
Date of publication 2021

Digital Object Identifier Postprint

Invoice Factoring Registration Based on

a Public Blockchain

NASIBEH MOHAMMADZADEH1, SADEGH DORRI NOGOORANI2, AND JOSÉ LUIS

MUÑOZ-TAPIA.3
1Department of Network Engineering, Polytechnic University of Catalonia, Spain (e-mail: nasibeh.mohammadzadeh@upc.edu)
2Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran, P.O. Box: 14115-111 (e-mail: dorri@modares.ac.ir)
3Department of Network Engineering, Polytechnic University of Catalonia, Spain (e-mail: jose.luis.munoz@upc.edu)

Corresponding author: Nasibeh Mohammadzadeh (e-mail: nasibeh.mohammadzadeh@upc.edu).

ABSTRACT Invoice factoring is a very useful tool for developing businesses that face liquidity
problems. The main property that a factoring system needs to fulfill is to prevent an invoice
from being factored twice. In order to prevent double factoring, many factoring ecosystems use
one or several centralized entities to register factoring agreements. However, this puts a lot
of power in the hands of these centralized entities and makes it difficult for users to dispute
situations in which factoring data is unavailable, wrongly recorded or manipulated by negligence
or on purpose. In this article, we propose an architecture for invoice factoring registration
based on a public blockchain. To solve the aforemeRUP SEGURETAT DE LA INFORMACIÓ
(ISG) Arquitectura software para control de tasa en redes integradas satélite-terrestre Intelligent,
Interoperable, Integrative and deployable open source MARKETplace with trusted and secure
software tools for incentivising the industry data economy pRIvntioned drawbacks, we replace
the trusted third parties for factoring registration with a smart contract. Using a smart contract,
we record digital evidence of the terms and conditions of factoring agreements in explicit detail,
allowing auditability and dispute resolution. Relevant information is highly available on the
blockchain while its privacy is protected. The registration is optimal, since it needs only one
blockchain transaction and one key-value storage per invoice factoring.

INDEX TERMS Public blockchain, smart contract, double factoring, transparency, auditability,
privacy, dispute resolution.

I. INTRODUCTION

IN business-to-business financial relationships, it is
a common practice to pay for some services or

products with some delay, for example, several months
later. In this situation, the provider (namely the seller)
might sell her future receivable finance (invoice from
a buyer) with a discount to a factoring entity (namely
the factor, e.g., a bank). Invoice factoring has been a
popular way to provide cash flow for businesses. This
financial service is continually growing; for instance,
only in Europe, invoice factoring has increased from
less than a billion in 2010 to 1,6 billions Euros in 2017
[1].

There are several issues and challenges in the tradi-
tional invoice factoring proces. For example, it often
requires several manual steps and the information is
dispersed among different systems and databases [2]

[3]. There are also trust issues related to factoring. The
factor has to trust the buyer to have paid the amount
of invoice by the due deadline, and the buyer has to
comply with the factoring contract between the seller
and the factor. Moreover, a malicious seller may try
to cash an invoice at multiple factors to fraudulently
double the amount of received money. This issue is
known as double factoring and it is the main problem
that a factoring system needs to prevent. In more detail,
double factoring is possible because there are no insights
between factors, whether an invoice has already been
financed or not [4]. In general, the implication of the
buyer is necessary to provide awareness between factors
in whether an invoice has already been financed. Usu-
ally, we can assume that the buyer is a trusted party,
since this entity does not have any economic incentives
in the factoring process. This is clearly true when the

VOLUME 4, 2016 1

N. Mohammadzadeh et al.: Invoice Factoring Registration Based on a Public Blockchain

buyer is an administration or a government, which is
our main use case1 in this work.

To prevent double factoring, many ecosystems (e.g.,
countries) use one or several centralized entities to
register factoring agreements. However, this puts a lot
of power in the hands of these centralized entities and
makes it difficult for users to dispute situations in
which factoring data is unavailable, wrongly recorded
or manipulated by negligence or on purpose. Besides,
if there are several possible centralized registries for in-
voice factoring, which is quite common, another prob-
lem arises. In this case, the factoring information is
scattered and it is the responsibility of the buyer, the
less involved entity in the factoring process, to check
the records of all possible trusted third parties and
make sure that the payment is made to the correct
party.

In this context, a public blockchain seems a natu-
ral tool to solve these issues, because it can keep the
record of factoring agreements but also prevent dou-
ble factoring [5]. A blockchain can make our record-
keeping database distributed, highly available but log-
ically unique and secure from manipulations [6]. This
way, factoring agreements can be made faster with
fewer errors, and still carry the authenticity and credi-
bility of manual contracts.

In this article, we propose an invoice factoring reg-
istration architecture and its associated protocol based
on a public blockchain. Using a public blockchain as
trust anchor significantly helps the factoring registra-
tion process, avoiding manual steps and reducing the
power of trusted third parties. In our protocol, we
assume that the buyer is trusted by the seller and the
factor, being our main use case buyers that are govern-
ments and administrations. Buyers make payments off-
chain using fiat transfers between bank accounts. As
a consequence, our architecture is a blockchain-based
registration system and not a payment system based on
blockchain. As a general requirement, we try to spare
the buyer as much complexity and responsibility as
possible. In particular, the buyer does not need to have
a digital certificate or perform any digital signatures,
he just needs to provide a Web Service with some public
information.

Regarding availability, there are other factoring sys-
tems (like [7]) that use distributed storage systems such
as IPFS [8] to provide a certain level of data availability.
In our design, we provide the buyer with the highest
possible availability for the payment data. The highest
availability is provided by on-chain data, which is ultra
replicated, so our protocol stores relevant payment
data for the buyer on the blockchain. In particular, the

1We would like to specially thank Francesc Cubel from the Eco-
nomics Department of the Generalitat of Catalonia (Government of
Catalonia in Spain) for collaborating with us in the definition of the
requirements for this use case.

buyer reads on-chain data to obtain the bank account
where he has to make a payment, in case the invoice
has been factored. Obviously, according to our general
requirement of involving the buyer as little as possible,
the buyer does not have to send any transaction to the
blockchain, just read from it.

Storing data on-chain creates some challenges for our
protocol: we need to provide security and privacy as
well as optimizing the number of blockchain transac-
tions and blockchain storage used by the protocol. We
ensure security and privacy, by using commitments and
symmetric encryption for data stored on-chain. In par-
ticular, symmetric keys are exchanged using an asyn-
chronous version of the well-known Diffie-Hellman
protocol [9]. Regarding optimal on-chain registration,
we manage to register an invoice with only one trans-
action and one key-value of storage.

Additionally, we provide evidence for dispute solv-
ing between the seller and the factor. Again, according
to our general requirement of involving the buyer as
little as possible, the buyer is not involved in dispute
resolutions after the factoring is completed. As we will
demonstrate, evidences registered in the blockchain
and public information are enough to solve disputes
without further intervention from the buyer.

Finally, we would like to remark that while there are
other proposals in the literature, which are discussed
and compared in section V, none of them are tailored
to our requirements or provide a solution for these
requirements as optimal as ours.

