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Notation dictionary

t time

u=(u,v,w) velocity field

ρ density

p pressure

τ shear stress tensor

ν kinematic viscosity

µ viscosity

µ̂∞ infinite shear-rate viscosity

µ̂0 zero shear-rate viscosity

λ̂ fluid’s time constant

nc shear-thinning index

a shift term

Re Reynolds number

Wo Womersley number

w pulsation angular frequency

A pulsation amplitude

R pipe radius

D pipe diameter

N number of radial nodes

α axial wavenumber

β azimuthal wavenumber

G enery gain
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Abstract

In the last years the major cause of death worldwide has turned out to be because of
cardiovascular diseases; for instance, owing to the presence of blood turbulence in our
vessels. The problem has already been addressed from simplified points of view that
ignore many blood characteristics; consequently, one of the main goals of this project
is to take into account the blood shear-thinning effects in an infinite cylindrical pipe
and study turbulence transition in such scenario.

With this aim, the first thing to do is a non-Newtonian viscosity models research in
order to find the best one to model blood behaviour. After this, an exhaustive base flow
study is carried out, for steady and unsteady scenarios, so that finally the Transient
Growth Analysis (TGA) provides us with the most dangerous perturbation that could
trigger turbulence transition more easily in our veins.

Besides, a parametric study has been performed to take into account a wide range
of different possibilities and to be able to highlight more general conclusions.
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1 Introduction

1.1 Motivation and state of the art

In 1883 [16], Reynolds identified the basic problem in the context of flow in a pipe:
when and how do high-speed flows undergo transition from laminar state to more com-
plicated scenarios such as puffs, slugs and turbulence? To this day, the problem of
the control of fluid turbulence has been under research [18]; often, but not always,
to delay its occurrence or mitigate its effects. In addition, it has many practical ap-
plications ranging from aeronautics [17] to pipeline engineering [2]. Understanding
the phenomenon of turbulence transition initiated by the growth of infinitesimal per-
turbations is a necessary prerequisite to subsequently find effective transition-delay
strategies.

This bachelor’s thesis is mainly focused on a more biological background. Cardio-
vascular diseases represent one, if not the major, cause of death worldwide [20]. With
its ever increasing danger in mind, the scientific community is interested on determin-
ing its causes for later to be able to prevent them. One of these causes appears to be
the presence of turbulence in our cardiovascular system [1]. The only solid understand-
ing regarding transition to turbulence in our arteries or veins comes from the analogy
between cardiovascular flow and the elementary Newtonian fluid flow in rigid circular
cross-section pipes. It comes with no surprise that, with such a simplified model, many
characteristics of blood flow in our flexible vessels are ignored. Most recently, the ef-
fects that a pulsating driving flow (instead of a steady driving) has on the transition
scenario has been uncovered for a Newtonian fluid [6], [11]. As further steps, it would
be interesting to check which are the effects that other previously ignored character-
istics of cardiovascular flow have on turbulence transition, specifically shear-thinning
effects.

1.2 Objectives

As said before, the main intention for this project is to take a step forward in the
blood transition to turbulence problem and consider this fluid as non-Newtonian with
shear-thinning effects. That is why the main goals of this thesis are:

- First of all, perform a literature research of existing shear thinning fluids mod-
els and turbulence transition in order to find the best model to assess this project’s
problem.

- Secondly, implement a Matlab code to obtain steady/unsteady laminar flows; as
well as, implement a further script to perform Transient Growth Analysis.

- Afterwards, an analysis of the flow behaviour and structures in the scope of
the linear Navier-Stokes equations is expected to be done in order to find the most
dangerous perturbation in each case.

- Finally, the concluding goal would be to perform a parametric study for different
shear-thinning conditions, not forgetting the corresponding discussion and conclusions.
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2 Description of the problem

In order to model pipe flow for non-Newtonian shear thinning fluids an infinite circu-
lar cross-section pipe of radius R̂ is considered, where an incompressible fluid flows,
the blood (constant fluid density). This last assumption considerably simplifies the
equations that must be solved and furthermore, we are dealing with a viscous fluid.

Dimensional parameters are expressed with hat (ˆ ), so the three-dimensional ve-

locity field vector at a given time t is defined as ~̂u(t)=(û,v̂,ŵ)(t), being û, v̂ and ŵ the
radial, azimuthal and axial velocity components respectively. Therefore, in this whole
project cylindrical coordinates are used owing to problem’s geometry, with the corre-
sponding derivatives expressed as subscripts. For instance: ûr is the radial derivative
of û component and v̂θ is the azimuthal derivative of v̂.

2.1 Non-Newtonian Fluids

The well known scientist Isaac Newton owes his fame to various discoveries and de-
veloped theories in mathematics and physics. Among these, he perceived that fluids
behave with constant viscosity that could only changes with temperature [19].

However, it was uncovered that stress applied to a fluid plays an important role.
Non-Newtonian fluids change their viscosity or flow behaviour under stress, which
means that their viscosity is dependent on shear rate; so they are able to get thicker
and act more like a solid, or on the other hand, the fluid can get runnier than before.
Hence, not all non-Newtonian fluids behave the same way when stress is applied.

To begin with, Newtonian fluids follows a linear relation between shear stress (τ)
and shear rate (γ̇):

τ = µ · γ̇ (2.1)

so viscosity (µ) is a constant value, no matter how fast the fluid is forced to flow
through a pipe or channel.

In contrast, non-Newtonian fluids display a non-linear relation between shear stress
and shear rate, as it can be seen in the following figure.

(a) (b)

Figure 1: Fluid behaviour according to (a) shear stress, (b) viscosity vs shear rate
relation

So a fluid is said to be shear thickening when its viscosity increases as the shear rate
does and is said to be shear thinning if its viscosity decreases for higher γ̇. However,
this project is mainly focused on shear-thinning fluids, since we want to analyse blood
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which behaves as a shear-thinning fluid [21], [8], and surprisingly, not many studies
have been carried out concerning transition to turbulence in a pipe for non-Newtonian
fluids.

Therefore, it is required to seek for a mathematical law that can approximate the
viscosity behaviour and capture the rheological response of blood over a range of flow
conditions. After rummaging through the literature, it has been seen that several
models are presented for viscous fluid behaviour simulations [3], [9], for instance the
well known power law model. However, for a more realistic point of view, it has been
decided to use Carreau-Yasuda model in order to simulate the blood viscosity, since it
has been found to be the most appropriate model to address the blood problem [13],
[14].

2.1.1 Carreau-Yasuda model

The model, first proposed by Pierre Carreau, known as Carreau or Carreau-Yasuda,
results in a quite realistic representation for shear-thinning/thickening fluids viscosity.
It reads as:

µ = µ∞ + (1− µ∞)[1 + (λγ̇)a]
nc−1

a (2.2)

This expression is already in dimensionless form, such that ’γ̇’ stands for the shear
rate; µ∞ = µ̂∞/µ̂0 is the fluid’s viscosity at infinite shear rate, adimensionalized with
respect to the zero shear-rate viscosity. When changing this parameter, one can see
that a high shear rate values the viscosity profile tends to the desired µ∞ value. Then,
’nc’ stands for the shear-thinning index; so lower ’nc’ means more shear thinning effect
and the viscosity profile would narrow when decreasing it. The term ’a’ describes the
shift from zero shear viscosity to the power law zone; such that for higher ’a’ values
the shift is flatter, while for lower ’a’ there is more slope. And finally, ’λ’ is the fluid’s
time constant:

λ =
λ̂ÛCL

R̂
(2.3)

being λ̂ the dimensional time constant, r̂ and ÛCL the pipe radius and maximal velocity
of the laminar flow respectively. When increasing the fluid’s time constant value the
viscosity profile narrows; it makes sense as higher time constants force the fluid to
reach faster µ∞ region.

