= Escola d’Enginyeria de Telecomunicacio i
eecc Aeroespacial de Castelldefels

UNIVERSITAT POLITECNICA DE CATALUNYA

TREBALL FINAL DE GRAU

TITOL DEL TFG: Boletify: a machine learning-based application to
identify mushrooms

TITULACIO: Grau en Enginyeria Telematica
AUTOR: Eric Blanca Goémez
DIRECTOR: Antoni Oller Arcas

DATA: 29 d’octubre del 2021

Titol: Boletify: a machine learning-based application to identify mushrooms
Autor: Eric Blanca Gémez
Director: Antoni Oller Arcas

Data: 29 d’octubre del 2021

Resumen

Cada vez son mas frecuentes las soluciones basadas en machine learning.
Aunque ya han pasado varias décadas desde su creacion la tecnologia ha
ganado popularidad y adopcién estos ultimos afios gracias a herramientas
como Jupyter o Anaconda, asi como también la investigacion sobre redes
neuronales, deep learning e inteligencia artificial. Ejemplos de esto podrian ser
la conduccién automatica, los clasificadores o el analisis de datos.

Esta aplicacion permite clasificar setas mediante reconocimiento de imagen a
través de un modelo clasificador implementado con Tensorflow Lite, el cual
estd especialmente pensado para trabajar en mdéviles y “edge devices”.
Ademas, debido a que un tipo de aplicacibn como esta es comun usarla en
lugares donde no hay conexion a internet nos hemos asegurado de que
mantenga todas las funcionalidades en modo offline. Esto ultimo lo hemos
conseguido moviendo el modelo clasificador dentro de la aplicacién nativa en
lugar de obtener la respuesta del servidor, y creando una copia de la
informacion de las setas en el almacenamiento local del mavil.

El frontend de la aplicacion ha sido desarrollado con Flutter, un framework
relativamente en auge que nos permite crear aplicaciones para Android, iOS,
web y escritorio usando practicamente el mismo coédigo. Aunque por la
particularidades de nuestra herramienta solo consideramos las plataformas
moviles.

El resultado de este proyecto es la publicacion de una aplicacién Android en
version alfa capaz de identificar diferentes tipos de setas mediante un modelo
clasificatorio basado en machine learning. El proceso de publicacion e
integracion se ha automatizado, de forma que los cambios realizados en el
repositorio de Github generan una nueva version la cual es subida a la Play
Store directamente.

Titol: Boletify: a machine learning-based application to identify mushrooms
Author: Eric Blanca Gémez
Director: Antoni Oller Arcas

Date: 29 d’octubre del 2021

Overview

Machine learning-based solutions have become very popular in recent years.
Although it has been decades since its first use, the technology has gained
popularity and adoption thanks to tools such as Jupyter or Anaconda, as well
as the increase in the research on neural networks, deep learning and artificial
intelligence. Examples of this could be automatic driving, classifiers or data
analysis.

The presented applications allow classifying mushrooms by image recognition
through a classifier model implemented with Tensorflow Lite, which is specially
designed to work on mobile and edge devices. Furthermore, as the
classification would usually be used in places where there is no internet
connection we have developed an offline mode that keeps all functionalities in
those cases. We have been able to achieve it by moving the classifier model
inside the native applications instead of getting the response from the server,
and also by creating a copy of the mushroom information in the mobile’s local
storage.

The frontend of the application has been developed with Flutter, a relatively
booming framework that allows us to create applications for Android, iOS, web,
and desktop using almost the same code.

The outcome is an Android app in Alpha version that is available from the Play
Store only for internal testers, it is able to identify several types of mushrooms
and to work offline. The publishing and integration process has been
automated, so changes made in the Github repository generate a new version
which is uploaded directly to the Play Store.

INDEX

INTRODUCTION ... s s e s nanenns 1
CHAPTER 1. CONTEXT ...uiiiiiiiiiiiiir e s s s r s s s s n s nn e 2
1.1, Motivation ... 2
1.1. State of the art in mushroom classifier appsccoooiiiiiiii i, 3
1.2, GOAIS ..ceiiiiiii s s s 4
CHAPTER 2. DESIGN PROCESS ...t 5
2.1, Branding ..o e e 5
2.2, COolOr Paletteccoeieiiiiiii e 6
2.3. CUSEOM ICONS ...ceiieiii i e e e 6
2.4. Userinterface flowcoooiiiiiiiii 7
CHAPTER 3. APPLICATION ARCHITECTUREccciiiiiiiiiiiiirin s 8
3.3. Base Schemacoiiiiiiiiiiiiiiii i e 8
3.4. Offlinemodelocuiniiiiii s 9
3.4. Data model entitiesccccocuiiiiiiiiiii 10
CHAPTER 4. TECH STACK AND WORK ENVIRONMENT........c.coiivininnnens 12
4.1. Choosingthe Frontendcccoiiiiiiiiiic v rr e e e e e e 12

4.1.1 State of the Art in Mobile Development ... 12

4.1.2 Flutter vs React Native ..., 14

4.1.3 Summary: Cross-platform frameworkso 15
4.2. Choosingthe Backend ... e e 16
4.3. Choosing the ML model buildercccoiniiiiiii e 17
4.4. Working environmeNntcccoiiiioiiiiiiiarirasrrra s rraran s ramran s ram e rararan e ranrarnnn 18

4.4.1 Github ACtiONS SEIUPni i 18

CHAPTER 5. DEVELOPMENT DETAILS ..o e 20

5.1. Teachable Machine: Training the classifiercccoeiviriiiiii i 20
5.2. Flutter: App Frontend ... e 22

5.2.1 FOIAEr SITUCIUIEo e 22

52,2 COrE SBIUP ..ttt e 23

5.2.3 Using the classifier in BLOCouiuiiiiii e, 24

5.2.3 Building the offline mode feature ..o 27
5.3. Firebase: Backend @s @ Servicecccoviiiiiiiiiiiiiiii s 27
CHAPTER 6. DELIVERY AND RELEASEcoiiieeeeieeer e e 29
6.1. Setting up a production-ready Backendccoiiiiiiiiiiiii s 29
6.2. Setting up a production-ready Applicationc.c.ccoiiiiiiiiiiii i 30
6.3. Setting up the Continuous Delivery pipelinecccooiiiiiiii e 31
6.3. Continuous Delivery Github Action ..o 33
CHAPTER 7. WORK PLANNING ... e rre s e e 35
CHAPTER 8. CONCLUSIONS ... s s s e s e s s 36
8.1. Goals Achievementccciiiiiiiiiiiiiii 36
8.2. Personal CoONCIUSIONSiciiiuiiiiiiirirrr s r e e 36
8.3. Future IMProvementso 37

BIBLIOGRAPHY ..o s s e 38

Introduction 1

INTRODUCTION

Even though machine learning has been a reality in research labs for decades,
it is now getting enormous attention for real-world applications. Nowadays
topics such as machine learning, deep learning, and artificial intelligence are
reaching a wide public and we can find them almost everywhere. The
opportunities are big and for a lot of companies, it is the right time to take
advantage of the benefits, sophistication, and power of ML-based tools.

The main goal of this project is to use a classifier model built using machine
learning in order to identify different types of mushrooms through image
processing. Furthermore, | want to speed up the time to market as much as
possible using powerful development technologies, and to be able to automate
the integration and delivery process so the product is as similar as possible to
what we would find in a real-world project.

Chapter 1 will present some context about the motivations to build this tool,
which is the state of the art in the market and which are the goals to achieve
with this project.

Chapter 2 will go through the design process: branding, user interaction, and
user experience.

Chapter 3 will present the project architecture, as well as some considerations
about the functionalities, requirements and data model.

Chapter 4 will expose the considerations to choose a tech stack for the
frontend, backend and classifier; as well as the working environment.

Chapter 5 will be related to a few development details: how tha classifier was
trained, how we started the development and some technical implementations.

Chapter 6 will focus on the app delivery to the Play Store: how to set up the app
for release and the CI/CD pipeline, what we want to test, how we automate the
process.

Chapter 7 will present a time estimation of each phase of the work and how we
managed it.

Chapter 8 will finally expose the final conclusions of this project: whether the
goals have been achieved or not, which are the learnings and which could be
the future improvements in the short and long term.

