
 Abstract—The widespread use of mobile devices, as well as the 
increasing popularity of mobile services has raised serious 
cybersecurity challenges. In the last years, the number of 
cyberattacks has grown dramatically, as well as their complexity. 
Traditional cybersecurity systems have failed to detect complex 
attacks, unknown malware, and they do not guarantee the 
preservation of user privacy. Consequently, cybersecurity systems 
have embraced Deep Learning (DL) models as they provide 
efficient detection of novel attacks and better accuracy. This paper 
presents a comprehensive survey of recent cybersecurity works 
that use DL in mobile and wireless networks. It covers all 
cybersecurity aspects: infrastructure threads and attacks, 
software attacks and privacy preservation. First, we provide a 
detailed overview of DL techniques applied, or with potential 
applications, to cybersecurity. Then, we review cybersecurity 
works based on DL. For each cybersecurity threat or attack, we 
discuss the challenges for using DL methods. For each 
contribution, we review the implementation details and the 
performance of the solution. In a nutshell, this paper constitutes 
the first survey that provides a complete review of the DL methods 
for cybersecurity. Given the analysis performed, we identify the 
most effective DL methods for the different threats and attacks. 

Index Terms—Cyberattacks, Deep Learning, Machine 
Learning, Mobile Networking, Privacy, Security, Wireless 
Networking  

I. INTRODUCTION 
HE number of individuals that continuously use mobile 

devices connected to the Internet in their daily lives, both 
for entertainment and work, is constantly increasing [1]. This 
upsurge of mobile devices, applications and services has raised 
important cybersecurity challenges due to the exponential 
increase of attacks and their sophistication [2][3]. On top of 
that, the growing diversity and complexity of mobile network 
architectures has increased the number of security breaches. It 
has cast a shadow on the adoption of smart mobile applications 
and services, which has been amplified by the large number of 
different platforms that provide data, storage, computation, and 
application services to end-users. All this makes security in 
mobile networks complex and challenging. According the 
NDIA Cybersecurity Report [4], more than 25% of industry 
professionals have experienced a cyberattack, being the 
companies with more than 500 employees the most affected 
(44%). Moreover, most of these companies are not confident in 
their ability to recover from a cyberattack within one day. 
Traditional cybersecurity systems fail to detect complex 
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attacks, as well as unknown malware and they do not guarantee 
the preservation of users’ privacy. In a first attempt, Machine 
Learning (ML) techniques were adopted to improve their 
functionalities [5], but they have not succeeded in identifying 
the different types of threats and intrusions, especially for 
unforeseen and unpredictable attacks. This has led 
cybersecurity systems to embrace DL models. 

DL is a ML subfield, which enables computational models 
composed of multiple processing layers to learn different data 
representations. It is inspired on the brain’s ability to learn from 
experience, and thus, it performs representation learning 
through multi-layer transformations. In DL, there are multiple 
levels of features, which are automatically discovered and 
composed together in various levels to produce the outputs. Its 
major benefit over ML is the automatic feature extraction that 
avoids the tedious labor of generating feature representations 
manually. Moreover, the self-learning capability of DL 
improves the processing speed and accuracy of applications. 
DL has gained great recognition in many areas such as image 
processing, speech recognition, game playing, and 
bioinformatics. Nowadays, academia and industry are applying 
DL to a wider range of applications due to its improvement in 
accuracy in complex tasks, fostered by recent developments in 
hardware and software.  Similarly, DL techniques are starting 
to be used in the security domain to improve cybersecurity 
systems. 

Cybersecurity comprises the processes and tools used to 
protect confidentiality, integrity and availability of resources 
and assets in the cyberspace [6]. At first, traditional 
cybersecurity systems protected users and devices through 
Intrusion Detection Systems (IDS), user authentication, data 
encryption, firewalls, and anti-virus software. IDSs [7] were 
designed to detect malicious network traffic, abnormal 
behaviors and intrusion attempts in computer systems. Two 
different types of IDSs exist depending on where the intrusion 
detection is deployed. (1) Host-based IDSs monitor each host, 
and if they detect malicious activity, for example, the 
modification of system files or configuration changes, they alert 
the user. (2) Network-based IDSs check anomalies in the 
network traffic. They are placed at a network node, for instance, 
in a router or a gateway. Moreover, IDSs can also be classified 
according to the method used to detect the intrusion. Signature-
based detection systems, also denoted as misuse-based, detect 
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known attacks based on predefined patterns for malicious 
network activities. They provide high accuracy in detection, but 
they cannot detect novel (zero-day) attacks. On the other side, 
anomaly-based detection systems aim to identify unknown 
attacks. The detection is based on the definition of normal and 
anomalous behavior patterns. However, they lack high 
accuracy. Initially, both approaches made extensive use of 
classical ML techniques [8]. But, they lack automatic feature 
engineering, they have a low detection rate [9], and they are not 
efficient in detecting small variants of existing attacks. 
Consequently, along with the increasing complexity of hacking 
incidents, ML techniques have been incapable of detecting 
complex attacks, unknown malware or preserving users’ 
privacy. Consequently, DL techniques are now the focus of 
cybersecurity research. 

In recent years, Information Technology (IT) organizations 
are conducting cybersecurity reports lead by the increase of 
cyberattacks affecting organizations worldwide. According to 
the 2019 SIM IT Trends Report [2] and the Cisco Cybersecurity 
Report [3], cybersecurity represents the most critical IT 
management issue. 84% of the organizations spend more than 
20% of their IT budget on cybersecurity (2x increase only in the 
last three years) [10]. Cybersecurity reports identify most 
common cyberattacks and they classify them in three different 
areas: Web, Cloud and Internet of Things (IoT). The 2018 
Internet Security Report (ISTR) [11] states that web attacks on 
endpoints increased by 56%. One in ten URLs analyzed was 
identified as malicious. Most alerts were form-jacking incidents 
(i.e. malicious JavaScript code to steal credit card data and other 
payment information). Form-jacking attacks compromised 
4,818 websites on average every month. Another large set of 
alerts result from Living off the Land (LotL) attacks (i.e. break 
into the organizations’ systems via trusted programs and then 
malicious code injection). The most common LotL are 
malicious emails, which increased 48% with respect to 2017.  

In the Cloud, a wide range of security challenges are 
observed due to two factors: misconfiguration in hardware 
equipment, and poorly secured Cloud databases. These caused 
the theft or leakage of 70 million records in 2018. The number 
of attacks in IoT stabilized in 2018, after a massive increase of 
600% in 2017. The leading cyberattacks in IoT are worms and 
bots, while infection vectors emerge. Routers and connected 
cameras are the most infected devices receiving 75% and 15% 
of the attacks respectively. Moreover, Distributed Denial of 
Service (DDoS) attacks [12] represent the third most common 
IoT threat in 2018, with as many as 16 different types of DDoS 
attacks. Finally, while the overall number of malware infections 
falls during 2018, enterprise ransomware increases by 12%, and 
mobile ransomware increases by 33%. 

The 2019 MacAfee Security Report [13] points out the rapid 
evolution of malware and, specially, malware applications in 
mobile phones. 2019 also represents the year of “everywhere 
malware”, since IoT devices, as medical devices, IP cameras, 
or smart elevators, are (and still may be) inherently vulnerable 
and easy to hack. Backdoors, crypto-mining, fake apps, and 
banking trojans are the largest contributors. Finally, 
ransomware attacks increased by 118% in 2019.  

The Check Point Software Security Report 2020 [14] reviews 
the major 2019 cyber incidents. The leak of more than half a 
billion records of Facebook in an unprotected Amazon Cloud 
takes the lead. The second largest incident is the attack suffered 
by the American Medical Collection Agency, compromising 
personal data and payment information of more than 20 million 
patients. Similar to the MacAffe Security Report, it highlights 
the increase and sophistication of malware and ransomware 
attacks that are affecting also local governments and healthcare 
organizations. Specifically, in 2019, the botnet infection 
affected 28% of the organizations analyzed. These 
cybersecurity reports conclude that today’s hyper-connected 
world provides more opportunities to cybercriminals. Any IT 
environment must be protected against future attacks. In this 
context, it is where DL improves traditional cybersecurity 
systems as it is capable of detecting novel attacks.  

Security organizations are developing commercial DL-based 
cybersecurity solutions to protect systems against cyber threats. 
Symantec [15] launched an attack analytics tool which 
integrates Artificial Intelligence (AI) techniques to discover 
targeted attacks. Similarly, Vectra developed Vectra’s Cognito 
platform [16] which uses AI techniques to detect real time 
attacks in IoT devices. Sophos Corporation [17] launched 
Intercept X tool, which applies DL models to detect threats. 
IBM developed the IBM’s QRadar Advisor tool [18] that uses 
DL methods to identify malicious attacks based on cognitive 
analysis. 

In this paper as in [19][20], cybersecurity attacks are 
classified in three main categories: infrastructure, software, and 
privacy. The infrastructure area comprises all the intrusion and 
anomaly attacks at the network level. Researchers started to use 
DL methods for cyber-attack detection [21] following the 
experience in traffic classification problems [22]. DL 
techniques prevent attacks by identifying patterns that are 
different from normal behaviors (e.g. anomaly-based network 
intrusion detection [14][23]). Moreover, cyberattacks share a 
common feature with image recognition, since more than 99% 
of the new attacks are a small mutant of existing attacks. In the 
same way that changes in images can be identified by small 
changes in their pixels. Thus, signatures, and patterns are 
automatically learned and generalized to detect future attacks 
[23]. In the software area, DL is used in malware, ransomware 
and botnets detection, since they are rapidly evolving to 
circumvent signature-based solutions [24]. The number and 
variety of malware attacks is increasing continuously, which 
makes it difficult for traditional methods (e.g., anti-virus 
software) to efficiently defend systems. New malware usually 
consists of small modifications of an existing one. Attackers 
improve the mechanisms of infection, obfuscation or payloads. 
Therefore, malicious applications of the same family have 
strong similarities in terms of code and behavior. This leads 
cybersecurity systems adopt DL in malware detection [25][26], 
malware classification [27][28], botnet detection [29][30] and 
ransomware detection [31][32]. Finally, in the privacy area, DL 
methods are used to protect user privacy. Initial works [33][34] 
address user privacy preservation in all types of Neural 
Networks (NN). Hereafter, NNs are trained with differential 
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privacy [35][36] to avoid disclosure of private information. 
More recent works [37] train NNs with encrypted data. 

This paper bridges the gap between DL and security, 
providing a comprehensive survey of DL methodologies and 
techniques relevant to security in mobile networks.  
Summarizing, this survey aims to:  

• Determine the cybersecurity areas that use DL 
techniques. 

• Identify the challenges for successful application of 
DL to cybersecurity. 

• Provide a complete review of research work that 
applies DL techniques for cybersecurity in mobile 
networks. 

• Identify the most important and promising directions 
for further study. 

To the best of our knowledge, research papers and books in 
the literature, which are reviewed in Section II, only address 
partially the aims of this work. The rest of the paper is as 
follows: Section III reviews essential DL techniques applied or 
with potential application to cybersecurity. Section IV reviews 
the datasets used by cybersecurity applications and the metrics 
used in the evaluation process. Section V reviews recent DL 
research works. Section VI summarizes the lessons learned and 
identifies current challenges and open future directions. Finally, 
section VII concludes the paper. 

II. RELATED WORK 
In the last years, DL and cybersecurity have crossed their 

paths. We can, now, find DL methods in the three cybersecurity 
areas (infrastructure, software and privacy). This introduction 
is motivated by two reasons: (1) the large majority of new 
cyberattacks are small mutants of existing attacks or 
combinations of them; and (2) DL methods have improved their 
accuracy in complex tasks through recent software and 
hardware developments. Given the significance of DL and 
cybersecurity, surveys and tutorials are emerging. In general, 
they provide a biased overview of DL methods used for a 
specific type of cyberattacks, or they are restricted to specific 
environments or applications. Table I provides an overview of 
existing works, a summary of its contribution and the 
cybersecurity area. 

In the infrastructure area, Hodo et. al. [38] conduct the first 
review of ML and DL-based IDS. The authors define an IDS 
taxonomy based on the data source (host or network) and the 
intrusion technique (anomaly or signature based). ML and DL 
techniques are reviewed, as well as their performance in 
detecting anomalies. Their conclusion is that learning 
algorithms of deep networks, especially Convolutional NNs 
(CNN) and Deep Belief Networks (DBN), significantly 
outperform shallow networks in detection. Kwon et al. [7] 
provide a more specific survey on anomaly-based network 
intrusion detection. They shed more light on unsupervised and 
generative learning DL methods since they provide an overview 
of anomaly detection methodologies, and they consider data 
reduction, dimensionality reduction and classification. The 

Restricted Boltzmann Machine (RBM), DBN, CNN and 
Recurrent NN (RNN) methods are reviewed for network traffic 
analysis, being CNNs the most promising classifiers for 
intrusion detection. Xin et. al. [39] provide a more complete 
review of ML and DL methods for network intrusion detection. 
This survey reveals the key obstacles in this area: (1) small 
quantity of benchmark datasets; (2) not uniform evaluation 
metrics; and (3) deployment efficiency more significant than 
considered, (as experiments are not performed in real 
networks). Also, in the intrusion detection area, Ferrag et al. 
[40] conduct a comparative study of DL methods, mainly RNN, 
Deep NN (DNN), RBM, DBN, CNN, Deep Boltzmann 
Machine (DBM), and deep autoencoder (DAE). The methods 
are analyzed using two datasets: CSE-CIC-IDS2018 [41] and 
Bot-IoT [42]. The study concludes that CNN and DAE methods 
achieve the best accuracy, 97% and 98% respectively, obtaining 
also best performance results for both datasets. 

Other surveys address DL works in the infrastructure and 
software security areas. Mahdavifar and Ghorbani [43] review 
the works that use DL models for intrusion detection, web site 
defacement detection, phishing detection, and malware 
detection and classification. This work classifies DL models in 
generative, discriminative, and hybrid, according the taxonomy 
provided by Deng et. al. [44]. Generative DL architectures are 
powerful at modelling the input data taking advantage of the 
benefits of data synthesis and pattern analysis. Discriminative 
architectures do not consider the data generation process, they 
learn the conditional probabilities of classes given the visible 
data, and then, they classify the data. Finally, hybrid 
architectures use a generative model to improve discrimination 
in two aspects: optimization and regulation. Malware detection 
uses generative architectures (e.g. Autoencoder (AE), Stacked 
AE (SAE), RNN) and hybrid architectures (e.g. CNN, DBN). 
Likewise, malware classification also uses generative (e.g. 
SDAE, RNN) and hybrid (e.g. DNN) architectures. In contrast, 
intrusion detection mostly uses AE, Long Short-term Memory 
(LSTM), DBN, and DNN models. Subashini et. al. [45] extend 
this work by reviewing ML and DL algorithms. They mostly 
focus on the infrastructure area for intrusion and anomaly 
detection, and they marginally outline the contributions in the 
software area for botnet and malware detection. Unlike other 
surveys, [45] reviews Nature Inspired computing (NIC) 
paradigms which are applied for fine-tuning the parameters in 
the security learning model to categorize attacks. This improves 
efficiency and performance. The study concludes that RBM, 
DNN, RNN, and Suport Vector Machines (SVM) are the most 
used models for network anomaly and intrusion detection. 
While SAE, SVM, CNN and DBN are most used for malware 
detection and classification. In the same vein, Berman et. al. 
[46] and Singla et. al. [47] also cover cyberattacks in the 
infrastructure and software areas. The two surveys review AE, 
CNN, RNN and Generative Adversarial Networks (GAN) 
models used to detect cyberattacks. They focus on a subset of 
attacks that include malware, botnets, and network intrusions. 
Singla et al. [47] highlight the lack of accuracy in IoT 
environments for devices with low processing capabilities. 
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Other surveys focus on specific environments or 
applications, mainly Android applications, Cloud, IoT-Fog 
computing, and Cyber-Physical Systems (CPS). Surveys that 
review cybersecurity attacks on Android devices are conducted 
by Zachariah et. al. [48] and Scalas et al. [49]. The former 
analyzes existing malware detection techniques in the Android 
OS. This work reviews both, static and DL-based approaches. 
The latter makes an in-depth analysis of ML and DL-based 
ransomware detection techniques, but focusing on those that 
make use of system application programming interface (API) 
information.  

Another field, gaining special relevance, where surveys are 
starting to emerge is IoT. Al-Garadi et al. [20] review the usage 
of ML and DL methods in IoT security. The authors provide an 
analysis of the vulnerabilities and attack surfaces. They are 
categorized into physical device, network and cloud services, 
and web and application interfaces. This survey also provides 
an in-depth analysis of ML and DL methods and their 
application to each of the IoT layers. In the same area but from 
a totally different perspective, Hemdan and Manjaiah [50] 

review research works that use Big Data Analytics to detect and 
prevent cyberattacks. They analyze the usage of Big Data 
Analytics and DL in Social Networks, Cloud Computing and 
IoT to predict new attacks.  