Besides, for each different fluid all these parameters have an specific value; however,
blood is the main fluid in this work, so the upcoming table refers to blood parameters
based on which specific model (Carreau or Carreau-Yasuda) is selected [3]. For this
reason, Carreau parameters are the ones used in the whole project unless otherwise
stated.

λ̂(s) nc a µ̂0(Pa · s) µ̂∞ (Pa· s)

Carreau 3.313 0.35 2 0.056 0.00345
Carreau-Yasuda 1.902 0.22 1.25 0.056 0.00345

Table 1: Carreau and Carreau-Yasuda blood parameters

One can note that Newtonian fluid behaviour is recovered by setting any of the
following: nc=1, µ∞=1, λ=0 or γ̇=0.
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Furthermore, a visual analysis has been done in order to clearly identify the con-
trasting viscosity profile regions.

(a) Low shear rate range (b) High shear rate range

Figure 2: Carreau viscosity profile

1. Zero shear-rate viscosity dominant region. The fluid behaves as a Newtonian one
with µ0.

2. Transition region ruled by ’a’.

3. Power-law dominant region.

4. Infinite shear-rate viscosity governing region. The fluid behaves as a Newtonian
one with µ∞.

2.2 Governing equations

The governing equations that describe the problem are the continuity and momentum
equations complemented with no-slip boundary conditions.
- Continuity equation:

∂ρ̂

∂t
+∇(ρ̂û) = 0 (2.4)

For incompressible flows it stands that fluid density is constant: ρ̂=cnt, which leads to
∂ρ̂
∂t

=0, so continuity equation becomes

∇û = 0 (2.5)

- Momentum equation:

ρ̂
Dû

Dt
= −∇p̂+∇~̂τ (2.6)

The former equations can be rendered dimensionless using the pipe radius (R̂) as
length scale, the characteristic velocity (ûchar) as velocity scale, r̂/ûchar as time scale
and finally, ρ̂·û2

char as pressure and stress scale.
Two different scenarios should be differentiated: ûchar=2ûbulk for laminar Hagen-

Poiseuille flow, while for the unsteady case ûchar=2ûs, being ûs the bulk velocity time-
average.
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Consequently, the dimensionless governing equations can be written as:

∇u = 0 (2.7)

∂u

∂t
+ (u∇)u = −∇p+

1

Re
∇~τ (2.8)

Reynolds number already appears in (2.8), which measures the ratio between iner-
tial and viscous forces and satisfies the following relation:

Re =
ρ̂ûcharR̂

µ̂
(2.9)

It can also be seen the shear stress tensor (~τ = µγ̇) which directly involves viscos-
ity in the main equations, and it shouldn’t be overlooked since it require an special
treatment as viscosity is not a constant anymore.

Finally, the strain-rate tensor (γ̇) is defined by:

γ̇ = ∇u + (∇u)T =

 2ur vr + 1
r
(uθ − v) uz + wr

vr + 1
r
(uθ − v) 2

r
(vθ + u) vz + 1

r
wθ

uz + wr vz + 1
r
wθ 2wz

 (2.10)

Before going into much detail, it must be noted that from now on the equations are
expressed in dimensionless form. In any case, the dimensional quantities are written
with hat (ˆ).
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3 Base Flow

Once familiar with the problem fundamentals, the work can be continued with base
flow analysis, which is a crucial and elemental part of this study that helps us to
understand how is the pipe flow behaviour in different scenarios and moreover, it is
also important for future steps when analyzing transient growth. The importance is
more than determining as it will be seen that some laminar flows are closer to develop
turbulence transition than others because of their base velocity profiles.

The following subsections particularize the two different situations guiding this
project: steady and unsteady/pulsatile base flow.

3.1 Steady Base Flow

Basing on Hagen-Poiseuille flow through an infinite cylindrical pipe, the steady base
flow (meaning that it does not change over time) could be considered in this case as
one-dimensional, having only an axial component that depends on the radial position,
such that: ~ub = wb(r) ~ez. Furthermore, pressure is driven by a constant gradient
’Gp’, satisfying also a constant rate flow constraint corresponding to Q=1. Hence, the

unknown variables correspond to pressure gradient and axial velocity

(
Gp

wb

)
.

Substituting this base flow properties in the momentum equation 2.8, it can be seen
that radial and azimuthal components banish and axial direction equation stands as:

0 = Gp +
1

Re

1

r

d

dr

(
rµb

dwb
dr

)
(3.1)

Where the viscosity base flow term writes as:

µb = µ∞ + (1− µ∞)

[
1 +

(
λ
dwb
dr

)a]nc−1
a

= µ∞ + µp (3.2)

As stated before, 3.1 is complemented with no-slip boundary conditions at the wall
and moreover, with the aim of solving this equation, the radial coordinate must be
discretized; in this case, by means of Chebyshev nodes (see section 3.1.1). Additionally,
since there is a non-linear term in 3.1, the iterative Newton’s Raphson method is the
one used to converge to the desired solution (see section 3.1.2).

Doing slightly further work, 3.1 could be expressed as the sum of a linear and
non-linear terms:

0 = ReGp + µ∞

(
1

r

∂

∂r
+

∂2

∂r2

)
wb +

(
1

r
+

∂

∂r

)(
µp
∂wb
∂r

)
(3.3)

0 = ReGp + Lwb + CNL ·NL (3.4)

Displaying the equation this way allows easier computation of the corresponding
Jacobian, which is strictly needed to evaluate each Newton iteration. So recalling that
’Gp’ and ’wb’ are the variables, the Jacobian reads as:

J =

(
0 2 · r · wei
Re L+ CNL · (µp ∂∂r + ∂wb

∂r

∂µp
∂wb

)

)
(3.5)

12



where first row corresponds to the constraint Q=1, with wei being the integration
Clenshaw-Curtis weights.

Steady Matlab code validation has been successfully done comparing the obtained
results with those already published in López-Carranza paper [15]. For this purpose,
base velocity profiles with the same parameters as the ones in [15] have been computed.
The following figures show the velocity profile for the Newtonian and non-Newtonian
scenarios with nc=1 and nc=0.5 respectively; λ=30, a=2, Re=1000 and µ∞=0.002 are
common in both cases.

(a) Newtonian fluid (b) Non-Newtonian fluid

Figure 3: Steady base flow validation

What is more, the mean square error has been computed for both situations, such
that for N=500 (number of radial discretized points):

Newtonian Non-Newtonian

MSE (m/s)2 6.87 · 10−7 6.80 · 10−7

Table 2: Steady base flow validation errors

3.1.1 Chebyshev discretization

The discrete rendering of the problem’s geometry is a crucial key when solving Com-
putational Fluid Dynamics (CFD) tasks, owing to the fact that the designated points
or cells where the flow properties are solved have a significant impact on the conver-
gence, solution accuracy and required time. Therefore, it is interesting to be able to
find a suitable balance between grid density, skewness, boundary layers, etc. to obtain
pleasant solutions.

Due to the accuracy they offer, we use Chebyshev polynomials in the radial direc-
tion. The first idea someone might have is to use equispaced points to generate the
grid; however, it turns out to be catastrophically bad in general. Hence, when doing
approximations in N equally spaced points, it not only fail to converge for large N, but
the approximation get worse at a rate that may be as great as 2N [22].