CHAPTER 1. CONTEXT

This chapter will contain a brief explanation of the personal and social
motivation to build this tool, the current state of the market for similar projects,
the goals that | want to achieve building it, and which requirements should the
product meet.

1.1. Motivation

| am from a small town located in the Catalan Pyrenees, it is quite a touristic
place and there are several activities that people can do depending on the
season.

During summer people usually come to visit our Romanic-style churches and
the beautiful National Park, while in winter people can enjoy skiing in our big
snow-covered mountains. You can also enjoy trekking and walking, as well as
different activities such as fishing or mushroom picking. | really enjoy this last
one, and | know that a lot of people come here during spring and autumn to
enjoy it as well.

The biodiversity in our mountains is really huge and it is sometimes hard to
distinguish between the different kinds of mushrooms, so | started to figure out
how to build a tool able to identify them so people could pick only the
mushrooms that they know while learning their features; which would result in a
more environment-friendly activity that is more conscious about the goods and
dangers of picking them.

| was inspired by a tool that | usually use to learn about plants which is called
PlantNet', and that can be used to identify them using just an image. | was
really curious about the application and how it worked, as | knew thanks to
some subjects that | have coursed during my degree that it was probably using
some kind of machine-learning model to make that classification.

This last fact, together with my passion for developing frontend products and
software, triggered my curiosity to start the initial research about how | could
validate my idea with the least effort, while building a free tool focused on
mycology? that could be useful for me and other people that enjoy the same
activity.

The results of my research quickly started to result in adding up several isolated
pieces that would lead to a product able to perform that task. However, there
were still a lot of things to consider, learn, and define.

" You can check the official product webpage here: https://identify.plantnet.org

2 Mycology is the branch of biology focused on the study of fungi (properties, toxicity, food, etc.).

https://identify.plantnet.org

Context 3

1.2. State of the art in mushroom classifier apps

Searching for similar apps that either provide the same functionality or are
focused on mushrooms was part of the initial research. From a personal point of
view, any of them were targets to learn, improve and compare. The results
showed that even though there are some tools that aim to provide the same
functionality, none of them is completely aligned with the scope of this project.
Here you have the most interesting ones:

ShroomlD [1]: Free with paid features. It is able to identify mushrooms through
images, probably using a machine learning classifier model as well, it also
provides a heatmap based on mushroom localization which makes it a powerful
app. As an extra point, it has a nice modern Ul and a huge mushroom
database. The main drawback is that It is focused on the USA and its local
varieties, so it is not appropriate to be used in our case.

Shroomify [2]: Free with paid features. It is able to identify mushrooms by
letting the user choose manually its color, cap shape, body shape, etc. The
main drawbacks are that the classification system is not automated, the app is
focused on the UK varieties and it does not really have a beautiful, enjoyable
Ul/UX.

Picture Mushroom [3]: Completely free. It allows identification using images
and lets you chat with mycology experts to confirm the classifications. It has a
professional Ul, but users usually complain about bugs and errors, as well as
low confidence in its results.

eBolets Catalunya [4]: Fully paid application. It is not able to identify
mushrooms, but shows the location and density zones for different mushrooms
in Catalonia, which is really important for mushroom pickers. However, it has
the worst UI/UX.

Others: There are a few more apps focused on finding or identifying
mushrooms; however, they are in some way or another worse than the previous
ones. This is usually related to a bad trade-off price/functionality, not automating
the identification process, or having a poor Ul-UX.

As you can see there are already several applications focused on finding or
identifying mushrooms, where the strongest competitor would be ShroomlID as
it also uses a machine learning classifier and it is modern, performant, and
offers an additional feature based on heatmaps. However, mycology is
something really focused on the ecosystem and the zone where they are found.
Mushrooms from the USA and Europe are quite different, and this could lead to
mistakes or misunderstandings. As a proof of concept, | have tried to identify
some mushrooms using it, and did not show the expected result, but similar
varieties or completely different ones. That is why our application, which is
specifically focused on the Catalan Pyrenees varieties, is better for local users.

1.3. Goals

The main goal of the project is to release to the official market a free tool to help
identify the different types of mushrooms that we have in the Catalan Pyrenees,
it should be available for the biggest number of users and be released within the
scope of the project.
| only consider releasing the application to the Google Play Store as a first
approach due to publishing fees, setting as the main goal the automation of the
code integration and application delivery.
Here is the summary of the specific goals that the project should achieve:

e Identify mushrooms through camera or gallery pictures.

e Automate the classification using a machine learning classifier model.

e Automate the Play Store release process for the Android app.

e Support any app functionality in offline mode.

e Support filtered and named search to display mushroom information.

CHAPTER 2. DESIGN PROCESS

During this chapter we are going to present everything related to the application
visual design; including the branding process, the color palette, the user
interface flow, and also the custom icons that have been designed during the
creative phase.

2.1. Branding

Two main items were considered during the branding process of the mobile
application: the application logo and the application icon. The logo will contain
the name and identify the brand, while the icon will be used to identify the
application inside the device.

Regarding the name, the final result is a portmanteau® word using a mixture of:
1) bolet which stands for mushroom in Catalan, but also Boletus Edulis which is
the scientific name of one of the most valued mushrooms in Catalonia; and 2)
identify word, which is the main feature of the tool. The result of the mixture is
BOLETIFY, which is a catchy, easy-to-remember name that also represents the
complete app functionality.

Fig. 2.1 Boletify application logo

As the T letter remembers the shape of a mushroom it was decided to convert it
to a meaningful image for the logo (see Fig. 2.1), which also evokes the scope
of the application: mushrooms.

Fig. 2.2 Boletify application icon

The same image was used to design the application icon together with a
camera focus shape, which reinforces the idea of a tool to identify mushrooms
while adding an extra visual item (see Fig. 2.2).

¥ A portmanteau word is a blend of words in which parts of multiple words are
combined into a new one.

2.2. Color Palette

The color palette aims to represent the look and feel of Nature using the colors
that we could find in the Pyrenees.

For that reason, the chosen colors contain green and blue tones (see Fig. 2.3),
even though other colors will be used such as white for the text, or black, brown
and orange (FFAB40) in some places like the navigation bar.

183A26

32AFAD
3CBBDB
OOCG6FF

Fig. 2.3 Boletify color palette

2.3. Custom lcons

Mushrooms will be classified using tags, so several custom icons have been
designed in order to make the filtering feature more friendly and visual.

The tags have been split into two main categories: edibility and season. Each
one of these tags is represented through an icon (see Fig. 2.4 and Fig. 2.5),
edibility ones are mutually exclusive while season icons will be complementary.

><

Fig. 2.4 Edibility icons: edible, toxic, and unknown

! ¥

Fig. 2.5 Season icons: spring, summer, autumn, and winter

2.4. User Interface Flow

The user interface flow has been simplified in order to keep the application as
intuitive as possible to highlight its main feature: the identification of
mushrooms. The main concern regarding the user experience is that a user has
to be able to open the app and classify a mushroom as easily and fast as
possible.

However, a user has to be able to check which are the mushrooms available by
season and which of them are edible or not, so a filtered search and a named
search have been added as well to the main flow.

Splash N Search
Screen S Ll "l Delegate

A 4

Y
Mushroom

2:::23 Information

Details

A 4

dentify " Run Identification
Mushroom Classlﬂer Results

Y

Donations
(PayPal)

Y

Settings

Rate the App
(Play Store)

™ Credits

—» Privacy

—>» Disclaimer

Fig. 2.6 User interface flowchart and screens

In order to highlight the main functionalities only two main screens have been
defined: Home and Settings, so the user is able to access the main features
from the home page and no additional navigation is required. Due to previously
stated, the following items will be added to the Home screen:

e A floating button to choose an identification method and get the
classification result.

e Afiltered search list to find mushrooms based on tags.

e A search delegate to find a mushroom by its name.

CHAPTER 3. APPLICATION ARCHITECTURE

The following chapter presents several considerations related to the app
architecture. Specifically, the base architecture schema, how the offline mode
should work, and which will be the main data model entities.

3.1. Base schema

The classifying tool will take the shape of an Android or iOS native application.
Even though building a web application would take little effort, that approach
has been dismissed, as it is not coherent with the idea of classifying a
mushroom in situ.

