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Abstract

Linear information and rank inequalities as, for instance, Ingleton inequality, are useful
tools in information theory and matroid theory. Even though many such inequalities have
been found, it seems that most of them remain undiscovered. Improved results have been
obtained in recent works by using the properties from which they are derived instead of
the inequalities themselves. We apply here this strategy to the classification of matroids
according to their representations and to the search for bounds on secret sharing for matroid
ports.
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1 Introduction

Some of the concepts appearing next are defined in Section Bl The reader is referred to the
books [44], [55] on matroid theory and [56] on information theory, and the surveys [4, [45] on
secret sharing for additional information about these topics.

1.1 Matroid Representation

Relevant applications in information theory, especially in secret sharing and network coding,
brought to light the class of entropic matroids, which contains the well-known class of linear
matroids.

An entropic vector is formed by the joint Shannon entropies of all subsets of a finite set
of discrete random variables. Every entropic vector is the rank function of a polymatroid. A
polymatroid is entropic if its rank function is a multiple of an entropic vector. Limits of entropic
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Figure 1: A classification of matroids. Discussed in Section 2

polymatroids are called almost entropic. Both representation by partitions [35] and by almost
affine codes [51] are characterizations of entropic matroids.

In the same way that linear matroids are defined from configurations of vectors in a vector
space, configurations of vector subspaces determine linear polymatroids. A folded linear matroid
is such that some multiple of its rank function corresponds to a linear polymatroid. Folded linear
matroids have been called multilinear or multilinearly representable in the literature. Since no
multilinear algebra is involved, that terminology may be misleading. The name proposed here
is motivated by the analogy with folded Reed-Solomon codes.

It is well known that linear polymatroids and, consequently, folded linear matroids are
entropic. Frantisek Matus [38] recently proved that algebraic matroids are almost entropic.

Figure [Il an update of the corresponding diagram in [37], illustrates the current knowledge
about the connections between the aforementioned classes of matroids. A detailed explanation
is given in Section @ There is a number of tools to deal with that classification. Among them,
linear information and rank inequalities are especially useful. Linear information inequalities,
such as Zhang—Yeung inequality [58], are the linear inequalities that are satisfied by the rank
function of every entropic polymatroid. The ones that, like Ingleton inequality [25], are satisfied
by the rank function of every linear polymatroid are called linear rank inequalities.

Ingleton inequality was used to prove the existence of an infinite number of excluded minors
for the class of matroids that are linear over any given infinite field [40]. That result has been
extended to the class of folded linear matroids over any given field and, by using Zhang—Yeung
inequality instead of Ingleton inequality, to the classes of almost entropic matroids and algebraic
matroids [37].

1.2 Common Information

Besides Ingleton and Zhang—Yeung inequalities, many other linear information and rank in-
equalities have been found [16] 18] 19} (30} 32}, 36]. Nevertheless, only a few techniques to derive
such inequalities are known, and it appears that many more inequalities remain unknown.
Linear information and rank inequalities are fundamental in the linear programming tech-
nique that has been used to find bounds on the information ratio of secret sharing schemes [7,



8, B4, 42, [46] and on the achievable rates in network coding [17) 53], [56]. An improvement to
that technique has been recently proposed [20]. Specifically, instead of known inequalities, the
properties from which most linear information and rank inequalities are derived are used as
constraints. The notion of common information of two random variables is at the core of most
of those properties. All known linear rank inequalities are derived from the common informa-
tion property [18], while most of the known linear information inequalities are obtained from
the concept of AK-common information, derived from Ahlswede-Korner lemma [1l 2, [14], or
from the copy lemma [16] 19].

Several new lower bounds on the information ratio of secret sharing schemes have been
obtained by using that improved linear programming technique [20]. For instance, by using the
common information property, the exact values of the optimal information ratios of linear secret
sharing schemes for all access structures on five players and all graph access structures on six
players have been determined, concluding the projects undertaken in [I5] 27] when restricted
to linear schemes. Moreover, some of the existing lower bounds for general (that is, non-linear)
secret sharing schemes for those and other access structures have been improved by using the
AK-common information. The analogous application of the copy lemma has been described
in [24].

