
 Abstract—The widespread use of mobile devices, as well as the
increasing popularity of mobile services has raised serious
cybersecurity challenges. In the last years, the number of
cyberattacks has grown dramatically, as well as their complexity.
Traditional cybersecurity systems have failed to detect complex
attacks, unknown malware, and they do not guarantee the
preservation of user privacy. Consequently, cybersecurity systems
have embraced Deep Learning (DL) models as they provide
efficient detection of novel attacks and better accuracy. This paper
presents a comprehensive survey of recent cybersecurity works
that use DL in mobile and wireless networks. It covers all
cybersecurity aspects: infrastructure threads and attacks,
software attacks and privacy preservation. First, we provide a
detailed overview of DL techniques applied, or with potential
applications, to cybersecurity. Then, we review cybersecurity
works based on DL. For each cybersecurity threat or attack, we
discuss the challenges for using DL methods. For each
contribution, we review the implementation details and the
performance of the solution. In a nutshell, this paper constitutes
the first survey that provides a complete review of the DL methods
for cybersecurity. Given the analysis performed, we identify the
most effective DL methods for the different threats and attacks.

Index Terms—Cyberattacks, Deep Learning, Machine
Learning, Mobile Networking, Privacy, Security, Wireless
Networking

I. INTRODUCTION
HE number of individuals that continuously use mobile

devices connected to the Internet in their daily lives, both
for entertainment and work, is constantly increasing [1]. This
upsurge of mobile devices, applications and services has raised
important cybersecurity challenges due to the exponential
increase of attacks and their sophistication [2][3]. On top of
that, the growing diversity and complexity of mobile network
architectures has increased the number of security breaches. It
has cast a shadow on the adoption of smart mobile applications
and services, which has been amplified by the large number of
different platforms that provide data, storage, computation, and
application services to end-users. All this makes security in
mobile networks complex and challenging. According the
NDIA Cybersecurity Report [4], more than 25% of industry
professionals have experienced a cyberattack, being the
companies with more than 500 employees the most affected
(44%). Moreover, most of these companies are not confident in
their ability to recover from a cyberattack within one day.
Traditional cybersecurity systems fail to detect complex

Manuscript received January 31, 2020.
Eva Rodríguez, Beatriz Otero, Norma Gutiérrez and Ramon Canal are with

the Department of Computer Architecture, Universitat Politecnica de
Catalunya, Barcelona, Spain (e-mail:evar,botero,norma,rcanal}@ac.upc.edu.

attacks, as well as unknown malware and they do not guarantee
the preservation of users’ privacy. In a first attempt, Machine
Learning (ML) techniques were adopted to improve their
functionalities [5], but they have not succeeded in identifying
the different types of threats and intrusions, especially for
unforeseen and unpredictable attacks. This has led
cybersecurity systems to embrace DL models.

DL is a ML subfield, which enables computational models
composed of multiple processing layers to learn different data
representations. It is inspired on the brain’s ability to learn from
experience, and thus, it performs representation learning
through multi-layer transformations. In DL, there are multiple
levels of features, which are automatically discovered and
composed together in various levels to produce the outputs. Its
major benefit over ML is the automatic feature extraction that
avoids the tedious labor of generating feature representations
manually. Moreover, the self-learning capability of DL
improves the processing speed and accuracy of applications.
DL has gained great recognition in many areas such as image
processing, speech recognition, game playing, and
bioinformatics. Nowadays, academia and industry are applying
DL to a wider range of applications due to its improvement in
accuracy in complex tasks, fostered by recent developments in
hardware and software. Similarly, DL techniques are starting
to be used in the security domain to improve cybersecurity
systems.

Cybersecurity comprises the processes and tools used to
protect confidentiality, integrity and availability of resources
and assets in the cyberspace [6]. At first, traditional
cybersecurity systems protected users and devices through
Intrusion Detection Systems (IDS), user authentication, data
encryption, firewalls, and anti-virus software. IDSs [7] were
designed to detect malicious network traffic, abnormal
behaviors and intrusion attempts in computer systems. Two
different types of IDSs exist depending on where the intrusion
detection is deployed. (1) Host-based IDSs monitor each host,
and if they detect malicious activity, for example, the
modification of system files or configuration changes, they alert
the user. (2) Network-based IDSs check anomalies in the
network traffic. They are placed at a network node, for instance,
in a router or a gateway. Moreover, IDSs can also be classified
according to the method used to detect the intrusion. Signature-
based detection systems, also denoted as misuse-based, detect

A Survey of Deep Learning Techniques for
Cybersecurity in Mobile Networks
Eva Rodríguez, Beatriz Otero, Norma Gutiérrez and Ramon Canal

T

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/COMST.2021.3086296

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

known attacks based on predefined patterns for malicious
network activities. They provide high accuracy in detection, but
they cannot detect novel (zero-day) attacks. On the other side,
anomaly-based detection systems aim to identify unknown
attacks. The detection is based on the definition of normal and
anomalous behavior patterns. However, they lack high
accuracy. Initially, both approaches made extensive use of
classical ML techniques [8]. But, they lack automatic feature
engineering, they have a low detection rate [9], and they are not
efficient in detecting small variants of existing attacks.
Consequently, along with the increasing complexity of hacking
incidents, ML techniques have been incapable of detecting
complex attacks, unknown malware or preserving users’
privacy. Consequently, DL techniques are now the focus of
cybersecurity research.

In recent years, Information Technology (IT) organizations
are conducting cybersecurity reports lead by the increase of
cyberattacks affecting organizations worldwide. According to
the 2019 SIM IT Trends Report [2] and the Cisco Cybersecurity
Report [3], cybersecurity represents the most critical IT
management issue. 84% of the organizations spend more than
20% of their IT budget on cybersecurity (2x increase only in the
last three years) [10]. Cybersecurity reports identify most
common cyberattacks and they classify them in three different
areas: Web, Cloud and Internet of Things (IoT). The 2018
Internet Security Report (ISTR) [11] states that web attacks on
endpoints increased by 56%. One in ten URLs analyzed was
identified as malicious. Most alerts were form-jacking incidents
(i.e. malicious JavaScript code to steal credit card data and other
payment information). Form-jacking attacks compromised
4,818 websites on average every month. Another large set of
alerts result from Living off the Land (LotL) attacks (i.e. break
into the organizations’ systems via trusted programs and then
malicious code injection). The most common LotL are
malicious emails, which increased 48% with respect to 2017.

In the Cloud, a wide range of security challenges are
observed due to two factors: misconfiguration in hardware
equipment, and poorly secured Cloud databases. These caused
the theft or leakage of 70 million records in 2018. The number
of attacks in IoT stabilized in 2018, after a massive increase of
600% in 2017. The leading cyberattacks in IoT are worms and
bots, while infection vectors emerge. Routers and connected
cameras are the most infected devices receiving 75% and 15%
of the attacks respectively. Moreover, Distributed Denial of
Service (DDoS) attacks [12] represent the third most common
IoT threat in 2018, with as many as 16 different types of DDoS
attacks. Finally, while the overall number of malware infections
falls during 2018, enterprise ransomware increases by 12%, and
mobile ransomware increases by 33%.

The 2019 MacAfee Security Report [13] points out the rapid
evolution of malware and, specially, malware applications in
mobile phones. 2019 also represents the year of “everywhere
malware”, since IoT devices, as medical devices, IP cameras,
or smart elevators, are (and still may be) inherently vulnerable
and easy to hack. Backdoors, crypto-mining, fake apps, and
banking trojans are the largest contributors. Finally,
ransomware attacks increased by 118% in 2019.

The Check Point Software Security Report 2020 [14] reviews
the major 2019 cyber incidents. The leak of more than half a
billion records of Facebook in an unprotected Amazon Cloud
takes the lead. The second largest incident is the attack suffered
by the American Medical Collection Agency, compromising
personal data and payment information of more than 20 million
patients. Similar to the MacAffe Security Report, it highlights
the increase and sophistication of malware and ransomware
attacks that are affecting also local governments and healthcare
organizations. Specifically, in 2019, the botnet infection
affected 28% of the organizations analyzed. These
cybersecurity reports conclude that today’s hyper-connected
world provides more opportunities to cybercriminals. Any IT
environment must be protected against future attacks. In this
context, it is where DL improves traditional cybersecurity
systems as it is capable of detecting novel attacks.

Security organizations are developing commercial DL-based
cybersecurity solutions to protect systems against cyber threats.
Symantec [15] launched an attack analytics tool which
integrates Artificial Intelligence (AI) techniques to discover
targeted attacks. Similarly, Vectra developed Vectra’s Cognito
platform [16] which uses AI techniques to detect real time
attacks in IoT devices. Sophos Corporation [17] launched
Intercept X tool, which applies DL models to detect threats.
IBM developed the IBM’s QRadar Advisor tool [18] that uses
DL methods to identify malicious attacks based on cognitive
analysis.

In this paper as in [19][20], cybersecurity attacks are
classified in three main categories: infrastructure, software, and
privacy. The infrastructure area comprises all the intrusion and
anomaly attacks at the network level. Researchers started to use
DL methods for cyber-attack detection [21] following the
experience in traffic classification problems [22]. DL
techniques prevent attacks by identifying patterns that are
different from normal behaviors (e.g. anomaly-based network
intrusion detection [14][23]). Moreover, cyberattacks share a
common feature with image recognition, since more than 99%
of the new attacks are a small mutant of existing attacks. In the
same way that changes in images can be identified by small
changes in their pixels. Thus, signatures, and patterns are
automatically learned and generalized to detect future attacks
[23]. In the software area, DL is used in malware, ransomware
and botnets detection, since they are rapidly evolving to
circumvent signature-based solutions [24]. The number and
variety of malware attacks is increasing continuously, which
makes it difficult for traditional methods (e.g., anti-virus
software) to efficiently defend systems. New malware usually
consists of small modifications of an existing one. Attackers
improve the mechanisms of infection, obfuscation or payloads.
Therefore, malicious applications of the same family have
strong similarities in terms of code and behavior. This leads
cybersecurity systems adopt DL in malware detection [25][26],
malware classification [27][28], botnet detection [29][30] and
ransomware detection [31][32]. Finally, in the privacy area, DL
methods are used to protect user privacy. Initial works [33][34]
address user privacy preservation in all types of Neural
Networks (NN). Hereafter, NNs are trained with differential

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

privacy [35][36] to avoid disclosure of private information.
More recent works [37] train NNs with encrypted data.

This paper bridges the gap between DL and security,
providing a comprehensive survey of DL methodologies and
techniques relevant to security in mobile networks.
Summarizing, this survey aims to:

• Determine the cybersecurity areas that use DL
techniques.

• Identify the challenges for successful application of
DL to cybersecurity.

• Provide a complete review of research work that
applies DL techniques for cybersecurity in mobile
networks.

• Identify the most important and promising directions
for further study.

To the best of our knowledge, research papers and books in
the literature, which are reviewed in Section II, only address
partially the aims of this work. The rest of the paper is as
follows: Section III reviews essential DL techniques applied or
with potential application to cybersecurity. Section IV reviews
the datasets used by cybersecurity applications and the metrics
used in the evaluation process. Section V reviews recent DL
research works. Section VI summarizes the lessons learned and
identifies current challenges and open future directions. Finally,
section VII concludes the paper.

II. RELATED WORK
In the last years, DL and cybersecurity have crossed their

paths. We can, now, find DL methods in the three cybersecurity
areas (infrastructure, software and privacy). This introduction
is motivated by two reasons: (1) the large majority of new
cyberattacks are small mutants of existing attacks or
combinations of them; and (2) DL methods have improved their
accuracy in complex tasks through recent software and
hardware developments. Given the significance of DL and
cybersecurity, surveys and tutorials are emerging. In general,
they provide a biased overview of DL methods used for a
specific type of cyberattacks, or they are restricted to specific
environments or applications. Table I provides an overview of
existing works, a summary of its contribution and the
cybersecurity area.

In the infrastructure area, Hodo et. al. [38] conduct the first
review of ML and DL-based IDS. The authors define an IDS
taxonomy based on the data source (host or network) and the
intrusion technique (anomaly or signature based). ML and DL
techniques are reviewed, as well as their performance in
detecting anomalies. Their conclusion is that learning
algorithms of deep networks, especially Convolutional NNs
(CNN) and Deep Belief Networks (DBN), significantly
outperform shallow networks in detection. Kwon et al. [7]
provide a more specific survey on anomaly-based network
intrusion detection. They shed more light on unsupervised and
generative learning DL methods since they provide an overview
of anomaly detection methodologies, and they consider data
reduction, dimensionality reduction and classification. The

Restricted Boltzmann Machine (RBM), DBN, CNN and
Recurrent NN (RNN) methods are reviewed for network traffic
analysis, being CNNs the most promising classifiers for
intrusion detection. Xin et. al. [39] provide a more complete
review of ML and DL methods for network intrusion detection.
This survey reveals the key obstacles in this area: (1) small
quantity of benchmark datasets; (2) not uniform evaluation
metrics; and (3) deployment efficiency more significant than
considered, (as experiments are not performed in real
networks). Also, in the intrusion detection area, Ferrag et al.
[40] conduct a comparative study of DL methods, mainly RNN,
Deep NN (DNN), RBM, DBN, CNN, Deep Boltzmann
Machine (DBM), and deep autoencoder (DAE). The methods
are analyzed using two datasets: CSE-CIC-IDS2018 [41] and
Bot-IoT [42]. The study concludes that CNN and DAE methods
achieve the best accuracy, 97% and 98% respectively, obtaining
also best performance results for both datasets.

Other surveys address DL works in the infrastructure and
software security areas. Mahdavifar and Ghorbani [43] review
the works that use DL models for intrusion detection, web site
defacement detection, phishing detection, and malware
detection and classification. This work classifies DL models in
generative, discriminative, and hybrid, according the taxonomy
provided by Deng et. al. [44]. Generative DL architectures are
powerful at modelling the input data taking advantage of the
benefits of data synthesis and pattern analysis. Discriminative
architectures do not consider the data generation process, they
learn the conditional probabilities of classes given the visible
data, and then, they classify the data. Finally, hybrid
architectures use a generative model to improve discrimination
in two aspects: optimization and regulation. Malware detection
uses generative architectures (e.g. Autoencoder (AE), Stacked
AE (SAE), RNN) and hybrid architectures (e.g. CNN, DBN).
Likewise, malware classification also uses generative (e.g.
SDAE, RNN) and hybrid (e.g. DNN) architectures. In contrast,
intrusion detection mostly uses AE, Long Short-term Memory
(LSTM), DBN, and DNN models. Subashini et. al. [45] extend
this work by reviewing ML and DL algorithms. They mostly
focus on the infrastructure area for intrusion and anomaly
detection, and they marginally outline the contributions in the
software area for botnet and malware detection. Unlike other
surveys, [45] reviews Nature Inspired computing (NIC)
paradigms which are applied for fine-tuning the parameters in
the security learning model to categorize attacks. This improves
efficiency and performance. The study concludes that RBM,
DNN, RNN, and Suport Vector Machines (SVM) are the most
used models for network anomaly and intrusion detection.
While SAE, SVM, CNN and DBN are most used for malware
detection and classification. In the same vein, Berman et. al.
[46] and Singla et. al. [47] also cover cyberattacks in the
infrastructure and software areas. The two surveys review AE,
CNN, RNN and Generative Adversarial Networks (GAN)
models used to detect cyberattacks. They focus on a subset of
attacks that include malware, botnets, and network intrusions.
Singla et al. [47] highlight the lack of accuracy in IoT
environments for devices with low processing capabilities.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Other surveys focus on specific environments or
applications, mainly Android applications, Cloud, IoT-Fog
computing, and Cyber-Physical Systems (CPS). Surveys that
review cybersecurity attacks on Android devices are conducted
by Zachariah et. al. [48] and Scalas et al. [49]. The former
analyzes existing malware detection techniques in the Android
OS. This work reviews both, static and DL-based approaches.
The latter makes an in-depth analysis of ML and DL-based
ransomware detection techniques, but focusing on those that
make use of system application programming interface (API)
information.

Another field, gaining special relevance, where surveys are
starting to emerge is IoT. Al-Garadi et al. [20] review the usage
of ML and DL methods in IoT security. The authors provide an
analysis of the vulnerabilities and attack surfaces. They are
categorized into physical device, network and cloud services,
and web and application interfaces. This survey also provides
an in-depth analysis of ML and DL methods and their
application to each of the IoT layers. In the same area but from
a totally different perspective, Hemdan and Manjaiah [50]

review research works that use Big Data Analytics to detect and
prevent cyberattacks. They analyze the usage of Big Data
Analytics and DL in Social Networks, Cloud Computing and
IoT to predict new attacks.

Finally, in the CPS area, Wickramasinghe et al. [51]
concisely review DL algorithms used in security applications.
The authors analyze regularization techniques to improve the
generalization capabilities of DL-based security applications.
More specifically, they analyze the DL models used in the
infrastructure area, mainly for intrusion and anomaly detection,
and in the software area for malware detection. In the CPS
domain, several industry and academic experts share their
vision on AI-based cybersecurity solutions [52]. This work
focusses on the infrastructure and privacy areas. Contributions
of special interest encompass DoS attacks detection and
Federated Learning for data privacy preservation. In the same
line, Zeadally et al. [53] review cybersecurity issues in the IoT
and CPS domains. They analyze cybersecurity attacks launched
on different network stacks and applications, and discuss their
impact. They first present an overview of non-AI security

TABLE I
SUMMARY OF EXISTING SURVEYS RELATED TO DL FOR CYBERSECURITY

Publication Summary Scope
Infrastructure Software Privacy

Hodo et. al. [38]
(2017)

Overview of shallow and deep networks IDS. ✔

Kwon et al. [7]
(2019)

Survey of DL methods (unsupervised learning) for anomaly based intrusion
detection.

✔

Xin et al. [39]
(2018)

Survey of ML and DL methods for intrusion detection. ✔

Ferrag et al. [40]
(2020)

Comparative study of DL methods for intrusion detection. ✔

Mahdavifar and
Ghorbani [43]
(2019)

Survey of DL methods for intrusion detection and malware detection and
classification.

✔ ✔

Subashini et al. [45]
(2020)

Review of ML and DL methods for intrusion and anomaly detection, and botnet
and malware detection.

✔ ✔

Berman et al. [46]
(2019)

Survey of DL methods for cybersecurity, analyzing works in the infrastructure and
software areas.

✔ ✔

Singla et al. [47]
(2019)

Analysis of DL methods for security tasks in malware analysis, intrusion detection
and botnet detection.

✔ ✔

Zachariah et al. [48]
(2017)

Overview of malware detection techniques.

 ✔

Scalas et al. [49]
(2019)

Review of Android ransomware detection techniques. ✔

Al-Garadi et al. [20]
(2018)

Survey of ML and DL methods for IoT Security. ✔ ✔ ✔

Hemdan and
Manjaiah [50]
(2020)

Review of research works using Big Data Analytics to detect and prevent
cyberattacks.

✔ ✔

Wickramasinghe et
al. [51] (2018)

Survey of DL methods for Cyber-Phisical security applications. ✔ ✔

Sedjelmaci et al.
[52] (2020)

Special issue on AI-based cybersecurity solutions in CPS. ✔ ✔

Zeadally et al. [53]
(2020)

Survey of cybersecurity attacks and AI-based solutions in IoT and CPS. ✔ ✔

Zhang et al. [19]
(2019)

Survey of DL methods in mobile and wireless networking ✔ ✔ ✔

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

solutions, discuss their weaknesses and describe how emerging
AI solutions can help to improve cybersecurity. The AI-based
solutions encompass the network infrastructure and software
areas focusing on IoT and CPS.

Finally, the most complete survey is elaborated by Zhang et
al. [19]. The authors review works in DL for mobile and
wireless networking. This survey provides a review of the state-
of-the-art on DL practices in different domains including data
analysis, user mobility analysis, network control, security, and
signal processing. In the security field, authors summarize
existing works in the three security areas: infrastructure,
software and privacy. Authors provide an interesting
conclusion for network attacks. They state that DL methods do
not guarantee the detection of all possible new attacks and
propose the improvement of DL solutions by means of: (1)
transfer learning, which is the rapid transfer of knowledge from
existing attacks to newer ones, and (2) lifelong learning,
continuously updating the model with the features of new
attacks. Nevertheless, as the survey is not focused on security it
does not provide an in-depth analysis of existing works.

The works described previously in this section do not
completely cover the different DL techniques used for
cybersecurity in mobile networks. Some of them address a
subset of the wide range of possible cyberattacks in networks,
systems or applications. While other surveys are restricted to
specific domains, as IoT, CPS, or Android OS. This work goes
beyond these previous surveys and reviews all the works in the
literature that use DL techniques to improve cybersecurity
systems in mobile and wireless networking. We analyze a wide
range of DL methods that are increasingly used by
cybersecurity systems and that are not completely covered by
previous works. For all the works analyzed in this survey, we
review the implementation details (i.e. the libraries used for
deploying and training the NNs and the optimization
algorithms) and we analyze and compare the results reported
wherever possible.

In summary, this work differentiates from earlier surveys on
the following:

• It reviews all the research works in the different
security areas: infrastructure, software and privacy

• It considers all different scenarios in mobile and
wireless networking, including Cloud, Fog computing,
IoT, CPS, etc.

• It analyzes the implementation for almost all the works
(except those that do not provide it), as well as the
evaluation performed. When possible, we also
compare the different proposals.

Finally, to the best of the authors’ knowledge this is the first
survey that provides a complete review of DL methods used for
cybersecurity applications.

III. DEEP LEARNING METHODS USED IN CYBERSECURITY
APPLICATIONS

This section reviews DL history and summarizes the most
common DL methods used in cybersecurity applications which
include Multilayer Perceptron (MLP), CNN, RNN, LSTM, AE,

RBM, and DBN.

A. Deep Learning overview
In the 1950s, AI started to emerge. It was in 1956 in the

Dartmouth Conference [54] when Dr. McCarthy proposed that
“machines can be programmed to reason simulating every
aspect of learning or any other feature of intelligence”. In this
area there are different fields that are tightly related: AI, ML,
Artificial NNs (ANNs) and DL. Figure 1 presents a taxonomy
showing the relations between them.

The aim of AI is to automatize intellectual tasks usually
conducted by humans, while ML and DL are the specific
methods that lead to this goal. In turn, ANNs [55] are ML
algorithms inspired by biological neural networks that model
complex real-world problems. ANNs can be defined as
computing structures designed with simple processing
elements, called artificial neurons or nodes. Neurons are fully-
connected and simulate the way a human brain processes
information, and solves problems. ANN consist of three or
more interconnected layers. They are able to perform massively
parallel computations, enabling them to improve their results as
more data is inserted to the model. McCulloh and Pits [56] in
1943, were the first ones that modeled the operation of simple
artificial neurons. This milestone marked the beginning of DL
modern history. Artificial neurons were implemented in 1958
by Rosenblatt [57], which introduced supervised learning,
through the perceptron, in the area of character recognition. The
perceptron consists of a few layers of neurons connected by
adaptive weights. Networks with one hidden layer fall in the
shallow learning category, while networks with multiple hidden
layers pertain to the DL category. In 1965, Minsky and Papert
[58] identify the limitations of the perceptron. In the 1980s,
Hopfield [59] presented the potential of NNs which promoted
the adoption of ML techniques in many applications that people
use daily (e.g.in web search, recommendation, image
recognition, speech to text conversion) [21]. Initially, ML
techniques exploited shallow architectures that typically
contained only one layer of nonlinear feature transformations to

Fig. 1. AI taxonomy: ML, SNN, NLP, ASR, ANN and DL.

Artificial Neural
Networks (ANN)

ArtificiaI Intelligence (AI)

Spiking
Neural

Networks
(SNN)

Human
Brain-inspired

Machine Learning (ML)

Natural
Language

Processing (NLP)
/Automated

Speech
Recognition

(ASR)

Deep
Learning

(DL)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

transform the raw input into a problem-specific feature space.
ML algorithms are based on either supervised, unsupervised,
semi-supervised, or reinforcement learning [60]. Supervised
learning algorithms make use of the training data to learn a
function by mapping certain features from the training data into
some output. They are applied to datasets that have features
with associated labels that enable the ML model to emulate the
expert’s input data. Common supervised ML approaches
include decision trees (DTs), SVM, Bayesian algorithms, k-
nearest neighbor (KNN), and random forest (RF). Unsupervised
algorithms are applied to datasets without labels. They map
directly the input to the output, without depending on human
intervention, learning automatically features at multiple levels
of abstraction. This approach learns useful properties from the
dataset structure and it detects patterns. Common unsupervised
ML approaches include Principal component analysis (PCA)
and K-means clustering. Semi-supervised algorithms are used
for datasets with labeled and unlabeled data, where all the
features are present but not all of them have associated targets.
It uses unlabeled data to improve supervised learning tasks,
when the labelled data is scarce or expensive. In reinforcement
learning the algorithm is trained for a specific task where an
overall outcome is desired. This approach is used in unknown
environments. In contrast to supervised learning, the system is
not trained with the sample dataset, the system learns through
trial and error. ML techniques result effective for solving
simple or well-constrained problems, but they present
difficulties when dealing with more complex real-world
applications since they have limited ability when processing
natural data in their raw form.