This application has to be able to interact with a Backend using an API in order
to get a list of mushrooms information that will be displayed in our user
interface. The only hard requirement for this backend is to have a database
where we can save and get that information. In addition, another nice-to-have
would be an analytics system to track how the product is performing. Other
functionalities such as Authentication, Push Notifications, or any other backend
services have been dismissed for this project.

Last but not least, the application also has to be able to run a machine learning
model locally using camera or gallery images, as well as to save and recover
fallback information from its own local storage.

You can see the base schema of the project in the image below (Fig. 3.1).
Native Application Backend
l
Q

Local Storage

Local Machine

Learning Model Data Storage

Fig. 3.1 Base schema for our application

jcation Architecture 9
Applic

3.2. Offline mode

The offine mode will be a key feature of the application: it has to be able to
keep all functionalities without an internet connection, as a user could probably
use the application in remote places where there is no mobile connection
coverage.

Two main action points have been defined in order to support the offline mode:

e Place the classifier model inside the native app instead of getting the
result from the server using an API request.

e Keep a fallback copy of the mushroom information that will return the
server in the device local storage, so we can recover that data later.

The last action point requires some additional definition regarding how and
when to save or access that data.

When the user has a stable internet connection we will fetch the mushrooms
data from our Backend, then we will save that information to the device’s local
storage, and finally we will redirect the user to the Home screen. When there is
no internet connection, we will try to get that data from the local storage, and
then redirect the user to the Home screen as usual.

If for any reason we do not find a fallback copy of the data we will have to
redirect to an error screen and let the user know that we could not fetch the
information. The classifier will work perfectly fine, but we will not be able to
show any mushroom detail. For instance, this edge case could happen when a
user downloads the application but does not open it while having a connection,
so we won't be able to fetch and save the information the first time.

You can see in Figure 3.2 the flowchart of our application startup.

Fetch mushroom Save fallback
data copy

Get mushroom
data from local
storage
Mo Error Screen:
Mo Data Available

Fig. 3.2 App startup with offline mode flowchart

User opens the app

(=

10 Boletify: . — L . if

3.3. Data model entities

The application does not need complex entities or relationships, so only two
main entities have been designed: ClassifierOutput and Mushroom.

The ClassifierOutput is used to map the classifier output to a defined object
model that we can use. This model will have a confidence percentile, a label
that will identify a Mushroom and the image sent to it. To build the object we will
use a factory method ClassifierOutput.fromTflite, which will return a new
ClassifierOutput (see Fig 3.3).

ClassifierOutput

+ confidence : double
+ label : string

+ image : file

+ fromTflite(object, file): ClassifierOutput

Fig. 3.3 ClassifierOutput entity

The Mushroom model (see Fig 3.4) will have an id, a name, and several
parameters that will be used to display any information regarding that kind of
mushroom. It is worth mentioning the tags property that will be used to filter the
mushrooms by class. This property will contain an array of Taginfo, another
entity that is used to link a Tag with an image, description and label. Finally, the
Tag model will be an enumeration of the different qualities: spring, summer,
autumn, winter, edible, toxic, unknown.

Regarding the mushroom methods, most of them will be used to manage the
offine mode (fromJdson, todson) or to get the information from Firebase
(fromFirebase).

Application Architecture

11

Mushroom

+id : string

+ name : string

+ scientificName : string
+ commaoniNames : string
+1ags : aray<Tag=

+ cap : string

+ gills : string

+ stalk : string

+ flesh : string

+ habitat : string

+ abervations : string

+ copyWith(object }: Mushroom
+ buildEmpty(): Mushroom
+ fromFirestore(map): Mushroom

+ fromJson| map): Mushroom

+ tousan(): map

A 4

Taginfo

+ imagelrl : string
+ label : string
+ description : string

+ Tag : Tag

+ tagsFromJson(dynamic). array<Tag=
+tagsTodson(array<Tag=): dynamic

+ tagFromString(string): Tag

Tag

+1ag : enumeration<string=

Fig. 3.4 Mushroom-related entities

12 Boletify: . — L . if

CHAPTER 4. TECH STACK AND WORKING
ENVIRONMENT

This chapter aims to present and choose a technical stack for our applications
and which will be the environment used for the development phase. First of all, |
am going to consider the technologies used for the frontend, backend and
machine learning engine. Finally, | will present the hardware and software that
will be used.

4.1. Choosing the Frontend

Deciding how to implement the frontend will be a key choice to make the
application performant while being able to be agile in the development. Thus, it
is important to know which is the current state of the art for mobile apps
development and then to perform some research to make the right choice. This
section will present those previous considerations, a comparison summary and
the final decision.

4.1.1. State of the Art in Mobile Development

There are two main mobile operating systems in the current market: Android
and iOS. As we would like to make our tool available to as many users as
possible we will aim for both platforms. In order to support both platforms there
are two options:

e Develop a native application for each of them.
e Use a cross-platform framework to build a single non-native application.

One one hand, the first thing to consider is that native applications are much
more performant than any cross-platform approach. On the other hand, going
native means having two completely different codebases, each one developed
with a different language and with very little things reusable between them. So
basically there is a trade-off between performance and workload. Our tool does
not have expensive performance requirements and developing two different
applications in such a short time is completely out of scope for our project. In
addition, there are several examples of successful products that are built using
a cross-platform approach [5] [6] [7].

Regarding the cross-platform frameworks that could be used for the task, the
most popular ones are: React Native, lonic, Xamarine and Flutter.

The main difference between them is that the React Native, Xamarine and
Flutter render through the native engine, while lonic is rendered using a browser
engine. The lonic approach is the less performant, as it consists in embedding
websites on a mobile platform through a WebView and styling them to look
native, which does not benefit from using the native engine.

Tech stack and working environment 13

That is the main reason why React Native has easily overcome hybrid app
solutions such as lonic in the last years. Regarding Xamarin, it works
consistently and it is performant but has a hard learning curve, and even though
it is free for startups and individuals, companies have to pay to use it.

In order to know which framework is currently more popular we have checked
the amount of questions that developers are asking on Stack Overflow using
their Trends tool”.

3.00% Tag

2.80% | @ flutter
2.60% i react-native

] @ xamarin
2.40% - f @ ionic-framework
2.20% [
2.00% il
1.80% |
1.60% p
1.40% |
1.20% | ¥
1.00%
0.80%
0.60% .~

0.40% -".‘:mf’%%w,:—c_

0.20% .__.\._};.v‘h,"g f T

P g |
—

% of Stack Overflow questions that month

D-DD%_ I L I I 1 I | 1 -1 - 1 L 1 1
2009201020112012201320142015201620172018201920202021

Year

Fig. 4.1 Percentage of questions per month for each framework in
StackOverflow

As you can see in the Figure 4.1 Xamarin and lonic are slowly losing the
interest of the developers, not only because there are less questions about
them if we compare it with Flutter and React Native, but also because there are
half the questions compared to their best period during 2016-2018. Regarding
Flutter and React native, we can see that there are double the questions about
the first one, which reinforces the idea that people love Flutter even though
React Native was the preferred option before 2019.

We decided to use a framework that is “alive” and could be a game-changer in
the short term, for that reason we will choose either Flutter or React Native.
However, in order not to be biased by the hype, it is important to deeply
understand the pros and cons of each one, as well as to confirm a statement
that can be recursively seen: Flutter performance is huge compared to React
Native.

* Stack Overflow Trends lets us query the percentage of questions per month for a
certain topic. For more information, check https://insights.stackoverflow.com/trends .

https://insights.stackoverflow.com/trends?tags=

14 Boletify: ine | — L . if

4.1.2. Flutter vs React Native

Flutter is gradually increasing its market share and becoming a close competitor
to React Native, which has been the most popular open-source and
cross-platform mobile app framework for a long time, as it allowed developers to
easily jump from the web world to the mobile world targeting multiple mobile
platforms just using Javascript.

However, Flutter popped up with a brand new language: Dart; that quickly
started to be widely used by the community due to its impressive performance
results and its soft learning curve®.

Both frameworks are based on a reactive paradigm where an application
“reacts” based on actions that lead to state changes, which is an approach that
was successfully used first by ReactdS and which is also used in React Native
to manage views and actions.

Even though both frameworks implement a reactive approach, the rendering
engine implementations are completely different.