Finally, in the CPS area, Wickramasinghe et al. [51] 
concisely review DL algorithms used in security applications. 
The authors analyze regularization techniques to improve the 
generalization capabilities of DL-based security applications. 
More specifically, they analyze the DL models used in the 
infrastructure area, mainly for intrusion and anomaly detection, 
and in the software area for malware detection. In the CPS 
domain, several industry and academic experts share their 
vision on AI-based cybersecurity solutions [52]. This work 
focusses on the infrastructure and privacy areas. Contributions 
of special interest encompass DoS attacks detection and 
Federated Learning for data privacy preservation. In the same 
line, Zeadally et al. [53] review cybersecurity issues in the IoT 
and CPS domains. They analyze cybersecurity attacks launched 
on different network stacks and applications, and discuss their 
impact. They first present an overview of non-AI security 

TABLE I 
SUMMARY OF EXISTING SURVEYS RELATED TO DL FOR CYBERSECURITY  

Publication Summary Scope 
Infrastructure Software Privacy 

Hodo et. al. [38] 
(2017) 

Overview of shallow and deep networks IDS. ✔   

Kwon et al. [7] 
(2019) 

Survey of DL methods (unsupervised learning) for anomaly based intrusion 
detection. 

✔   

Xin et al. [39] 
(2018) 

Survey of ML and DL methods for intrusion detection.  ✔   

Ferrag et al. [40] 
(2020)  

Comparative study of DL methods for intrusion detection.  ✔   

Mahdavifar and 
Ghorbani [43] 
(2019) 

Survey of DL methods for intrusion detection and malware detection and 
classification. 

✔ ✔  

Subashini et al. [45] 
(2020) 

Review of ML and DL methods for intrusion and anomaly detection, and botnet 
and malware detection. 

✔ ✔  

Berman et al. [46]  
(2019) 

Survey of DL methods for cybersecurity, analyzing works in the infrastructure and 
software areas.  

✔ ✔  

Singla et al. [47] 
(2019) 

Analysis of DL methods for security tasks in malware analysis, intrusion detection 
and botnet detection. 

✔ ✔  

Zachariah et al. [48] 
(2017) 

Overview of malware detection techniques. 
 

 ✔  

Scalas et al.  [49] 
(2019) 

Review of Android ransomware detection techniques.  ✔  

Al-Garadi et al. [20] 
(2018) 

Survey of ML and DL methods for IoT Security. ✔ ✔ ✔ 

Hemdan and 
Manjaiah [50] 
(2020) 

Review of research works using Big Data Analytics to detect and prevent 
cyberattacks. 

✔ ✔  

Wickramasinghe et 
al. [51] (2018) 

Survey of DL methods for Cyber-Phisical security applications.  ✔ ✔  

Sedjelmaci et al. 
[52] (2020) 

Special issue on AI-based cybersecurity solutions in CPS. ✔  ✔ 

Zeadally et al. [53] 
(2020) 

Survey of cybersecurity attacks and AI-based solutions in IoT and CPS. ✔ ✔  

Zhang et al. [19] 
(2019) 

Survey of DL methods in mobile and wireless networking ✔ ✔ ✔ 
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solutions, discuss their weaknesses and describe how emerging 
AI solutions can help to improve cybersecurity. The AI-based 
solutions encompass the network infrastructure and software 
areas focusing on IoT and CPS.  

Finally, the most complete survey is elaborated by Zhang et 
al. [19]. The authors review works in DL for mobile and 
wireless networking. This survey provides a review of the state-
of-the-art on DL practices in different domains including data 
analysis, user mobility analysis, network control, security, and 
signal processing. In the security field, authors summarize 
existing works in the three security areas: infrastructure, 
software and privacy. Authors provide an interesting 
conclusion for network attacks. They state that DL methods do 
not guarantee the detection of all possible new attacks and 
propose the improvement of DL solutions by means of: (1) 
transfer learning, which is the rapid transfer of knowledge from 
existing attacks to newer ones, and (2) lifelong learning, 
continuously updating the model with the features of new 
attacks. Nevertheless, as the survey is not focused on security it 
does not provide an in-depth analysis of existing works. 

The works described previously in this section do not 
completely cover the different DL techniques used for 
cybersecurity in mobile networks. Some of them address a 
subset of the wide range of possible cyberattacks in networks, 
systems or applications. While other surveys are restricted to 
specific domains, as IoT, CPS, or Android OS. This work goes 
beyond these previous surveys and reviews all the works in the 
literature that use DL techniques to improve cybersecurity 
systems in mobile and wireless networking. We analyze a wide 
range of DL methods that are increasingly used by 
cybersecurity systems and that are not completely covered by 
previous works. For all the works analyzed in this survey, we 
review the implementation details (i.e. the libraries used for 
deploying and training the NNs and the optimization 
algorithms) and we analyze and compare the results reported 
wherever possible. 

In summary, this work differentiates from earlier surveys on 
the following: 

• It reviews all the research works in the different 
security areas: infrastructure, software and privacy 

• It considers all different scenarios in mobile and 
wireless networking, including Cloud, Fog computing, 
IoT, CPS, etc. 

• It analyzes the implementation for almost all the works 
(except those that do not provide it), as well as the 
evaluation performed. When possible, we also 
compare the different proposals. 

Finally, to the best of the authors’ knowledge this is the first 
survey that provides a complete review of DL methods used for 
cybersecurity applications. 

III. DEEP LEARNING METHODS USED IN CYBERSECURITY 
APPLICATIONS 

This section reviews DL history and summarizes the most 
common DL methods used in cybersecurity applications which 
include Multilayer Perceptron (MLP), CNN, RNN, LSTM, AE, 

RBM, and DBN. 

A. Deep Learning overview 
In the 1950s, AI started to emerge. It was in 1956 in the 

Dartmouth Conference [54] when Dr. McCarthy  proposed that 
“machines can be programmed to reason simulating every 
aspect of learning or any other feature of intelligence”. In this 
area there are different fields that are tightly related: AI, ML, 
Artificial NNs (ANNs) and DL. Figure 1 presents a taxonomy 
showing the relations between them.  

The aim of AI is to automatize intellectual tasks usually 
conducted by humans, while ML and DL are the specific 
methods that lead to this goal. In turn, ANNs [55] are ML 
algorithms inspired by biological neural networks that model 
complex real-world problems. ANNs can be defined as 
computing structures designed with simple processing 
elements, called artificial neurons or nodes. Neurons are fully-
connected and simulate the way a human brain processes 
information, and solves problems. ANN consist of three or 
more interconnected layers. They are able to perform massively 
parallel computations, enabling them to improve their results as 
more data is inserted to the model. McCulloh and Pits [56] in 
1943, were the first ones that modeled the operation of simple 
artificial neurons. This milestone marked the beginning of DL 
modern history. Artificial neurons were implemented in 1958 
by Rosenblatt [57], which introduced supervised learning, 
through the perceptron, in the area of character recognition. The 
perceptron consists of a few layers of neurons connected by 
adaptive weights. Networks with one hidden layer fall in the 
shallow learning category, while networks with multiple hidden 
layers pertain to the DL category. In 1965, Minsky and Papert 
[58] identify the limitations of the perceptron. In the 1980s, 
Hopfield [59] presented the potential of NNs which promoted 
the adoption of ML techniques in many applications that people 
use daily (e.g.in web search, recommendation, image 
recognition, speech to text conversion) [21]. Initially, ML 
techniques exploited shallow architectures that typically 
contained only one layer of nonlinear feature transformations to 

 
Fig. 1. AI taxonomy: ML, SNN, NLP, ASR, ANN and DL.  
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transform the raw input into a problem-specific feature space. 
ML algorithms are based on either supervised, unsupervised, 
semi-supervised, or reinforcement learning [60]. Supervised 
learning algorithms make use of the training data to learn a 
function by mapping certain features from the training data into 
some output. They are applied to datasets that have features 
with associated labels that enable the ML model to emulate the 
expert’s input data. Common supervised ML approaches 
include decision trees (DTs), SVM, Bayesian algorithms, k-
nearest neighbor (KNN), and random forest (RF). Unsupervised 
algorithms are applied to datasets without labels. They map 
directly the input to the output, without depending on human 
intervention, learning automatically features at multiple levels 
of abstraction. This approach learns useful properties from the 
dataset structure and it detects patterns. Common unsupervised 
ML approaches include Principal component analysis (PCA) 
and K-means clustering. Semi-supervised algorithms are used 
for datasets with labeled and unlabeled data, where all the 
features are present but not all of them have associated targets. 
It uses unlabeled data to improve supervised learning tasks, 
when the labelled data is scarce or expensive. In reinforcement 
learning the algorithm is trained for a specific task where an 
overall outcome is desired. This approach is used in unknown 
environments. In contrast to supervised learning, the system is 
not trained with the sample dataset, the system learns through 
trial and error. ML techniques result effective for solving 
simple or well-constrained problems, but they present 
difficulties when dealing with more complex real-world 
applications since they have limited ability when processing 
natural data in their raw form.  

In the cybersecurity field, researchers first used ML 
algorithms such as DTs, RF, SVM, Bayesian network and K-
Means to detect network attacks [61][62]. However, the 
proposed solutions require manual feature engineering [63] and 
the features obtained (such as number of requests, connection 
time or number of bytes sent and received) are not able to fully 
represent the pattern behavior of network attacks. DL methods 
[39] that overcome ML limitations are currently used. 

DL [64] is a sub-branch of ML that enables an algorithm to  
predict, classify or make decisions based on data without 
explicitly being programmed in a specific direction. DL 
algorithms are more accurate than ML algorithms because of its 
multilayer structure. Hierarchically, they obtain knowledge 
from data through multiple layers of non-linear processing 
units. DL tools do not rely on features defined by domain 
experts, in contrast to ML tools. This fosters the adoption of DL 
algorithms since they can extract knowledge from raw data 
through multiple layers of nonlinear processing units. DL is 
widely used by industry and academia. It extends to areas of 
visual recognition, audio processing, natural language 
understanding, pattern recognition, bioinformatics, mobile 
networking, and cybersecurity. DL provides encouraging 
results due to its high efficiency in studying complex data. 
Besides the improvement in learning procedures, the main 
factors that contribute to DNN success are: the ever-increasing 
computing power, the advancements in software engineering, 
and the massive generation of training data.  

From 2016 onwards, DNN architectures and DL models are 
being used in a wide range of application domains such as: 
mobile wireless networking [19][65], network traffic control 
systems [22], speech processing and computer vision [66], IoT 
[67], recommender systems [68], and in cybersecurity. The rest 
of this section describes the DL methods used in cybersecurity 
applications. 

B. DL methods 
DL methods consist of different modules that transform the 

representation from one level of the NN to the next, which is 
more abstract. The first level receives the raw input data and the 
last one produces the outputs. The combination of several levels 
is needed to learn high complex models. Higher layers of 
representation are used for classification tasks, which consider 
the features of the input, as these are relevant for discrimination 
and suppress minor variations. The key is that feature layers 
self-configure directly from data (i.e. they are not designed 
manually by engineers). DL methods, as ML methods, can be 
classified in the following four main groups [64]: supervised, 
unsupervised, semi-supervised, and reinforcement learning.  

In the cybersecurity field, supervised learning algorithms are 
widely used for privacy preservation and malware detection. 
Semi-supervised learning has been proposed for Android 
applications. While, unsupervised learning is the preferred for 
network intrusion detection, and in IoT environments. Figure 2 
summarizes the DL methods used or with potential to be used 
in cybersecurity, and the most relevant are described in the next 
paragraphs. 

1) MLP 
In ANNs [69], neurons are organized in layers and 

connections are introduced from one layer to the next. MLP 
[70], also known as Fully Connected Network (FCN), is one of 
the first ANNs. It is considered the main architecture of DL and 
it is based on the simplest and oldest neural model. It consists 

 
Fig. 2. Overview of main DL methods for cybersecurity.  
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of multiple layers of simple interconnected nodes (a.k.a 
neurons). More specifically, it consists of three different types 
of layers: one input layer, one or more hidden layers, and one 
output layer. The MLP is fully connected (see Figure 3), which 
means that all the neurons in a layer have connections to the 
neurons in the adjacent layers. Connection weights determine 
the correlation degree between the neurons’ activity level 
(determined by the sum of the inputs of the node modified by 
an activation function). MLP can be used in both supervised and 
unsupervised DL techniques. 

In the security area, MLPs have been successfully used for 
the detection of novel attacks in different mobile scenarios [71], 
especially for DDoS attacks [72][73][74]. 
2) CNN 

CNNs [75][76], also known as ConvNets, were designed to 
process data in the form of multiple arrays: 1D for signals and 
sequences, 2D for images and 3D for video and volumetric 
images. CNNs take advantage of the properties of natural 
signals based on the following key ideas: usage of many layers, 
local connections, shared weights, and pooling. They also use a 
set of connected kernels to capture correlations between 
different data regions. 

The architecture of a CNN (see Figure 4) consists of three 
different types of layers: convolutional, pooling and 
classification. Convolutional layers are the core of the CNN, 
where its units are organized in feature maps. Each unit in a 
feature map is connected to the local patches in the feature maps 
of the previous layer through a set of weights (filter bank). The 
result of applying these filters goes through a non-linearity 
transformation (usually, a rectified linear unit (ReLU)). These 
convolutional kernels enable close physical or temporal 
relationships and help reduce the memory requirements as they 
apply the same kernel through the entire input. 

The role of the pooling layers is to merge semantically 
similar features into a single one by applying a specific function 
(e.g., the maximum over non-overlapping subsets of the feature 
map). Pooling layers reduce the size of the feature maps and the 
number of overfitting parameters. This results in a reduction of 
the memory requirements. Then, these layers are stacked and 
fed into a fully connected DNN. 

The convolutional and pooling layers were inspired by the 
notions of simple and complex cells in visual neuroscience [77]. 

They have their roots in the neocognitron, which has a similar 
architecture, but they lack of an end-to-end supervised learning 
algorithm such as back-propagation. The first 1D CNN was 
used for the recognition of phonemes and words [78]. 
Subsequently, they were applied to document reading, optical 
recognition, and handwriting recognition systems [79]. In 2012, 
in the ImageNet competition, CNNs evidenced their 
performance in image classification by reducing the top-5 error 
by 39.7% [67]. Over-fitting and gradient vanishing CNN 
problems were reduced in GoogLeNet [80] and ResNet [81] by 
increasing the depth of the CNN structures, and using inception 
and residual learning techniques. This structure was improved 
by the Dense Convolutional Network (DenseNet) [82], which 
reuses feature maps from each layer reducing the number of 
layers and improving accuracy.  

In cybersecurity, Dense Convolutional Networks have been 
successfully used for the detection of DDoS attacks [83], 
android-malware [84], malware traffic classification [85], 
encrypted traffic classification [86][87], and privacy-preserving 
mobile analytics [88]. 
3) RNN and LSTM 

RNN [89] is one of the most used models for training 
sequential data. This type of NN is an extension of a 
conventional feed-forward NN with cyclic connections. RNNs 
are more powerful in modeling sequences. RNNs produce, at 
each time step (t), an output (ot) via recurrent connections 
among hidden units (st).  

A standard RNN (see Figure 5) usually is trained via a Back-
Propagation Through Time (BPTT) algorithm to handle a 
variable-length sequence input. In a BPTT, the model is first 
trained, and then, for each time step, the output error gradient is 
recorded. However, gradient vanishing and exploding problems 
are frequently reported in traditional RNNs, which make them 
particularly hard to train [90]. 

LSTM [91] overcomes gradient vanishing and exploding 
problems of RNNs introducing the LSTM cell formed by a set 

 
Fig. 3. MLP structure.  

 
Fig. 4. CNN structure.  

 
Fig. 5. RNN structure.  
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of gates, as depicted in Figure 6. In LSTM, three gates control 
the information flow. The input gate determines the ratio of the 
input, which affects the calculation of the cell state. The output 
gate determines if the previous memory cell is going to pass. 
The forget gate passes what the output gate stipulates. 

LSTM has been successfully used in many applications in the 
areas of speech recognition [92], wearable activity recognition 
[93] and text categorization [94]. While, RNNs have achieved 
outstanding accuracy in tokenized predictions [95]. Nowadays, 
RNNs are used in intrusion detection systems [89] and in 
mobile networks, since they produce massive sequential data 
from different sources (traffic flows, the evolution of mobile 
network subscribers’ trajectories, etc.). 
4) Auto-encoders 

AEs [96] and its families are one of the most applied DL 
models, as they produce satisfactory results in unsupervised 
learning. AEs learn the best parameters to reconstruct the output 
to the same values as, or as close to, their inputs. An AE usually 
has an input layer, a hidden layer, and an output layer with the 
same dimension of the input layer. If the hidden layer has a 
smaller dimension that the input layer the network is used for 
encoding the data, and it is known as a sparse AE [97]. 

AEs are designed to provide a more powerful and non-linear 
generalization than the PCA. To this end, back-propagation is 
applied and the target values are set to the same value as the 
inputs. AEs are also used as a non-linear transformation to 
discover interesting data structures, to impose different 
constraints on the network, and to compare the results with 
PCA. First, the input is transformed in a lower-dimensional 
space and then it is expanded to reproduce the input. For 
modeling non-linear dependencies in the input, once a layer is 
trained, its code is fed to the next layer. This code-layer is 
typically used for classification, as a compressed feature vector. 
AEs have been successfully used in the cybersecurity field for 
malware classification and network-based anomaly detection 
[23]. 

SAE [97] uses multiple layers of AEs to compress the 
information. It consists of two symmetrical DBNs, which have 
multiple layers for encoding and decoding. SAE achieves better 
accuracy, and at the same time, it reduces the computational 
costs and the training data required. The output of each hidden 
layer is used as the input of the next hidden layer. In this way, 
the first layer learns first-order features of the input, while the 
second layer learns second-order features, and so forth. Figure 
7 shows the structure of a SAE. SAEs have been used in several 
application areas, achieving good results in object recognition 

and image analysis. In the security area, they are adopted for 
attack detection [21], and intrusion and anomaly detection [98]. 