In the cybersecurity field, researchers first used ML
algorithms such as DTs, RF, SVM, Bayesian network and K-
Means to detect network attacks [61][62]. However, the
proposed solutions require manual feature engineering [63] and
the features obtained (such as number of requests, connection
time or number of bytes sent and received) are not able to fully
represent the pattern behavior of network attacks. DL methods
[39] that overcome ML limitations are currently used.

DL [64] is a sub-branch of ML that enables an algorithm to
predict, classify or make decisions based on data without
explicitly being programmed in a specific direction. DL
algorithms are more accurate than ML algorithms because of its
multilayer structure. Hierarchically, they obtain knowledge
from data through multiple layers of non-linear processing
units. DL tools do not rely on features defined by domain
experts, in contrast to ML tools. This fosters the adoption of DL
algorithms since they can extract knowledge from raw data
through multiple layers of nonlinear processing units. DL is
widely used by industry and academia. It extends to areas of
visual recognition, audio processing, natural language
understanding, pattern recognition, bioinformatics, mobile
networking, and cybersecurity. DL provides encouraging
results due to its high efficiency in studying complex data.
Besides the improvement in learning procedures, the main
factors that contribute to DNN success are: the ever-increasing
computing power, the advancements in software engineering,
and the massive generation of training data.

From 2016 onwards, DNN architectures and DL models are
being used in a wide range of application domains such as:
mobile wireless networking [19][65], network traffic control
systems [22], speech processing and computer vision [66], IoT
[67], recommender systems [68], and in cybersecurity. The rest
of this section describes the DL methods used in cybersecurity
applications.

B. DL methods
DL methods consist of different modules that transform the

representation from one level of the NN to the next, which is
more abstract. The first level receives the raw input data and the
last one produces the outputs. The combination of several levels
is needed to learn high complex models. Higher layers of
representation are used for classification tasks, which consider
the features of the input, as these are relevant for discrimination
and suppress minor variations. The key is that feature layers
self-configure directly from data (i.e. they are not designed
manually by engineers). DL methods, as ML methods, can be
classified in the following four main groups [64]: supervised,
unsupervised, semi-supervised, and reinforcement learning.

In the cybersecurity field, supervised learning algorithms are
widely used for privacy preservation and malware detection.
Semi-supervised learning has been proposed for Android
applications. While, unsupervised learning is the preferred for
network intrusion detection, and in IoT environments. Figure 2
summarizes the DL methods used or with potential to be used
in cybersecurity, and the most relevant are described in the next
paragraphs.

1) MLP
In ANNs [69], neurons are organized in layers and

connections are introduced from one layer to the next. MLP
[70], also known as Fully Connected Network (FCN), is one of
the first ANNs. It is considered the main architecture of DL and
it is based on the simplest and oldest neural model. It consists

Fig. 2. Overview of main DL methods for cybersecurity.

Deep learning algorithms

Convolutional Neural
Networks (CNN)

Deep Convolutional
Generative

Adversarial Networks
(DCGAN)

Deep Reinforcement
Learning (DRL)

Recurrent Neural
Networks (RNN)

Residual Neural
Networks (RsNN)

Recursive Neural
Networks (RsNN)

Long Short-Term
Memory (LSTM)

Gated Recurrent Unids
(GRU)

Recursive Autoencoders

Recursive Neural Tensor
Network

Unsupervised
Petrained
Networks

Autoencoders (AE)

Deep Belief Networks
(DBN)

Generative Adversarial
Networks (GANs)

Deep Neural
Networks (DNN)

Multilayer
Perceptron(MLP)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

of multiple layers of simple interconnected nodes (a.k.a
neurons). More specifically, it consists of three different types
of layers: one input layer, one or more hidden layers, and one
output layer. The MLP is fully connected (see Figure 3), which
means that all the neurons in a layer have connections to the
neurons in the adjacent layers. Connection weights determine
the correlation degree between the neurons’ activity level
(determined by the sum of the inputs of the node modified by
an activation function). MLP can be used in both supervised and
unsupervised DL techniques.

In the security area, MLPs have been successfully used for
the detection of novel attacks in different mobile scenarios [71],
especially for DDoS attacks [72][73][74].
2) CNN

CNNs [75][76], also known as ConvNets, were designed to
process data in the form of multiple arrays: 1D for signals and
sequences, 2D for images and 3D for video and volumetric
images. CNNs take advantage of the properties of natural
signals based on the following key ideas: usage of many layers,
local connections, shared weights, and pooling. They also use a
set of connected kernels to capture correlations between
different data regions.

The architecture of a CNN (see Figure 4) consists of three
different types of layers: convolutional, pooling and
classification. Convolutional layers are the core of the CNN,
where its units are organized in feature maps. Each unit in a
feature map is connected to the local patches in the feature maps
of the previous layer through a set of weights (filter bank). The
result of applying these filters goes through a non-linearity
transformation (usually, a rectified linear unit (ReLU)). These
convolutional kernels enable close physical or temporal
relationships and help reduce the memory requirements as they
apply the same kernel through the entire input.

The role of the pooling layers is to merge semantically
similar features into a single one by applying a specific function
(e.g., the maximum over non-overlapping subsets of the feature
map). Pooling layers reduce the size of the feature maps and the
number of overfitting parameters. This results in a reduction of
the memory requirements. Then, these layers are stacked and
fed into a fully connected DNN.

The convolutional and pooling layers were inspired by the
notions of simple and complex cells in visual neuroscience [77].

They have their roots in the neocognitron, which has a similar
architecture, but they lack of an end-to-end supervised learning
algorithm such as back-propagation. The first 1D CNN was
used for the recognition of phonemes and words [78].
Subsequently, they were applied to document reading, optical
recognition, and handwriting recognition systems [79]. In 2012,
in the ImageNet competition, CNNs evidenced their
performance in image classification by reducing the top-5 error
by 39.7% [67]. Over-fitting and gradient vanishing CNN
problems were reduced in GoogLeNet [80] and ResNet [81] by
increasing the depth of the CNN structures, and using inception
and residual learning techniques. This structure was improved
by the Dense Convolutional Network (DenseNet) [82], which
reuses feature maps from each layer reducing the number of
layers and improving accuracy.

In cybersecurity, Dense Convolutional Networks have been
successfully used for the detection of DDoS attacks [83],
android-malware [84], malware traffic classification [85],
encrypted traffic classification [86][87], and privacy-preserving
mobile analytics [88].
3) RNN and LSTM

RNN [89] is one of the most used models for training
sequential data. This type of NN is an extension of a
conventional feed-forward NN with cyclic connections. RNNs
are more powerful in modeling sequences. RNNs produce, at
each time step (t), an output (ot) via recurrent connections
among hidden units (st).

A standard RNN (see Figure 5) usually is trained via a Back-
Propagation Through Time (BPTT) algorithm to handle a
variable-length sequence input. In a BPTT, the model is first
trained, and then, for each time step, the output error gradient is
recorded. However, gradient vanishing and exploding problems
are frequently reported in traditional RNNs, which make them
particularly hard to train [90].

LSTM [91] overcomes gradient vanishing and exploding
problems of RNNs introducing the LSTM cell formed by a set

Fig. 3. MLP structure.

Fig. 4. CNN structure.

Fig. 5. RNN structure.

𝑥1~

𝑥𝑛−1

𝑥1

𝑥2

𝑥𝑛

𝑥𝑛−1~

𝑥2~

𝑥𝑛~

ℎ1

ℎ𝑚

Input
Layer

Hidden
Layers

Output
Layer

...

ℎ1

ℎ𝑚

...

𝑥1 𝑥2 𝑥3 𝑥𝑡...

𝑜1 𝑜2 𝑜3 𝑜𝑡...

𝑠1 𝑠2 𝑠3 𝑠𝑡...

Input layer
(in time i=1,...,t)

States layer
(in time i=1,...,t)

Output layer
(in time i=1,...,t)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

of gates, as depicted in Figure 6. In LSTM, three gates control
the information flow. The input gate determines the ratio of the
input, which affects the calculation of the cell state. The output
gate determines if the previous memory cell is going to pass.
The forget gate passes what the output gate stipulates.

LSTM has been successfully used in many applications in the
areas of speech recognition [92], wearable activity recognition
[93] and text categorization [94]. While, RNNs have achieved
outstanding accuracy in tokenized predictions [95]. Nowadays,
RNNs are used in intrusion detection systems [89] and in
mobile networks, since they produce massive sequential data
from different sources (traffic flows, the evolution of mobile
network subscribers’ trajectories, etc.).
4) Auto-encoders

AEs [96] and its families are one of the most applied DL
models, as they produce satisfactory results in unsupervised
learning. AEs learn the best parameters to reconstruct the output
to the same values as, or as close to, their inputs. An AE usually
has an input layer, a hidden layer, and an output layer with the
same dimension of the input layer. If the hidden layer has a
smaller dimension that the input layer the network is used for
encoding the data, and it is known as a sparse AE [97].

AEs are designed to provide a more powerful and non-linear
generalization than the PCA. To this end, back-propagation is
applied and the target values are set to the same value as the
inputs. AEs are also used as a non-linear transformation to
discover interesting data structures, to impose different
constraints on the network, and to compare the results with
PCA. First, the input is transformed in a lower-dimensional
space and then it is expanded to reproduce the input. For
modeling non-linear dependencies in the input, once a layer is
trained, its code is fed to the next layer. This code-layer is
typically used for classification, as a compressed feature vector.
AEs have been successfully used in the cybersecurity field for
malware classification and network-based anomaly detection
[23].

SAE [97] uses multiple layers of AEs to compress the
information. It consists of two symmetrical DBNs, which have
multiple layers for encoding and decoding. SAE achieves better
accuracy, and at the same time, it reduces the computational
costs and the training data required. The output of each hidden
layer is used as the input of the next hidden layer. In this way,
the first layer learns first-order features of the input, while the
second layer learns second-order features, and so forth. Figure
7 shows the structure of a SAE. SAEs have been used in several
application areas, achieving good results in object recognition

and image analysis. In the security area, they are adopted for
attack detection [21], and intrusion and anomaly detection [98].

Deep conditional generative models are used for output
representation learning and structured prediction. Output
distribution is modeled as a generative model which is
conditioned to the input observation. Conditional variational
AEs (CVAE) [99] take advantage of developments in
variational inference and directed graphical models [100]. Their
input observations modulate previous Gaussian latent variables
that generate the outputs. They have been successfully applied
in large-scale visual recognition, and intrusion detection
systems [101].
5) DBN

DBNs or Stacked RBMs can be viewed as a composition of
simple RBMs or AEs where each hidden layer serves as the
visible layer for the next layer.

A RBM [102] is an ANN method. It is initially designed for
unsupervised learning purposes that exploits unlabeled data to
learn usable patterns. RBM is an energy-based undirected
generative model that makes use of a layer of hidden variables
to model a distribution [103][104] over visible variables (see
Figure 8). Each variable can only take a binary value (0 or 1).

RBMs are proposed as building blocks of DBNs [105]. The
idea is that those hidden neurons extract relevant features from
the observations. Then, these features are used as input to
another RBM. Therefore, when stacking RBMs, features
learned from features achieve a high-level representation.

Fig. 6. LSTM Memory Cell structure.

Fig. 7. SAE structure.

Fig. 8. Graphical model of a RBM.

𝑥1~

𝑥𝑛−1

𝑥1

𝑥2

𝑥𝑛

𝑥𝑛−1~

𝑥2~

𝑥𝑛~

Input
Layer

Hidden
Layers

Output
Layer

... ...

𝑥3

𝑥4
...

ℎ1
(1)

ℎ2
(1)

ℎ𝑚
(1)

ℎ1
(2)

ℎ2
(2)

ℎ𝑚
(2)

𝑥3~

𝑥4~...

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

RBMs show great performance when applied to problems
involving high dimensional data as text [106] or images.
Stacked RBMs or DBNs are successfully applied to time series
forecasting [107], ratio matching [108], and speech recognition,
and they give better results than MLPs. In the security area they
are successfully used in intrusion detection [109] and malicious
code detection [110].

IV. EVALUATION METRICS AND DATASETS FOR
CYBERSECURITY

The previous section has presented the most significant DL
methods used in the cybersecurity field. This section describes
the metrics used in the evaluation process and the datasets used
in the training and testing phases.

A. Evaluation metrics
The DL-based cybersecurity works reviewed in this survey

use the following metrics [111] in the evaluation process:
accuracy (ACC), precision (p), False Alarm Rate (FAR), True
Positive Rate (TPR), False Positive Rate (FPR), specificity,
Receiver Operating Characteristic (ROC) curve, Area Under
the Curve (AUC), and 𝐹𝐹1 Score. These metrics can be computed
from a confusion matrix, i.e. a matrix representation of the
classification results (see Table II). True Positive (TP) and True
Negative (TN) denote the number of attack and normal records
correctly classified. Meanwhile, False Positive (FP) and False
Negative (FN) denote the number of normal and attack records
incorrectly classified.

From table II we can compute the metrics as detailed below.

ACC is the ratio of correctly classified predictions over the total
number of instances evaluated:

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

 (1)

p is the ratio of items correctly classified from the total of items
predicted:

 𝑝𝑝 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (2)

FAR represents the ratio of items incorrectly classified as class
C to all the items not classified as class C:

 𝐹𝐹𝐴𝐴𝐹𝐹 = 𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (3)

TPR (a.k.a sensitivity, Detection Rate (DR), Probability of
Detection(𝑃𝑃𝐷𝐷) and Recall(r)) represents the ratio of items
correctly classified (attack or normal) as class C to all the items
that were class C:

𝑇𝑇𝑃𝑃𝐹𝐹 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (4)

FPR represents the ratio of items incorrectly classified (attack
or normal) as class C to all the items in class C.

𝐹𝐹𝑃𝑃𝐹𝐹 = 𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (5)

Specificity represents the ratio of items correctly classified as
not class C, to all the items in class C. It is related to FPR as
follows:

 𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1− 𝐹𝐹𝑃𝑃𝐹𝐹 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (6)

The ROC curve [112] results of plotting TPR over FPR. Any
point in the ROC space corresponds to the performance of a
classifier on a given distribution. The ROC curve provides a
visual representation of the trade-off between the benefits
(TPR) and costs (FPR) of classification in relation to data
distributions.

AUC represents the area under the ROC curve (values range
between 0 and 1). It measures the degree of separability and it
helps to determine if the model can effectively distinguish
between classes. Figure 9 shows the relationship between these
two metrics.
𝐹𝐹1 score is the harmonic mean of p and TPR.

𝐹𝐹1 = 2𝑇𝑇𝑇𝑇
2𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

 (7)

B. Cybersecurity Datasets
This sub-section provides an overview of the datasets used in

the infrastructure and software areas. The datasets used in
privacy applications are not presented in this section because
they are not specific of security. Privacy studies use image
classification datasets.
1) Infrastructure datasets

Infrastructure datasets consist of network traffic, which
include cyberattacks detected by NIDS. NIDS datasets are
largely used to develop solutions for network systems to
prevent organizations from cyberattacks including, monitoring
and analyzing network traffic and raising an alarm when an
intrusion is detected. NIDS offers two datasets: signature-based
(SNIDS) and anomaly detection-based (ANIDS). In SNIDS,
attack signatures are pre-installed. Then, intrusions are detected
through pattern matching. They are effective and they achieve
a high detection accuracy in the detection of known attacks.
ANIDS detects intrusions when they observe deviations from

Fig. 9. ROC curve.

0.6 0.8 1.00.2 0.4

0.6

0.8

1.0

0.2

0.4

0.0

0.0

FPR
TP

R

ROC

AUC

TABLE II
CONFUSION MATRIX

 Predicted class

Normal Attack

A
ct

ua
l c

la
ss

 N
or

m
al

 True Negative
(TN)

False Positive
(FP)

A
tta

ck

False Negative
(FN)

True Positive

(TP)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

normal traffic patterns. They have potential on the detection of
new and unknown attacks. Existing attacks, detected by these
systems, can be classified in the following types:

Probing: These type of attacks [113] gather information
about computer networks to discover vulnerabilities of IP,
ports, and services to circumvent its security controls. For
example, scanning programs (satans, nmap, mscan, etc.) can be
used to discover open ports and services. Then, attackers exploit
these vulnerabilities.

Denial of Service (DoS): In this class of attacks, malicious
users cripple the services offered by a site, for example by
flooding a site with many requests [114]. In this way, they limit
or deny the system services to legitimate users. If the attack is
originated by multiple coordinated hosts, it is called DDoS.
There are different types of DoS attacks. Volume-based attacks,
in which attackers try to consume all network bandwidth
making impossible legitimate user access the site (e.g. by
sending to the victim server a high number of packets).
Examples include UDP or ICMP flood. Protocol attacks
overfloods resources such as memory and/or processing
capability in the victim. These leads to long waiting queues at
intermediate network devices (load balancers, routers,
firewalls, etc.). Examples include Smurf DDoS [115], where
attackers attempt to flood a targeted server with ICMP packets,
or SYN Flood [116], where attackers repeatedly send initial
connection request SYN packets to overwhelm the available
ports of the server. Finally, attacks in the application layer crash
the application (e.g. webserver) by sending legitimate messages
or requests. Examples include Zero-day or Slowloris attacks.
Slowloris attacks [117] leave connections to a targeted Web
server open as long as possible, by means of incomplete HTTP
requests.

Remote-to-local (R2L): In this type of attacks, the attacker
sends packets to a machine over a network, locating a
vulnerability in the machine and gaining access. In R2L attacks,
the attacker does not have an account on that machine. Some of
these attacks (imap, named, sendmail) are caused by buffer
overflows exploits in network programs. Others exploit
misconfigured security policies, as ftp-write, or dictionary.
While other attacks employ Trojans, for example, the xsnoop
employs password capture programs.

User-to-root (U2R): In this class of attacks, the attacker
begins accessing a normal user account on the system. Usually,
the attacker previously has gained access through an R2L
attack, for example, by sniffing passwords, or with a dictionary
attack. Then, the attacker exploits the system vulnerabilities to
gain root access. Examples of U2R attacks include
buffer_overflow, loadmodule, perl, rootkit, ps sqlattack and
xterm.

Nowadays, there are different datasets with network traffic
records, which include the attacks described. They contain a
large amount of data to simulate an IDS model both for training
and testing. The two most popular are the KDDCUP’99 [118]
and its enhanced version NSL-KDD [119]. The KDDCUP’99
dataset has been used for anomaly detection methods. It was
created for the KDD Cup challenge in 1999 and consists of
4,900,000 network traffic records, each one of them with 41

features (based on basic type, content type, and traffic type
features) labeled as normal or attack. Attack labels can be of
one of the following four categories: Probing, DoS, U2R or
R2L. Tavallaee et al. [120] statistically analyzed the KDD
dataset and found important issues in the data that affect the
performance of the evaluated systems. First, it contained a large
number of redundant and duplicate records, which lead learning
algorithms to be biased to the more frequent reports. Second,
the synthetic nature of the network and data, make the dataset
an inaccurate representation of real existing networks. To solve
this, they proposed an enhanced version of the dataset called
NSL-KDD, which consists of 125,973 training records and
22,544 testing records. Each with 41 features, as the
KDDCUP’99.

Another widely used network dataset is the ISCX [121],
which includes HTTP, FTP, SMTP, SSH, IMAP, and POP3
traffic. However, it does not contain HTTPS traces. It has two
profiles: the Alpha-profile which conducts different multi-stage
attack scenarios; and the Beta-profile, with the benign traffic
(i.e., realistic network traffic with background noise). The
CICIDS2017 dataset [122][123] contains attacks and normal
network data, being very close to real network data. It was
created by capturing traffic during 5 consecutive days. During
this time, it registered many cyberattacks (DoS, DDoS, Brute
Force, XSS, SQL Injection, Infiltration, Port scan, and Botnet)
along with normal traffic. This dataset has been labeled and
more than 80 network traffic features were extracted and
calculated using the CICFlowMeter software. The ADFA13
dataset [124] consists of normal training data and 10 attacks per
vector. It only contains a small set of known existing
cyberattacks: FTP and SSH password brute force, add new
superuser, Linux Meterpreter payload, Java-based Meterpreter,
and C100 Webshel. Moreover, some attacks of this dataset are
poorly separated from the normal data [125]. Finally, the
Winter’s dataset is based on the Sperotto dataset [126], which
is the first public labeled flow-based dataset. The Sperotto data
was captured by monitoring a honeypot at the University of
Twente for 6 days. It was divided into three categories:
malicious traffic, side-effect traffic, which is not malicious by
itself, and unknown and uncorrelated alerts that cannot be
determined as malicious or benign traffic. This dataset has a
large number of flows which make the training phase time-
consuming. The Winter dataset addresses this issue generating
an enhanced version of the Sperotto dataset, where duplicated
data was deleted. It includes 20,000 random samples plus
successful attack flows. Other datasets used for DDoS attacks
are EPA-HTTP dataset [127] and CAIDA 2007 dataset [128].
2) Software datasets

Nowadays, DL techniques are increasingly being used for
malware detection, since malware applications are evolving to
circumvent their detection by existing anti-virus software.
Experiments in these scenarios use the top apps in the Google
Play Store [129] as normal data (benign applications); while
malware data is extracted from applications in malware
datasets, as Contagio [130], Genome project [131], Comodo
[132], Virus Share [133], Maltrieve [134], Virus Total [135],
DREBIN [136], Microsoft Malware Classification [137], netlux

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

[138], offensivecomputing [139], and maldozer [140]. These
datasets aim to characterize existing Android malware. For
example, the Genome malware project has collected more than
1,200 malware samples, which covers a large number of
existing malware families. They characterized them in different
aspects: installation methods, activation mechanisms, and the
nature of the carried malicious payloads. The DREBIN dataset
[136] contains 120,000 Android applications, but only 5000 of
them are malicious. These malicious apps belong to 179
different families of malware such as: Adrd, BaseBridge,
DroidDream, DroidKungFu, FakeInstaller, Geinimi,
GinMaster, Kmin, Opfake and Plankton. Malware datasets are
usually saved as raw program files, which provide flexibility
for feature extraction and processing. Comodo Cloud Security
Center includes 3,000 Android applications, being a half of
them benign and the other half malicious. The malicious apps
include popular malware families such as Geinimi, GinMaster,
FakePlayer.

V. DL TO ENHANCE SECURITY IN MOBILE NETWORKS
For some time now, DL and cybersecurity have crossed their

paths. Nowadays, DL is being widely used to improve network
security. This section provides an insight review and analysis
of research works that make use of DL methods to improve
cybersecurity systems. These works are organized in three main
areas: infrastructure, software and privacy.

A. Infrastructure
Nowadays, intrusion detection (ID) is one of the main

security problems. Initially, cybersecurity systems used a
combination of different solutions (i.e. firewalls and IDS to
protect users from cyberattacks). Anderson [141] introduced
the concept of ID in 1980. Denning [142], in 1987, proposed a
methodological framework for intrusion detection that became
the basis of any IDS. The goal of IDSs is to identify attacks or
unusual access on networks. IDSs are placed on gateways or
routers to detect intrusions in the network. Intrusion attacks are
usually classified, based on the KDD’99 dataset, in the
following categories: DoS, Scanning, R2L and U2R. IDSs
benefited from ML techniques, such as ANNs, SVMs, Naive-
Bayesian (NB), RF, and Self-Organized Maps (SOM).
However, these ML techniques cannot identify all the different
types of intrusions [143], especially unforeseen and
unpredictable attacks. Recently, IDS use DL techniques to
overcome this issue. They automatically learn signatures and
patterns (supervised learning) and identify patterns clearly
different from normal patterns (unsupervised learning).