The rest of the paper is organized as follows: in
section II, we briefly provide the required background;
in section III, we describe our proposal and its main
assumptions; in section IV, we analyze our architecture
from the security perspective; in section V, we present
the related work and make a comparison with our
proposal; and we finally conclude in section VI.

II. BACKGROUND

A. THE FACTORING PROCESS

A factoring relationship involves three parties [10]: (i)
a buyer, who is a person or a commercial enterprise to
whom the services are supplied on credit, (ii) a seller,
who is a commercial enterprise which supplies the ser-
vices on credit and avails the factoring arrangements,
and (iii) a factor, which is a financial institution (e.g., a
bank) that benefits from the discount on invoice factor-
ing. Typical interactions between these parties are the
following (see Fig. 1):

1) The seller sells some service or product to the
buyer.

2) In return, the buyer issues an invoice to the seller
with an already agreed payment due in the future
(typically, several months later).

3) The seller wants to get the money earlier and sells
the invoice to the factor.

2 VOLUME 4, 2016

N. Mohammadzadeh et al.: Invoice Factoring Registration Based on a Public Blockchain

4) The factor pays the invoice’s cost minus the fee to
the seller.

5) When the due date of the invoice is reached, the
factor asks the buyer to settle the invoice.

6) The buyer pays the amount to the factor.

Factor

Seller Buyer
2. Promise to pay

Figure1: Typical factoring.

The seller may inquire about multiple financial insti-
tutions, and they may pay part of the invoice. However,
the seller shall not be able to use the same invoice
multiple times and receive extra money. So, the factor
should verify and ensure that an invoice has not been
financed yet (double factoring problem) [4].

B. PUBLIC DISTRIBUTED LEDGERS

The main technology to build a public ledger is a
blockchain network. In a blockchain network, users can
run a blockchain node to send their transactions or use
some available node that allows them to do so. Then, in
a distributed way, the blockchain network can create
a unique sequence of ordered transactions. In more
detail, the network creates a chain of blocks using a
consensus algorithm to order transactions [11]. A block
contains several transactions, and an important prop-
erty is that, once the consensus algorithm definitively
accepts a block, this block will be known by all the
nodes and it will be impossible to manipulate or delete
it [12].

In a blockchain network, users can own one or more
accounts. Accounts are identified via a public identifier
(usually derived from a random public key using a
hash function). New blockchain accounts can be cre-
ated by simply generating a pair of asymmetric keys
and deriving the account identifier from the public key.
In general, account identifiers are not directly linked
with any user data, so they can be considered pseudo-
anonymous identifiers.

Transactions carry the source account identifier and a
destination account identifier, and they are all digitally
signed using the private key of the source account. All
the nodes that form the blockchain network see the
same state (also known as world state) that results from
executing all the transactions in order [13].

In most current public ledgers, the main use of
blockchain is to create a cryptocurrency. As a result,
the ledger state represents the balance of each account,
and transactions are used to transfer the balance from
one account to another. However, blockchain networks
can be used to build other generic applications, like we
will do for registering the factoring process. For this
purpose, many distributed ledgers also provide users
with the ability to use smart contracts [14].

Ethereum [15] is the most popular public blockchain
capable of running smart contracts, and the platform
of choice for many developers for implementing ap-
plications with blockchain [16]. Taking Ethereum as
a reference, we can define a smart contract as code
that implements business logic to manage a portion
of the ledger state. Smart contracts are deployed (in-
stalled) in the ledger through transactions. Deployed
contracts, like user accounts, also have an identifier.
Then, the portion of the ledger state which is controlled
by the smart contract can be modified by sending a
transaction to a function of that smart contract. In this
case, the smart contract makes the corresponding state
changes according to its explicit and immutable logic.
Moreover, once a smart contract is deployed on the
blockchain, it can be automatically executed through
transactions. The correct operation of smart contracts
is guaranteed by thousands of nodes all over the world,
so smart contracts cannot be censured or stopped [17].

The main advantages of implementing business logic
using smart contracts are that, on the one hand, the
logic is publicly available and auditable, and on the
other hand, the logic is immutable and tamper-proof,
which guarantees that the execution will always be as
defined. These advantages can be used to enforce the
terms of an agreement between parties without the
need for intermediaries [18].

III. PROPOSED ARCHITECTURE

In our architecture, we have the three classical entities
of the factoring scenario—namely the buyer, the seller,
and the factor—as well as a smart contract deployed on
a public blockchain. At a high level, our protocol works
as follows (see Fig. 2):

1) The seller submits a request to the buyer for pub-
lishing the invoice.

2) The buyer publishes a cryptographic digest of the
invoice in a Web Service.

3) The seller negotiates with several factoring com-
panies and chooses a desired factor.

VOLUME 4, 2016 3

N. Mohammadzadeh et al.: Invoice Factoring Registration Based on a Public Blockchain

4) The factor verifies the invoice cryptographic di-
gest by accessing the buyer’s Web Service.

5) The seller registers the appropriate factoring
agreement in a smart contact that is available on
a public blockchain.

6) The factor queries the smart contact to check that
he/she has been selected.

7) Since the factoring decision registered in the
smart contact is immutable, the factor pays the
agreed amount (invoice amount - fee) to the seller.

8) When the invoice payment deadline is reached,
the buyer checks the smart contract and notices
that the invoice is factored.

9) Finally, the buyer pays the invoice amount to the
factor.

Next, we present a detailed explanation of our pro-
posal including our design goals, assumptions, setup
and the detailed protocol.

A. DESIGN GOALS & ASSUMPTIONS

In our architecture, we assume that the buyer is trust-
worthy for the factoring process. This is clearly true
when the buyer is an administration or a government,
which is our main use case. In the case of other types of
buyers, the factor would need to check the correspond-
ing creditworthiness before accepting to factor invoices
issued by a specific buyer.

We also assume a public blockchain for our architec-
ture, but we must remark that we do not use blockchain
cryptocurrencies for payments. Our architecture is for
a registration system, the actual payments are made off-
chain using fiat transfers between bank accounts.

All the interactions to complete a factoring registry
will be managed by a smart contract. All parties can
trust the correct execution of transactions managed
by the smart contract because the blockchain platform
guarantees this execution. If the invoice has been fac-
tored, the buyer has to pay the invoice to the bank
account of the entity registered by the smart contract.
Therefore, all involved parties have to review the smart
contract code and ensure its correctness. The smart
contract address is also part of the negotiation between
the seller and the factor.

Since each transaction that changes the state of a
public blockchain has a cost, one of our main design
goals is to have the minimum possible number of trans-
actions for completing a factoring registry. Actually,
we only use one transaction per invoice factoring and
much of the communications between the different
parties are off-chain.

Since the buyer does not have incentives in the factor-
ing process, we prevent him from sending transactions
to the blockchain. As a general rule, in our design,
the factoring process is as less complex and resource-
consuming as possible for the buyer. In particular, in
our architecture, the buyer will not need specific digital

certificates for the factoring process and will not per-
form digital signatures related to this process. Instead,
the buyer will provide a simple Web Service to give
access to some minimal information about his invoices
so that the factor can check the information provided
by the seller.