Deep conditional generative models are used for output 
representation learning and structured prediction. Output 
distribution is modeled as a generative model which is 
conditioned to the input observation. Conditional variational 
AEs (CVAE) [99] take advantage of developments in 
variational inference and directed graphical models [100]. Their 
input observations modulate previous Gaussian latent variables 
that generate the outputs. They have been successfully applied 
in large-scale visual recognition, and intrusion detection 
systems [101]. 
5) DBN 

DBNs or Stacked RBMs can be viewed as a composition of 
simple RBMs or AEs where each hidden layer serves as the 
visible layer for the next layer. 

A RBM [102] is an ANN method. It is initially designed for 
unsupervised learning purposes that exploits unlabeled data to 
learn usable patterns. RBM is an energy-based undirected 
generative model that makes use of a layer of hidden variables 
to model a distribution [103][104] over visible variables (see 
Figure 8). Each variable can only take a binary value (0 or 1). 

RBMs are proposed as building blocks of DBNs [105]. The 
idea is that those hidden neurons extract relevant features from 
the observations. Then, these features are used as input to 
another RBM. Therefore, when stacking RBMs, features 
learned from features achieve a high-level representation. 

 
Fig. 6. LSTM Memory Cell structure.  

 
Fig. 7. SAE structure.  

 
Fig. 8. Graphical model of a RBM.  
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RBMs show great performance when applied to problems 
involving high dimensional data as text [106] or images. 
Stacked RBMs or DBNs are successfully applied to time series 
forecasting [107], ratio matching [108], and speech recognition, 
and they give better results than MLPs. In the security area they 
are successfully used in intrusion detection [109] and malicious 
code detection [110]. 

IV. EVALUATION METRICS AND DATASETS FOR 
CYBERSECURITY 

The previous section has presented the most significant DL 
methods used in the cybersecurity field. This section describes 
the metrics used in the evaluation process and the datasets used 
in the training and testing phases. 

A. Evaluation metrics 
The DL-based cybersecurity works reviewed in this survey 

use the following metrics [111] in the evaluation process: 
accuracy (ACC), precision (p), False Alarm Rate (FAR), True 
Positive Rate (TPR), False Positive Rate (FPR), specificity, 
Receiver Operating Characteristic (ROC) curve, Area Under 
the Curve (AUC), and 𝐹𝐹1 Score. These metrics can be computed 
from a confusion matrix, i.e. a matrix representation of the 
classification results (see Table II). True Positive (TP) and True 
Negative (TN) denote the number of attack and normal records 
correctly classified. Meanwhile, False Positive (FP) and False 
Negative (FN) denote the number of normal and attack records 
incorrectly classified. 

From table II we can compute the metrics as detailed below. 

ACC is the ratio of correctly classified predictions over the total 
number of instances evaluated: 

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

                   (1) 

p is the ratio of items correctly classified from the total of items 
predicted: 

    𝑝𝑝 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

             (2) 

FAR represents the ratio of items incorrectly classified as class 
C to all the items not classified as class C: 

 𝐹𝐹𝐴𝐴𝐹𝐹 = 𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                         (3) 

TPR (a.k.a sensitivity, Detection Rate (DR), Probability of 
Detection(𝑃𝑃𝐷𝐷 ) and Recall(r)) represents the ratio of items 
correctly classified (attack or normal) as class C to all the items 
that were class C: 

𝑇𝑇𝑃𝑃𝐹𝐹 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                       (4) 

FPR represents the ratio of items incorrectly classified (attack 
or normal) as class C to all the items in class C. 

𝐹𝐹𝑃𝑃𝐹𝐹 = 𝐹𝐹𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                       (5) 

Specificity represents the ratio of items correctly classified as 
not class C, to all the items in class C. It is related to FPR as 
follows: 

 𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1− 𝐹𝐹𝑃𝑃𝐹𝐹 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

               (6) 

The ROC curve [112] results of plotting TPR over FPR. Any 
point in the ROC space corresponds to the performance of a 
classifier on a given distribution. The ROC curve provides a 
visual representation of the trade-off between the benefits 
(TPR) and costs (FPR) of classification in relation to data 
distributions.  

AUC represents the area under the ROC curve (values range 
between 0 and 1). It measures the degree of separability and it 
helps to determine if the model can effectively distinguish 
between classes. Figure 9 shows the relationship between these 
two metrics. 
𝐹𝐹1 score is the harmonic mean of p and TPR. 

𝐹𝐹1 = 2𝑇𝑇𝑇𝑇
2𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

                           (7) 

B. Cybersecurity Datasets 
This sub-section provides an overview of the datasets used in 

the infrastructure and software areas. The datasets used in 
privacy applications are not presented in this section because 
they are not specific of security.  Privacy studies use image 
classification datasets. 
1) Infrastructure datasets 

Infrastructure datasets consist of network traffic, which 
include cyberattacks detected by NIDS. NIDS datasets are 
largely used to develop solutions for network systems to 
prevent organizations from cyberattacks including, monitoring 
and analyzing network traffic and raising an alarm when an 
intrusion is detected. NIDS offers two datasets: signature-based 
(SNIDS) and anomaly detection-based (ANIDS). In SNIDS, 
attack signatures are pre-installed. Then, intrusions are detected 
through pattern matching. They are effective and they achieve 
a high detection accuracy in the detection of known attacks. 
ANIDS detects intrusions when they observe deviations from 

 
Fig. 9. ROC curve.  
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normal traffic patterns. They have potential on the detection of 
new and unknown attacks. Existing attacks, detected by these 
systems, can be classified in the following types: 

Probing: These type of attacks [113] gather information 
about computer networks to discover vulnerabilities of IP, 
ports, and services to circumvent its security controls. For 
example, scanning programs (satans, nmap, mscan, etc.) can be 
used to discover open ports and services. Then, attackers exploit 
these vulnerabilities. 

Denial of Service (DoS):  In this class of attacks, malicious 
users cripple the services offered by a site, for example by 
flooding a site with many requests [114]. In this way, they limit 
or deny the system services to legitimate users. If the attack is 
originated by multiple coordinated hosts, it is called DDoS. 
There are different types of DoS attacks. Volume-based attacks, 
in which attackers try to consume all network bandwidth 
making impossible legitimate user access the site (e.g. by 
sending to the victim server a high number of packets). 
Examples include UDP or ICMP flood. Protocol attacks 
overfloods resources such as memory and/or processing 
capability in the victim. These leads to long waiting queues at 
intermediate network devices (load balancers, routers, 
firewalls, etc.). Examples include Smurf DDoS [115], where 
attackers attempt to flood a targeted server with ICMP packets, 
or SYN Flood [116], where attackers repeatedly send initial 
connection request SYN packets to overwhelm the available 
ports of the server. Finally, attacks in the application layer crash 
the application (e.g. webserver) by sending legitimate messages 
or requests. Examples include Zero-day or Slowloris attacks. 
Slowloris attacks [117] leave connections to a targeted Web 
server open as long as possible, by means of incomplete HTTP 
requests. 

Remote-to-local (R2L): In this type of attacks, the attacker 
sends packets to a machine over a network, locating a 
vulnerability in the machine and gaining access. In R2L attacks, 
the attacker does not have an account on that machine. Some of 
these attacks (imap, named, sendmail) are caused by buffer 
overflows exploits in network programs. Others exploit 
misconfigured security policies, as ftp-write, or dictionary. 
While other attacks employ Trojans, for example, the xsnoop 
employs password capture programs. 

User-to-root (U2R): In this class of attacks, the attacker 
begins accessing a normal user account on the system. Usually, 
the attacker previously has gained access through an R2L 
attack, for example, by sniffing passwords, or with a dictionary 
attack. Then, the attacker exploits the system vulnerabilities to 
gain root access. Examples of U2R attacks include 
buffer_overflow, loadmodule, perl, rootkit, ps sqlattack and 
xterm. 

Nowadays, there are different datasets with network traffic 
records, which include the attacks described. They contain a 
large amount of data to simulate an IDS model both for training 
and testing. The two most popular are the KDDCUP’99 [118] 
and its enhanced version NSL-KDD [119]. The KDDCUP’99 
dataset has been used for anomaly detection methods. It was 
created for the KDD Cup challenge in 1999 and consists of 
4,900,000 network traffic records, each one of them with 41 

features (based on basic type, content type, and traffic type 
features) labeled as normal or attack. Attack labels can be of 
one of the following four categories: Probing, DoS, U2R or 
R2L. Tavallaee et al. [120] statistically analyzed the KDD 
dataset and found important issues in the data that affect the 
performance of the evaluated systems. First, it contained a large 
number of redundant and duplicate records, which lead learning 
algorithms to be biased to the more frequent reports. Second, 
the synthetic nature of the network and data, make the dataset 
an inaccurate representation of real existing networks. To solve 
this, they proposed an enhanced version of the dataset called 
NSL-KDD, which consists of 125,973 training records and 
22,544 testing records. Each with 41 features, as the 
KDDCUP’99.  

Another widely used network dataset is the ISCX [121], 
which includes HTTP, FTP, SMTP, SSH, IMAP, and POP3 
traffic. However, it does not contain HTTPS traces. It has two 
profiles: the Alpha-profile which conducts different multi-stage 
attack scenarios; and the Beta-profile, with the benign traffic 
(i.e., realistic network traffic with background noise). The 
CICIDS2017 dataset [122][123] contains attacks and normal 
network data, being very close to real network data. It was 
created by capturing traffic during 5 consecutive days. During 
this time, it registered many cyberattacks (DoS, DDoS, Brute 
Force, XSS, SQL Injection, Infiltration, Port scan, and Botnet) 
along with normal traffic. This dataset has been labeled and 
more than 80 network traffic features were extracted and 
calculated using the CICFlowMeter software. The ADFA13 
dataset [124] consists of normal training data and 10 attacks per 
vector. It only contains a small set of known existing 
cyberattacks: FTP and SSH password brute force, add new 
superuser, Linux Meterpreter payload, Java-based Meterpreter, 
and C100 Webshel. Moreover, some attacks of this dataset are 
poorly separated from the normal data [125]. Finally, the 
Winter’s dataset is based on the Sperotto dataset [126], which 
is the first public labeled flow-based dataset. The Sperotto data 
was captured by monitoring a honeypot at the University of 
Twente for 6 days. It was divided into three categories: 
malicious traffic, side-effect traffic, which is not malicious by 
itself, and unknown and uncorrelated alerts that cannot be 
determined as malicious or benign traffic. This dataset has a 
large number of flows which make the training phase time-
consuming. The Winter dataset addresses this issue generating 
an enhanced version of the Sperotto dataset, where duplicated 
data was deleted. It includes 20,000 random samples plus 
successful attack flows. Other datasets used for DDoS attacks 
are EPA-HTTP dataset [127] and CAIDA 2007 dataset [128]. 
2) Software datasets 

Nowadays, DL techniques are increasingly being used for 
malware detection, since malware applications are evolving to 
circumvent their detection by existing anti-virus software. 
Experiments in these scenarios use the top apps in the Google 
Play Store [129] as normal data (benign applications); while 
malware data is extracted from applications in malware 
datasets, as Contagio [130], Genome project [131], Comodo 
[132], Virus Share [133], Maltrieve [134], Virus Total [135], 
DREBIN [136], Microsoft Malware Classification [137], netlux 
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[138], offensivecomputing [139], and maldozer [140]. These 
datasets aim to characterize existing Android malware. For 
example, the Genome malware project has collected more than 
1,200 malware samples, which covers a large number of 
existing malware families. They characterized them in different 
aspects: installation methods, activation mechanisms, and the 
nature of the carried malicious payloads. The DREBIN dataset 
[136] contains 120,000 Android applications, but only 5000 of 
them are malicious. These malicious apps belong to 179 
different families of malware such as: Adrd, BaseBridge, 
DroidDream, DroidKungFu, FakeInstaller, Geinimi, 
GinMaster, Kmin, Opfake and Plankton. Malware datasets are 
usually saved as raw program files, which provide flexibility 
for feature extraction and processing. Comodo Cloud Security 
Center includes 3,000 Android applications, being a half of 
them benign and the other half malicious. The malicious apps 
include popular malware families such as Geinimi, GinMaster, 
FakePlayer. 

V. DL TO ENHANCE SECURITY IN MOBILE NETWORKS 
For some time now, DL and cybersecurity have crossed their 

paths. Nowadays, DL is being widely used to improve network 
security. This section provides an insight review and analysis 
of research works that make use of DL methods to improve 
cybersecurity systems. These works are organized in three main 
areas: infrastructure, software and privacy. 

A. Infrastructure 
Nowadays, intrusion detection (ID) is one of the main 

security problems. Initially, cybersecurity systems used a 
combination of different solutions (i.e. firewalls and IDS to 
protect users from cyberattacks). Anderson [141] introduced 
the concept of ID in 1980. Denning [142], in 1987, proposed a 
methodological framework for intrusion detection that became 
the basis of any IDS. The goal of IDSs is to identify attacks or 
unusual access on networks. IDSs are placed on gateways or 
routers to detect intrusions in the network. Intrusion attacks are 
usually classified, based on the KDD’99 dataset, in the 
following categories: DoS, Scanning, R2L and U2R. IDSs 
benefited from ML techniques, such as ANNs, SVMs, Naive-
Bayesian (NB), RF, and Self-Organized Maps (SOM). 
However, these ML techniques cannot identify all the different 
types of intrusions [143], especially unforeseen and 
unpredictable attacks. Recently, IDS use DL techniques to 
overcome this issue. They automatically learn signatures and 
patterns (supervised learning) and identify patterns clearly 
different from normal patterns (unsupervised learning). 

This section reviews, analyzes, and compares the works that 
use DL solutions to prevent cyberattacks. The subsections are 
organized as follows: (1) DL-based solutions for network 
intrusion detection, (2) DL-based solutions for DDoS detection, 
and (3) DL-based distributed solutions for cyber-attacks 
detection. Figure 10 provides the complete picture. 
1) Network intrusion detection systems (NIDS) 

In the last years, some concerns have raised in NIDSs. They 
have been motivated by the increasing requirement of human 
interaction and the decreasing levels of intrusion detection 

accuracy, just as ML techniques, which also have failed to 
detect complex attacks [143]. The emergence of the upcoming 
fifth-generation (5G) mobile technology, which increases 
transmission rates in wired networks, has demonstrated IDS 
ineffective to detect potential cyberattacks in their initial 
phases, because they fail to analyze all network packets. In the 
meantime, DL methods are gaining success for cyberattack 
detection. They are able to detect novel attacks by identifying 
patterns that are different from normal behavior. They have 
demonstrated improvements over traditional ML approaches 
and a strong potential for being used in modern NIDSs. This 
section reviews DL-based approaches that develop efficient and 
flexible NIDS.  

Initial works [144][145][109] propose DBNs for intrusion 
detection. Salama et al. [144] propose a hybrid solution that 
combines DBN and SVM for the intrusion detection scheme. 
The DBN is used as feature reduction method, and SVM as 
classifier. The intelligent IDSs consist of three main phases: 
pre-processing, DBN feature reduction and classification. Pre-
processing of the NSL-KDD dataset consists on mapping 
symbolic features to a numeric value and attack name 
assignment. Dimensionality reduction is achieved by DBN with 
back-propagation to reduce the data output size. It uses 2 RBM 
layers, reducing the first data from 41 to 13 features, and the 
second from 13 to 5. Finally, in the intrusion classification 
phase, the 5 output features from the DBN are forwarded to the 
SVM classifier. The SVM finds a decision boundary that 
maximizes the margin of separation between the classes. The 
solution, implemented using the Weka software [146], reduces 
the dataset size by 87%, and then classifies the reduced dataset. 
It provides a better classification than SVM and it also reduces 
the testing time (due to the reduction of the data size). This is 
especially important for real time applications. Subsequently, 
Gao et al. [145] propose a framework for network intrusion 
detection based on a greedy multilayer DBN, which performs 
efficient classification tasks. The unsupervised learning 
algorithm is used to pre-train and fine-tune the network, and to 
learn a similarity representation over the input data. The system 
is implemented using MATLAB 7.0, and it is evaluated, unlike 
[144] and [108], using the KDD CUP’99 dataset. The system 
performs well on intrusion recognition tasks, and the best result 
is obtained for a four-hidden-layer RBM with an ACC of 
93.49%. Similarly, Alom et al. [109] develop an IDS based on 
DBN for attack detection. They test the solution using the NSL-
KDD dataset, but normalized through a numerical encoding 
procedure. For the classification phase, the system achieves a 
97.5% ACC versus the 40% of the dataset training data. The 
authors compare the results with Salama’s [144], which achieve 
an ACC of 92% in 3.07 seconds. They conclude that their 
solution performs better, in terms of testing accuracy, and it 
improves the training time required by 5.5%, reducing it to 0.32 
seconds. 