On the negative side, the application of that technique is currently limited to solving linear
programming problems that provide bounds for particular cases. Moreover, because of the huge
number of variables and constraints, only problems with small size can be solved. In contrast,
several general results, such as the best known general lower bound for secret sharing [12], have
been obtained from the simpler technique involving only Shannon inequalities.

1.3 Secret Sharing for Matroid Ports

A perfect secret sharing scheme is ideal if all shares have the same size as the secret value,
which is the smallest possible. The entropic vector given by the random variables defining an
ideal scheme determines an entropic matroid [11l, 35]. The access structure is a port of that
matroid [IT, 33]. As a consequence, the access structures of ideal secret sharing schemes are
precisely the ports of entropic matroids, while the ports of folded linear matroids coincide with
the access structures of ideal linear secret sharing schemes.

The optimal information ratio of secret sharing schemes for the ports of a matroid measures
in some way how far it is from being entropic. This parameter has been studied for the Vamos
matroid [6] [7, 20} 24 [33], 42], the first known example of a non-entropic matroid [50], and also
for other non-entropic matroids [20, 46]. For the ports of the Vamos matroid, the application
of the linear programming technique with the common information property yielded the exact
value of the optimal information ratio of linear secret sharing schemes [20]. Moreover, Giirpinar
and Romashchenko [24] recently obtained the current best lower bound for the general case by
using that technique with the copy lemma.

1.4 Our Results

We investigate the application of the improved linear programming technique introduced in [20]
to the classification of matroids according to the different representations discussed in Sec-
tion [LIl First, we prove in Theorem [B.14] an interesting consequence of the results by Nelson
and van der Pol [43]. Namely, every almost entropic sparse paving matroid must satisfy Ingle-
ton inequality. Second, we present an almost complete classification of the matroids on eight
points. Our starting point is the paper by Mayhew and Royle [41], in which the linear matroids
on eight points are determined. Specifically, up to isomorphism, there are exactly 44 matroids



on eight points that are not linear. All of them are sparse paving matroids. Exactly 39 of
them do not satisfy Ingleton inequality, and hence they are not almost entropic. Therefore,
there are five sparse paving matroids that are not linear but satisfy Ingleton inequality. We
prove in Section that exactly two of them are folded linear matroids. They are the smallest
folded linear matroids that are not linear. Those two matroids were known to be algebraic.
Unfortunately, we could not determine whether or not the other three matroids are algebraic
or almost entropic. Some results about matroids on nine points are presented in Section .41
Specifically, we found 171 that satisfy Ingleton inequality but do not have the common informa-
tion property. They are among the smallest matroids in that situation. One of those examples
is the tic-tac-toe matroid. Those 171 matroids are not folded linear, but we could not determine
whether or not they are algebraic or almost entropic.

In addition, by using the improved linear programming technique, we find new lower bounds
on the information ratio of secret sharing schemes for several matroid ports. By combining our
bounds for matroids on eight points with the results in [43], we present in Theorem [5.1] lower
bounds that apply to every sparse paving matroid that do not satisfy Ingleton inequality. We
found a lower bound on the information ratio of linear secret sharing schemes for the ports
of the tic-tac-toe matroid and some of the aforementioned 171 related matroids. Finally, we
determined the exact value of the optimal information ratio of linear secret sharing schemes for
a port of the tic-tac-toe matroid.

2 Preliminaries

We use a compact notation for set unions, that is, we write XY for X UY and Xy for X U{y}.
In addition, we write X \'Y for the set difference and X ~\ z for X \ {z}. The number of
elements of the finite set X is denoted by |X| and P(Q) denotes the power set of ). For a
positive integer m, we notate [m] = {1,...,m}.

