 kW Mt. Stromlo, Australia 0.77 km 29 12 4 4 3
10 kW Eielson AFB, Alaska 0.50 km 48 31 12 4 4

Table 2.1: Success rates of a debris-deviating beam in several locations [18]
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Targets are all approximately sun synchronous and that explains why the results differ so
much between the Antarctica and the other locations: because space objects elsewhere
are more difficult to track. Moreover, the results show that the increase in double the power
in the beam does not turn out in an increase in double the debris displaced, but rather an
improvement of +25% of the objects deviated with 5 kW of power. The results in Amos,
Hawaii and Eielson, Alaska turn out to be rather similar but for different cases: Alaska
thanks to it being in a high latitude and Hawaii because the altitude of the laser placement
is nearly as much as in Antarctica.

2.2. Web capture

A web capture system would be optimal for the small and medium sized debris scattered
around low earth orbits. These webs would be made of zylon, a very strong and thermally
stable material which is used for instance in tennis racquets and some of the Martian rovers
[19]. The negative part about this model is that these webs cannot handle the enormous
velocities of the medium and small sized debris objects, so they are mostly suited for large
objects.

As shown in Figure 2.2, a web capture would intentionally deform the strings from which
the web is composed of. That would decelerate the debris velocity and thus creating a
reaction force that the web’s material must endure. Moreover, the shape of the grid also
impacts on the capabilities of repulsion.

The simulation was made by assuming an initial target velocity of 100 m/s and a kinetic
energy of 1.6 MJ. In Figure 2.2, it is depicted the different shapes that were considered
in the design of the web that would catch the debris and, similar to the way spiders use
octagonal shapes to build their cobwebs, the space web shape that is more resilient to
impacts is the octagonal one, as opposed to a squared shape.

Figure 2.2: Deformation of two webs with an object of 1x1x1m with a velocity of 100 m/s
[19]

Once the catch were successful, the object or objects would be wrapped up by the web,
that ideally thanks to the material’s strength and high energy absorption properties would
not create a hole in the mesh and instead would continue to close on itself until the ends
of the web would be tied up, as visually represented in the following Figure.
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Figure 2.3: Wrapping process of the web around the target objects [20]

The wrapping process, when simulated [20], showed a strong dependency with the shape
of the debris, the number of simultaneous catches, relative velocities and rotational angular
velocities. Therefore, achieving a perfectly orthogonal catch (i.e., the velocity vector of the
moving debris form a 90º angle with the spread-out web) with an almost perfectly round
target seems very unlikely.

This technology has already been tested in SpaceX [21], that contemplates to send the
Falcon 9 with a Japanese Experiment Module inside. This mission, removeDEBRIS, would
have a harpoon with a net to capture targets and also drag sails that would deploy to make
the experiment fall into the atmosphere. The tests are already in place, where in 2018 they
secured a 20 cm cube of a bit more than 1 kg. Two more tests were performed, the most
recent one happening in march 2019, where two more cubes were secured successfully.
However, this mission still has to be able to reduce its velocity (and thus, its orbital altitude)
by deploying its drag sails to burn in the atmosphere upon re-entry.

2.3. Metal claws

A similar device to a web capture device is a claw-shaped one. The motion of the capture
wouldn’t be reactive as it is in the web solution, but instead would need to actively close its
claws to the right position to capture the target.

ESA signed at the end of 2020 a contract alongside a Swiss start-up named ClearSpace
S.A., which states the intention of launching the debris removal mission ClearSpace-1 in
2025 [22]; This would be ESA’s first space debris removal mission.

The mission is expected to be launched initially to an orbit of 500 km and then to begin the
rendezvous maneuver to reach a payload adapter that was used by the Vega launcher in
2013, and since then has been wandering in space. This payload adapter has a diameter
of 1 m, a mass of 112 kg and an orbital altitude of around 600 and 800 km. The target
is catalogued as a small size satellite, thus enabling the metal claws to correctly close on
themselves further securing the target as opposed of a hypothetically larger object, where
the same claws would be more loose.

Once the target is secured (depicted in Figure 2.4), both the metal claws and the satellite
would start descending into the atmosphere to disintegrate steadily. This means that the
claw debris removal system, at least conceptually, would involve a one-use-time usage.
ESA’s plan is to use those types of missions not only to remove space debris, but also to
allow in-orbit refuelling and servicing of other satellites, extending their life-span [22].
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Figure 2.4: ClearSpace-1 simulation where it captures Vega’s payload adapter [23]

2.4. Spaceblower

Similar to lasers, another technology whose intention is to deviate debris and not erase
them is the Spaceblower [24]. It consists in a rocket that would be sent once we knew
a collision between two satellites would happen no matter what. To avoid that, and with
the mindset of not wanting to generate even more debris, a three-phase rocket would be
deployed.

The procedure of the Spaceblower, once it was about a hundred kilometers away from the
target, would be to rotate itself so that the nozzle of the Spaceblower pointed towards the
incoming debris object. Then, it would spray out a cloud of particles of around 5 microns
across, made of materials abundant in Earth such as copper [24]. This spray would collide
with the debris in question, deviating the object of its current trajectory or, by spraying the
object in the opposite direction of the movement of the debris, decelerating the object’s
motion enough to avoid any potential collision.

A visual representation of the moment of the spraying is depicted in Figure 2.5, where
the arc in the bottom illustrates the current phase at which the mission is at the moment,
the ejection of particles is during a 10 second time-window, at a distance from the target
in that instant of 100 m, and an altitude of 800 kilometers. The debris in question is
around 12 meters in diameter, so at the moment the project is aiming to deviate the largest
orbiting objects. The particles ejected by the nozzle would slow down the debris velocity
by 10 cm/s, then to let the Spaceblower fall into the atmosphere once its goal has been
completed.
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Figure 2.5: CNES’ Spaceblower ejecting particles to deviate the debris’ trajectory [24]

CNES, the French Space Agency behind the design of the Spaceblower, is aiming to have
the first two stages of the mission reusable, with an estimated cost, after 5 or 6 launches
testing it out, of 2 to 3 million euros. This technology, however, would only be deployed
in gaps of 5 years or so, where a major debris collision would be detected and would be
desirable to avoid, and their first testing is expected to happen in 2030.

2.5. Tethers

The last type of active debris removal technology in this classification is the Space Tether.
It consists in a rope or thread that connects two end masses, where one of them is the
payload (debris in this scenario), and the other end mass is the tether’s main body, which
could be a satellite or simply act as a counter mass with no usage outside of that.

The most interesting part about space tethers is their capability of staying in orbit while
acting as a debris removal system: if the tether’s main body is connected to an object with
a lower orbit, the release of it would cause the payload to fall into a lower altitude (given
that the bond with the main body resulted in the payload losing the speed it should have
at that altitude). At the same time, that release would result in the rise of the orbit of the
tether’s main body. The same could be said in the opposite case, if the target were to be
in a higher orbit than the tether’s body, the bonding and then release of the object would
result in the target reaching higher altitudes than before, and the main body having a lower
orbit than before.
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This principle, consequence of the conservation of momentum, enables the tether to have
a multiple usage: on one hand, extending the rope into a lower object, that in all cases
will be debris, would result in it falling into a lower orbit and thus falling and burning in the
atmosphere. On the other hand, higher-altitude objects could also be targeted given that
the release of debris would rise the orbit of our tether. By grabbing and then releasing
other satellites that could need a higher orbit, our tether could once again reach a lower
altitude and continue its operation of removing debris in a cycle of rising and lowering its
orbit.

Figure 2.6 depicts an example of tether, where the main body is a satellite and it is tied to
a debris object, which in the image is being burned up as a consequence of entering the
atmosphere. The next step in this representation would be to release the object with the
consequence being the rise of the satellite. Moreover, the rope would need to be reeled
up to then be extended on the other side of the satellite. Then, by picking up and then
releasing any on-demand satellite that could need an uplift, the tether would return to its
initial orbit.

Figure 2.6: Space tether representation [25]

Space tethers can be modified or enhanced to complement autonomously the methodol-
ogy described above. The simplest type of tether is the so called hanging tether, where
the rope of the system is always in the direction of the gravity, and it does not spin what-
soever.

An upgrade in the efficiency if we want to optimize the debris removal part of the system
would be the second type of space tether: the swinging one. This time the system will
keep oscillating as a result of an initial perturbation of one of the end masses, as for
instance a pendulum clock would do. This oscillation is beneficial if for example the payload
is released at the point in the arc swing which the velocity of the end mass is minimal, or
maximum. The method of obtaining that swinging initial condition will not be discussed
in this TFG, as it will be assumed that as soon as the tether is fully joined, the swing will
begin. Regardless, to be able to start the oscillations an external perturbation would need
to be the catalyst in this type of tether.
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The last space tether that could be designed is the so called spinning tether. The name is
often interchangeable with the last tether type but the main difference is that this time the
swing does not follow a pendulum-like trajectory, but rather a full 360º rotation, apart from
the one that the tether performs around the Earth. To be able to achieve that constant spin
an engine needs to be implemented in the center of mass of the tether, so that the extra
push that the system would need to keep rotating is added and thus the full 360º spin is
reached.

The concept of space tethers comes from a refinement of another idea, first proposed by
Konstantin Tsiolkovsky in 1895: the space elevator. It would be a tower constructed tall
enough to reach into space, and be held together by the Earth’s rotation motion. Never-
theless, that concept required an unrealistic amount of resources to be implemented. The
idea of joining objects of space to the Earth remained, though, as the next iteration of the
idea was a concept proposed by Jerome Pearson in 1970: the moon elevator, that con-
ceived an elevator that could go between the Moon and points at a given distance from it.
After some more improvements over the idea, the concept was conceived not as means to
join something to the Earth or the Moon, but to an artificial satellite. It was at that moment,
in 1979, when NASA started to examine the feasibility of tethers that connected satellites
to other objects such as other satellites, space probes or other astronomical objects, and
the idea of space tethers were finally conceived.

Tether systems are currently being tested and researched. One example is the ESTCube-
1, as depicted in Figure 2.7. It is one of the three satellite payloads that the VEGA launch
vehicle brought to space in 2013. It is a cubic satellite developed by Estonia that once
deployed extends a conductive tether for testing electric solar wind technologies [26]. This
satellite happens to be the first in the world that used that technology, and is one of the
several examples of satellites that use tethers in space with the objective of testing or an-
alyzing, or as it is called, they use tethers as probes.

Figure 2.7: Assembled ESTCube-1 at the Guiana Space Centre [27]
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In addition to the base idea of space tethers, they could be attached not to the desired
debris object but to an adhesion compartment instead. In this regard NASA proposes
space tugs that would be attached in between the target and the end rope, the other end
being the tether’s main body, such as a satellite [29]. This addition to the base idea of a
tether would allow to de-orbit objects from further away orbits, as well as to gain a much
powerful grabbing force to make sure that the debris does not detach the tether.

In this classification, tethers are not considered as a probe, but as a pendulum. This means
that the objective in mind is not to deploy the tether’s rope and take measurements with it,
but rather to connect the other end of the rope and with that achieve some kind of motion.
This is the methodology behind the space debris removal with tethers, as they are based
on momentum exchange between both ends of the rope to, for instance, lower the orbit
of the payload attached to the tether, at the expense of the system gaining altitude [28].
On the other hand, it could also drop the payload into a higher orbit, causing the tether’s
main body to lose altitude. This concept is the key idea of the space tether and this TFG
objective.

The swinging tether has been chosen over the other two types of tether because the pen-
dulum movement that it provides is a direct improvement from the hanging tether and and it
is not too complicated to implement it. Nevertheless, due to the increase in complexity due
to the addition of an engine, the spinning tether will not be considered. The reasons why
the tether system as a whole is also picked over the other aforementioned debris removal
solutions are listed in Table 2.2.

Laser technologies would be around 1 or 2 million dollars in overall cost, would be reusable
as the laser would always remain in the same place in Earth, with enough precision it could
deviate objects of 10 cm in diameter but always one at a time, to prevent undesired laser
impacts to other countries’ satellites.

In the case of the web capture, if we use the definition of the kinetic energy K = 1
2MV 2

and apply it to the simulation values of a kinetic energy of 1.6 · 106 Joules and a target
velocity of 100 m/s, we get a target mass of 320 kg. Furthermore, multiplying that value
by the average of 10000$ that costs launching a 1 kg object to a low Earth orbit [30], we
obtain a launch cost of 3.2 M$, to which we should also add the costs of the zylon web
construction. Depending on the nature of the debris and the objective in deploying the
web, instead of burning into space the wrapped target could be reeled back into a space
station, making the deploy of another web possible and, thus, accounting for re-usability.
Moreover, various small enough debris could be captured at the same time making the
multi-target capture a reality.

The metal claws target is a satellite of 112 kg of mass, which implies a cost to be sent
into space of 1.2 M$, plus the construction of the claws cost. The designers at ESA are
already working on the design of space claws that could embrace more than one object.

Spaceblower already has an estimated cost of 2 to 3 million dollars, but the debris that
is intended to be deviated is of 12 m of diameter, making the targets of this solution the
largest in the classification.

Tethers are the most difficult to predict cost-wise, because they can be of several types,
one of them incorporating a motor in its center of mass, that would add to their cost.
However, what can be said about tethers is that they can be reusable by altering their
altitude via rising and lowering space objects on the other end of the rope.
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For this reason, space tethers are the only solution that could also be applied to rise other
satellites orbits, as well as to remove debris, of course. Hanging tethers have been tested
by testing and checking space conditions via a probe in one end of the tether’s rope,
although a test in a swinging tether in order to remove debris is yet to come.

This TFG has chosen the tether because, among the solutions that feature re-usability (the
most attractive characteristic in order to seize the launch of an object to space), tethers
were the ones that had other applications while keeping their objective of removing space
debris. With that exchange, fuel cost once the system is already orbiting would be none,
as opposed to other removal systems. Proper tethers, though, would be the spinning type,
so that their other application of rising other satellites to maintain the tether’s orbit would
not be necessary; but as previously stated it is considered the swinging type of tether, the
one without an engine in its rope that instead relies on the pendulum-swing of the end
masses of the rope to boost the debris to the atmosphere.

Laser Web capture
Metal
claws

Spaceblower Tethers

Operational cost 1-2 M$
3.2 M$ + web
construction

∼1.2 M$ +
claw con-
struction

2-3 M$ Variable

Debris’ sizes avail-
able

> 10 cm > 1 m > 3 m > 12 m
Order of
meters

Re-usable Yes Kinda No Kinda Yes
Already tested No Kinda No No Kinda
Other applications No No Yes No Yes
Multi-target capabili-
ties

No Yes Yes No No

Table 2.2: Summary of the characteristics of each active debris removal solution.



CHAPTER 3. THE TETHERED SYSTEM

This chapter analyses the physics behind a tethered system, from which a series of ex-
pressions will be deduced and validated in order to interpret and characterize them.

3.1. Mechanical principles and elliptical parameters

Before jumping into the equations of motion that our swinging tether will have, this first part
of the section sets the hypothesis that will be assumed in regards of the tethered system.

The rope that joins each end masses will be considered rigid, that is, the tether does not
bend, undergo torsion or change in length once it connects both ends. Moreover, despite
not happening in reality, in order to simplify the otherwise much complex problem, the end
masses and the rope that ties them will be mass-less, with no moments of inertia.

Another hypothesis made to reduce the complexity of this analysis is to limit the tether’s
movement in a single spatial plane: it will be a two-dimensional study. This simplification
changes the number of equations of motion from 2 to 1, and it reduces the complexity
of the expressions at the expense of lacking the third dimension study. The number of
equations may change, but the conclusions of this study will not differ with or without that
extra parameter.

The last consideration comes from assuming the tether as a conservative system; this
means that its mechanical energy will always remain constant. It also means that aero-
dynamic drag, solar radiation, electrodynamic forces and gravitational perturbations are
neglected. This idea can be applied to obtain expressions based on the conservation of
energy and momentum. But because those equations will be based on an ellipse, the first
step is to define the parameters and expressions of the type of orbit that our tether will
have: an elliptic one.

3.1.1. Elliptical orbit expressions

The parameters of an ellipse are shown in Figure 3.1, that depicts a given ellipse, where
the Earth is one of the ellipse’s focus. Those are defined such as the sum of the distances
between both foci and a given point in the ellipse is constant. Instead of a constant radius,
in an ellipse it is defined a semi-major axis (a in the representation), and a semi-minor
axis (b in Figure 3.1). The parameter r in this scenario is the distance between one of the
focus (the Earth in this case) and a given point set on the elliptic trajectory. Finally θ is the
angle that the point has along the trajectory (or that object’s direction): the true anomaly.
To obtain an expression for r two more elliptical parameters are needed.
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Figure 3.1: Visual representation of the parameters of an ellipse [32]

The first one is the eccentricity of an orbit, which characterizes the shape of the ellipse:
whether it is more or less flattened. It is defined by a relation of the ellipse axis, where c is
the distance from the center of the ellipse to one of its focus,

e =
c
a
=

√
a2−b2

a
(3.1)

The other parameter that is needed is the semi-latus rectum p (already depicted in Figure
3.1) . It is the distance (perpendicular to the semi-major axis) from a focus to a point of the
curve. It is a consequence of the system being ruled by Kepler’s laws [37], and its expres-
sion is a result of the Pythagoras theorem application. It can be defined in multiple ways,
depending on which parameter is more desirable: the semi-major axis a, the periapsis
(shortest distance from the trajectory to the focus) Rper, or the apoapsis (longest distance
to the focus) Rapo. In all cases the definition depends on the eccentricity of the orbit.

p = a(1− e2) = Rper(1+ e) = Rapo(1− e) (3.2)

With both p and e parameters defined, an expression for the (changing) radius of a point
following an elliptical path as in Figure 3.1 is the following.

r =
p

1+ e · cos(θ)
(3.3)

Expression 3.3 gives a way to obtain the trajectory of all the parts of the tether. How-
ever, an expression for the angular velocity θ̇ is missing, and to obtain it, the principles of
conservation of energy and momentum are introduced.
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3.1.2. Conservation of energy and momentum

Our tether system can be simplified as one object that, while it keeps subject another object
(the debris), it is being attracted by the Earth, but as the tether is orbiting around the planet
(or infinitely falling to it) in an elliptic trajectory, its mechanical energy is conserved [31].
This is equivalent to stating that the sum of the system’s potential and kinetic energy at any
point in the orbital trajectory will be the same. Equation 3.4 states this equivalence, where
E, T and U are the mechanical, kinetic and potential energy, respectively. By substituting
each energy with its definition, other parameters come to light, such as G, the gravitational
constant consequence of connecting the gravitational force between two bodies; m and M,
the masses of both objects; V , the total velocity of m; and r, the distance from the focus of
the ellipse (the Earth) to the orbiting object.