In the same vein, other works also propose unsupervised 
feature learning for network-based anomaly detection, but 
using AEs. Yousefi-Azar et al. [22] differentiate from other AE 
works as: (1) they use a unique training phase and topology; and 
(2) the proposal is effective for two different types of 
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cyberattacks: network intrusion detection and malware 
detection (see Section V.B). The proposed model uses a 
minimum number of features compared to similar works, so it 
is more computationally efficient for real time protection. It 
actually results optimal for small devices, so it can be used in 
IoT. The authors test the model using the NSL-KDD dataset 
[119] and they use the Sklearn library, of Python 2.7.12, to 
implement the classifiers. They obtain an ACC of 83.34%. This 
line of work continues in Shone et al. [147] that propose a 
solution based on stacked NDAEs for unsupervised feature 
learning, and RF as a classification algorithm. They implement 
the model in Tensor Flow [148], and they use the KDD Cup ’99 
and NSL-KDD datasets for evaluation. They obtain better 
results than previous approaches in terms of accuracy, precision 
and recall. They compare the model against the mainstream 
DBN technique proposed by Gao et. al. [145], and their model 
offers up to a 5% of improvement in accuracy, while the 
training time is reduced up to 98.81%. Niyaz et al. [149] also 
uses an unsupervised scheme for network intrusion detection, 
but they chose sparse AEs due to its high performance and ease 
of implementation [150]. They use the sparse AE back-
propagation algorithm to find the optimal weight matrices, bias 
vectors, and sigmoid for the activation nodes in the hidden and 
output layers. To test the model, they use the NSL-KDD 
dataset, but preprocessed, converting nominal attributes into 
discrete attributes using 1-to-n encoding and eliminating the 
attribute num_outbound_cmds with a 0 value, achieving a total 
number of 121 attributes. In a second phase, they apply the new 
learned features representation on the training data for 
classification using a soft-max regression (SMR). The solution 
is implemented for three different types of classification: (1) 2-
class (normal and anomaly); (2) 5-class (normal and four 
different attack categories); (3) 23-class (normal and 22 
different attacks).  In the implementation phase, the authors 
apply a 10-fold cross-validation on the training data to evaluate 
the accuracy of the self-taught learning (STL) classification. 
They also compare it to the soft-max regression when applied 
to the dataset without feature learning. The evaluation results 
show that DL has better accuracy for 2-class with respect to 
SMR, but for 5-class and 23-class, it does not improve 
significantly. Tao et al. [151] also use DAE to improve the 
efficiency of big network traffic classification in network 
security situation awareness (NSSA). Authors propose a novel 
approach which combines the robustness of Fisher, a traditional 
feature extraction method, with unsupervised learning 
advantages of DAE to reduce data dimensions and computation 
complexity. To implement the system, they used Matlab 8.0.0 
and Weka 3.7.13; and the KDDCUP'99 dataset. The results 
show an improvement in the generalization ability of 
classification algorithms due to data dimensionality reduction. 
Lopez-Martin et al. [101] propose a network intrusion detection 
method based on CVAEs for an IoT network. This research 
work is relevant because the proposed method also performs 
feature reconstruction, recovering missing features from 

incomplete datasets. The authors call the proposed method 
Intrusion Detection CVAE (ID-CVAE). They use a deviation-
based approach, but with a discriminative framework for traffic 
samples and classification. Traffic samples are labeled with the 
intrusion that achieves less reconstruction error, instead of 
using a threshold for intrusion definition. Then, the intrusion 
labels are included inside the CVAE decoded layers. The 
method is tested using the NSL-KDD dataset, and it can recover 
missing categorical features with 3, 11 and 70 values, with an 
ACC of 99%, 92% and 71% respectively. 

Li et al. [110] address intrusion detection from a different 
point of view. Authors propose an accurate identification of 
malicious code to improve the efficiency of an IDS, based on 
DBN and AEs. A key point of the method is using AE for data 
dimensionality reduction (i.e., to extract the main features of the 
data). The AE consists of three steps: pre-training, unrolling, 
and fine-tuning. Then, the method uses DBN as the classifier to 
detect malicious code. The system is implemented using Matlab 
v7.11 and it is validated using the KDDCUP'99 dataset. Results 
demonstrate that the increase of the number of pre-training and 
fine-tuning iterations increases detection accuracy over a single 
DBN. This is because of the usage of AEs for data 
dimensionality reduction. 

Other DL models are also used for unsupervised learning in 
anomaly detection. Kwon et al. [7] propose an FCN based 
anomaly detection system. The authors implement the system 
using Python Tensorflow in the Google cloud platform. For 
evaluation, they use the NSL-KDD dataset pre-processed 
normalizing numerical values and encoding categorical values 
as numerical values. They train the network with different 
hyper-parameter configuration (units, hidden layers, epochs 
and learning rate), and the softmax layer produces the outputs. 
Authors obtain promising results with an F1 score over 90%. 
Kim et. al. [89] consider LSTM for implementing an IDS 
classifier. They chose LTSM to avoid vanishing and exploding 
gradient problems [90] of conventional RNNs. To test their 
solution, they use 10% of KDD Cup’99 for training and testing. 
The implementation considers softmax for the output layer and 
stochastic gradient descent (SGD) as the optimizer. The authors 
carry out two experiments. The first one, aims to find hyper-
parameter values to achieve the best performance of the IDS, 
while the second measures the performance of the system. 
Hyper-parameters are parameters for model initiation.They 
have to be carefully chosen as they have an impact on overall 
performance   (especially for the learning rate and hidden layer 
size) [152]. The results show that the detection rate and FAR 
have a growing trend as the learning rate is increased, having 
the best efficiency for a learning rate of 0.01. For smaller values 
of the learning rate, the system is trained too accurately, so the 
model detects intrusion instances, but it also considers normal 
instances as intrusions. The average detection rate is 98.8% and 
the average FAR 10%. The model detects DoS and normal 
instances, but U2R instances are never detected, probably 
because the model is trained with only 30 U2R instances.
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Tang et al. [153] propose a flow-based anomaly detection 

system using DNN, in a Software-Defined Networking (SDN) 
context. The DNN consists of an input layer (with dimension 
six), three hidden layers (with twelve, six and three neurons 
respectively) and an output layer (with dimension two). The 
system is trained and evaluated using the NSL-KDD dataset. 
More specifically, they use a subset of six features (duration, 
protocol_type, src_bytes, dst_bytes, count and srv_count). As 
in [89] they found an optimal hyper-parameter for the DNN. In 
this work, the optimal hyper-parameter is the learning rate, 
which is set in the range 0.1 to 0.0001. In the experiments, 
accuracy increases (and loss decreases) as long as the learning 
rate decreases in the training phase. Consequently, the best 
results use a learning rate of 0.0001 with a loss of 7.4% and an 
ACC of 91.7%. However, the testing phase results are much 
worse, with a loss of 20.3% and an ACC of 74.6%. Other works, 
as Jadidi et al. [154] consider MLP and Gravitational Search 
Algorithm (GSA) for flow-based anomaly detection for 
unknown attacks. They use an MLP with one hidden layer for 
anomaly detection and Winter’s dataset [155] for training and 
testing the system. Interconnection weights of the MLP are 
optimized using GSA. The authors implement the GSA-based 
flow anomaly detection system (GFADS) using MATLAB 
version R2012a (7.14.0.739). They achieve a 99.43% of ACC 
in traffic classification. Authors compare their system to 
gradient descent algorithms and PSO algorithms. They 
conclude that GFADS is effective in the detection of attacks 
related to the packet header. 

Other works also address cyberattacks in the IEEE 802.11 
wireless network. Thing et. al. [98] propose the use of SAE for 
feature engineering and softmax regression in the classification 
task. They chose softmax because it supports multi-class 

classification. They test the system using a custom dataset 
[156], which is collected from a lab set up to emulate a typical 
SOHO infrastructure, with various smart devices. Different 
attacks are carried out in the lab to collect both attack and 
legitimate WI-FI signal’s measurements. The attacks are 
divided into three different types: flooding, injection, and 
impersonation. The authors first normalized the data in the 
dataset to standardize the feature range, and facilitate the DL 
process. They propose to implement the system with two 
frameworks composed of two and three hidden layers 
respectively. Hidden layers consist of 256, 128 and 64 neurons. 
In the experiments, the system achieves an overall accuracy of 
98.66%. Thus, the authors conclude that their solution correctly 
performs 4-class attack classification, taking in consideration 
novel attacks. Finally, Feng et al. [157] also propose a solution 
for anomaly detection in wireless networks but using a deep-
structure, AE NN, for spectrum anomalies detection and 
frequency diagram, which acts as the feature of the learning 
model. Their approach relies on the reconstruct error to 
determine if the signal is an anomaly or not. They implement a 
two-layered AE NN. The network is trained with data collected 
by an RTL-SDR device from a real-time electromagnetic 
environment, and Additive White Gaussian Noise (AWGN) is 
selected as the anomaly. The model outperforms about 2% a 
conventional one-layer AE network. 

DL-based solutions also are proposed in the upcoming 5G 
mobile technology, since IDSs fail in the detection of 
cyberattacks.  Deep packet inspection tools cannot work 
properly on wired networks over 1 Gbps, for example, Snort 
[158] discards packets from 1.5 Gbps onwards [159]. 
Fernandez Maimó et al. [117] propose a two-level DL-based 
architecture to identify cyber threats in 5G mobile networks. 

 
Fig. 10. Overview of DL methods used in the infrastructure area. 
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The proposed DL model consists of two levels: the first one 
detects anomaly traffic conditions, so-called symptoms, by 
means of a supervised (DBN) or semi-supervised (SAE) 
learning methods. The second module uses all the symptoms 
generated as an input to an LSTM trained in a supervised way 
to recognize temporal patterns of cyberattacks. The novelty of 
this framework is that it supports traffic fluctuation. The DL-
based architecture has been implemented using TensorFlow 
[148], Theano [160] and PyTorch [161]. For evaluation, they 
use the CTU dataset [162] which consists of unknown traffic 
and real botnet attacks. The proposed architecture achieved an 
F1 score of 0.89. 
2) DDoS attacks 

DDoS attacks have increased dramatically in the last years 
[163]. They are one of the major cyberattacks in IoT networks 
[164]. The main objective of DDoS attacks is to make resources 
unavailable to intended users. DDoS compromise multiple 
systems across Internet with infected agents or zombies and 
then form networks of botnets. One of the most important 
DDoS attacks hits Telegram in June 2019. Different DL 
techniques have been used for detecting and mitigating DDoS 
attacks in different network environments. Initial DL-based 
systems adopt supervised learning. Saied et al. [74] propose a 
solution based on a supervised ANN (feed-forward with error 
backpropagation and sigmoid activation function [165]) to 
detect known and unknown DDoS attacks. The algorithm is 
trained with a customized dataset created from real-life cases 
and DDoS attacking patterns produced by DDoS tools. They 
launch known and unknown DDoS attacks, each with 20 to 120 
zombies, totaling of 1160 individual attacks. Data is structured 
to accommodate attack patterns in a qualified format accepted 
by the Java NN Simulator (JNNS) [166]. 80% of the dataset is 
used for training, and the remaining 20% to validate the 
learning process. Before training the input, the values are 
normalized to maximize their performance in sensitive 
applications. They use three topological ANN structures 
(ICMO, TCP, and UDP) with three layers each (input, hidden 
and output). The experiments consider QuickProp, Back-
Propagation, Backprop Weight Decay, Backprop through 
Time, and Sigmoid, Elliott, Softmax, BAM as an activation 
function. Sigmoid activation function and back-propagation 
learning achieve the highest detection accuracy (98%). The 
model increases accuracy as up-to-date patterns are fed into the 
system. The system learns from scenarios and detects zero-day 
patterns which are similar to known DDoS attacks.  Other 
works that use supervised learning but use the MLP model are 
[72] and [73]. Siaterlis and Maglaris [72] explore the DDoS 
attack detection capability of MLP. They propose a solution 
that uses different metrics to detect UDP flooding attacks at the 
edge and train the classifiers through examples. The inputs of 
the MLP are several types of passive measurements taken from 
their university network. They use the TFN2K tool to launch 
UDP floods with customizable bandwidth and packet rate. By 
doing so, they can train their network and evaluate it in terms 
of “false positive” and “true positives”. Network edges are 
protected from incoming attacks and the rest of the network 
from outgoing attacks. In the experiments, the system achieves 

a TPR above 74% and an FPR lower than 3%. Singh and De 
[73] continue this work but combine MLP with a Genetic 
Algorithm (MLP-GA). The solution uses incoming traffic, to 
detect application-layer DDoS attacks. They perform a 
behavior analysis of attackers and normal users. Then, the 
classification model inputs include: HTTP count, concentration 
of the IP addresses, constant mapping, and frame length. The 
model is tested with the EPA-HTTP dataset [127], CAIDA 
2007 dataset [128] and an experimental dataset produced using 
the Slowloris attack [167]. The method achieves an ACC of 
98.04% in detecting DDoS attacks with an FPR of 2.21%. The 
authors compare the proposed model with traditional classifiers 
demonstrating that they obtain better results. 

Roopak et al. [83] propose a DL-based IDS to detect DDoS 
attacks. They implement four different classification DL 
models: MLP, 1d-CNN, LSTM, and CNN+LSTM. They use 
the CICIDS [122] dataset. They balance the DDoS attack 
dataset by duplicating the data, which improves the training of 
DL methods. The authors compare DL models to SVM, Bayes, 
and RF ML algorithms. The DL is implemented using Keras on 
Tensorflow, while the ML uses MATLAB 2017a. The 
CNN+LSTM model achieves the highest ACC (97.16%) while 
MLP achieves the lowest (86.34%). The accuracy of the ML 
models is in between CNN+LSTM and MLP. Therefore, the 
authors conclude that the best solution is the hybrid 
CNN+LSTM. 

Other works use semi-supervised learning. Yadav et al. [168] 
propose a solution for detecting DDoS attacks in the application 
layer through traffic classification using SAEs. They construct 
their dataset from features extracted from their web server log 
(from request flooding, session flooding, and asymmetric 
attack). The logs are pre-processed and the features are 
transformed to a numeric form. This dataset is then split into 
two: one for training and another one for testing. The solution 
first learns features through the SAE, then it defines them as 
features of the DDoS dataset that are fed into the system. At the 
end, they are classified with a logistic regression classifier. The 
solution is implemented in Java, using WEKA (Waikato 
Environment for Knowledge Analysis) and Matlab. The 
experimental results demonstrate that the proposed method 
learns features from the SAE, which are beneficial for 
classifications. It improves the DR to 98.99% with an average 
FPR of 1.27%. 
3) Distributed attack detection solutions 

A novel solution for cyberattack detection in emerging Fog 
computing ecosystems is based on distributed DL. Fog 
computing brings Cloud Computing closer to the physical 
world of smart things and it requires new cybersecurity models 
to be resilient, adaptive, and closer to the edge. Edge nodes 
already provide computing, storage, communication, and 
control services. In the same way, they will host security 
services.  Attacks in fog-to-things systems range from probing 
for gaining access to the local system to DDoS attacks. 
However, R2L and U2R are the most common attacks since 
most of the IoT devices are remotely accessed for management 
and updates. IoT devices are targeted through backdoors, which 
allow unauthorized remote entities to bypass legitimately the 
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authentication. Similarly, devices are targeted through rootkits, 
which exploit programming flaws or system design, and 
therefore take advantage of privilege escalation. In this context, 
Diro et al. [169] propose the first distributed attack detection 
scheme in the social IoT based on multi-layer deep networks. 
The architecture consists of coordinating master nodes and fog 
nodes. The fog nodes are responsible for hosting attack 
detection systems and for training models, while the master 
nodes are responsible for collaborative parameter sharing and 
optimization. This speeds up data training as it is performed 
near the source. Plus, it can share knowledge (i.e. updated 
parameters) from the neighbors. The authors implement the 
solution using Keras on the Theano package [160] for DL, and 
Apache Spark [170] for distributed and parallel processing. The 
dataset used for testing the solution is NSL-KDD. The system 
is trained without labels using SAEs to extract hidden features, 
which are then applied to the test data. The model employs 150, 
120 and 50 neurons for the first, second and third layer 
respectively. The system achieves an overall ACC of 99.2% 
when it is trained with 25 nodes working in parallel and 95.22% 
when it is trained with 5 nodes. DR was 99.27% which 
improves the shallow model by 1.77 %. ROC curves indicate 
that true positive values of the model are over 99%. FAR for 
the DL model is 0.85%, while for the shallow model is 6.57%. 
The authors conclude that DL models are better than ML 
models, and they emphasize the scalability and effectiveness of 
distributed parallel learning in fog nodes.  

Luo et al. [171] also propose a distributed solution for 
anomaly detection, based on AEs for wireless sensor networks 
(WSN). The solution overcomes the high computation resource 
consumption of DL in WSN. They build an AE NN of three 
layers, which includes one hidden layer of neurons. The authors 
design a two-part algorithm which resides on sensors detecting 

anomalies in a fully-distributed manner. While the training 
model, which represents a high computation learning task, is 
handled by the cloud. They create their dataset by collecting 
data over 4 consecutive months in a real WSN indoor testbed, 
which consists of 8 sensor nodes that monitor temperature and 
relative humidity with a frequency of 2 minutes. They complete 
the dataset generating synthetic anomalies using Spike and 
Burst models [172]. They build the AE NN with 720 nodes and 
use k-fold cross-validation to determine the number of hidden 
neurons (504). They evaluate the results through the AUC and 
ROC curves. They perform two types of experiments. First, 
varying the anomaly magnitude (Δ) of spikes and bursts 
following a normal distribution. After these experiments, they 
obtain that the AUC is usually bigger than 0.8. Second, they 
vary the anomaly frequency. In this case, the more anomalies 
occurred, the more difficult is for the system to detect them. 
Finally, they consider an adaptive detector since the 
environment is constantly evolving. They configure the AE 
with two different setups: random and prioritized. They 
evaluate the TPR and FPR. TPR is better (18%) for a random 
scheme because the majority of the training data is historical, 
while the prioritized scheme has a much lower FPR, up to 60%, 
because it updates the weights and biases more responsively. 
Thus, they conclude that the anomaly detection mechanism 
achieves higher detection accuracy and lower FAR. 
4) Summary table – Infrastructure 

Table III summarizes the DL-based cybersecurity solutions 
analyzed in the infrastructure area. For all the works, we detail 
the attack addressed and in which scenario; the proposed DL 
model and learning paradigm; the dataset used in the 
implementation; and its performance. We report the accuracy, 
except for three works that use the F1 score, TPR and FPR to 
validate the proposed solution.