This section reviews, analyzes, and compares the works that
use DL solutions to prevent cyberattacks. The subsections are
organized as follows: (1) DL-based solutions for network
intrusion detection, (2) DL-based solutions for DDoS detection,
and (3) DL-based distributed solutions for cyber-attacks
detection. Figure 10 provides the complete picture.
1) Network intrusion detection systems (NIDS)

In the last years, some concerns have raised in NIDSs. They
have been motivated by the increasing requirement of human
interaction and the decreasing levels of intrusion detection

accuracy, just as ML techniques, which also have failed to
detect complex attacks [143]. The emergence of the upcoming
fifth-generation (5G) mobile technology, which increases
transmission rates in wired networks, has demonstrated IDS
ineffective to detect potential cyberattacks in their initial
phases, because they fail to analyze all network packets. In the
meantime, DL methods are gaining success for cyberattack
detection. They are able to detect novel attacks by identifying
patterns that are different from normal behavior. They have
demonstrated improvements over traditional ML approaches
and a strong potential for being used in modern NIDSs. This
section reviews DL-based approaches that develop efficient and
flexible NIDS.

Initial works [144][145][109] propose DBNs for intrusion
detection. Salama et al. [144] propose a hybrid solution that
combines DBN and SVM for the intrusion detection scheme.
The DBN is used as feature reduction method, and SVM as
classifier. The intelligent IDSs consist of three main phases:
pre-processing, DBN feature reduction and classification. Pre-
processing of the NSL-KDD dataset consists on mapping
symbolic features to a numeric value and attack name
assignment. Dimensionality reduction is achieved by DBN with
back-propagation to reduce the data output size. It uses 2 RBM
layers, reducing the first data from 41 to 13 features, and the
second from 13 to 5. Finally, in the intrusion classification
phase, the 5 output features from the DBN are forwarded to the
SVM classifier. The SVM finds a decision boundary that
maximizes the margin of separation between the classes. The
solution, implemented using the Weka software [146], reduces
the dataset size by 87%, and then classifies the reduced dataset.
It provides a better classification than SVM and it also reduces
the testing time (due to the reduction of the data size). This is
especially important for real time applications. Subsequently,
Gao et al. [145] propose a framework for network intrusion
detection based on a greedy multilayer DBN, which performs
efficient classification tasks. The unsupervised learning
algorithm is used to pre-train and fine-tune the network, and to
learn a similarity representation over the input data. The system
is implemented using MATLAB 7.0, and it is evaluated, unlike
[144] and [108], using the KDD CUP’99 dataset. The system
performs well on intrusion recognition tasks, and the best result
is obtained for a four-hidden-layer RBM with an ACC of
93.49%. Similarly, Alom et al. [109] develop an IDS based on
DBN for attack detection. They test the solution using the NSL-
KDD dataset, but normalized through a numerical encoding
procedure. For the classification phase, the system achieves a
97.5% ACC versus the 40% of the dataset training data. The
authors compare the results with Salama’s [144], which achieve
an ACC of 92% in 3.07 seconds. They conclude that their
solution performs better, in terms of testing accuracy, and it
improves the training time required by 5.5%, reducing it to 0.32
seconds.

In the same vein, other works also propose unsupervised
feature learning for network-based anomaly detection, but
using AEs. Yousefi-Azar et al. [22] differentiate from other AE
works as: (1) they use a unique training phase and topology; and
(2) the proposal is effective for two different types of

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

cyberattacks: network intrusion detection and malware
detection (see Section V.B). The proposed model uses a
minimum number of features compared to similar works, so it
is more computationally efficient for real time protection. It
actually results optimal for small devices, so it can be used in
IoT. The authors test the model using the NSL-KDD dataset
[119] and they use the Sklearn library, of Python 2.7.12, to
implement the classifiers. They obtain an ACC of 83.34%. This
line of work continues in Shone et al. [147] that propose a
solution based on stacked NDAEs for unsupervised feature
learning, and RF as a classification algorithm. They implement
the model in Tensor Flow [148], and they use the KDD Cup ’99
and NSL-KDD datasets for evaluation. They obtain better
results than previous approaches in terms of accuracy, precision
and recall. They compare the model against the mainstream
DBN technique proposed by Gao et. al. [145], and their model
offers up to a 5% of improvement in accuracy, while the
training time is reduced up to 98.81%. Niyaz et al. [149] also
uses an unsupervised scheme for network intrusion detection,
but they chose sparse AEs due to its high performance and ease
of implementation [150]. They use the sparse AE back-
propagation algorithm to find the optimal weight matrices, bias
vectors, and sigmoid for the activation nodes in the hidden and
output layers. To test the model, they use the NSL-KDD
dataset, but preprocessed, converting nominal attributes into
discrete attributes using 1-to-n encoding and eliminating the
attribute num_outbound_cmds with a 0 value, achieving a total
number of 121 attributes. In a second phase, they apply the new
learned features representation on the training data for
classification using a soft-max regression (SMR). The solution
is implemented for three different types of classification: (1) 2-
class (normal and anomaly); (2) 5-class (normal and four
different attack categories); (3) 23-class (normal and 22
different attacks). In the implementation phase, the authors
apply a 10-fold cross-validation on the training data to evaluate
the accuracy of the self-taught learning (STL) classification.
They also compare it to the soft-max regression when applied
to the dataset without feature learning. The evaluation results
show that DL has better accuracy for 2-class with respect to
SMR, but for 5-class and 23-class, it does not improve
significantly. Tao et al. [151] also use DAE to improve the
efficiency of big network traffic classification in network
security situation awareness (NSSA). Authors propose a novel
approach which combines the robustness of Fisher, a traditional
feature extraction method, with unsupervised learning
advantages of DAE to reduce data dimensions and computation
complexity. To implement the system, they used Matlab 8.0.0
and Weka 3.7.13; and the KDDCUP'99 dataset. The results
show an improvement in the generalization ability of
classification algorithms due to data dimensionality reduction.
Lopez-Martin et al. [101] propose a network intrusion detection
method based on CVAEs for an IoT network. This research
work is relevant because the proposed method also performs
feature reconstruction, recovering missing features from

incomplete datasets. The authors call the proposed method
Intrusion Detection CVAE (ID-CVAE). They use a deviation-
based approach, but with a discriminative framework for traffic
samples and classification. Traffic samples are labeled with the
intrusion that achieves less reconstruction error, instead of
using a threshold for intrusion definition. Then, the intrusion
labels are included inside the CVAE decoded layers. The
method is tested using the NSL-KDD dataset, and it can recover
missing categorical features with 3, 11 and 70 values, with an
ACC of 99%, 92% and 71% respectively.

Li et al. [110] address intrusion detection from a different
point of view. Authors propose an accurate identification of
malicious code to improve the efficiency of an IDS, based on
DBN and AEs. A key point of the method is using AE for data
dimensionality reduction (i.e., to extract the main features of the
data). The AE consists of three steps: pre-training, unrolling,
and fine-tuning. Then, the method uses DBN as the classifier to
detect malicious code. The system is implemented using Matlab
v7.11 and it is validated using the KDDCUP'99 dataset. Results
demonstrate that the increase of the number of pre-training and
fine-tuning iterations increases detection accuracy over a single
DBN. This is because of the usage of AEs for data
dimensionality reduction.

Other DL models are also used for unsupervised learning in
anomaly detection. Kwon et al. [7] propose an FCN based
anomaly detection system. The authors implement the system
using Python Tensorflow in the Google cloud platform. For
evaluation, they use the NSL-KDD dataset pre-processed
normalizing numerical values and encoding categorical values
as numerical values. They train the network with different
hyper-parameter configuration (units, hidden layers, epochs
and learning rate), and the softmax layer produces the outputs.
Authors obtain promising results with an F1 score over 90%.
Kim et. al. [89] consider LSTM for implementing an IDS
classifier. They chose LTSM to avoid vanishing and exploding
gradient problems [90] of conventional RNNs. To test their
solution, they use 10% of KDD Cup’99 for training and testing.
The implementation considers softmax for the output layer and
stochastic gradient descent (SGD) as the optimizer. The authors
carry out two experiments. The first one, aims to find hyper-
parameter values to achieve the best performance of the IDS,
while the second measures the performance of the system.
Hyper-parameters are parameters for model initiation.They
have to be carefully chosen as they have an impact on overall
performance (especially for the learning rate and hidden layer
size) [152]. The results show that the detection rate and FAR
have a growing trend as the learning rate is increased, having
the best efficiency for a learning rate of 0.01. For smaller values
of the learning rate, the system is trained too accurately, so the
model detects intrusion instances, but it also considers normal
instances as intrusions. The average detection rate is 98.8% and
the average FAR 10%. The model detects DoS and normal
instances, but U2R instances are never detected, probably
because the model is trained with only 30 U2R instances.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

Tang et al. [153] propose a flow-based anomaly detection

system using DNN, in a Software-Defined Networking (SDN)
context. The DNN consists of an input layer (with dimension
six), three hidden layers (with twelve, six and three neurons
respectively) and an output layer (with dimension two). The
system is trained and evaluated using the NSL-KDD dataset.
More specifically, they use a subset of six features (duration,
protocol_type, src_bytes, dst_bytes, count and srv_count). As
in [89] they found an optimal hyper-parameter for the DNN. In
this work, the optimal hyper-parameter is the learning rate,
which is set in the range 0.1 to 0.0001. In the experiments,
accuracy increases (and loss decreases) as long as the learning
rate decreases in the training phase. Consequently, the best
results use a learning rate of 0.0001 with a loss of 7.4% and an
ACC of 91.7%. However, the testing phase results are much
worse, with a loss of 20.3% and an ACC of 74.6%. Other works,
as Jadidi et al. [154] consider MLP and Gravitational Search
Algorithm (GSA) for flow-based anomaly detection for
unknown attacks. They use an MLP with one hidden layer for
anomaly detection and Winter’s dataset [155] for training and
testing the system. Interconnection weights of the MLP are
optimized using GSA. The authors implement the GSA-based
flow anomaly detection system (GFADS) using MATLAB
version R2012a (7.14.0.739). They achieve a 99.43% of ACC
in traffic classification. Authors compare their system to
gradient descent algorithms and PSO algorithms. They
conclude that GFADS is effective in the detection of attacks
related to the packet header.

Other works also address cyberattacks in the IEEE 802.11
wireless network. Thing et. al. [98] propose the use of SAE for
feature engineering and softmax regression in the classification
task. They chose softmax because it supports multi-class

classification. They test the system using a custom dataset
[156], which is collected from a lab set up to emulate a typical
SOHO infrastructure, with various smart devices. Different
attacks are carried out in the lab to collect both attack and
legitimate WI-FI signal’s measurements. The attacks are
divided into three different types: flooding, injection, and
impersonation. The authors first normalized the data in the
dataset to standardize the feature range, and facilitate the DL
process. They propose to implement the system with two
frameworks composed of two and three hidden layers
respectively. Hidden layers consist of 256, 128 and 64 neurons.
In the experiments, the system achieves an overall accuracy of
98.66%. Thus, the authors conclude that their solution correctly
performs 4-class attack classification, taking in consideration
novel attacks. Finally, Feng et al. [157] also propose a solution
for anomaly detection in wireless networks but using a deep-
structure, AE NN, for spectrum anomalies detection and
frequency diagram, which acts as the feature of the learning
model. Their approach relies on the reconstruct error to
determine if the signal is an anomaly or not. They implement a
two-layered AE NN. The network is trained with data collected
by an RTL-SDR device from a real-time electromagnetic
environment, and Additive White Gaussian Noise (AWGN) is
selected as the anomaly. The model outperforms about 2% a
conventional one-layer AE network.

DL-based solutions also are proposed in the upcoming 5G
mobile technology, since IDSs fail in the detection of
cyberattacks. Deep packet inspection tools cannot work
properly on wired networks over 1 Gbps, for example, Snort
[158] discards packets from 1.5 Gbps onwards [159].
Fernandez Maimó et al. [117] propose a two-level DL-based
architecture to identify cyber threats in 5G mobile networks.

Fig. 10. Overview of DL methods used in the infrastructure area.

AE
AE

Network based
anomaly

detection IoT [22]

Spectrum anomaly detection wireless
[157]

Anomaly
detection

wireless sensor
network[171]

SAE

Network intrusion
detection IoT [147]

Anomaly
detection wireless

devices [98]

Attack
detection
FoG [169]

DDoS attack
IoT [168]

CVAE
Intrusive,
malicious

activities or
policy

violations
IoT [101]

Combination

Network security
situation

awareness [151]

Intrusion detection
computer networks

[149]

Malicious code
detection

wireless[110]

RBM PCA, LDA & Fisher

soft-max regression

MLP

DDoS
Internet

[73]

Intrusion detection
Software Defined
Networking [154]

LSTM

Intrusion
detection
Network

system [89]

DDoS
attack

IoT [83]

DBN

Intrusion
detection
Wireless
network

[145]

Intrusion
detection
IoT[109]

Intrusion
detection
IoT [144]

RBM
Combination

SVM

Anomaly based
network intrusion
detection IoT [7]

FCN

Intrusion
detection

Software defined
networking [153]

CNN

DDoS
Internet

[72]

ANN

DDoS
Internet

[74]

Anomaly
detection
5G [117]

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

The proposed DL model consists of two levels: the first one
detects anomaly traffic conditions, so-called symptoms, by
means of a supervised (DBN) or semi-supervised (SAE)
learning methods. The second module uses all the symptoms
generated as an input to an LSTM trained in a supervised way
to recognize temporal patterns of cyberattacks. The novelty of
this framework is that it supports traffic fluctuation. The DL-
based architecture has been implemented using TensorFlow
[148], Theano [160] and PyTorch [161]. For evaluation, they
use the CTU dataset [162] which consists of unknown traffic
and real botnet attacks. The proposed architecture achieved an
F1 score of 0.89.
2) DDoS attacks

DDoS attacks have increased dramatically in the last years
[163]. They are one of the major cyberattacks in IoT networks
[164]. The main objective of DDoS attacks is to make resources
unavailable to intended users. DDoS compromise multiple
systems across Internet with infected agents or zombies and
then form networks of botnets. One of the most important
DDoS attacks hits Telegram in June 2019. Different DL
techniques have been used for detecting and mitigating DDoS
attacks in different network environments. Initial DL-based
systems adopt supervised learning. Saied et al. [74] propose a
solution based on a supervised ANN (feed-forward with error
backpropagation and sigmoid activation function [165]) to
detect known and unknown DDoS attacks. The algorithm is
trained with a customized dataset created from real-life cases
and DDoS attacking patterns produced by DDoS tools. They
launch known and unknown DDoS attacks, each with 20 to 120
zombies, totaling of 1160 individual attacks. Data is structured
to accommodate attack patterns in a qualified format accepted
by the Java NN Simulator (JNNS) [166]. 80% of the dataset is
used for training, and the remaining 20% to validate the
learning process. Before training the input, the values are
normalized to maximize their performance in sensitive
applications. They use three topological ANN structures
(ICMO, TCP, and UDP) with three layers each (input, hidden
and output). The experiments consider QuickProp, Back-
Propagation, Backprop Weight Decay, Backprop through
Time, and Sigmoid, Elliott, Softmax, BAM as an activation
function. Sigmoid activation function and back-propagation
learning achieve the highest detection accuracy (98%). The
model increases accuracy as up-to-date patterns are fed into the
system. The system learns from scenarios and detects zero-day
patterns which are similar to known DDoS attacks. Other
works that use supervised learning but use the MLP model are
[72] and [73]. Siaterlis and Maglaris [72] explore the DDoS
attack detection capability of MLP. They propose a solution
that uses different metrics to detect UDP flooding attacks at the
edge and train the classifiers through examples. The inputs of
the MLP are several types of passive measurements taken from
their university network. They use the TFN2K tool to launch
UDP floods with customizable bandwidth and packet rate. By
doing so, they can train their network and evaluate it in terms
of “false positive” and “true positives”. Network edges are
protected from incoming attacks and the rest of the network
from outgoing attacks. In the experiments, the system achieves

a TPR above 74% and an FPR lower than 3%. Singh and De
[73] continue this work but combine MLP with a Genetic
Algorithm (MLP-GA). The solution uses incoming traffic, to
detect application-layer DDoS attacks. They perform a
behavior analysis of attackers and normal users. Then, the
classification model inputs include: HTTP count, concentration
of the IP addresses, constant mapping, and frame length. The
model is tested with the EPA-HTTP dataset [127], CAIDA
2007 dataset [128] and an experimental dataset produced using
the Slowloris attack [167]. The method achieves an ACC of
98.04% in detecting DDoS attacks with an FPR of 2.21%. The
authors compare the proposed model with traditional classifiers
demonstrating that they obtain better results.

Roopak et al. [83] propose a DL-based IDS to detect DDoS
attacks. They implement four different classification DL
models: MLP, 1d-CNN, LSTM, and CNN+LSTM. They use
the CICIDS [122] dataset. They balance the DDoS attack
dataset by duplicating the data, which improves the training of
DL methods. The authors compare DL models to SVM, Bayes,
and RF ML algorithms. The DL is implemented using Keras on
Tensorflow, while the ML uses MATLAB 2017a. The
CNN+LSTM model achieves the highest ACC (97.16%) while
MLP achieves the lowest (86.34%). The accuracy of the ML
models is in between CNN+LSTM and MLP. Therefore, the
authors conclude that the best solution is the hybrid
CNN+LSTM.

Other works use semi-supervised learning. Yadav et al. [168]
propose a solution for detecting DDoS attacks in the application
layer through traffic classification using SAEs. They construct
their dataset from features extracted from their web server log
(from request flooding, session flooding, and asymmetric
attack). The logs are pre-processed and the features are
transformed to a numeric form. This dataset is then split into
two: one for training and another one for testing. The solution
first learns features through the SAE, then it defines them as
features of the DDoS dataset that are fed into the system. At the
end, they are classified with a logistic regression classifier. The
solution is implemented in Java, using WEKA (Waikato
Environment for Knowledge Analysis) and Matlab. The
experimental results demonstrate that the proposed method
learns features from the SAE, which are beneficial for
classifications. It improves the DR to 98.99% with an average
FPR of 1.27%.
3) Distributed attack detection solutions

A novel solution for cyberattack detection in emerging Fog
computing ecosystems is based on distributed DL. Fog
computing brings Cloud Computing closer to the physical
world of smart things and it requires new cybersecurity models
to be resilient, adaptive, and closer to the edge. Edge nodes
already provide computing, storage, communication, and
control services. In the same way, they will host security
services. Attacks in fog-to-things systems range from probing
for gaining access to the local system to DDoS attacks.
However, R2L and U2R are the most common attacks since
most of the IoT devices are remotely accessed for management
and updates. IoT devices are targeted through backdoors, which
allow unauthorized remote entities to bypass legitimately the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

15

authentication. Similarly, devices are targeted through rootkits,
which exploit programming flaws or system design, and
therefore take advantage of privilege escalation. In this context,
Diro et al. [169] propose the first distributed attack detection
scheme in the social IoT based on multi-layer deep networks.
The architecture consists of coordinating master nodes and fog
nodes. The fog nodes are responsible for hosting attack
detection systems and for training models, while the master
nodes are responsible for collaborative parameter sharing and
optimization. This speeds up data training as it is performed
near the source. Plus, it can share knowledge (i.e. updated
parameters) from the neighbors. The authors implement the
solution using Keras on the Theano package [160] for DL, and
Apache Spark [170] for distributed and parallel processing. The
dataset used for testing the solution is NSL-KDD. The system
is trained without labels using SAEs to extract hidden features,
which are then applied to the test data. The model employs 150,
120 and 50 neurons for the first, second and third layer
respectively. The system achieves an overall ACC of 99.2%
when it is trained with 25 nodes working in parallel and 95.22%
when it is trained with 5 nodes. DR was 99.27% which
improves the shallow model by 1.77 %. ROC curves indicate
that true positive values of the model are over 99%. FAR for
the DL model is 0.85%, while for the shallow model is 6.57%.
The authors conclude that DL models are better than ML
models, and they emphasize the scalability and effectiveness of
distributed parallel learning in fog nodes.

Luo et al. [171] also propose a distributed solution for
anomaly detection, based on AEs for wireless sensor networks
(WSN). The solution overcomes the high computation resource
consumption of DL in WSN. They build an AE NN of three
layers, which includes one hidden layer of neurons. The authors
design a two-part algorithm which resides on sensors detecting

anomalies in a fully-distributed manner. While the training
model, which represents a high computation learning task, is
handled by the cloud. They create their dataset by collecting
data over 4 consecutive months in a real WSN indoor testbed,
which consists of 8 sensor nodes that monitor temperature and
relative humidity with a frequency of 2 minutes. They complete
the dataset generating synthetic anomalies using Spike and
Burst models [172]. They build the AE NN with 720 nodes and
use k-fold cross-validation to determine the number of hidden
neurons (504). They evaluate the results through the AUC and
ROC curves. They perform two types of experiments. First,
varying the anomaly magnitude (Δ) of spikes and bursts
following a normal distribution. After these experiments, they
obtain that the AUC is usually bigger than 0.8. Second, they
vary the anomaly frequency. In this case, the more anomalies
occurred, the more difficult is for the system to detect them.
Finally, they consider an adaptive detector since the
environment is constantly evolving. They configure the AE
with two different setups: random and prioritized. They
evaluate the TPR and FPR. TPR is better (18%) for a random
scheme because the majority of the training data is historical,
while the prioritized scheme has a much lower FPR, up to 60%,
because it updates the weights and biases more responsively.
Thus, they conclude that the anomaly detection mechanism
achieves higher detection accuracy and lower FAR.
4) Summary table – Infrastructure

Table III summarizes the DL-based cybersecurity solutions
analyzed in the infrastructure area. For all the works, we detail
the attack addressed and in which scenario; the proposed DL
model and learning paradigm; the dataset used in the
implementation; and its performance. We report the accuracy,
except for three works that use the F1 score, TPR and FPR to
validate the proposed solution.

TABLE III
SUMMARY OF DL WORKS ON INFRASTRUCTURE

Reference Attack Scenario Learning paradigm DL Model Dataset Performance

Salama et al. [144] Intrusion detection IoT Unsupervised DBN and SVM NSL-KDD ACC=92%

Gao et al. [145] Intrusion detection Wireless network Unsupervised DBN KDDCup’99 ACC=93.5%

Alom et al. [109] Intrusion detection IoT
Wireless network

Unsupervised RBM-based DBN NSL-KDD ACC=97.5%

Yousefi-Azar et al.
[22]

Network-based anomaly
detection

IoT Semi-supervised AE KDD Cup ’99
NSL-KDD

ACC=83.3%

Shone et al. [147] Network Intrusion
detection

IoT Unsupervised Stacked NDAE KDD Cup ’99
NSL-KDD

ACC=98%

Niyaz et al. [149] Intrusion detection Computer Networks Semi-supervised SAE and SMR NSL-KDD ACC=96%

Tao et al. [151] Network security situation
awareness

Network traffic data
fusion

Unsupervised PCA, LDA, and
Fisher combined
with DAE

KDD Cup’99 ACC=91%

Lopez-Martin et al.
[101]

Intrusive, malicious
activities or policy
violations

IoT networks Semi-supervised CVAE NSL-KDD ACC=99.9%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

16

B. Software
The continuous emergence of new malware poses a

significant threat to computing systems where traditional
antimalware tools are ineffective. DL provides cybersecurity
experts an opportunity to develop generalizable models to
detect and classify existent and new malware. Malware analysis
techniques can be classified as static or dynamic. Static analysis
methods extract and analyze features from applications (i.e.
from the binary source code or other associated files). Examples
of static features are: used permissions, systems commands, and
API calls. However, the weak point of these methods is that
some of them are not resistant to obfuscation and they cannot
deal with self-mutating malware. Static analysis is only useful
in memory-limited devices. Dynamic analysis methods
overcome these issues, using dynamic features, as API calls or

opcodes, which make them more reliable. Consequently, DL-
based cybersecurity solutions in this area fall in two main
groups: those who use API calls and those who consider
opcodes. Figure 11 provides the complete list of DL-based
malware solutions.
1) API call solutions

System calls are one of the most important traceable events
to determine malware behavior, since malware needs to use
services from the operating system (OS) to execute malicious
code. Any significant action requires an interaction with the OS
through its APIs (e.g. opening a network connection, writing to
the registry or running a thread). Therefore, tracking the system
call sequence is one of the most used methods to characterize
malware behavior. By inspecting these traces, different
malware families can be identified.