E = T +U =
1
2

mV 2 +

(
−GMm

r

)
= constant (3.4)

We can equal the mechanical energy for two points in the trajectory, for instance the apoap-
sis and periapsis, as well as changing the energy to a specific one (i.e., energy by unit of
mass), which from rearranging gets us to expression 3.5. The subscript ”apo” corresponds
to the apoapsis parameters and ”per” to the periapsis ones.

V 2
apo

2
−

V 2
per

2
=

GM
rapo
− GM

rper
(3.5)

An absence of external momentum in a system equals to a constant angular momentum
with respect to an arbitrary point [33]. With that in mind, a procedure similar to the conser-
vation of energy can be made, where the specific angular momentums (H) in the apoapsis
and periapsis of the elliptic trajectory are equal, obtaining with that an expression for the
velocity at the periapsis,

H = rper ·Vper = rapo ·Vapo = constant =>Vper =
rapo

rper
·Vapo (3.6)

Given that the apoapsis is the furthest distance from the focus of the ellipse and the peri-
apsis the closest one, from Figure 3.1 an equivalence can be made,

2a = rper + rapo (3.7)

By substituting expressions 3.6-3.7 into 3.5 the so called vis-viva equation is obtained [32].
It gives the orbital velocity of any point following an ellipse in its trajectory.

V 2 = GM
(

2
r
− 1

a

)
(3.8)
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3.1.3. Particularizing parameters

Going from the general case of an ellipse to our particular case of the swinging tether, prior
to particularize the expressions to our tether, the rendezvous maneuver must be done, to
connect the tether’s main body to the orbiting debris. This TFG will not get an in-depth look
into this procedure, as the initial point of the calculations is set when the tether is created.
Nevertheless, there are some considerations regarding the rendezvous process.

The condition to rendezvous between the two objects is such as the distance from the
tether to the target is much lower than the distance from Earth’s center to the desired
debris [36]. Figure 3.2 depicts both debris and tether when the rope would be deployed
and the two end masses joined (indicated by the thick dotted line). At that moment a
center of mass is created in the rope that will define the tether’s orbiting trajectory as a
whole. Each end mass has its own orbital radius and system of reference (depicted by the
subscripts ”tet” for tether and ”deb” for debris), and those references have (in this section
and across all the parametric study) their x-component following the direction of Earth’s
gravity, and the y-component being perpendicular and following the direction of the orbital
motion. As soon as the system is created both distances from the center of the Earth to
each end mass Rtet and Rdeb will change their trajectories and it is at that moment that our
parametric analysis will begin.

As previously stated the trajectory of the chosen debris is assumed to be close-to-circular.
However, as soon as the tether is formed, that trajectory will become an elliptic one, similar
to the tether’s main body orbit but with its respective orbital parameters.

Figure 3.2: Diagram of the desired rendezvous maneuver
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Targets in this study will be debris large enough to resemble the size of the main tether’s
body. That is due to the numerous debris of smaller size having a larger range of orbit
altitudes, inclinations and eccentricities; debris of larger sizes (above 10cm in diameter)
are more stable in their size and characteristics, including their close-to-circular orbits [35].
This is because the smaller sized debris are known by the breakup models that are primar-
ily a result of fragmentation or collisions between larger debris objects, making their orbits
more random and harder to predict. Clear concentrations and the best approximations that
verify the close-to-circular patterns of large debris can be seen in less than 2000 km or-
bits (LEO), around 20000 km (semi-synchronous orbits, i.e., where objects have a period
of rotation of 12 hours), and at 36000 km (GEO) [43]. This TFG analyses debris in LEO
orbits as these are the closest ones to Earth and also because debris at lower altitudes
have the benefit of being able to burn down into the atmosphere; an action that cannot be
done at GEO altitudes.

When the tether is formed, the system’s movement is ruled by the center of mass, that
keeps the whole tether in place. Nevertheless, apart from that point the two end masses
will be swinging as the tether orbits around the Earth. This means that our system should
be perceived as three independent points, which happen to be united. However, as soon
as the tether’s rope is cut, all the elliptic parameters (eccentricity, semi-major axis, etc.)
that we previously had and could consider as a whole are now separated intro three new
packs of values: the ones of the new debris orbit, the new tether’s main body orbit and the
new center of mass (now imaginary) orbit.

With the expressions brought up due to the elliptical trajectory, and the tether already set
and orbiting, the next step is to reach a parametric model that explains how the system
moves and behaves.

3.2. Parametric model

The goal of this parametric model is to arrive to the equations of motion that the system
has, and with them to obtain the velocities of each of the tether’s parts along their trajec-
tories. The swings that will affect the tether’s behaviour are explained by the equations of
motion that will be obtained.

3.2.1. Equations of Motion

If we took a picture of the swinging tether at any point in the trajectory, adding the angles
and velocities that will be needed, Figure 3.3 would be the result of it.

This picture is divided into three sections, each one of them being the angles and veloc-
ities corresponding to either the tether’s main body (subscript ”tet”), the center of mass
(subscript ”CoM”) and the debris (subscript ”deb”). Each of these system sections has the
parameters that fix their position in the plane of space: a radial component R and an an-
gular component θ, each one with the corresponding subscripts. The only variable θ that
will be considered along the study is that of the CoM, because neither that of the debris
nor that of the tether’s body is brought up in the upcoming expressions. This is the reason
why that angle will not have any subscript at all.
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Apart from θ, the other key angle in this study will be ψ, which is related to the pendulum-
swinging of the tether, and is defined as the angle between the x-axis of the center of mass
and the tether’s rope. Therefore, when ψ is equal to 0, the sections debris-CoM-tether’s
body are aligned with the local gravity. Other angles that appear in Figure 3.3 are φ and
λ; however, they are arbitrary angles needed in some calculations later in the chapter and
will not take part in obtaining the equations of motion. At the same time, the three kinds
of velocities (represented by the colors orange, green and violet) depicted in the figure will
be useful afterwards, and will be brought up in the Release section.

The tether’s center of mass CoM separates the original rope’s length into two shorter L’s:
the one in the tether’s side and the one in the debris’ side. These lengths of the rope do
not change, as initially stated, the tether’s rope will not vary its length once it joined both
tether and debris. They also meet the condition that the end masses and lengths are re-
lated such as Ldeb ·Mdeb = Ltet ·Mtet . This means that the relation between the two rope
section lengths will be given by the relation of the masses of the tether’s body and the
debris.

Figure 3.3: Geometry of a swinging tether in 2D
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The initial elliptical trajectory of the tether system is given by two parameters: the varying
radius that the center of mass has along the orbit RCoM, and the angular velocity it achieves
while doing that motion θ̇. The first parameter comes from equation 3.3, but with the
addition that in the definition of this radius, the definition of p that will be taken is the one in
expression 3.2, that has the periapsis as an input. Knowing that the Earth will be the focus
of our elliptic trajectory, from now on the periapsis and apoapsis will be called perigee and
apogee, respectively. That is, the planet Earth is the focal point of the ellipse.

RCoM =
Rper(1+ eCoM)

1+ eCoM · cos(θ)
(3.9)

The time derivative of RCoM is also defined as it will be relevant in later calculations.

ṘCoM = Rper(1+ eCoM) · eCoM · sin(θ) · θ̇
[1+ eCoM · cos(θ)]2

(3.10)

The expression of the angular velocity of an elliptical object comes from equating the grav-
itational force and the centripetal force of the object along the orbit [45], but because it is
an elliptical and not circular orbit, the term (1+ e · cos(θ)) is added to compensate that at
each point in the elliptical trajectory the orbital velocity will be different [46]. In the follow-
ing equation, we also take into account that our desired angular velocity θ̇ is equal to the
instantaneous velocity V over the radius of the orbit RCoM. A new parameter µ is added in
this equation, which is equal to the gravitational constant G times the Earth’s mass M. The
other mass m relates to the mass of the smaller object (the tether system in our case), but
that parameter becomes irrelevant, as the only mass that is relevant in the angular velocity
of an orbiting object is the one at the focus of the ellipse (the Earth, this time).

Fc =Fg[1+e·cos(θ)]=>
mV 2

RCoM(θ)
=G

Mm
R2

CoM(θ)
[1+e·cos(θ)]=> θ̇=

√
µ[1+ e · cos(θ)]

R3
CoM(θ)

(3.11)

With the main schematic introduced and the center of mass’ expressions defined, the
equations of motion will be now derived based on Lagrangian mechanics. The require-
ments to follow that formulation include having the expressions of the Cartesian coordi-
nates of both the tether’s body and the debris, as well as having obtained Rdeb and Rtet .

By applying trigonometry in Figure 3.3, the Cartesian coordinates of the tether system end
masses are the following:

xtet = RCoM · cos(θ)+Ltet · cos(ψ+θ) (3.12)

ytet = RCoM · sin(θ)+Ltet · sin(ψ+θ) (3.13)

xdeb = RCoM · cos(θ)−Ldeb · cos(ψ+θ) (3.14)

ydeb = RCoM · sin(θ)−Ldeb · sin(ψ+θ) (3.15)
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The time derivatives of the previous equations with respect to time are relevant enough to
be listed as follows:

ẋtet = ṘCoM · cos(θ)−RCoM · θ̇ · sin(θ)−Ltet · (ψ̇+ θ̇) · sin(ψ+θ) (3.16)

ẏtet = ṘCoM · sin(θ)+RCoM · θ̇ · cos(θ)+Ltet · (ψ̇+ θ̇) · cos(ψ+θ) (3.17)

ẋdeb = ṘCoM · cos(θ)−RCoM · θ̇ · sin(θ)+Ldeb · (ψ̇+ θ̇) · sin(ψ+θ) (3.18)

ẏdeb = ṘCoM · sin(θ)+RCoM · θ̇ · cos(θ)−Ldeb · (ψ̇+ θ̇) · cos(ψ+θ) (3.19)

Although RCoM in Figure 3.3 is already defined in expression 3.9, we also need to ex-
press Rtet and Rdeb. Using expressions 3.12-3.15 an equation for both distances can be
obtained.

Rtet =

√
x2

tet + y2
tet =

√
L2

tet +R2
CoM +2 ·Ltet ·RCoM · cos(ψ) (3.20)

Rdeb =
√

x2
deb + y2

deb =
√

L2
deb +R2

CoM−2 ·Ldeb ·RCoM · cos(ψ) (3.21)

From this point forward, Lagrangian mechanics will be used, therefore, the next step is to
express the kinetic and potential energy of our system in order to put their derivatives in
Lagrange equation. The upcoming method is a practical application of the conservation of
energy principle from expression 3.4.

T =
1
2

Mtet [(ẋtet)
2 +(ẏtet)

2]+
1
2

Mdeb[(ẋdeb)
2 +(ẏdeb)

2] (3.22)

If we put expressions 3.16-3.19 into equation 3.22 we get the kinetic energy that the tether
system will possess:

T =
1
2
(Mtet +Mdeb)(Ṙ2

CoM +R2
CoM · θ̇2)+

1
2
(Mtet ·L2

tet +Mdeb ·L2
deb)(ψ̇+ θ̇)2 (3.23)

By applying the expression of the potential energy present in equation 3.4, but to our
swinging tether; as well as by substituting the radius expressions of 3.20 and 3.21, we get
equation 3.24.

U =−µ ·Mtet

Rtet
− µ ·Mdeb

Rdeb
=− µ ·Mtet√

L2
tet +R2

CoM +2 ·Ltet ·RCoM · cos(ψ)
−

µ ·Mdeb√
L2

deb +R2
CoM−2 ·Ldeb ·RCoM · cos(ψ)

(3.24)
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Expression 3.25 is Lagrange’s equation; it gives the equations of motion by partially differ-
entiating Lagrange’s function with respect to q, where these finite number of q represent
each independent variable of our system [38]. Lagrange’s equation is equal to the term
that accounts for the non conservative forces that act on a system FNC.

d
dt
[
∂L
∂q̇i

]− ∂L
∂qi

= FNC, i = 1,2, ...,N (3.25)

Once the extended expressions of the kinetic and potential energy are set, we put them into
Lagrange’s function (expression 3.26), keeping in mind that we only need one equation,
the one that gives us the tether’s rotation angle ψ, because as stated earlier this study will
be two-dimensional. Thus, the parameter q1 will be our only variable in the expression: ψ.
Moreover, in our scenario FNC is equal to 0 because one of our initial assumptions was
that no non-conservative forces act on the tether.

L(qi, q̇i, t) = T (qi, q̇i, t)−U(qi, t) (3.26)

Once expression 3.26 is set, substituting this L into equation 3.25 gives us the equation
of motion of the swinging tethered system, keeping in mind the assumptions previously
stated. This expression 3.27 tells us how the system will be moving alongside time.

ψ̈+ θ̈+
µ ·RCoM · sin(ψ)

Ltet +Ldeb
[(R2

CoM +L2
deb

−2 ·RCoM ·Ldeb · cos(ψ))−
3
2 − (R2

CoM +L2
tet +2 ·RCoM ·Ltet · cos(ψ))−

3
2 ] = 0

(3.27)

However, from this point on-wards we consider the variables as a function of the true
anomaly θ. This way, we are able to reduce its complexity by assuming the orbit to remain
in a Keplerian orbit. Such transformations are listed the following expressions, where the
quotation marks represent the derivative with respect to θ.

ψ̇ =
dψ

dθ

dθ

dt
= θ̇ψ

′ (3.28)

ψ̈ =
d
dt
(θ̇ψ

′) = θ̇
2
ψ
′′+ θ̇ · θ̇′ ·ψ′ (3.29)

Some extra simplifications have been made to expression 3.27. The first one is to consider
the tether lengths negligible in comparison with the orbital radius [38]. The other comes
from chapter 3.2.1, where the assumption Ldeb ·Mdeb = Ltet ·Mtet was set. If we apply
those simplifications to the potential energy expression 3.24, and change the current time
derivatives to theta derivatives from the previous expressions, we get a simplified version
of the equation of motion:

ψ
′′−
[

2 · eCoM · sin(θ)
1+ eCoM · cos(θ)

]
(ψ′+1)+

3 · sin(2ψ)

2[1+ eCoM · cos(θ)]
= 0 (3.30)

With the knowledge of our ψ, the velocities of the tether system end masses will be ob-
tained. Afterwards, the optimal point of release in the trajectory will be found, with the
objective of rising the orbit of the tether’s body and lowering the one of the debris.
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3.2.2. Release

Once the debris is dropped, it will decrease its orbit, and we want to take advantage of that.
For reference, any orbital object orbiting at 600 km, normally falls into Earth within several
years; in orbits around 800 km its decay time is measured in decades and in orbits over
1000 km is measured in centuries [5]. The objective of the tether would be to lower as much
as possible the debris’ orbit to minimize the time it is orbiting the Earth and disintegrating
over time. At the same time, the tether would increase its orbit to compensate the payload
loss and to keep the same angular momentum in our system.

Figure 3.4 shows the desired maneuver, where the payload goes into a lower orbit and
the tether increases its orbital radius by a certain amount. This release ideally will happen
around the apogee of our orbit, because that way we force that the reduction of the semi-
major axis aDeb will happen at the perigee of the orbit, making the debris closer to the
surface of the Earth. If instead we released the payload at the perigee, we would maintain
the same perigee and instead make the reduction of aDeb in the apogee, and that would
not benefit our objective of lowering the debris’ closer to the Earth, to begin the process of
disintegration.

Figure 3.4: Trajectory of the released debris as well as the tether’s body

The velocities that each part of the swinging tether possesses at the moment of the cut
will dictate how their trajectories will change. In order to introduce every velocity that takes
place, Figure 3.3 will be separated in two parts to explain how the velocities come to be in
the first place.

Figure 3.5 shows a separation between the tether’s mass-side of the tether system and
the debris-side of the system. Distances and velocities will be considered in their vector
form along this demonstration.
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Both plots have the center of mass in common, and its distance to the center of the Earth
~RCoM, in pink. The distance from the latter to the tether’s body and the debris are, respec-
tively, ~Rtet and ~Rdeb. The whole length of the tether’s rope is split into two, where in the
left drawing is the distance CoM-tether’s body (~Rtet,CoM), and the right plot is the distance
debris-CoM (~Rdeb,CoM). That way, the total longitude from the debris to the tether’s body
would be the vector sum ~Rdeb,CoM +~Rtet,CoM.

Figure 3.5: Distances in vector form and angles regarding the main body-side of the tether
(left figure) and the debris-side (right figure)

If we focus firstly on the tether’s body sketch (left side), the expression of the velocity of the
tether’s body with respect to the Earth ~Vtet will be given by three components: the velocity
of the CoM with respect to the Earth ~VCoM, the relative velocity of the tether with respect
to the CoM ~Vtet,CoM and the effect of the rope orbiting along with the system
~ωCoM,Earth∧~Rtet,CoM.

Equations 3.31, 3.32 and 3.33 develop the terms described previously. ~VCoM has a com-
ponent consequence of the elliptical path changing the radius of the orbit ~̇RCoM and the
part accounting for the CoM orbiting around the Earth, which equals to the cross product

of the angular velocity of the CoM ~̇
θ times the vector ~̇RCoM. The term ~Vtet,CoM is defined

by the rotational velocity of the tether itself, i.e., ~̇ψ.