Thus, it can be deduced that the right idea would be to use unevenly spaced points.
Different sets of points are efficient, nevertheless they all share the following density
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property as N →∞:

density ∼ N

π
√

1− x2
(3.6)

In this thesis the so-called Chebyshev points set, which satisfy 3.6, are used:

xj = cos

(
jπ

N

)
, j = 0, 1, 2, ..., N. (3.7)

Geometrically, these points can be visualized as the projections on [-1,1] of equi-
spaced points on the upper half of a unit circle; so accordingly, they appear to be
clustered towards the boundaries. The effect of using clustered points on the accuracy
of the approach is terrific compared with equispaced grids, for spectral methods based
on polynomials.

Furthermore, these points can be used to construct the Chebyshev differentiation
matrices, as skilfully explained in ”Spectral Methods in Matlab” [22], which will be
certainly useful along the whole project.

3.1.2 Iterative Newton’s method

The discretized equations are solved iteratively using the Newton’s method, also known
as Newton–Raphson method. It is a root-finding based algorithm; thus, the system is
first evaluated on a set of initial guessed radial points (corresponding to the Newtonian
base flow velocity profile) that together with the corresponding jacobian, allows the
computation of the next better approximated result. Moreover, the handmade imple-
mented Newton code adds a new constraint: the following iteration is only computed
when the solution is closer to the desired one, is to say, when the solution is closer to
zero. If not, there is a step size parameter (ss) that helps to fulfill this requirement.

xk+1 = xk − ss
f(xk)

f ′(xk)
(3.8)

Therefore, in case the new solution is not closer to the desired one, the step size
parameter is taken to be: ss=ss/2. Once the requirement is fulfilled, ss is settled again
to ss=1.

So the iterative process is repeated until the error is reduced up to 10−12; once this
is reached, it can be considered that the result has converged and then it changes to
the next step, taking as initial velocity guess the previous converged profile. Moreover,
the Newton’s method also stops if k (number of iterations) is bigger than 200 or if ss
becomes very small without a converged solution.

Next figure display the flowchart which describe this Newton’s iterative method.
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Figure 4: Newton’s interative method flowchart.

3.2 Unsteady Base Flow

Unsteady base flow corresponds to the scenario when the laminar flow changes over
time; specifically, in this project a pulsatile model has been chosen such that the im-
posed pressure gradient constraint meets the following flow rate relation,
Q=um-Acos(wt), being ’um’ the mean velocity; ’A’ and ’w’ the amplitude and angular
frequency of the pulsation respectively. Transition to turbulence in this case also de-
pends on a new parameter called Womersley number Wo, which represents the relation
between pulsation frequency (f ) and viscous effects:

Wo =
D

2

√
2πf

ν
(3.9)

So now, since the problem is time dependent, an additional term corresponding to
the laminar velocity time derivative must be added to the equation 3.1.

Re
∂wb
∂t

= ReGp + Lwb + CNL ·NL (3.10)

Time discretization has been chosen to be carried out by a second order backward
differentiation formula (BDF2), which is an implicit method for numerical integration.
For a given function and time, this multistep method approximates the respective
derivative using previously computed values. Hence, the corresponding BDF2 formula
for the problem y’=f(t,y) would be:

yn+2 −
4

3
yn+1 +

1

3
yn =

2

3
hf(tn+2, yn+2) (3.11)

where h denotes the integration step size.
Bearing this in mind, as well as recalling that ’Gp’ and ’wb’ are the unknown vari-

ables, the unsteady flow Jacobian reads as:

J =

(
0 2 · r · wei

−2
3
dtRe Re− 2

3
dt[L+ CNL · (µp ∂∂r + ∂wb

∂r

∂µp
∂wb

)]

)
(3.12)
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Finally, the pulsatile Matlab code validation has also been successfully done for
the Newtonian case, such that the computed profile has been validated with Sexl-
Womersley exact analytical solution.

For instance, the following plots correspond to a Newtonian fluid with parameters:
A=1, Wo=15 and Re=2000 in two different times.

(a) t=mT, m=0,1,2... (b) t=(2m+1)T/2, m=0,1,2,...

Figure 5: Unsteady base flow validation.

Once again, the mean square error corresponding to both different times has been
computed; so taking into account that m=0,1,2,... the respective mean square errors
for N=80 are:

t=mT t=(2m+1)T/2

MSE (m/s)2 1.46 · 10−6 9.95 · 10−7

Table 3: Unsteady base flow validation errors
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4 Transient Growth Analysis (TGA)

In this section, the transient evolution of perturbations on top of the previous base
flows is considered. So first of all, the corresponding linearization of the Navier-Stokes
equations will be seen, followed by a brief description of the theoretical fundamentals
and as a last section, also a short and concise explanation of the method used to
implement TGA.

4.1 Disturbance and linearized Navier-Stokes equations

”Hydrodynamic stability theory is concerned with the response of a laminar flow to
a disturbance of small or moderate amplitude” [10]. Generally, disturbances are con-
sidered infinitesimal so that further simplifications could be justified; for instance, the
governing linear equation of the disturbance evolution is yearned. However, nonlinear
effects turn out to be significant once the disturbance velocities grow above the base
flow; at this point, the linear equations are not completely precise to predict the dis-
turbance evolution. Despite the fact that the linear equations have a limited region
of validity they are of great importance for physical growth mechanisms detection, as
much as dominant disturbance types identification.

Thus, the base flow is initially perturbed by an infinitesimal disturbance (u,p) such
that: U=~ub+εu and P=pb+εp, where variables ’~ub’ and ’pb’ correspond to the base flow.
The governing time evolution equation of the disturbance is obtained by introducing
these perturbations to the momentum equation, keeping the lowest order (linear) terms
in ε and setting quadratic terms to zero:

∂u

∂t
+ (~ub∇)u + (u∇)~ub = −∇p+

1

Re
∇(~τub+u − ~τub) (4.1a)

∇u = 0 (4.1b)

Regarding the solution of 4.1, two main questions have to be considered. The
first one states: is there a solution that grows boundless? If so, the base flow ~ub
is linearly unstable. The second question stands for: given a linearly stable base
flow, is there any bounded solution that manifest large transient growth before the
inevitable decay? In these cases, it can be considered that the base flow is linearly
stable; however, susceptibility to nonlinear instability is present, as well as some local
regions of convective instability. Hence, when answering both questions, it is wished
to find the perturbation that produces optimal growth.

As noted before, an infinitesimal disturbance is applied; therefore, the term standing
for the shear stress tensor ~τ ′=~τub+u − ~τub has to be linearized around the base flow
(~ub,pb). To this purpose, detailed analysis of each term is performed, starting with
viscosity term µ(~ub + u), which is linearized by a Taylor expansion. It should be called
up that ~τ(~u)=µ(~u)γ̇(~u), besides taking into account that γ̇ is a linear term so: γ̇(~ub+u)
= γ̇(~ub) + γ̇(u).