React Native apps have a virtual tree of native widgets (just like the VDOM of
ReactJS), but as we are using Javascript we need a “bridge” to compare and
upload the changes, as well as for any asynchronous communications between
the JS realm and the Native realm. The “bridge” translates Javascript to Native
using the RN engine and a different compiler for each specific platform
(Android, iOS, etc), which has a negative effect on performance in favor of an
easier development experience.

Platform
Bridge

App
Compare Canvas
<> Update' P LD >
widgets Events

Virtual tree of
native widgets

Fig. 4.2 Rendering approach in React Native

Flutter takes this idea a step further (see Fig. 4.3) as it does not use OEM®
widgets like React Native, but defines their own ready-to-use, customizable
widgets that look and feel native. For that reason the bridge is no longer needed

® For more information about this topic | recommend the lectures What is revolutionary
about Flutter and Why Flutter uses Dart, which you can find on Hackernoon webpage.

¢ Original Equipment Manufacturers: Native widgets for iOS and Android applications.

Tech stack and working environment 15

and thus performance is incredibly boosted, which leads to performance
benefits such as running consistently at 60fps. The main drawback is that we
have to download the whole Flutter engine to work with widgets; which boosts
the startup time but also makes the app size bigger (see [8]).

App
g Canvas
-
@
14 Events
Widget tree

Fig.4.3 Rendering approach in Flutter

Regarding the performance of each of them, there are a bunch of articles about
the topic, but just to get a bit of the whole picture we are going to specially
check out one of them called Flutter vs Native vs React Native: Examining
Performance [ref] where they measure the raw performance (CPU ordinary
calculations) using two algorithms to calculate pi numbers.

There are a couple of interesting results from the lectures. On one hand we can
see that React Native is almost 15 times slower than Java, while Flutter speed
is 1.2 times slower. On the other side we can see that Flutter is even faster than
Swift for iOS, being 1.5 times slower than Objective-C. The second table also
gives us significant results, but most importantly, reinforces the tendency where
Flutter outperforms RN and also achieves in some cases almost native speeds.

4.1.3. Summary: Cross-platform frameworks

In Table 3.1 you can see a summary comparison of the hybrid and
cross-platform frameworks that have been considered to build the Frontend
application. The following items have been considered to make the
comparison:

e Learning Curve: Low, Medium or High. This is both subjective and
objective criteria; lonic and React Native are usually easy to learn, as
there is good documentation and the curve becomes even softer if you
have used Javascript, ReactdS or Angular previously. In contrast,
working with Flutter means learning Dart programming language, even
though the framework is designed to be easily used.

e Time to Market: This criteria has a direct correlation with the learning
curve. However, this also takes into account the development speed
once we know the framework: how easy it is to build screens, if there is
documentation and community support, etc.

e Performance: Flutter and Xamarin performance is very close to native
due to the approach they take, so we have considered that performance

16 Boletify: . — L . if

is high. In addition, it has been already exposed that Flutter outperforms
React Native, while lonic has the lowest performance because the
approach implies embedding a webview.

e Hot-Reload: This feature allows code changes to be updated to the
emulator during development without losing the app state, drastically
speeding up the development life cycle. It has become a must for any
framework and all of them are currently implementing this feature in one
way or another, so | am not going to consider it to make the final
decision.

Table 4.1 Summary table of different frameworks

Framework Learning Time to Performance | Hot-Reload
Curve Market
lonic Low Fast Low Yes
React Native Low Fast Medium Yes
Flutter Medium Fast High Yes
Xamarin High Medium High Yes

4.2. Choosing the Backend

The application does not need complex requirements for the Backend, so it has
been considered from the very beginning to use a Backend as a Service (BaaS)
in order to avoid as many problems as possible. Another important reason to
leave apart traditional Backend approaches is to speed up the whole
development phase, as using Backend as a Service it is possible to set up a
server in a few minutes. We have considered the following providers:

e Firebase [9]: It is Google’s BaaS and also the preferred choice if you are
going to use other Google products. Even though all of them explicitly
state that you can integrate the BaaS with Flutter, there were more
documentation in this case and it is a relief to know that Google is behind
the project. Some of the services that it provides are: database, realtime
database, storage, push notifications, crashlytics, analytics,
authentication, machine learning functions, cloud functions, etc. Which
makes the provider a powerful choice for starting and escalating our
solution.

e Supabase [10]: Its slogan is “The open source Firebase alternative”,
which speaks by itself. Currently supports Database, Storage and
Authentication services. It uses Postgres relational database, unlike
Firestore Database which is NoSQL. Even though it is open source and
cheap the main drawback is the amount of services that it provides; for

Tech stack and working environment 17

instance, we need another solution to handle analytics, push
notifications, and other features that we may want for our application.

e AWS Amplify [11]: It is the Amazon Web Services Baa$S solution. There
are a lot of services such as: database, storage, analytics, machine
learning, CMS, push notifications, cloud functions, CI/CD and much
more.

It has been decided to choose Firebase from the different BaaS providers due
to several reasons.

On one hand, Supabase is a great open source solution but it could not be
enough if we want to implement additional features in the near future such as
push notifications.

On the other hand, AWS Amplify provides even more services than Firebase
and would be like using a sledgehammer to crack a nut. It could lead to
complex, over engineered solutions for the simple functionalities and approach
that we want to implement.

Another important fact is that both Flutter and Firebase are Google products,
which may ease the integration between them while not having issues due to a
lack of documentation. Regarding which Firebase service to use, there are no
real-time communication requirements between devices, so it has been decided
to use the Firestore Database instead of the Realtime Database.

4.3. Choosing the Machine Learning model builder

The main goal of using a machine learning model is to provide active support to
users in the classification task, hence identifying each mushroom without having
to manually compare them. Nowadays, it is very common to use Machine
Learning based classifiers, as the technology is mature and accessible; which
has led to it being widely adopted by a lot of companies and researchers.

Building a machine learning classifier model would require some time that could
slow down the project development. As it is not required to build a custom,
high-confidence classifier, it has been decided to use a Google powered tool:
Teachable Machine.

Teachable Machine is a web-based tool able to build classifiers based on
images, sounds, and poses without writing any code. It lets us export these
models in different formats and use them almost everywhere. Under the hood it
uses a type of supervised machine learning algorithm, which means that it just
needs to be fed with a single dataset for each class, and then Teachable
Machine does the rest of the work: training, validation and test sets, classifier
model, etc.

18 Boletify: ine | — L . if

4.4. Working Environment

The application will be developed using Android Studio in a MacBook Pro. | will
be using the Flutter SDK v2.2.3 for the development phase, using the ADB
emulator with a 29 API level device and a Samsung Galaxy S9 physical device
to test the application. | will also use Xcode to emulate an iOS device during the
research phase to prove and test how it works, even though | do not aim to
release it to the App Store due to the high publishing fees.

Regarding the Backend and the Machine Learning classifier, two online tools
will be respectively used: the Firebase Console and the Teachable Machine
tool. Finally, | will use a Git version control system to keep track of the changes
and to host the codebase, as well as Github Actions to manage secrets and to
set up the continuous integration and delivery pipeline.
Here it is the detailed list of the software and tools that will be used:

e MacBook Pro Mojave v.10.14.6

e Git version control system

e Flutter SDK v2.2.3 (using null-safety)

e Android Studio v3.5.3

e ADB emulator and Samsung Galaxy S9

e Firebase Console

e Teachable Machine online classifier tool

e Github Actions

4.4.1. Github Actions setup

In order to set up the Github Actions we just need to add a .github folder in our
root project. Inside this folder we will place a yml file for each of the actions we
want to launch, you can see an example in Figure 4.3.

v .github
v workflows
cd_playstore.ymil

ci_build.yml
ci_unit_tests.yml

Fig. 4.3 Actions setup inside the project

Tech stack and working environment 19

Below you can see how the yml file looks like (see Fig. 4.4), some of the
important fields are:

e name: Name that will be displayed in the Github Action hook.

e on: When the action should be triggered, we can do it on push, pull
request, specific branches, etc.

e jobs: The action that will be triggered.

There are some specific steps that we can get and reuse from the Github
Actions Marketplace [12], in our case the most important action will be
subosito/flutter-action@v1 [13], which will help us install the Flutter SDK in the
specified environment.