~VCoM = ~̇RCoM +~̇θ∧~RCoM (3.31)

~ωCoM,Earth∧~Rtet,CoM =~̇
θ∧~Rtet,CoM (3.32)

~Vtet,CoM = ~̇ψ∧~Rtet,CoM (3.33)

Once these components are defined, adding all of them gives expression 3.34: the total
velocity of one end of the tether, its main body. In this expression it is merged together the

terms with ~̇θ, and their vector sum result in the new term ~̇
θ∧~Rtet . That is because, from

Figure 3.5, ~Rtet = ~Rtet,CoM +~RCoM.
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~Vtet =~VCoM +~Vtet,CoM +~ωCoM,Earth∧~Rtet,CoM = ~̇RCoM +~̇ψ∧~Rtet,CoM +~̇θ∧~Rtet (3.34)

The same process can be made but to the right side of Figure 3.5 to obtain the total
velocity of the debris. Definitions for the components of the total debris velocity are listed
in equations 3.35 and 3.36.

~ωCoM,Earth∧~Rdeb,CoM =~̇
θ∧~Rdeb,CoM (3.35)

~Vdeb,CoM = ~̇ψ∧~Rdeb,CoM (3.36)

Due to the debris being closer to Earth than the CoM, the total velocity for the debris is not
the sum of its components. This is because this time ~Rdeb = ~RCoM−~Rdeb,CoM.

~Vdeb =~VCoM−~Vdeb,CoM−~ωCoM,Earth∧~Rdeb,CoM = ~̇RCoM−~̇ψ∧~Rdeb,CoM+~̇θ∧~Rdeb (3.37)

Previously in Figure 3.3 some velocities were shown, and each of them relate to the previ-
ous vector components of the tether velocities.

VR is parallel to the xCoM axis and it tells how the orbital radius varies along the elliptical
trajectory. It is the modulus of ~̇RCoM of expression 3.31.

VDebCoM is perpendicular to the distance from Earth’s center and the debris Rdeb, and is
the modulus of the terms of expression 3.36. If we change the notation from vector to only
modulus form, and to the same one as Figure 3.3, we get that the distances ~Rdeb,CoM and
~Rtet,CoM become Ldeb and Ltet , respectively.

VRot coincides with the direction of the y component of each system of reference (debris,
tether’s body and CoM), and is the term accounting for the rotation due to the orbital
velocity θ̇. It is the last term of expression 3.34 for the debris and the last of expression
3.37 for the tether’s body, while the definition for the CoM is the distance RCoM times the
angular velocity θ̇.

Table 3.1 classifies the previously described velocities. However, it must be noted that this
table lists the modulus of the velocities, and in order to know the total velocity that both
tether’s main body and debris have, those velocity components need to be split to every
radial component on one side and every normal component on the other one.

Definition Notation
Radial Velocity VR = ṘCoM

CoM rotation velocity due to θ̇ VRotCoM = RCoM · θ̇
Debris’ rotation velocity due to θ̇ VRotDeb = Rdeb · θ̇

Debris’ rotation velocity due to CoM VDebCoM = Ldeb · ψ̇
Tether’s rotation velocity due to θ̇ VRotTet = Rtet · θ̇

Tether’s rotation velocity due to CoM VTetCoM = Ltet · ψ̇

Table 3.1: All the velocities that take part in the motion of the tether (in modulus)
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Those radial and normal components will be with respect to each respective system of
reference: velocities that belong to the debris’ end of the tether will be radial and nor-
mal to that system of reference and the tether’s main body velocities will be referenced
through that system of reference instead. Using trigonometry in Figure 3.3, we classify
the velocities of the debris in the xdeb and the ydeb axis. An important thing to consider in
expressions 3.38 and 3.39 is that the term Vdeb,CoM, due to the distance ~Rdeb,CoM being
defined opposite from the one corresponding to the tether’s body, it carries a negative sign
that changes the trigonometry analysis of this velocity.

VRadDeb =−VDebCoM · cos(φ1)+VR · cos(λ1) (3.38)

VNormDeb =VRotDeb +VDebCoM · sin(φ1)+VR · sin(λ1) (3.39)

VRadTet =−VTetCoM · sin(φ2)+VR · cos(λ2) (3.40)

VNormTet =VRotTet +VTetCoM · cos(φ2)−VR · sin(λ2) (3.41)

Angles λ1, λ2, φ1 and φ2 are obtained again from the same figure. First apply the sine rule
to get φ1:

RCoM

sin(π

2 +φ1)
=

Rdeb

sin(ψ)
(3.42)

φ1 = arcsin
(

RCoM · sin(ψ)
Rdeb

)
− π

2
(3.43)

Then we can know the value of λ by doing:

λ1 =
π

2
−φ1−ψ = π−arcsin

(
RCoM · sin(ψ)

Rdeb

)
−ψ (3.44)

Repeating the process for the other end of the tether (main body), the difference is the
trigonometry used to obtain the respective orbital and rotational velocity, as the radial one
is the same. In order to obtain the expressions, two new angles λ2 and φ2 are introduced
(present in Figure 3.3), and going along the same procedures, we get expressions 3.45
and 3.46 for the radial and normal components of the tether’s body, and the definitions of
the new angles in 3.47 and 3.48.

VRadTet =−VTetCoM · sin(φ2)+VR · cos(λ2) (3.45)

VNormTet =VRotTet +VTetCoM · cos(φ2)−VR · sin(λ2) (3.46)

φ2 = arcsin
(

RCoM

Rtet
· sin(π−ψ)

)
(3.47)
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λ2 = ψ−φ2 (3.48)

At some point in the trajectory the goal is to detach the debris from the tether. The equation
that hints where that release point should be comes from isolating a from equation 3.8. In
order to lower the debris as much as we can, the new semi-major axis of that object aDeb
must be as low as possible. Expression 3.49 shows that in order to do so, two conditions
must be met. The first one is that the total velocity of the debris must be minimal, to make
the denominator larger. That moment of less total velocity of the debris, which is defined

as
√

V 2
NormDeb +V 2

RadDeb, occurs in the apogee. This information is given to us by equation

3.11: the larger RCoM is, the lower θ̇ will become. The second condition is that Rdeb must
be minimal, and that occurs at the perigee. However, by releasing the debris at the perigee
we would get a reduction in the height of the apogee, contrary of what we want. Thus, the
optimal release point will be the instants of our trajectory where those two conditions align
and result in the lowest adeb values possible.

We will simulate several orbits, to then pick from the multiple minimums of adeb, the one
with the best balance of being the lowest value possible but also being close to the apogee,
to make the change in semi-major axis influence the height of the debris’ perigee, lowering
it.

aDeb =
µ ·Rdeb

2µ−V 2
TotDeb ·Rdeb

(3.49)

The final step will be to calculate the new orbital radius of the debris. Prior to that expres-
sion, the new eccentricity eDeb and semi-latus rectum pDeb are defined.

On one hand, from equation 3.2 an expression for the eccentricity that our debris will have
can be derived.

eDeb =

√
1− pDeb

aDeb
(3.50)

On the other hand, to know the semi-latus rectum pDeb, we can use the definition of that
distance in terms of the specific angular momentum H.

pDeb =
H2

µ
=

(VNormDeb ·Rdeb)
2

µ
(3.51)

By inserting equations 3.49, 3.50 and 3.51 into equation 3.3, the expression of the new
radius of the debris is obtained. Note that we must add θRelease to the iterative values of
θ in the expression of the new radius; this new parameter is the true anomaly the debris
had at the moment of the release, and this addition will result in the new orbit starting at
the moment the rope is cut.

An equivalent process but changing the subscripts ”deb” to ”tet” can be made to obtain the
expressions from 3.49 to 3.52 respective to the tether’s body.

RNewDeb =
pDeb

1+ eDeb · cos(θ+θRelease)
(3.52)
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3.3. Validations

This section will validate the equations of motion used in chapter 3.2. Nevertheless, in
order to check them a new parameter must be added into the equations, as the doctorate
that was used to obtain the equations of motion uses a swinging tether in three dimensions
[38]. In this case, presented by Ziegler in 2003, the motion of the tether is not restricted
to a plane, and instead is a more generic scenario. Figure 3.6 shows how the geometry
of the tether changes, as now an angle accounting for the degree of inclination in the orbit
plane needs to be defined: α. In our study this angle was 0, due to always working in a 2D
orbital plane.

Figure 3.6 has θ and ψ the same way as before, R as our RCoM, the subscripts 1 and 2 as
deb and tet, and the system of reference x0−y0− z0 as the one of the center of mass. On
top of that, the angle α is the inclination of the tether with respect to the orbital plane, and
is defined as the angle between that plane and the tether’s rope L1 (or L2).

Figure 3.6: Geometry of an out-of-plane tether [38]

From this point, a study equivalent to the one done in chapter 3.2 can be made, where
the Cartesian coordinates of each mass are defined, and the Lagrangian function is found,
this time with the alpha parameter in the equations. All the related information about the
process can be found in Ziegler’s document [38]. Equations 3.53 and 3.54 are what result
from following that process and making the same simplifications as the ones made before.
In this case the equations of motion are two, as now the tether’s self-rotation angle can
happen both in the plane x0− y0 (being that angle ψ) and the plane y0− z0 (being in this
other case the angle α).
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ψ
′′−
[

2 ·α′ · tan(α)+
2 · e · sin(θ)

1+ e · cos(θ)

]
(ψ′+1)+

3 · sin(2ψ)

2[1+ e · cos(θ)]
= 0 (3.53)

α
′′− 2 · e · sin(θ)

1+ e · cos(θ)
α
′+

1
2

sin(2α)

[
(ψ′+1)2 +

3 · cos2(ψ)

1+ e · cos(θ)

]
= 0 (3.54)

Ziegler in his doctorate plotted a couple graphs showing the variation of ψ and α angles
with respect to the number of orbits, given the initial conditions shown in Table 3.2. He
considered a several kilometers long tether with both end masses of 1 tonne, with a radius
of the perigee of 7000 km (or a height of 629 km, if we subtract the radius of the Earth).
The only initial condition different from 0 is α(0).

Mtet Mdeb Ltet Ldeb e Rper ψ(0) ψ̇(0) α(0) α̇(0)
1000 kg 1000 kg 10 km 10 km 0.25 7000 km 0 rad 0 rad/s 0.1 rad 0 rad/s

Table 3.2: Initial conditions of Ziegler’s scenario

Given the initial conditions in this scenario, and solving equations 3.53 and 3.54 with them,
Ziegler in his doctorate obtains the left side of Figure 3.7, which shows the rotation angle
ψ with respect to the number of orbits. To test the validity of those equations of motion (a
set of more complete equations than our main case, which has α = 0), expressions 3.53
and 3.54 were solved in Matlab, with the initial conditions in Table 3.2, and the right plot
of Figure 3.7 resulted from it. Both graphs are a match, and they show that the angle the
tether rotates with, ψ, never tilts the end masses more than 0.4 radians.
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Figure 3.7: Graphs of rotation angle ψ along 5 orbits. Left side is Ziegler’s sketch and right
side is the Matlab output

In addition, the same validation process was made with angle α in Figure 3.8. The result
is again the same plot, and we observe that α never goes beyond 0.15, which reflects that
the orbital plane does not vary that much. However, it shows a more periodical and clearer
pattern than the previous angle.
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verification

In the following comparisons with Ziegler’s results will not be possible, as the doctorate did
not add more Figures, but the ones that will be shown here will expand the information that
he had.

Equation 3.9 showed how the radius of the center of mass of the swinging tether changed
along the elliptical trajectory. If we plot it with the eccentricity and perigee radius of the
initial conditions of Table 3.2 we get the increase in radius of the orbit (Figure 3.9). Instead
of the radius, it is plotted the orbit height, which is the distance not to the center of the
Earth, but the Earth’s surface. We can see that at each apogee (every half an orbit), the
CoM reaches a height of almost 10 times the value it had at the perigee. This is due to
the high eccentricity, which makes the difference between the distances of the perigee
(valleys) and apogee (peaks) significant.
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Figure 3.9: Variation of the CoM orbit height along the trajectory

A similar plot to the one in Figure 3.9 is to plot how the true anomaly θ changes as the
orbits go by. The next figure shows that for each orbit θ goes from 0 to 2π radians, to then
repeat the cycle.
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Figure 3.10: Variation of the true anomaly θ along the trajectory

Another graph that could be shown is the difference between the total velocity of the
tether’s body and the debris along the orbits. Nevertheless, we cannot use the velocity
expressions that we deduced in the previous chapter, as they are only valid with a re-
stricted orbital plane.

To calculate the total velocities, we will start from Figure 3.6, and deduce each Cartesian
component of the velocity of the tether’s body and the debris. Expressions 3.55 to 3.60 are
the new equations that need to be used this section. Note that this time a z-component is
added, as we are now in 3D.

xdeb = RCoM · cos(θ)−Ldeb · cos(α) · cos(ψ+θ) (3.55)

ydeb = RCoM · sin(θ)−Ldeb · cos(α) · sin(ψ+θ) (3.56)

zdeb =−Ldeb · sin(α) (3.57)

xtet = RCoM · cos(θ)+Ltet · cos(α) · cos(ψ+θ) (3.58)

ytet = RCoM · sin(θ)+Ltet · cos(α) · sin(ψ+θ) (3.59)

ztet = Ltet · sin(α) (3.60)

Afterwards, we will apply the time derivative to each equation, to then use the definition
of total velocity VTot =

√
ẋ2 + ẏ2 + ż2, adding the corresponding subscript for the debris

”deb” and the tether’s body ”tet”.
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If we plot the two total velocities that we obtain, Figure 3.11 is what we get. Note that the
velocities oscillate almost 10 km/s from peaks to valleys due to the high eccentricity value
given at the beginning. Another interesting result is that the tether’s body and the debris
velocities seem mirrored from one each other: when the debris is at a peak value of total
velocity, the tether is at a valley and vice-versa.
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Figure 3.11: Total velocities of the debris and the tether’s body in Ziegler scenario

All the graphs of this section were generated using the three-dimensional version of the
equations of motion. However, for the final chapter of the TFG, we will start from the
simplified equation of motion in expression 3.30, as our scenario has the orbital plane
fixed.





CHAPTER 4. RESULTS AND DISCUSSION

In this final chapter we will give similar results as the ones shown in section 3.3, but now
with the equations of motion found in section 3.2 (i.e., without the parameter α). The
initial conditions used are fixed values, but tests will be made where each time one of
these parameters is going to vary. Those variations will bring the main results that can be
obtained in this study, regarding the removal of space debris.

The initial values from which the variations and calculations this section are based on are
listed in Table 4.1. As opposed to the previous scenario, values such as the tether’s rope
length and the eccentricity are reduced, while the radius of the perigee is at a higher point.
Rper is set at 9371 km (or 3000 km of height) because we will consider a hypothetical
debris that orbits around that height.

Moreover, the tether’s main body will be 10 times heavier than the debris. This is to add
to the pendulum effect that we want to occur, because due to the identity Mtet · Ltet =
Mdeb ·Ldeb, that difference in mass is equivalent to having a rope where the debris-part
length (Ldeb) is 10 times longer than the tether’s, which means that the debris will swing
with more intensity than the other end of the rope. The system will begin with an initial ψ

different from zero, because otherwise the pendulum motion would not occur.

Mtet Mdeb Ltet Ldeb e Rper ψ(0) ψ̇(0)
1000 kg 100 kg 120 m 1200 m 0.1 9371 km 0.2 rad 0 rad/s

Table 4.1: Initial conditions of the swinging tether to study

The parameters of this table that will vary are the eccentricity of the initial orbit e, the length
of the tether’s side of the rope Ltet (and consequently Ldeb), and the radius of the CoM
perigee Rper. The former parameter has an effect on the atmospheric drag that will act on
the debris once it is in a low enough orbit: If we have an excessively eccentric orbit, drag
will be acting mostly in the perigee of the trajectory, and the orbit will tend to circularize
itself, while the radius of the perigee will tend to remain the same [44]. If instead, we have
an orbit with the same value of perigee, but a low value of eccentricity, the orbit will have
an atmospheric drag acting almost constantly along the trajectory, and the orbit will keep
decreasing its altitude in an homogeneous way.

The released debris needs to end up in an orbit with a low enough altitude so that it can
begin its process of disintegration. This process is given by the exponential increase in
atmospheric drag as we approach the Earth’s surface. Table 4.2 gives an estimation of
the density of the atmosphere depending on the altitude that an object has in an elliptic
trajectory. At 1000 km the density is, comparatively to the largest numbers in the table,
almost negligible, but is sufficient enough to, in the long run, keep decreasing the debris
altitude. With that, we will set the threshold of the lowest point in the new debris’ orbit in
1000 km, to guarantee that the released debris will eventually disintegrate.

39
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Altitude [km] 100 200 300 400 500
Density [g/km3] 497.4 255-316 17-35 2.2-7.5 0.4-2.0

Altitude [km] 600 700 800 900 1000
Density [g/km3] 0.08-0.64 0.02-0.22 0.007-0.08 0.003-0.04 0.001-0.02

Table 4.2: Approximated values of atmospheric density at different altitudes [44]

4.1. Varying the orbit’s eccentricity

The first modification of the initial conditions of Table 4.1 will be to vary the tether’s center
of mass eccentricity e. The starting value will be 0 and each iteration the value will increase
by 0.05 up to 0.15.