Another issue to take into account is that, when
using a public ledger we gain transparency, but at the
same time, everybody has access to the stored data.
In the factoring process, there is sensitive business
information which shall be appropriately protected.
For privacy protection, we do not store sensitive data
directly on the blockchain. Instead, some part of the
data is symmetrically encrypted before being stored
on-chain; another part of the data is stored off-chain,
and we use cryptographic commitments to provide
proofs of existence. Once an invoice factoring has been
registered, we guarantee that:

• There is no possibility of double factoring.
• The relevant parties have access to the relevant

data and its proof of existence.
• There is no way to dispute the factoring once the

smart contract has registered it.

In addition, to perform the registration process, all
parties will have real identities (e.g., tax identifiers)
and the seller and the factor will also have blockchain
accounts (which are pseudo-anonymous identifiers).

Finally, we assume that an invoice contains the fol-
lowing information: the seller and the buyer identities,
invoice number, issuance date, due payment deadline,
total amount (and currency code), and other details
about the service/goods provided by the seller to the
buyer. We assume that the identity of the seller and the
invoice number are enough to uniquely identify the
invoice, thus, the use of unique invoice numbers should
be enforced. Besides, the identifier of the buyer, due
payment deadline, and the total amount are necessary
for factoring negotiations. Other information can be
added to the invoice without affecting how our archi-
tecture works.

B. SETUP

In this section, we describe our key management
scheme for the on-chain data encryption. We also de-
scribe the concept of Blockchain Certificate, and we
provide some preliminary discussions related to our
smart contract. We would like to mention that Table 1
contains the notation used throughout the paper.

1) Key Management

We use a Diffie-Hellman (DH) key exchange scheme [9]
to set up our symmetric keys for confidentiality. To
use the DH key exchange, participating parties just
need to agree on a finite cyclic group G of order n
and a generator g ∈ G. DH is a two party computation

4 VOLUME 4, 2016

N. Mohammadzadeh et al.: Invoice Factoring Registration Based on a Public Blockchain

Blockchain

wallet

Web Service

Buyer

Factor

Invoices (local) Invoices (local)

Invoices (local)

Current state

Seller

Blockchain

wallet

Blockchain

SC

Figure2: Our architecture.

Table1: Notation

Notation Meaning
KDF(m) secure symmetric key derived from m

(deterministic)
h(m) cryptographic hash of m
IDA real identity of entity A
@A blockchain address of entity A
Enc(K,m) symmetric encryption of m using key K
MAC(K,m) message authentication code of m using

key K (e.g. HMAC)
σAm digital signature over message m using

the private key of A
I invoice number
S seller
B buyer
F factor
C smart contract
WS Web Service (by the buyer)

protocol that consists in exchanging two messages. One
party selects a random number x1 ∈ (1,n) and sends gx1

to the other party. Then, the other party selects another
random number x2 ∈ (1,n) and sends gx2 . The agreed
DH key is gx1 x2 .

We must stress that we do not depend on any
DH specific implementation including Elliptic Curve
Diffie-Hellman (ECDH) [19] which is commonly used
in the context of blockchain. Moreover, the basic DH
key exchange is vulnerable to the man-in-the-middle
attack, so in our protocol, all public DH values are
either explicitly signed or transferred over authenti-
cated channels. On the other hand, in the regular use
of the DH key exchange, the two parties involved are
online, and they exchange two messages over the net-
work to establish a confidential session. In our case,
we use persistent storage to allow an asynchronous key

VOLUME 4, 2016 5

N. Mohammadzadeh et al.: Invoice Factoring Registration Based on a Public Blockchain

exchange in which one party provides a message that
will be accessed by the other party in the future. As
we explain later, depending on the key being created,
the persistent storage used is either the blockchain or
the Web Service provided by the buyer. Finally, we use
a Key Derivation Function (KDF) to derive secure and
random symmetric keys based on the DH-agreed key.

2) Blockchain Certificates

Our architecture is framed in a financial context and
hence, strict regulatory restrictions apply to it. In par-
ticular, following the Know-Your-Customer (KYC) reg-
ulation, the involved parties need to be well identified
to each other, and their agreements have to be persisted
for later audits and law enforcement.

In order to comply with the KYC regulation, the seller
and the factor will register the correspondence between
their real identity (IDA) and their pseudo-anonymous
identifier in the blockchain (@A). We use the term
Blockchain Certificate to refer to these links between real
identities and pseudo-identities. In our architecture,
we rely on the buyer to create these links, because the
buyer is supposed to pay to the factor, and therefore, we
can assume that factors can trust buyers to certify sellers.

On the other hand, by design, our protocol avoids
the buyer having to digitally sign the Blockchain Certifi-
cates or any other data. Our Blockchain Certificates are
privately used and are only exchanged between a seller
and a factor after they intend to make an agreement.
In addition, an entity can have multiple Blockchain
Certificates with different blockchain addresses to have
additional protections from linking attacks.

Let’s consider that the buyer is going to issue a
Blockchain Certificate CA for some entity A. The cer-
tificate will link the real identity of A (IDA) with one
of his/her identities in the blockchain (@A). To create
the Blockchain Certificate, A chooses a random number
x1 ∈ (1,n), and sends gx1 to the buyer. The buyer chooses
another random number x2 ∈ (1,n) and derives a sym-
metric key KAB using a deterministic KDF:

KAB = KDF((gx1)x2)) (1)

Next, the buyer calculates a pseudo-anonymous identi-
fier for A (PA) as follows:

PA = MAC(KAB, (IDA,@A)) (2)

Notice that without further information, the pseudo-
anonymous identifier PA does not reveal any informa-
tion about IDA or @A. Then, the buyer publishes PA and
gx2 through his Web Service:

B→WS : PA, g
x2 (3)

The value of x2 is not needed anymore and the buyer
can discard it, if desired. Now, A can provide the tuple
(PA,x1, IDA,@A) to anyone interested to verify his/her

identity with the help of the buyer. We define this tuple
as the Blockchain Certificate of A (CA):

CA = (PA,x1, IDA,@A) (4)

The verification of a Blockchain Certificate involves
using the PA in the certificate as the key in the buyer’s
Web Service to obtain gx2 . To accept the identity of A,
PA is recalculated from (gx2 ,x1, IDA,@A) which should
match the PA in the certificate.

Unlike regular X.509 certificates, our certificates do
not require digital signatures. Instead, to check the
validity of the certificate, some information has to be
retrieved from the Web Service. Moreover, our certifi-
cates are private, meaning that they are only exchanged
between intended parties.

On the other hand, for better anonymity and pre-
vention of linking attacks, each entity can have mul-
tiple Blockchain Certificates (with different blockchain
addresses). Regarding the role of Blockchain Certificates
in our protocol, they are needed for the seller and the
factor. As mentioned, sellers and factors can obtain as
many Blockchain Certificates as desired:

C
j
S = (P jS , s

j
1, IDS ,@Sj) (5)

ClF = (P lF , f
l

1 , IDF ,@Fl) (6)

where j and l are the indexes of particular certificates.
The buyer has to publish the related parameters of these
certificates in the Web Service:

B→WS : P
j
S , g

s
j
2 , P lF , g

f l2 ∀j, l (7)

A particular invoice will be factored with one partic-
ular pair of Blockchain Certificates of the seller and the
factor. For the sake of simplicity, from now on we will
simply denote this pair of certificates as (CS ,CF). As
we show later, we follow a similar scheme to publish
invoices and factoring information while protecting
privacy.