2.1 Matroids and Polymatroids

Definition 2.1. Given a finite set () and a function f: P(Q) — R, the pair (Q, f) is called a
polymatroid if the following properties are satisfied for all X, Y C Q.

(P1) f(0)=0.
(P2) f(X)<f(V)ifXCY.
(P3) fF(XNY)+ f(XUY) < f(X)+ (V).

The set (@ and the function f are, respectively, the ground set and the rank function of the
polymatroid. The rank function of an integer polymatroid only takes integer values. A matroid
is an integer polymatroid (@,r) such that r(X) < |X| for every X C Q.

Some additional terminology and properties about matroids are needed. Let M = (Q,r) be
a matroid. The independent sets of M are the sets X C @ with r(X) = |X|. Every subset of
an independent set is independent. The bases of M are the maximal independent sets, and the
minimal dependent sets are the circuits. All bases have the same number of elements, which
equals r(Q), the rank of the matroid. A set X C @ is a flat of M if r(Xz) > r(X) for every
z € @~ X. In addition to the one given in Definition 2.1], there are other equivalent sets of
axioms characterizing matroids which are stated in terms of the properties of the independent
sets, the circuits, the bases, or the flats. A matroid of rank k is paving if the rank of every
circuit is either k or k — 1. It is sparse paving if, in addition, all circuits of rank k& — 1 are flats.



These are called circuit-hyperplanes. The dual of M = (Q,r) is the matroid M* = (Q,r*) with
r(X) = |X| —r(Q) +r(Q \ X) for every X C Q. Equivalently, M* is the matroid on @ whose
bases are the complements of the bases of M.

We introduce next the operations that are used to define minors of matroids and polyma-
troids. For a polymatroid M = (@, f) and a set B C @Q, the deletion M \ B of B from M is
the polymatroid (Q ~ B,f) with ]/”\(X ) = f(X) for every X C @Q ~ B, while the contraction
M/B = (Q ~ B, f) of B from M is defined by f(X) = f(XB) — f(B) for every X C Q@ \ B.
Every polymatroid that is obtained from M by applying deletions and contractions is called a
minor of M. Finally, observe that minors of matroids are matroids.

Let S = (Sz)zcq be a discrete random vector, that is, a finite sequence of discrete random
variables. For every X C @, take h(X) = H(Sx), the Shannon entropy of the discrete random
variable Sx = (Sz)zex. Then (h(X))xep(q) is the entropic vector associated to S. Because
of the basic properties of Shannon entropy, every entropic vector is the rank function of a
polymatroid [21] 22]. A polymatroid is entropic if its rank function is a multiple of an entropic
vector. The closure in RP(@) of the set of entropic vectors is a convex cone [56]. Each element
in this convex cone is the rank function of an almost entropic polymatroid.

We introduce next some notation that is motivated by this connection between Shannon en-
tropy and polymatroids. By analogy with the conditional mutual information, for a polymatroid
(Q, f) and sets XY, Z C @, we write

fY:21X) = f(XY) + [(X2) - f(XY Z) = f(X)

and, in particular, f(Y:2) = f(Y:Z|0) = f(Y)+ f(Z) — f(YZ) and f(Y|X) = f(Y:Y|X) =
FXY) = f(X).

Consider a field F, a vector space V with finite dimension over F and a collection (V;)zecq
of vector subspaces of V. It is clear from basic linear algebra that the map f defined by
f(X) = dim) .V, for every X C @ is the rank function of a polymatroid. Every such
polymatroid is said to be linearly representable, or simply linear, over F. For a positive integer k,
a k-folded F-linear matroid (Q,r) is such that the polymatroid (Q,kr) is F-linear. As we
mentioned in the Introduction, folded linear matroids are also called multilinear or multilinearly
representable in the literature.