Solving the equation of motion 3.30 with the initial values gives how the rotation angle
changes over time. In this first case the eccentricity is a parameter that affects the outcome
of the angles so Figure 4.1 shows the result of the first eccentricity (e=0), and then Figure
4.2 all of the eccentricities combined. Starting from the simpler graph, in it the ψ angle
in blue and its time derivative ψ̇ in orange are represented. Both of these parameters are
plotted versus time, or more specifically, the number of orbits. When the rotation angle
reaches a maximum or minimum value, its velocity is 0, checking that the time derivative
is working as intended. ψ spans between 0.2 and -0.2 radians, while the rotation velocity
ψ̇ goes from 0.34 to -0.34 radians per second, approximately.
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Figure 4.1: Variation of the rotation angle ψ and its time derivative ψ̇ alongside the trajec-
tory with e = 0

If we now take into account not only the first value of eccentricity, but all four of them, we
obtain Figure 4.2. The multiple curves manifest that the eccentricity is a parameter that
alters the values of the rotation angle ψ. The higher the eccentricity, the more abrupt the
changes between the peaks and valleys are.
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Figure 4.2: Variation of the rotation angle ψ and its time derivative ψ̇ with e =
[0,0.05,0.1,0.15]

Before going into the velocities, we can graph equation 3.9, the radius of the center of
mass, with respect to the number of orbits, depicted in Figure 4.3. There we can see that
the higher the eccentricity, the higher the value of the apogee (at every peak) will be. This
is because we impose from the start that the radius of the perigee will be 9371 km, so the
apogee is the distance that keeps increasing instead. The y-axis of the graph is the orbit
height, instead of radius. If we subtract the radius of the Earth (6371 km) to the initial 9371
km of perigee radius, we get the orbit height of the center of mass instead: 3000 km in the
case of the perigee. Hereafter, and for the sake of clarity, all the radius-related values will
be in terms of the height (distance with respect to the Earth’s surface).

If we were to plot the orbit height graphs for the debris and tether’s body, we would see that
both of them would be almost identical to the CoM one, because initially the only difference
between the three distances are the rope lengths; distances almost irrelevant next to the
magnitudes of thousands of kilometers that are displayed in this Figure 4.3.
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Figure 4.3: Orbit height of the center of mass of the tether system throughout the trajectory
with e = [0,0.05,0.1,0.15]
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Figure 4.4 depicts the modulus of the velocities that were shown in Figure 3.3, each one
with their own corresponding color. VRot and VR are the same in both plots, the former
being the predominant velocity with around 6 km/s that keeps oscillating more the higher
e is, and the latter centered in 0 and also deviating more as the eccentricity increases.
VDebCom and VTetCom are the differential factor in these plots since they are the velocities
that come from the end masses being attached to a center of mass, which means that
they are proportional to Ldeb and Ltet . In our case those lengths are different by an order
of magnitude of 10. The difference in both green curves explains how in the pendulum-
effect, the debris-side of the tether is the one swinging the most, while the other side keeps
its ups and downs in velocity in a less pronounced way. The direction of the black arrows
indicates how each velocity changes as we keep increasing the eccentricity e, with the
effect of varying more the maximum and minimum values of every velocity.
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Figure 4.4: Modulus of the velocity components of the debris (left) and the tether’s body
(right) with the CoM eccentricity e = [0,0.05,0.1,0.15]

The graph that depicts the radial and normal components of the previously shown veloc-
ities is Figure 4.5. Apart from those components, the total velocity is also added in this
plot. It can be seen that the left plot is much more erratic in its behaviour than the right
one, and that is due to VDebCom having more impact in the debris than its counterpart in
the tether’s body. Another interesting aspect to highlight is VRadDeb, that is inverted with
respect to its tether’s body counterpart. This behaviour is explained by the initial conditions
of ψ, where that initial push results in the debris swinging with a radial component inwards
(i.e., towards the Earth), making the initial motion negative in this component, as opposed
to the tether that initially keeps increasing its radial component as it moves towards the
apogee.
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Figure 4.5: Radial, normal and total velocity of the debris (left) and the tether’s body (right)
with respect of time with e = [0,0.05,0.1,0.15]

Before the release, both the tether’s body and the debris have a semi-major axis equal to
the one of the center of mass. Nevertheless, we can make a plot of the infinite possible
values of aDeb that we would have if we released the debris at any point in the trajectory.

The thin curves of Figure 4.6 result from plotting expression 3.49 for each iteration of
eccentricities. On the other hand, the thick horizontal lines represent the actual values of
the debris after the release maneuver (and that value becomes constant along the orbits
because the debris exits the restriction of being in a tether system and instead now follows
a typical elliptical orbit, with a single value of semi-major axis).

To check that our debris does in fact have a constant aDeb value after release, we can
obtain the total velocity it will have at each point in the new trajectory. Similar to the
components of our CoM of the tether system, this time we know that the debris will have a
radial component VRNewDeb = ṘNewDeb and a normal one VRotNewDeb = RNewDeb · θ̇NewDeb.
Total velocity values are obtained by the squared sum of these two components, which
then are iterated along all the values of RNewDeb, substituted in Equation 3.49 and plotted
in the left plot of Figure 4.6, giving constant values of aDeb after the release. Those values
keep increasing as the initial eccentricity increases as well.

Those new aDeb values will intersect with the minimum values of one of the valleys of the
curves of the same figure. Out of the eight valleys we can see for each e, we need to
choose the one that best suits these conditions: the first one is to be as close as possible
to an apogee (which happens at the middle of every orbit); by doing so, we will reduce the
semi-major axis by lowering the distance of the perigee, and not the apogee. The second
condition is that whenever possible we must choose the valley that is the minimum among
all of them (and this with every eccentricity).

This first scenario, we will choose the 8th valley, the one around 4.5 orbits. This is be-
cause we will prioritize a bit more that out of all of the valleys, this is the closest one to
its respective apogee. However, an equally valid reasoning would be to choose the 6th
valleys before 3.5 orbits, which are more deviated from the apogee, but give lower values
of aDeb.
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The right plot of Figure 4.6 zooms in the spot of release of this scenario, where the values
shown are the minimum of each respective curve. Upon iterating the new values of total
velocity into equation 3.49, the new values of aDeb are the same as each respective min-
ima graphed in Figure 4.6 (right). Note that as we keep increasing the eccentricity of our
orbit, the release point will be every time a bit more to the right.
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Figure 4.6: Possible and final semi-major axis values for the debris (left) and a zoom in the
release spot (right) with e = [0,0.05,0.1,0.15]

The same process is repeated for the tether’s body, and in doing so we can see a left plot
with less oscillations, signifying a less intense pendulum-like motion as opposed to the
previous figure. Also, note that each curve is mirrored from their corresponding counterpart
in Figure 4.6: when the tether’s body has a valley, the debris has a peak.

The right plot of Figure 4.7 tells us that a minimum value of aDeb not necessarily equals to
the maximum one of aTet , as in this case we see that all four points of the new axis of the
tether’s body happen after the maximum value of aTet . In some cases the difference in the
maximum and the chosen value will be closer together than others. In this scenario, for
instance, as we increase e, that difference seems to increase as well.
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Figure 4.7: Possible and final semi-major axis values for the tether’s body (left) and a zoom
in the release spot (right) with e = [0,0.05,0.1,0.15]
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In order to obtain the new values of semi-major axis the debris had, we needed RNewDeb.
We can iterate expression 3.52 through all the values of θ (the starting point being the
release of the debris) and then plot the result in order to obtain Figure 4.8. There the
resulting new orbits of the debris for the four cases of eccentricity are shown in terms of
height, and their starting point is their respective moments of release. As we can corrobo-
rate in the zoom plot of the new perigees in the right, the higher the eccentricity, the earlier
we arrive at the new perigees, and the higher they are.

All four cases reduced the perigee of the debris. However, our valid cases are the first three
eccentricities, as the case of e = 0.15 does not achieve a perigee close to our threshold
value of 1000 km. The third case does not achieve that value either, but taking into account
the variations in the atmospheric density due to solar cycles, debris at that height could
also be pulled into the atmosphere and eventually disintegrated, so we will count the case
of e = 0.1 as a valid one.
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Figure 4.8: New orbital trajectory of the debris after release (left) and a zoom in the new
perigee (right) with e = [0,0.05,0.1,0.15]

On the other hand, the tether’s main body in Figure 4.9 results in an orbit that instead of
decreasing, has increased its perigee from when it was tied to the debris. We observe in
the right plot that similar to the debris’ case, the higher we set the eccentricity, the earlier
the new orbit will reach its perigee. However, it can be seen that as we increase e, we will
get lower values of height, which in this case is not desirable, as we want to also increase
the tether’s body height as much as we can. The exception here is the case of e= 0, which
due to the prior orbit having a perigee and apogee of the same distance, it limits how much
the tether’s body can go up in its new perigee.
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Figure 4.9: New orbital trajectory of the tether’s body after release (left) and a zoom in the
new perigee (right) with e = [0,0.05,0.1,0.15]

4.2. Varying the length of the tether

This time the varying parameter will be the length of both ends of the tether system: Ldeb
and Ltet . A previously stated hypothesis guaranteed us the center of mass of our tether
was in place: Ltet ·Mtet = Ldeb ·Mdeb. If we want to change the lengths of the tether, that
identity must be true. The length of the tether body’s side of the rope will increase from
an initial value of 80 m with intervals of 20 m each iteration, and thanks to the previous
identity we know that the other side of the rope will be 10 times longer, as a consequence
of the values of mass that are written in Table 4.1.

The reason why the varying values are the lengths and not the masses is that in reality
we can know better the masses of a certain target and our own tether’s body, instead of a
theoretical rope that will be extended a certain amount of meters.

The variation in ψ and its time derivative along the orbits is different from the previous
case, but that is because this time the eccentricity plotted is 0.1, the initial condition of the
table, instead of 0 (the initial value from the previous section). Moreover, in sections 4.2
and 4.3, ψ will only have one curve, because unlike before with the eccentricity, the tether’s
length or the radius of the perigee, unless we set them to 0, do not vary the values of ψ. In
this second scenario, Figure 4.10 shows a more abrupt difference between the higher and
lower points of the curves, result of increasing the initial eccentricity of the system.
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Figure 4.10: Variation of the rotation angle ψ and its time derivative ψ̇ alongside the tra-
jectory

The orbit the center of mass follows at the beginning is given in the following Figure 4.11.
It can only be seen a single curve, which tells us that changing the tether’s length does
not have an impact in the orbit of the CoM, opposite of what happened if we changed e
previously.
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Figure 4.11: Orbital height of the center of mass of the tether system with respect to the
number of orbits

In this second scenario the modulus of the velocities behave in a similar way to varying the
eccentricity, with the difference that this time VRot velocities are much closer to each other
(because we are not varying the eccentricity in this scenario). VDebCom and VTetCom are still
different because the values of their respective lengths of the rope differ in one order of
magnitude. In addition to that, the more we increase the tether’s length, the more intense
the variations in VDebCom (and VTetCom) are.
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Figure 4.12: Modulus of the velocity components of the debris (left) and the tether’s body
(right) with Ltet = [80,100,120,140]m and Ldeb = [800,1000,1200,1400]m.

Figure 4.13 shows us that the radial, normal and total components of the debris velocities
depict more variance as opposed to the much stable behaviour of the tether’s body veloci-
ties. Nevertheless, varying the lengths of the tether’s rope seems to bring a set of velocities
much closer to each other for the normal velocities and specially for the radial ones, again
due to the eccentricity being fixed this time. This is because varying the tether’s length
does not affect as much velocity-wise as changing the eccentricity. Moreover, in the graph
we can see that as the tether’s length increases, all the velocities will remain almost con-
stant except for the normal (and thus total) components for the debris, that will have higher
maximums and lower minimums in their values.
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Figure 4.13: Radial, normal and total velocity of the debris (left) and the tether’s body (right)
with respect of time with Ltet = [80,100,120,140]m and Ldeb = [800,1000,1200,1400]m.

The possible semi-major axis the debris will have after release, and the actual values, are
given in the next figure.

Similar to the previous scenario, we should find the lowest values of aDeb while being suf-
ficiently close to the apogee. In this second scenario, we will choose the 5th valley of the
curves, at around 2.8 orbits. This is because now we will prioritize the fact of being a valley
as low as possible (but not so much as to choosing the second or seventh valley, as they
are very much situated at the perigee).
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By selecting that spot as our release window, a zoom can be seen in the right plot of
Figure 4.14, where the minimum values of aDeb are depicted. Additionally, as we increase
the tether’s length, we get slightly earlier release spots and lower semi-major axis values.
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Figure 4.14: Possible and final semi-major axis values for the debris (left) and a zoom in the
release spot (right) with Ltet = [80,100,120,140]m and Ldeb = [800,1000,1200,1400]m

The semi-major axis values in the case of the tether’s body are depicted in Figure 4.15,
where the oscillations of the possible values of aTet are less intense than the debris’, and
more importantly, the release spots deduced earlier get us close-to-maximum spots for the
semi-major axis of the tether’s body. The right plot show that even though we are not at
the maximum value that we could obtain in rising our tether’s body height, we are close
enough. The longer we set our tether’s rope is beneficial in this case as well, because it
gets us higher values of aTet .
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Figure 4.15: Possible and final semi-major axis values for the tether’s body (left)
and a zoom in the release spot (right) with Ltet = [80,100,120,140]m and Ldeb =
[800,1000,1200,1400]m
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Arguably the most important graphs in each scenario are plots such as 4.16, which shows
the new trajectories that the debris has once released. This time we do not start at almost
the apogee, but afterwards, because we chose not to be as close to the apogee as we did
the first scenario. This is also reflected in the values of the new apogees, that will vary
from each value of Ltet . The two first tether lengths give us perigee heights of more than
1000 km, our threshold value, and thus are not good enough for our goals. Note that the
instant we get to the new perigees is slightly earlier as we decrease the tether’s length.
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Figure 4.16: New orbital trajectory of the debris after release (left) and a zoom in the new
perigee (right) with Ltet = [80,100,120,140]m and Ldeb = [800,1000,1200,1400]m

Figure 4.17 depicts the new trajectory of the tether’s body, which goes from a height of
3100 km to around 5400 km in the apogee. It can be seen that all four cases start at almost
the same height, and the difference between the new perigees are not as significant as
the last figure. All four tether lengths give us higher perigees than we had before, but due
to the debris not achieving its desirable height in the first two tether lengths, we cannot
have them as valid here either. As we increase Ltet and Ldeb, we get higher values of the
perigee at a slightly delayed instants.
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Figure 4.17: New orbital trajectory of the tether’s body after release (left) and a zoom in the
new perigee (right) with Ltet = [80,100,120,140]m and Ldeb = [800,1000,1200,1400]m



CHAPTER 4. RESULTS AND DISCUSSION 51

4.3. Varying the radius of the perigee

The last variation that will be done to the initial conditions set at the beginning of the
chapter is to change the radius of the initial perigee of the CoM orbit. The iteration starts
at 2000 km of height (8371 km in terms of radius, adding the radius of the Earth) and keeps
increasing 1000 km to reach a final height of 5000 km in the perigee, or hper notation-wise.

The graph corresponding to ψ is the same as the previous case, because neither the
tether’s length nor the radius of the perigee affects the outcome of the equation of motion
that gives us the rotation angle ψ.

In order to interpret the new orbits of the debris and tether’s body, 4.18 shows the initial
CoM orbit heights along time. It is relevant to note the 4 curves one on top of each other
as we keep increasing the perigee. The valleys of each curve represent each of the values
of hper that we stated at the beginning of this third scenario.
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Figure 4.18: Orbital height of the center of mass of the tether system with the conditions
of hper = [2000,3000,4000,5000]km

The graphs of the modulus of the different velocities of the debris and tether’s body are
next. As represented in Figure 4.19, VRotDeb and VRotTet can be distinguished from each
other, because this time the radius (the most significant variable of VRot ) varies in every
iteration. As we keep increasing the height of the initial perigee, the values of VRot and VR
decrease all-together: their peaks and valleys are reduced.
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Figure 4.19: Modulus of the velocity components of the debris (left) and the tether’s body
(right) with hper = [2000,3000,4000,5000]km

For the third time, differentiating between radial and normal components, as well as plotting
the total component, Figure 4.20 is created. Same as before, the radial component of the
debris mirrors the tether’s body’s radial component. As we keep increasing the radius of
the perigee, VNorm will be slower in both end masses. The same outcome can be seen,
but in a more subtle way, in the values of VRad , as we increase hper.
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Figure 4.20: Radial, normal and total velocity of the debris (left) and the tether’s body
(right) with respect of time with hper = [2000,3000,4000,5000]km

From the orbital height of the CoM and the total velocity of the debris, the graph of its
potential (and final) semi-major axis values are plotted here as well.

Naturally, as we increase the height of the perigee, the virtual semi-major axis while we
are in the tether system will increase as well. Out of the eight valleys that we have, in this
scenario we will pick the 3rd one, the one after 1.5 orbits. The eighth valleys are closer to
their apogee, but since the third ones have a lower value of aDeb, we will go with them.

The right plot of Figure 4.21 shows that as we keep increasing hper, and in order to ob-
tain the minimum values of aDeb, we will get the instants for release slightly sooner each
iteration.
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Figure 4.21: Possible and final semi-major axis values for the debris (left) and a zoom in
the release spot (right) with hper = [2000,3000,4000,5000]km

The possible semi-major axis values of the tether’s body aTet are displayed in Figure 4.22
on the left, with a zoom in the release window on the right plot. A less oscillating behaviour
tells us the less intense motion nature of our tether’s body in every swing. Same as before,
an increase in hper result in an increase of the possible, as well as final, semi-major axis.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Orbits

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

S
e
m

i-
m

a
jo

r 
a
x
is

 [
k
m

]

10
4Possible and final semi-major axis of the tethers body

hper = 2000km

hper = 3000km

hper = 4000km

hper = 5000km

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

Orbits

0.95

1

1.05

1.1

1.15

1.2

1.25

S
e
m

i-
m

a
jo

r 
a
x
is

 [
k
m

]

10
4Possible and final semi-major axis of the tethers body

hper = 2000km

hper = 3000km

hper = 4000km

hper = 5000km

X 1.6278

Y 12787.6659

X 1.6278

Y 11656.7547

X 1.6306

Y 10525.2291

X 1.6333

Y 9395.0832

Figure 4.22: Possible and final semi-major axis values for the tether’s body (left) and a
zoom in the release spot (right) with hper = [2000,3000,4000,5000]km

The new orbit of the debris in this scenario starts at the moment of each respective release,
and at their respective heights, as seen in Figure 4.23.