3) The Smart Contract

Our protocol is built around a smart contract, which
is deployed on a public blockchain. The smart contract
will hold registration data for a set of factored invoices.
No one (including its deployer) will have special pow-
ers over the contract. In particular, no one will be able
to interfere with the smart contract operation or alter
any data of the set of factored invoices.

We would like to emphasize that our architecture
is designed to operate on a public blockchain. Public
blockchains have costs, so, our protocol needs to be
cost-efficient. In general, there are three different places
in which data is stored on the blockchain (see Fig. 3):
(i) transaction input data, (ii) key-value storage, and
(iii) transaction output logs. Each of these places has
a different purpose and a different cost.

6 VOLUME 4, 2016

N. Mohammadzadeh et al.: Invoice Factoring Registration Based on a Public Blockchain

Figure3: Summary of smart contract storage possibilities.

The transaction input data is the data in the trans-
action that provides the inputs to execute the smart
contract logic for the current transaction. The transac-
tion input data is very cheap compared to the key-value
storage, which is by far the most expensive storage.
The key-value storage provides storage to the smart
contract that persists between transactions. The key-
value storage is part of the current blockchain global
state and as such, it can be used by the smart contract
logic for the execution of future transactions. Finally,
the transaction output logs are data produced after a
transaction is executed 2.

We would like to highlight that the transaction input
data and the transaction output logs are part of the
blockchain data, and as such, they are highly available
and immutable. However, these data are not part of
the blockchain’s current global state which means that
blockchain nodes do not need to keep these data in
their current state once the transaction has been ex-
ecuted. This is the reason why these data are cheap
to store and also the reason why the data of a log
from a previous transaction is not available to the logic
executing a posterior transaction.

In our protocol, we use a combination of the previous
three storage places to provide an efficient implemen-
tation while preserving the architecture’s privacy and
security. In particular, we only use one persistent key-
value slot to prevent double factoring. The factoring
data is recorded using a transaction output log. We
must mention that the data in transaction output logs
typically have indexed fields that allow external enti-
ties to do quick searches based on these index fields.
In our protocol, we use a pseudo-anonymous identifier
for the invoice as an indexed log field to speed up the
search of the associated factoring data.

The data registered by the smart contract will pro-
vide high availability for relevant data that the buyer
needs to know, like the factor’s bank account. Since a
bank account is sensitive data, we encrypt this data
before storing it on-chain. In addition, we store a proof
of the summary of the factoring agreement in the form
of a cryptographic commitment. Storing the summary

2For example, the transaction logs in Ethereum smart con-
tracts programmed with Solidity are implemented by emitting
events (see https://docs.soliditylang.org/en/v0.6.7/contracts.html#
events for further information).

of the factoring agreement on-chain can be used to
handle possible future disputes between the seller and
the factor. This agreement summary has to be signed by
both the seller and the factor.

Finally, we would like to mention that our smart
contract stores the blockchain addresses of the seller
and the factor on-chain as part of the factoring reg-
istration. To do so, we use the public key recovery
mechanism available in signature schemes like the El-
liptic Curve Digital Signature Algorithm (ECDSA) [19],
which is used by many blockchains (e.g., Bitcoin-like
blockchains and Ethereum). The public key recovery
mechanism allows, given a message m and the signer’s
signature on that message σAm , to recover the public
key pkA of the signer A. In the case of blockchain,
from the public key we can also get the blockchain
address (account) of the signer. In our protocol, as we
will show, we use transactions that include signatures
using blockchain identities of both the seller and the
factor, and we will recover their blockchain addresses
from these signatures.

In the following sections, we provide the details of
the complete factoring process using our protocol.

C. PHASE 1: REGISTRATION

The process of factoring a specific invoice starts with
the registration phase and it is followed by factoring
and payment phases. Each phase consists of several
steps, which are depicted in Fig. 4 and explained sub-
sequently.

At the beginning of the registration phase, the seller
asks the buyer to publish invoice information through
his Web Service. The publication is quite similar to the
way Blockchain Certificates are published, except that
additional information related to the factoring process
is required. To start the process, the seller selects an
invoice I and performs the following steps:

1. The seller chooses a random number i1 ∈ (1,n).
Then, the seller sends the following signed request
to the buyer through a secure channel:

m = (CS , I ,g
i1) (8)

S→ B :m,σ@S
m (9)

2. The buyer checks that the invoice has not been
published before (according to IDS and I). In such
case, the buyer checks the signature and proceeds
by selecting a random number i2 ∈ (1,n) and
computing KSB and PI as follows:

KSB = KDF((g i1)i2) (10)

PI = MAC(KSB, (CS , I ,aI ,dI ,@C)) (11)

where aI is the invoice amount, dI is the in-
voice payment deadline, and @C is the blockchain
address of the smart contract. PI is used as the

VOLUME 4, 2016 7

https://docs.soliditylang.org/en/v0.6.7/contracts.html#events
https://docs.soliditylang.org/en/v0.6.7/contracts.html#events

N. Mohammadzadeh et al.: Invoice Factoring Registration Based on a Public Blockchain

FactorFactorSmart-Contract SellerWeb-ServiceBuyer

(m, σ)@S
m

(Reply with data
 uploaded to WS)

Negotiation

(C , IBAN)

Invoice details

Factoring conditions

(1)

(2b)

(7)

(6)

(5b)

(5a)

(4b)

(4a)

(3)

(2a)

(8)
(9a)

(9b)

I S

Read ledger data

Read ledger data

key-
value

Read WS data

Read WS data

(P , g , g)I
bi 12

(A, msg, σ)@F
msg

(tx , σ)@S
tx

Payment €

Payment €

Figure4: Our protocol.

pseudo-anonymous identifier of the invoice. No-
tice that without further information, PI does not
reveal any information about the invoice details.

2a. Then, the buyer selects another random number
b1 ∈ (1,n) and publishes the following informa-
tion through his Web Service:

B→WS : PI , g i2 , gb1 (12)

The value of i2 will not be needed anymore
and can be discarded. However, the buyer does
need to keep b1. This is because the factor will
store his/her International Bank Account Identi-
fier (IBAN) for the payment in a symmetrically
encrypted manner on-chain. In more detail, the
selected factor will choose a random number b2 ∈
(1,n) and provide gb2 on-chain to establish a sym-
metric key with the buyer (KFB).

2b. Optionally, the buyer might reply to the seller
with the same information published in the Web
Service. This reply can be omitted and let the seller
read this data directly from the Web Service.