Different approaches based on supervised or semi-supervised

Reference Attack Scenario Learning paradigm DL Model Dataset Performance

Li et al. [110] Intrusion detection
(malicious code detection)

Wireless network Semi-supervised RBM
AE

KDD Cup’99 ACC=92.1%

Kwon et al. [7] Anomaly-based network
intrusion detection

IoT Unsupervised FCN NSL-KDD ACC=90%

Kim et al. [89] Intrusion detection Network systems Unsupervised LSTM to RNN KDDCup’99 ACC=98.8%

Tang et al. [153] Intrusion detection Software Defined
Networking

Unsupervised DNN NSL-KDD ACC=91.7%

Jadidi et al. [154] Intrusion detection Software Defined
Networking

Semi-supervised MLP Winter’s data
Sets

ACC=99.4%

Thing et al. [98] Anomaly detection and
attack classification
(Flooding, injection,
impersonalisation)

Wireless devices
connectivity in
smart homes

Semi-supervised Stacked AE AWID-CLS-
R-Trn
AWID-CLS-
R-Tst

ACC=98,6%

Feng et al. [157] Spectrum anomaly
detection

Wireless
communication
network

Semi-supervised Deep-structure
AE

Custom ACC=88.5%

Fernandez Maimó
et al. [117]

Anomaly detection 5G 1)Semi-supervised
2) Supervised

1) DBN or SAE
2) LSTM

CTU F1 score=0.89

Saied et al. [74] DDoS attack detection
(TCP, UDP and ICMP
attacks)

Internet Supervised ANN Custom

ACC=98%

Siaterlis and
Maglaris [72]

DDoS attack detection
(UDP)

Internet Supervised MLP Custom TPR>74%
FPR<3%

Singh and De [73] DDoS attack detection
(application layer)

Internet Supervised MLP-GA EPA-HTTP
CAIDA
Custom

ACC=98%

Roopak et al. [83] DDoS attack detection IoT Semi-supervised 1d-CNN
MLP
LSTM
CNN+LSTM

CICIDS2017 ACC=97.1%

Yadav et al. [168] DDoS attack detection IoT Semi-supervised Stacked AE Custom ACC=99.5%

Diro et al. [169] Distributed attack detection Social IoT Supervised Stacked AE NSL-KDD ACC=99.2%

Luo et al. [171] Anomaly detection Wireless sensor
networks

Unsupervised AE Custom TPR>80%
FPR<38%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

17

DL models are used to detect malware attacks. Initial works
explore RNN models to improve malware detection. Pascanu et
al. [25] propose a semi-supervised solution that learns the
language of malware through the instructions executed and
extracting time-domain features to detect malicious files. More
specifically, the high-level events that they consider are
canonicalized representations of the API calls to the OS or the
C run-time library. They consider RNNs and Echo state
networks (ESN) to extract the features trained in an
unsupervised manner. They use MLP and logistic regression for
classification. They implement the solution using Theano [160].
Their dataset consists of internal Microsoft data. This data
includes event streams from 250,000 malware files and 250,000
benign files. However, the dataset is not publicly available. The
dataset is randomly split into 297,500 training, 52,500
validation, and 150,000 test samples. They obtain a TPR of
71.7% and an FPR of 0.1%, which outperforms standard
trigram of event models by 98.3%.

Recent semi-supervised based solutions consider SAEs.
Hardy et al. [173] extract API calls from the Portable
Executable (PE) files. The SAEs model has two phases:
unsupervised pre-training and supervised backpropagation. Ye
et al. [174] follow up this work.They perform unsupervised
feature learning by means of a greedy layerwise training
operation. They also add supervised parameter fine tuning.
They test the proposed architecture with a dataset from Comodo
Cloud Security Center [175]. The dataset consists of 50,000 file
samples (22,500 malware, 22,500 benign and 5,000 unknown).
The proposal achieves an ACC of 95.64%.

Finally, Athiwaratkun et al. [26] improve Pascanu’s solution
using LSTM and Gated Recurrent Unit (GRU) instead of RNN
and ESN. They also use a single-stage malware classifier based
on a character-level CNN because it improves classification
performance. The dataset is composed of 75,000 Windows PE
format files analyzed by the Microsoft anti-malware engine.
This dataset is split in 50,000 files for training, 10,000 files for
validation and 15,000 files for testing. The solution is
implemented using Keras with the Theano backend DL engine.
The LSTM language model with temporal max pooling and
logistic regression classifier shows the best results. It improves
TPR by 31.3% compared to Pascanus’ solution. Agrawal et al.
[176] extend Athiwaratkun’s [26] work by considering relevant
parameters, which are input to the system API calls. These
parameters provide important malicious intent information. In
particular, the model includes the parameter data along with
event sequences. To build up the dataset, they collect the system
API calls and inputs from 75,000 files (benign and malware).
They randomly split them into 50,000 for training, 10,000 for
validation, and 15,000 for testing. The solution also is
implemented using Keras with the Tensorflow backend. The
evaluation improves the FPR over Athiwaratkun’ work [26].

Another research line uses supervised models for malware
identification based on API call sequences. Kolosnjaji et al.
[177] combine one NN convolutional and several recurrent
layers. The convolutional layer is used for feature extraction. It
combines convolutional n-grams and full sequential modelling.
They implement the solution using Tensorflow [148] and

Theano [160]. Malware samples are collected using malware
zoo [178] from three primary sources: Virus Share [133],
Maltrieve [134] and proprietary collections. They obtain the
labels for training the network from VirusTotal [135]. The
authors report an average precision of 85.6% and an average
recall of 89.4%. Tobiyama et al. [179] also propose a solution
to detect malware combining RNNs (for feature extraction) and
CNNs (for feature classification). This solution first records
API call sequences to construct the feature extractor. They use
LSTM as the learning language model. It extracts process
behavior features from the RNN; and then, the CNN classifies
feature images as malware or benign. The CNN consists of two
convolutional layers and two pooling layers. They train and
validate the proposed solution using 81 malware and 69 benign
process log files. Although the dataset is really small, they
obtain an AUC of 0.96.

API call based solutions are also used for malware
classification (i.e. assigning a given sample its malware class).
Classifying malware is important because it provides
information about the attack and its motivation. Nowadays, it is
especially important because of the sharp increase of malware
families. Thus, automated malware classification is now the
best large-scale defense for detecting malware. The first
proposals on malware classifiers use sparse binary features
[180][181]. The number of features is in the order of tens or
hundreds of millions. Feature selection techniques reduce the
number of features to enable the training of algorithms such as
logistic regression. However, the number of features is still too
large for complex algorithms. Three different learning
paradigms are used for malware classification: supervised,
unsupervised and semi-supervised. Dahl et al. [27] in 2013
propose the first work for malware classification by means of
dynamic analysis using supervised learning. They develop a
large-scale malware classification system that uses random
projections to reduce, by a factor of 45, the dimensionality of
the input space. Afterwards, they train a NN on the high
dimensional input data. This enables the use of more complex
supervised classification algorithms. This work considers
sparse binary features based on file strings, API tri-grams, and
API calls together with input values. They evaluate their
proposal with 2.6 million labelled samples of 134 different
malware families. They consider different DNN architectures
and they also consider RBMs for the hidden layers. They obtain
the best results for a one-hidden-layer DNN without RBMs
(FPR=0.35%). Subsequent works use AEs for malware
classification. Wang et al. [28] apply, for first time, multi-task
learning to malware learning. They develop an unsupervised
malware classification model based on API call sequences,
which uses an RNN-AE. The RNN-AE learns in an
unsupervised manner low dimensional representations of
malware API call sequences. Then, it trains two decoders: one
for malware classification and another for file access pattern
(FAP) generation. The model is based on the multitask seq2seq
[182] model and it is evaluated using the public malware API
call sequence dataset [183]. The authors use a first dataset with
7430 samples for coarse-grained evaluation, and a second one
with 4932 samples for fine-grained evaluation. These two data

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

18

sets are split randomly for training (75%), validation (5%) and
testing (20%). The model achieves a 99.2% of ACC. Yousefi-
Azar et al. [22] provide a solution based on AEs for malware
classification. The semi-supervised solution uses AEs to learn
sufficient notion of semantic similarity between input features.
The AE, trained in an unsupervised manner, has as input a
feature vector generated from relevant information of the API
calls. The output of the unsupervised AE is a code vector with
semantic similarity between feature vectors. Finally, the
resultant similarity is embedded in an abstract latent
representation. The solution is evaluated using the Microsoft
Malware Classification Challenge (BIG 2015) dataset available
at Kaggle [137]. The SVM classifier shows the highest ACC
(96.3%).
2) Opcode based solutions

Several malware detection and classification DL-based
solutions use operation codes (opcodes), besides API calls, to
describe program behavior. Ding et al. [184] propose a solution
based on opcodes for detecting malware that uses DBNs. The
unsupervised solution consists of three main modules. The PE
parser that generates the opcode sequences for each executable
using the n-gram model (i.e. each PE file is transformed to a n-
gram vector). Then, the feature extractor finds useful n-grams
providing different measures (e.g document frequency,
information gain) to evaluate their classification ability. Finally,
malware detection modules use a DBN to perform classification
tasks. The dataset consists of PE format files. Window system
files are the benign ones. Netlux [138] and Offensive
Computing [139] files are the malicious ones (i.e. viruses,
Trojans, worms and backdoor attacks). The proposal
outperforms other learning techniques such as SVM, KNN and
decision tree. It achieves an ACC of 96.7%. The authors also
use the DBN as an AE. Thus, they remove the classification
layer and use the top hidden layer as the output layer. This
improves slightly the classification performance.

H. HaddadPajouh et al. [185] propose a semi-supervised
solution that uses RNNs for detecting malware in ARM-based
IoT application opcodes. The solution has three stages. In the
first stage, it extracts the opcodes from the dataset. In the second
stage, it obtains the feature vector from the opcodes. The third
stage performs training, evaluation, and tuning for optimal
results. The dataset comprises 281 malware samples collected
from 32-bit ARM-based malware in the Virus Total Threat
Intelligence platform [186]. The dataset has 270 benign samples
collected of Raspberry Pi II applications collected from the
Linux Debian repositories [187]. The solution is implemented
using Google Tensor Flow [148] and Scikit-learn [188]. The
model is evaluated with different LSTM configurations and the
the 2-layer configuration achieves the highest ACC (98.18%).
3) Android Malware detection and classification

Mobile applications have become the most common way to
access personalized computing services (e.g. email, banking,
shopping, automated home control). They have become
attractive targets for hackers, which take advantage of the
update mechanisms to infect mobile apps. Android devices are
the target in 99% of all mobile device malware [189]. The
attackers produce malicious applications, usually modifying

existing applications. Malware can be organized in families,
where each application of the same family has a similar
malicious behavior. Malicious applications gather user private
data (e.g. passwords, banking credentials, contacts list).
GDATA reported over 2 million of new malware Android
applications in the first half of 2018 and 1.2 million in the
second quarter [190]. Consequently, a significant part of
malware detection and classification works in the literature
focus on Android OS. The first works in this area use signature-
based methods [191][192] to characterize malware using
specific patterns in the bytecode and API calls. But, they are
easily bypassed by byte-code transformation attacks [193]. The
Fraunhofer Institute for Applied and Integrated Security study
on Android anti-malware [194] concludes that most
antimalware software is easily bypassed. An example is the
repackaging, where an attacker decompiles a trusted application
and obtains the source code. Then, the attacker adds the
malicious payload and recompiles the application. Finally, the
attacker makes the malicious application available on a
different market. Signature malware detection techniques [195]
are in many cases ineffective and the process of obtaining
malware is challenging and time consuming. The malware
identification period is called zero-day window and it is the
moment in which malware causes the worst damage.
Furthermore, Android applications can only access its own disk
space. Thus, any antimalware software cannot monitor the full
file system. Consequently, it is easy for applications to
download and run updates without strict controls. ML methods
can extract malware features through both static [196] and
dynamic analysis [197]. This enables ML solutions to
discriminate between benign apps and malware. Nowadays, DL
methods are used for the definition of generalizable models to
detect and classify malware efficiently.

There are a large number of solutions for detecting malware
in Android devices. Initial works, as DroidAPIMiner [198],
APKAuditor [199], and SherlockDroid [200] focus on the
classification of Android malware using single-level features.
However, single-level features do not reflect the overall
characteristics of Android malware. To overcome these
limitations, Hubner et al. [201] propose Drebin to conduct
Android malware classification based on several types of
features. But, the huge number of features of the classification
process increases significantly the response time and resource
usage. To overcome these limitations, Su et al. [202] develop
DroidDeep that considers static information (e.g. permissions,
API calls, component deployment) to characterize the
behavioral pattern of Android apps and extract multi-level
features (almost 30,000). The solution is based on the DBN
model, which is fed with the extracted features for
classification. They choose DBN because it is a greedy and fast
algorithm which learns a reduced set of features. Finally, a
detector based on the SVM algorithm feeds from the learned
features. They perform experiments with 3,986 benign apps
(from Google Play Store) and 3,986 malware (from Drebin
[136], Android Malware Genome Project and the Contagio
Community [130]). They obtain 99.4% of malware detection,
outperforming the other proposals. DroidDeep also obtains a

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

19

better runtime efficiency, so it can be adopted by real-world
Android devices.

Yuan et al. [203] also use semi-supervised learning. In their
case, the use an RBM model. They use static and dynamic
analysis to extract relevant features (required permission,
sensitive API and dynamic behavior) from each app. They
achieve an ACC of 96%. Their dataset consists of 500 samples:
250 malware samples from contagio [130] and 250 top apps in
the Google Play Store. They increase ACC up to 19% when
compared to traditional ML tools (C4.5, SVM, Naïve Bayes,
Logic Regression, Multi-layer perceptron). In their follow up
work on malware characterization [112], they extract 192
features from both, static and dynamic analysis, but using a
DBN-based DL model similar to Su et al. [202]. They design
and implement the DroidDetector. They evaluate it with 20,000
benign applications crawled from the Google Play Store and
1760 malware apps (500 collected from Contagio Community
and 1260 from the Genome Project). The results further
improve detection ACC by 2%. Zhu et al. [204] also choose
DBN as the DL model to design DeepFlow. Their solution
detects malware in Android applications directly from the data
flows in these applications. They test the solution using 3,000
benign apps from the Google Play Store and 8,000 malicious
apps from the Android Malware Genome Project and
VirusShare. DeepFlow first extracts all the sensitive data flows
using FlowDroid static analysis tool [205] and then, it
categorizes the extracted flows using SUSI technique [206] to
obtain the features. The extracted flows are the input to the
DBN model for classification. This model is trained on two
crawler modules, one for malware and the other one for benign-
ware. DeepFlow has a high accuracy in detecting novel
malware with an F1 score of 95.05%.

Hou et al. [207] also use semi-supervised learning, but based
on SAEs. They propose a solution to improve the weakness of
signature-based methods, which employ repackaging and
obfuscation techniques to bypass them. This work proposes a
novel dynamic analysis method, so-called Component
Traversal, which can automatically execute code routines for
each Android app. Based on the Linux system kernel calls, they
construct weighted directed graphs. Finally, they apply SAEs
on the graph-based features for detecting newly unknown
Android malware. To evaluate the performance of their solution
they use a real sample collection from Comodo Cloud Security
Center. The SAE model is tested for different number of hidden
layers and different number of neurons in each layer. The
design with 3 hidden layers and 200 neurons per layer achieves
the best ACC results (93.68%). They compare their solution
with typical shallow learning methods (SVN, ANN, NB, DT).
Detection performance improves, at least, by 5.44%.

Supervised methods are an alternative for Android malware
detection and classification. Martinelli et al. [84] use it for
malware classification. They characterize malware applications
behavior as trusted or malware. They use sequences of system
calls to capture the app behavior and they are generic enough to
be robust to camouflage techniques. They use CNN for NLP
classification tasks. The CNN network learns for each input
(syscall sequence) a set of confidence scores encoded as vectors

with a length of two (to match the predefined classes: trusted
and malicious). Then, the network assigns a positive or negative
label according to the highest confidence score to the input
using softmax. They implement and test the model in Tensor
Flow. For evaluation, they build a dataset of traces collected
from 7,100 real-world Android applications, 3,536 legitimate,
from the GooglePlay, and 3,564 malware apps of several
different malware families from the Drebin repository. 20% of
the dataset is used for training the model and 80% for testing
purposes. 105 different syscalls are analyzed. The ACC of the
model ranges between 0.85 and 0.95 for the training test, and
between 0.75 and 0.8 for the test. Karbab et al. [140] continue
this work developing MalDozer, an Android malware detector
based on CNN. Maldozer performs, additionally, malware
family classification. The authors develop the NN using
Tensorflow, and they test it using three different datasets for the
detection task: Malgenom with 37,627 benign and 1,258
malware apps, Drebin with 37,627 benign and 5,555 malware
apps and Maldozer with 37,627 benign and 20,089 malware
apps. The results demonstrate the correct functionality of
MalDozer for detection and attribution to a malware family
with an F1-Score between 96% and 99% and FPR between
0.06% and 2%. McLaughlin et al. [208] also use a CNN to
design an android malware detection system. But in this work,
the network automatically learns the indicative features of
malware from the raw opcode sequence from disassembled
programs. The training pipeline of the system is simpler than
previous n-gram based solutions, since the network is trained
end-to-end to learn appropriate features and at the same time it
performs the classification. The proposal is evaluated with three
different datasets. The first one, from Android Malware
Genome project with 863 benign and 1,260 malware apps. The
second one, from McAfee Labs, with 3,627 benign and 2,475
malware apps. And the third one, also from McAfee Labs, with
9,268 benign and 9,902 malware apps. All the datasets are
divided into 90% for training and validation, and 10% for
testing. The architecture has one single convolutional layer for
all the experiments performed. The solution is developed using
Torch [209]. In the training phase, the network parameters are
optimized by RMSProp [210]. Before training, the network is
efficiently executed on a GPU to scan a large number of files.
ACC ranges between 0.87 and 0.98 for the three different
datasets. This solution is also computationally efficient since it
classifies 3,000 files per second approximately. Lee et al. [211]
propose SeqDroid to detect malicious Android applications.
They focus on obfuscated malware using stacked RNNs and
CNNs. They improve learning performance by combining
feature vectors of Android’s metadata (e.g. package, developer
names and capability information). To validate the solution,
two million APK samples are collected from VirusTotal [135].
20% of them are selected for validation. They compare the
RNN-CNN model with ngram-based models. It improves
classification performance by 16%. When compared to RNN
models, it reduces training time by 50% maintaining the same
classification performance. Finally, Kim et al. [212] also
consider a supervised approach. They develop a framework for
Android malware detection based on a multimodal DL method

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

20

that uses various kinds of features. The proposed framework is
configurable. It can add new type of features and supports
dynamic features. It supports seven types of features: string,
method opcode, method API, shared library function opcode,
permission, component, and environmental. The authors
evaluate the performance of the framework with 41,260
samples (20,000 malware samples from VirusShare, 1,260 from
the Malgenome project and 20,000 benign samples from

Google Play). The multimodal NN is implemented using the
Keras library [160], clustering uses Scikit-learn [188] and ML
algorithms use Tensorflow [148]. They test the solution for
different combinations of features (between one and seven).
The authors observe that accuracy increases each time a new
feature is added to the model. ACC moves from 89% when only
one feature is considered to 98% when all features are factored
in.

4) Botnets
Botnets represent one of the most dangerous kind of malware

because, unlike common malware, they are not managed by
predictable algorithms. Botnets are designed to infect different
devices and to remain, as long as possible, active and
undetectable [213]. They have a more complex pattern, because
they are controlled by humans via command and control (C&C)
servers or peer-to-peer (P2P) networks. Plus, their design
differs from one another. Initial works in this area [214] identify
two common features for botnets: (1) the commands used by
the botmaster to communicate to bots, and (2) the way that bots
send stolen data to the botmaster. The first works use rule-based
behavioral analysis to detect the bots. Nevertheless, these
models are ineffective because malicious behaviors often take
place over long time scales. More recent works start to analyze
network traffic for botnet detection. They generalize common
patterns followed by botnets during their life cycle to detect
unseen botnet traffic. Oulehla et al. [214] propose the use of

NNs to obtain features from botnet behaviors. Torres et al. [29]
propose the usage of LSTM to detect botnets. They analyze two
different strategies, undersampling and oversampling for
imbalanced traffic, because the FAR value increases
considerably if no sampling technique is used. As both
techniques improve detection, undersampling is preferred
because it is more computationally efficient. The LSTM
network is trained using stratified 10-fold cross validation. The
solution is evaluated with two datasets resultant from network
traffic captures in the CVUT University [215]. Using only TCP
data, it achieves a TPR of 96.8% and an FPR of 1.11%. In the
same vein, McDermott et al. [216] uses a Bidirectional LSTM
RNN (BLSTM-RNN) model in conjunction with word
embedding for botnet detection in IoT networks. This work
performs detection at the packet level and it uses word
embedding for text recognition and conversion, which the
authors have proven useful for predicting attack vectors. They
create a customized dataset of Mirai botnet traffic using the

Fig. 11. Overview of DL methods used in the software area.

AE

AE
Malware

classification
IoT[22]

Ransomware
detection

Android[31]

Malware
classification

[28]

Stacked AE

Malware
detection

[174]

Malware
detection

Android [207]

Malware
detection

[173]

MLP
Ransomware

detectuion and
classification

[226]

LSTM

Botnet
detection
IoT [216]

Malware
detection

[26]

DBN

Malware
detection

[184]

Malware
detection

Android [202]

SVM

Malware
detection ARM-
based IoT [185]

RNN

Malware
detection

Android [84]

CNN

Malware
detection

Android [132]

Malware
detection

Android [204]

Combination

Malware
detection

[176]

Botnet
detection

IoT [29]

Ransomw
are

detection
[227]

Ranso
mware

FoG
[230]

Malware
detection

Android [140]

Malware
detection

Android [208]

Ransomware
detection

[223]

Malware
detection

[177]

Malware
detection

[179]

Malware
detection
Android

[211] Malware
detection [25]

DNN

Ransomw
are

detection
[32]

Malware
classifica
tion [27]

Mobile HTTP
botnet

detection
[30]

RBM

Malware
detection
Android

[203]

Multimodal DL

Malware
detection
Android

[212]

P2P botnet
detection
IoT [217]

Multilayer NN

Ransomw
are

detection
[228]

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

21

traffic of IoT cameras in a laboratory. The dataset includes
benign, scan, infect and control traffic. The model is compared
to LSTM-RNN. They achieve better accuracy for three of the
four attack vectors considered (UDP flood, DNS flood and
SYN flood attacks). ACC ranges between 98% and 99%.
However, for ACK attacks the results are not that high.

Alauthaman et al. [217] also consider supervised learning. In
this work, the authors propose a method for P2P botnet
detection based on the traffic reduction technique. The method
uses an adaptive multilayer feedforward NN in conjunction
with decision trees. First, the classification and regression tree
select relevant features. Then, the NN training model has the
relevant features selected by a resilient back-propagation
learning algorithm. To test the proposed model, two datasets are
used: (a) ISOT [218], which contains malicious traffic from the
Honeynet French chapter and benign traffic from the Traffic
Lab at Ericsson Research in Hungary and from the Lawrence
Berkeley National Laboratory (LBNL); and (b), ISCX [121].
The experiments show a detection rate of 99.8% with an FPR
of 0.75%.

Recently, botnets employ the HTTP protocol, since
botmasters can easily hide their activities amongst the benign
web traffic. Examples of mobile Botnets are Zitmo,
DroidDream, and AnserverBot [219]. Eslahi et al. [30] propose
a detection approach for HTTP Botnets on Bring Your Own
Device (BYOD) networks. The model consists of three main
stages: Data processing (collection, reduction and filtering);
feature processing; and pattern recognition. Periodic behaviors
of HTTP Botnets are classified using the three metrics. The
pattern recognition engine employs a Feedforward
Backpropagation NN. The model is evaluated using 1000
instances from two datasets: the bots from Genome [131] and
the Drebin dataset [136]. It achieves an ACC of 97.81%.
5) Ransomware

In the last years, ransomware has been growing largely
causing millions of dollars of losses to industry and consumers.
This type of malware installs covertly on the victim’s device to
demand a ransom payment, usually through crypto-currencies
such as Bitcoin, to restore the infected resources. It is designed
to infect, encrypt and prevent access to the system or files and
lock-down hosts. There are two main types of ransomware:
locker ransomware that denies user access to the system; and
crypto ransomware that encrypts the files and folders of the
user, but the user can access the system. New ransomware
versions are appearing constantly due to the large revenues
obtained by the cyber criminals [220]. These new versions
easily bypass intrusion detection tools, because in most cases
they are created by polymorphic and metamorphic algorithms.
Initially, signature-based methods were used to detect
ransomware, similar to matching binary patterns in anti-virus
software. However, these methods fail when ransomware
changes its behavior or uses packers to camouflage. Since the
network behavior of different ransomware families is similar,
ML techniques have been used for ransomware identification
[221][222]. Yet, they rely on human intervention. Subsequent
works use supervised DL methods to overcome human
interaction dependencies, avoiding the error prone human

element. Moreover, DL methods can discover the threat when
the infection process starts. Hill and Bellekens [223] use
Dynamic CNN (DCNN) to classify cryptographic primitives in
binary executables. The solution, so-called CryptoKnight,
classifies unknown software, from the cryptographic execution
patterns learned. Unlike a standard CNN, it allows inputs of
different lengths as the DCNN to use k-max pooling, where k
scales with the input length. The solution is tested using a
dataset created by the authors. They elaborate a methodology
that achieves procedural generation including elements that
provide some obfuscation without altering the intended control
flow. The solution is able to classify the sample algorithms with
91% of ACC without extensive hyper-parameter optimization.