µ(~ub + u) = µ(γ̇b + γ̇(u)) = µb +
1

2

∂µ

∂γ̇ij

∣∣∣∣
b

: γ̇ij(u) = µb +
∂µ

∂γ̇rz

∣∣∣∣
b

(
∂w

∂r
+
∂u

∂z

)
(4.2)
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Introducing 4.2 in ~τ ′, as well as neglecting infinitesimal terms:

~τ ′ = ~τub+u − ~τub = µ(~ub + u) [γ̇(~ub) + γ̇(u)]− µbγ̇b = µbγ̇(u) +
∂µ

∂γ̇rz

∣∣∣∣
b

(
∂w

∂r
+
∂u

∂z

)
γ̇b

(4.3)

∂µ

∂γ̇rz

∣∣∣∣
b

= (1− µ∞)(nc − 1)λa
[
1 + λa

∣∣∣∣∂wb∂r

∣∣∣∣a]nc−1
a
−1 ∣∣∣∣∂wb∂r

∣∣∣∣a−1 ∂wb

∂r

|∂wb

∂r
|

(4.4)

Once the disturbance shear stress tensor has been worked out, next step would be
applying the divergence at each term:

∇(µbγ̇(u)) = µb4u +

(
∂µb
∂r

, 0, 0

)
γ̇(u) = µb4u +

 2ur
∂µb
∂r

[vr + 1
r
(uθ − v)]∂µb

∂r

[uz + wr]
∂µb
∂r

 (4.5)

∇
(
∂µ

∂γ̇rz

∣∣∣∣
b

(wr + uz) γ̇b

)
= ∇


0 0

[
∂µ
∂γ̇rz

∣∣∣∣
b

(wr + uz)

]
∂wb

∂r

0 0 0[
∂µ
∂γ̇rz

∣∣∣∣
b

(wr + uz)

]
∂wb

∂r
0 0

 =

=


∂
∂z

[
∂µ
∂γ̇rz

∣∣∣∣
b

(wr + uz)

]
∂wb

∂r

0

∂
∂r

[
∂µ
∂γ̇rz

∣∣∣∣
b

(wr + uz)

]
∂wb

∂r


(4.6)

In accordance, shear stress tensor divergence would write as:

∇~τ ′ = µb4u +

 2ur
∂µb
∂r

+ ∂µ
∂γ̇rz

∣∣
b
(wrz + uzz)

∂wb

∂r

[vr + 1
r
(uθ − v)]∂µb

∂r

[uz + wr]
∂µb
∂r

+ [A1] ∂wb

∂r
+ ∂µ

∂γ̇rz

∣∣
b
(wr + uz)

∂2wb

∂r2

 (4.7)

A1 =
∂

∂r

(
∂µ

∂γ̇rz

∣∣∣∣
b

)
(wr + uz) +

∂µ

∂γ̇rz

∣∣∣∣
b

(wrr + uzr) (4.8)

Finally, after having developed the other terms from 4.1a, plus splitting in velocity
components, the linearized Navier-Stokes equations (LNSE) for an infinitesimal distur-
bance are obtained:

ut + wbuz = −pr +
1

Re

[
µb

(
4u− u

r2
− 2

r2
vθ

)
+ 2ur

∂µb
∂r

+
∂µ

∂γ̇rz

∣∣
b
(wrz + uzz)

∂wb
∂r

]
(4.9)

vt + wbvz = −1

r
pθ +

1

Re

[
µb

(
4v − v

r2
+

2

r2
uθ

)
+

(
vr +

1

r
[uθ − v]

)
∂µb
∂r

]
(4.10)
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wt + u
∂wb
∂r

+ wbwz = −pz +
1

Re

[
µb4w + (wr + uz)

∂µb
∂r

+ A1
∂wb
∂r

+
∂µ

∂γ̇rz

∣∣
b
(wr + uz)

∂2wb
∂r2

]
(4.11)

Equations 4.1b, 4.9, 4.10 and 4.11 are linear, periodic in θ and unbounded in z (due
to the cylindrical domain); so moreover, as introduced in Meseguer et al. paper [4],
all solutions to these equations can be expressed as superposition of complex Fourier
modes of the form

u(r, θ, z, t) = ei(βθ+αz)u(r, t); p(r, θ, z, t) = ei(βθ+αz)p(r, t) (4.12)

where β ∈ Z and α ∈ R are the azimuthal and axial wavenumbers respectively.
Introducing 4.12 into 4.9, 4.10 and 4.11 gives simplified equations that are easier to
implement in Matlab.

4.2 Theoretical fundamentals

4.2.1 Linear stability

As distinctively explained in [5], a linear evolution operator Λ(t) could be defined to
represent the disturbance evolution forward in time:

u(t) = Λu(0) (4.13)

Through this forward evolution operator it is easy to access the linear stability of
the base flow. Two different scenarios could be distinguished: for a steady base flow,
LNSE are autonomous with eigenmode solutions of the form u(x,t)=exp(λjt)~uj(x)+C;
for an unsteady periodic base flow (with period T), LNSE becomes a Floquet problem
with solutions of the form u(x,t)=exp(λjt)~uj(x,t)+C, where ~uj(x,t+T)=~uj(x,t).

In either case, an eigenvalue problem in terms of the operator Λ(T) is obtained once
time t is settled to a value tf .

Λ(tf )~uj = ηj ~uj, ηj = exp(λjtf ) (4.14)

The dominant eigenvalues of Λ(tf ), ηj of the largest modulus, are used to determine
the classical linear stability of the base flow.

– If any ηj comply with |ηj| >1, there exist exponentially growing solutions and
the base flow is linearly unstable.

– If every ηj comply with |ηj| <1, all solutions decay to zero and the base flow is
linearly stable.

– |ηj|=1 is a sign of bifurcation point

4.2.2 Transient Growth assessment

In particular, what is about to be studied is the second main question introduced in
the linearized equations section (4.1): given a linearly stable base flow, is there any
bounded solution that manifest large transient growth before the inevitable decay?
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Perturbations will exhibit substantial transient response due to regions of localized
convective instability, as [5] corroborate. The asymmetry of the convective terms in
the Navier-Stokes equations leads to non-orthogonal eigenmodes; the aforementioned
affects the form of the dynamics of interest, which in fact won’t be an exponential
function of time multiplying a fixed modal shape. Hereafter, transient growth analysis
is going to be the way to quantify such dynamics.

Transient growth is assessed as the normalized perturbation energy at time τ to its
initial energy. Considering normalized initial perturbations, a new parameter known
as energy growth (G), the one that is optimized in this method, is defined as the ratio
between the total perturbation kinetic energy at time τ and t0:

G(τ) =
E(τ)

E(0)
= ||u(τ)||2 = (u(τ),u(τ)) (4.15)

Where the standard L2 inner product is present:

(u,v) =

∫
Ω

uvdυ (4.16)

Introducing 4.13 into 4.15 leads to:

E(τ)

E(0)
= (Λ(τ)u(0),Λ(τ)u(0)) = (u(0),Λ∗(τ)Λ(τ)u(0)) (4.17)

Being Λ∗(τ) the adjoint evolution operator of Λ(τ). Henceforth, the main question
should be remodeled: which is the disturbance that leads to maximal growth? For
the stability problem, the greatest importance falls on the dominant eigenvalues, since
they stand for the ”worst case scenario”, so the eigenfunctions corresponding to the
dominant eigenvalues (λj) of Λ∗(τ)Λ(τ) will describe the largest possible growth.

Gmax(τ) = max
E(τ)

E(0)
= maxλj (4.18)

4.3 Improved Projection Scheme (IPS)

In this subsection, the numerical method implemented to compute transient growth
is explicitly detailed. This specific scheme has been chosen since its efficiency and
outstanding temporal behaviour for sufficiently large time integration are a key feature
to capture three-dimensional simulations of unsteady flows.