As already mentioned, the seller may have multiple
blockchain addresses for better anonymity. However,
an invoice can be registered only with one of these
addresses (notice that for this purpose the address used
by the seller is included in the computation of PI). We
define the Invoice Certificate (CI) as:

CI = (PI , i1,CS , I ,aI ,dI ,@C) (13)

Also note that:

• The buyer does not need to perform digital signa-
tures, he only does small computations once per
invoice.

• The seller authenticates the Web Service (buyer)
before sending the request, and the connection is
secured by HTTPS, thus preserving her privacy.

• Only a MAC and two public DH values are pub-
lished for better privacy protection. Privacy is pro-
tected because an external party cannot obtain
any identity agreed with the buyer just having
DH public values. This protects the privacy of the
corresponding sellers, factors and invoices.

D. PHASE 2: FACTORING

This phase starts with the seller contacting multiple
factors over an out-of-band but private channel to ne-
gotiate and compare the different offers and conditions.
The seller should naturally provide her invoice details,
including invoice number (I), the total amount of the
invoice (aI), and payment due deadline (dI) to the
possible factors. Then, according to the received offers,
the seller selects the best factor to continue with.

8 VOLUME 4, 2016

N. Mohammadzadeh et al.: Invoice Factoring Registration Based on a Public Blockchain

The selected factor must provide his/her certificate
CF to the seller. Using the buyer’s Web Service, both
the seller and the factor must verify that the certificates
from the other party are valid.

time
d

I
d

R

F

registration
not allowed
(e.g. 4 days)

factoring
registration

Δ
P

(e.g. 5 days)

payment
by factor

payment
by buyer

F

Figure5: Timestamps and periods for factoring registra-
tion and payment.

The factors also specify their offered amount for the
invoice (aF = aI − fee) and two time parameters ∆FP and
dFR (see Fig. 5):

• ∆FP : maximum period of time that the factor can last
in paying the seller, after the factoring is success-
fully registered by the smart contract.

• dFR: deadline for completing the factoring registra-
tion. This deadline is important and it is enforced
by the smart contract. It should be long enough to
let the seller register the invoice factoring. Since
the seller is the most interested party in doing the
factoring, she will probably take the decision and
register the factoring as soon as possible. However,
the deadline set by the factor should be far enough
from the due deadline of the invoice to prevent
the seller from performing a late registration and
trying to get paid by both the buyer and the factor.
E.g., if invoices are paid at 90 days, the deadline
could be set by factors, for example, to 4 days
before the invoice due deadline:

dFR = dI − 4 days (14)

In this case, dFR = 4 days is far enough from the
invoice due deadline, so that when the buyer reads
the data in the blockchain, the data is stable: the
invoice is either factored or cannot be factored,
and there is no possibility of double factoring.
If dFR is too close to the invoice due deadline, it
could happen that the buyer pays to the seller, the
seller registers the factor in the smart contract and
the factor reads the blockchain and also pays the
seller. In this case, we assume that an honest seller
is not probably going to factor an invoice just 4
days before the date in which he can receive the
total amount of the invoice but this is obviously a
configurable parameter.

On the other hand, the messages exchanged between
the seller and the selected factor for registering the
factoring are the following:

3. Using a secure channel (e.g., HTTPS), the seller
sends CI (which includes her associated CS) and

her bank account number (IBANS) to the selected
factor:

S→ F : (CI , IBANS) (15)

4a. Using the Web Service, the selected factor verifies
CI , which includes the verification of the em-
bedded CS . If verifications are correct, the factor
is sure about the invoice details, including the
address of the factoring smart contract. Then, the
factor checks the smart contract to make sure that
the invoice has not been already factored (if the
invoice has been factored the process is obviously
canceled.)

4b. The factor chooses a random number b2 ∈ (1,n)
and uses it to generate a symmetric key encryp-
tion KFB that will be used to store his account
number (IBANF) on-chain and in an encrypted
manner to receive the invoice amount from the
buyer:

KFB = KDF((gb1)b2) (16)

Enc(KFB, IBANF) (17)

We define the agreement data (A) between the
factor and the seller as follows:

A = (CI ,CF ,aF ,∆FP , IBANS) (18)

The factor sends the following data to the seller:

F→ S : (A,msg,σ@F
msg) (19)

where msg is defined as follows:

msg = (PI ,dFR,Enc(KFB, IBANF), gb2 ,h(A)) (20)

Notice that the factor produces the signature over
msg using his blockchain address @F. This is be-
cause the smart contract also checks this signature
before registering the factoring.

5a. The seller checks that σ@F
msg is valid, that the agree-

ment A is correct (including the verification of
CF), and that the hash of the agreement h(A) is
also correct. The seller records the signature for
possible later use as digital evidence.

5b. Using her blockchain address @S, the seller sends
a signed transaction tx to the smart contract:

S→ C : (tx,σ@S
tx) (21)

where:

tx = (msg,σ@F
msg) (22)

Notice that the transaction contains the signature
of the factor and also the signature of the seller and
thus, it is explicitly approved by both parties.

6. The smart contract is designed to ensure the se-
curity of the system and to provide an efficient
on-chain storage. To do so, the smart contract
processes the transaction (tx) as follows:

VOLUME 4, 2016 9

N. Mohammadzadeh et al.: Invoice Factoring Registration Based on a Public Blockchain

• From the transaction signature (σ@S
tx), it re-

covers the blockchain address of the seller
(@S).

• From the signature embedded in the transac-
tion (σ@F

msg), it recovers the blockchain address
of the factor (@F).

• From the msg, it gets the deadline for regis-
tration set by the factor (dFR) and verifies that
the current blockchain time is smaller than
the registration deadline:

registration.timestamp ≤ dFR (23)

The registration.timestamp is obtained
from the timestamp included in the block
that contains the factoring transaction.

The smart contract needs to register the following
data related to the factoring:
• @S: blockchain address of the seller, which

is recovered by the smart contract from the
transaction signature.

• @F: blockchain address of the factor, which
is recovered by the smart contract from the
signature of the message embedded in the
transaction.

• PI : pseudo-anonymous identifier of the in-
voice.

• gb2 : it will be retrieved by the buyer to com-
pute KFB.

• Enc(KFB, IBANF): symmetrically encrypted
account number of the factor that will be re-
trieved by the buyer to make the appropriate
payment. Note that by storing this value on-
chain we get the high availability and trans-
parency of blockchain while preserving pri-
vacy.

• h(A): fingerprint of the factoring agreement.
This value can be used by the seller or the
factor as a proof of existence in case of dis-
pute. Note that before storing this value, the
signature of both the seller and the factor are
checked by the smart contract.

7. Using h(@S,PI) as index for the log in the smart
contract, the factor can get the associated registra-
tion data and verify whether the invoice has been
assigned to himself or not.

We efficiently store the data by using only one key-
value per invoice in the storage of the smart contract as
follows. We use H = h(@S,PI) as the key of the registry.
Note that @S and PI are known to the buyer, so the buyer
can compute this hash and use it as key to find the
factoring registration in the smart contract. Associated
with the key, the smart contract stores the following
value (V):

V = h(gb2 ,Enc(KFB, IBANF),@F,h(A)) (24)

So, the smart contract will contain the following key-
value mapping:

H⇒V (25)

Obviously, the key-value mapping of the smart con-
tract storage can only be set if it was not previously set
to a previous value, which prevents double-factoring.