TABLE III 
SUMMARY OF DL WORKS ON INFRASTRUCTURE 

Reference Attack Scenario Learning paradigm DL Model  Dataset Performance 

Salama et al. [144] Intrusion detection IoT Unsupervised DBN and SVM  NSL-KDD ACC=92% 

Gao et al. [145] Intrusion detection Wireless network Unsupervised DBN KDDCup’99 ACC=93.5% 

Alom et al. [109] Intrusion detection IoT 
Wireless network 

Unsupervised RBM-based DBN  NSL-KDD ACC=97.5% 

Yousefi-Azar et al. 
[22] 

Network-based anomaly 
detection 

IoT Semi-supervised AE KDD Cup ’99  
NSL-KDD 

ACC=83.3% 

Shone et al. [147] Network Intrusion 
detection 

IoT Unsupervised Stacked NDAE  KDD Cup ’99  
NSL-KDD 

ACC=98% 

Niyaz et al. [149] Intrusion detection Computer Networks Semi-supervised SAE and SMR NSL-KDD ACC=96% 

Tao et al. [151] Network security situation 
awareness 

Network traffic data 
fusion 

Unsupervised PCA, LDA, and 
Fisher combined 
with DAE 

KDD Cup’99 ACC=91% 

Lopez-Martin et al. 
[101] 

Intrusive, malicious 
activities or policy 
violations  

IoT networks Semi-supervised CVAE NSL-KDD ACC=99.9% 
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B. Software 
The continuous emergence of new malware poses a 

significant threat to computing systems where traditional 
antimalware tools are ineffective. DL provides cybersecurity 
experts an opportunity to develop generalizable models to 
detect and classify existent and new malware. Malware analysis 
techniques can be classified as static or dynamic. Static analysis 
methods extract and analyze features from applications (i.e. 
from the binary source code or other associated files). Examples 
of static features are: used permissions, systems commands, and 
API calls. However, the weak point of these methods is that 
some of them are not resistant to obfuscation and they cannot 
deal with self-mutating malware. Static analysis is only useful 
in memory-limited devices. Dynamic analysis methods 
overcome these issues, using dynamic features, as API calls or 

opcodes, which make them more reliable. Consequently, DL-
based cybersecurity solutions in this area fall in two main 
groups: those who use API calls and those who consider 
opcodes. Figure 11 provides the complete list of DL-based 
malware solutions. 
1) API call solutions 

System calls are one of the most important traceable events 
to determine malware behavior, since malware needs to use 
services from the operating system (OS) to execute malicious 
code. Any significant action requires an interaction with the OS 
through its APIs (e.g. opening a network connection, writing to 
the registry or running a thread). Therefore, tracking the system 
call sequence is one of the most used methods to characterize 
malware behavior. By inspecting these traces, different 
malware families can be identified. 

Different approaches based on supervised or semi-supervised 

 

Reference Attack Scenario Learning paradigm DL Model  Dataset Performance 

Li et al. [110] Intrusion detection 
(malicious code detection) 

Wireless network Semi-supervised RBM 
AE 

KDD Cup’99 ACC=92.1% 

Kwon et al. [7] Anomaly-based network 
intrusion detection 

IoT Unsupervised FCN NSL-KDD ACC=90% 

Kim et al. [89] Intrusion detection Network systems Unsupervised LSTM to RNN KDDCup’99  ACC=98.8% 

Tang et al. [153] Intrusion detection Software Defined 
Networking 

Unsupervised DNN  NSL-KDD  ACC=91.7% 

Jadidi et al. [154] Intrusion detection Software Defined 
Networking 

Semi-supervised MLP Winter’s data 
Sets 

ACC=99.4% 

Thing et al.  [98] Anomaly detection and 
attack classification 
(Flooding, injection, 
impersonalisation) 

Wireless devices 
connectivity in 
smart homes 

Semi-supervised Stacked AE AWID-CLS-
R-Trn 
AWID-CLS-
R-Tst 

ACC=98,6% 

Feng et al. [157] Spectrum anomaly 
detection 

Wireless 
communication 
network 

Semi-supervised  Deep-structure 
AE 

Custom  ACC=88.5% 

Fernandez Maimó 
et al. [117] 

Anomaly detection 5G 1)Semi-supervised 
2) Supervised 

1) DBN or SAE 
2) LSTM 

CTU F1 score=0.89 

Saied et al. [74] DDoS attack detection 
(TCP, UDP and ICMP 
attacks) 

Internet Supervised ANN Custom 
 

ACC=98% 

Siaterlis and 
Maglaris [72] 

DDoS attack detection 
(UDP) 

Internet Supervised MLP Custom TPR>74% 
FPR<3% 

Singh and De [73] DDoS attack detection 
(application layer) 

Internet Supervised MLP-GA EPA-HTTP 
CAIDA  
Custom 

ACC=98% 

Roopak et al. [83] DDoS attack detection IoT Semi-supervised 1d-CNN 
MLP 
LSTM 
CNN+LSTM 

CICIDS2017 ACC=97.1% 

Yadav et al. [168] DDoS attack detection IoT Semi-supervised Stacked AE Custom ACC=99.5% 

Diro et al. [169] Distributed attack detection Social IoT Supervised Stacked AE NSL-KDD ACC=99.2% 

Luo et al. [171] Anomaly detection Wireless sensor 
networks 

Unsupervised AE  Custom TPR>80% 
FPR<38% 
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DL models are used to detect malware attacks. Initial works 
explore RNN models to improve malware detection. Pascanu et 
al. [25] propose a semi-supervised solution that learns the 
language of malware through the instructions executed and 
extracting time-domain features to detect malicious files. More 
specifically, the high-level events that they consider are 
canonicalized representations of the API calls to the OS or the 
C run-time library. They consider RNNs and Echo state 
networks (ESN) to extract the features trained in an 
unsupervised manner. They use MLP and logistic regression for 
classification. They implement the solution using Theano [160]. 
Their dataset consists of internal Microsoft data. This data 
includes event streams from 250,000 malware files and 250,000 
benign files. However, the dataset is not publicly available. The 
dataset is randomly split into 297,500 training, 52,500 
validation, and 150,000 test samples. They obtain a TPR of 
71.7% and an FPR of 0.1%, which outperforms standard 
trigram of event models by 98.3%. 

Recent semi-supervised based solutions consider SAEs. 
Hardy et al. [173] extract API calls from the Portable 
Executable (PE) files. The SAEs model has two phases: 
unsupervised pre-training and supervised backpropagation. Ye 
et al. [174] follow up this work.They perform unsupervised 
feature learning by means of a greedy layerwise training 
operation. They also add supervised parameter fine tuning. 
They test the proposed architecture with a dataset from Comodo 
Cloud Security Center [175]. The dataset consists of 50,000 file 
samples (22,500 malware, 22,500 benign and 5,000 unknown). 
The proposal achieves an ACC of 95.64%. 

Finally, Athiwaratkun et al. [26] improve Pascanu’s solution 
using LSTM and Gated Recurrent Unit (GRU) instead of RNN 
and ESN. They also use a single-stage malware classifier based 
on a character-level CNN because it improves classification 
performance. The dataset is composed of 75,000 Windows PE 
format files analyzed by the Microsoft anti-malware engine. 
This dataset is split in 50,000 files for training, 10,000 files for 
validation and 15,000 files for testing. The solution is 
implemented using Keras with the Theano backend DL engine. 
The LSTM language model with temporal max pooling and 
logistic regression classifier shows the best results. It improves 
TPR by 31.3% compared to Pascanus’ solution. Agrawal et al. 
[176] extend Athiwaratkun’s [26] work by considering relevant 
parameters, which are input to the system API calls. These 
parameters provide important malicious intent information. In 
particular, the model includes the parameter data along with 
event sequences. To build up the dataset, they collect the system 
API calls and inputs from 75,000 files (benign and malware). 
They randomly split them into 50,000 for training, 10,000 for 
validation, and 15,000 for testing. The solution also is 
implemented using Keras with the Tensorflow backend. The 
evaluation improves the FPR over Athiwaratkun’ work [26]. 

Another research line uses supervised models for malware 
identification based on API call sequences. Kolosnjaji et al. 
[177] combine one NN convolutional and several recurrent 
layers. The convolutional layer is used for feature extraction. It 
combines convolutional n-grams and full sequential modelling. 
They implement the solution using Tensorflow [148] and 

Theano [160]. Malware samples are collected using malware 
zoo [178] from three primary sources: Virus Share [133], 
Maltrieve [134] and proprietary collections. They obtain the 
labels for training the network from VirusTotal [135]. The 
authors report an average precision of 85.6% and an average 
recall of 89.4%. Tobiyama et al. [179] also propose a solution 
to detect malware combining RNNs (for feature extraction) and 
CNNs (for feature classification). This solution first records 
API call sequences to construct the feature extractor. They use 
LSTM as the learning language model. It extracts process 
behavior features from the RNN; and then, the CNN classifies 
feature images as malware or benign. The CNN consists of two 
convolutional layers and two pooling layers. They train and 
validate the proposed solution using 81 malware and 69 benign 
process log files. Although the dataset is really small, they 
obtain an AUC of 0.96. 

API call based solutions are also used for malware 
classification (i.e. assigning a given sample its malware class). 
Classifying malware is important because it provides 
information about the attack and its motivation. Nowadays, it is 
especially important because of the sharp increase of malware 
families. Thus, automated malware classification is now the 
best large-scale defense for detecting malware. The first 
proposals on malware classifiers use sparse binary features 
[180][181]. The number of features is in the order of tens or 
hundreds of millions. Feature selection techniques reduce the 
number of features to enable the training of algorithms such as 
logistic regression. However, the number of features is still too 
large for complex algorithms. Three different learning 
paradigms are used for malware classification: supervised, 
unsupervised and semi-supervised. Dahl et al. [27] in 2013 
propose the first work for malware classification by means of 
dynamic analysis using supervised learning. They develop a 
large-scale malware classification system that uses random 
projections to reduce, by a factor of 45, the dimensionality of 
the input space. Afterwards, they train a NN on the high 
dimensional input data. This enables the use of more complex 
supervised classification algorithms. This work considers 
sparse binary features based on file strings, API tri-grams, and 
API calls together with input values. They evaluate their 
proposal with 2.6 million labelled samples of 134 different 
malware families. They consider different DNN architectures 
and they also consider RBMs for the hidden layers. They obtain 
the best results for a one-hidden-layer DNN without RBMs 
(FPR=0.35%). Subsequent works use AEs for malware 
classification. Wang et al. [28] apply, for first time, multi-task 
learning to malware learning. They develop an unsupervised 
malware classification model based on API call sequences, 
which uses an RNN-AE. The RNN-AE learns in an 
unsupervised manner low dimensional representations of 
malware API call sequences. Then, it trains two decoders: one 
for malware classification and another for file access pattern 
(FAP) generation. The model is based on the multitask seq2seq 
[182] model and it is evaluated using the public malware API 
call sequence dataset [183]. The authors use a first dataset with 
7430 samples for coarse-grained evaluation, and a second one 
with 4932 samples for fine-grained evaluation. These two data 
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sets are split randomly for training (75%), validation (5%) and 
testing (20%). The model achieves a 99.2% of ACC. Yousefi-
Azar et al. [22] provide a solution based on AEs for malware 
classification. The semi-supervised solution uses AEs to learn 
sufficient notion of semantic similarity between input features. 
The AE, trained in an unsupervised manner, has as input a 
feature vector generated from relevant information of the API 
calls. The output of the unsupervised AE is a code vector with 
semantic similarity between feature vectors. Finally, the 
resultant similarity is embedded in an abstract latent 
representation. The solution is evaluated using the Microsoft 
Malware Classification Challenge (BIG 2015) dataset available 
at Kaggle [137]. The SVM classifier shows the highest ACC 
(96.3%). 
2) Opcode based solutions 

Several malware detection and classification DL-based 
solutions use operation codes (opcodes), besides API calls, to 
describe program behavior. Ding et al. [184] propose a solution 
based on opcodes for detecting malware that uses DBNs. The 
unsupervised solution consists of three main modules. The PE 
parser that generates the opcode sequences for each executable 
using the n-gram model (i.e. each PE file is transformed to a n-
gram vector). Then, the feature extractor finds useful n-grams 
providing different measures (e.g document frequency, 
information gain) to evaluate their classification ability. Finally, 
malware detection modules use a DBN to perform classification 
tasks. The dataset consists of PE format files. Window system 
files are the benign ones. Netlux [138] and Offensive 
Computing [139] files are the malicious ones (i.e. viruses, 
Trojans, worms and backdoor attacks). The proposal 
outperforms other learning techniques such as SVM, KNN and 
decision tree. It achieves an ACC of 96.7%. The authors also 
use the DBN as an AE. Thus, they remove the classification 
layer and use the top hidden layer as the output layer. This 
improves slightly the classification performance. 

H. HaddadPajouh et al. [185] propose a semi-supervised 
solution that uses RNNs for detecting malware in ARM-based 
IoT application opcodes. The solution has three stages. In the 
first stage, it extracts the opcodes from the dataset. In the second 
stage, it obtains the feature vector from the opcodes. The third 
stage performs training, evaluation, and tuning for optimal 
results. The dataset comprises 281 malware samples collected 
from 32-bit ARM-based malware in the Virus Total Threat 
Intelligence platform [186]. The dataset has 270 benign samples 
collected of Raspberry Pi II applications collected from the 
Linux Debian repositories [187]. The solution is implemented 
using Google Tensor Flow [148] and Scikit-learn [188]. The 
model is evaluated with different LSTM configurations and the 
the 2-layer configuration achieves the highest ACC (98.18%). 
3) Android Malware detection and classification 

Mobile applications have become the most common way to 
access personalized computing services (e.g. email, banking, 
shopping, automated home control). They have become 
attractive targets for hackers, which take advantage of the 
update mechanisms to infect mobile apps. Android devices are 
the target in 99% of all mobile device malware [189]. The 
attackers produce malicious applications, usually modifying 

existing applications. Malware can be organized in families, 
where each application of the same family has a similar 
malicious behavior. Malicious applications gather user private 
data (e.g. passwords, banking credentials, contacts list). 
GDATA reported over 2 million of new malware Android 
applications in the first half of 2018 and 1.2 million in the 
second quarter [190]. Consequently, a significant part of 
malware detection and classification works in the literature 
focus on Android OS. The first works in this area use signature-
based methods [191][192] to characterize malware using 
specific patterns in the bytecode and API calls. But, they are 
easily bypassed by byte-code transformation attacks [193]. The 
Fraunhofer Institute for Applied and Integrated Security study 
on Android anti-malware [194] concludes that most 
antimalware software is easily bypassed. An example is the 
repackaging, where an attacker decompiles a trusted application 
and obtains the source code. Then, the attacker adds the 
malicious payload and recompiles the application. Finally, the 
attacker makes the malicious application available on a 
different market. Signature malware detection techniques [195] 
are in many cases ineffective and the process of obtaining 
malware is challenging and time consuming. The malware 
identification period is called zero-day window and it is the 
moment in which malware causes the worst damage. 
Furthermore, Android applications can only access its own disk 
space. Thus, any antimalware software cannot monitor the full 
file system. Consequently, it is easy for applications to 
download and run updates without strict controls. ML methods 
can extract malware features through both static [196] and 
dynamic analysis [197]. This enables ML solutions to 
discriminate between benign apps and malware. Nowadays, DL 
methods are used for the definition of generalizable models to 
detect and classify malware efficiently. 

There are a large number of solutions for detecting malware 
in Android devices. Initial works, as DroidAPIMiner [198], 
APKAuditor [199], and SherlockDroid [200] focus on the 
classification of Android malware using single-level features. 
However, single-level features do not reflect the overall 
characteristics of Android malware. To overcome these 
limitations, Hubner et al. [201] propose Drebin to conduct 
Android malware classification based on several types of 
features. But, the huge number of features of the classification 
process increases significantly the response time and resource 
usage. To overcome these limitations, Su et al. [202] develop 
DroidDeep that considers static information (e.g. permissions, 
API calls, component deployment) to characterize the 
behavioral pattern of Android apps and extract multi-level 
features (almost 30,000). The solution is based on the DBN 
model, which is fed with the extracted features for 
classification. They choose DBN because it is a greedy and fast 
algorithm which learns a reduced set of features. Finally, a 
detector based on the SVM algorithm feeds from the learned 
features. They perform experiments with 3,986 benign apps 
(from Google Play Store) and 3,986 malware (from Drebin 
[136], Android Malware Genome Project and the Contagio 
Community [130]). They obtain 99.4% of malware detection, 
outperforming the other proposals. DroidDeep also obtains a 
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better runtime efficiency, so it can be adopted by real-world 
Android devices. 