: Boletify CI - Build

: [push]

: ubuntu-latest
: actions/checkout@vl
: actions/setup-javagvl

1 12.x

: subosito/flutter-actiongvl

I |
. L-£.3

: flutter pub get
: flutter analyze .

: Build APK
» flutter build appbundle —debug

Fig. 4.4 Actions setup inside the project

20 Boletify: ine | — L . if

CHAPTER 5. DEVELOPMENT DETAILS

This chapter is focused on several development details that are worth
mentioning, each section reflects a part of the architecture. Firstly, it is
explained how the classifier was trained. Secondly, which was the approach
followed to organize the app and some detail about the main developments.
Finally, the backend structure is exposed.

g Flutter ¥ Firebase

Native <« >
App
o

| J'_T |_l Backend T

as a Service —
) Cloud
© Firestore

@
TensorFlow Lite

Local Storage

Local Machine

Learning Model Data Storage

Fig. 5.1 Application architecture with used technologies

5.1. Teachable Machine: Training the classifier

As the classifier has to identify mushrooms, the first step is to create a different
class for each of them in the classifier. For each class we will have to create a
dataset of images to feed the training model. For example, the class “Cep:
Boletus Edulis” contains around 50 images of one or multiple instances that
have been collected and updated in the corresponding class of Teachable
Machine; the same procedure has to be done for any kind of mushroom that we
want to be classified (see Fig. 5.2).

It is also a good practice to create a class “Not a mushroom”, which will be
useful to discriminate pictures that do not contain any mushroom, so from a
statistical point of view it is more possible that an image that is not a mushroom
falls to this category instead of mistakenly being classified as a mushroom

Development details 21

because of the shape, color, or other attributes. Once all the classes have been
created we can start training the model.

cep

22 Image Samples
(] L *)
Webcam Upload s 8~

mataparents

ale e

Training .

Preview T Export Model
Train Model

You must train a model on the left
before you can preview it here.

21 Image Samples

o e p— .
oC & P .. o e
Webcam Upload 4 y 5 g oy

Fig. 5.2 Teachable Machine visual classifier builder

If at some point it is required to fine tune the results, we can tweak the training
configuration from the “Advanced” dropdown tab. Once the classifier is
completely trained the Tensorflow model can be exported to be used natively or
in a browser, mobile, or edgetpu device.

In order to use the model for mobile devices it has to be exported with the
Tensorflow Lite option (see Fig. 5.3); in this particular case, the model will be
converted to a Floating Point type, as we do not want it to run on any edgetpu
device and it is important that the identification is as precise as possible no
matter the time it takes to classify the mushroom [16].

Export your model to use it in projects.

Tensorflow.js () Tensorflow (§) Tensorflow Lite (§)

Model conversion type:

@ Floating point O Quantized O EdgeTPU &, Download my model

Fig. 5.3 Correct way of exporting the model to be used in mobile apps

The downloaded model will contain two files: 1) labels.txt, which will be a file
with as many lines as different classes our model has, where each line will have
the format “classld className”; and 2) model_unquant.tflite, which has the
classifying logic itself in a valid TensorFlow Lite format.

Mame Date Modified ize Kind

B labels.txt 8 N 06 30 bytes Plain Text
R model_unguant.tilite B A 07 , Document

Fig. 5.4 Files that will be used for the app classifier

29 Boletify: ine | — L . if

5.2. Flutter: App Frontend

5.2.1. Folder structure

The approach followed for the Flutter folder structure aims to improve the app
maintainability organizing files by separation of concerns. In any typical Flutter
application most of the developments take place in the /lib file, which you can
see in Figure 5.5.

app
bloc
config
models
repositories
SCreens
utils
widgets
% colors.dart
% main.dart
o texts.dart
% theme.dart

>
>
>
>
>
>
>
>

Fig. 5.5 /lib folder structure of Boletify

First of all, it was decided to create a single file to define the colors, texts, and
theme of the application; so we can easily change them without going file by
file. The main file is the starting point of the application, and it is directly related
to the /app folder, where the Boletify layout is defined once the application is
loaded.

API calls will be added to the /repositories folder. It is intended to add an extra
layer to be used as an adapter instead of making the request from the widget or
the BLoC component directly, so changing the Backend or the requests will
require to modify just a single file. In addition, it will not only get the query
snapshots from Firebase and return a model we can use but also manage the
offine mode feature to get a local copy of the mushrooms using the
fileManager.

Business logic will have a special folder /bloc where there will be a subfolder for
each one of the BLoC’s with the events, states and implementations of each of
them. However, if it does not make sense to add the logic to a BLoC and it is
reusable it will be added to the /utils folder, where we will find functionalities that
are used in several places.

Data entities will have their model defined inside the /models folder. The folder
will contain a file for each model with the class properties and methods that

Development details 23

have been defined previously plus any other model needed to manage the
widget properties.

Everything regarding Ul will be added to /screens or /widgets folders. The first
one will be used to compose the specific views using widgets and will have a
subfolder for each of the screens. That subfolder will contain widgets that are
only used on that screen and the screen itself. Settings, Home, Details, Search,
etc. are examples of our screens. In contrast, the second folder will only contain
generic-purpose widgets that are used in several places, such as
FadelnAnimation, ShowUpAnimation, Customicon, BlackWhiteFilter, etc.

Finally, the /config folder will contain hardcoded configurations that we do not
want to move to our database but we want to easily access to change the app
behaviour. For example, for the summer Tag is associated with an icon, a label,
a description, etc. Each Settings Item is associated with an icon, a title, a
screen or redirect url, etc.

5.2.2. Core setup

The starting point of the application was to add the required packages to
initialize Firebase [14][15] for Android and iOS applications to be able to retrieve
the mushrooms data. Then, the following packages were also added in order to
implement the classifier functionality:

o tflite: A plugin for accessing Tensorflow Lite APl for both iOS and
Android. We will define the labels and the .tflite model, as well as the
image to classify and some extra configuration such as the number of
results we want to receive, the minimum confidence threshold to get a
result, etc. [17].

e image_picker: A plugin for selecting images from both Android and iOS
image library, or taking a picture using the camera. We will define an
image source that can be either camera or gallery, and we will get a file
that will be used to feed the classifier [18].

The next step after installing the packages is to add to the assets folder the files
generated by Teachable Machine in the previous step (labels.txt and
model_unquant.tflite).

To make them work properly, the following configuration will be needed as well
(see Fig. 5.6).

aaptOptions {
5

noComp ress
noComp ress

Fig. 5.6 Additional configuration to work with a TF-lite model in Android

o4 Boletify: . — L . if

In order to test the functionality it has been used a Stateful Widget that performs
all the work: Initialize and deinitialize the model, pick the image, and handle the
views.

In section 5.2.3 you can see how this widget was optimized by moving the logic
to a BLoC and using a Stateless Widget instead, gaining performance and
maintainability by optimizing renders and decoupling the business logic.

To finish the initial setup, a simple Github workflow was added in order to make

a build and launch the unit tests anytime a Pull Request is opened, so we can
be sure nothing breaks when new changes are uploaded.

5.2.3. Using the classifier in BLoC

Events Method Call

Identify
Screen

Classifier
Model

Classifier
BLoC

States Result

Fig. 5.7 Classifier using BLoC implementation

As you can see in Figure 5.7 the Identify Screen will emit different events to the
Classifier BLoC and receive different states from it. Each event will be the
action we want to perform and the state will define which Ul and information we
want to display. On the other side, the BLoC will also interact with our classifier
model using the tflite package to run the model on an image and get an output
from it. The classifier BLoC will allow only two events:

e Initialize: To set up the classifier.

e Classify: Which accepts an image source argument (Camera or Gallery)
that will be used to get a file using the image_picker package and call the
runModelOnimage method from the ftflite package.

Each one of the yielded states will trigger a Ul change reactively in the main
Identify Screen container widget. The classifier BLoC will yield the following
states:

e Initial: When the classifier is setting up.

e Loading: For any asynchronous action that requires a loader.

e Error: When there is an uncontrolled error that requires giving feedback
to the user.

Development details 25

e Methods: When the classifier is ready to accept a classification method
to get the image from it.

e Result: When we get any output result from the classifier, no matter if
the classification fails or succeeds.