One of the major problems when solving the incompressible Navier-Stokes equa-
tions concerns the coupling of pressure and velocity to satisfy the incompressibility
constraint. Indeed, the pressure gradient varies for time-dependent flows while pre-
serving its boundary value fixed, held at its initial value, during time integration. To
assess this, a pressure predictor is introduced to provide a suitable pressure field with
a divergence free velocity. As it is also highlighted in [12], the temporal scheme’s
accuracy order used is kept for the pressure and velocity when using this algorithm.

4.3.1 IPS for Newtonian fluids

Considering an incompressible Newtonian fluid, the respective governing Navier-Stokes
equations:

∂u

∂t
+ (u∇)u = −∇p+

1

Re
4u (4.19)
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Distinguishing the linear and non-linear terms, the former equation could be ex-
pressed as:

∂u

∂t
+NL(u) = −∇p+

1

Re
L(u) (4.20)

∇u = 0 (4.21)

Applying divergence on the Navier-Stokes, plus taking into account that velocity is
divergence free (∇u=0), the Poisson equation is derived:

∇NSE → ∇(
∂u

∂t
) +∇NL(u) = −4p+

1

Re
∇L(u)→ ∇2p = −∇NL(u) (4.22)

However, a consistent boundary condition is required to solve the Poisson equation,
which can be derived from 4.20 and 4.21:

∂p

∂n̂
= n̂

[
−∂u

∂t
−NL(u) +

1

Re
L(u)

]
(4.23)

As remarkably mentioned in [12], the time accuracy of the global solution is directly
dependent on the treatment of these pressure boundary conditions. So now, it should
be remembered that spatial approximation is accomplished by Chebyshev discretization
and the temporal scheme obey an Adams-Bashforth and BDF combination of second-
order accuracy, such that equation 4.20 reads as:

3un+1 − 4un + un−1

2∆t
+ 2NL(un)−NL(un−1) = −∇pn+1 +

1

Re
4(un+1) (4.24)

By such means, the main steps to follow in order to get the perturbation components
proceed as:

(i) Pressure pn+1 prediction:

4pn+1 = −∇
(
2NL(un)−NL(un−1)

)
(4.25)

∂pn+1

∂n̂

∣∣∣∣
wall

= n̂

[
−3un+1

bc + 4un − un−1

2∆t
− 2NL(un) +NL(un−1) +

1

Re
(2L(un)− L(un−1))

]
(4.26)

Where ubc stands for the velocity boundary conditions.

(ii) Velocity u∗ prediction from the momentum equation, including the new pressure
field and with boundary condition u∗=un+1

bc .

3u∗ − 4un + un−1

2∆t
+ 2NL(un)−NL(un−1) = −∇pn+1 +

1

Re
4(u∗) (4.27)

(iii) Intermediate step. An intermediate variable φ, defined as φ = 2∆t
3

(p∗(n+1)−pn+1),
is introduced when the final divergence-free velocity field is explicitly evaluated,
such that:

3un+1 − 3u∗

2∆t
= −∇(p∗(n+1) − pn+1) (4.28)

So taking the divergence of the former equation, a new Poisson equation for φ
arise

4φ = ∇u∗ (4.29)
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which can be solved together with the consistent Neumann boundary condition,
as a means to get φ:

∂φ

∂n̂
= 0 (4.30)

(iv) As a last step, update the corrected velocity field:

un+1 = u∗ −∇φ (4.31)

Finally, this scheme is applied to the linear Navier Stokes equations for a Newtonian
fluid and their corresponding adjoint to integrate forward and backward in time iter-
atively, until a Krylov space is built and from which is possible to obtain the optimal
perturbation for each specific Wm, Re, λ and A scenario.

It has to be noted that TGA code was already implemented in [6] study; new
contribution appears in the next section where the non-Newtonian terms will be taken
into account to compute Transient Growth Analysis.

4.3.2 IPS for non-Newtonian fluids

In this section, IPS for an incompressible non-Newtonian fluid is introduced. For
this purpose, few line code modifications have been done in order to insert the non-
Newtonian contribution to the model.

Therefore, the equations leading this scenario are nothing more than the linearized
Navier Stokes equations for a non-Newtonian fluid presented in section 4.1, corre-
sponding to equations 4.9, 4.10 and 4.11, which could be expressed in the compact
form (similar to eq. 4.20):

∂u

∂t
+NL(u) = −∇p+

1

Re
[µbL(u) +NN(u)] (4.32)

What is more, NN term can be treated just like NL. Hence, NL’(u)=NL(u)-
1
Re

NN(u) and:
∂u

∂t
+NL′(u) = −∇p+

1

Re
µbL(u) (4.33)

Applying again divergence on the former equation, a different expression than the
Poisson equation is obtained; since as quickly seen, the appearance of the viscosity (µb)
prevents the linear term from vanish.

∇(
∂u

∂t
)+∇NL′(u) = −4p+

1

Re
∇(µbL(u))→ ∇2p = −∇NL(u)+

1

Re
L(u)∇µb (4.34)

The consistent boundary condition required to solve the previous equations reads
as:

∂p

∂n̂
= n̂

[
−∂u

∂t
−NL′(u) +

1

Re
µbL(u)

]
(4.35)

Hereafter, the following discretization treatment keeps the same as the IPS Newto-
nian case, as well as the four main steps.
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5 Convergence Analysis

As well argued in section 3.1.1, the discrete rendering of the problem’s geometry is a
crucial key when solving CFD tasks in view of the fact that convergence and solution
accuracy depend on it. During the base flow results analysis, it has been surprising to
discover that the viscosity profile is not at all well defined, wiggles appear throughout
the whole domain. Hence, the main goal of the following analysis is to determine the
minimum number of radial nodes (Nmin) needed to satisfactory capture the viscosity
behaviour for different increasing λ values, which is the dimensionless fluid’s time
constant. Besides, in this convergence analysis Chebyshev nodes are left out for finite
differentiation using an equispaced grid of stencil 7.

With the aim of finding Nmin, a fixed velocity profile, specifically corresponding to
t=0.5T Sexl-Womersley base flow for Wo=15, Re=2000 and A=1, has been chosen to
be the one for viscosity computation. It should be noted that any other velocity profile
could be valid to carry out this convergence analysis; however, the interest falls on
the profiles with more complex shapes. In other words, the interest falls on the ones
with maximums/minimums near the pipe wall that would trigger the viscosity rapidly
to 1 (because the velocity derivative would be zero), giving way to the appearance of
sudden peaks in the viscosity profile.

dWb

dr
= 0→ µ = µ∞ + (1− µ∞)

[
1 + λa ·

(
dWb

dr

)a](nc−1)/a

→ µ = 1 (5.1)

Hence, this is the reason why t=0.5T Sexl-Womersley profile is chosen and not
t=0 for example. Figure 6 shows the appearance of the mentioned peak due to the
minimum in the velocity profile between 0.8 < r < 1. Moreover, the peak is not well
defined and the purpose of this study falls on finding the minimum radial nodes Nmin

such that this crest is well delineated. Figure 7 displays the chosen velocity profile with
its corresponding radial derivative, which remains the same throughout the analysis.

Figure 6: Velocity (left) and viscosity (right) profiles for Newtonian fluid in two different
instants (t=0 and t=0.5T) for Wm=15, Re=2000 and A=1.
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Figure 7: Velocity and its corresponding derivative profiles for t=0.5T Newtonian fluid
with Wm=15, Re=2000 and A=1.