Yuan et al. [203] also use semi-supervised learning. In their 
case, the use an RBM model. They use static and dynamic 
analysis to extract relevant features (required permission, 
sensitive API and dynamic behavior) from each app. They 
achieve an ACC of 96%. Their dataset consists of 500 samples: 
250 malware samples from contagio [130] and 250 top apps in 
the Google Play Store. They increase ACC up to 19% when 
compared to traditional ML tools (C4.5, SVM, Naïve Bayes, 
Logic Regression, Multi-layer perceptron). In their follow up 
work on malware characterization [112], they extract 192 
features from both, static and dynamic analysis, but using a 
DBN-based DL model similar to Su et al. [202]. They design 
and implement the DroidDetector. They evaluate it with 20,000 
benign applications crawled from the Google Play Store and 
1760 malware apps (500 collected from Contagio Community 
and 1260 from the Genome Project). The results further 
improve detection ACC by 2%. Zhu et al. [204] also choose 
DBN as the DL model to design DeepFlow. Their solution 
detects malware in Android applications directly from the data 
flows in these applications. They test the solution using 3,000 
benign apps from the Google Play Store and 8,000 malicious 
apps from the Android Malware Genome Project and 
VirusShare. DeepFlow first extracts all the sensitive data flows 
using FlowDroid static analysis tool [205]  and then, it 
categorizes the extracted flows using SUSI technique [206] to 
obtain the features. The extracted flows are the input to the 
DBN model for classification. This model is trained on two 
crawler modules, one for malware and the other one for benign-
ware. DeepFlow has a high accuracy in detecting novel 
malware with an F1 score of 95.05%. 

Hou et al. [207] also use semi-supervised learning, but based 
on SAEs. They propose a solution to improve the weakness of 
signature-based methods, which employ repackaging and 
obfuscation techniques to bypass them. This work proposes a 
novel dynamic analysis method, so-called Component 
Traversal, which can automatically execute code routines for 
each Android app. Based on the Linux system kernel calls, they 
construct weighted directed graphs. Finally, they apply SAEs 
on the graph-based features for detecting newly unknown 
Android malware. To evaluate the performance of their solution 
they use a real sample collection from Comodo Cloud Security 
Center. The SAE model is tested for different number of hidden 
layers and different number of neurons in each layer. The 
design with 3 hidden layers and 200 neurons per layer achieves 
the best ACC results (93.68%). They compare their solution 
with typical shallow learning methods (SVN, ANN, NB, DT). 
Detection performance improves, at least, by 5.44%.  

Supervised methods are an alternative for Android malware 
detection and classification. Martinelli et al. [84] use it for 
malware classification. They characterize malware applications 
behavior as trusted or malware. They use sequences of system 
calls to capture the app behavior and they are generic enough to 
be robust to camouflage techniques. They use CNN for NLP 
classification tasks. The CNN network learns for each input 
(syscall sequence) a set of confidence scores encoded as vectors 

with a length of two (to match the predefined classes: trusted 
and malicious). Then, the network assigns a positive or negative 
label according to the highest confidence score to the input 
using softmax. They implement and test the model in Tensor 
Flow. For evaluation, they build a dataset of traces collected 
from 7,100 real-world Android applications, 3,536 legitimate, 
from the GooglePlay, and 3,564 malware apps of several 
different malware families from the Drebin repository. 20% of 
the dataset is used for training the model and 80% for testing 
purposes. 105 different syscalls are analyzed. The ACC of the 
model ranges between 0.85 and 0.95 for the training test, and 
between 0.75 and 0.8 for the test. Karbab et al. [140] continue 
this work  developing MalDozer, an Android malware detector 
based on CNN. Maldozer performs, additionally, malware 
family classification. The authors develop the NN using 
Tensorflow, and they test it using three different datasets for the 
detection task: Malgenom with 37,627 benign and 1,258 
malware apps, Drebin with 37,627 benign and 5,555 malware 
apps and Maldozer with 37,627 benign and 20,089 malware 
apps. The results demonstrate the correct functionality of 
MalDozer for detection and attribution to a malware family 
with an F1-Score between 96% and 99% and FPR between 
0.06% and 2%. McLaughlin et al. [208] also use a CNN to 
design an android malware detection system. But in this work, 
the network automatically learns the indicative features of 
malware from the raw opcode sequence from disassembled 
programs. The training pipeline of the system is simpler than 
previous n-gram based solutions, since the network is trained 
end-to-end to learn appropriate features and at the same time it 
performs the classification. The proposal is evaluated with three 
different datasets. The first one, from Android Malware 
Genome project with 863 benign and 1,260 malware apps. The 
second one, from McAfee Labs, with 3,627 benign and 2,475 
malware apps. And the third one, also from McAfee Labs, with 
9,268 benign and 9,902 malware apps. All the datasets are 
divided into 90% for training and validation, and 10% for 
testing. The architecture has one single convolutional layer for 
all the experiments performed. The solution is developed using 
Torch [209]. In the training phase, the network parameters are 
optimized by RMSProp [210]. Before training, the network is 
efficiently executed on a GPU to scan a large number of files. 
ACC ranges between 0.87 and 0.98 for the three different 
datasets. This solution is also computationally efficient since it 
classifies 3,000 files per second approximately. Lee et al. [211] 
propose SeqDroid to detect malicious Android applications. 
They focus on obfuscated malware using stacked RNNs and 
CNNs. They improve learning performance by combining 
feature vectors of Android’s metadata (e.g. package, developer 
names and capability information). To validate the solution, 
two million APK samples are collected from VirusTotal [135]. 
20% of them are selected for validation. They compare the 
RNN-CNN model with ngram-based models. It improves 
classification performance by 16%. When compared to RNN 
models, it reduces training time by 50% maintaining the same 
classification performance. Finally, Kim et al. [212] also 
consider a supervised approach. They develop a framework for 
Android malware detection based on a multimodal DL method 
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that uses various kinds of features. The proposed framework is 
configurable. It can add new type of features and supports 
dynamic features. It supports seven types of features: string, 
method opcode, method API, shared library function opcode, 
permission, component, and environmental. The authors 
evaluate the performance of the framework with 41,260 
samples (20,000 malware samples from VirusShare, 1,260 from 
the Malgenome project and 20,000 benign samples from 

Google Play). The multimodal NN is implemented using the 
Keras library [160], clustering uses Scikit-learn [188] and ML 
algorithms use Tensorflow [148]. They test the solution for 
different combinations of features (between one and seven). 
The authors observe that accuracy increases each time a new 
feature is added to the model. ACC moves from 89% when only 
one feature is considered to 98% when all features are factored 
in. 

4) Botnets 
Botnets represent one of the most dangerous kind of malware 

because, unlike common malware, they are not managed by 
predictable algorithms. Botnets are designed to infect different 
devices and to remain, as long as possible, active and 
undetectable [213]. They have a more complex pattern, because 
they are controlled by humans via command and control (C&C) 
servers or peer-to-peer (P2P) networks. Plus, their design 
differs from one another. Initial works in this area [214] identify 
two common features for botnets: (1) the commands used by 
the botmaster to communicate to bots, and (2) the way that bots 
send stolen data to the botmaster. The first works use rule-based 
behavioral analysis to detect the bots. Nevertheless, these 
models are ineffective because malicious behaviors often take 
place over long time scales. More recent works start to analyze 
network traffic for botnet detection. They generalize common 
patterns followed by botnets during their life cycle to detect 
unseen botnet traffic. Oulehla et al. [214] propose the use of 

NNs to obtain features from botnet behaviors. Torres et al. [29] 
propose the usage of LSTM to detect botnets. They analyze two 
different strategies, undersampling and oversampling for 
imbalanced traffic, because the FAR value increases 
considerably if no sampling technique is used. As both 
techniques improve detection, undersampling is preferred 
because it is more computationally efficient. The LSTM 
network is trained using stratified 10-fold cross validation. The 
solution is evaluated with two datasets resultant from network 
traffic captures in the CVUT University [215]. Using only TCP 
data, it achieves a TPR of 96.8% and an FPR of 1.11%. In the 
same vein, McDermott et al. [216] uses a Bidirectional LSTM 
RNN (BLSTM-RNN) model in conjunction with word 
embedding for botnet detection in IoT networks. This work 
performs detection at the packet level and it uses word 
embedding for text recognition and conversion, which the 
authors have proven useful for predicting attack vectors. They 
create a customized dataset of Mirai botnet traffic using the 

   
 
Fig. 11. Overview of DL methods used in the software area.  
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traffic of IoT cameras in a laboratory. The dataset includes 
benign, scan, infect and control traffic. The model is compared 
to LSTM-RNN. They achieve better accuracy for three of the 
four attack vectors considered (UDP flood, DNS flood and 
SYN flood attacks). ACC ranges between 98% and 99%. 
However, for ACK attacks the results are not that high. 

Alauthaman et al. [217] also consider supervised learning. In 
this work, the authors propose a method for P2P botnet 
detection based on the traffic reduction technique. The method 
uses an adaptive multilayer feedforward NN in conjunction 
with decision trees. First, the classification and regression tree 
select relevant features. Then, the NN training model has the 
relevant features selected by a resilient back-propagation 
learning algorithm. To test the proposed model, two datasets are 
used: (a) ISOT [218], which contains malicious traffic from the 
Honeynet French chapter and benign traffic from the Traffic 
Lab at Ericsson Research in Hungary and from the Lawrence 
Berkeley National Laboratory (LBNL); and (b), ISCX [121]. 
The experiments show a detection rate of 99.8% with an FPR 
of 0.75%. 

Recently, botnets employ the HTTP protocol, since 
botmasters can easily hide their activities amongst the benign 
web traffic. Examples of mobile Botnets are Zitmo, 
DroidDream, and AnserverBot [219]. Eslahi et al. [30] propose 
a detection approach for HTTP Botnets on Bring Your Own 
Device (BYOD) networks. The model consists of three main 
stages: Data processing (collection, reduction and filtering); 
feature processing; and pattern recognition. Periodic behaviors 
of HTTP Botnets are classified using the three metrics. The 
pattern recognition engine employs a Feedforward 
Backpropagation NN. The model is evaluated using 1000 
instances from two datasets: the bots from Genome [131] and 
the Drebin dataset [136]. It achieves an ACC of 97.81%. 
5) Ransomware  

In the last years, ransomware has been growing largely 
causing millions of dollars of losses to industry and consumers. 
This type of malware installs covertly on the victim’s device to 
demand a ransom payment, usually through crypto-currencies 
such as Bitcoin, to restore the infected resources. It is designed 
to infect, encrypt and prevent access to the system or files and 
lock-down hosts. There are two main types of ransomware: 
locker ransomware that denies user access to the system; and 
crypto ransomware that encrypts the files and folders of the 
user, but the user can access the system. New ransomware 
versions are appearing constantly due to the large revenues 
obtained by the cyber criminals [220]. These new versions 
easily bypass intrusion detection tools, because in most cases 
they are created by polymorphic and metamorphic algorithms. 
Initially, signature-based methods were used to detect 
ransomware, similar to matching binary patterns in anti-virus 
software. However, these methods fail when ransomware 
changes its behavior or uses packers to camouflage. Since the 
network behavior of different ransomware families is similar, 
ML techniques have been used for ransomware identification 
[221][222]. Yet, they rely on human intervention. Subsequent 
works use supervised DL methods to overcome human 
interaction dependencies, avoiding the error prone human 

element. Moreover, DL methods can discover the threat when 
the infection process starts. Hill and Bellekens [223] use 
Dynamic CNN (DCNN) to classify cryptographic primitives in 
binary executables. The solution, so-called CryptoKnight, 
classifies unknown software, from the cryptographic execution 
patterns learned. Unlike a standard CNN, it allows inputs of 
different lengths as the DCNN to use k-max pooling, where k 
scales with the input length. The solution is tested using a 
dataset created by the authors. They elaborate a methodology 
that achieves procedural generation including elements that 
provide some obfuscation without altering the intended control 
flow. The solution is able to classify the sample algorithms with 
91% of ACC without extensive hyper-parameter optimization. 

Tseng et. al. [32] also uses supervised learning but their work 
is based on deep packet inspection over network traffic. The 
architecture is based on a DNN consisting of 7 layers with the 
ReLU activation function to speed up the training process. The 
solution is implemented using Tensorflow [148] to build the 
NN and the dpkt library [224] to decode the payload in the 
original pcap files. To test the solution, they build their own 
dataset capturing 23 families of ransomware pcap files, as 
CryptXXX, CryptoWal, or TeslaCrypt from malware traffic 
analysis websites [225]. The dataset includes files 
corresponding to new ransomware not used for training. This 
approach is used to validate that the solution can predict new 
ransomware. The network achieves an ACC of 93%. In the 
same line, Vinayakumar et al. [226] propose a solution based 
on MLP to detect and classify ransomware with the help of API 
invocations. Dynamic analysis usually considers API calls 
made by the executable to identify the behavior of the 
application. The solution detects if a .EXE file is ransomware 
or benign and it classifies the ransomware to its corresponding 
category. The architecture is implemented using Tensorflow 
[148] and it is trained using backpropagation with a non-linear 
activation function. The solution is tested with a dataset 
generated by the authors, which includes 7 different 
ransomware families and 131 API calls. The solution achieves 
an ACC of 100%, which improves shallow network 
performance (96% to 98%). Similarly, Maniath et. al. [227] also 
propose a solution based on API calls to determine the behavior 
of applications. Their solution includes LSTM models to detect 
ransomware from executables. The LSTM network is 
implemented using Tensorflow. The solution is tested using a 
dataset elaborated by the authors that consists of 157 
ransomware and benign samples collected from Microsoft 
Windows and online repositories. The solution achieves an 
ACC of 96.67%. Agrawal et al. [228] improved this work 
enhancing LSTM cells with the Attended Recent Inputs (ARI) 
mechanism. They observe that ransomware executables have 
high repetition of small local patterns due to their repetitive 
encryption. Therefore, they use methods that utilize repeating 
behaviors but, at the same time, maintain outer sequence event 
learning. ARI cells learn from recent history while processing 
the input sequence. The ARI-LSTM network is implemented 
using Keras [160] with a Tensorflow [148] backend for training 
using backpropagation with the Adam optimizer [229]. They 
construct a dataset of 26,300 samples of ransomware and 
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benign executables for Windows OS. The framework achieves 
an ACC of 91%, which improves by 4% the performance of the 
LSTM model when detecting ransomware. LSTM networks are 
also used for detecting ransomware in fog computing. 
Homayoun et. al. [230] design the Deep Ransomware Threat 
Hunting and Intelligence System (DRTHIS) which uses LSTM 
in conjunction with CNN for ransomware detection and 
classification. The solution is implemented using Keras [160]. 
They train and evaluate the performance of DRTHIS with a 
dataset consisting of 220 Locky [231], 220 Cerber [232] and 
220 TeslaCrypt ransomware samples plus 219 goodware 
samples. It achieves an F-measure of 99.6% with a TPR of 
97.2%. The solution is also capable of detecting unknown 
ransomware. It classifies 99% of Cryptowall, 75% of 
TorrentLocker and 92% of Sage samples. 

Other works provide solutions for the Android mobile 
platform. Gharib and Ghorbani [31] propose a real-time hybrid 

ransomware detection framework based on DAEs to reduce and 
learn new features. They also use, Binary and Multiple 
Sequence Alignment (MSA) techniques to profile malware 
families by analyzing dynamic system call sequences. The 
DNA-Droid framework evaluates an input sample using static 
analysis and if it is suspicious, its run-time behavior is 
monitored. In this way, ransomware is detected at an early stage 
before the infection process starts. The DNA-Droid is 
implemented using Scikit-learn [188] and Tensorflow [148] 
libraries. It is tested using a dataset developed by the authors, 
which contains a large collection of Android ransomware 
samples of eight different families (1,928 samples) and a set of 
2,500 benign samples. The solution achieves an ACC of 98.1% 
in the best case. 
6) Summary table –Software 

Table IV below summarizes the DL-based cybersecurity 
solutions analyzed in the software area.