Suppose now that F is a finite field and take the dual vector space V*. The uniform
probability distribution on V* and the projections V* — V for x € ) determine a discrete
random vector (Sg)zcq. Such random vectors are called linear. The entropic vector h associated
to S satisfies h(X) = f(X)log |F| for every X C . Since every linear polymatroid admits a
linear representation over some finite field [48], linear polymatroids and folded linear matroids
are entropic.

Consider a field extension K/F and a finite collection (v;)zeq of elements in K. For every
X C Q, let 7(X) be the transcendence degree of the field extension F({v,},cx)/F. Then r is
the rank function of a matroid M with ground set Q). In this situation, M is algebraic over F
and (vy)zeq is an algebraic representation of M.

Given a positive integer m, a collection (A;);c[y, of subsets of a finite set @, and I C [m], we
notate Ay = (J;c; Ai. A linear information inequality, respectively linear rank inequality, on m
variables consists of a collection (ar)rep(m)) of real numbers such that 3= cp gy arf(Ar) =0
for every entropic, respectively linear, polymatroid (Q, f) and for every collection (A;);c[m of
subsets of Q). Since every linear polymatroid is entropic, every information inequality is also a
rank inequality.

Shannon information inequalities are those that are derived from the polymatroid axioms



in Definition 211 Ingleton inequality [25], which can be written in a compact form as
f(Az:A3) < f(A2:A3] A1) + f(A2: A3|Ag) + f(A1: Ay) (1)
was the first known example of a non-Shannon linear rank inequality. The information inequality
2f(A2:A3) < f(A1:A4) + f(A1: A2 A3) + 3f(A2: As|Ar) + f(A2: A3 Ag) (2)

which was presented by Zhang and Yeung [58], was the first known example of a non-Shannon
linear information inequality.

Folded linear matroids are entropic. Every linear matroid is algebraic [44]. It has been
recently proved that every algebraic matroid is almost entropic [38]. Vamos matroid is not
almost entropic because it does not satisfy Zhang—Yeung inequality. Non-Pappus matroid is a
folded linear matroid that is algebraic but not linear [44, [51]. Two examples of almost entropic
matroids that are not entropic were given in [37, Remarks 4, 5|. Only one of them is algebraic.
A folded linear matroid that is not algebraic was presented in [9]. It is not known if there exist
entropic matroids that are not folded linear. These facts are illustrated in Figure [l

For every positive integer k and any field F, the class of k-folded F-linear matroids is closed
by duality [26] 44]. It is unknown whether or not this is the case for the classes of algebraic
or entropic matroids. Remarkably, Kaced [29] recently proved that the class of almost entropic
matroids is not closed by duality. An explicit counterexample is presented in [13].

Every minor of an F-linear polymatroid is F-linear. That is, the class of F-linear polymatroids
is closed under minors. The same applies to the class of almost entropic polymatroids [39]
Lemma 1]. The classes of linear, folded linear, algebraic [44, Corollary 6.7.14], and almost
entropic matroids are closed under minors.

2.2 Secret Sharing

Definition 2.2. An access function on a finite set P is a map I': P(P) — R satisfying the
following properties.

1. T'(®) =0 and T'(P) = 1.
2. T(X)<T(Y)if X CY CP.

An access function is perfect if its only values are 0 and 1. The qualified and forbidden sets of
the access function I' are the ones with I'(X') = 1 and, respectively, I'(X) = 0.

Definition 2.3. For a polymatroid (@, f) and a point p, € Q with f(p,) > 0 and f(Q \ p,) =
f(Q), the port of the polymatroid (Q, f) at p, is the access function I" on the set P = Q \ p,

defined by
r(X) = f(X:po)
f(®o)

The dual T'* of an access function I' on P is defined by I'(X) = 1 — I'(P \ X) for every
X C P. If T is the port of a matroid M at p,, then its dual I'* is the port of the dual matroid
M* at p,. Consider an access function I' on P and a subset B C P. If I'(P \ B) = 1, the
access function I' \ B on P \ B defined by (I' \ B)(X) = I'(X) is the deletion of B from I'. If
I'(B) = 0, the access function (I'/B) with (I'/B)(X) = I'(X B) is the contraction of B from T.
Every access function that is obtained from I' by deletions and contractions is a minor of I'. If
I is the port of a polymatroid M = (Q, f) at p, and B C P = @ \ p,, then the minors I' \ B
and I'/B are the ports of M \ B and, respectively, M/B at p,.