Tseng et. al. [32] also uses supervised learning but their work
is based on deep packet inspection over network traffic. The
architecture is based on a DNN consisting of 7 layers with the
ReLU activation function to speed up the training process. The
solution is implemented using Tensorflow [148] to build the
NN and the dpkt library [224] to decode the payload in the
original pcap files. To test the solution, they build their own
dataset capturing 23 families of ransomware pcap files, as
CryptXXX, CryptoWal, or TeslaCrypt from malware traffic
analysis websites [225]. The dataset includes files
corresponding to new ransomware not used for training. This
approach is used to validate that the solution can predict new
ransomware. The network achieves an ACC of 93%. In the
same line, Vinayakumar et al. [226] propose a solution based
on MLP to detect and classify ransomware with the help of API
invocations. Dynamic analysis usually considers API calls
made by the executable to identify the behavior of the
application. The solution detects if a .EXE file is ransomware
or benign and it classifies the ransomware to its corresponding
category. The architecture is implemented using Tensorflow
[148] and it is trained using backpropagation with a non-linear
activation function. The solution is tested with a dataset
generated by the authors, which includes 7 different
ransomware families and 131 API calls. The solution achieves
an ACC of 100%, which improves shallow network
performance (96% to 98%). Similarly, Maniath et. al. [227] also
propose a solution based on API calls to determine the behavior
of applications. Their solution includes LSTM models to detect
ransomware from executables. The LSTM network is
implemented using Tensorflow. The solution is tested using a
dataset elaborated by the authors that consists of 157
ransomware and benign samples collected from Microsoft
Windows and online repositories. The solution achieves an
ACC of 96.67%. Agrawal et al. [228] improved this work
enhancing LSTM cells with the Attended Recent Inputs (ARI)
mechanism. They observe that ransomware executables have
high repetition of small local patterns due to their repetitive
encryption. Therefore, they use methods that utilize repeating
behaviors but, at the same time, maintain outer sequence event
learning. ARI cells learn from recent history while processing
the input sequence. The ARI-LSTM network is implemented
using Keras [160] with a Tensorflow [148] backend for training
using backpropagation with the Adam optimizer [229]. They
construct a dataset of 26,300 samples of ransomware and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

22

benign executables for Windows OS. The framework achieves
an ACC of 91%, which improves by 4% the performance of the
LSTM model when detecting ransomware. LSTM networks are
also used for detecting ransomware in fog computing.
Homayoun et. al. [230] design the Deep Ransomware Threat
Hunting and Intelligence System (DRTHIS) which uses LSTM
in conjunction with CNN for ransomware detection and
classification. The solution is implemented using Keras [160].
They train and evaluate the performance of DRTHIS with a
dataset consisting of 220 Locky [231], 220 Cerber [232] and
220 TeslaCrypt ransomware samples plus 219 goodware
samples. It achieves an F-measure of 99.6% with a TPR of
97.2%. The solution is also capable of detecting unknown
ransomware. It classifies 99% of Cryptowall, 75% of
TorrentLocker and 92% of Sage samples.

Other works provide solutions for the Android mobile
platform. Gharib and Ghorbani [31] propose a real-time hybrid

ransomware detection framework based on DAEs to reduce and
learn new features. They also use, Binary and Multiple
Sequence Alignment (MSA) techniques to profile malware
families by analyzing dynamic system call sequences. The
DNA-Droid framework evaluates an input sample using static
analysis and if it is suspicious, its run-time behavior is
monitored. In this way, ransomware is detected at an early stage
before the infection process starts. The DNA-Droid is
implemented using Scikit-learn [188] and Tensorflow [148]
libraries. It is tested using a dataset developed by the authors,
which contains a large collection of Android ransomware
samples of eight different families (1,928 samples) and a set of
2,500 benign samples. The solution achieves an ACC of 98.1%
in the best case.
6) Summary table –Software

Table IV below summarizes the DL-based cybersecurity
solutions analyzed in the software area.

TABLE IV
SUMMARY OF DL WORKS ON SOFTWARE

Reference Attack Scenario Learning paradigm DL Model Dataset Performance

Pascanu et al.
[25]

Malware detection (API
calls based)

Publicly available
malware applications

Semi-supervised RNN and
MLP

Microsoft dataset TPR=71.7%
FPR=0.1%

Hardy et al.
[173]

Malware detection (API
calls based)

Publicly available
malware applications

Semi-supervised SAEs Comodo Cloud
Security Center

ACC=96%

Ye et al.
[174]

Malware detection (API
calls based)

Publicly available
malware applications

Semi-supervised SAEs Comodo Cloud
Security Center

ACC=95.6%

Athiwaratkun
et al. [26]

Malware detection (API
calls based)

Publicly available
malware applications

Semi-supervised LSTM Windows PE format
files

FPR=1%

Agrawal et al.
[176]

Malware detection (API
calls based)

Publicly available
malware applications

Semi-supervised LSTM Custom TPR<80%

Kolosnjaji et
al. [177]

Malware detection (API
calls based)

Publicly available
malware applications

Supervised RNN and
CNN

Virus Share
Maltrieve

ACC= 89.4%

Tobiyama et
al. [179]

Malware detection (API
calls based)

Publicly available
malware applications

Supervised RNN and
CNN

Custom AUC=0.96

Dahl et al.
[27]

Malware classification
(API calls based)

Publicly available
malware applications

Supervised DNN Custom FPR=0.35%

Wang et al.
[28]

Malware classification
(API calls based)

Publicly available
malware applications

Unsupervised AE Public malware API
call sequence

ACC=99.2%

Yousefi-Azar
et al. [22]

Malware classification
(API calls based)

Publicly available
malware applications
(IoT)

Semi-supervised AEs Microsoft Malware
Classification
Challenge

ACC=96.3%

Ding et al.
[184]

Malware detection
(opcode based)

Publicly available
malware applications

Unsupervised DBN netlux
offensivecomputing
Microsoft

ACC=96.7%

HaddadPajou
h et al. [185]

Malware detection
(opcode based)

ARM-based IoT
applications

Semi-supervised RNN Virus Total Threat
Intelligence platform
Linux Debian
repositories

ACC=98.2%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

23

Reference Attack Scenario Learning paradigm DL Model Dataset Performance

Su et al. [202] Android malware
detection

Android apps Semi-supervised DBN
SVM

Google Play Store
Drebin
Android Malware
Genome Project
Contagio
Community

ACC=99.4%

Yuan et al.
[203]

Android malware
detection

Android apps Semi-supervised RBM Google Play Store
Contagio
Community

ACC=96%

Yuan et al.
[132]

Android malware
detection

Android apps Semi-supervised DBN Google Play store
Contagio
Community
Genome Project

ACC=98%

Zhu et al.
[204]

Android malware
detection

Android apps Semi-supervised DBN Google Play Store
Android Malware
Genome Project
 VirusShare

ACC =98%

Hou et al.
[207]

Android malware
detection

Android apps Semi-supervised SAE Comodo Cloud
Security Center

ACC=93.7%

Martinelli et
al. [84]

Android malware
detection and
classification

Android apps Supervised CNN Google Play store
Drebin repository

ACC=95%

Karbab et al.
[140]

Android malware
detection

Android apps Supervised CNN Malgenom
Drebin
Maldozer

F1
Score=99%

McLaughlin
[208]

Android malware
detection

Android apps Supervised CNN Android Malware
Genome project
McAfee Labs

ACC=98%

Lee et al.
[211]

Android malware
detection

Android apps Supervised CNN and
RNN

VirusTotal ACC=99%

Kim et al.
[212]

Android malware
detection

Android apps Supervised Multimodal
DL method

Google Play App
Store
VirusShare
Malgenome

ACC=98%

Torres et al.
[29]

Botnet detection IoT Supervised LSTM Custom TPR=96.8%
FPR=1.11%

McDermott et
al. [216]

Botnet detection IoT Unsupervised BLSTM-RNN Custom ACC=99%

Alauthaman
et al. [217]

P2P Botnet detection IoT Supervised Multilayer
feedforward
NN

Custom ACC=99.8%

Eslahi et al.
[30]

Mobile HTTP Botnet
detection

BYOD networks Supervised Feedforward
Backpropagati
on NN

Genome project
Drebin dataset

ACC=97.8%

Hill and
Bellekens
[223]

Ransomware detection Computer networks Supervised DCNN Custom ACC=91%

Tseng et. al.
[32]

ransomware detection Computer networks Supervised DNN (7
layers, ReLU)

Custom ACC=93%

Vinayakumar
et al. [226]

ransomware detection
and classification

Computer networks Supervised MLP Custom ACC=100%

Maniath et.
al. [227]

ransomware detection Computer networks Supervised LSTM Custom ACC=96.6%

Agrawal et al.
[228]

ransomware detection Computer networks Supervised ARI-LSTM Custom ACC=91%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

24

Reference Attack Scenario Learning paradigm DL Model Dataset Performance

Homayoun et.
al. [230]

ransomware detection and
classification

FoG Supervised LSTM
CNN

Custom ACC=99%

Gharib and
Ghorbani [31]

ransomware detection Android mobile
platform

Supervised DAE Custom ACC=98.1%

C. Privacy
Nowadays, mobile devices have become common in our

daily life. Users can benefit from a wide range of services
offered by these devices (e.g recommendation systems, targeted
advertising, health monitoring, and security surveillance). Most
of these services are for free but they collect high sensitive user
data (e.g. personal data, photos, videos or banking data). These
services also access sensitive external data (e.g. surveillance
systems or medical information). The principal beneficiaries
are companies that exploit DL-based systems. These companies
benefit from the vast amounts of data collected from their users,
which lead them to have the monopoly of DL models. This
poses important privacy issues for user personal data.
Therefore, a great number of works are emerging in the
literature to address these concerns. Figure 12 provides the
complete picture.

Shokri and Shmatikov [33] is one of the first works on
privacy. They develop a system for collaborative DL that
preserves user privacy in all types of NNs. The system is based
on MLP and CNN models and it enables multiple users to learn
NN models based on their inputs, while benefiting from other
user data without sharing the inputs. The DL algorithms are
based on SGD because they can be parallelized and executed
asynchronously. Furthermore, the model parameters can be
selectively shared when training the model. Plus, they can be
tuned to control the tradeoff between accuracy and privacy. The
solution is evaluated using two datasets, MNIST [233] and
SVHN [234] (both typically used for image classification). For
the MNIST data set, the system achieves an ACC of 99.14%
when participants share the 10% of their data. This result
matches the centralized privacy-violating model
(ACC=99.17%). For the SVHN dataset, ACC is 93.12%. Phong
et al. [34] improve this work by ensuring that the system does
not leake user data to the server while maintaining accuracy.
They also improve the system security through homomorphic
encryption with no impact on accuracy. Abadi et al. [37]
propose a completely different approach. NNs are trained with
differential privacy [235] to avoid the disclosure of private DL
datasets information. The algorithms are based on a differential
privacy enhanced SGD. They implement the solution using
TensorFlow [148]. They test it using two popular image
datasets: MNIST [233] and CIFAR-10 [236]. The system
achieves an ACC of 97% for MNIST and 73% for CIFAR-10
in both cases for a differential privacy (8,10-5). Therefore, this
work demonstrates that DNNs can be trained at a manageable
cost in software complexity. Hitaj et al. [36] train DL structures
locally and they only share a subset of the parameters
obfuscated via differential privacy. The authors propose a

solution to avoid attacks on collaborative DL using GANs.
Their solution stops attackers from inferring sensitive
information from the victim device. To this end, they first
devise a novel class of inference attacks that are more generic
than existing information extraction mechanisms. Then, they
run the active inference attacks on the distributed collaborative
learning system based on CNNs implemented by Shokri and
Shmatikov [33]. To test the approach, they use the MNIST
[233] and AT&T [237] datasets. They achieve an ACC of 97%.

Recent works address privacy issues in IoT. Osia et. al.
[238][88] propose a hybrid framework, based on the CNN
model, for efficient privacy preserving analytics. The proposal
is based on the Siamese architecture [239]. It splits the NN into
the IoT device and the Cloud. Feature extraction runs in the IoT
device and classification in the Cloud. In this way, user raw data
is not uploaded to the Cloud. Hence, it provides strong privacy
guarantees to the system. The main innovation of this work is
the feature extractor module that achieves an acceptable trade-
off among accuracy, privacy and scalability. The solution is
evaluated for two widely used classification tasks: gender
classification and activity recognition. In gender classification,
the datasets used are IMDB-Wiki [240] and LFW [241]. It
achieves an ACC of 94%. In activity recognition, the dataset
used is the MotionSense [242]. It achieves an ACC of 93%. In
the same vein, Servia-Rodriguez et. al. [243] focus on Internet
services that collect extensive user data, which can become
invasive and comprise user privacy. The authors propose an
alternative model that avoids the flow of user data to the Cloud.
They propose to train the NN on distributed devices, which
enables users to keep all rights over their data. The model is
based on a two-step process that consists on a first analysis of a
small dataset provided by voluntary users. The result of the
analysis becomes a shared model. Then, they retrain the model
locally (local model) using personal user data. At the end, each
user has his/her own personal model. They evaluate their model
for two learning tasks: supervised and unsupervised. The
supervised model recognizes user activity from accelerometer
traces. The system is based on MLP and trained using the
WISDM Human Activity Recognition Dataset [244]. The
authors compare the performance of the model between the
shared, local, and personal models. Training the model with
samples of other individuals, not only with samples of one user,
achieves the best results. The unsupervised model uses the
Latent Dirichlet Algorithm (LDA) to identify topics in a large
set of documents. The model is trained using the NIPS dataset
[245] and the Wikipedia latest English dump in January 2017
[246]. It achieves higher accuracy for the personal model than
for the local one.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

25

Wang et al. [247] propose a similar solution to that of Servia-
Rodriguez [243], but they consider Cloud resources, in addition
to mobile devices, when partitioning the DNN. They develop
the Arden framework for DNN-based private inference in
mobile cloud. The solution uses a lightweight privacy-
preserving mechanism, which consists of arbitrary data
nullification and random noise addition, to protect sensitive
information. Furthermore, authors propose a noisy training
method, which injects deliberately noise into the training data
to mitigate a negative impact on the performance of the cloud
side. The framework is tested using the MNIST [233] and
SVHN [234] datasets. It achieves an ACC of 98.02% and
88.12% respectively for each dataset. The experiments
demonstrate that the Arden framework preserves user privacy
and it also improves the inference performance reducing
resource consumption over 60%. Finally, Lyu et al. [248]
propose a novel approach that embeds Fog computing into DL
to speed up computation and protect privacy in IoT. They
devise a Fog-embedded privacy-preserving DL framework
(FPPDL) to reduce computation and communication costs
while preserving privacy. Privacy is preserved by a two-level
protection mechanism. First, it uses Random Projection (RP) to
protect privacy. They perturbe original data but preserve certain
statistical characteristics of the original data. Second, Fog nodes
train fog-level models applying Differentially Private SGD.
The framework is implemented using MLP with two hidden
layers using ReLU activations. It is evaluated using three
different datasets typically used in image classification: MNIST
[233], SVHN [234] and multiview multicamera dataset [249].
The solution achieves an ACC of 93.31% and 84.27% for the
MNIST and SVHN datasets respectively. The results are
slightly lower than for the centralized framework, but the
solution reduces significantly communication and computation
costs.

Another approach to guarantee user privacy in DL-based
services is to train the network on encrypted data.
Cryptographic techniques, as fully homomorphic encryption
(FHE) [250], enable the processing of encrypted data. However,
they are too slow for training DNN models due to the
computational complexity and operations involved. Gilad-
Bachrach et al. [251] propose Crypto-Nets that perform the
inference phase of a NN on encrypted data. The solution is
evaluated with the MNIST dataset. It achieves an ACC of 99%.
On average, it achieves a sustained rate of 60,000
predictions/hour. However, this work has much room for
improvement, especially in terms of throughput and latency.
Nandakumar et. al. [37] improve this work and build the first
fully homomorphic computationally efficient DL service for
training on encrypted data. The key objective of this work is to
outsource DL tasks to an external service, with the appropriate
expertise and computational resources, without comprising user
data. To this end, data is encrypted using a private key and it is
subsequently shared with the service provider. Then, the service
provider can train the model but it cannot learn anything about
the data. The resultant model is only useful to the users with
access to the private key. The solution is based on a DNN with
two hidden layers, which use the SGD algorithm. The solution
is implemented using the FHE toolkit HElib [252] and it is
evaluated using the MNIST dataset. It achieves an ACC of
96%. The authors report a 50x speed-up in computation time
when: (a) choosing the appropriate data representation; (b)
simplify the network with minimum accuracy degradation; (c)
pack data within the cipher text to minimize the number of
operations; and (d) enable the parallelization of FHE
computations. However, training in the encrypted domain is
still too slow. It is about four or five orders of magnitude slower
that training non-encrypted data.

DL models also have been explored to prevent information

Fig. 12. Overview of DL methods used in the privacy area.

LSTM

Decryption
Cloud [254]

Encryption
Network system[253]

MLP

Privacy preserving DL
Differential privacy
Network system[35]

Privacy preserving DL
Network system [34]

DNN

Privacy preserving DL
training on encrypted

data Cloud[251]

Privacy preserving DL
training on encrypted data

Cloud [37]

Privacy preserving DL
Cloud to mobile

devices[247]

Privacy
preserving DL
Differential

privacy
Cloud to mobile

devices[36]Privacy
preserving DL

Network
system[33]

Privacy
preserving

mobile analytics
Edge-to-cloud
computing [88]

Privacy
preserving DL
Edge-to-cloud

computing [238]

Side channel
attacks
Mobile

devices[257]

CNN

Side channel
key recovery
attacks[255]

Privacy
preserving DL

Cloud to
mobile[243]

Privacy
preserving DL

Fog[248]

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

26

leakage and password guessing attacks. Recently, Liu et al.
[253] propose a general DL model, so-called PL, to train
datasets and generate passwords combining an LSTM with
probabilistic context-free grammars (PCFG). The authors
develop GENPass, a password-guessing generator based on the
LSTM model. GENPass consists of several generators that
create passwords from datasets and a classifier that checks that
the output is not specific to a certain dataset. GENPass
improves generality by implementing the adversarial idea in
password generation. GENPass is implemented using
Tensorflow [148] and it is trained and tested using a dataset that
collects leaked English passwords from 4 websites: Myspace,
phpBB, RockYou and LinkedIn. The results show that the
matching rate improves by 20% compared to simply combining
those datasets in cross-sites tests when learning from a single
dataset.

Other works study different decryption DL methods.
Greydanus et al. [254] propose the LSTM RNN to learn
decryption algorithms. The novelty of this work resides in the
proposed model, which can be applied to any polyalphabetic
cipher. The solution can learn three different ciphers: Vigenere,
Autokey, and Enigma. Once trained, the model has good
performance on unseen keys and much longer ciphertext
sequences. The model achieves an ACC of 99% for the three
ciphers. Consequently, it is useful in cryptanalysis.

Other works in the literature address privacy vulnerabilities
in side channel attacks. Maghrebi et al. [255] propose DL
techniques for side channel key recovery attacks [256]. The
authors compare the effectiveness and efficiency against

different implementations of their proposed DL-based, ML-
based and template-based attacks. The DL methods considered
are AE, CNN and LSTM; while the ML methods are MLP and
RF. The results demonstrate that DL attacks have better
efficiency than common template and ML attacks in breaking
unprotected and protected (AES) implementations. Ning et al.
[257] address privacy vulnerabilities in mobile devices due to
the malicious use of unsupervised sensor data. Today’s
smartphones integrate a wide variety of sensors (e.g. GPS,
microphone, accelerometer, gyroscope, magnetometer,
proximity, ambient). The authors report a new vulnerability due
to the malicious use of unsupervised magnetometer and motion
sensor data, where attackers sniff mobile applications and infer
(using a CNN) the apps installed on the device and how
frequently they are used. They achieve an ACC of 98%. The 6-
layer CNN architecture is implemented using Tensorflow
[148]. Each convolutional layer has 64 filters and the densely
connected layer uses 128 neurons with ReLU activations. A
dataset was created with the top 15 most used applications to
validate the solution. Finally, this work proposes a noise
injection scheme to effectively mitigate such attacks. The noise
injection reduces the App sniffing ACC to 15%. Thus it
mitigates the privacy leakage risk.
1) Summary table –Privacy

Table V summarizes the work analyzed in the privacy area.
System performance is reported for all of the surveyed works,
except for Maghrebi [255] (they do not use standard DL
evaluation metrics).

TABLE V
SUMMARY OF DL WORKS ON PRIVACY

Reference Objective Scenario Learning paradigm DL Model Dataset Performance

Shokri and
Shmatikov [33]

Privacy preserving DL Network systems Supervised MLP
CNN

MNIST ACC=99.1%
SVHN ACC=93.1 %

Phong et al. [34] Privacy preserving DL Network system Supervised MLP MNIST ACC=99%
SVHN ACC=93 %

Abadi et al. [35] Privacy preserving DL
Differential privacy

Network system Supervised MLP MNIST ACC=97%
CIFAR-10 ACC=73%

Hitaj et. al. [36] Privacy preserving DL
Differential privacy

Cloud to mobile devices Supervised CNN MNIST
AT&T

ACC=97%

Osia et. al. [238] Privacy preserving mobile
analytics

Edge-to-cloud computing
IoT

Supervised CNN IMDB-Wiki
LFW

ACC=94%

MotionSense ACC=93%
Osia et al. [88] Privacy preserving DL Edge-to-cloud computing

(IoT)
Supervised CNN IMDB-Wiki

LFW
MotionSense

ACC=93%

Servia-Rodriguez
et. al. [243]

Privacy preserving DL Cloud to mobile devices Supervised

Unsupervised

MLP

WISDM Human
Activity Recognition
NIPS
Wikipedia latest
English dump

ACC=88%

Wang et. al. [247] Privacy-preserving DL Cloud to mobile devices Supervised DNN MNIST ACC=98%
SVHN ACC=88.1%

Lyu et. al. [248] Privacy-preserving DL Fog Computing
IoT

Supervised MLP MNIST ACC=93.3%

SVHN ACC=84.2%

Gilad-Bachrach
et. al. [251]

Privacy-preserving DL
Training on encrypted data

Cloud Supervised DNN MNIST ACC=99%

Nandakumar et.
al. [37]

Privacy-preserving DL
Training on encrypted data

Cloud Supervised DNN MNIST ACC=96%

Liu et al. [253] Guessing passwords
(Adversarial generation)

Network system Supervised LSTM Custom

ACC=80%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

27

VI. LESSONS LEARNED AND FUTURE DIRECTIONS
DL methods provide promising results to improve detection

and accuracy of existing cybersecurity systems. They succeed
in detecting new and complex attacks as they overcome the
limitations of traditional and ML-based security systems. DL
models provide resilience to new cyberattacks as novel attacks
are usually small mutations of previously known attacks. They
have self-taught abilities. This enables them to discover hidden
patterns, different from normal behaviors, from the training
data. The continuous update of the underlying model provides
the capacity to learn the features of new attacks.

An important lesson learned for cybersecurity systems is that
effective DL techniques are able to quickly transfer knowledge
of existing attacks to improve the detection of newer ones, learn
the features of newcomers and update the underling model.
Research in this direction should consider transfer learning and
lifelong learning. Deep lifelong learning [258] aims to build a
solution that continuously adapts to new environments retaining
the maximum knowledge from previous learning experiences.
The model shows good results in non-stationary image data
[259] or computer games [260] where it outperforms traditional
DL algorithms. Deep transfer learning [261] uses previous
knowledge of a specific domain to accelerate new learning
processes since it does not learn from scratch. Transfer learning
can help cybersecurity solutions as it reduces the time to
respond to new threats.

Figure 13 provides a complete view of cybersecurity
challenges in mobile networks and the learning paradigm most
commonly used by existing cybersecurity systems.