So, starting from a fixed low λ value and N =80, the viscosity profile (µb) is com-
puted, from which the term C (used to assess convergence) can be determined:

C(N) =

∫
r

µ2
b(N) dr (5.2)

Subsequently, while increasing the radial nodes it is possible to compare the new
C value with the previous one, such that this N rising procedure is continued until a
constraint is fulfilled. In this specific case, the required restriction was for the last four
C values to have an error between them smaller than 10−8. Once this is reached, it
could be said that the Nmin value is found; for instance, a plot of the error tendency
can be seen below, so that error decreases as increasing N.

Figure 8: Convergence error for λ=0.5 and µ∞=0.0616, using equispaced nodes in finite
elements with stencil 7.

Afterwards, the same methodology is carried out but for a slightly higher λ value;
such that finally, convergence analysis has been performed for λ ∈ [0.5,25] with small
dλ=0.5 increments. Moreover, the current study has also been completed for two
different µ∞ values; µ∞=0.0616 corresponding to the blood shear viscosity at infinite
shear rate and µ∞=0.2, three times (approximately) the former one.
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The ensuing figure displays the final minimum radial nodes Nmin for each fluid time
constant and for both µ∞ values. At first, it was expected to obtain an exponential
dependency relation between Nmin and λ, for higher λ higher Nmin; nevertheless, the
surprising observed behaviour is by no means the former one. What can be witnessed
is a staggered trend:

Figure 9: Minimum radial nodes (Nmin) required to fulfill viscosity convergence for
different λ and µ∞ values.

This is due to the radial nodes position, which are not always placed in the most
optimal spot to capture the exact viscosity behaviour; for instance, care must be taken
concerning characteristics positions as inflection, maximum and minimum points, that
is why in figure 8 the error points start to scatter at a certain point. Figure 10 shows
that actually, using the minimum radial nodes found for each respective λ, the viscosity
profile is well defined.

Summarizing, a high amount of radial nodes can be expected to be required to
solve the problem for high fluid’s time constants, which would be quite a problem for
the blood scenario since the corresponding λs are of the order of hundreds and thou-
sands, as it will be seen. On the other hand, it should also be noted that Chebyshev
discretization is not the most appropriate grid to use when solving the problem; how-
ever, a compromise has had to be found between the time required by the simulations
and the discretization scheme accuracy in order to be able to consider the results as
pleasant enough, without the need of spending many hours in the process.
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Figure 10: Viscosity profiles for different λ with each respective Nmin required for a
good shape definition.
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6 Results and discussion

6.1 Base flow analysis

A blood base flow study has been carried out in this section in order to discover
the blood laminar behaviour in different segments of the cardiovascular system, for
both steady and unsteady base flows. For that reason, the descending aorta, left
carotid artery and cerebral capillaries have been chosen to perform laminar flow profile
simulation, with Carreau law modeling the blood viscosity. The following table shows
the specific parameters for each cardiovascular section scenario after the corresponding
research and adimensionalization process:

r̂(m) ûbmax (m/s) λ µ∞ Wo

D. Aorta 1.6·10−2 1.17 242.2631 0.0616 15
L. Carotid 3.1·10−3 6.76·10−1 722.4477 0.0616 5

Cerebral capillaries 2.0·10−6 0.79·10−3 1308.6350 0.0616 2

Table 4: Cardiovascular sections parameters

Before running the simulations, the held hypothesis was to expect a similar Newto-
nian blood behaviour in large arteries [7], as the shear-thinning effects due to the shear
rate on the walls wouldn’t be strong enough to affect the pipe center; while a flattened
velocity profile was expected to be seen for the smallest vessels, for instance the cere-
bral capillaries, due to the more concentrated shear rate. However, the corresponding
results are fairly surprising; a completely opposite behaviour is reflected.

Figure 11: Blood steady laminar velocity and viscosity profiles.

The aorta blood (largest vessel) behaviour is the least similar to the Newtonian fluid;
once the vessels start narrowing, the profile increasingly resembles the Newtonian case.
The aforementioned is a consequence of µ∞ and λ values, as well as their respective
relationship. In order to better understand what is happening, following steps refers
to a parametric study.

It should be recalled that µ∞ is the fluid’s viscosity at infinite shear rate, which
means viscosity will converge to this µ∞ value for higher shear rate. Subsequently, the
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convergence speed depends on parameter λ, which is the fluid’s relaxation time; the
higher the λ is, the faster the convergence to µ∞. Therefore, for a fixed µ∞ (taken
to be approximately three times the blood viscosity at infinite shear rate, µ∞ = 0.2)
and increasing λ (figure 12), the viscosity profile reaches faster the infinite shear-rate
viscosity region, where the fluid behaves as a Newtonian one with viscosity µ∞. Hence,
as the transition region is also becoming narrower for higher λs, the velocity profile
does not have enough time to rearrange itself and resembles the Newtonian scenario,
but with a lower viscosity. However, for lower λs the fluid takes longer to reach the
infinite shear rate region, which allows the velocity profile to readjust and to have a
flattened shape, as it will be the λ = 5 case.

The aforementioned could be also tested from another point of view: fixing λ and
varying µ∞ (figure 13). In this case, decreasing µ∞ implies longer time for the fluid to
reach the desired infinity shear-rate viscosity, so the fluid has more time to considerably
change its velocity profile than for higher µ∞ values. Consequently, as µ∞ decreases,
velocity profile stops resembling the Newtonian case and flattens out.

Figure 12: Base flow velocity and viscosity profiles for fixed µ∞=0.2, nc=0.35, a=2,
Re=2000 and changing λ

Figure 13: Base flow velocity and viscosity profiles for fixed λ=5, nc=0.35, a=2,
Re=2000 and changing µ∞

Ergo, it can be now understood why blood velocity profiles in different cardiovascu-
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lar system sections look like in such a way. Table 4 display higher λ values for smaller
vessels, with constant µ∞ (since in this study Carreau model is applied); then, it has
been proved that when λ increases, viscosity reaches faster the infinite shear-rate vis-
cosity region where the fluid resembles the Newtonian case with viscosity µ∞, because
the hasty transition region hasn’t allowed it to rearrange itself into a much distinctive
profile. So, that is why cerebral capillaries base flow resembles more the Newtonian
case.

The same kind of study can be extrapolated to the pulsatile scenario. Therefore,
different time instant profiles corresponding to specific conditions will be observed,
such that the most remarkable flow features may be differentiated. For instance, one
could start by analyzing what happens when the fluid time constant is fixed and µ∞
varies; in this case, the chosen µ∞ values correspond to µ∞=0.0616 (blood) and µ∞=0.2
(x3 blood).

(a) t=mT, m=0,1,2... (b) t=(4m+1)T/4, m=0,1,2...

(c) t=(2m+1)T/2, m=0,1,2... (d) t=(4m+3)T/4, m=0,1,2...

Figure 14: Velocity and viscosity profiles for λ=5, Re=2000, Wo=15 and changing µ∞
for different times. Red dashed lines correspond to Newtonian case, blue and green to
non-Newtonian case with µ∞=0.2 and µ∞=0.0616 repectively.

Regarding the velocity profile, a similar behaviour to the one observed for the steady
case can be verified; for lower µ∞ values, more time is available for the fluid to reach the
µ∞ viscosity and therefore, its profile differs more from the Newtonian case. However,
a peculiar detail to highlight would be the behaviour near the pipe walls; a less smooth
profile is witnessed compared to the Newtonian fluid and the appearance of several
inflexion points are quite interesting for what they may entail in the future transient
growth analysis. Moreover, for lower µ∞ values, narrower and more exaggerated the
new behaviour near the walls is.