In the tables below (see Table 5.1 and Table 5.2) you can find the two events

and the respectives actions, states and screens that will be triggered, yielded or
shown in the application.

Table 5.1 Actions, states and screen for the Initialize event

Initialize Event
Actions States Screens
Initialize tflite with the model and labels Initial Loading
Set as ready after initialization Methods Identification Methods
Handle error if any Error Error

Table 5.2 Actions, states and screen for the Classify event

Classify Event (imageSource)

Actions States Screens

Use image_picker to get a file and run

the classifier to get the result Loading Loading
Yield a state with the classifier output Result Identification Result
Handle error if any Error Error

Initializing the classifier is an asynchronous action, for that reason it has been
defined an Initial state that will set up the TensorFlow Lite model and show a
CircularProgressindicator widget in the meanwhile.

Once the classifier is loaded we will show the Identification Methods screen to
let the user choose between taking a picture with the camera or uploading it
from the gallery. For this reason we will show two custom buttons that will
trigger the ClassifyEvent with the chosen image source on the onTap event (see
Fig. 5.8).

IdentifyButton(

text: 'Camara’,
lcon (5. photo_camera_outlined,
onTap: () {
BlocProvider.of<ClassifierBloc=(context)
add(ClassifyEvent (ImageSource.camera)l};

1
!y

IdentifyButton(
text: 'Galeria',
icon: Icons.broken_image outlined,
onTap: ()
c=(context)

Fig. 5.8 Identification methods screen buttons

After adding the ClassifyEvent with an Image Source we will use the
image_picker package to handle the gallery or camera access. This will be an
asynchronous action that will not be resolved until the user cancels the action
and chooses a file that we can use.

er.pickImage(source: ev

Fig. 5.9 Using image_picker package from the Classifier BLoC

Lastly, the image will be sent through the classifier model using the ftflite
package, which will return a mushroom from it.
Future<=ClassifierQutput> classifyImage(File image)

List=dynamic tfResult Tflite.runModelOnImage (

path: image.path,

numResults: 2,

threshold: @

imageMean: 1

imageStd: 127.5,

sifierQutput. fromTFLite(tfResult!, image);

Fig. 5.10 Using Tensorflow Lite from the Classifier BLoC

Development details 27

5.2.4. Building the offline mode feature

The main functionality of the offline mode is to allow the app working without
connection by saving a fallback copy of the API data information, so we are still
able to connect classification results with mushroom details. You can find the
schema workflow in the section 3.2 Offline mode.

In order to handle saving and recovery of the fallback information a utils file
called file_manager.dart has been created. | have created a utils file called
file_manager.dart. First of all, we have to add a package called path_provider
that we will use to access and get the file from the Android and iOS file system.
Then we will create a class called FileManager that will have three methods:

e initializeFileManager: Will initialize the file system and get file path in
order to read or write on it.

o setMushroomsFallbackList: Will receive an array of Mushrooms,
convert them to JSON and create or update the fallback file.

e getMushroomFallbackList: Will get the JSON information from the
fallback file, convert it to a list of Mushrooms and return it.

5.3. Firebase: Backend as a Service

As has been stated before, setting up a database using Backend as a Service
takes minutes. We just have to create a new project in Firebase and set up a
Firestore database. Then we just need to configure the frontend to be able to
access our information, which basically consists in adding our project package
name and adding the Google services file to our Flutter project.

Next, we will create a new collection called “mushrooms” and add a new
document to it with the information of each of the mushrooms we want to
classify (see Fig. 5.11).

28 Boletify: ine | — L . if

& mushrooms = B oQRAxPnS1DN2yFhrCgrB :
-+ Add document + start collection
0QRAXPnS1DN2yFhrCgrB > + Add field

cap: "Pot arribar a medir 30 centimetres. La superficie esta decorada amb
escates marrons disposades en ziga-zaga sobre un fons color crema, anell
membranos, doble, amb marges amb forma d'ona, doble, relliscant al llarg
del peu.”

commonNames : "Cogomella"

flesh: "Esblanca i elastica. S'enrogeix amb el contacte amb I'aire. Té olor i gust
agradables.

gills: "Leslamines son lliures, amples i apretades, de color crema.”
habitat: "Sorgeix en tot tipus de boscos."
id: "0"

name: "Apagallum’

observations: "Es tracta comestible excel-lent. Naix d'un ou i es desenvolupa

Fig. 5.11 Example of a mushroom document in the
Firestore “mushrooms” collection

CHAPTER 6. DELIVERY AND RELEASE

In this chapter we are going to go through the main steps needed to release the
application to the official channels. | will explain how to set up the backend, how
to sign the application, and which steps we have to follow in order to use Github
Actions for continuous delivery.

Even though Flutter allows us to generate the application for both iOS and
Android, we are going to release it exclusively to Google Play. The main reason
is the publisher license price, which is about 25€ per year for Google Play,
whereas it costs about 100€ per year to publish to the App Store. We think that
is the right moment for now, as we do not really know if people will use or not
our application.

Due to the previous consideration, we are only going to show the Android
configuration and release process.

6.1. Setting up a production-ready Backend

First of all, a new project has been created in Firebase in order to be
production-ready (see Fig. 6.1). This is important to isolate production data from
development data, so we can use a development project to test future
improvements.

Create database

o Secure rules for Cloud Firestore 2 Set Cloud Firestore location

After you've defined your data structure, you will need to write rules to secure your data.
Learn more [

© Start in production mode
Your data is private by default. Client
nly be granted

C f{document=#**} {
allow read, write: if false;

enable long-term client read/write

access.

o All third party reads and writes will be denied

Fig. 6.1 Creating a production database for Boletify

Starting the project in the production model does not allow access to anyone by
default, so the rules have been changed as well in order to give read access to
our frontend application. Besides this step, the only requirement is to configure
the iOS and Android apps to use this new production database by downloading
and adding the Google services JSON file to the code.

30 Boletify: ine | — L . if

6.2. Setting up a production-ready Application

Android applications must be digitally signed [19] with a certificate before being
used in the real world. Currently, we are only able to build and install an
unsigned application, which we cannot use for a release.

The most common way of signing an app is to configure several fields in a
key.properties file that will be located in the root of our Android project. If we use
Flutter, the path will be /name_of project/android.

This file will contain a storePassword, a keyPassword, a keyAlias, and a path to
our storeFile.

Fig. 6.2 Example about how it looks a key.properties file

In our case, the same password has been used for the storePassword and the
keyPassword; while any string can be used to fill the keyAlias, for example
upload or release. Regarding the storeFile, it has to contain the path where our
signing key is being stored, which will be created using a tool from the Java
JDK called keytool.

The key is created using the command below, notice that if you have not set a
global path for the JDK you will need to move to its location /bin to run it.

= ~ Skeytool -genkey -v -keystore ~/upload-keystore.jks

-keyalg RSA -keysize 2048 -validity 10000 -alias uplnudﬂ

Fig. 6.3 Command used to generate the Java KeyStore file

Now that all the fields are filled we can use the key file to sign the build locally
and - with some changes in our android/app/build.gradle file - update it
manually to the Play Store. But we want to build a Deployment pipeline to
automate that process using Github Actions, and we cannot simply update the
keys to Github, as it contains sensitive information that other people could use
to sign and unsign the application bundle. To solve this, we will proceed to:

1) Update the key information to Github Secrets so we can use it later in our
Github Action;

2) Generate and fill the key.properties file dynamically from those secrets in our
Github Action.

Delivery and release 31

6.3.

Setting up the Continuous Delivery pipeline

First of all, we have to update our key properties as secrets to Github Actions so
we can use them later as environment variables in our build process. Uploading
them is as easy as going to the Settings/Secrets section of our project Github
repository, you can see the result in the image below.

Repository secrets

Update
Update
Update
Update

Update

Fig. 6.4 Github secrets from Boletify repository

As you can see in Figure 6.4 there are 5 secrets, but not all of them are used for
the Android deployment system.

CODECOV_TOKEN: It is used in our Continuous Integration pipeline to
be able to get access to the Codecov tool, so test coverage can be
uploaded and tracked.

KEYSTORE_JKS_B64: It is the content inside the keystore file.jks. As
you can see it has been converted to base 64 format, as Java KeyStore
format is a binary format. This means that it will have to be decoded
again at runtime in the release signing process.