Finally, we need the factoring registration data to be
available for the parties: the buyer for paying the factor,
and the seller and the factor to have evidence proofs
in case of dispute. To do this efficiently, we store this
data as a smart contract output transaction log after the
successful invoice registration:

log(H, gb2 ,Enc(KFB, IBANF),@F,h(A)) (26)

H is defined as an index field for quick search.

E. PHASE 3: PAYMENT

In the third phase, after checking the registered infor-
mation by the smart contract, the factor pays aF to the
seller. Later, the buyer will pay the complete invoice
amount aI to the factor.

8. The factor proceeds to pay aF to the account of
the seller (IBANS). This has to happen before the
agreed payment deadline, that is, not later than
registration.timestamp+∆FP .

9a. When the deadline of an invoice (dI) expires, the
buyer has to query the smart contract to figure out
whether the invoice has been factored or not. The
buyer knows the address of the smart contract
(@S) and the pseudo-anonymous identifier of the
invoice (PI). Using these two values, the buyer
computes the hash H = h(@S,PI) and queries a
blockchain node to obtain the log with index field
H of the smart contract in address @S. From the
log, the buyer obtains Enc(KFB, IBANF) and gb2 .
Using gb2 and the value b1 that the buyer has
stored, he computes KFB and decrypts the bank
account of the factor (IBANF).

9b. Finally, the buyer pays the factor using the IBANF
decrypted in 9a.

IV. SECURITY ANALYSIS

Our analysis is divided into several subsections, specif-
ically, the security of Blockchain and Invoice Certifi-
cates, communications security, data manipulation at-
tacks, replay attacks, confidentiality and privacy, and
fraud handling. In each subsection, we explain security
requirement(s), possible attack(s), and our mitigation
method(s).

A. BLOCKCHAIN AND INVOICE CERTIFICATES

The contents of the Blockchain and Invoice Certificates
are not published, and their owners may hand them to
other parties at will. Every Certificate is protected by a

10 VOLUME 4, 2016

N. Mohammadzadeh et al.: Invoice Factoring Registration Based on a Public Blockchain

MAC, which is generated using a fresh DH-generated
symmetric key. For a verifier to ensure the authenticity
of a Certificate, the MAC is queried over an authenti-
cated HTTPS channel. Therefore, as long as the MAC
and HTTPS are secure, the Certificates are secure as
well.

B. COMMUNICATIONS’ SECURITY

Communications between the Web Service of the buyer
and the seller or the factor are conducted over HTTPS.
Therefore, the integrity and confidentiality of the re-
quests and responses are guaranteed. A traditional web
certificate authenticates the server-side (Web Service),
and the messages from the other side are protected
by explicit signatures when necessary. These signatures
assure the interested party that the other side cannot
deny having generated a message.

C. DATA MANIPULATION AND REPUDIATION ATTACKS

All data stored on a blockchain are publicly readable;
therefore, confidentiality and privacy are more of a
concern in comparison to traditional systems. We do
not store any information that can be used to identify
or trace the seller or the factor on the blockchain. A
pseudo-anonymous identifier is used for the seller and
the invoice, and other information is encrypted. An
asynchronous version of the DH key exchange is used
to generate the encryption keys, and a digital signature
is provided by the factor for non-repudiation.

The blockchain offers a unique security feature that
protects stored data from malicious manipulation. To
be more precise, the data can only be updated or
deleted by predefined smart contract methods. If an
attacker aims to disrupt the network by taking down
one or only a small portion of the network, it will
not succeed. This feature makes blockchain technology
suitable for transaction data, determining which data is
valid or tampered with, and can create a network of un-
trusted participants. Moreover, once the smart contract
registers an invoice, this fact can never be changed.

In addition to the smart contract, the buyer also pub-
lishes information. In this respect, sellers and factors
in our architecture must trust that the buyer will not
publish false information. The information is commu-
nicated through secure channels to different parties
and cannot be manipulated at the connection level. For
non-repudiation purposes, we require the factor and
the seller to sign their messages digitally.

D. CONFIDENTIALITY AND PRIVACY

Concerns about confidentiality and privacy of financial
data are significant in our use case. All private informa-
tion is transferred over HTTPS or explicitly encrypted.
Encryption keys are not shared between multiple par-
ties, and only the intended party can decrypt the in-
formation. Pseudo-anonymous identifiers are used in

communications and stored on the blockchain to better
preserve the involved party’s privacy. The seller and
the factor can use a fresh blockchain address in each
factoring contract to prevent linking attacks.

The buyer in our architecture is not involved in the
negotiations between the seller and the factors. In par-
ticular, the buyer cannot predict if the seller will factor
her invoice or not (before agreement about payment
conditions and other invoice details). Moreover, our
architecture protects the factors from each other as they
do not have access to their competitors’ conditions (be-
fore and after finalizing the factoring contract). Factors
are not notified if the seller applies to multiple factors
to obtain a better bid for the invoice.

E. DISPUTE HANDLING

We must remark that our registration protocol is not
secure against malicious buyers because if the buyer
publishes false information, this can not be disputed
by the seller or the factor. As a result, the seller and
the factor need to trust the buyer. A malicious buyer,
for example, may not pay the seller or the factor. A
malicious buyer may also scam factors by creating a fake
seller and a high amount of non-existent invoices. Then,
the fake seller receives the payments from the factors
but the corresponding payments are not made by the
malicious buyer. In case the buyer is not trustful, some
mechanism to enforce good behavior must be used (like
a reputation system as in Guerar et al. [7]).

On the other hand, a seller may be concerned about a
malicious factor that may refrain from payment. In this
case, the seller reveals the message sent by the factor
in Eq. (19) to a judge. Then, the following steps are
sufficient to handle the case:

1) Verification of Invoice Certificate (CI).
2) Verification of the agreement terms (A).
3) Verification of the address of the seller (CS).
4) Verification of the address of the factor (CF).
5) Signature verification: the judge has all the re-

quired information about the factoring agree-
ment and can verify the signature of the factor
(σ@F
msg) on this information.

6) Determining h(@S,PI) (according to CI).
7) Retrieval of registration information from the

smart contract and its logs. The address of the
contract is certified by CI and the judge has the
signature of the factor on it.

8) Trial: The factor will be doomed according to non-
repudiation of digital signatures, and tamper-
proof evidence from the smart contract.

A factor may also be concerned about the case in
which the buyer pays the amount to another bank ac-
count. In this case, the factor reveals b2 (in Eq. (16)) and
CI to a judge. Then, the following steps are sufficient to
handle the case:

VOLUME 4, 2016 11

N. Mohammadzadeh et al.: Invoice Factoring Registration Based on a Public Blockchain

1) Verification of Invoice Certificate (CI) from the
Web Service of the suspected buyer.

2) Verification of the address of the factor (CF).
3) Verification of the address of the seller (CS).
4) Key confirmation: uses b2 to verify correctness of

gb2 and KFB (according to Eq. (16).) The judge can
infer that the buyer could also calculate KFB using
b1.