Definition 2.4. Let P be a finite set of players and @Q = Pp, with p, ¢ P. Let " be an
access function on P. Let S = (S;)zeq be a discrete random vector and (@, ) the entropic
polymatroid determined by S. Then S is a secret sharing scheme on P with access function I'
if the following properties are satisfied.

1. h(po) > 0 and h(P) = h(Pp,).
2. T is the port of (@, h) at p,.

The random variable S, corresponds to the secret value, and the share for a player x € P is given
by the random variable S,. Linear secret sharing schemes are those defined by linear random
vectors. A secret sharing scheme is perfect if its access function is perfect. The information
ratio of a secret sharing scheme is max,cp h(z)/h(p,), that is, the ratio between the maximum
length of the shares and the length of the secret.

Only perfect secret sharing schemes are going to be considered in this work. Perfect access
functions are also called access structures. Each of them is determined by its minimal qualified
sets. An access structure is connected if every player is in some minimal qualified set. All access
structures in this paper are supposed to be connected. In a perfect scheme, h(z) > h(p,) for
every © € P. A perfect secret sharing scheme is ideal if h(x) = h(p,) for every x € P. The
optimal information ratio o(I") of an access structure I is the infimum of the information ratios
of the secret sharing schemes for I", while A(T") is the corresponding value when restricting the
optimization to linear secret sharing schemes.

A matroid is connected if every pair of points in the ground set lie in a common circuit. All
ports of a connected matroid are connected access structures. Moreover, a connected matroid
is determined by any of its ports.

Let S = (S3)zeq be an ideal secret sharing scheme and let & be the entropic vector associated
to S. Then the polymatroid (@, f) defined by f(X) = h(X)/h(p,) for every X C @ is a
matroid [II]. As a consequence, the access structures of ideal secret sharing schemes coincide
with the ports of entropic matroids, and the ports of folded linear matroids are precisely the
access structures of ideal linear secret sharing schemes.

3 How to Use Undiscovered Information and Rank Inequalities

The title of this section is borrowed from [24]. It precisely describes the main idea behind
the technique introduced in [20], namely, using properties from which information and rank
inequalities have been derived instead of using known inequalities.

3.1 Common Information

We say that a random variable S3 conveys the common information of the random variables
Sy and Sy if H(S5]S2) = H(S3]S1) = 0 and H(S3) = I(S1:52). In general, given two random
variables, it is not possible to find a third one satisfying those conditions [23]. Nevertheless,
this is possible for every pair of random variables in a linear random vector and, according
to [18], all known non-Shannon rank inequalities are derived from this fact. A combinatorial
abstraction of concept of common information is given in the next definition.

Definition 3.1. Let (@, f) be a polymatroid and let A, B C ). Then every subset X, C Q
satisfying

(Cl) f(X0|A) = f(Xo|B) =0, and



(C2) f(Xo) = f(A:B)

is called a common information for the pair (A, B). If X, = {x,}, then the element z, is also
called a common information for the pair (4, B).

Definition 3.2. Consider polymatroids (Q, f) and (Q', f/) with @ C @Q’. We say that (@', f')
is an extension of (Q, f) if f(X) = f/(X) for every X C Q. In this situation we will generally
use the same symbol for both rank functions.

Definition 3.3. A polymatroid (Q, f) is 1-CI-compliant if, for every pair (A, B) of subsets of
@, there exists an extension (Qx,, f) such that z, is a common information for the pair (A, B).
Inductively, for every integer k > 1, a polymatroid S = (Q, f) is k-CI-compliant if, for every pair
(A, B) of subsets of @, there exists an extension (Qz,, f) such that x, is a common information
for the pair (A, B) and (Qx,, f) is (kK — 1)-CI-compliant. A polymatroid is CI-complaint if it is
k-Cl-compliant for every positive integer k.