By doing the same zoom as before, the right plot of the same figure shows that the new
values of the debris’ perigee occur at practically the same time, with a slight tendency of
delaying the instant of the lowest point in the curve as we increase hper. Moreover, as we
keep decreasing this initial condition, we will get closer to Earth values of the perigee.

That being said, the only valid value of hper is when it is equal to 2000 km, because the
other ones do not achieve our new perigee threshold of 1000 km, even though all of them
succeed in lowering the orbit of the debris from when it was tied to our tether.



54 A preliminary study of space debris mitigation based on a swinging tether system

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Orbits

0

1000

2000

3000

4000

5000

6000

7000

8000
O

rb
it
 h

e
ig

h
t 
[k

m
]

New orbit heights of the debris after release

hper = 2000km

hper = 3000km

hper = 4000km

hper = 5000km

1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3

Orbits

500

1000

1500

2000

2500

3000

O
rb

it
 h

e
ig

h
t 
[k

m
]

New orbit heights of the debris after release

hper = 2000km

hper = 3000km

hper = 4000km

hper = 5000km

X 2.0056

Y 2584.2369

X 2.0056

Y 1883.8335

X 2.0028

Y 1180.846

X 2

Y 461.6467

Figure 4.23: New orbital trajectory of the debris after release (left) and a zoom in the new
perigee (right) with hper = [2000,3000,4000,5000]km

Finally, doing the same procedures for the tether’s body, Figure 4.24 shows curves that for
every iteration succeeds in rising the lowest point the tether’s body had previously: above
2000 km in the blue curve, above 3000 km in the orange one and so on, as seen in the
zoomed out plot in the right. The increase in height is every time more significant as we
keep increasing hper.

Nevertheless, we can only pick the blue curve as the valid one, because the other three
did not achieve our objective of lowering enough the debris.
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Figure 4.24: New orbital trajectory of the tether’s body after release (left) and a zoom in
the new perigee (right) with hper = [2000,3000,4000,5000]km



CONCLUSIONS

After stating the situation of space debris nowadays, choosing the space tether as the
active debris removal system to be studied, and giving the main equations to take results
from, we arrived at the graphs of chapter 4.

From Table 4.1, we iterated the parameters of the 3rd column (which in essence was the
same as altering the 1st, 2nd and 4th one), the 5th column and the 6th column. Those
are, naturally, the length of the tether’s body-side of the rope Ltet , the initial eccentricity e
and the radius of the perigee Rper, respectively.

In the first scenario where we varied the eccentricity of our orbit, we chose the moment
of release very close to the 4.5 orbits. The resulting graphs of the new orbits showed that
increasing e too much meant that our debris would not reach our threshold of 1000 km, but
keeping e = 0 resulted in our tether’s body rising, but not a significant amount. In order to
obtain good enough values, we need to set an eccentricity as low as possible, in our case
e = 0.05 or e = 0.1, but keeping it different than 0.

For the tether’s length case we chose to prioritize a lower value of adeb even if it deviated
more from the apogee, at 2.8 orbits. The results in the new orbit height plots were that
the more length we gave to our tether, the lower our debris got in its new perigee and the
higher it got in the case of the tether’s body. For our initial conditions, lengths below 120
m for the tether’s body-side, resulted in the debris not reaching our threshold value in the
perigee.

Lastly, for the case of increasing the radius of the perigee, we set the release spot at the
valley of semi-major axis that was at 1.6 orbits, and it meant a decrease of the debris in
all cases, but the one corresponding to hper = 2000 km was the only valid curve, for the
same reasons as before. Nevertheless, as we increased the radius of the perigee, we
got difference in heights that were more significant each iteration: debris got increasingly
lower values of perigee, comparatively; and the tether’s body had risen each iteration more
kilometers than before.

From these three scenarios we get that in order to place debris into a low enough orbit
(1000 km in the perigee) we must get the lowest adeb possible at release, and also be as
close as possible to an apogee in that instant. This, however, is a problem with different
answers, as the release point chosen can vary if we prioritize different aspects. All in all,
the result from varying the three parameters that we chose was that in order to de-orbit
debris to 1000 km, we need the lowest possible (different than 0) eccentricity, as much
length of tether’s rope as we can, and to set a low value of the initial perigee (the closer
this value is to 1000 km, the better).

This leads us to the final thought, which is that once the debris reaches its final value of
the perigee, it would start disintegrating, while the tether’s body, at which that point would
have rose its height from before, could attach to a satellite at a higher orbit to then proceed
with another release maneuver, where this time the tether’s main body would aim for a
lower orbit, and the attached satellite a higher orbit. Future projects could develop that
release maneuver to end up placing our tether’s body at the same orbital height it had
at the beginning of this project. Moreover, a study of the tether system and its release
maneuvers in 3D could also be developed, to have a more complete insight on how the
pendulum motion of the tether works in three dimensions, the angle α accounting for that.
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APPENDIX A. MATLAB CODE

——————————————– ZIEGLER FUNCTION ——————————————–

1 function dxdt = D i f f e r e n t i a l Z i e g l e r ( t , x , e )
2 dxdt ( 1 ) = x ( 2 ) ;
3 dxdt ( 2 ) = (2 * x ( 4 ) * tan ( x ( 3 ) ) + (2*e* sin ( t ) ) / ( 1 + e * cos ( t

) ) ) * ( x ( 2 ) + 1) − (3 * sin (2* x ( 1 ) ) ) / ( 2 * (1+e*cos ( t ) ) ) ;
4 dxdt ( 3 ) = x ( 4 ) ;
5 dxdt ( 4 ) = (2*e* sin ( t ) ) / ( 1 + e * cos ( t ) ) * x ( 4 ) − ( sin (2* x ( 3 ) )

/ 2) * ( ( x ( 2 ) + 1) ˆ2 + ( ( 3 * ( cos ( x ( 1 ) ) ) ˆ 2 ) / (1+ e*cos ( t ) ) )
) ;

6 dxdt = dxdt ’ ;
7 end

———————————————– MAIN FUNCTION ———————————————–

1 function [ dxdt ] = D i f f e r e n t i a l ( t , x , e )
2 dxdt ( 1 ) = x ( 2 ) ;
3 dxdt ( 2 ) = ( ( 2 * e * sin ( t ) ) / ( 1 + e * cos ( t ) ) ) * ( x ( 2 ) +

1) − (3 * sin (2 * x ( 1 ) ) ) / (2 * (1 + e * cos ( t ) ) ) ;
4 dxdt = dxdt ’ ;
5 end

——————————————– ZIEGLER SCENARIO ——————————————–

1 clc ; clear ; close a l l ;
2 syms y ( x ) w( x ) ;
3 %THETA = x, PSI = y, ALPHA = w
4

5 G = 6.674e−11;
6 Me = 5.972e24 ;
7 mu = G * Me;
8 rad = pi / 180 ;
9 Re = 6371000;

10

11 %ORBIT INTERVAL
12 x0 = 0;
13 x f = 5 * 2* pi ;
14 x i n t e r v a l = ( x0 : rad *1 : x f ) ;
15

16 % INITIAL ANGLES
17 y0 = 0;
18 w0 = 0 . 1 ;
19 dy0 = 0;
20 dw0 = 0;

63



21 i n i t i a l c o n d i t i o n s = [ y0 ; dy0 ; w0 ; dw0 ] ;
22

23 %RADIUS PERIGEE
24 rp = 7000000;
25

26 %MASSES AND LENGTHS
27 Md = 1000;
28 Mt = 1000;
29 Ld = 10000;
30 Lt = 10000;
31

32 %ECCENTRICITY
33 e = 0 .25 ;
34

35 %VELOCITIES
36 [ theta , Y ] = ode45 (@( theta , Y) D i f f e r e n t i a l Z i e g l e r ( theta ,Y, e ) ,

x i n t e r v a l , i n i t i a l c o n d i t i o n s ) ;
37 ps i = Y ( : , 1 ) ;
38 dps i = Y ( : , 2 ) ;
39 alpha = Y ( : , 3 ) ;
40 dalpha = Y ( : , 4 ) ;
41

42 for i =1: length ( the ta )
43 Rcom( i ) = ( rp *(1+e ) ) / (1+ e*cos ( the ta ( i ) ) ) ;
44 dtheta ( i ) = sqrt ( (mu/ (1+ e*cos ( the ta ( i ) ) ) ) / ( (Rcom( i ) ) ˆ 3 ) ) ;
45 dRcom( i ) = rp * (1+e ) * (1 / (1+e*cos ( the ta ( i ) ) ) ˆ 2 ) * ( e* sin (

the ta ( i ) ) ) * dtheta ( i ) ;
46 Rtet ( i ) = sqrt ( L t ˆ2+(Rcom( i ) ) ˆ2+2* Lt *Rcom( i ) *cos ( alpha ( i ) ) *

cos ( ps i ( i ) ) ) ;
47 Rdeb( i ) = sqrt ( Ld ˆ2+(Rcom( i ) ) ˆ2−2*Ld*Rcom( i ) *cos ( alpha ( i ) ) *

cos ( ps i ( i ) ) ) ;
48

49 dx te t ( i ) = dRcom( i ) *cos ( the ta ( i ) ) − Rcom( i ) * dtheta ( i ) * sin (
the ta ( i ) ) + L t *( − dalpha ( i ) * sin ( alpha ( i ) ) *cos ( ps i ( i ) + the ta (
i ) ) + cos ( alpha ( i ) ) * ( dps i ( i ) +d theta ( i ) ) *−sin ( ps i ( i ) + the ta (
i ) ) ) ;

50 dy te t ( i ) = dRcom( i ) * sin ( the ta ( i ) ) +Rcom( i ) * dtheta ( i ) *cos ( the ta
( i ) ) + L t * (−dalpha ( i ) * sin ( alpha ( i ) ) * sin ( ps i ( i ) + the ta ( i ) )
+ cos ( alpha ( i ) ) * ( dps i ( i ) +d theta ( i ) ) *cos ( ps i ( i ) + the ta ( i ) ) )

;
51 dz te t ( i ) = L t * dalpha ( i ) *cos ( alpha ( i ) ) ;
52

53 dxdeb ( i ) = dRcom( i ) *cos ( the ta ( i ) )−Rcom( i ) * dtheta ( i ) * sin ( the ta
( i ) ) − Ld * (−dalpha ( i ) * sin ( alpha ( i ) ) *cos ( ps i ( i ) + the ta ( i ) )
+ cos ( alpha ( i ) ) * ( dps i ( i ) +d theta ( i ) ) *−sin ( ps i ( i ) + the ta ( i ) )

) ;
54 dydeb ( i ) = dRcom( i ) * sin ( the ta ( i ) ) +Rcom( i ) * dtheta ( i ) *cos ( the ta

( i ) ) − Ld * (−dalpha ( i ) * sin ( alpha ( i ) ) * sin ( ps i ( i ) + the ta ( i ) )



+ cos ( alpha ( i ) ) * ( dps i ( i ) +d theta ( i ) ) *cos ( ps i ( i ) + the ta ( i ) ) )
;

55 dzdeb ( i ) = − Ld * dalpha ( i ) *cos ( alpha ( i ) ) ;
56

57 VTotTet ( i ) = sqrt ( dx te t ( i ) ˆ2 + dy te t ( i ) ˆ2 + dz te t ( i ) ˆ 2 ) ;
58 VTotDeb ( i ) = sqrt ( dxdeb ( i ) ˆ2 + dydeb ( i ) ˆ2 + dzdeb ( i ) ˆ 2 ) ;
59 end
60

61 %PSI PLOT
62 f igure ;
63 plot ( the ta / ( 2 * pi ) , ps i , ’r’ ) ; grid on ;
64 xlabel (’Orbits’ ) ; l g = ylabel (’Rotation Angle $\psi$[rad]’ ) ;
65 t l = t i t l e (’$\psi$ vs orbits’ ) ;
66 set ( lg , ’Interpreter’ , ’latex’ ) ; set ( t l , ’Interpreter’ , ’latex’ ) ;
67

68 %ALPHA PLOT
69 f igure ;
70 plot ( the ta / ( 2 * pi ) , alpha , ’r’ ) ; grid on ;
71 xlabel (’Orbits’ ) ; l g = ylabel (’Out-of-plane Angle $\alpha$ [rad]’

) ;
72 t l = t i t l e (’$\alpha$ vs orbits’ ) ;
73 set ( lg , ’Interpreter’ , ’latex’ ) ; set ( t l , ’Interpreter’ , ’latex’ ) ;
74

75 %RADIUS PLOT
76 f igure ;
77 plot ( the ta / ( 2 * pi ) ,Rcom / 1000 − (Re / 1000) ,’k’ ) ; grid on ;
78 xlabel (’Orbits’ ) ; ylabel (’Orbit height [km]’ ) ;
79 t i t l e (’CoM orbit height vs orbits’ ) ;
80

81 %THETA PLOT
82 f igure ;
83 plot ( the ta / ( 2 * pi ) , wrapTo2Pi ( the ta ) ) ; grid on ;
84 xlabel (’Orbits’ ) ; ylabel (’True Anomaly $\theta$ [rad]’ ) ;
85 l g = t i t l e (’$\theta$ vs orbits’ ) ;
86 pmin = min ( the ta ) ;
87 pmax = max( the ta ) ;
88 pimin = f loor ( pmin / pi ) ;
89 pimax = c e i l (pmax / pi ) ;
90 y l im ( [ 0 2* pi ] )
91 y t i c k s ( ( pimin : pimax ) * pi ) ;
92 y t i c k l a b e l s ( s t r i n g ( pimin : pimax ) + ”\ pi ” )
93 set ( lg , ’Interpreter’ , ’latex’ ) ; set ( t l , ’Interpreter’ , ’latex’ ) ;
94

95 %VELOCITIES PLOT
96 f igure ;
97 plot ( the ta / ( 2 * pi ) ,VTotDeb / 1000 ,’r’ ) ; hold on ;
98 plot ( the ta / ( 2 * pi ) , VTotTet / 1000 ,’b’ ) ; grid on ;
99 legend (’VTotDeb’ , ’VTotTet’ ) ;



100 xlabel (’Orbits’ ) ; ylabel (’Total Velocities [km/s]’ ) ;
101 t i t l e (’Total velocities moduli vs orbits’ ) ;

———————————————– MAIN SCENARIO ———————————————–

1 %———- Varying eccentricity ———-
2

3 clc ; clear ; close a l l ;
4 syms y ( x ) ;
5 %THETA = x, PSI = y
6

7 G = 6.674e−11;
8 Me = 5.972e24 ;
9 mu = G * Me;

10 rad = pi / 180 ;
11 Re = 6371000;
12

13 %ORBIT INTERVAL
14 x0 = 0;
15 x f = 5 * 2* pi ;
16 x i n t e r v a l = ( x0 : rad *1 : x f ) ;
17

18 % INITIAL ANGLES
19 y0 = 0 . 2 ;
20 dy0 = 0;
21 i n i t i a l c o n d i t i o n s = [ y0 ; dy0 ] ;
22

23 %RADIUS PERIGEE
24 rp = 3000000 + Re ;
25

26 %MASSES AND LENGTHS
27 Md = 100;
28 Mt = 1000;
29 Lt = 120;
30 Ld = ( Mt / Md) * Lt ;
31

32 %ECCENTRICITY
33 e = 0;
34 for k=2:4
35 e ( k ) = e ( k−1) + 0 .05 ;
36 end
37

38 %VELOCITIES
39 for k =1: length ( e )
40 [ theta , Y ] = ode45 (@( theta , Y) D i f f e r e n t i a l ( theta ,Y, e ( k ) ) ,

x i n t e r v a l , i n i t i a l c o n d i t i o n s ) ;
41 ps i ( : , k ) = Y ( : , 1 ) ;
42 dps i ( : , k ) = Y ( : , 2 ) ;



43 for i =1: length ( the ta )
44 Rcom( i , k ) = ( rp * (1 + e ( k ) ) ) / (1 + e ( k ) * cos ( the ta ( i ) )

) ;
45 dtheta ( i , k ) = sqrt ( (mu* (1 + e ( k ) *cos ( the ta ( i ) ) ) ) / (Rcom

( i , k ) ˆ 3 ) ) ;
46 dRcom( i , k ) = rp * (1+e ( k ) ) * ( 1 / ( 1+ e ( k ) *cos ( the ta ( i ) ) ) ˆ 2 )

* ( e ( k ) * sin ( the ta ( i ) ) ) * dtheta ( i , k ) ;
47 Rdeb( i , k ) = sqrt ( Ld ˆ2 + (Rcom( i , k ) ) ˆ2 − 2 * Ld * Rcom( i , k

) * cos ( ps i ( i , k ) ) ) ;
48 Rtet ( i , k ) = sqrt ( L t ˆ2 + (Rcom( i , k ) ) ˆ2 + 2 * Lt * Rcom( i , k

) * cos ( ps i ( i , k ) ) ) ;
49

50 VR( i , k ) = dRcom( i , k ) ;
51 vRotTet ( i , k ) = dtheta ( i , k ) * Rtet ( i , k ) ;
52 vRotDeb ( i , k ) = dtheta ( i , k ) * Rdeb( i , k ) ;
53 vTetCom ( i , k ) = L t * dps i ( i , k ) ;
54 vDebCom( i , k ) = Ld * dps i ( i , k ) ;
55

56 phi1 ( i , k ) = asin ( (Rcom( i , k ) * sin ( ps i ( i , k ) ) ) / Rdeb ( i , k ) ) −
pi / 2 ;

57 lambda1 ( i , k ) = pi /2 − phi1 ( i , k ) − ps i ( i , k ) ;
58 phi2 ( i , k ) = asin ( (Rcom( i , k ) / Rtet ( i , k ) ) * sin ( pi − ps i ( i