On the other hand, the corresponding viscosity profiles for each chosen time instant
are plotted. As it can be readily seen, the accuracy is not as pleasant as expected; this
is due to the radial nodes (Chebyshev, N =80) used in the spatial discretization, whose
impact has been deeply studied and explained in the previous section of Convergence
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Analysis. Besides, as the time goes on, the viscosity profile evolution is captured in the
previous plots, exposing peculiar peaks near the walls that were not previously seen in
the steady scenario.

Facing the problem from another point of view could be fixing µ∞ and changing the
fluid’s time constant λ. The witnessed behaviour in the pulsatile scenario shows more
clearly the shear-thinning effects than in the steady state; the velocity profile acquires
a flatter profile and moreover, with a special shape near the walls. In particular, the
higher the λ values are, the steeper the profile becomes near the boundaries. What
is more, this behaviour with respect to lambda is maintained for different mu infinity,
Womersley and Reynolds.

(a) t=mT, m=0,1,2... (b) t=(4m+1)T/4, m=0,1,2...

(c) t=(2m+1)T/2, m=0,1,2... (d) t=(4m+3)T/4, m=0,1,2...

Figure 15: Velocity and viscosity profiles for µ∞=0.0616, Re=2000, Wo=15 and chang-
ing λ for different times. Red dashed lines correspond to Newtonian case; blue, green
and pink to non-Newtonian case with λ=5, λ=20 and λ=200 repectively.

In addition, it should be taken into account that for the unsteady pulsatile base flow
the new parameter Wo (Womersley number) appears, such that it could be deduced
both velocity and viscosity profiles depend on it too. Indeed, the dependency would
be as depicted in figure 16; decreasing Wo leads to a softer velocity profile whose vis-
cosity peculiar peaks shift slightly farther from the pipe wall, as the inflection points,
maximums and minimums in the velocity profile move towards the pipe center. This
behaviour makes sense since higher Wo means less viscous effects (remember Womer-
sley relation: Wo= D/2

√
w/ν) so the flow does not have as much resistance and can

acquire a steeper profile than the ones for low Womersley.
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(a) t=mT, m=0,1,2... (b) t=(4m+1)T/4, m=0,1,2...

(c) t=(2m+1)T/2, m=0,1,2... (d) t=(4m+3)T/4, m=0,1,2...

Figure 16: Velocity and viscosity profiles for λ=5, Re=2000, µ∞=0.2 and changing Wo
for different times. Red dashed lines correspond to Newtonian case; blue, green and
pink to non-Newtonian case with Wo=15, Wo=12.5 and Wo=10 repectively.

Finally, unsteady base flow profiles for the same cardiovascular sections presented at the
beginning of this section (descending aorta, left carotid and cerebral capillaries) have
also been computed. Different fluid time constants and Womersley numbers describe
the blood problem, the only fixed parameter in this case is the infinite shear-rate
viscosity.

Even if we could expect a softer profile for the descending aorta, because it has the
lowest time constant, what is actually seen is the narrowest behaviour near the wall.
This is due to Womersley number, which is higher, and its influence on the profile
shape is stronger than λ’s one. On the other side, cerebral capillaries are the ones with
highest λ but lowest Wo, so the profile is the softest among all.

(a) t=mT (b) t=(4m+1)T/4 (c) t=(2m+1)T/2 (d) t=(4m+3)T/4

Figure 17: m=0,1,2... Pulsatile base flow Descending Aorta velocity profiles for dif-
ferent instants. λ=242.2631, µ∞=0.0616 and Wo=15. Red dashed and blue lines
correspond to Newtonian fluid and Desc. Aorta respectively.
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(a) t=mT (b) t=(4m+1)T/4 (c) t=(2m+1)T/2 (d) t=(4m+3)T/4

Figure 18: m=0,1,2... Pulsatile base flow Left Carotid Artery velocity profiles for
different instants. λ=722.4477, µ∞=0.0616 and Wo=5. Red dashed and pink lines
correspond to Newtonian fluid and Left Carotid Artery respectively.

(a) t=mT (b) t=(4m+1)T/4 (c) t=(2m+1)T/2 (d) t=(4m+3)T/4

Figure 19: m=0,1,2... Pulsatile base flow Cerebral Capillaries velocity profiles for
different instants. λ=1308.6350, µ∞=0.0616 and Wo=2. Red dashed and green lines
correspond to Newtonian fluid and Cerebral Capillaries respectively.

6.2 TGA results

So far, how to approach the problem and a deep review of what is happening with
pipe base flow for a non-Newtonian fluid, as the blood, have been seen. Following,
in this section, the TGA results are analysed and discussed. However, before directly
addressing the results, a brief refresh could be useful. The Transient Growth Analysis
method performs a non-modal stability analysis making use of the linearized Navier
Stokes equations and assuming small enough flow perturbations; linearization has been
performed for Newtonian and non-Newtonian disturbances (as seen in section 4.3).
Thus, in this framework the perturbations grow through linear mechanisms on top of
the base flow profile.

So, the most dangerous initial velocity perturbation is computed using TGA in
terms of energy growth, out of a wide range of azimuthal and axial wavenumbers, is
to say, out of all initial perturbation shapes, initial ’t0’ and final ’tf ’ pulsation phases;
such that the larger this energy gain is, the easier the transition to turbulence will be.

Newtonian and non-Newtonian perturbations on top of the same base flow, for small
fluid’s time constants, have been analyzed; what is captured is basically the same
optimal disturbance. The helical shape is preserved for both scenarios, as well as
the initial and final phase to obtain maximal growth. The only term that differs
concerns the energy growth, such that non-Newtonian perturbation is slightly more
amplified than the Newtonian one (see table 5). However, as the results are quite the
same, proved with the following figures (20 and 21), and it is known that for higher
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λ the viscosity problem is not completely well defined and it would require too many
discretization nodes, hereafter only Newtonian perturbations on top of non-Newtonian
base flows are considered.

For the following table concerning the Newtonian and non-Newtonian perturbations
TGA results, remember that α and β stand for axial and azimuthal wavenumbers
respectively.

Gmax α β t0/T tf/T

Newtonian 1064.6160 3 1 0.3 1
non- Newtonian 1104.7449 3 1 0.3 1

Table 5: Newtonian and non-Newtonian perturbations TGA results.

(a) (b)

Figure 20: Optimal (a) Newtonian and (b) non-Newtonian perturbations at maximal
growth (t=1T) on top of non-Newtonian base flow with λ=0.06, Wo=15, Re=2000,
A=1, a=2, nc=0.35 and µ∞=0.2.

(a) (b)

Figure 21: Energy plot for (a) Newtonian and (b) non-Newtonian perturbations on top
of non-Newtonian base flow with λ=0.06, Wo=15, Re=2000, A=1, a=2, nc=0.35 and
µ∞=0.2.

Hence, the dependence of the Newtonian perturbation energy gain with respect of
the different parameters that define the flow could be analyzed to highlight the most
important features. Starting with Reynolds number, one could verify that for higher Re
the maximum gain Gmax is also remarkably higher, fact that has already been proven
at previous works as Duo Xu et al. [6] for Newtonian base flows. Thinking about
this result plus remembering that Reynolds number is defined by Re=uD/ ν, a logical
explanation can be found: higher Re implies lower ν, is to say, less viscous effects, such
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that the perturbation has more freedom and less resistance to develop and amplify
itself (see figure 23 (a)).