A. Infrastructure area
1) Lessons learned

In the infrastructure area, most of the works in the literature
address network intrusion detection. The architectures
proposed for the cybersecurity systems are mainly based on
unsupervised or semi-supervised learning paradigms. AEs are
the preferred choice for intrusion and anomaly detection.
KDDCUP’99 and NSL-KDDare the most widely used datasets.
Yet, they do not represent perfectly existing real networks but,
still, they are useful for comparing DL-based NIDS. A fair
comparison of all the works in this survey is difficult due to two
main factors. First and foremost, the datasets used are not
always the same or they use different subsets of the same
dataset. The second is that not all the works consider the same
evaluation metrics when evaluating the solution. Nevertheless,
some trends are visible for intrusion and anomaly detection
works. All DL-based architectures outperform in terms of

detection accuracy traditional IDS and ML-based IDS, even
when considering real world data with embedded noise.
Moreover, preprocessing the datasets enables higher accuracy,
as well as higher efficiency in training and testing phases.
Similarly, minimizing the number of features, by means of
feature reduction methods, reduces data dimensions and
computation complexity while preserving detection and
classification accuracy. Finally, several works define the
optimal hyper-parameters values to improve the efficiency of
the system.

On the other hand, the analysis performed demonstrates that
the ability of the architectures to detect intrusions depends on
the type of attack and on the number of classes considered in
the classification tasks. Another important conclusion is that the
further an algorithm is trained with the latest features of attacks,
the higher the detection of known and unknown attacks is.
Consequently, attack detection systems should be frequently
trained with updated samples.

In the IoT domain, the works analyzed demonstrate that
parallel learning improves accuracy and efficiency of
cyberattack detection. At the same time, performing the training
and testing phases of the DL models on the IoT device leads to
device dependent solutions.

The solutions for DDoS attacks are mainly based on
supervised learning, being MLP the most used model. An
interesting conclusion from this analysis is that the models
provide better results if they are trained with up-to-date
patterns. If so, they learn from new scenarios and detect zero-
day patterns. Nevertheless, a major drawback of supervised
learning is that it requires a high amount of labeled data, which
is expensive to collect and it is not always is available. This will
certainly lead to consider semi-supervised learning paradigms
in the near future, which can effectively deal with the huge
amount of unlabeled data for DDoS attacks. Distributed attack
detection solutions also adopt supervised learning paradigms
(mostly based on SAE). Surveyed works demonstrate that
distributed attack detection can detect cyberattacks effectively
and they can even improve centralized DL performance. The
main advantage relies on parameter sharing during the training
phase as it reduces local minima.
2) Future directions

In the cybersecurity field, and more specifically for intrusion
and anomaly detection, an interesting research direction is to
investigate if publicly available datasets are enough to train the
learning algorithms to be generalized for new inputs in the
given domain. In new areas, such as IoT, CPS or 5G, the major
challenge when developing a DL-based solution is the
generation of a realistic and high-quality training dataset. As

 Reference Objective Scenario Learning paradigm DL Model Dataset Performance

Greydanus et. al.
[254]

Enigma learning

Cloud Supervised LSTM Custom

ACC=99%

Maghrebi et al.
[255]

side channel key recovery
attacks

Mobile devices Supervised AE
CNN
LSTM

Custom NA

Ning et al. [257] side channel attacks Mobile devices Supervised CNN Custom ACC=98%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

28

datasets are the basis for obtaining the model knowledge, they
should contain information that completely reflects real-world
attacks. The completeness of the dataset has also a direct
influence in the performance of DL-based cybersecurity
models. In Cloud or IoT environments, crowd-sourcing
methods are currently being introduced for generating rich
threat datasets, which should be continuously updated with new
attacks. However, the great diversity of IoT devices make it
technically challenging. Another interesting research direction
in IoT is to generalize the architectures to be applicable to
devices of different vendors, and even to devices with different
functionalities. Those architectures shall also consider the

challenge of applying sophisticated security mechanisms to
computationally limited devices. We foresee that DL models
will be designed to achieve a trade-off between attack detection
accuracy and the computing capabilities of the device.

Finally, existing DL-based security solutions appear not
sufficient for the upcoming 5G mobile technology, where
networks will have higher transmission rates. Novel DL models
are in dire need in order to prevent systems from attacks
considering the specific requirements (i.e. large-scale
streaming, heterogeneous and low-quality data) without
compromising the accuracy in detection with minimal response
time.

B. Software area
1) Lessons learned

In the software area, DL-based solutions also outperform
ML-based ones for malware detection and classification, botnet
detection and ransomware detection and classification.

DL-based architectures are tested with different datasets, in
this case even with a greater number of variants than in the
infrastructure area. Furthermore, as obtaining legitimately
malicious data is difficult, the ratio of benign and malicious data
in the training dataset is unbalanced. This imbalance affects the
performance of the solution. Therefore, standardized high-
quality datasets are crucial for future improvements on DL-
based cybersecurity systems. They are necessary to develop
generalizable models to detect new malware.

Malware detection solutions fall in two main groups
depending on the use of API calls or opcodes. API-call based
solutions adopt supervised learning (mostly, RNNs and CNNs),

or semi-supervised learning (AEs and LSTMs). Semi-
supervised learning achieves better system performance while
maintaining accuracy. Supervised solutions need labelled
datasets which are scarce and they do not completely consider
the wide range of malware attacks. Opcode based malware
detection solutions consider unsupervised learning (RNNs) and
semi-supervised learning (DBNs). Malware classification uses
API-call based solutions, being AEs the preferred choice.

Android OS is the primary focus of malware solutions since
99% of all mobile device malware targets Android devices.
Initially, the supervised learning paradigm (especially CNNs)
was widely adopted. However, the vast amount of unlabeled
data in this area, lead researchers to consider semi-supervised
DL models. DBN has received special attention as it achieves a
high accuracy with good runtime efficiency. Malware
applications behavior is characterized in terms of sequences of
systems calls. This captures the application behavior and, at the
same time, it is robust to obfuscation techniques.

Fig. 13. Cybersecurity challenges in mobile networks.

Cybersecurity
challenges

SoftwareInfrastructure

Privacy

Intrusion
detection

Anomaly
detection

DDoS
attack

detection

Distributed
attack

detection

Unsupervised
Semi-supervised

Supervised
Semi-supervised

Malware
detection
(API calls)

Malware
classificationMalware

detection
(opcodes) Android

Malware
detection

Botnet
detection

Ransomware
detection

Ransomware
classification

Supervised
Semi-supervised

Supervised

Privacy
preserving

DL
Side channel

attacks Privacy
preserving DL

encrypted data

Supervised

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

29

Finally, botnet detection and ransomware detection and
classification use supervised models. Botnet detection solutions
analyze network traffic to generalize common patterns of
botnets along their life cycle. Through the works in this survey,
we can see that undersampling techniques improve botnet
detection and reduce computational cost. In contrast to
traditional intrusion detection tools, supervised DL models can
detect ransomware with behavioral changes and ransomware
that uses packers to camouflage. Moreover, they discover the
threat when the infection process starts. The most studied DL
models for ransomware detection tools are CNNs and LSTMs.
2) Future directions

In the software area, the most important research direction is
the development of publicly available high-quality datasets.
These datasets should contain a large number of different
possible attack types. Nowadays, different alternatives are
under consideration to generate realistic and high-quality
training datasets. One of the research directions is data
augmentation to expand the limited available data by generating
new samples from existing ones. The key challenge in malware
data augmentation is to produce new samples that preserve the
adequate data distribution for each class. This will improve
classification accuracy of DL methods since improving the
coverage of collected data translates to better detection
capabilities of new, and existing, malware attacks. Works in the
software area also highlight the need to continuously train the
DL algorithms with the latest features of malware attacks to
significantly increase detection accuracy.

The majority of the works design the proposed solution to
have high accuracy detection but they do not consider
computational costs, which is fundamental in real security
products. Small computational costs are critical for mobile or
edge devices with limited hardware. Consequently, DL-based
solutions should be more efficient. For example, they should
consider lightweight NNs and improve the preprocessing of
input data. Acceleration at the edge should be explored, for
example, by using network pruning techniques [262], as it has
shown success in other areas as image recognition. These model
optimization techniques eliminate unnecessary values in the
weight tensor. It contributes to the development of more
efficient NNs by reducing the computational cost of training.

Current works in the software area address the different types
of attacks in an isolated way. Future research directions should
consider interconnections between different malicious
activities. For example, they should consider the cybersecurity
attack lifecycle in terms of recognition, initial compromise,
command and control target attainment and actions on the
objective.

C. Privacy area
1) Lessons learned

Privacy is one of the major concerns in mobile networks.
This area of cybersecurity is in its infancy and it requires further
investigation. DL-based privacy preservation works mainly
follow three different approaches: collaborative DL, differential
privacy, and training on encrypted data. The vast majority of
these works use supervised learning. Collaborative DL

solutions use the MLP model and participants only share a
subset of their data. If differential privacy is used, it avoids the
disclosure of datasets. In this case, the DL models chosen are
MLP and CNN. Finally, the proposals that train on encrypted
datasets use DNNs (usually, with two hidden layers). These
works achieve acceptable levels of accuracy. However, they
still are too slow. They are about four or five orders of
magnitude slower than training with non-encrypted data.
Therefore, there is still room for improvement in all privacy
areas.

Different proposals are starting to emerge in IoT. Privacy
preserving analytics use preferably CNNs. In this area, semi-
supervised learning is widely used. In the context of Fog
computing, the majority of the works focus on reducing the
computation and communication costs in IoT devices,
comprising detection accuracy. Although these approaches are
evolving and improving every day, it deserves further study in
order to be able to adapt to constant changes.
2) Future directions

Privacy protection solutions are in an initial stage. It requires
significant progress, especially, in the latency and throughput
of NN training on encrypted data. Current systems outsource
DL tasks to an external service with the appropriate expertise
and computational resources without comprising user data; and
thus, making the solution computationally efficient. However,
it should consider also new alternatives (e.g. quantum
computing techniques) to make the solution competitive.

Other future directions are shared with the infrastructure and
software area: parallel learning and computational cost
optimization. Several efforts are on the way, such as network
pruning and the interplay between different malicious activities.
Yet, this area is still in its infancy.

VII. CONCLUSION
Nowadays, the number of cyberattacks is increasing day by

day, in number and in complexity, as technology evolves. In
such a complex technological environment, traditional
cybersecurity systems fail in the detection of complex unknown
attacks such as zero-day attacks and new malware variants. ML
techniques have been adopted by cybersecurity systems to
address these challenges but with little success against
unforeseen or unpredictable attacks. Meanwhile, DL techniques
improve learning procedures and provide encouraging results in
a wide range of applications, including cybersecurity. The
success of DL relies, to a great extend, on the new achievements
in software engineering and the massive generation of training
data. This survey paper reviews DL methods applied to detect
and classify all types of cyberattacks. To this end, a
comprehensive analysis of DL techniques is done covering all
cybersecurity aspects: intrusion detection, software attack
detection and privacy preservation. For all the works reviewed,
we analyze the architecture, giving a special attention to the DL
method(s) used, its implementation, the data sets used for
testing, and the results achieved. Whenever possible, we have
compared the performance of the different proposals. It is worth
noting that this was the most difficult part because most of the
works do not use the same dataset for testing the model,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

30

especially in the software domain. While, others use specific
subsets of the same dataset, especially in the infrastructure
domain, in which most of the works use a subset of the
KDDCUP’99 or NSL-KDD datasets. In the evaluation process,
accuracy is usually reported, although several works use other
metrics.

Finally, this paper provides a complete analysis and
classification of DL methods used in cybersecurity. The major
contributions of this paper are that it addresses all cybersecurity
areas, including infrastructure, software and privacy, and it
considers all different scenarios in mobile networks. Finally, it
provides the relevant details of each proposal. To conclude, this
survey paper aims to be a useful guide for researchers that start
its work on DL-based cybersecurity systems.

LIST OF ACRONYMS
Acronym Description
ACC Accuracy
AE Autoencoder
AI Artificial Intelligence
ANIDS Anomaly Detection-Based
ANN Artificial Neural Network
API Application Programming Interface
ARI Attended Recent Inputs
ASN Autonomous Systems
ASR Automated Speech Recognition
AUC Area Under the Curve
AWGN Additive White Gaussian Noise
BLSTM-
RNN

Bidirectional LSTM RNN

BM Boltzmann Machine
BYOD Bring Your Own Device
BPTT Back-Propagation Through Time
CNN Convolutional Neural Network
CVAE Conditional Variational Autoencoder
CPS Cyber-Physical System
C&C Command and control
DAE Deep Autoencoder
DBM Deep Boltzmann Machine
DBN Deep Belief Network
DCNN Dynamic Convolutional Neural Network
DNN Deep Neural Network
DoS Denial of Service
DDoS Distributed Denial of Service
DL Deep Learning
DR Detection Rate
DRTHIS Deep Ransomware Threat Hunting and Intelligence System
DT Decision Trees
ESN Echo State Network
FAP File Access Pattern
FAR False Alarm Rate
FHE Fully Homomorphic Encryption
FN False Negative
FP False Positive
FPPDL Fog-embedded privacy-preserving DL
FPR False Positive Rate
GAN Generative Adversarial Network
GFADS GSA-based flow anomaly detection systematic
GRU Gated Recurrent Unit
GSA Gravitational Search Algorithm
HMM Hidden Markov model
ID-CVAE Intrusion detection CVAE
IDS Intrusion Detection Systems
IoT Internet of Things
ISTR Internet Security Report
IT Information Technology
JNNS Java Neural Network Simulator
KNN k-Nearest Neighbor
LBNL Lawrence Berkeley National Laboratory
LDA Latent Dirichlet Algorithm
LotL Living off the Land
Acronym Description
LSTM Long Short-Term Memory
ML Machine Learning
MLP Multilayer Perceptron
MLP-GA Multilayer Perceptron with a Genetic Algorithm
MSA Multiple Sequence Alignment

NB Naive-Bayesian
NIC Nature Inspired Computing
NIDS Network Intrusion Detection Systems
NLP Natural Language Processing
NN Neural Networks
NSSA Network Security Situation Awareness
OS Operating System
p precision
PCA Principle Component Analysis
PCFG Probabilistic Context-Free Grammars
PE Portable Executable
PE Portable Executable
P2P Peer-to-peer
RBM Restricted Boltzmann Machine
ReLU Rectified Linear Unit
RF Random Forest
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
RP Random Projection
R2L Remote-to-local
SAE Stacked Autoencoder
SDN Software-Defined Networking
SGD Stochastic Gradient Descent
SMR Soft-Max Regression
SNIDS Signature-based
SNN Spiking Neural Networks
SOM Self-Organized Maps
STL Self-taught learning-based
SVM Suport Vector Machines
TN True Negative
TP True Positive
TPR True Positive Rate
U2R User-to-root
WSN Wireless Sensor Networks
5G Fifth-generation

ACKNOWLEDGMENTS
This work is supported by the Generalitat de Catalunya under
grant 2017SGR962 and the DRAC project (001-P-001723).

REFERENCES
[1] Help Net Security, "Number of connected devices reached 22 billion,

where is the revenue?" May, 2019. [Online] Available:
https://www.helpnetsecurity.com/2019/05/23/connected-devices-
growth/. Accessed on: Feb. 2, 2021.

[2] L. Kappelman et al. "The 2019 SIM IT Issues and Trends Study", MIS
Quarterly Executive, (19:1), Article 7. 2020.

[3] Cisco Cybersecurity Report Series 2020 - Securing What's Now and
What's Next. [Online] Available:
https://www.cisco.com/c/en/us/products/security/cybersecurity-
reports.html. Accessed on: Feb. 2, 2021.

[4] NDIA 2019 Cybersecurity Report. [Online] Available at:
https://www.ndia.org/policy/cyber/2019-cybersecurity-report. Accessed
on: Feb. 2, 2021.

[5] A.L. Buczak, E. Guven, "A survey of data mining and machine learning
methods for cyber security intrusion detection", IEEE Communications
Surveys & Tutorials, vol. 18, no. 2, 2016, 1153-1176.

[6] D. Schatz, R. Bashroush, and J. Wall. "Towards a More Representative
Definition of Cybersecurity", Journal of Digital Forensics, Security and
Law, vol. 12, no. 2, 2017, 53-74.

[7] D. Kwon, H. Kim, J. Kim, S. Suh, I. Kim and J. Kim, "A survey of deep
learning-based network anomaly detection", Cluster Computing, vol. 22,
no. 5, January 2019, pp. 949-S961.

[8] N. Sultana, N. Chilamkurti, W. Peng, R. Alhadad, "Survey on SDN
based network intrusion detection system using machine learning
approaches", Peer-to-Peer Networking and Applications, Vol 12, 2019,
pp. 493–501.

[9] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning", Nature, vol. 521,
May 2015, pp. 436-444.

[10] K. Bissell, R. Lasalle, P. Dal Cin, "Innovate for cyber resilience lessons
from leaders to master cybersecurity execution", 2020. [Online]
Available: https://www.accenture.com/_acnmedia/PDF-116/Accenture-
Cybersecurity-Report-2020.pdf. Accessed on: Feb. 2, 2021.

[11] Symantec, vol. 24, February 2019, 1-59. [Online] Available:
https://www.symantec.com/content/dam/symantec/docs/reports/istr-24-
2019-en.pdf. Accessed on: Feb. 2, 2021.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

31

[12] C. Kolias, G. Kambourakis, A. Stavrou, J. Voas, "DDoS in the IoT: Mirai
and Other Botnets", Computer, vol. 50, no. 7, July 2017, pp. 80 - 84.

[13] McAfee mobile threat report. [Online] Available:
https://www.mcafee.com/enterprise/en-us/threat-center/mcafee-
labs/reports.html. Accessed on: Feb. 2, 2021.

[14] Check Point Software Security Report 2020. [Online] Available:
https://www.ntsc.org/assets/pdfs/cyber-security-report-2020.pdf.
Accessed on: Feb. 2, 2021.

[15] Symantec, [Online] Available: https://securitycloud.symantec.com.
Accessed on: Feb. 2, 2021.

[16] Vectra's Cognito platform, [Online] Available:
https://www.vectra.ai/product/what-it-is. Accessed on: Feb. 2, 2021.

[17] Sophos, [Online] Available:
https://www.sophos.com/products/endpoint-antivirus.aspx. Accessed
on: Feb. 2, 2021.

[18] IBM's QRadar Advisor tool, [Online] Available:
https://www.ibm.com/support/knowledgecenter/SS42VS_SHR/com.ib
m.apps.doc/c_Qapps_intro.html. Accessed on: Feb. 2, 2021.

[19] C. Zhang, P. Patras and H. Haddadi, "Deep learning in mobile and
wireless networking: A survey", IEEE Communications Surveys &
Tutorials, vol. 21, no. 3, March 2019, pp. 224-287.

[20] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali and M.
Guizani, "A Survey of Machine and Deep Learning Methods for Internet
of Things (IoT) Security," in IEEE Communications Surveys &
Tutorials, vol. 22, no. 3, pp. 1646-1685, 2020.

[21] A. Abeshu and N. Chilamkurti, "Deep learning: The frontier for
distributed attack detection in Fog-to-Things computing", IEEE
Communications Magazine, vol. 56, no. 2, February 2018, pp.169-175.

[22] M. Yousefi-Azar, V. Varadharajan, L. Hamey and U. Tupakula,
"Autoencoder-based feature learning for cyber security applications",
2017 International Joint Conference on Neural Networks (IJCNN), July
2017, pp. 3854-3861.

[23] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue and K.
Mizutani, "State-of-the-Art Deep Learning: Evolving machine
intelligence toward tomorrow's intelligent network traffic control
systems", IEEE Communications Surveys & Tutorials, vol. 19, no. 4,
May 2017, pp. 2432-2455.

[24] Y. Zhou and X. Jiang, "Dissecting Android Malware: Characterization
and evolution", 2012 IEEE Symposium on Security and Privacy, May
2012, pp. 95-109.

[25] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu and, A. Thomas,
"Malware classification with recurrent networks", in Proceeding of the
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), April 2015, pp. 1916-1920.

[26] B. Athiwaratkun and J. W. Stokes, "Malware classification with LSTM
and GRU language models and a character-level CNN", in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), March 2017, pp. 2482-2486.

[27] G. E. Dahl, J. W. Stokes, L. Deng, D. Yu, "Large-scale malware
classification using random projections and neural networks", in
Proceedings of the 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), May 2013, pp. 3422-3426.

[28] X. Wang and S.-M. Yiu, "A multi-task learning model for malware
classification with useful file access pattern from API call sequence",
ArXiv, October 2016, pp. 1-7.

[29] P. Torres, C. Catania, S. Garcia and C. Garcia-Garino, "An Analysis of
Recurrent Neural Networks for Botnet Detection Behavior", in
Proceedings of the 2016 IEEE Biennial Congress of Argentina
(ARGENCON), June 2016, pp. 1-6.

[30] M. Eslahi, M. Yousefi, M. Var Naseri, Y. M. Yussof, N. M. Tahir and
H. Hashim, "Mobile botnet detection model based on retrospective
pattern recognition", International Journal of Security and Its
Applications, vol. 10, no. 9, 2016, pp. 39-44.

[31] A. Gharib and A. Ghorbani, "DNA-Droid: A Real-Time Android
Ransomware Detection Framework", International Conference on
Network and System Security NSS 2017, Lecture Notes in Computer
Science, vol. 10394, 2017, pp. 184-198.

[32] A. Tseng, Y. Chen, Y. Kao and T. Lin, "Deep learning for ransomware
detection", IEICE Technical Report, vol. 116, no. 282, IA2016-46,
October 2016, pp. 87-92.

[33] R. Shokri and V. Shmatikov, "Privacy-preserving deep learning", in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, October 2015, pp. 1310-1321.

[34] L. T. Phong, Y. Aono, T. Hayashi, L. Wang and S. Moriai, "Privacy-
preserving deep learning: Revisited and enhanced", in L. Batten, D. Kim,

X. Zhang and G. Li (eds) Applications and Techniques in Information
Security, Communications in Computer and Information Science, vol.
719, June 2017, pp. 100-110.

[35] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K.
Talwar and L. Zhang, "Deep learning with differential privacy", in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, October 2016, pp. 308-318.

[36] B. Hitaj, G. Ateniese and F. Perez-Cruz, "Deep models under the GAN:
Information leakage from collaborative deep learning", in Proceedings
of the ACM SIGSAC Conference on Computer and Communications
Security (CCS), November 2017, pp. 603-618.

[37] K. Nandakumar, N. Ratha, S. Pankanti and S. Halevi, "Towards deep
neural network training on encrypted data", in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 1-9.

[38] E. Hodo, X. Bellekens, A. W. Hamilton, C. Tachtatzis and R. C.
Atkinson, "Shallow and Deep Networks Intrusion Detection System: A
Taxonomy and Survey", ArXiv, 2017, pp. 1-43.

[39] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou and C.
Wang, "Machine learning and deep learning methods for Cybersecurity",
IEEE Access, vol. 6, 2018, pp. 35365 - 35381.

[40] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, H. Janicke, "Deep
learning for cyber security intrusion detection: Approaches, datasets, and
comparative study". Journal of Information Security and Applications,
vol. 50, 2020.

[41] CSE-CIC-IDS2018 Dataset. [Online] Available:
https://www.unb.ca/cic/datasets/ids-2018.html. Accessed on: Feb. 2,
2021.

[42] Bot-IoT Dataset. [Online] Available:
https://www.unsw.adfa.edu.au/unsw-canberra-
cyber/cybersecurity/ADFA-NB15-Datasets/bot_iot.php. Accessed on:
Feb. 2, 2021.

[43] S. Mahdavifar, A. Ghorbani, "Application of deep learning to
cybersecurity: A survey", Neurocomputing, vol 347, 2019, pp. 149-176.

[44] L. Deng, "A tutorial survey of architectures, algorithms, and
applications for deep learning", APSIPA Transactions on Signal and
Information Processing, vol 3, no. 2, 2014, pp. 1-29.

[45] P. Subashini, et al., "Review on Intelligent Algorithms for Cyber
Security", Handbook of Research on Machine and Deep Learning
Applications for Cyber Security, 2020.

[46] D. S. Berman, A. L. Buczak, J. S. Chavis and C. L. Corbett, "A Survey
of Deep Learning Methods for Cyber Security", Information, vol. 10, no.
4, January 2019, pp. 122-157.

[47] A. Singla and E. Bertino, "How deep learning is making information
security more intelligent", IEEE Security & Privacy, vol. 17, no. 3, May-
June 2019, pp. 56-65.