TABLE IV 
SUMMARY OF DL WORKS ON SOFTWARE  

Reference Attack Scenario Learning paradigm DL Model  Dataset Performance 

Pascanu et al. 
[25] 

Malware detection (API 
calls based) 

Publicly available 
malware applications 

Semi-supervised RNN and 
MLP 

Microsoft dataset TPR=71.7% 
FPR=0.1% 

Hardy et al. 
[173] 

Malware detection (API 
calls based) 

Publicly available 
malware applications 

Semi-supervised SAEs Comodo Cloud 
Security Center 

ACC=96% 

Ye et al. 
[174] 

Malware detection (API 
calls based) 

Publicly available 
malware applications 

Semi-supervised SAEs Comodo Cloud 
Security Center 

ACC=95.6% 

Athiwaratkun 
et al. [26] 

Malware detection (API 
calls based) 

Publicly available 
malware applications 

Semi-supervised LSTM Windows PE format 
files 

FPR=1% 

Agrawal et al. 
[176] 

Malware detection (API 
calls based) 

Publicly available 
malware applications 

Semi-supervised LSTM Custom TPR<80% 

Kolosnjaji et 
al. [177] 

Malware detection (API 
calls based) 

Publicly available 
malware applications 

Supervised RNN and 
CNN 

Virus Share 
Maltrieve  

ACC= 89.4% 

Tobiyama et 
al. [179] 

Malware detection (API 
calls based) 

Publicly available 
malware applications 

Supervised RNN and 
CNN 

Custom AUC=0.96 

Dahl et al. 
[27] 

Malware classification 
(API calls based) 

Publicly available 
malware applications 

Supervised DNN Custom  FPR=0.35% 

Wang et al. 
[28] 

Malware classification 
(API calls based) 

Publicly available 
malware applications 

Unsupervised AE Public malware API 
call sequence  

ACC=99.2% 

Yousefi-Azar 
et al. [22] 

Malware classification 
(API calls based) 

Publicly available 
malware applications 
(IoT) 

Semi-supervised AEs Microsoft Malware 
Classification 
Challenge  

ACC=96.3% 

Ding et al. 
[184] 

Malware detection 
(opcode based) 

Publicly available 
malware applications 

Unsupervised DBN netlux  
offensivecomputing 
Microsoft 

ACC=96.7% 

HaddadPajou
h et al. [185] 

Malware detection 
(opcode based) 

ARM-based IoT 
applications  

Semi-supervised RNN Virus Total Threat 
Intelligence platform  
Linux Debian 
repositories 

ACC=98.2% 
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Reference Attack Scenario Learning paradigm DL Model  Dataset Performance 

Su et al. [202] Android malware 
detection 

Android apps Semi-supervised DBN 
SVM  

Google Play Store  
Drebin  
Android Malware 
Genome Project 
Contagio 
Community  

ACC=99.4% 

Yuan et al. 
[203] 

Android malware 
detection 

Android apps Semi-supervised RBM Google Play Store  
Contagio 
Community  

ACC=96% 

Yuan et al. 
[132] 
 

Android malware 
detection 

Android apps Semi-supervised DBN  Google Play store  
Contagio 
Community 
Genome Project  

ACC=98% 

Zhu et al. 
[204] 

Android malware 
detection 

Android apps Semi-supervised DBN Google Play Store 
Android Malware 
Genome Project  
 VirusShare 

ACC =98% 

Hou et al. 
[207] 

Android malware 
detection 

Android apps Semi-supervised SAE Comodo Cloud 
Security Center  

ACC=93.7% 

Martinelli et 
al. [84] 

Android malware 
detection and 
classification 

Android apps Supervised CNN Google Play store  
Drebin repository  

ACC=95% 

Karbab et al. 
[140] 

Android malware 
detection 

Android apps Supervised CNN Malgenom  
Drebin  
Maldozer  

F1 
Score=99% 

McLaughlin 
[208] 

Android malware 
detection 

Android apps Supervised CNN Android Malware 
Genome project  
McAfee Labs 

ACC=98% 

Lee et al. 
[211] 

Android malware 
detection 

Android apps Supervised CNN and 
RNN 

VirusTotal ACC=99% 

Kim et al. 
[212] 

Android malware 
detection 

Android apps Supervised Multimodal 
DL method 

Google Play App 
Store  
VirusShare  
Malgenome  

ACC=98% 

Torres et al. 
[29] 

Botnet detection IoT Supervised LSTM Custom TPR=96.8% 
FPR=1.11% 

McDermott et 
al. [216] 

Botnet detection IoT Unsupervised BLSTM-RNN Custom ACC=99% 

Alauthaman 
et al. [217] 

P2P Botnet detection IoT Supervised Multilayer 
feedforward 
NN 

Custom  ACC=99.8% 

Eslahi et al. 
[30] 

Mobile HTTP Botnet 
detection 

BYOD networks Supervised Feedforward 
Backpropagati
on NN 

Genome project  
Drebin dataset 

ACC=97.8% 

Hill and 
Bellekens 
[223] 

Ransomware detection Computer networks  Supervised DCNN Custom ACC=91% 

Tseng et. al. 
[32] 

ransomware detection Computer networks Supervised DNN (7 
layers, ReLU) 

Custom ACC=93% 

Vinayakumar 
et al. [226] 

ransomware detection 
and classification 

Computer networks Supervised MLP Custom ACC=100% 

Maniath et. 
al. [227] 

ransomware detection Computer networks Supervised LSTM Custom ACC=96.6% 

Agrawal et al. 
[228] 

ransomware detection Computer networks Supervised ARI-LSTM Custom ACC=91% 
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Reference Attack Scenario Learning paradigm DL Model  Dataset Performance 

Homayoun et. 
al. [230] 

ransomware detection and 
classification 

FoG Supervised LSTM 
CNN 

Custom ACC=99% 

Gharib and 
Ghorbani [31] 

ransomware detection Android mobile 
platform 

Supervised DAE Custom ACC=98.1% 

 

C. Privacy 
Nowadays, mobile devices have become common in our 

daily life. Users can benefit from a wide range of services 
offered by these devices (e.g recommendation systems, targeted 
advertising, health monitoring, and security surveillance). Most 
of these services are for free but they collect high sensitive user 
data (e.g. personal data, photos, videos or banking data). These 
services also access sensitive external data (e.g. surveillance 
systems or medical information). The principal beneficiaries 
are companies that exploit DL-based systems. These companies 
benefit from the vast amounts of data collected from their users, 
which lead them to have the monopoly of DL models. This 
poses important privacy issues for user personal data. 
Therefore, a great number of works are emerging in the 
literature to address these concerns. Figure 12 provides the 
complete picture. 

Shokri and Shmatikov [33] is one of the first works on 
privacy. They develop a system for collaborative DL that 
preserves user privacy in all types of NNs. The system is based 
on MLP and CNN models and it enables multiple users to learn 
NN models based on their inputs, while benefiting from other 
user data without sharing the inputs. The DL algorithms are 
based on SGD because they can be parallelized and executed 
asynchronously. Furthermore, the model parameters can be 
selectively shared when training the model. Plus, they can be 
tuned to control the tradeoff between accuracy and privacy. The 
solution is evaluated using two datasets, MNIST [233] and 
SVHN [234] (both typically used for image classification). For 
the MNIST data set, the system achieves an ACC of 99.14% 
when participants share the 10% of their data. This result 
matches the centralized privacy-violating model 
(ACC=99.17%). For the SVHN dataset, ACC is 93.12%. Phong 
et al. [34] improve this work by ensuring that the system does 
not leake user data to the server while maintaining accuracy. 
They also improve the system security through homomorphic 
encryption with no impact on accuracy. Abadi et al. [37] 
propose a completely different approach. NNs are trained with 
differential privacy [235] to avoid the disclosure of private DL 
datasets information. The algorithms are based on a differential 
privacy enhanced SGD. They implement the solution using 
TensorFlow [148]. They test it using two popular image 
datasets: MNIST [233] and CIFAR-10 [236]. The system 
achieves an ACC of 97% for MNIST and 73% for CIFAR-10 
in both cases for a differential privacy (8,10-5). Therefore, this 
work demonstrates that DNNs can be trained at a manageable 
cost in software complexity. Hitaj et al. [36] train DL structures 
locally and they only share a subset of the parameters 
obfuscated via differential privacy. The authors propose a 

solution to avoid attacks on collaborative DL using GANs. 
Their solution stops attackers from inferring sensitive 
information from the victim device. To this end, they first 
devise a novel class of inference attacks that are more generic 
than existing information extraction mechanisms. Then, they 
run the active inference attacks on the distributed collaborative 
learning system based on CNNs implemented by Shokri and 
Shmatikov [33]. To test the approach, they use the MNIST 
[233] and AT&T [237] datasets. They achieve an ACC of 97%. 

Recent works address privacy issues in IoT. Osia et. al. 
[238][88] propose a hybrid framework, based on the CNN 
model, for efficient privacy preserving analytics. The proposal 
is based on the Siamese architecture [239]. It splits the NN into 
the IoT device and the Cloud. Feature extraction runs in the IoT 
device and classification in the Cloud. In this way, user raw data 
is not uploaded to the Cloud. Hence, it provides strong privacy 
guarantees to the system. The main innovation of this work is 
the feature extractor module that achieves an acceptable trade-
off among accuracy, privacy and scalability. The solution is 
evaluated for two widely used classification tasks: gender 
classification and activity recognition. In gender classification, 
the datasets used are IMDB-Wiki [240] and LFW [241]. It 
achieves an ACC of 94%. In activity recognition, the dataset 
used is the MotionSense [242]. It achieves an ACC of 93%.  In 
the same vein, Servia-Rodriguez et. al. [243] focus on Internet 
services that collect extensive user data, which can become 
invasive and comprise user privacy. The authors propose an 
alternative model that avoids the flow of user data to the Cloud. 
They propose to train the NN on distributed devices, which 
enables users to keep all rights over their data. The model is 
based on a two-step process that consists on a first analysis of a 
small dataset provided by voluntary users. The result of the 
analysis becomes a shared model. Then, they retrain the model 
locally (local model) using personal user data. At the end, each 
user has his/her own personal model. They evaluate their model 
for two learning tasks: supervised and unsupervised. The 
supervised model recognizes user activity from accelerometer 
traces. The system is based on MLP and trained using the 
WISDM Human Activity Recognition Dataset [244]. The 
authors compare the performance of the model between the 
shared, local, and personal models. Training the model with 
samples of other individuals, not only with samples of one user, 
achieves the best results. The unsupervised model uses the 
Latent Dirichlet Algorithm (LDA) to identify topics in a large 
set of documents. The model is trained using the NIPS dataset 
[245] and the Wikipedia latest English dump in January 2017 
[246]. It achieves higher accuracy for the personal model than 
for the local one.
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Wang et al. [247] propose a similar solution to that of Servia-
Rodriguez [243], but they consider Cloud resources, in addition 
to mobile devices, when partitioning the DNN. They develop 
the Arden framework for DNN-based private inference in 
mobile cloud. The solution uses a lightweight privacy-
preserving mechanism, which consists of arbitrary data 
nullification and random noise addition, to protect sensitive 
information. Furthermore, authors propose a noisy training 
method, which injects deliberately noise into the training data 
to mitigate a negative impact on the performance of the cloud 
side. The framework is tested using the MNIST [233]  and 
SVHN [234] datasets. It achieves an ACC of 98.02% and 
88.12% respectively for each dataset. The experiments 
demonstrate that the Arden framework preserves user privacy 
and it also improves the inference performance reducing 
resource consumption over 60%. Finally, Lyu et al. [248] 
propose a novel approach that embeds Fog computing into DL 
to speed up computation and protect privacy in IoT. They 
devise a Fog-embedded privacy-preserving DL framework 
(FPPDL) to reduce computation and communication costs 
while preserving privacy. Privacy is preserved by a two-level 
protection mechanism. First, it uses Random Projection (RP) to 
protect privacy. They perturbe original data but preserve certain 
statistical characteristics of the original data. Second, Fog nodes 
train fog-level models applying Differentially Private SGD. 
The framework is implemented using MLP with two hidden 
layers using ReLU activations. It is evaluated using three 
different datasets typically used in image classification: MNIST 
[233], SVHN [234] and multiview multicamera dataset [249]. 
The solution achieves an ACC of 93.31% and 84.27% for the 
MNIST and SVHN datasets respectively. The results are 
slightly lower than for the centralized framework, but the 
solution reduces significantly communication and computation 
costs. 

Another approach to guarantee user privacy in DL-based 
services is to train the network on encrypted data. 
Cryptographic techniques, as fully homomorphic encryption 
(FHE) [250], enable the processing of encrypted data. However, 
they are too slow for training DNN models due to the 
computational complexity and operations involved. Gilad-
Bachrach et al. [251] propose Crypto-Nets that perform the 
inference phase of a NN on encrypted data. The solution is 
evaluated with the MNIST dataset.  It achieves an ACC of 99%. 
On average, it achieves a sustained rate of 60,000 
predictions/hour. However, this work has much room for 
improvement, especially in terms of throughput and latency. 
Nandakumar et. al. [37] improve this work and build the first 
fully homomorphic computationally efficient DL service for 
training on encrypted data. The key objective of this work is to 
outsource DL tasks to an external service, with the appropriate 
expertise and computational resources, without comprising user 
data. To this end, data is encrypted using a private key and it is 
subsequently shared with the service provider. Then, the service 
provider can train the model but it cannot learn anything about 
the data. The resultant model is only useful to the users with 
access to the private key. The solution is based on a DNN with 
two hidden layers, which use the SGD algorithm. The solution 
is implemented using the FHE toolkit HElib [252] and it is 
evaluated using the MNIST dataset. It achieves an ACC of 
96%. The authors report a 50x speed-up in computation time 
when: (a) choosing the appropriate data representation; (b) 
simplify the network with minimum accuracy degradation; (c) 
pack data within the cipher text to minimize the number of 
operations; and (d) enable the parallelization of FHE 
computations. However, training in the encrypted domain is 
still too slow. It is about four or five orders of magnitude slower 
that training non-encrypted data. 

DL models also have been explored to prevent information 

 
 
Fig. 12. Overview of DL methods used in the privacy area. 
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leakage and password guessing attacks. Recently, Liu et al. 
[253] propose a general DL model, so-called PL, to train 
datasets and generate passwords combining an LSTM with 
probabilistic context-free grammars (PCFG). The authors 
develop GENPass, a password-guessing generator based on the 
LSTM model. GENPass consists of several generators that 
create passwords from datasets and a classifier that checks that 
the output is not specific to a certain dataset. GENPass 
improves generality by implementing the adversarial idea in 
password generation. GENPass is implemented using 
Tensorflow [148] and it is trained and tested using a dataset that 
collects leaked English passwords from 4 websites: Myspace, 
phpBB, RockYou and LinkedIn. The results show that the 
matching rate improves by 20% compared to simply combining 
those datasets in cross-sites tests when learning from a single 
dataset.  

Other works study different decryption DL methods. 
Greydanus et al. [254] propose the LSTM RNN to learn 
decryption algorithms. The novelty of this work resides in the 
proposed model, which can be applied to any polyalphabetic 
cipher. The solution can learn three different ciphers: Vigenere, 
Autokey, and Enigma. Once trained, the model has good 
performance on unseen keys and much longer ciphertext 
sequences. The model achieves an ACC of 99% for the three 
ciphers. Consequently, it is useful in cryptanalysis.  

Other works in the literature address privacy vulnerabilities 
in side channel attacks. Maghrebi et al. [255] propose DL 
techniques for side channel key recovery attacks [256]. The 
authors compare the effectiveness and efficiency against 

different implementations of their proposed DL-based, ML-
based and template-based attacks. The DL methods considered 
are AE, CNN and LSTM; while the ML methods are MLP and 
RF. The results demonstrate that DL attacks have better 
efficiency than common template and ML attacks in breaking 
unprotected and protected (AES) implementations. Ning et al. 
[257] address privacy vulnerabilities in mobile devices due to 
the malicious use of unsupervised sensor data. Today’s 
smartphones integrate a wide variety of sensors (e.g. GPS, 
microphone, accelerometer, gyroscope, magnetometer, 
proximity, ambient). The authors report a new vulnerability due 
to the malicious use of unsupervised magnetometer and motion 
sensor data, where attackers sniff mobile applications and infer 
(using a CNN) the apps installed on the device and how 
frequently they are used. They achieve an ACC of 98%. The 6-
layer CNN architecture is implemented using Tensorflow 
[148]. Each convolutional layer has 64 filters and the densely 
connected layer uses 128 neurons with ReLU activations. A 
dataset was created with the top 15 most used applications to 
validate the solution. Finally, this work proposes a noise 
injection scheme to effectively mitigate such attacks. The noise 
injection reduces the App sniffing ACC to 15%. Thus it 
mitigates the privacy leakage risk. 
1) Summary table –Privacy 

Table V summarizes the work analyzed in the privacy area. 
System performance is reported for all of the surveyed works, 
except for Maghrebi [255] (they do not use standard DL 
evaluation metrics). 

TABLE V 
SUMMARY OF DL WORKS ON PRIVACY  

Reference Objective Scenario Learning paradigm DL Model  Dataset Performance 

Shokri and 
Shmatikov [33] 

Privacy preserving DL Network systems Supervised MLP 
CNN 

MNIST  ACC=99.1% 
SVHN ACC=93.1 % 

Phong et al. [34] Privacy preserving DL Network system Supervised  MLP MNIST  ACC=99% 
SVHN ACC=93 % 

Abadi et al. [35] Privacy preserving DL 
Differential privacy 

Network system Supervised MLP MNIST ACC=97% 
CIFAR-10 ACC=73% 

Hitaj et. al. [36] Privacy preserving DL 
Differential privacy 

Cloud to mobile devices Supervised CNN MNIST 
AT&T 

ACC=97% 

Osia et. al. [238] Privacy preserving mobile 
analytics 

Edge-to-cloud computing  
IoT 

Supervised CNN IMDB-Wiki 
LFW 

ACC=94% 

MotionSense ACC=93% 
Osia et al. [88] Privacy preserving DL Edge-to-cloud computing 

(IoT) 
Supervised CNN IMDB-Wiki 

LFW 
MotionSense 

ACC=93% 

Servia-Rodriguez 
et. al. [243] 

Privacy preserving DL Cloud to mobile devices Supervised 

Unsupervised 

MLP 

 

WISDM Human 
Activity Recognition 
NIPS 
Wikipedia latest 
English dump 

ACC=88% 

Wang et. al. [247] Privacy-preserving DL Cloud to mobile devices Supervised DNN MNIST  ACC=98% 
SVHN ACC=88.1% 

Lyu et. al. [248] Privacy-preserving DL Fog Computing 
IoT 

Supervised MLP MNIST  ACC=93.3% 

SVHN ACC=84.2% 

Gilad-Bachrach 
et. al. [251] 

Privacy-preserving DL 
Training on encrypted data 

Cloud Supervised DNN MNIST ACC=99% 

Nandakumar et. 
al. [37] 

Privacy-preserving DL 
Training on encrypted data 

Cloud Supervised DNN MNIST ACC=96% 

Liu et al. [253] Guessing passwords 
(Adversarial generation) 

Network system Supervised LSTM Custom 
 

ACC=80% 
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VI. LESSONS LEARNED AND FUTURE DIRECTIONS 
DL methods provide promising results to improve detection 

and accuracy of existing cybersecurity systems. They succeed 
in detecting new and complex attacks as they overcome the 
limitations of traditional and ML-based security systems. DL 
models provide resilience to new cyberattacks as novel attacks 
are usually small mutations of previously known attacks. They 
have self-taught abilities. This enables them to discover hidden 
patterns, different from normal behaviors, from the training 
data. The continuous update of the underlying model provides 
the capacity to learn the features of new attacks.   