, k ) ) ) ;
59 lambda2 ( i , k ) = ps i ( i , k ) − phi2 ( i , k ) ;
60

61 VRadDeb( i , k ) = − vDebCom( i , k ) * cos ( phi1 ( i , k ) ) + VR( i , k )

* cos ( lambda1 ( i , k ) ) ;
62 VNormDeb( i , k ) = vRotDeb ( i , k ) + vDebCom( i , k ) * sin ( phi1 ( i ,

k ) ) + VR( i , k ) * sin ( lambda1 ( i , k ) ) ;
63 VRadTet ( i , k ) = − vTetCom ( i , k ) * sin ( phi2 ( i , k ) ) + VR( i , k )

* cos ( lambda2 ( i , k ) ) ;
64 VNormTet ( i , k ) = vRotTet ( i , k ) + vTetCom ( i , k ) * cos ( phi2 ( i ,

k ) ) − VR( i , k ) * sin ( lambda2 ( i , k ) ) ;
65

66 VTotDeb ( i , k ) = sqrt (VRadDeb( i , k ) ˆ2 + VNormDeb( i , k ) ˆ 2 ) ;
67 VTotTet ( i , k ) = sqrt ( VRadTet ( i , k ) ˆ2 + VNormTet ( i , k ) ˆ 2 ) ;
68 end
69 end
70

71 %PSI PLOT
72 o = [ ] ;
73 f igure ;
74 yyax is l e f t
75 plot ( the ta / ( 2 * pi ) , ps i ( : , 1 ) ) ;
76 xlabel (’Orbits’ ) ; t1 = ylabel (’Rotation Angle $\psi$ [rad]’ ) ;

hold on ;
77 yyax is r i g h t
78 plot ( the ta / ( 2 * pi ) , dps i ( : , 1 ) ) ; grid on ;



79 xlabel (’Orbits’ ) ; t2 = ylabel (’Rotation Velocity $\dot{\psi}$ [
rad/s]’ ) ;

80 t l = t i t l e (’$\psi$ and $\dot{\psi}$ vs orbits’ ) ;
81 set ( t l , ’Interpreter’ , ’latex’ ) ; set ( t1 , ’Interpreter’ , ’latex’ ) ;

set ( t2 , ’Interpreter’ , ’latex’ ) ;
82

83 f igure ;
84 yyax is l e f t
85 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) , ps i ) ;
86 xlabel (’Orbits’ ) ; t1 = ylabel (’Rotation Angle $\psi$ [rad]’ ) ;

hold on ;
87 yyax is r i g h t
88 o ( : , 2 ) = plot ( the ta / ( 2 * pi ) , dps i ) ; grid on ;
89 xlabel (’Orbits’ ) ; t2 = ylabel (’Rotation Velocity $\dot{\psi}$ [

rad/s]’ ) ;
90 legend ( o ( : , 1 ) , ’e = 0’ , ’e = 0.05’ , ’e = 0.1’ , ’e = 0.15’ ) ;
91 t l = t i t l e (’$\psi$ and $\dot{\psi}$ vs orbits’ ) ;
92 set ( t l , ’Interpreter’ , ’latex’ ) ; set ( t1 , ’Interpreter’ , ’latex’ ) ;

set ( t2 , ’Interpreter’ , ’latex’ ) ;
93

94 %RADIUS PLOT
95 f igure ;
96 plot ( the ta / ( 2 * pi ) ,Rcom / 1000 − (Re / 1000) ) ; grid on ;
97 legend (’e = 0’ , ’e = 0.05’ , ’e = 0.1’ , ’e = 0.15’ ) ;
98 xlabel (’Orbits’ ) ; ylabel (’Orbit height [km]’ ) ;
99 t i t l e (’CoM orbit height vs orbits’ ) ;

100

101 %DEBRIS VELOCITIES PLOT
102 o = [ ] ;
103 f igure ;
104 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) ,vDebCom / 1000 , ’-’ , ’color’ , [ 0 , 0 .5 ,

0 ] ) ; hold on ;
105 o ( : , 2 ) = plot ( the ta / ( 2 * pi ) , vRotDeb / 1000 , ’-’ , ’color’ , [0 .8500 ,

0.3250 , 0 .0980 ] ) ; hold on ;
106 o ( : , 3 ) = plot ( the ta / ( 2 * pi ) ,VR / 1000 , ’-’ , ’color’ , [0 .4940 ,

0.1840 , 0 .5560 ] ) ; grid on ;
107 legend ( o ( 1 , : ) , ’VDebCom’ , ’VRotDeb’ , ’VR’ ) ;
108 xlabel (’Orbits’ ) ; ylabel (’Velocities [km/s]’ ) ;
109 t i t l e (’Debris velocities vs orbits’ ) ;
110

111 f igure ;
112 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) ,VRadDeb / 1000 , ’k’ ) ; hold on ;
113 o ( : , 2 ) = plot ( the ta / ( 2 * pi ) ,VNormDeb / 1000 , ’b’ ) ; hold on ;
114 o ( : , 3 ) = plot ( the ta / ( 2 * pi ) ,VTotDeb / 1000 , ’r’ ) ; grid on ;
115 legend ( o ( 1 , : ) , ’Vradial’ , ’Vnormal’ , ’Vtotal’ ) ;
116 xlabel (’Orbits’ ) ; ylabel (’Velocities [km/s]’ ) ;
117 t i t l e (’Debris radial, normal and total velocities vs orbits’ ) ;
118



119 %TETHER’S BODY VELOCITIES PLOT
120 f igure ;
121 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) , vTetCom / 1000 , ’-’ , ’color’ , [ 0 , 0 .5 ,

0 ] ) ; hold on ;
122 o ( : , 2 ) = plot ( the ta / ( 2 * pi ) , vRotTet / 1000 , ’-’ , ’color’ , [0 .8500 ,

0.3250 , 0 .0980 ] ) ; hold on ;
123 o ( : , 3 ) = plot ( the ta / ( 2 * pi ) ,VR / 1000 , ’-’ , ’color’ , [0 .4940 ,

0.1840 , 0 .5560 ] ) ; grid on ;
124 legend ( o ( 1 , : ) , ’VTetCom’ , ’VRotTet’ , ’VR’ ) ;
125 xlabel (’Orbits’ ) ; ylabel (’Velocities [km/s]’ ) ;
126 t i t l e (’Tethers body velocities vs orbits’ ) ;
127

128 f igure ;
129 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) ,VRadTet / 1000 , ’k’ ) ; hold on ;
130 o ( : , 2 ) = plot ( the ta / ( 2 * pi ) ,VNormTet / 1000 , ’b’ ) ; hold on ;
131 o ( : , 3 ) = plot ( the ta / ( 2 * pi ) , VTotTet / 1000 , ’r’ ) ; grid on ;
132 legend ( o ( 1 , : ) , ’Vradial’ , ’Vnormal’ , ’Vtotal’ ) ;
133 xlabel (’Orbits’ ) ; ylabel (’Velocities [km/s]’ ) ;
134 t i t l e (’Tethers body radial, normal and total velocities vs orbits

’ ) ;
135

136 %TRANSFER ORBIT CALCULATIONS
137 for k =1: length ( e )
138 for i = 1 : length ( the ta )
139 adeb ( i , k ) = (mu * Rdeb( i , k ) ) / (2*mu − ( VTotDeb ( i , k ) ) ˆ2*

Rdeb( i , k ) ) ;
140 a t e t ( i , k ) = (mu * Rtet ( i , k ) ) / (2*mu − ( VTotTet ( i , k ) ) ˆ2*

Rtet ( i , k ) ) ;
141 end
142 [A ] = i s l o c a l m i n ( adeb ) ;
143 Minimum = f ind (A ( : , k ) == 1) ;
144

145 ReleasePosi t ion ( k ) = Minimum ( 8 ) ; %Of all the valleys of
adeb, thisvaluerepresentstheonethatischosentobethereleaseinstant

146 VNormDebRelease ( k ) = VNormDeb( ReleasePosi t ion ( k ) , k ) ;
147 VTotDebRelease ( k ) = VTotDeb ( ReleasePosi t ion ( k ) , k ) ;
148 VNormTetRelease ( k ) = VNormTet ( ReleasePosi t ion ( k ) , k ) ;
149 VTotTetRelease ( k ) = VTotTet ( ReleasePosi t ion ( k ) , k ) ;
150

151 ps i re lease ( k ) = ps i ( ReleasePosi t ion ( k ) , k ) ;
152

153 adebrelease ( k ) = (mu * Rdeb( ReleasePosi t ion ( k ) , k ) ) / (2*mu −
( VTotDebRelease ( k ) ˆ 2 ) *Rdeb( ReleasePosi t ion ( k ) , k ) ) ;

154 pdeb ( k ) = ( VNormDebRelease ( k ) *Rdeb( ReleasePosi t ion ( k ) , k ) ) ˆ2 /
mu;

155 edeb ( k ) = sqrt (1 − pdeb ( k ) / adebrelease ( k ) ) ;
156 a te t r e l ease ( k ) = (mu * Rtet ( ReleasePosi t ion ( k ) , k ) ) / (2*mu −

( VTotTetRelease ( k ) ˆ 2 ) * Rtet ( ReleasePosi t ion ( k ) , k ) ) ;



157 p t e t ( k ) = ( VNormTetRelease ( k ) * Rtet ( ReleasePosi t ion ( k ) , k ) ) ˆ2 /
mu;

158 e t e t ( k ) = sqrt (1 − p t e t ( k ) / a t e t r e l ease ( k ) ) ;
159

160 for i = 1 : length ( the ta )
161 Rnewdeb( i , k ) = pdeb ( k ) / (1 + edeb ( k ) * cos ( the ta ( i ) +

the ta ( ReleasePosi t ion ( k ) ) ) ) ;
162 Rnewtet ( i , k ) = p t e t ( k ) / (1 + e t e t ( k ) * cos ( the ta ( i ) +

the ta ( ReleasePosi t ion ( k ) ) ) ) ;
163 dthetadeb ( i , k ) = sqrt ( (mu* (1 + edeb ( k ) *cos ( the ta ( i ) +

the ta ( ReleasePosi t ion ( k ) ) ) ) ) / (Rnewdeb( i , k ) ˆ 3 ) ) ;
164 d t h e t a t e t ( i , k ) = sqrt ( (mu* (1 + e t e t ( k ) *cos ( the ta ( i ) +

the ta ( ReleasePosi t ion ( k ) ) ) ) ) / ( Rnewtet ( i , k ) ˆ 3 ) ) ;
165 dRnewdeb( i , k ) = pdeb ( k ) * ( 1 / ( 1+ edeb ( k ) *cos ( the ta ( i ) +

the ta ( ReleasePosi t ion ( k ) ) ) ) ˆ 2 ) * ( edeb ( k ) * sin ( the ta ( i )
+ the ta ( ReleasePosi t ion ( k ) ) ) ) * dthetadeb ( i , k ) ;

166 dRnewtet ( i , k ) = p t e t ( k ) * ( 1 / ( 1+ e t e t ( k ) *cos ( the ta ( i ) +
the ta ( ReleasePosi t ion ( k ) ) ) ) ˆ 2 ) * ( e t e t ( k ) * sin ( the ta ( i )
+ the ta ( ReleasePosi t ion ( k ) ) ) ) * d t h e t a t e t ( i , k ) ;

167 VTotDeb2 ( i , k ) = sqrt ( dRnewdeb ( i , k ) ˆ2 + ( dthetadeb ( i , k ) *
Rnewdeb( i , k ) ) ˆ 2 ) ;

168 VTotTet2 ( i , k ) = sqrt ( dRnewtet ( i , k ) ˆ2 + ( d t h e t a t e t ( i , k ) *
Rnewtet ( i , k ) ) ˆ 2 ) ;

169

170 adeb2 ( i , k ) = (mu * Rnewdeb( i , k ) ) / (2*mu − ( VTotDeb2 ( i , k )
) ˆ2*Rnewdeb( i , k ) ) ;

171 a te t2 ( i , k ) = (mu * Rnewtet ( i , k ) ) / (2*mu − ( VTotTet2 ( i , k )
) ˆ2* Rnewtet ( i , k ) ) ;

172

173 o r b i t s ( i , k ) = the ta ( i ) / ( 2 * pi ) + the ta ( ReleasePosi t ion ( k ) )
/ ( 2 * pi ) ;

174 end
175 end
176

177 o = [ ] ;
178 f igure ;
179 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) , adeb / 1000) ;
180 xlabel (’Orbits’ ) ; ylabel (’Semi-major axis [km]’ ) ; hold on ;
181 plot ( the ta / ( 2 * pi ) , adeb2 ( : , 1 ) / 1000 ,’-’ , ’color’ , [ 0 , 0.4470 ,

0 .7410] ,’LineWidth’ , 1 . 5 ) ; hold on ;
182 plot ( the ta / ( 2 * pi ) , adeb2 ( : , 2 ) / 1000 ,’-’ , ’color’ , [0 .8500 ,

0.3250 , 0 .0980] ,’LineWidth’ , 1 . 5 ) ; hold on ;
183 plot ( the ta / ( 2 * pi ) , adeb2 ( : , 3 ) / 1000 ,’-’ , ’color’ , [0 .9290 ,

0.6940 , 0 .1250] ,’LineWidth’ , 1 . 5 ) ; hold on ;
184 plot ( the ta / ( 2 * pi ) , adeb2 ( : , 4 ) / 1000 ,’-’ , ’color’ , [0 .4940 ,

0.1840 , 0 .5560] ,’LineWidth’ , 1 . 5 ) ; grid on ;
185 legend ( o ( : , 1 ) , ’e = 0’ , ’e = 0.05’ , ’e = 0.1’ , ’e = 0.15’ ) ;
186 t i t l e (’Possible and final semi-major axis of the debris’ ) ;



187

188 o = [ ] ;
189 f igure ;
190 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) , a t e t / 1000) ;
191 xlabel (’Orbits’ ) ; ylabel (’Semi-major axis [km]’ ) ; hold on ;
192 plot ( the ta / ( 2 * pi ) , a te t2 ( : , 1 ) / 1000 ,’-’ , ’color’ , [ 0 , 0.4470 ,

0 .7410] ,’LineWidth’ , 1 . 5 ) ; hold on ;
193 plot ( the ta / ( 2 * pi ) , a te t2 ( : , 2 ) / 1000 ,’-’ , ’color’ , [0 .8500 ,

0.3250 , 0 .0980] ,’LineWidth’ , 1 . 5 ) ; hold on ;
194 plot ( the ta / ( 2 * pi ) , a te t2 ( : , 3 ) / 1000 ,’-’ , ’color’ , [0 .9290 ,

0.6940 , 0 .1250] ,’LineWidth’ , 1 . 5 ) ; hold on ;
195 plot ( the ta / ( 2 * pi ) , a te t2 ( : , 4 ) / 1000 ,’-’ , ’color’ , [0 .4940 ,

0.1840 , 0 .5560] ,’LineWidth’ , 1 . 5 ) ; grid on ;
196 legend ( o ( : , 1 ) , ’e = 0’ , ’e = 0.05’ , ’e = 0.1’ , ’e = 0.15’ ) ;
197 t i t l e (’Possible and final semi-major axis of the tethers body’ ) ;
198

199 f igure ;
200 for k =1: length ( e )
201 plot ( o r b i t s ( : , k ) , ( Rnewdeb − Re) /1000) ; grid on ;
202 legend (’e = 0’ , ’e = 0.05’ , ’e = 0.1’ , ’e = 0.15’ ) ;
203 xlabel (’Orbits’ ) ; ylabel (’Orbit height [km]’ ) ;
204 x l im ( [ o r b i t s (1 , k ) o r b i t s (1 , k ) +5 ] )
205 t i t l e (’New orbit heights of the debris after release’ ) ;
206 end
207

208 f igure ;
209 for k =1: length ( e )
210 plot ( o r b i t s ( : , k ) , ( Rnewtet − Re) /1000) ; grid on ;
211 legend (’e = 0’ , ’e = 0.05’ , ’e = 0.1’ , ’e = 0.15’ ) ;
212 xlabel (’Orbits’ ) ; ylabel (’Orbit height [km]’ ) ;
213 x l im ( [ o r b i t s (1 , k ) o r b i t s (1 , k ) +5 ] )
214 t i t l e (’New orbit heights of the tethers body after release’ ) ;
215 end
216

217

218

219 %———- Varying tether’s length ———-
220

221 clc ; clear ; close a l l ;
222 syms y ( x ) ;
223 %THETA = x, PSI = y
224

225 G = 6.674e−11;
226 Me = 5.972e24 ;
227 mu = G * Me;
228 rad = pi / 180 ;
229 Re = 6371000;
230



231 %ORBIT INTERVAL
232 x0 = 0;
233 x f = 5 * 2* pi ;
234 x i n t e r v a l = ( x0 : rad *1 : x f ) ;
235

236 % INITIAL ANGLES
237 y0 = 0 . 2 ;
238 dy0 = 0;
239 i n i t i a l c o n d i t i o n s = [ y0 ; dy0 ] ;
240

241 %RADIUS PERIGEE
242 rp = 3000000 + Re ;
243

244 %MASSES AND LENGTHS
245 Md = 100;
246 Mt = 1000;
247 Lt = 120;
248 for k=2:4
249 Lt ( k ) = L t ( k−1) + 20;
250 end
251 Ld = ( Mt / Md) * Lt ;
252

253 %ECCENTRICITY
254 e = 0 . 1 ;
255

256 %VELOCITIES
257 [ theta , Y ] = ode45 (@( theta , Y) D i f f e r e n t i a l ( theta ,Y, e ) , x i n t e r v a l ,

i n i t i a l c o n d i t i o n s ) ;
258 ps i = Y ( : , 1 ) ;
259 dps i = Y ( : , 2 ) ;
260 for k =1: length ( L t )
261 for i =1: length ( the ta )
262 Rcom( i , k ) = ( rp *(1+e ) ) / (1 + e* cos ( the ta ( i ) ) ) ;
263 dtheta ( i , k ) = sqrt ( (mu*(1+e*cos ( the ta ( i ) ) ) ) / ( (Rcom( i , k )