Concerning the Womersley number, the behaviour is now the opposite: for higher
Wo (Wo> 10), less amplification. This can be related with the optimal perturbation
shape; it has been proven that lower Wo corresponds to helical perturbation shapes (for
all λ values), while higher Wo lead to stream-wise geometries, the classical one, also
for all λ values. Therefore, it could be deduced that in a certain point, as Womersley
number and λ increase, a change in the perturbation shape (from helical to stream-
wise) will be perceived. After a proper parametric analysis it has been found when this
shape alteration occurs, for two different scenarios: for µ∞=0.0616 the perturbation
reshaping takes place at Wo=10 and λ ∈ [5,20]; and for µ∞=0.2 the perturbation
modulation takes place at Wo=12.5, also in the fluid’s time constant range λ ∈ [5,20].
So, as well as in [6], for sufficiently large Wo the classic disturbance dominates and the
optimal gain G of steady pipe flow is recovered.

A graphic representation is attached in the following figures, for µ∞=0.0616, Wo=10
and Re=2000 scenario.

(a) λ=5 (b) λ=20

Figure 22: Upper right plot: Optimal perturbations at maximal energy growth for (a)
λ=5, t=0.9T and (b) λ=20, t=0.8T. Upper left plot: contour of vorticity on a r-θ
cross-section. Bottom plot: time series of the energy growth of the optimal (a) helical
(α,β)=(3,1) and (b) classic (α,β)=(0,1) disturbances at (Re,A,Wo)=(2000,1,15).

For the parameter values of figure 22 (a), the optimal disturbance has a helical
structure with (α,β)=(3,1) and is localized at the outer half of the pipe. The optimal
point to disturb is during the deceleration phase at t0=0.5T, as well as the maximum
amplification is reached also during the deceleration phase at t0=0.9T. In this case,
the kinetic energy of the optimal helical perturbation is mostly distributed in the
stream-wise and azimuthal components (which indicates a strong three-dimensional
effect), which self-amplify rapidly during the deceleration phase and start decaying
from t=0.9T on. Initially the disturbance spirals clock-wisely towards the pipe center;
as the energy grows, the perturbation switches the spiraling direction.

The classic α=0 , β=1 optimal disturbance observed in figure 22 (b) consists of
stream-wise vortices, which means the energy is subsequently transferred to the stream-
wise velocity components, while the cross-stream ones decay monotonically. Overall
the classic perturbation’s behavior appears to be rather insensitive to the change in
flow profile throughout the cycle and the decay is very slow. In fact, this tendency was
already noticed by Duo Xu et al. [6].
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The aforementioned result regarding the change of geometry for different µ∞ may lead
to deduce that the energy gain depends on the infinite shear rate viscosity too. Fig-
ure 23 (c) clearly shows the corresponding relationship between G and µ∞; for lower
viscosity values, less energy gain, so less danger to trigger transition to turbulence.
Moreover, this result agrees with the one above, such that lower viscosity values corre-
spond to lower energy amplifications; this could entail a sooner perturbation geometry
change.

(a) Wo=15, µ∞=0.2 (b) Re=2000, µ∞=0.2 (c) Re=2000

Figure 23: Maximal energy growth with respect (a) Reynolds number for different λ,
(b) fluid’s time constant for different Wo and (c) fluid’s time constant for different Wo
and µ∞.

Finally, moving to the blood scenario one should pay more attention on the De-
scending Aorta cardiovascular section, since it is the one where turbulence transition
is most critical regarding deaths.

It has been found that the most dangerous perturbation, which can trigger easily
transition to turbulence, consists of stream-wise vortices. This outcome completely
agrees with the result previously found; perturbation geometry change from helical to
classic disturbation for µ∞=0.0616 (blood scenario) occurs at Wo=10, and actually
the descending aorta works for higher Womersley, as seen in the following table.

λ µ∞ Wo Gmax α β t0/T tf/T

Desc. Aorta 242.2631 0.0616 15 201.2604 0 1 0 1.7

Table 6: Desc. Aorta parameters and TGA results for the most dangerous perturbation
to trigger turbulence transition.

Figure 24 (b) shows that the energy is transferred to the stream-wise velocity com-
ponent, while the cross-stream components decay quickly and monotonically. The opti-
mal point to disturb is during the acceleration phase, specifically just at the beginning
of the period, and the maximum energy amplification is reached at the deceleration
phase, after 1.7 periods from the initial phase: tf=1.7T. Finally, figure 25 displays
the 3D perturbation shape at its maximum energy amplification point and contour
vorticity on a r-θ cross-section.
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(a) (b)

Figure 24: (a) Energy growth of the optimal stream-wise disturbance at
(Re,A,Wo)=(2000,1,15) for the desc. aorta λ=242.2631 and µ∞=0.0616. (b) Time
series of kinetic energy contribution of each velocity component for the optimal distur-
bance.

Figure 25: Optimal perturbation at maximal energy growth (tf=1.7T) for the de-
scending aorta λ=242.2631, µ∞=0.0616. Upper left plot: vorticity contour on a r-θ
cross-section. Bottom plot: time series of the energy growth for two periods.
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7 Conclusions

To put the whole project in a nutshell, I could gladly state that the main goals have
been successfully fulfilled. For instance, the state of the art study led us to use the
Carreau-Yasuda model to approximate the viscosity behaviour; this model has been
proven to be exceptionally outstanding for the steady driven case. Surprisingly, after
the pulsatile flow study, Carreau-Yasuda law has turned out to not really be a good
model to approximate the blood flow problem. This is because the corresponding
shear-thinning blood parameters (µ̂0, µ̂∞, nc, a, λ̂) are determined from steady driven
experiments (not for time dependent flows) where shear-thinning is applied until the
flow stabilizes; after that, the results are fitted in a curve which meets the model. So,
to get a better approximation for the blood flow problem, one should take into account
new parameter values which fit the pulsatile scenario and other blood properties, as it
could be the viscoelasticity.

Refering to the practical part of the project, base flow Matlab codes have been
implemented with flying colours, validating them with previous works as the one from
Xu et al. [6] for Newtonian fluids and with Lopez-Carranza paper [15] for steady
non-Newtonian case. What is more, the unsteady non-Newtonian case has also been
covered and it has been discovered that the dimensionless fluid’s time constant λ pa-
rameter has a huge impact on the laminar flow profile, which later will also be crucial
for Transient Growth Analysis. Concerning the unsteady pulsatile case, the new pa-
rameter, Womersley number, takes possession and it is basically the one which rules
the velocity profile and consequently, the viscosity profile, which has let us notice that
Chebyshev discretization grid is not the best one to treat the problem, but using finite
elements.

Finally, Transient Growth study has uncovered that Newtonian and non-Newtonian
perturbations introduce quite the same danger concerning turbulence transition (for
small lambdas) in non-Newtonian base flows, such that the energy gain behaviour with
respect Reynolds and Womersley numbers is the same as found by Duo Xu et al. [6].
For higher Reynolds, higher energy amplification and for higher Womersley, lower gain.

Last but no least, despite the model’s limitations, the most important goal of this
project was to find the most dangerous perturbation for turbulence transition in the
descending aorta, in view of the fact that it is the cardiovascular section where turbu-
lence is most critical regarding deaths. The optimal perturbation has turned out to
be a stream-wise disturbance with maximum amplification after 1.7 periods since its
introduction in the base flow.

I truly think this research line is of deep importance in order to better understand
what is going on in our vessels and also to be aware and try to prevent misfortunes.
However further work and model improvement are still left to be done as a means to
properly describe the problem and to be able to suitably modelize real blood behaviour;
starting from choosing an upgraded non-Newtonian viscosity model, until an appropri-
ate discretization scheme that can actually capture the precise blood behaviour.
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