[48] R. Zachariah, K. Akash, M. S. Yousef and A. M. Chacko, "Android
malware detection a survey", in Proceedings of the IEEE International
Conference on Circuits and Systems (ICCS), December 2017, pp. 238-
244.

[49] M. Scalas, D. Maiorca, F. Mercaldo, C. A. Visaggio, F. Martinelli and
G. Giacinto, "On the effectiveness of system API-related information for
Android ransomware detection", Computers & Security, vol. 86,
September 2019, pp. 168-182.

[50] Hemdan, D. H. Manjaiah, "Digital Investigation of Cybercrimes Based
on Big Data Analytics Using Deep Learning", Deep Learning and Neural
Networks: Concepts, Methodologies, Tools, and Applications, 2020.

[51] C. S. Wickramasinghe, D. L. Marino, K. Amarasinghe and M. Manic,
"Generalization of Deep Learning for Cyber-Physical System Security:
A Survey", in Proceedings of the 44th Annual Conference of the IEEE
Industrial Electronics Society, October 2018, pp. 745-751.

[52] H. Sedjelmaci, F. Guenab, S. Senouci, H. Moustafa, J. Liu and S. Han,
"Cyber Security Based on Artificial Intelligence for Cyber-Physical
Systems", in IEEE Network, vol. 34, no. 3, pp. 6-7, May/June 2020.

[53] S. Zeadally, E. Adi, Z. Baig and I. A. Khan, "Harnessing Artificial
Intelligence Capabilities to Improve Cybersecurity", in IEEE Access,
vol. 8, pp. 23817-23837, 2020.

[54] J. Moor, The Dartmouth College Artificial Intelligence Conference: the
next fifty years. AI Mag. 2006.

[55] I. A. Basheer and M. Hajmeer, "Artificial neural networks:
fundamentals, computing, design, and application", Journal of
Microbiological Methods, vol. 43, no. 1, 2000, pp. 3-31.

[56] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent
in nervous activity", The Bulletin of Mathematical Biophysics, vol. 5,
no. 4, December 1943, pp. 115-133.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

32

[57] F. Rosenblatt, "The percepton: A probabilistic model for information
storage and organization in the brain", Psychologial Review, vol. 65, no.
6, 1958, pp. 386-408.

[58] M. Minsky and S. Papert "A Review of Perceptrons: An introduction to
computational geometry", Information and Control, vol. 17, 1970, pp.
501-522.

[59] J. J. Hopfield and D. W. Tank, "Neural computation of decisions in
optimization problems", Biological Cybernetics, vol. 52, 1985, pp. 141-
152.

[60] R. Y. Choi et al., "Introduction to Machine Learning, Neural Networks,
and Deep Learning", Translational Vision Science & Technology, Vol.
9, 2020.

[61] M. E. Karsligel, A. G. Yavuz, M. A. Güvensan, K. Hani , and H. Bank,
“Network intrusion detection using machine learning anomaly detection
algorithms”, in Proc. 25th Signal Process. Commun. Appl. Conf. (SIU),
May 2017, pp. 1-4.

[62] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection” in Proc. IEEE Symp. Secur.
Privacy, May 2010, pp. 305-316.

[63] A. Diro and N. Chilamkurti, “Leveraging LSTM networks for attack
detection in Fog-to-Things communications”, IEEE Commun. Mag., vol.
56, no. 9, pp. 124 130, Sep. 2018.

[64] S. Pouyanfar, "A Survey on Deep Learning: Algorithms, Techniques,
and Applications", ACM Computing Surveys, vol. 51, no. 5, 2018.

[65] Q. Mao, F. Hu and Q. Hao, "Deep learning for intelligent wireless
networks: A comprehensive survey", IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, 2018, pp. 2595-2621.

[66] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu and F. E. Alsaadi, "A survey
of deep neural network architectures and their applications",
Neurocomputing, vol. 234, April 2017, pp. 11-26.

[67] M. Mohammadi, A. Al-Fuqaha, S. Sorour and M. Guizani, "Deep
learning for IoT big data and streaming analytics: A survey", IEEE
Communications Surveys & Tutorials, vol. 20, no. 4, 2018, pp. 2923-
2960.

[68] S. Zhang, L. Yao, A. Sun and Y. Tay, "Deep learning based
recommender system: A survey and new perspectives", ACM
Computing Surveys, vol. 52, no. 1, 2019, pp. 1-5.

[69] D. Hunter, H. Yu, M. S. Pukish III, J. Kolbusz, and B. M. Wila-mowski,
“Selection of proper neural network sizes and architectures: a
comparative study”, IEEE Transactions on Industrial Informatics, vol. 8,
no. 2, February 2012, pp. 228-240.

[70] S.K. Pal, S. Mitra, "Multilayer perceptron, fuzzy sets, and classification",
IEEE Transactions on Neural Networks, vol. 3, no. 5, 1992, 683 - 697.

[71] T. Teoh, G. Chiew, E. J. Franco, P. C. Ng, M. P. Benjamin, Y. J. Goh,
"Anomaly detection in cyber security attacks on networks using MLP
deep learning", 2018 International Conference on Smart Computing and
Electronic Enterprise (ICSCEE), July 2018, pp. 1-5.

[72] C. Siaterlis and V. Maglaris, "Detecting incoming and outgoing DDoS
attacks at the edge using a single set of network characteristics", 10th
IEEE Symposium on Computers and Communications (ISCC), June
2005, pp. 469-475.

[73] K. J. Singh and T. De, "MLP-GA based algorithm to detect application
layer DDoS attack", Journal of Information Security and Applications,
vol. 36, October 2017, pp. 145-153.

[74] A. Saied, R. E. Overill and T. Radzik, "Detection of known and unknown
DDoS attacks using Artificial Neural Networks", Neurocomputing, vol.
172, no. 8, January 2016, pp. 385-393

[75] I. Goodfellow, Y. Bengio and A. Courville, "Deep learning", MIT Press,
November 2016.

[76] Y. LeCun and Y. Bengio, "Convolutional networks for images, speech,
and time series", in in: M. A. Arbib (eds.), the handbook of brain theory
and neural networks, 1998, pp. 255-258.

[77] D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction
and functional architecture", The Journal of Physiology, January, vol.
160, no. 1, 1962, pp. 106-164.

[78] A. Waibel, T. Hanazawa, G. Hinton, K. Shikao and K. J. Lang,
"Phoneme recognition using time-delay neural networks", IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 37, no.
3, 1989, 328-339.

[79] P. Y. Simard, D. Steinkraus and J. C. Platt, "Best practices for
convolutional neural networks", in Proceedings of the Seventh
International Conference on Document Analysis and Recognition,
August 2003, pp. 958-963.

[80] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke and A. Rabinovich, "Going deeper with

convolutions", 2015 IEEE Conference on Computer Vision and Pattern
Recognition, June 2015, pp. pp. 1-9.

[81] K. He, X. Zhang, S. Ren and J. Sun, "Deep residual learning for image
recognition", 2016 IEEE Conference on Computer Vision and Pattern
Recognition, June 2016, pp. 770-776.

[82] G. Huang, Z. Liu, L. Van der Maaten, K. Q. Weinberger, "Densely
connected convolutional networks", 2017 IEEE Conference on
Computer Vision and Pattern Recognition, July 2017, pp. 2261-2269.

[83] M. Roopak, G. Yun Tian and J. Chambers, "Deep learning models for
cyber security in IoT networks", 2019 IEEE 9th Annual Computing and
Communication Workshop and Conference (CCWC), 2019, pp. 452-
457.

[84] F. Martinelli, F. Marulli and F. Mercaldo, "Evaluating convolutional
neural network for effective mobile malware detection", Procedia
Computer Science, vol. 112, 2017, pp. 2372-2381.

[85] W. Wang, M. Zhu, X. Zeng, X. Ye, Y. Sheng, "Malware traffic
classification using convolutional neural network for representation
learning", 2017 International Conference on Information Networking
(ICOIN), January 2017, pp. 712-717.

[86] W. Wang, M. Zhu, J. Wang, X. Zeng, Z. Yang, "End-to-end encrypted
traffic classification with one-dimensional convolution neural
networks", 2017 IEEE International Conference on Intelligence and
Security Informatics (ISI), July 2017, pp. 43-48.

[87] M. Lotfollahi, M. J. Siavoshani, R. S. Hossein-Zade and M. Saberian,
"Deep packet a novel approach for encrypted traffic classification using
deep learning", Soft Computing, 2019, pp. 1-14.

[88] S. A. Osia, A. S. Shamsabadi, A. Taheri, H. R. Rabiee and H. Haddadi,
"Private and scalable personal data analytics using hybrid Edge-to-Cloud
deep learning", Computer, vol. 51, no. 5, 2018, pp. 42-49.

[89] J. Kim, H. L. T. Thu and H. Kim, "Long short term memory recurrent
neural network classifier for intrusion detection", 2016 International
Conference on Platform Technology and Service (PlatCon), February
2016, pp. 1-5.

[90] Y. Bengio, P. Simard and P. Frasconi, "Learning long-term dependencies
with gradient descent is difficult", IEEE Transactions on Neural
Networks, vol. 5, no. 2, 1994, pp. 157-166.

[91] S. Hochreiter and J. Schmidhuber, "Long Short-Term memory", Neural
Computation, vol. 9, no. 8, 1997, pp. 1735-1780.

[92] A. Graves, N. Jaitly and A-R. Mohamed, "Hybrid speech recognition
with deep bidirectional LSTM", 2013 IEEE Workshop on Automatic
Speech Recognition and Understanding, December 2013, pp. 277-278.

[93] F. J. Ordóñez and D. Roggen, "Deep convolutional and LSTM recurrent
neural networks for multimodal wearable activity recognition", Sensors,
vol. 16, no. 1, 2016, pp. 1-25.

[94] R. Johnson and T. Zhang, "Supervised and semi-supervised text
categorization using LSTM for region embedings", ICML'16
Proceedings of the 33rd International Conference on Machine Learning,
vol. 48, June 2016, pp. 526-534.

[95] I. Sutskever, O. Vinyals and Q. V. Le, "Sequence to sequence learning
with neural networks", NIPS'14 Proceedings of the 27th International
Conference on Neural Information Processing Systems, vol. 2,
December 2014, pp. 3104-3112.

[96] G. E. Hinton and R. S. Zemel, "Minimizing description length in an
unsupervised neural network", April 1997.

[97] M. A. Ranzato, Y. L. Boureau and Cun Y. L., "Sparse feature learning
for deep belief networks", in: J. C. Platts, D. Koller, Y. Singer and S. T.
Roweis (eds.), Advances in Neural Information Processing Systems, vol.
20, 2008, pp. 1185-1192.

[98] V. L. L. Thing, "IEEE 802.11 network anomaly detection and attack
classification: A deep learning approach", 2017 IEEE Wireless
Communications and Networking Conference (WCNC), May 2017, 1-6.

[99] K. Sohn, H. Lee and X. Yan, "Learning structured output representation
using deep conditional generative models", Advances in Neural
Information Processing Systems, 2015, pp. 3483-3491.

[100] D. P. Kingma and M. Welling, "Auto-encoding variational Bayes",
International Conference on Learning Representations (ICLR), May
2014, pp. 1-14.

[101] M. Lopez-Martin, B. Carro, A. Sanchez-Esquevillas and J. Lloret,
"Conditional variational autoencoder for prediction and feature recovery
applied to intrusion detection in IoT", Sensors, vol. 17, no. 1967, August
2017, pp. 1-17.

[102] N. Le Roux and Y. Bengio, "Representational power of restricted
Boltzmann machines and deep belief networks", Neural Computation,
vol. 20, no. 6, June 2008, pp. 1631-1649.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

33

[103] A. K. Noulas and B. J. A Kröse, "Deep belief networks for
dimensionality reduction", Proceedings of the 20th Belgian-Dutch
Conference on Artificial Intelligence, October, 2008, pp. 185-191.

[104] H. Larochelle and Y. Bengio, "Classification using discriminative
restricted Boltzmann machines", Proceedings of the 25th International
Conference on Machine Learning (ICML'08), July 2008, pp. 536-543.

[105] G. E. Hinton, "Learning multiple layers of representation", Trends in
Cognitive Sciences, vol. 11, no. 10, October 2007, pp. 428-434.

[106] M. Welling, M. Rosen-Zvi and G. E. Hinton, "Exponential family
harmoniums with an application to information retrieval", in Advances
in Neural Information Processing Systems, vol. 17, 2005, pp. 1481-1488.

[107] T. Kuremoto, M. Obayashi, K. Kobayashi, T. Hirata and S. Mabu,
"Forecast chaotic time series data by DBNs", 2014 7th International
Congress on Image and Signal Processing (CISP), October 2014, pp.
1130-1135.

[108] Y. Dauphin and Y. Bengio, "Stochastic ratio matching of RBMs for
sparse high-dimensional inputs", Advances in Neural Information
Processing Systems, vol. 26, 2013, pp. 1340-1348.

[109] Md. Z. Alom, V. Bontupalli and T. M. Taha, "Intrusion detection using
deep belief networks", 2015 National Aerospace and Electronic
Conference (NAECON), 2015, pp. 339-344.

[110] Y. Li, R. Ma and R. Jiao, "A hybrid malicious code detection method
based on deep learning", International Journal of Security and Its
Applications, vol. 9, no. 5, May 2015, pp. 205-216.

[111] M. Hossin, and N. Sulaiman, "A review on evaluation metrics for data
classification evaluations", International Journal of Data Mining &
Knowledge Management Process, Vol.5, No.2, 2015.

[112] A. P. Bradley, "The use of the area under the ROC curve in the evaluation
of machine learning algorithms," Pattern recognition, vol. 30, no. 7, pp.
1145-1159, 1997.

[113] I. Ahmad, A. B. Abdullah, A. S. Alghamdi, "Application of artificial
neural network in detection of probing attacks", 2009 IEEE Symposium
on Industrial Electronics Applications, vol. 2, October 2009, pp. 557-
562.

[114] J. J. Costa-Gondim, R. de Oliveira-Albuquerque, A. C. Alves-
Nascimento, L. J. García-Villalba and T-H Kim, "A methodological
approach for assessing amplified reflection distributed denial of service
on the internet of things", Sensors, vol. 16, no. 11, November 2016.

[115] S. B. Wankhede, "Study of Network-Based DoS Attacks,
Nanoelectronics", Circuits and Communication Systems, Lecture Notes
in Electrical Engineering book serie, vol. 511, 2018, pp. 611-616.

[116] K. Hussain, SYN Flood Attack Detection based on Bayes Estimator
(SFADBE) For MANET, 2019 International Conference on Computer
and Information Sciences (ICCIS), 2019.

[117] L. Fernandez Maimó, Á. L. P. Gómez, F. J. G. Clemente, M. G. Pérez,
and G. M. Pérez, "A self-adaptive deep learning-based system for
anomaly detection in 5G networks", IEEE Access, vol. 6, 2018, pp.
7700–7712.

[118] KDD cup 1999. [Online] Available:
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. Accessed on:
Feb. 2, 2021.

[119] NSL-KDD dataset for network-based intrusion detection systems.
[Online] Available: https://www.unb.ca/cic/datasets/nsl.html. Accessed
on: Feb. 2, 2021.

[120] M. Tavallaee, E. Bagheri, W. Lu and A. A. Ghorbani. "A detailed
analysis of the KDD CUP 99 data set", 2009 IEEE Symposium on
Computational Intelligence in Security and Defense Applications
(CISDA), July 2009, pp. 1-6.

[121] A. Shiravi, H. Shiravi, M. Tavallaee and A. A. Ghorbani, "Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection", Computer & Security, vol. 31, no. 3, May 2012, pp.
357-374.

[122] I. Sharafaldin, A. H. Lashkari and A. A. Ghorbani, "Toward generating
a new intrusion detection dataset and intrusion traffic characterization",
Proceedings of the 4th International Conference on Information Systems
Security and Privacy (ICISSP 2018), pp. 108-116.

[123] R. Vijayanand, D. Devaraj and B. Kannapiran, "Intrusion detection
system for wireless mesh network using multiple support vector machine
classifiers with genetic-algorithm-based feature selection", Computers &
Security, vol. 77, August 2018, pp. 304-314.

[124] G. Creech and J. Hu, "Generation of a new IDS test dataset: Time to
retire the KDD collection", 2013 IEEE Wireless Communications and
Networking Conference (WCNC), April 2013, pp. 4487-4492.

[125] M. Xie and J. Hu, "Evaluating host-based anomaly detection systems: A
preliminary analysis of ADFA-LD", 2013 6th International Congress on
Image and Signal Processing (CISP), December 2013, pp. 1711-1716.

[126] A. Sperotto, R. Sadre, F. van Vliet and A. Pras, "A labeled data set for
flow-based intrusion detection", in: G. Nunzi, C. Scoglio and X. Li (eds.)
IP Operations and Management, IPOM 2009, Lecture Notes in Computer
Science, vol. 5843, October 2009, pp. 39-50.

[127] EPA-HTTP -a day of HTTP logs from a busy WWW server available at
http: //ita.ee.lbl.gov/html/contrib/EPA-HTTP.html

[128] The CAIDA UCSD DDoS Attack 2007 Dataset. [Online] Available:
http://www.caida.org/data/passive/ddos-20070804_dataset.xml.
Accessed on: Feb. 2, 2021.

[129] Google play store. [Online] Available:
https://play.google.com/store/apps. Accessed on: Feb. 2, 2021.

[130] Contagio. [Online] Available: http://contagiodump.blogspot.com/.
Accessed on: Feb. 2, 2021.

[131] Y. Zhou and X. Jiang, Android malware genome project. [Online]
Available: www.malgenomeproject.org/. Accessed on: Feb. 2, 2021.

[132] Z. Yuan, Y. Lu and Y. Xue, "DroidDetector: Android malware
characterization and detection using deep learning", Tsinghua Science
and Technology, vol. 21, no. 1, February 2016, pp. 114-123.

[133] VirusShare. [Online] Available: https://virusshare.com/. Accessed on:
Feb. 2, 2021.

[134] K. Maxwell, "Maltrieve". [Online] Available:
https://github.com/krmaxwell/maltrieve. Accessed on: Feb. 2, 2021.

[135] Virus Total. [Online] Available: https://www.virustotal.com/gui/home.
Accessed on: Feb. 2, 2021.

[136] D. Arp, M. Spreitzenbarth, H. Gascon and K. Rieck, "Drebin: Effective
and explainable detection of android malware in your pocket", in
Proceedings of the 2014 Network and Distributed System Security
(NDSS) Symposium (NDSS'14), February 2014, pp. 1-15.

[137] Microsoft malware classification challenge, Bit Data Innovators
Gathering (BIG 2015), May 2015. [Online] Available:
https://www.kaggle.com/c/malware-classification. Accessed on: Feb. 2,
2021.

[138] Netlux. [Online] Available: http://www.netluxantivirus.com/. Accessed
on: Feb. 2, 2021.

[139] Offensivecomputing, [Online] Available:
https://rubygems.org/gems/offensivecomputing/versions/0.1.1.
Accessed on: Feb. 2, 2021.

[140] E. B. Karbab, M. Debbabi, A. Derhab and D. Mouheb, "MalDozer:
Automatic framework for Android malware detection using deep
learning", Digital Investigation, vol. 24, March 2018, pp. 548-559.

[141] J.P. Anderson, "Computer security threat monitoring and surveillance",
Technical Report, James P. Anderson Company, 1980.

[142] D. E. Denning, "An intrusion detection model", IEEE Transactions on
Software Engineering, vol. SE-13, no. 2, February 1987, pp. 222-232.

[143] P. Mishra, V. Varadharajan, U. Tupakula and E. S. Pilli, "A detailed
investigation and analysis of using machine learning techniques for
intrusion detection", IEEE Communications Surveys & Tutorials, vol. 21
, no. 1, 2019, pp. 686-728.

[144] M. A. Salama, H. F. Eid, R. A. Ramadan, A. Darwish and A. E.
Hassanien, "Hybrid intelligent intrusion detection scheme", Soft
Computing in Industrial Applications, Advances in Intelligent and Soft
Computing, vol. 96, 2011, pp. 293-303.

[145] N. Gao, L. Gao, Q. Gao and H. Wang, "An intrusion detection model
based on deep belief networks", Second International Conference on
Advanced Cloud and Big Data, November 2014, pp. 247-252.

[146] Weka 3: Machine Learning Software in Java. [Online] Available:
https://www.cs.waikato.ac.nz/ml/weka/. Accessed on: Feb. 2, 2021.

[147] N. Shone, T. N. Ngoc, V. D. Phai and Q. Shi, "Deep learning approach
for network intrusion detection system", IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 2, no. 1, February 2018, pp.
41-50.

[148] TensorFlow. [Online] Available: https://www.tensorflow.org/. Accessed
on: Feb. 2, 2021.

[149] Q. Niyaz, W. Sun, A. Y Javaid, and M. Alam, "A deep learning approach
for network intrusion detection system", BICT'15 Proceedings of the 9th
EAI International Conference on Bio-inspired Information and
Communications Technologies (BIONETICS), December 2015, pp. 21-
26.

[150] R. Raina, A. Battle, H. Lee, B. Packer and A. Y. Ng, "Self-taught
learning: transfer learning from unlabeled data", ICML'07 Proceedings
of the 24th International Conference on Machine Learning, June 2007,
pp. 759-766.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

34

[151] X. Tao, D. Kong, Y. Wei and Y. Wang, "A big network traffic data fusion
approach based on fisher and deep auto-encoder", Information, vol. 7,
no. 2, March 2016, pp. 1-10.

[152] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink and J.
Schmidhuber, "LSTM: A search space odyssey", IEEE Transactions on
Neural Networks and Learning Systems, vol. 28, no. 10, October 2017,
pp. 2222-2232.

[153] T. A. Tang, L. Mhamdi, D. McLemon, S. A. Raza-Zaidi and M. Ghogho,
"Deep learning approach for network intrusion detection in software
defined networking", 2016 International Conference on Wireless
Network and Mobile Communications (WINCOM), October 2016, pp.
258-263.

[154] Z. Jadidi, V. Muthukkumarasamy, E. Sithirasenan and M. Sheikhan,
"Flow-based anomaly detection using neural network optimized with
GSA algorithm", 2013 IEEE 33rd International Conference on
Distributed Computing Systems Workshops, July 2013, pp. 76-81.

[155] P. Winter, E. Hermann and M. Zellinger, "Inductive intrusion detection
in flow-based network data using one-class support vector machines",
2011 4th IFIP International Conference on New Technologies, Mobility
and Security, February 2011, pp. 1-5.

[156] C. Kolias, G. Kambourakis, A. Stavrou and S. Gritzalis, "Intrusion
detection in 802.11 networks: Empirical evaluation of threats and a
public dataset", IEEE Communications Surveys & Tutorials, vol. 18, no.
1, January 2015, pp. 184-208.

[157] Q. Feng, Y. Zhang, C. Li, Z. Dou and J. Wang, "Anomaly detection of
spectrum in wireless communication via deep auto-encoders", The
Journal of Supercomputing, vol. 73, no. 7, July 2017, pp. 3161-3178.

[158] SourceFire, Inc., "Snort: An open source network intrusion detection and
prevention system". [Online] Available: http://www.snort.org. Accessed
on: Feb. 2, 2021.

[159] V. Richariya, U. P. Singh, and R. Mishra, Distributed approach of
intrusion detection system: Survey, Int. J. Adv. Comput. Res., vol. 2, no.
6, pp. 358-363, 2012.

[160] Keras: The Python Deep Learning library. [Online] Available:
https://keras.io/. Accessed on: Feb. 2, 2021.

[161] R. Collobert, K. Kavukcuoglu, and C. Farabet, "Torch7: A Matlab-like
environment for machine learning", in Proc. BigLearn, NIPS Workshop,
2011, pp. 1-6.

[162] S. García, M. Grill, J. Stiborek, and A. Zunino, "An empirical
comparison of botnet detection methods", Comput. Secur., vol. 45, 2014,
pp. 100-123.

[163] Nexusguard, "DDoS Threat Report", 2018. [Online] Available:
https://www.nexusguard.com/threat-report-q2-2018. Accessed on: Feb.
2, 2021.

[164] X. Yuan, C. Li and X. Li, "DeepDefense: Identifying DDoS attack via
deep learning", 2017 IEEE International Conference on Smart
Computing (SMARTCOMP), May 2017, pp. 1-8.

[165] T. Mitchell, Machine Learning, Chapters 3, 4, 6 and 7, McGraw-Hill
Science/Engineering/Math, March 1997.