) ˆ 3 ) ) ;
264 dRcom( i , k ) = rp * (1+e ) * ( 1 / ( 1+ e*cos ( the ta ( i ) ) ) ˆ 2 ) * ( e*

sin ( the ta ( i ) ) ) * dtheta ( i , k ) ;
265 Rdeb( i , k ) = sqrt ( Ld ( k ) ˆ2+(Rcom( i , k ) ) ˆ2−2*Ld ( k ) *Rcom( i , k ) *

cos ( ps i ( i ) ) ) ;
266 Rtet ( i , k ) = sqrt ( L t ( k ) ˆ2+(Rcom( i , k ) ) ˆ2+2* Lt ( k ) *Rcom( i , k ) *

cos ( ps i ( i ) ) ) ;
267

268 VR( i , k ) = dRcom( i ) ;
269 vRotTet ( i , k ) = dtheta ( i , k ) * Rtet ( i , k ) ;
270 vRotDeb ( i , k ) = dtheta ( i , k ) * Rdeb( i , k ) ;
271 vTetCom ( i , k ) = L t ( k ) * dps i ( i ) ;
272 vDebCom( i , k ) = Ld ( k ) * dps i ( i ) ;
273



274 phi1 ( i , k ) = asin ( (Rcom( i , k ) * sin ( ps i ( i ) ) ) / Rdeb ( i , k ) ) −
pi / 2 ;

275 lambda1 ( i , k ) = pi /2 − phi1 ( i , k ) − ps i ( i ) ;
276 phi2 ( i , k ) = asin ( (Rcom( i , k ) / Rtet ( i , k ) ) * sin ( pi − ps i ( i

) ) ) ;
277 lambda2 ( i , k ) = ps i ( i ) − phi2 ( i , k ) ;
278

279 VRadDeb( i , k ) = − vDebCom( i , k ) * cos ( phi1 ( i , k ) ) + VR( i , k )

* cos ( lambda1 ( i , k ) ) ;
280 VNormDeb( i , k ) = vRotDeb ( i , k ) + vDebCom( i , k ) * sin ( phi1 ( i ,

k ) ) + VR( i , k ) * sin ( lambda1 ( i , k ) ) ;
281 VRadTet ( i , k ) = − vTetCom ( i , k ) * sin ( phi2 ( i , k ) ) + VR( i , k )

* cos ( lambda2 ( i , k ) ) ;
282 VNormTet ( i , k ) = vRotTet ( i , k ) + vTetCom ( i , k ) * cos ( phi2 ( i ,

k ) ) − VR( i , k ) * sin ( lambda2 ( i , k ) ) ;
283 VTotDeb ( i , k ) = sqrt (VRadDeb( i , k ) ˆ2 + VNormDeb( i , k ) ˆ 2 ) ;
284 VTotTet ( i , k ) = sqrt ( VRadTet ( i , k ) ˆ2 + VNormTet ( i , k ) ˆ 2 ) ;
285 end
286 end
287

288 %PSI PLOT
289 f igure ;
290 yyax is l e f t
291 plot ( the ta / ( 2 * pi ) , ps i ) ;
292 xlabel (’Orbits’ ) ; ylabel (’Rotation Angle [rad]’ ) ; hold on ;
293 yyax is r i g h t
294 plot ( the ta / ( 2 * pi ) , dps i ) ; grid on ;
295 xlabel (’Orbits’ ) ; ylabel (’Rotation Velocity [rad/s]’ ) ;
296 l g = legend (’Rotation Angle $\psi$’ , ’Rotation Velocity $\dot{\

psi}$’ ) ;
297 t l = t i t l e (’$\psi$ and $\dot{\psi}$ vs orbits’ ) ;
298 set ( lg , ’Interpreter’ , ’latex’ ) ; set ( t l , ’Interpreter’ , ’latex’ ) ;
299

300 %RADIUS PLOT
301 f igure ;
302 plot ( the ta / ( 2 * pi ) ,Rcom / 1000 − (Re / 1000) ) ; grid on ;
303 xlabel (’Orbits’ ) ; ylabel (’Orbit height [km]’ ) ;
304 t i t l e (’CoM orbit height vs orbits’ ) ;
305

306 %DEBRIS VELOCITIES PLOT
307 o = [ ] ;
308 f igure ;
309 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) ,vDebCom / 1000 , ’-’ , ’color’ , [ 0 , 0 .5 ,

0 ] ) ; hold on ;
310 o ( : , 2 ) = plot ( the ta / ( 2 * pi ) , vRotDeb / 1000 , ’-’ , ’color’ , [0 .8500 ,

0.3250 , 0 .0980 ] ) ; hold on ;
311 o ( : , 3 ) = plot ( the ta / ( 2 * pi ) ,VR / 1000 , ’-’ , ’color’ , [0 .4940 ,

0.1840 , 0 .5560 ] ) ; grid on ;



312 legend ( o ( 1 , : ) , ’VDebCom’ , ’VRotDeb’ , ’VR’ ) ;
313 xlabel (’Orbits’ ) ; ylabel (’Velocities [km/s]’ ) ;
314 t i t l e (’Debris velocities vs orbits’ ) ;
315

316 f igure ;
317 for k =1: length ( Ld )
318 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) ,VRadDeb ( : , k ) / 1000 , ’k’ ) ; hold on

;
319 o ( : , 2 ) = plot ( the ta / ( 2 * pi ) ,VNormDeb ( : , k ) / 1000 , ’b’ ) ; hold

on ;
320 o ( : , 3 ) = plot ( the ta / ( 2 * pi ) ,VTotDeb ( : , k ) / 1000 , ’r’ ) ; grid on

;
321 legend ( o ( 1 , : ) , ’Vrad’ , ’Vnormal’ , ’Vtotal’ ) ;
322 xlabel (’Orbits’ ) ; ylabel (’Velocities [km/s]’ ) ;
323 t i t l e (’Debris radial, normal and total velocities vs orbits’ )

;
324 end
325

326 %TETHER’S BODY VELOCITIES PLOT
327 f igure ;
328 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) , vTetCom / 1000 , ’-’ , ’color’ , [ 0 , 0 .5 ,

0 ] ) ; hold on ;
329 o ( : , 2 ) = plot ( the ta / ( 2 * pi ) , vRotTet / 1000 , ’-’ , ’color’ , [0 .8500 ,

0.3250 , 0 .0980 ] ) ; hold on ;
330 o ( : , 3 ) = plot ( the ta / ( 2 * pi ) ,VR / 1000 , ’-’ , ’color’ , [0 .4940 ,

0.1840 , 0 .5560 ] ) ; grid on ;
331 legend ( o ( 1 , : ) , ’VTetCom’ , ’VRotTet’ , ’VR’ ) ;
332 xlabel (’Orbits’ ) ; ylabel (’Velocities [km/s]’ ) ;
333 t i t l e (’Tethers body velocities vs orbits’ ) ;
334

335 f igure ;
336 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) ,VRadTet / 1000 , ’k’ ) ; hold on ;
337 o ( : , 2 ) = plot ( the ta / ( 2 * pi ) ,VNormTet / 1000 , ’b’ ) ; hold on ;
338 o ( : , 3 ) = plot ( the ta / ( 2 * pi ) , VTotTet / 1000 , ’r’ ) ; grid on ;
339 legend ( o ( 1 , : ) , ’Vrad’ , ’Vnormal’ , ’Vtotal’ ) ;
340 xlabel (’Orbits’ ) ; ylabel (’Velocities [km/s]’ ) ;
341 t i t l e (’Tethers body radial, normal and total velocities vs orbits

’ ) ;
342

343 %TRANSFER ORBIT CALCULATIONS
344 for k =1: length ( Ld )
345 for i = 1 : length ( the ta )
346 adeb ( i , k ) = (mu * Rdeb( i , k ) ) / (2*mu − ( VTotDeb ( i , k ) ) ˆ2*

Rdeb( i , k ) ) ;
347 a t e t ( i , k ) = (mu * Rtet ( i , k ) ) / (2*mu − ( VTotTet ( i , k ) ) ˆ2*

Rtet ( i , k ) ) ;
348 end
349 [A ] = i s l o c a l m i n ( adeb ) ;



350 Minimum = f ind (A ( : , k ) == 1) ;
351

352 ReleasePosi t ion ( k ) = Minimum ( 5 ) ;
353 VNormDebRelease ( k ) = VNormDeb( ReleasePosi t ion ( k ) , k ) ;
354 VTotDebRelease ( k ) = VTotDeb ( ReleasePosi t ion ( k ) , k ) ;
355 VNormTetRelease ( k ) = VNormTet ( ReleasePosi t ion ( k ) , k ) ;
356 VTotTetRelease ( k ) = VTotTet ( ReleasePosi t ion ( k ) , k ) ;
357

358 ps i re lease ( k ) = ps i ( ReleasePosi t ion ( k ) ) ;
359

360 adebrelease ( k ) = (mu * Rdeb( ReleasePosi t ion ( k ) , k ) ) / (2*mu −
( VTotDebRelease ( k ) ˆ 2 ) *Rdeb( ReleasePosi t ion ( k ) , k ) ) ;

361 pdeb ( k ) = ( VNormDebRelease ( k ) *Rdeb( ReleasePosi t ion ( k ) , k ) ) ˆ2 /
mu;

362 edeb ( k ) = sqrt (1 − pdeb ( k ) / adebrelease ( k ) ) ;
363 a te t r e l ease ( k ) = (mu * Rtet ( ReleasePosi t ion ( k ) , k ) ) / (2*mu −

( VTotTetRelease ( k ) ˆ 2 ) * Rtet ( ReleasePosi t ion ( k ) , k ) ) ;
364 p t e t ( k ) = ( VNormTetRelease ( k ) * Rtet ( ReleasePosi t ion ( k ) , k ) ) ˆ2 /

mu;
365 e t e t ( k ) = sqrt (1 − p t e t ( k ) / a t e t r e l ease ( k ) ) ;
366

367 for i = 1 : length ( the ta )
368 Rnewdeb( i , k ) = pdeb ( k ) / (1 + edeb ( k ) * cos ( the ta ( i ) +

the ta ( ReleasePosi t ion ( k ) ) ) ) ;
369 Rnewtet ( i , k ) = p t e t ( k ) / (1 + e t e t ( k ) * cos ( the ta ( i ) +

the ta ( ReleasePosi t ion ( k ) ) ) ) ;
370 dthetadeb ( i , k ) = sqrt ( (mu* (1 + edeb ( k ) *cos ( the ta ( i ) +

the ta ( ReleasePosi t ion ( k ) ) ) ) ) / (Rnewdeb( i , k ) ˆ 3 ) ) ;
371 d t h e t a t e t ( i , k ) = sqrt ( (mu* (1 + e t e t ( k ) *cos ( the ta ( i ) +

the ta ( ReleasePosi t ion ( k ) ) ) ) ) / ( Rnewtet ( i , k ) ˆ 3 ) ) ;
372 dRnewdeb( i , k ) = pdeb ( k ) * ( 1 / ( 1+ edeb ( k ) *cos ( the ta ( i ) +

the ta ( ReleasePosi t ion ( k ) ) ) ) ˆ 2 ) * ( edeb ( k ) * sin ( the ta ( i )
+ the ta ( ReleasePosi t ion ( k ) ) ) ) * dthetadeb ( i , k ) ;

373 dRnewtet ( i , k ) = p t e t ( k ) * ( 1 / ( 1+ e t e t ( k ) *cos ( the ta ( i ) +
the ta ( ReleasePosi t ion ( k ) ) ) ) ˆ 2 ) * ( e t e t ( k ) * sin ( the ta ( i )
+ the ta ( ReleasePosi t ion ( k ) ) ) ) * d t h e t a t e t ( i , k ) ;

374 VTotDeb2 ( i , k ) = sqrt ( dRnewdeb ( i , k ) ˆ2 + ( dthetadeb ( i , k ) *
Rnewdeb( i , k ) ) ˆ 2 ) ;

375 VTotTet2 ( i , k ) = sqrt ( dRnewtet ( i , k ) ˆ2 + ( d t h e t a t e t ( i , k ) *
Rnewtet ( i , k ) ) ˆ 2 ) ;

376

377 adeb2 ( i , k ) = (mu * Rnewdeb( i , k ) ) / (2*mu − ( VTotDeb2 ( i , k )
) ˆ2*Rnewdeb( i , k ) ) ;

378 a te t2 ( i , k ) = (mu * Rnewtet ( i , k ) ) / (2*mu − ( VTotTet2 ( i , k )
) ˆ2* Rnewtet ( i , k ) ) ;

379

380 o r b i t s ( i , k ) = the ta ( i ) / ( 2 * pi ) + the ta ( ReleasePosi t ion ( k ) )
/ ( 2 * pi ) ;



381 end
382 end
383

384 o = [ ] ;
385 f igure ;
386 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) , adeb / 1000) ;
387 xlabel (’Orbits’ ) ; ylabel (’Semi-major axis [km]’ ) ; hold on ;
388 plot ( the ta / ( 2 * pi ) , adeb2 ( : , 1 ) / 1000 ,’-’ , ’color’ , [ 0 , 0.4470 ,

0 .7410] ,’LineWidth’ , 1 . 5 ) ; hold on ;
389 plot ( the ta / ( 2 * pi ) , adeb2 ( : , 2 ) / 1000 ,’-’ , ’color’ , [0 .8500 ,

0.3250 , 0 .0980] ,’LineWidth’ , 1 . 5 ) ; hold on ;
390 plot ( the ta / ( 2 * pi ) , adeb2 ( : , 3 ) / 1000 ,’-’ , ’color’ , [0 .9290 ,

0.6940 , 0 .1250] ,’LineWidth’ , 1 . 5 ) ; hold on ;
391 plot ( the ta / ( 2 * pi ) , adeb2 ( : , 4 ) / 1000 ,’-’ , ’color’ , [0 .4940 ,

0.1840 , 0 .5560] ,’LineWidth’ , 1 . 5 ) ; grid on ;
392 legend ( o ( : , 1 ) , ’Ltet=80m, Ldeb=800m’ , ’Ltet=100m, Ldeb=1000m’ , ’

Ltet=120m, Ldeb=1200m’ , ’Ltet=140m, Ldeb=1400m’ ) ;
393 t i t l e (’Possible and final semi-major axis of the debris’ ) ;
394

395 o = [ ] ;
396 f igure ;
397 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) , a t e t / 1000) ;
398 xlabel (’Orbits’ ) ; ylabel (’Semi-major axis [km]’ ) ; hold on ;
399 plot ( the ta / ( 2 * pi ) , a te t2 ( : , 1 ) / 1000 ,’-’ , ’color’ , [ 0 , 0.4470 ,

0 .7410] ,’LineWidth’ , 1 . 5 ) ; hold on ;
400 plot ( the ta / ( 2 * pi ) , a te t2 ( : , 2 ) / 1000 ,’-’ , ’color’ , [0 .8500 ,

0.3250 , 0 .0980] ,’LineWidth’ , 1 . 5 ) ; hold on ;
401 plot ( the ta / ( 2 * pi ) , a te t2 ( : , 3 ) / 1000 ,’-’ , ’color’ , [0 .9290 ,

0.6940 , 0 .1250] ,’LineWidth’ , 1 . 5 ) ; hold on ;
402 plot ( the ta / ( 2 * pi ) , a te t2 ( : , 4 ) / 1000 ,’-’ , ’color’ , [0 .4940 ,

0.1840 , 0 .5560] ,’LineWidth’ , 1 . 5 ) ; grid on ;
403 legend ( o ( : , 1 ) , ’Ltet=80m, Ldeb=800m’ , ’Ltet=100m, Ldeb=1000m’ , ’

Ltet=120m, Ldeb=1200m’ , ’Ltet=140m, Ldeb=1400m’ ) ;
404 t i t l e (’Possible and final semi-major axis of the tethers body’ ) ;
405

406 f igure ;
407 for k =1: length ( Ld )
408 plot ( o r b i t s ( : , k ) , ( Rnewdeb − Re) /1000) ; grid on ;
409 legend (’Ltet=80m, Ldeb=800m’ , ’Ltet=100m, Ldeb=1000m’ , ’Ltet

=120m, Ldeb=1200m’ , ’Ltet=140m, Ldeb=1400m’ ) ;
410 xlabel (’Orbits’ ) ; ylabel (’Orbit height [km]’ ) ;
411 x l im ( [ o r b i t s (1 , k ) o r b i t s (1 , k ) +5 ] )
412 t i t l e (’New orbit heights of the debris after release’ ) ;
413 end
414

415 f igure ;
416 for k =1: length ( Ld )
417 plot ( o r b i t s ( : , k ) , ( Rnewtet − Re) /1000) ; grid on ;



418 legend (’Ltet=80m, Ldeb=800m’ , ’Ltet=100m, Ldeb=1000m’ , ’Ltet
=120m, Ldeb=1200m’ , ’Ltet=140m, Ldeb=1400m’ ) ;

419 xlabel (’Orbits’ ) ; ylabel (’Orbit height [km]’ ) ;
420 x l im ( [ o r b i t s (1 , k ) o r b i t s (1 , k ) +5 ] )
421 t i t l e (’New orbit heights of the tethers body after release’ ) ;
422 end
423

424

425

426 %———- Varying radius of the perigee ———-
427

428 clc ; clear ; close a l l ;
429 syms y ( x ) ;
430 %THETA = x, PSI = y
431

432 G = 6.674e−11;
433 Me = 5.972e24 ;
434 mu = G * Me;
435 rad = pi / 180 ;
436 Re = 6371000;
437

438 %ORBIT INTERVAL
439 x0 = 0;
440 x f = 5 * 2* pi ;
441 x i n t e r v a l = ( x0 : rad *1 : x f ) ;
442

443 % INITIAL ANGLES
444 y0 = 0 . 2 ;
445 dy0 = 0;
446 i n i t i a l c o n d i t i o n s = [ y0 ; dy0 ] ;
447