5) Determining h(@S,PI) (according to CI).
6) Retrieval of registration information from the

smart contract and its logs. The address of the
contract is certified by CI .

7) Verification of factor’s bank account: use of KFB to
decrypt Enc(KFB, IBANF).

8) Resolution: the case can be resolved and the cul-
prit can be detected according to the bank ac-
count logs.

V. RELATED WORK

In this section, we describe the closest related works
available in the literature that propose factoring so-
lutions using distributed ledgers. Then, we compare
these works with our proposal and provide a com-
parison in Table 2 according to the following param-
eters: buyer tasks, currency, who pays the cost of fac-
toring registration, factoring negotiation, availability,
immutability and privacy.

The first of these related systems is DecReg [4]. De-
cReg is a framework for preventing double factoring;
that has been used by the Netherlands financial indus-
try and is implemented over a private blockchain. In
DecReg, a Central Authority (CA) controls the access to
the blockchain and prevents sensitive information from
being accessed by uncertified parties. The main draw-
back of DecReg is that its CA is a centralization point
and a single point of failure or corruption. This matter
makes it vulnerable to double factoring attacks in case
the CA is compromised. For example, if compromised,
the CA can deny access of a factor to the network and
subsequently, the factor cannot verify if an invoice is
already factored or not. Besides, the CA prevents access
to the confidential data solely from entities outside the
private blockchain network. Data is not encrypted, so
entities inside the network have access to these data,
and as a result the privacy of the participants is not
fully preserved.

In DecReg, unlike in our system, the buyer has to
operate a node in the private blockchain, receive cre-
dentials from the CA, etc. So he is quite involved in
the factoring process. Regarding dispute resolution, if
an argument between a seller and a factor takes place,
in DecReg, the signatures over transactions are the
only proof that can be used. The main problem of this
approach is that transactions are not publicly available
and the system relies on the CA for managing access to
the system. On the contrary, in our system, the agree-

ment commitments and the payment data is publicly
registered and accessible to the appropriate parties.
In DecReg, availability is provided by the network of
the private blockchain, which arguably, provides much
fewer data replication than a public blockchain. Finally,
it is worth mentioning that like our proposal, DecReg
is a registry system in which actual payments are made
in fiat.

Battaiola et al. also propose a system for registering
factoring agreements while preventing double factor-
ing and preserving the privacy of involved parties [1].
The architecture proposed in [1] uses a distributed
ledger as the source of truth where all the parties send
their private inputs in the form of commitments to pro-
tect the integrity and confidentiality of factoring data.
While the idea of using commitments to protect privacy
is similar to what we do in our protocol, their protocol
is designed to work over a private blockchain network
(in particular, Hyperledger Fabric). Authors claim that
they can replace HyperLedger Fabric with any other
ledger without affecting security. While it is possible,
the problem of the protocol in [1] is that it is not cost-
optimized. Unlike our protocol, their protocol is not
optimized in terms of (i) the number of transactions re-
quired to complete a factoring registration (each party
needs to send a transaction to the ledger), and (ii) the
amount of persistent storage which is needed to record
factoring agreements. In addition, regarding the buyer,
his involvement in the factoring process is quite high
since he needs credentials in the Hyperledger Fabric
network and not only queries the ledger state but also
signs and sends transactions.

In [1], the data availability and immutability de-
pends on the security provided by the private
blockchain network. A more secure private network
involves more nodes and more entities participating,
which means a higher operation cost. In particular, in
the paper, it is not defined who has to account for the
cost of operating the Hyperledger Fabric network. In
our protocol, the data availability and immutability
is provided by a public network. We do not register
only the commitments of factoring agreements, but
also payment data on-chain with symmetric encryption
using an asynchronously exchanged key between inter-
ested parties. This provides to our protocol the highest
possible degree of availability and immutability for rel-
evant payment data. On the other hand, in our protocol,
the seller (the most interested party) is in-charge of
paying the cost of factoring registration. Furthermore,
this cost is optimally minimized to only one blockchain
transaction that uses just one key-value of blockchain
storage. Finally, it is worth mentioning that [1], similar
to our proposal, is concerned about creating a practical
registry system in which actual payments are made in
fiat.

Recently, Guerar et al. have proposed a factoring

12 VOLUME 4, 2016

N. Mohammadzadeh et al.: Invoice Factoring Registration Based on a Public Blockchain

Table2: Comparison with close related work.

Proposal Buyer
tasks Currency Responsible

for the cost
Factoring
negotiation Availability Immutability Privacy

DecReg [4] operating a node of a
private blockchain fiat shared off-chain private

on-chain
private

blockchain
private

network

Battaiola et al. [1] operating a node of a
private blockchain fiat shared off-chain private

on-chain
private

blockchain commitments

Guerar et al. [7]
sending 3 transactions

per factoring to a
public ledger

crypto shared on-chain IPFS public
blockchain

commitments and
encryption

Our Proposal publishing data
by a web service fiat seller off-chain public

on-chain
public

blockchain
commitments and

encryption

system using distributed ledger technology [7]. Like
our proposal, Guerar et al. use a public blockchain
(Ethereum). However, they make quite different as-
sumptions from the ones that we have. In first place,
they do not consider buyers as trusted. Making this
assumption leads them to build a system that needs
to measure the reputation of the buyers based on their
past behavior. To build the reputation system, they rely
on their platform to assign a stable identifier to each
buyer. However, this makes the platform defined in [7]
a trusted party. The platform is trusted because it is in
charge of creating the stable accounts for reputation,
so, if the platform does not correctly certify real identi-
ties of buyers, the security of the system is jeopardized.
In our protocol, we assume that the buyer, who is the
final payer of the invoice, is trustworthy.

Another assumption that is different regarding our
system is that Guerar et al. propose an open envi-
ronment where factors are not only banks and finan-
cial companies but any investor can register into their
platform. Furthermore, factoring negotiation is done
with an on-chain auction. While interesting, this is not
suitable for our type of buyers, that, in particular, can
be governments or administrations that need to comply
with regulations and identify themselves the possible
factors. On the other hand, their system seems to be
defined more for products than for services, because
authors mention that the invoice factoring negotiation
phase starts when transported goods are received. On
the contrary, our system is general in this regard and
invoices can be created for either goods or services.

In [7], data availability is provided by IPFS. While
IPFS can provide a decent level of availability, it is not
as high as the one provided by on-chain data and this is
important in case the buyer needs to access the payment
data with a virtually zero down-time (as in our pro-
tocol). Finally, since they do the factoring negotiation
on-chain, in [7] the number of transactions required
to complete an invoice factoring is much higher than
in our protocol. In particular, there is a minimum of
seven transactions to complete a factoring. But, the
main drawback is that the buyer, who in general does

not have many incentives in the factoring process, has
to perform three transactions in the public ledger per
invoice factoring. In particular, the buyer has to per-
form one transaction to accept the invoice and pay
the shipping, another transaction for confirming the
delivery of the goods, and a final transaction is used
for paying the entire amount of the invoice to the
corresponding factor.