Proposition 3.4. Let F be a field. Consider an F-linear polymatroid (Q, f) and a pair (A, B)
of subsets of the ground set. Then there exists an F-linear extension (Qx,, f) such that z, is
a common information for (A, B). As a consequence, linear polymatroids and, in particular,
folded linear matroids are CI-compliant.

Proof. Consider a collection (V3)zeq of vector subspaces providing an F-linear representation
of (@, f). For every X C Q, put Vx = Y 5 Vi. Given a pair (A4, B) of subsets of Q, take
Vi, = VanNVp. Then (V)zeQa, is an F-linear representation of a polymatroid (Qxo, f) extending
(@, f) in which z is a common information for (4, B). O

3.2 Ahlswede and Korner’s Information

Linear information inequalities can be derived from properties that are satisfied by every almost
entropic polymatroid. Specifically, all known linear information inequalities have been derived
from the copy lemma [58] and the Ahlswede-Kérner lemma [I], 2, [14] as used in [32].

Definition 3.5. Let (@, f) be a polymatroid, and let U, V, Z C Q. Then every subset Z, C Q
such that

(AK1) f(Z,|UV) =0,
(AK2) f(U|Z,) = f(U|Z) and f(V|Z,) = f(V|Z),
(AK3) f(UV|Z,) = f(UV|Z)

is called an AK-information for the triple (U,V, Z).

We say that a polymatroid (Q, f) is 1I-AK-compliant if, for every triple (U,V,Z) of sub-
sets of @, there exists an extension (Qz,, f) such that z, is an AK-information for the triple
(U,V,Z). Analogously to the discussion on the common information property, we can define
k-AK-compliance for every k > 0 and also AK-compliance. Next proposition was proved in [20]
from [32], Lemma 5] and [28, Lemma 2]. As a consequence, almost entropic polymatroids are
AK-compliant.

Proposition 3.6. For every almost entropic polymatroid (Q, f) and sets U,V,Z C @Q, there
exists an almost entropic extension (Qz,, f) such that z, is an AK-information for the triple

UV, 2).



As consequence of the following result from [20] (full version), k-CI-compliant polymatroids
are also k-AK-compliant.

Proposition 3.7. If x, is a common information for the pair (UV,Z), then x, is an AK-
information for the triple (U,V,Z).

3.3 Application to Secret Sharing

We describe next the linear programming technique that has been extensively used (see the
references in [20]) to find lower bounds in secret sharing and the improvement on it proposed
in [20].

Let (Sz)zeq be a secret sharing scheme with access structure I' on the set of players P =
Q~p,. Let (@, h) be the entropic polymatroid determined by it and take the polymatroid (Q, f)
given by f(X) = h(X)/h(p,). Then the vector (f(X))xep(q) satisfies the linear constraints

(N) f(po) =1,
(') f(X:po) =T(X) for every X C P

and also the polymatroid axioms (P1)—(P3) in Definition 21 Therefore, the vector f is a
feasible solution of Linear Programming Problem [3.8]

Linear Programming Problem 3.8. For an access structure I' on the set P, the optimal
value of this linear programming problem is, by definition, x(T").

Minimize v
subject to v > f(x) for every x € P
(N), (T), (P1), (P2), (P3)

Since this applies to every secret sharing scheme with access structure I' and the objective
function equals the information ratio, the optimal value x(T") of this linear programming problem
is a lower bound on o¢(T"). It is the best lower bound that can be obtained by using only
Shannon information inequalities [12] 33]. That linear program can be improved by adding
non-Shannon information inequalities [7), 42} [46] or, as proposed in [20], constraints derived
from AK-information or common information.

Linear Programming Problem 3.9. Consider an access structure I' on a set P and a pair
(Ag, A1) of subsets of P. The optimal value of this linear programming problem is a lower
bound on A(T).