KEY_ALIAS: The keyAlias field from the previous step. As said before,
any alias such as “release” or “update” can be used.

KEY_PASSWORD: The password that has been set up in the previous
steps for the storePassword and keyPassword fields. Using a different
password for each of them will require an additional secret.

SERVICE_ACCOUNT_JSON: It is a unique identifier that is used to get
access to the Google Play Developer API in order to upload changes to
the Android application on the Google Play Console.

2 Boletify: ine | — L . if

The next step is to make some changes in our app/build.gradle file so we can
dynamically generate the key.properties file from the environment variables that
we will set up from the Github Action.

project.gradle.startParameter.taskNames.any { it.toLowerCase().contains('release') }

t.file("key.properties")

(keystorePropertiesFile))

r("KEY_PASSWORD'))
C KEY_PASSWORD '))
eyAlias’, ge { "KEY_ALIAS'))
'storeFile’, g KEY_PATH'))

Fig. 6.5 Code used to get or generate the key.properties file

In line 24 it is defined as a local variable isRelease to know whether the build is
flagged as a release or debug one, as we only want to get the key.properties
from the environment variables if it is a release build.

In line 27 it is checked if there is an existing key.properties file, if it is found that
means that we are launching the build locally, so we will use the local key
values.

In lines 29-34 we check if it is a release build, and if that is the case we fill the
values from the environment variables provided by the Github Action. As you
can see in line 33, we are using a KEY_PATH environment variable which will
be the path to our JDK key once it is decoded from the Github Action.

As a last step, we also have to define the release signing config in the same file,
as well as bounding the release build type to that concrete signing config.

keyAlias']
'keyPassword ']
Properti 'storeFile"] Tile storeProperties['storeFile'])
ystoreProperties['storePassword']

signingConfig signingConfigs.release

Fig. 6.6 Boletify release signing config for Android

6.4. Continuous Delivery Github Action

Once we have set up our secrets and configured the application to be
production-ready it is time to implement the continuous delivery Github Action.
This action should be able to get the latest version tag from the Boletify
repository, increment the patch, build the new version, upload it to the Play
Store, and push the new tag to our repository. As well as the other actions, this
one will be a .yml file inside the .github/workflows folder, that will be located in
our Flutter project root path.

First of all, we will fetch the tags from our Github repository and to keep the
latest one (see Fig. 6.7). We will use it to increment the patch number in order
to generate the next build version and the next patch version.

- name: Read last version tag

run: |
git fetch —-prune —unshallow
echo "VERSION=$({git describe --tag “git rev=list —-tags =-max-count=1")" >> $GITHUB_ENV

Fig. 6.7 Steps to install Flutter and project packages

Once we have defined the next build version we will proceed to install Flutter
using the subosito/flutter-action, and then we will install the project packages as
you can see on the image below.

- name: Install flutter
uses: subosito/flutter-action@vl

- name: Get packages
run: flutter pub get

Fig. 6.8 Steps to install Flutter and project packages

Then we will start the signed build process using the secrets that we have
added to Github Secrets. First of all, we need to create the key.jks file from our
key secret that we have encoded in Base64 format, so we have to decode the
secret and write it inside the key.jks file to match the key.properties location (see
Fig. 6.9, line 61).

The next step after decoding the key is to build the appbundle’ with the release
flag, and then use the fields that have been defined using the previous release
tag in order to set the next build name and next build version flags (see Fig. 6.8,
line 64).

" An Android App Bundle is a publishing format that includes all your app’s compiled code and
resources. Google Play uses your app bundle to generate and serve optimized APKs for each
device configuration, so only the code and resources that are needed for a specific device are
downloaded to run your app.

24 Boletify: ine | — L . if

Notice that the rest of secrets have been mapped to match the same
environment variables defined in the app/build.gradle, so they can be used to fill
the key.properties file.

- name: Generate keystore
run: echo $KEY_JKS | base&4 -d > android/app/key.jks
env:
KEY_JKS: ${{ secrets.KEYSTORE_JIKS_B64 }}

- name: Release compilation
run: flutter build appbundle =—-release ==build-name $NEXT_BUILD VERSION =-=build=number $NEXT_ BUILD_ NUMBER
env:
KEY_PASSWORD: ${{ secrets.KEY_PASSWORD }}
KEY_ALIAS: ${{ secrets.KEY_ALIAS }}
KEY_PATH: key.jks

Fig. 6.9 Steps build the production appbundle using secrets

The last step is to update the appbundle using the rOadkll/upload-google-play
action in order to manage the Google Play APl interactions.

This action will require to set the correct packageName of the Android
application, and then use the SERVICE_ACCOUNT_JSON secret to grant the
access via API to our Google Play project. It is also important to add the correct
.aab path to the action, as well as to define the track where the build should be
uploaded (see Fig. 6.10). In this case only the Alpha track is used to make the
release available for internal testers, but the track could be defined as
Production or Beta to upload the release to those tracks.

- name: Publish Google Play (Closed Alpha)
uses: r@adkll/upload-google-play@vl.d.15
with:

serviceAccountl)sonPlainText: ${{ secrets.SERVICE_ACCOUNT_JSOMN }}
packageName: com.ebgapps.boletify
track: alpha

releaseFile: build/app/outputs/bundle/release/app-release.aab

Fig. 6.10 Release step to publish build into Google Play

Once the appbundle has been correctly uploaded the last step is to upload and
push the tag to Github, so the next release is able to get that tag and increment
it in order to start the delivery process again next time (see Fig. 6.11).

- name: Update and push tag
run: |

git tag SMNEXT_GIT_TAG
git push origin SNEXT_GIT_TAG

Fig. 6.11 Update and push new tag to Github

Conclusions 35

CHAPTER 7. WORK PLANNING

In this chapter we are going to explain the workload and how it has been
distributed during the whole project. Here you can find a brief explanation of
each of the main tasks and the time estimation for each of them (see Table 7.1).
Project definition: Time dedicated to define the idea and the project’s scope.
Research: Time spent in any kind of research; which includes research about
native and cross-platform frameworks, data storage and machine-learning, and
setup of the development ecosystem and tools.

Design: Time spent defining and improving the user interface, the icons used
on the application, and the multiple mockups.

Development: This phase includes the coding of the application frontend and
the different features, as well as the later performance optimization.

Release: This phase includes the release of the application to the Play Store,
as well as the process automation using Github Actions.

Documentation: Time spent writing down the project report.

Table 7.1 Time estimation distribution for each task

Task Time Estimation (days) | Time Estimation (%)
Project Definition 10 9.4%
Research 20 18.8%
Design 14 13.2%
Development 30 28.3%
Release 14 13.2%
Documentation 20 18.8%
TOTAL 106 100%

It is worth mentioning that a big amount of time has been invested in the
research process in order to decide the best architecture and how to implement
the ML engine. Another important task to consider is the release, which usually
takes less time. One of the goals of the project was to automate the release
process, so a lot of time was spent in the delivery pipeline as well.

26 Boletify: . — L . if

CHAPTER 8. CONCLUSIONS

This last chapter will go through the final conclusions of the project: if the initial
goals have been achieved, what | have learned personally, and which future
improvements could be done in the short and long term.

8.1. Goals achievement

At the beginning of the project we have defined a set of goals that have been
achieved. The result is a native Android application with an automated
integration and delivery process that uses a server as a service and it is able to
classify mushrooms through a machine learning model that also works perfectly
fine when a user is offline.

Training a machine learning model and using it on the client side to identify
mushrooms using images was the main objective of this project. Time spent
during research has been useful to find a tool that allows us to get rid of most
of the complexity of these techniques so the workload is reduced to only
building the dataset. Building the classifier without Teachable Machine would be
a project itself.

Similarly, | have used a backend as a service approach that has proven very
useful to speed up development compared to a traditional approach, which
would be not only slower to build, but also would have less scalability and more
complexity for adding features such as push notifications or analytics.

Another one of the main goals was to automate the release process though a
continuous integration and continuous delivery pipeline. The result is a system
that integrates and publishes our changes from the master branch of our
version control system to an alpha track on the Play Store that is only used for
internal testers until | decide to release the public version.