VI. CONCLUSIONS

In this article, we propose an architecture for factoring
registration using a public blockchain. Our protocol is
designed to minimize the buyer’s involvement in the
factoring process. The buyer is just supposed to publish
a hash of invoice details for verification of factors, and
the rest of the process is implemented by sellers and
factors having on-chain and off-chain communications.
We use a smart contract to register invoice factoring
details on-chain in a very efficient manner and to
prevent double factoring. At the same time, we use
pseudo-anonymous identifiers, symmetric encryption
for on-chain data, and cryptographic commitments to
increase the sellers’ and factors’ privacy protections. The
registered information is later used by the buyer to pay
the corresponding factor, and it can also be used as dig-
ital evidence for dispute resolutions. The comparison
with the related work demonstrated that, while there
are other proposals in the literature, none of them are
tailored to our requirements or provide a solution as
optimal as ours.

VII. ACKNOWLEDGMENTS

This research has been supported by TCO-RISEBLOCK
(PID2019-110224RB-I00), H2020-i3-MARKET, ARPASAT
(TEC2015-70197-R) and 2014-SGR-1504. Also thank
Francesc Cubel from the Economics Department of the
Generalitat of Catalonia, Marta Bellés from Pompeu
Fabra University and Héctor Masip and Rafael Genés
from hardapps.io.

References

[1] E. Battaiola, F. Massacci, C. N. Ngo, and P. Sterlini,
“Blockchain-based invoice factoring: from business requirements

VOLUME 4, 2016 13

N. Mohammadzadeh et al.: Invoice Factoring Registration Based on a Public Blockchain

to commitments,” in Proceedings of the Second Distributed
Ledger Technology Workshop (DLT@ITASEC), ser. CEUR Workshop
Proceedings, vol. 2334. CEUR-WS.org, February 2019, pp. 17–31.
[Online]. Available: http://ceur-ws.org/Vol-2334/DLTpaper2.pdf

[2] Behalf Company, “5 most common invoice factoring problems,”
January 2017. [Online]. Available: https://www.behalf.com/
merchants/factoring/invoice-factoring-problems/

[3] G. D. Keaton and S. Keaton, “Factoring system and method,”
Nov. 10 2009, US Patent 7,617,146.

[4] H. Lycklama à Nijeholt, J. Oudejans, and Z. Erkin, “Decreg: A
framework for preventing double-financing using blockchain tech-
nology,” in Proceedings of the ACM Workshop on Blockchain, Cryp-
tocurrencies and Contracts (BCC), New York, NY, USA, 2017, pp. 29–
34.

[5] N. Mohamed and J. Al-Jaroodi, “Applying blockchain in industry
4.0 applications,” in Proceedings of IEEE 9th Annual Computing and
Communication Workshop and Conference (CCWC). IEEE, 2019, pp.
0852–0858.

[6] B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of smart
contract and use cases in blockchain technology,” in Proceedings of
the 9th International Conference on Computing, Communication and
Networking Technologies (ICCCNT). IEEE, 2018, pp. 1–4.

[7] M. Guerar, A. Merlo, M. Migliardi, F. Palmieri, and L. Verderame,
“A fraud-resilient blockchain-based solution for invoice financing,”
IEEE Transactions on Engineering Management, vol. 67, no. 4, pp.
1086–1098, 2020.

[8] J. Benet, “Ipfs - content addressed, versioned, p2p file system,” 07
2014. [Online]. Available: https://arxiv.org/abs/1407.3561

[9] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[10] S. Goel, Financial Services. PHI Learning Pvt. Ltd., 2011.
[11] I. Bashir, Mastering blockchain. Packt Publishing Ltd, 2017.
[12] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain technology

overview,” arXiv preprint arXiv:1906.11078, 2019.
[13] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-

rencies. O’Reilly Media, Inc., 2014.
[14] V. Y. Kemmoe, W. Stone, J. Kim, D. Kim, and J. Son, “Recent

advances in smart contracts: A technical overview and state of the
art,” IEEE Access, vol. 8, pp. 117 782–117 801, 2020.

[15] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum Project White Paper, vol. 151, no.
2014, pp. 1–32, 2014.

[16] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on ethereum
systems security: Vulnerabilities, attacks, and defenses,” ACM Com-
puting Surveys (CSUR), vol. 53, no. 3, pp. 1–43, 2020.

[17] S. Rouhani and R. Deters, “Security, performance, and applications
of smart contracts: A systematic survey,” IEEE Access, vol. 7, pp.
50 759–50 779, 2019.

[18] J. Liu and Z. Liu, “A survey on security verification of blockchain
smart contracts,” IEEE Access, vol. 7, pp. 77 894–77 904, 2019.

[19] S. SEC, “1: Elliptic curve cryptography, version 2.0,” Standards for
Efficient Cryptography Group, 2009.

NASIBEH MOHAMMADZADEH, is currently
a Ph.D. student of the Information Security
Group (ISG). She is doing research on invoice
factoring through Blockchain Technology at
Universitat Politècnica de Catalunya (UPC).
She obtained a Master’s degree in informa-
tion technology from the University of Hy-
derabad, India, where she focused on network
security in cellular networks, which was im-
plemented at the Institute for Development

and Research in Banking Technology (IDRBT) of India.

SADEGH DORRI NOGOORANI, is an assistant
professor and the head of the Blockchain Lab-
oratory at Electrical and Computer Engineer-
ing Faculty of Tarbiat Modares University.
He holds an M.S. in Computer Networks,
and a Ph.D. in Computer Engineering from
Sharif University of Technology. His research
focus is on security and privacy in distributed
ledger technologies and applications, and he
is also interested in security and privacy in

other distributed software systems, trust management, and risk man-
agement in computer systems.

JOSÉ L. MUÑOZ-TAPIA, is a researcher of
the Information Security Group (ISG) and an
associate professor of the Department of Net-
work Engineering of the Universitat Politèc-
nica de Catalunya (UPC). He holds an M.S. in
Telecommunications Engineering (1999) and
a PhD in Security Engineering (2003). He
has worked in applied cryptography, network
security and game theory models applied to
networks and simulators. His research focus

has now turned to distributed ledgers technologies and he is the
director of the master’s program in Blockchain technologies at UPC
School.

14 VOLUME 4, 2016

http://ceur-ws.org/Vol-2334/DLTpaper2.pdf
https://www.behalf.com/merchants/factoring/invoice-factoring-problems/
https://www.behalf.com/merchants/factoring/invoice-factoring-problems/
https://arxiv.org/abs/1407.3561

	Introduction
	Background
	The Factoring Process
	Public Distributed Ledgers

	Proposed Architecture
	Design Goals & Assumptions
	Setup
	Key Management
	Blockchain Certificates
	The Smart Contract

	Phase 1: Registration
	Phase 2: Factoring
	Phase 3: Payment

	Security Analysis
	Blockchain and Invoice Certificates
	Communications' Security
	Data Manipulation and Repudiation Attacks
	Confidentiality and Privacy
	Dispute Handling

	Related Work
	Conclusions
	Acknowledgments
	References
	Nasibeh Mohammadzadeh,
	Sadegh Dorri Nogoorani,
	José L. Muñoz-Tapia,