An important lesson learned for cybersecurity systems is that 
effective DL techniques are able to quickly transfer knowledge 
of existing attacks to improve the detection of newer ones, learn 
the features of newcomers and update the underling model. 
Research in this direction should consider transfer learning and 
lifelong learning. Deep lifelong learning [258] aims to build a 
solution that continuously adapts to new environments retaining 
the maximum knowledge from previous learning experiences. 
The model shows good results in non-stationary image data 
[259] or computer games [260] where it outperforms traditional 
DL algorithms. Deep transfer learning [261] uses previous 
knowledge of a specific domain to accelerate new learning 
processes since it does not learn from scratch. Transfer learning 
can help cybersecurity solutions as it reduces the time to 
respond to new threats. 

Figure 13 provides a complete view of cybersecurity 
challenges in mobile networks and the learning paradigm most 
commonly used by existing cybersecurity systems. 

A. Infrastructure area 
1) Lessons learned  

In the infrastructure area, most of the works in the literature 
address network intrusion detection. The architectures 
proposed for the cybersecurity systems are mainly based on 
unsupervised or semi-supervised learning paradigms. AEs are 
the preferred choice for intrusion and anomaly detection. 
KDDCUP’99 and NSL-KDDare the most widely used datasets. 
Yet, they do not represent perfectly existing real networks but, 
still, they are useful for comparing DL-based NIDS. A fair 
comparison of all the works in this survey is difficult due to two 
main factors. First and foremost, the datasets used are not 
always the same or they use different subsets of the same 
dataset. The second is that not all the works consider the same 
evaluation metrics when evaluating the solution. Nevertheless, 
some trends are visible for intrusion and anomaly detection 
works. All DL-based architectures outperform in terms of 

detection accuracy traditional IDS and ML-based IDS, even 
when considering real world data with embedded noise. 
Moreover, preprocessing the datasets enables higher accuracy, 
as well as higher efficiency in training and testing phases. 
Similarly, minimizing the number of features, by means of 
feature reduction methods, reduces data dimensions and 
computation complexity while preserving detection and 
classification accuracy. Finally, several works define the 
optimal hyper-parameters values to improve the efficiency of 
the system.  

On the other hand, the analysis performed demonstrates that 
the ability of the architectures to detect intrusions depends on 
the type of attack and on the number of classes considered in 
the classification tasks. Another important conclusion is that the 
further an algorithm is trained with the latest features of attacks, 
the higher the detection of known and unknown attacks is. 
Consequently, attack detection systems should be frequently 
trained with updated samples. 

In the IoT domain, the works analyzed demonstrate that 
parallel learning improves accuracy and efficiency of 
cyberattack detection. At the same time, performing the training 
and testing phases of the DL models on the IoT device leads to 
device dependent solutions.  

The solutions for DDoS attacks are mainly based on 
supervised learning, being MLP the most used model. An 
interesting conclusion from this analysis is that the models 
provide better results if they are trained with up-to-date 
patterns. If so, they learn from new scenarios and detect zero-
day patterns. Nevertheless, a major drawback of supervised 
learning is that it requires a high amount of labeled data, which 
is expensive to collect and it is not always is available. This will 
certainly lead to consider semi-supervised learning paradigms 
in the near future, which can effectively deal with the huge 
amount of unlabeled data for DDoS attacks. Distributed attack 
detection solutions also adopt supervised learning paradigms 
(mostly based on SAE). Surveyed works demonstrate that 
distributed attack detection can detect cyberattacks effectively 
and they can even improve centralized DL performance. The 
main advantage relies on parameter sharing during the training 
phase as it reduces local minima. 
2) Future directions 

In the cybersecurity field, and more specifically for intrusion 
and anomaly detection, an interesting research direction is to 
investigate if publicly available datasets are enough to train the 
learning algorithms to be generalized for new inputs in the 
given domain. In new areas, such as IoT, CPS or 5G, the major 
challenge when developing a DL-based solution is the 
generation of a realistic and high-quality training dataset. As 

 Reference Objective Scenario Learning paradigm DL Model  Dataset Performance 

Greydanus et. al. 
[254] 

Enigma learning 
 

Cloud Supervised LSTM Custom 
 

ACC=99% 

Maghrebi et al. 
[255] 

side channel key recovery 
attacks 

Mobile devices Supervised AE 
CNN 
LSTM 

Custom NA 

Ning et al. [257] side channel attacks Mobile devices Supervised CNN Custom ACC=98% 
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datasets are the basis for obtaining the model knowledge, they 
should contain information that completely reflects real-world 
attacks. The completeness of the dataset has also a direct 
influence in the performance of DL-based cybersecurity 
models. In Cloud or IoT environments, crowd-sourcing 
methods are currently being introduced for generating rich 
threat datasets, which should be continuously updated with new 
attacks. However, the great diversity of IoT devices make it 
technically challenging. Another interesting research direction 
in IoT is to generalize the architectures to be applicable to 
devices of different vendors, and even to devices with different 
functionalities. Those architectures shall also consider the 

challenge of applying sophisticated security mechanisms to 
computationally limited devices. We foresee that DL models 
will be designed to achieve a trade-off between attack detection 
accuracy and the computing capabilities of the device. 

Finally, existing DL-based security solutions appear not 
sufficient for the upcoming 5G mobile technology, where 
networks will have higher transmission rates. Novel DL models 
are in dire need in order to prevent systems from attacks 
considering the specific requirements (i.e. large-scale 
streaming, heterogeneous and low-quality data) without 
compromising the accuracy in detection with minimal response 
time.

 

  

B. Software area 
1) Lessons learned 

In the software area, DL-based solutions also outperform 
ML-based ones for malware detection and classification, botnet 
detection and ransomware detection and classification.  

DL-based architectures are tested with different datasets, in 
this case even with a greater number of variants than in the 
infrastructure area. Furthermore, as obtaining legitimately 
malicious data is difficult, the ratio of benign and malicious data 
in the training dataset is unbalanced. This imbalance affects the 
performance of the solution. Therefore, standardized high-
quality datasets are crucial for future improvements on DL-
based cybersecurity systems. They are necessary to develop 
generalizable models to detect new malware. 

Malware detection solutions fall in two main groups 
depending on the use of API calls or opcodes. API-call based 
solutions adopt supervised learning (mostly, RNNs and CNNs), 

or semi-supervised learning (AEs and LSTMs). Semi-
supervised learning achieves better system performance while 
maintaining accuracy. Supervised solutions need labelled 
datasets which are scarce and they do not completely consider 
the wide range of malware attacks. Opcode based malware 
detection solutions consider unsupervised learning (RNNs) and 
semi-supervised learning (DBNs). Malware classification uses 
API-call based solutions, being AEs the preferred choice.  

Android OS is the primary focus of malware solutions since 
99% of all mobile device malware targets Android devices. 
Initially, the supervised learning paradigm (especially CNNs) 
was widely adopted. However, the vast amount of unlabeled 
data in this area, lead researchers to consider semi-supervised 
DL models. DBN has received special attention as it achieves a 
high accuracy with good runtime efficiency. Malware 
applications behavior is characterized in terms of sequences of 
systems calls. This captures the application behavior and, at the 
same time, it is robust to obfuscation techniques.  

 

 
Fig. 13. Cybersecurity challenges in mobile networks. 

Cybersecurity 
challenges

SoftwareInfrastructure

Privacy

Intrusion 
detection

Anomaly 
detection

DDoS
attack 

detection

Distributed 
attack 

detection

Unsupervised
Semi-supervised

Supervised
Semi-supervised

Malware 
detection
(API calls)

Malware 
classificationMalware 

detection
(opcodes) Android 

Malware 
detection

Botnet 
detection

Ransomware 
detection

Ransomware 
classification

Supervised
Semi-supervised

Supervised

Privacy 
preserving 

DL
Side channel 

attacks Privacy 
preserving DL 

encrypted data

Supervised



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

29 

Finally, botnet detection and ransomware detection and 
classification use supervised models. Botnet detection solutions 
analyze network traffic to generalize common patterns of 
botnets along their life cycle. Through the works in this survey, 
we can see that undersampling techniques improve botnet 
detection and reduce computational cost. In contrast to 
traditional intrusion detection tools, supervised DL models can 
detect ransomware with behavioral changes and ransomware 
that uses packers to camouflage. Moreover, they discover the 
threat when the infection process starts. The most studied DL 
models for ransomware detection tools are CNNs and LSTMs. 
2) Future directions 

In the software area, the most important research direction is 
the development of publicly available high-quality datasets. 
These datasets should contain a large number of different 
possible attack types. Nowadays, different alternatives are 
under consideration to generate realistic and high-quality 
training datasets. One of the research directions is data 
augmentation to expand the limited available data by generating 
new samples from existing ones. The key challenge in malware 
data augmentation is to produce new samples that preserve the 
adequate data distribution for each class. This will improve 
classification accuracy of DL methods since improving the 
coverage of collected data translates to better detection 
capabilities of new, and existing, malware attacks. Works in the 
software area also highlight the need to continuously train the 
DL algorithms with the latest features of malware attacks to 
significantly increase detection accuracy. 

The majority of the works design the proposed solution to 
have high accuracy detection but they do not consider 
computational costs, which is fundamental in real security 
products. Small computational costs are critical for mobile or 
edge devices with limited hardware. Consequently, DL-based 
solutions should be more efficient. For example, they should 
consider lightweight NNs and improve the preprocessing of 
input data. Acceleration at the edge should be explored, for 
example, by using network pruning techniques [262], as it has 
shown success in other areas as image recognition. These model 
optimization techniques eliminate unnecessary values in the 
weight tensor. It contributes to the development of more 
efficient NNs by reducing the computational cost of training. 

Current works in the software area address the different types 
of attacks in an isolated way. Future research directions should 
consider interconnections between different malicious 
activities. For example, they should consider the cybersecurity 
attack lifecycle in terms of recognition, initial compromise, 
command and control target attainment and actions on the 
objective. 

C. Privacy area 
1) Lessons learned 

Privacy is one of the major concerns in mobile networks. 
This area of cybersecurity is in its infancy and it requires further 
investigation. DL-based privacy preservation works mainly 
follow three different approaches: collaborative DL, differential 
privacy, and training on encrypted data. The vast majority of 
these works use supervised learning. Collaborative DL 

solutions use the MLP model and participants only share a 
subset of their data. If differential privacy is used, it avoids the 
disclosure of datasets. In this case, the DL models chosen are 
MLP and CNN. Finally, the proposals that train on encrypted 
datasets use DNNs (usually, with two hidden layers). These 
works achieve acceptable levels of accuracy. However, they 
still are too slow. They are about four or five orders of 
magnitude slower than training with non-encrypted data. 
Therefore, there is still room for improvement in all privacy 
areas.  

Different proposals are starting to emerge in IoT. Privacy 
preserving analytics use preferably CNNs. In this area, semi-
supervised learning is widely used. In the context of Fog 
computing, the majority of the works focus on reducing the 
computation and communication costs in IoT devices, 
comprising detection accuracy. Although these approaches are 
evolving and improving every day, it deserves further study in 
order to be able to adapt to constant changes. 
2) Future directions 

Privacy protection solutions are in an initial stage. It requires 
significant progress, especially, in the latency and throughput 
of NN training on encrypted data. Current systems outsource 
DL tasks to an external service with the appropriate expertise 
and computational resources without comprising user data; and 
thus, making the solution computationally efficient. However, 
it should consider also new alternatives (e.g. quantum 
computing techniques) to make the solution competitive. 

Other future directions are shared with the infrastructure and 
software area: parallel learning and computational cost 
optimization. Several efforts are on the way, such as network 
pruning and the interplay between different malicious activities. 
Yet, this area is still in its infancy. 

VII. CONCLUSION 
Nowadays, the number of cyberattacks is increasing day by 

day, in number and in complexity, as technology evolves. In 
such a complex technological environment, traditional 
cybersecurity systems fail in the detection of complex unknown 
attacks such as zero-day attacks and new malware variants. ML 
techniques have been adopted by cybersecurity systems to 
address these challenges but with little success against 
unforeseen or unpredictable attacks. Meanwhile, DL techniques 
improve learning procedures and provide encouraging results in 
a wide range of applications, including cybersecurity. The 
success of DL relies, to a great extend, on the new achievements 
in software engineering and the massive generation of training 
data. This survey paper reviews DL methods applied to detect 
and classify all types of cyberattacks. To this end, a 
comprehensive analysis of DL techniques is done covering all 
cybersecurity aspects: intrusion detection, software attack 
detection and privacy preservation. For all the works reviewed, 
we analyze the architecture, giving a special attention to the DL 
method(s) used, its implementation, the data sets used for 
testing, and the results achieved. Whenever possible, we have 
compared the performance of the different proposals. It is worth 
noting that this was the most difficult part because most of the 
works do not use the same dataset for testing the model, 
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especially in the software domain. While, others use specific 
subsets of the same dataset, especially in the infrastructure 
domain, in which most of the works use a subset of the 
KDDCUP’99 or NSL-KDD datasets. In the evaluation process, 
accuracy is usually reported, although several works use other 
metrics. 

Finally, this paper provides a complete analysis and 
classification of DL methods used in cybersecurity. The major 
contributions of this paper are that it addresses all cybersecurity 
areas, including infrastructure, software and privacy, and it 
considers all different scenarios in mobile networks. Finally, it 
provides the relevant details of each proposal. To conclude, this 
survey paper aims to be a useful guide for researchers that start 
its work on DL-based cybersecurity systems. 

LIST OF ACRONYMS 
Acronym Description 
ACC Accuracy 
AE Autoencoder 
AI Artificial Intelligence 
ANIDS Anomaly Detection-Based 
ANN Artificial Neural Network 
API Application Programming Interface 
ARI Attended Recent Inputs 
ASN Autonomous Systems 
ASR Automated Speech Recognition 
AUC  Area Under the Curve 
AWGN Additive White Gaussian Noise 
BLSTM-
RNN 

Bidirectional LSTM RNN 

BM Boltzmann Machine 
BYOD Bring Your Own Device 
BPTT Back-Propagation Through Time 
CNN Convolutional Neural Network 
CVAE Conditional Variational Autoencoder 
CPS Cyber-Physical System 
C&C Command and control 
DAE Deep Autoencoder 
DBM Deep Boltzmann Machine 
DBN Deep Belief Network 
DCNN Dynamic Convolutional Neural Network 
DNN Deep Neural Network 
DoS Denial of Service 
DDoS Distributed Denial of Service 
DL Deep Learning 
DR Detection Rate 
DRTHIS Deep Ransomware Threat Hunting and Intelligence System 
DT Decision Trees 
ESN Echo State Network 
FAP File Access Pattern 
FAR False Alarm Rate 
FHE Fully Homomorphic Encryption 
FN False Negative 
FP False Positive 
FPPDL Fog-embedded privacy-preserving DL 
FPR False Positive Rate 
GAN Generative Adversarial Network 
GFADS GSA-based flow anomaly detection systematic 
GRU Gated Recurrent Unit 
GSA Gravitational Search Algorithm 
HMM Hidden Markov model 
ID-CVAE Intrusion detection CVAE 
IDS Intrusion Detection Systems 
IoT Internet of Things 
ISTR Internet Security Report 
IT Information Technology 
JNNS Java Neural Network Simulator 
KNN k-Nearest Neighbor 
LBNL Lawrence Berkeley National Laboratory 
LDA Latent Dirichlet Algorithm 
LotL Living off the Land  
Acronym Description 
LSTM Long Short-Term Memory 
ML Machine Learning 
MLP Multilayer Perceptron 
MLP-GA Multilayer Perceptron with a Genetic Algorithm 
MSA Multiple Sequence Alignment 

NB Naive-Bayesian 
NIC Nature Inspired Computing 
NIDS Network Intrusion Detection Systems 
NLP Natural Language Processing 
NN Neural Networks 
NSSA Network Security Situation Awareness 
OS Operating System 
p precision 
PCA Principle Component Analysis 
PCFG Probabilistic Context-Free Grammars 
PE Portable Executable 
PE Portable Executable 
P2P Peer-to-peer 
RBM Restricted Boltzmann Machine 
ReLU Rectified Linear Unit 
RF Random Forest 
RNN Recurrent Neural Network 
ROC Receiver Operating Characteristic 
RP Random Projection  
R2L Remote-to-local 
SAE Stacked Autoencoder 
SDN Software-Defined Networking 
SGD Stochastic Gradient Descent 
SMR Soft-Max Regression 
SNIDS Signature-based 
SNN Spiking Neural Networks   
SOM Self-Organized Maps 
STL Self-taught learning-based 
SVM Suport Vector Machines 
TN True Negative 
TP True Positive 
TPR True Positive Rate 
U2R User-to-root 
WSN Wireless Sensor Networks 
5G Fifth-generation 
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