[166] Stuggart Neural Network Simulator, Institute for Parallel and Distributed
High Performance Systems (IPVR) at the University of Stuttgart.
[Online] Available: http://www.ra.cs.uni-
tuebingen.de/SNNS/welcome.html. Accessed on: Feb. 2, 2021.

[167] M. Steve, "Preparing for the next DDoS attack", Network Security, 2013,
vol. 5, pp. 5-6.

[168] S. Yadav and S. Subramanian, "Detection of application layer DDoS
attack by feature learning using stacked AutoEncoder", 2016
International Conference on Computational Techniques in Information
and Communication Technologies (ICCTICT), March 2016, pp. 361-
366.

[169] A. A. Diro, N. Chilamkurti, "Distributed attack detection scheme using
deep learning approach for internet of things", Future Generation
Computer Systems, vol. 82, May 2018, pp. 761-768.

[170] M. Zaharia, M. Chowdhury, M. J. Franlin, S. Shenker and I. Stoica,
"Spark: Cluster computing with working sets", HotCloud'10 Proceedings
of the 2nd USENIX Conference on Hot Topics in Cloud Computing,
June 2010, pp. 1-10.

[171] T. Luo and S. G. Nagarajan, "Distributed anomaly detection using
Autoencoder neural networks in WSN for IoT", 2018 International
Conference on Communications (ICC), May 2018, pp. 1-6.

[172] S. Reece, S. Roberts, C. Claxton, D. Nicholson, "Multi-sensor fault
recovery in the presence of known and unknown fault types", 2009 12th
International Conference on Information Fusion, July 2009, pp. 1695-
1703.

[173] W. Hardy, L. Chen, S. Hou, Y. Ye and X. Li, "DL4MD: A deep learning
framework for intelligent malware detection", in Proceedings of the
International Conference Data Mining (ICDM), December 2016, pp. 61-
67.

[174] Y. Ye, L. Chen, S. Hou, W. Hardy and X. Li, "DeepAM: a heterogeneous
deep learning framework for intelligent malware detection", Knowledge
and Information Systems, February 2018, vol. 54, no. 2, pp. 265-285.

[175] Comodo anti-malware database. [Online] Available:
www.malgenomeproject.org/. Accessed on: Feb. 2, 2021.

[176] R. Agrawal, J. W. Stokes, M. Marinescu, K. Selvaraj, "Neural Sequential
Malware Detection with Parameters", 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
April 2018, pp. 2656-2660.

[177] B. Kolosnjaji, A. Zarras, G. Webster and C. Eckert, "Deep learning for
classification of malware system call sequences", in B. Kang and Q. Bai
(eds.) Artificial Intelligence 2016: Advances in Artificial Intelligence,
Lecture Notes in Computer Science, vol. 9992, December 2016, pp. 137-
149.

[178] G. D. Webster, Z. D. Hanif, A. L. P Ludwig, T. K. Lengyel, A. Zarras
and C. Eckert, "SKALD: A scalable architecture for feature extraction,
multi-user analysis, and real-time information sharing", in Bishop, M.,
Nascimento, A.C.A. (eds.) ISC 2016, Lecture Notes in Computer
Science, vol. 9866, August 2016, pp. 231-249.

[179] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse and T. Yagi,
"Malware detection with deep neural network using process behavior",
in Proceedings of the IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC), June 2016, vol. 2, pp. 577-582.

[180] G. J. Tesauro, J. O. Kephart and G. B. Sorkin, "Neural networks for
computer virus recognition", in IEEE Expert, August 1996, vol. 11, no.
4, pp. 5-6.

[181] W. C. Arnold and G. Tesauro, "Automatically generated win32 heuristic
virus detection", in Proceedings of the 2000 International Virus Bulletin
Conference, 2000, pp. 51-60.

[182] M.-T. Luong, Q. V. Le, I. Sutskever, O. Vinyals and L. Kaiser, "Multi-
task sequence to sequence learning", ArXiv, March 2016, pp. 1-10.

[183] Y. Ki, E. Kim and H. K. Kim,"APIMDS (API-based malware detection
system", 2016. [Online] Available: http://ocslab.hk security.net/apimds-
dataset. Accessed on: Feb. 2, 2021.

[184] Y. Ding, S. Chen, J. Xu, "Application of Deep Belief Networks for
opcode based malware detection", in Proceedings of the 2016
International Joint Conference on Neural Networks (IJCNN), July 2016,
pp. 3901-3908.

[185] H. HaddadPajouh, A. Dehghantanha, R. Khayami and K-K. R. Choo, "A
deep Recurrent Neural Network based approach for Internet of Things
malware threat hunting", Future Generation Computer Systems, vol. 85,
August 2018, pp. 88-96.

[186] V. Team, VirusTotal-Free Online Virus, Malware and URL Scanner.
Available at: https://www.virustotal.com/gui/home/upload (last time
revised on September 2020)

[187] Linux Packages Search. Available at: https://pkgs.org/ (last time revised
on January 2020).

[188] Scikit-Learn, Machine learning in Python. Available at: https://scikit-
learn.org/stable/ (last time revised on September 2020).

[189] Cisco 2018 Annual Cybersecurity Report. [Online] Available:
https://www.cisco.com/c/dam/m/hu_hu/campaigns/security-
hub/pdf/acr-2018.pdf. Accessed on: Feb. 2, 2021.

[190] T. Berghoff, "Malware figures for Android rise rapidly", G DATA Blog,
July 2018. [Online] Available:
https://www.gdatasoftware.com/blog/2018/07/30937-malware-figures-
for-android-rise-rapidly. Accessed on: Feb. 2, 2021.

[191] Y. Zhou, Z. Wang, W. Zhou and X. Jiang, "Hey, you, get off of my
market: Detecting malicious apps in official and alternative Android
markets", in Proceedings of the 2012 Network and Distributed System
Security (NDSS) Symposium (NDSS'12), February 2012, pp. 1-13.

[192] M. Grace, Y. Zhou, Q. Zhang, S. Zou and X. Jiang, "RiskRanker:
Scalable and accurate zero-day Android malware detection", in
Proceedings of the 10th International Conference on Mobile Systems,
Applications and Services(MobiSys), 2012, pp. 281-294.

[193] V. Rastogi, Y. Chen and X. Jiang, "DroidChameleon: Evaluating
Android anti-malware against transformation attacks", in Proceedings of
the 8th ACM Symposium on Information, Computer and
Communications Security (ASIA CCS), 2013, pp. 329-334.

[194] R. Fedler, J. Schutte, M. Kulicke, " On the effectiveness of malware
protection on Android. An evaluation of Android antivirus Apps",
Mobile Application Security, Fraunhofer AISEC, April 2013, pp. 1-36.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

35

[195] C. A. Visaggio, G. Canfora, F. Mercaldo and P. Di Notte, "Metamorphic
malware detection using code metrics", Information Security Journal: A
Global Perspective, July 2014, vol. 23, no. 3, pp. 57-67.

[196] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, "Semantics-aware Android
malware classification using weighted contextual API dependency
graphs", in Proceedings of the 21st ACM Conference on Computer and
Communications Security (ACM CCS'14), 2014, pp. 1105-1116.

[197] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, "Crowdroid: Behavior-
based malware detection system for Android", in Proceedings of the 1st
ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices (SPSM), 2011, pp. 15-26.

[198] Y. Aafer, W. Du and H. Yin, "DroidAPIMiner: Mining API-Level
features for robust malware detection in Android", in: T. Zia, A. Zomaya,
V. Varadharajan, M. Mao (eds.) Security and Privacy in Communication
Networks (SecureComm 2013), Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering, vol. 127, 2013, pp. 86-103.

[199] K. A. Talha, D. I. Alper and C. Aydin, "APK auditor: Permission based
Android malware detection system", Digital Investigation, vol. 13, June
2015, pp. 1-14.

[200] L. Apvrille and A. Apvrille, "Identifying unknown android malware with
feature extractions and classification techniques", in 2015 IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), 2015, pp. 182-189.

[201] M. Hubner H. Gascon D. Arp, M. Spreitzenbarth and K. Rieck. Drebin:
Effective and explainable detection of android malware in your pocket.
In NDSS, 2014.

[202] X. Su, D. Zhang, W. Li, K. Zhao, "A deep learning approach to Android
malware feature learning and detection", 2016 IEEE International
Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), August 2016, pp. 244-251.

[203] Z. Yuan, Y. Lu, Z. Wang and Y. Xue, "Droid-Sec: Deep learning in
Android malware detection", in Proceedings of the ACM SIGCOMM
Computer Communication Review, vol. 44, 2014, pp. 371-372.

[204] D. Zhu, H. Jin, Y. Yang, D. Wu and W. Chen, "DeepFlow: Deep
learning-based malware detection by mining Android application for
abnormal usage of sensitive data", in 2017 IEEE Symposium on
Computers and Communications (ISCC), July 2017, pp. 438-443.

[205] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le
Traon, D. Octeau and P. McDaniel, "FlowDroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for Android
apps", ACM SIGPLAN Notices, vol. 49, no. 6, 2014, pp. 259-269.

[206] S. Rasthofer, S. Arzt and E. Bodden, "A Machine-learning approach for
classifying and categorizing Android sources and sinks", in Proceedings
of the 2014 Network and Distributed System Security (NDSS)
Symposium (NDSS'14), February 2014, pp. 1-15.

[207] S. Hou, A. Saas, L. Chen and Y. Ye, "Deep4MalDroid: A deep learning
framework for Android malware detection based on Linux kernel system
call graphs", in 2016 IEEE/WIC/ACM International Conference on Web
Intelligence Workshops (WIW), October 2016, pp. 104-111.

[208] N. McLaughlin, J. Martinez del Rincon, B. Kang, P. Miller, S. Sezer, Y.
Safaei, E. Trickel, Z. Zhao, A. Doupé and G. J. Ahn, "Deep Android
malware detection", in Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy (CODASPY'17), March
2017, pp. 301-308.

[209] Torch: A scientific computing framework for Luajit. Available at:
http://torch.ch/ (last time revised on September 2020).

[210] V. Bushaev, "Understanding RMSProp -faster neural network learning".
[Online] Available: https://towardsdatascience.com/understanding-
rmsprop-faster-neural-network-learning-62e116fcf29a. Accessed on:
Feb. 2, 2021.

[211] W. Y. Lee, J. Saxe and R. Harang, "SeqDroid: Obfuscated Android
Malware Detection Using Stacked Convolutional and Recurrent Neural
Networks", Deep Learning Applications for Cyber Security, August
2019, pp. 197-210.

[212] T. Kim, B. Kang, M. Rho, S. Sezer and E. Gyu Im, "A multimodal deep
learning method for Android malware detection using various features",
IEEE Transactions on Information Forensics and Security, vol. 14, no. 3,
March 2019, pp. 773-788.

[213] S. S. C. Silva, R. M. P. Silva, R. C. G. Pinto and R. M. Salles, "Botnets:
A survey", Computer Networks, vol. 57, no. 2, February 2013, 378-403.

[214] M. Oulehla, Z. K. Oplatková, D. Malanik, "Detection of mobile botnets
using neural networks", in Proceedings of the IEEE Future Technologies
Conference (FTC), December 2016, pp. 1324-1326.

[215] S. Garcia, "Malware Capture Facility Project", 2013. Available at:
https://mcfp.weebly.com/ (last time revised on September 2020).

[216] C. D. McDermott, F. Majdani and A. V. Petrovski, "Botnet detection in
the internet of things using deep learning approaches", in Proceedings of
the 2018 International Joint Conference on Neural Networks (IJCNN),
July 2018, pp. 1-8.

[217] M. Alauthaman, N. Aslam, L. Zhang, R. Alasem and M. Hossain, "A
P2P botnet detection scheme based on decision tree and adaptive
multilayer neural networks", Neural Computing and Applications, vol.
29, no. 11, June 2016, pp. 991-1004.

[218] S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, W. Lu, J. Felix and
P. Hakimian, "Detecting P2P botnets through network behavior analysis
and machine learning", in Proceedings of the 9th Annual International
Conference on Privacy, Security and Trust (PST), July 2011, pp. 174-
180.

[219] M. Eslahi, R. Salleh and N. B. Anuar, "MoBots: A new generation of
botnets on mobile devices and networks", IEEE Symposium on
Computer Applications and Industrial Electronics (ISCAIE), 2012, pp.
262-266.

[220] R. Richardson and M. North, "Ransomware: Evolution, Mitigation and
Prevention", International Management Review, vol. 13, no. 1, 2017, pp.
10-21.

[221] P. Lestringant, F. Guihéry and P.-A. Fouque, "Automated identification
of cryptographic primitives in binary code with data flow graph
isomorphism," in Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security, 2015, pp. 203-
214.

[222] D. Xu, J. Ming and D. Wu, "Cryptographic function detection in
obfuscated binaries via bit-precise symbolic loop mapping", in
Proceedings of the 38th IEEE Symposium on Security and Privacy (SP),
May 2017, pp. 921-937.

[223] G. D. Hill and J. A. Bellekens, "Deep learning based cryptographic
primitive classification", ArXiv, September 2017, pp. 1-9.

[224] dpkt library. Available at: https://dpkt.readthedocs.io/en/latest/ (last time
revised on December 2019).

[225] A. Krogh and J. A. Hertz, "A simple weight decay can improve
generalization", Advances in Neural Information Processing Systems,
vol. 4, 1992, 950-957.

[226] R. Vinayakumar, K. P. Soman and K. K. Senthil-Velan and S. Ganorkar,
"Evaluating Shallow and Deep Networks for Ransomware Detection and
Classification", in Proceedings of the 2017 International Conference on
Advances in Computing, Communications and Informatics (ICACCI),
September 2017, 259-265.

[227] S. Maniath, A. Ashok, P. Poornachandran, V. G. Sujadevi, A. U. Prem-
Sankar and S. Jan, "Deep learning LSTM based ransomware detection",
International Conference on Recent Developments in Control,
Automation and Power Engineering (RDCAPE), October 2017, 442-
446.

[228] R. Agrawal, J. W. Stokes, K. Selvaraj and M. Marinescu, "Attention in
Recurrent Neural Networks for Ransomware Detection", in Proceedings
of the 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), April 2019, 3222-3226.

[229] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization",
in Proceedings of the 3rd International Conference for Learning
Representations (ICLR), May 2015, 1-15.

[230] S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, R.
Khayami, K.-K. R. Choo and D. E. Newton, "DRTHIS: Deep
ransomware threat hunting and intelligence system at the fog layer",
Future Generation Computer Systems, vol. 90, January 2019, 94-104.

[231] Malwarebytes labs, "Look into locky ransomware-malwarebytes labs",
March 2016. Available at: https://blog.malwarebytes.com/threat-
analysis/2016/03/look-into-locky/. (last time revised on December
2019).

[232] Malwarebytes labs, "Cerber ransomware: New, but mature", March
2016. Available at: https://blog.malwarebytes.com/threat-
analysis/2016/03/cerber-ransomware-new-but-mature/ (last time revised
on December 2019).

[233] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based
learning applied to document recognition", Proceedings of the IEEE, vol.
86, no. 11, November 1998, pp.2278-2324.

[234] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu and A. Ng. "Reading
digits in natural images with unsupervised feature learning", in NIPS
2011 Workshop on Deep Learning and Unsupervised Feature Learning,
December 2011.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

36

[235] C. Dwork and A. Roth, "The algorithmic foundations of differential
privacy", Journal Foundations and Trends in Theoretical Computer
Science, vol. 9, no. 3-4, August 2014, pp. 211-407.

[236] CIFAR-10 and CIFAR-100 datasets. [Online] Available:
http://www.cs.toronto.edu/~kriz/cifar.html. Accessed on: Feb. 2, 2021.

[237] F. S. Samaria and A. C. Harter. "Parameterisation of a stochastic model
for human face identification", in Proceedings of the Second IEEE
Workshop on Applications of Computer Vision, December 1994, pp.
138-142.

[238] S. A. Osia, A. S. Shamsabadi, A. Taheri, H. R. Rabiee, N. D. Lane and
H. Haddadi, "A hybrid deep learning architecture for privacy-preserving
mobile analytics", ArXiv, March 2017.

[239] S. Chopra, R. Hadsell and Y. LeCun, "Learning a similarity metric
discriminatively, with application to face verification", in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 1, June 2005, pp. 539-546.

[240] R. Rothe, R. Timofte and L. Van Gool, "Dex: Deep EXpectation of
apparent age from a single image," in Proceedings of the IEEE
International Conference on Computer Vision Workshops, 2015, pp. 10-
15.

[241] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, "Labeled
faces in the wild: A database for studying face recognition in
unconstrained environments", University of Massachusetts, Amherst,
Technical Report, October 2007, pp. 7-49.

[242] M. Malekzadeh, R. G. Clegg, A. Cavallaro and H. Haddadi, "Protecting
sensory data against sensitive inferences", in Proceedings of the 1st
Workshop on Privacy by Design in Distributed Systems, ACM, June
2018, pp. 1-6.

[243] S. Servia-Rodriguez, L. Wang, J. R. Zhao, R. Mortier and H. Haddadi.
"Personal model training under privacy constraints", in Proceedings of
the 3rd ACM/IEEE International Conference on Internet-of-Things
Design and Implementation (IoTDI), April 2018, 1-11.

[244] J. R. Kwapisz, G. M. Weiss and S. A. Moore, "Activity recognition using
cell phone accelerometers", ACM SigKDD Explorations Newsletter,
vol. 12, no. 2, December 2010, pp. 74-82.

[245] D. Newman, "Bag of words data set". [Online] Available:
https://archive.ics.uci.edu/ml/datasets/Bag+of+Words. Accessed on:
Feb. 2, 2021.

[246] Wikipedia dataset. Available at: https://dumps.wikimedia.your.org/ (last
time revised on September 2020).

[247] J. Wang, J. Zhang, W. Bao, X. Zhu, B. Cao and P. S. Yu, "Not just
privacy: Improving performance of private deep learning in mobile
cloud", in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, September 2018,
pp. 2407-2416.

[248] L. Lyu , J. C. Bezdek, X. He and J. Jin , "Fog-Embedded Deep Learning
for the Internet of Things", IEEE Transactions on Industrial Informatics,
vol. 15, no. 7, April 2019, pp. 4206-4215.

[249] G. Roig, X. Boix, H. B. Shitrit and P. Fua, "Conditional random fields
for multi-camera object detection", in Proceedings of the IEEE
International Conference Computer Vision (ICCV), November 2011, pp.
563-570.

[250] C. Gentry, "Fully homomorphic encryption using ideal lattices", in
Proceedings of the 41st ACM Symposium on Theory of Computing
(STOC), June 2009, pp. 169-178.

[251] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig and
J. Wernsing. "CryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy", in Proceedings of the 33rd
International Conference Machine Learning, vol. 48 of JMLR Workshop
and Conference Proceedings, 2016, pp. 201-210.

[252] S. Halevi and V. Shoup, "Helib: An Implementation of homomorphic
encryption". [Online] Available: https://github.com/shaih/HElib/.
Accessed on: Feb. 2, 2021.

[253] Y. Liu, Z. Xia, P. Yi, Y. Yao, T. Xie, W. Wang and T. Zhu, "GENPass:
A general deep learning model for password guessing with PCFG rules
and adversarial generation", in Proceedings of the IEEE International
Conference on Communications (ICC), July 2018, pp. 1-6.

[254] S. Greydanus, "Learning the enigma with recurrent neural networks",
ArXiv, August 2018, pp. 1-7.

[255] H. Maghrebi, T. Portigliatti and E. Prouff, "Breaking cryptographic
implementations using deep learning techniques", in Proceedings of the
International Conference on Security, Privacy, and Applied
Cryptography Engineering, 2016, pp. 3-26.

[256] P. Kocher, J. Jaffe, and B. Jun, "Differential Power Analysis", CRYPTO,
vol. 1666, 1999, pp. 388-397.

[257] R. Ning, C. Wang, C. S. Xin, J. Li and H. Wu, "Deepmag: Sniffing
mobile apps in magnetic field through deep convolutional neural
networks", in Proceedings of the IEEE International Conference on
Pervasive Computing and Communications (PerCom), March 2018, pp.
1-10.

[258] Z. Chen and B. Liu, "Lifelong machine learning," in Synthesis Lectures
on Artificial Intelligence and Machine Learning, vol. 10, Morgan &
Claypool, 2016, pp. 1-145.

[259] S.-W. Lee et al., "Dual-memory deep learning architectures for lifelong
learning of everyday human behaviors," in Proc. Int. Joint Conf. Artif.
Intell., New York, NY, USA, 2016, pp. 1669-1675.

[260] C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and S. Mannor, "A
deep hierarchical approach to lifelong learning in minecraft," in Proc.
Nat. Conf. Artif. Intell. (AAAI), San Francisco, CA, USA, 2017, pp.
1553-1561.

[261] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, "A survey of
machine learning techniques applied to self-organizing cellular
networks," IEEE Commun. Surveys Tuts., vol. 19, no. 4, 2017, pp. 2392-
2431.

[262] S. Tang and J. Han, "A pruning based method to learn both weights and
connections for LSTM", 2015. [Online] Available:
https://nlp.stanford.edu/courses/cs224n/2015/reports/2.pdf. Accessed
on: Feb. 2, 2021.

Eva Rodríguez obtained her Ph. D in Computer Science in
2007 and her BSc in Telecommunication Engineer in 2001. She
works at the Department of Computer Architecture of the
Universitat Politècnica de Catalunya (UPC), since 2005, as
Assistant Professor. From 2002 to 2005 worked as researcher
in the Department of Technology of UPF (Universitat Pompeu
Fabra). Her research focuses on security, privacy, multimedia
information retrieval and object recognition. She is author of
several papers, published in international journals and
conferences, and she has been participating since 2003 in the
ISO/MPEG standardisation group, contributing to different
parts of the MPEG-21, MPEG-A and MPEG-M standards.

Beatriz Otero received her BSc. (1996) and M.Sc. (1999)
degrees from Uni-versidad Central de Venezuela, and Ph.D.
(2007) degree in Computer Architecture from the Universitat
Politècnica de Cata-lunya (UPC). She is an Associate Professor
at the Department of Computer Architecture of the UPC. In the
last years Beatriz has carried out her research work in
Modeling, Computing in Mathematics, Deep Learning and
Parallel Computing. Beatriz has participated as a researcher in
various research projects. She has published around 50 research
articles in international conferences and in peer-reviewed
journals, most of them in-dexed by JCR. Beatriz has also been
a reviewer of more than 40 research articles at prestigious
journals, and national and international conferences, as well.

Norma Gutiérrez is a student at the School of
Telecommunications Engineering of the Universitat Politécnica
de Catalunya (UPC). She is focused on the application of Deep
Learning a real problems, especially those related to the
cybersecurity and data privacy.

Ramon Canal received his M.S. (1998) and Ph.D. (2004)
degrees from the Universitat Politècnica de Catalunya (UPC),
in Barcelona, Catalonia, EU. He joined the faculty of the
Computer Architecture Department of UPC in 2003. He
finished his M.S. in the University of Bath (UK), worked at Sun
Microsystems in 2000, and was a Fulbright visiting scholar at
Harvard University in 2006/2007. His research focuses on

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

37

power and thermal aware architectures, as well as reliability and
security. He has an extensive list of publications and several
invited talks. He has been program committee member in

several editions of HPCA, ISCA, MICRO, HiPC, IPDPS,
ICCD, ICPADS, CF. He has been co-general chair of HPCA
2016 and IOLTS 2012. He is a member of the IEEE.

	I. INTRODUCTION
	II. Related Work
	III. Deep Learning methods used in cybersecurity applications
	A. Deep Learning overview
	B. DL methods
	1) MLP
	2) CNN
	3) RNN and LSTM
	4) Auto-encoders
	5) DBN

	IV. Evaluation Metrics and Datasets for Cybersecurity
	A. Evaluation metrics
	B. Cybersecurity Datasets
	1) Infrastructure datasets
	2) Software datasets

	V. DL to Enhance Security in Mobile Networks
	A. Infrastructure
	1) Network intrusion detection systems (NIDS)
	2) DDoS attacks
	3) Distributed attack detection solutions
	4) Summary table – Infrastructure

	B. Software
	1) API call solutions
	2) Opcode based solutions
	3) Android Malware detection and classification
	4) Botnets
	5) Ransomware
	6) Summary table –Software

	C. Privacy
	1) Summary table –Privacy

	VI. LESSONS LEARNED AND FUTURE DIRECTIONS
	A. Infrastructure area
	1) Lessons learned
	2) Future directions

	B. Software area
	1) Lessons learned
	2) Future directions

	C. Privacy area
	1) Lessons learned
	2) Future directions

	VII. CONCLUSION
	List of Acronyms
	Acknowledgments
	References