8.2. Personal conclusions

During this project | have worked in all the phases of the software development
life cycle: from planning to releasing a product. Furthermore, we have also
automated the integration and delivery of the application, which is exactly how
things work in real-world companies. That makes me really proud and | have
learned a lot.

In fact, most of the tools that | have used were unknown to me. Flutter, Firebase
and Github Actions are tools that | have never used before, and with which | feel
now very confident and ready to use again in future MVPs or side projects.

The whole process has been very agile. Firebase works like a charm, there is a
bunch of documentation, and you are able to set up a new project in minutes. In
any case, | still have curiosity to use a relational database in a BaaS, so

probably | will give Supabase a try at some point. Regarding Flutter, | think it is
a very powerful framework and | am totally convinced it will take over React
Native in the following years, as the development speed and performance
outperform its competitors. By the way, automating the hard work using Github
Actions allows me to reuse it in other projects, which will make the development
even more agile.

The work will be available in a public repository that you can find on my Github
[21], so other developers will be able to fork it to improve the project or learn
from it.

8.3. Future Improvements

One one hand, there are several things that | want to improve in the short term
before the public release. For example it would be really nice to have a small
tutorial that will be shown only the first time in order to teach the user how to
correctly take the picture to maximize the classifier confidence. Another
nice-to-have would be to make the user explicitly accept our responsibility
disclaim, as you know that some mushrooms can be toxic and that could help to
make the user more conscious about that fact and also to relieve ourselves
from any misuse. Finally, | have recently found out that Firestore supports a
functionality that allows developers to configure a cache to work offline, so we
could use it to replace our offline feature while getting rid of some of the code.

On the other hand, | consider long term improvements for the classifier that will
consist basically in growing our mushroom database and fetching the classifier
with more images, so we can improve our confidence. At some point | even
considered building a custom classifier to improve its precision. This will require
some changes in the Ul as well, as mushrooms can be identified by different
details: cap, qills, stalk, etc. so the results would improve a lot if instead of using
a single image we could use several images of the same sample.

As a last step, if the app is used by a big number of real users | will consider
releasing it for iOS.

38

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

BIBLIOGRAPHY

ShroomlID PlayStore. ShroomID application details (online). [Last access:
October 10th 2021]. URL:
https://play.google.com/store/apps/details?id=com.shroomid

Shroomify Play Store. Shroomify application details (online). [Last
access: October 10th 2021]. URL:
https://play.google.com/store/apps/details?id=com.mushroom.shroomify

Picture Mushroom Play Store. Picture Mushroom application details
(online). [Last access: October 10th 2021]. URL.:
https://play.google.com/store/apps/details?id=com.glority.picturemushroom

eBolets Catalunya 2021 Play Store. eBolets Catalunya 2021 application
details (online). [Last access: October 10th 2021]. URL:
https://play.google.com/store/apps/details?id=com.unusualapps.eboletscat

alunya2021

Official Discord Blog. How Discord achieves native iOS performance with
React Native (online). [Last access: October 10th 2021]. URL:
https://blog.discord.com/how-discord-achieves-native-ios-performance-with
-react-native-390c84dcd502

Google Developers Youtube channel. Alibaba used Flutter to build 50+
million Xianyu app (online). [Last access: October 10th 2021]. URL:

https://www.youtube.com/watch?v=jtYk3gWRSwO0

Official Flutter webpage. Apps take flight with Flutter (online). [Last
access: October 10th 2021]. URL:

https://flutter.dev/showcase

Zazo Millan, Cristian. UPV. "Migracion de aplicaciones Android hacia
Flutter, un framework para desarrollo de apps multiplataforma” (online).
[Last access: October 16th 2021]. URL:

https://riunet.upv.es/bitstream/handle/10251/128486/Zaz0%20-%20Migraci
%C3%B3n%20de%20aplicaciones%20Android%20hacia%20Flutter,%20u
n%20framework%20para%20desarrollo%20de%20apps%20mult....pdf?se

guence=1

Official Firebase webpage. Firebase products (online). [Last access:
October 11th 2021]. URL:

https://firebase.google.com/products-build

https://play.google.com/store/apps/details?id=com.shroomid
https://play.google.com/store/apps/details?id=com.mushroom.shroomify&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.glority.picturemushroom
https://play.google.com/store/apps/details?id=com.unusualapps.eboletscatalunya2021&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.unusualapps.eboletscatalunya2021&hl=en&gl=US
https://blog.discord.com/how-discord-achieves-native-ios-performance-with-react-native-390c84dcd502
https://blog.discord.com/how-discord-achieves-native-ios-performance-with-react-native-390c84dcd502
https://www.youtube.com/watch?v=jtYk3gWRSw0
https://flutter.dev/showcase
https://riunet.upv.es/bitstream/handle/10251/128486/Zazo%20-%20Migraci%C3%B3n%20de%20aplicaciones%20Android%20hacia%20Flutter,%20un%20framework%20para%20desarrollo%20de%20apps%20mult....pdf?sequence=1
https://riunet.upv.es/bitstream/handle/10251/128486/Zazo%20-%20Migraci%C3%B3n%20de%20aplicaciones%20Android%20hacia%20Flutter,%20un%20framework%20para%20desarrollo%20de%20apps%20mult....pdf?sequence=1
https://riunet.upv.es/bitstream/handle/10251/128486/Zazo%20-%20Migraci%C3%B3n%20de%20aplicaciones%20Android%20hacia%20Flutter,%20un%20framework%20para%20desarrollo%20de%20apps%20mult....pdf?sequence=1
https://riunet.upv.es/bitstream/handle/10251/128486/Zazo%20-%20Migraci%C3%B3n%20de%20aplicaciones%20Android%20hacia%20Flutter,%20un%20framework%20para%20desarrollo%20de%20apps%20mult....pdf?sequence=1
https://firebase.google.com/products-build

Bibliography 39

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Official Supabase webpage. Supabase homepage (online). [Last access:
October 11th 2021]. URL:

https://supabase.io/

Official Amazon Web Services webpage. AWS amplify (online). [Last
access: October 11th 2021]. URL:

https://aws.amazon.com/amplify/

Github Marketplace webpage. Github Actions (online). [Last access:
October 12th 2021]. URL:
https://github.com/marketplace?type=actions

Github Marketplace webpage. Github Actions - Flutter Action (online).
[Last access: October 12th 2021]. URL:

https://github.com/marketplace/actions/flutter-action

FlutterFire official webpage. FlutterFire overview (online). [Last access:
October 11th 2021]. URL:
https://firebase.flutter.dev/docs/overview/

Firebase official webpage. Add Firebase to your Flutter app (online).
[Last access: October 11th 2021]. URL.:

https://firebase.google.com/docs/flutter/setup?platform=android

Tensorflow official webpage. Model optimization for Tensorflow Lite
(online). [Last access: October 10th 2021]. URL.:
https://www.tensorflow.org/lite/performance/model_optimization

Official package repository for Dart and Flutter apps. Tflite Flutter
package (online). [Last access: October 10th 2021]. URL:

https://pub.dev/packages/tflite

Official package repository for Dart and Flutter apps. Image picker
Flutter package (online). [Last access: October 10th 2021]. URL:
https://pub.dev/packages/image_picker

Official Android Developers webpage. Sign your app with Android
Studio guide (online). [Last access: October 10th 2021]. URL.:

https://developer.android.com/studio/publish/app-signing

Google Developers webpage. Getting started with Google Play
Developer API (online). [Last access: October 16th 2021]. URL.:
https://developers.google.com/android-publisher/getting_started#creating

a_new_project

Github webpage. Boletify repository (online). [Last access: October 18th
2021]. URL: https://github.com/erikbg7/Boletify

https://supabase.io/
https://aws.amazon.com/amplify/
https://github.com/marketplace?type=actions
https://github.com/marketplace/actions/flutter-action
https://firebase.flutter.dev/docs/overview/
https://firebase.google.com/docs/flutter/setup?platform=android
https://www.tensorflow.org/lite/performance/model_optimization
https://pub.dev/packages/tflite
https://pub.dev/packages/image_picker
https://developer.android.com/studio/publish/app-signing
https://developers.google.com/android-publisher/getting_started#creating_a_new_project
https://developers.google.com/android-publisher/getting_started#creating_a_new_project
https://github.com/erikbg7/Boletify