448 %RADIUS PERIGEE
449 rp = 2000000 + Re ;
450 for k=2:4
451 rp ( k ) = rp ( k−1) + 1000000;
452 end
453

454 %MASSES AND LENGTHS
455 Md = 100;
456 Mt = 1000;
457 Lt = 120;
458 Ld = ( Mt / Md) * Lt ;
459

460 %ECCENTRICITY
461 e = 0 . 1 ;
462

463 %VELOCITIES
464 [ theta , Y ] = ode45 (@( theta , Y) D i f f e r e n t i a l ( theta ,Y, e ) , x i n t e r v a l ,



i n i t i a l c o n d i t i o n s ) ;
465 ps i = Y ( : , 1 ) ;
466 dps i = Y ( : , 2 ) ;
467 for k =1: length ( rp )
468 for i =1: length ( the ta )
469 Rcom( i , k ) = ( rp ( k ) *(1+e ) ) / (1+ e*cos ( the ta ( i ) ) ) ;
470 dtheta ( i , k ) = sqrt ( (mu*(1+e*cos ( the ta ( i ) ) ) ) / ( (Rcom( i , k )

) ˆ 3 ) ) ;
471 dRcom( i , k ) = rp ( k ) *(1+e ) * ( 1 / ( 1 + e*cos ( the ta ( i ) ) ) ˆ 2 ) * ( e* sin

( the ta ( i ) ) ) * dtheta ( i , k ) ;
472 Rdeb( i , k ) = sqrt ( Ld ˆ2+(Rcom( i , k ) ) ˆ2−2*Ld*Rcom( i , k ) *cos (

ps i ( i ) ) ) ;
473 Rtet ( i , k ) = sqrt ( L t ˆ2+(Rcom( i , k ) ) ˆ2+2* Lt *Rcom( i , k ) *cos (

ps i ( i ) ) ) ;
474

475 VR( i , k ) = dRcom( i , k ) ;
476 vRotTet ( i , k ) = dtheta ( i , k ) * Rtet ( i , k ) ;
477 vRotDeb ( i , k ) = dtheta ( i , k ) * Rdeb( i , k ) ;
478 vTetCom ( i , k ) = L t * dps i ( i ) ;
479 vDebCom( i , k ) = Ld * dps i ( i ) ;
480

481 phi1 ( i , k ) = asin ( (Rcom( i , k ) * sin ( ps i ( i ) ) ) / Rdeb ( i , k ) ) −
pi / 2 ;

482 lambda1 ( i , k ) = pi /2 − phi1 ( i , k ) − ps i ( i ) ;
483 phi2 ( i , k ) = asin ( (Rcom( i , k ) / Rtet ( i , k ) ) * sin ( pi − ps i ( i

) ) ) ;
484 lambda2 ( i , k ) = ps i ( i ) − phi2 ( i , k ) ;
485

486 VRadDeb( i , k ) = − vDebCom( i , k ) * cos ( phi1 ( i , k ) ) + VR( i , k )

* cos ( lambda1 ( i , k ) ) ;
487 VNormDeb( i , k ) = vRotDeb ( i , k ) + vDebCom( i , k ) * sin ( phi1 ( i ,

k ) ) + VR( i , k ) * sin ( lambda1 ( i , k ) ) ;
488 VRadTet ( i , k ) = − vTetCom ( i , k ) * sin ( phi2 ( i , k ) ) + VR( i , k )

* cos ( lambda2 ( i , k ) ) ;
489 VNormTet ( i , k ) = vRotTet ( i , k ) + vTetCom ( i , k ) * cos ( phi2 ( i ,

k ) ) − VR( i , k ) * sin ( lambda2 ( i , k ) ) ;
490 VTotDeb ( i , k ) = sqrt (VRadDeb( i , k ) ˆ2 + VNormDeb( i , k ) ˆ 2 ) ;
491 VTotTet ( i , k ) = sqrt ( VRadTet ( i , k ) ˆ2 + VNormTet ( i , k ) ˆ 2 ) ;
492 end
493 end
494

495 %PSI PLOT
496 f igure ;
497 yyax is l e f t
498 plot ( the ta / ( 2 * pi ) , ps i ) ;
499 xlabel (’Orbits’ ) ; ylabel (’Rotation Angle [rad]’ ) ; hold on ;
500 yyax is r i g h t
501 plot ( the ta / ( 2 * pi ) , dps i ) ; grid on ;



502 xlabel (’Orbits’ ) ; ylabel (’Rotation Velocity [rad/s]’ ) ;
503 l g = legend (’Rotation Angle $\psi$’ , ’Rotation Velocity $\dot{\

psi}$’ ) ;
504 t l = t i t l e (’$\psi$ and $\dot{\psi}$ vs time’ ) ;
505 set ( lg , ’Interpreter’ , ’latex’ ) ; set ( t l , ’Interpreter’ , ’latex’ ) ;
506

507 %RADIUS PLOT
508 f igure ;
509 plot ( the ta / ( 2 * pi ) ,Rcom / 1000 − (Re / 1000) ) ; grid on ;
510 legend (’hper = 2000km’ , ’hper = 3000km’ , ’hper = 4000km’ , ’hper =

5000km’ ) ;
511 xlabel (’Orbits’ ) ; ylabel (’Orbit height [km]’ ) ;
512 t i t l e (’CoM orbit height vs orbits’ ) ;
513

514 %DEBRIS VELOCITIES PLOT
515 o = [ ] ;
516 f igure ;
517 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) ,vDebCom / 1000 , ’-’ , ’color’ , [ 0 , 0 .5 ,

0 ] ) ; hold on ;
518 o ( : , 2 ) = plot ( the ta / ( 2 * pi ) , vRotDeb / 1000 , ’-’ , ’color’ , [0 .8500 ,

0.3250 , 0 .0980 ] ) ; hold on ;
519 o ( : , 3 ) = plot ( the ta / ( 2 * pi ) ,VR / 1000 , ’-’ , ’color’ , [0 .4940 ,

0.1840 , 0 .5560 ] ) ; grid on ;
520 legend ( o ( 1 , : ) , ’VDebCom’ , ’VRotDeb’ , ’VR’ ) ;
521 xlabel (’Orbits’ ) ; ylabel (’Velocities [km/s]’ ) ;
522 t i t l e (’Debris velocities vs orbits’ ) ;
523

524 f igure ;
525 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) ,VRadDeb / 1000 , ’k’ ) ; hold on ;
526 o ( : , 2 ) = plot ( the ta / ( 2 * pi ) ,VNormDeb / 1000 , ’b’ ) ; hold on ;
527 o ( : , 3 ) = plot ( the ta / ( 2 * pi ) ,VTotDeb / 1000 , ’r’ ) ; grid on ;
528 legend ( o ( 1 , : ) , ’Vrad’ , ’Vnormal’ , ’Vtotal’ ) ;
529 xlabel (’Orbits’ ) ; ylabel (’Velocities [km/s]’ ) ;
530 t i t l e (’Debris radial, normal and total velocities vs orbits’ ) ;
531

532 %TETHER’S BODY VELOCITIES PLOT
533 f igure ;
534 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) , vTetCom / 1000 , ’-’ , ’color’ , [ 0 , 0 .5 ,

0 ] ) ; hold on ;
535 o ( : , 2 ) = plot ( the ta / ( 2 * pi ) , vRotTet / 1000 , ’-’ , ’color’ , [0 .8500 ,

0.3250 , 0 .0980 ] ) ; hold on ;
536 o ( : , 3 ) = plot ( the ta / ( 2 * pi ) ,VR / 1000 , ’-’ , ’color’ , [0 .4940 ,

0.1840 , 0 .5560 ] ) ; grid on ;
537 legend ( o ( 1 , : ) , ’VTetCom’ , ’VRotTet’ , ’VR’ ) ;
538 xlabel (’Orbits’ ) ; ylabel (’Velocities [km/s]’ ) ;
539 t i t l e (’Tethers body velocities vs orbits’ ) ;
540

541 f igure ;



542 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) ,VRadTet / 1000 , ’k’ ) ; hold on ;
543 o ( : , 2 ) = plot ( the ta / ( 2 * pi ) ,VNormTet / 1000 , ’b’ ) ; hold on ;
544 o ( : , 3 ) = plot ( the ta / ( 2 * pi ) , VTotTet / 1000 , ’r’ ) ; grid on ;
545 legend ( o ( 1 , : ) , ’Vradial’ , ’Vnormal’ , ’Vtotal’ ) ;
546 xlabel (’Orbits’ ) ; ylabel (’Velocities [km/s]’ ) ;
547 t i t l e (’Tethers body radial, normal and total velocities vs orbits

’ ) ;
548

549 %TRANSFER ORBIT CALCULATIONS
550 for k =1: length ( rp )
551 for i = 1 : length ( the ta )
552 adeb ( i , k ) = (mu * Rdeb( i , k ) ) / (2*mu − ( VTotDeb ( i , k ) ) ˆ2*

Rdeb( i , k ) ) ;
553 a t e t ( i , k ) = (mu * Rtet ( i , k ) ) / (2*mu − ( VTotTet ( i , k ) ) ˆ2*

Rtet ( i , k ) ) ;
554 end
555 [A ] = i s l o c a l m i n ( adeb ) ;
556 Minimum = f ind (A ( : , k ) == 1) ;
557

558 ReleasePosi t ion ( k ) = Minimum ( 3 ) ;
559 VNormDebRelease ( k ) = VNormDeb( ReleasePosi t ion ( k ) , k ) ;
560 VTotDebRelease ( k ) = VTotDeb ( ReleasePosi t ion ( k ) , k ) ;
561 VNormTetRelease ( k ) = VNormTet ( ReleasePosi t ion ( k ) , k ) ;
562 VTotTetRelease ( k ) = VTotTet ( ReleasePosi t ion ( k ) , k ) ;
563

564 ps i re lease ( k ) = ps i ( ReleasePosi t ion ( k ) ) ;
565

566 adebrelease ( k ) = (mu * Rdeb( ReleasePosi t ion ( k ) , k ) ) / (2*mu −
( VTotDebRelease ( k ) ˆ 2 ) *Rdeb( ReleasePosi t ion ( k ) , k ) ) ;

567 pdeb ( k ) = ( VNormDebRelease ( k ) *Rdeb( ReleasePosi t ion ( k ) , k ) ) ˆ2 /
mu;

568 edeb ( k ) = sqrt (1 − pdeb ( k ) / adebrelease ( k ) ) ;
569 a te t r e l ease ( k ) = (mu * Rtet ( ReleasePosi t ion ( k ) , k ) ) / (2*mu −

( VTotTetRelease ( k ) ˆ 2 ) * Rtet ( ReleasePosi t ion ( k ) , k ) ) ;
570 p t e t ( k ) = ( VNormTetRelease ( k ) * Rtet ( ReleasePosi t ion ( k ) , k ) ) ˆ2 /

mu;
571 e t e t ( k ) = sqrt (1 − p t e t ( k ) / a t e t r e l ease ( k ) ) ;
572

573 for i = 1 : length ( the ta )
574 Rnewdeb( i , k ) = pdeb ( k ) / (1 + edeb ( k ) * cos ( the ta ( i ) +

the ta ( ReleasePosi t ion ( k ) ) ) ) ;
575 Rnewtet ( i , k ) = p t e t ( k ) / (1 + e t e t ( k ) * cos ( the ta ( i ) +

the ta ( ReleasePosi t ion ( k ) ) ) ) ;
576 dthetadeb ( i , k ) = sqrt ( (mu* (1 + edeb ( k ) *cos ( the ta ( i ) +

the ta ( ReleasePosi t ion ( k ) ) ) ) ) / (Rnewdeb( i , k ) ˆ 3 ) ) ;
577 d t h e t a t e t ( i , k ) = sqrt ( (mu* (1 + e t e t ( k ) *cos ( the ta ( i ) +

the ta ( ReleasePosi t ion ( k ) ) ) ) ) / ( Rnewtet ( i , k ) ˆ 3 ) ) ;
578 dRnewdeb( i , k ) = pdeb ( k ) * ( 1 / ( 1+ edeb ( k ) *cos ( the ta ( i ) +



t he ta ( ReleasePosi t ion ( k ) ) ) ) ˆ 2 ) * ( edeb ( k ) * sin ( the ta ( i )
+ the ta ( ReleasePosi t ion ( k ) ) ) ) * dthetadeb ( i , k ) ;

579 dRnewtet ( i , k ) = p t e t ( k ) * ( 1 / ( 1+ e t e t ( k ) *cos ( the ta ( i ) +
the ta ( ReleasePosi t ion ( k ) ) ) ) ˆ 2 ) * ( e t e t ( k ) * sin ( the ta ( i )
+ the ta ( ReleasePosi t ion ( k ) ) ) ) * d t h e t a t e t ( i , k ) ;

580 VTotDeb2 ( i , k ) = sqrt ( dRnewdeb ( i , k ) ˆ2 + ( dthetadeb ( i , k ) *
Rnewdeb( i , k ) ) ˆ 2 ) ;

581 VTotTet2 ( i , k ) = sqrt ( dRnewtet ( i , k ) ˆ2 + ( d t h e t a t e t ( i , k ) *
Rnewtet ( i , k ) ) ˆ 2 ) ;

582

583 adeb2 ( i , k ) = (mu * Rnewdeb( i , k ) ) / (2*mu − ( VTotDeb2 ( i , k )
) ˆ2*Rnewdeb( i , k ) ) ;

584 a te t2 ( i , k ) = (mu * Rnewtet ( i , k ) ) / (2*mu − ( VTotTet2 ( i , k )
) ˆ2* Rnewtet ( i , k ) ) ;

585

586 o r b i t s ( i , k ) = the ta ( i ) / ( 2 * pi ) + the ta ( ReleasePosi t ion ( k ) )
/ ( 2 * pi ) ;

587 end
588 end
589

590 o = [ ] ;
591 f igure ;
592 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) , adeb / 1000) ;
593 xlabel (’Orbits’ ) ; ylabel (’Semi-major axis [km]’ ) ; hold on ;
594 plot ( the ta / ( 2 * pi ) , adeb2 ( : , 1 ) / 1000 ,’-’ , ’color’ , [ 0 , 0.4470 ,

0 .7410] ,’LineWidth’ , 1 . 5 ) ; hold on ;
595 plot ( the ta / ( 2 * pi ) , adeb2 ( : , 2 ) / 1000 ,’-’ , ’color’ , [0 .8500 ,

0.3250 , 0 .0980] ,’LineWidth’ , 1 . 5 ) ; hold on ;
596 plot ( the ta / ( 2 * pi ) , adeb2 ( : , 3 ) / 1000 ,’-’ , ’color’ , [0 .9290 ,

0.6940 , 0 .1250] ,’LineWidth’ , 1 . 5 ) ; hold on ;
597 plot ( the ta / ( 2 * pi ) , adeb2 ( : , 4 ) / 1000 ,’-’ , ’color’ , [0 .4940 ,

0.1840 , 0 .5560] ,’LineWidth’ , 1 . 5 ) ; grid on ;
598 legend ( o ( : , 1 ) , ’hper = 2000km’ , ’hper = 3000km’ , ’hper = 4000km’ ,

’hper = 5000km’ ) ;
599 t i t l e (’Possible and final semi-major axis of the debris’ ) ;
600

601 o = [ ] ;
602 f igure ;
603 o ( : , 1 ) = plot ( the ta / ( 2 * pi ) , a t e t / 1000) ;
604 xlabel (’Orbits’ ) ; ylabel (’Semi-major axis [km]’ ) ; hold on ;
605 plot ( the ta / ( 2 * pi ) , a te t2 ( : , 1 ) / 1000 ,’-’ , ’color’ , [ 0 , 0.4470 ,

0 .7410] ,’LineWidth’ , 1 . 5 ) ; hold on ;
606 plot ( the ta / ( 2 * pi ) , a te t2 ( : , 2 ) / 1000 ,’-’ , ’color’ , [0 .8500 ,

0.3250 , 0 .0980] ,’LineWidth’ , 1 . 5 ) ; hold on ;
607 plot ( the ta / ( 2 * pi ) , a te t2 ( : , 3 ) / 1000 ,’-’ , ’color’ , [0 .9290 ,

0.6940 , 0 .1250] ,’LineWidth’ , 1 . 5 ) ; hold on ;
608 plot ( the ta / ( 2 * pi ) , a te t2 ( : , 4 ) / 1000 ,’-’ , ’color’ , [0 .4940 ,

0.1840 , 0 .5560] ,’LineWidth’ , 1 . 5 ) ; grid on ;



609 legend ( o ( : , 1 ) , ’hper = 2000km’ , ’hper = 3000km’ , ’hper = 4000km’ ,
’hper = 5000km’ ) ;

610 t i t l e (’Possible and final semi-major axis of the tethers body’ ) ;
611

612 f igure ;
613 for k =1: length ( Ld )
614 plot ( o r b i t s ( : , k ) , ( Rnewdeb − Re) /1000) ; grid on ;
615 legend (’hper = 2000km’ , ’hper = 3000km’ , ’hper = 4000km’ , ’

hper = 5000km’ ) ;
616 xlabel (’Orbits’ ) ; ylabel (’Orbit height [km]’ ) ;
617 x l im ( [ o r b i t s (1 , k ) o r b i t s (1 , k ) +5 ] )
618 t i t l e (’New orbit heights of the debris after release’ ) ;
619 end
620

621 f igure ;
622 for k =1: length ( Ld )
623 plot ( o r b i t s ( : , k ) , ( Rnewtet − Re) /1000) ; grid on ;
624 legend (’hper = 2000km’ , ’hper = 3000km’ , ’hper = 4000km’ , ’

hper = 5000km’ ) ;
625 xlabel (’Orbits’ ) ; ylabel (’Orbit height [km]’ ) ;
626 x l im ( [ o r b i t s (1 , k ) o r b i t s (1 , k ) +5 ] )
627 t i t l e (’New orbit heights of the tethers body after release’ ) ;
628 end
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