Minimize v

subject to v > f(x) for every x € P
(N), (T'1), (T2)
(C1),(C2) for (Ag, A1) and z,
(P1), (P2), (P3) on the set Qx,.



Linear Programming Problem 3.10. Let U,V,Z C P. The optimal value of this linear
programming problem is a lower bound on o(T").

Minimize v

subject to v > f(x) for every z € P
(N, (T1), (T2)
(AK1), (AK2), (AK3) on zp and (U,V, Z)
(P1), (P2), (P3) on the set Qz,.

These linear programming problems can be extended by adding the common information or
the AK-information for more pairs or, respectively, triples of sets.

3.4 Application to Classification of Matroids

Linear information inequalities provide necessary conditions for a matroid to be almost en-
tropic and, as a consequence of the result in [38], also to be algebraic. The same applies to
linear rank inequalities with respect to the class of folded linear matroids. A polymatroid is
Ingleton-compliant, respectively ZY-compliant, if Ingleton inequality (II), respectivey Zhang—
Yeung inequality (2]), holds for every collection (A;);c[4 of subsets of the ground set. As a
consequence of the proofs for those inequalities [I8] 28] [32], 1-CI-compliant and 1-AK compli-
ant polymatroids are Ingleton-compliant and, respectively, ZY-compliant. Those inequalities
are related to a special configuration introduced in [3].

Definition 3.11. A matroid (Q,r) satisfies the bundle condition if it does not contain four
flats (Az‘)z‘e[4] such that every flat has rank 2, the union of every pair of flats has rank 3 except
for r(A1A4) = 4, and the union of every three or four flats has rank 4.

Vamos matroid is among the smallest ones violating the bundle condition, and the one
with the minimum number of dependent hyperplanes. If a matroid does not satisfy the bundle
condition, then the collection (A;);c(4) described in the previous definition violates both Ingle-
ton and Zhang—Yeung inequalities as expressed in (Il) and (2l), respectively. Therefore, almost
entropic matroids and, in particular, algebraic matroids satisfy the bundle condition. More-
over, the sparse paving matroids that are Ingleton-compliant coincide with those satisfying a
generalization of the bundle condition [43] Corollary 3.2].

Proposition 3.12. Let M be a sparse paving matroid of rank k > 4. Then M is not Ingleton-
compliant if and only if there exist five pairwise disjoint subsets B, A1, Ao, As, A4 of the ground
set with |B| =k —4 and |A;| = 2 such that BA1 Ay is a basis and all the other sets of the form
BA;A; with @ # j are circuit-hyperplanes.

Corollary 3.13. If a sparse paving matroid M is not Ingleton-compliant, then there is a minor
of M on eight points that is not Ingleton-compliant.

As a consequence, the class of Ingleton-compliant sparse paving matroids has a finite number
of forbidden minors [43], Theorem 1.3]. In contrast, the set of excluded minors for the class of
Ingleton-compliant matroids is infinite [40]. By combining Proposition B.I121 with a recent result
about algebraic matroids [38], the following remarkable property of sparse paving matroids is
easily derived.

Theorem 3.14. If a sparse paving matroid is not Ingleton-compliant, then it is not ZY-
compliant and hence it is neither almost entropic nor algebraic.
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Proof. If a sparse paving matroid admits the configuration described in Proposition B.12] then
Zhang-Yeung inequality (2) does not hold for (BA;);cqq- O

By using the result in Proposition[3.12] Nelson and van der Pol [43] proved that the number of
Ingleton-compliant matroids is doubly exponential on the size of the ground set. This indicates
that the power of Ingleton inequality in the classification of matroids is quite limited. Of course,
many more rank and information inequalities are available, but one may expect a better outcome
from the strategy introduced in [20], which makes it possible to use undiscovered inequalities.
This claim is supported by the results obtained in secret sharing [20} 24]. Specifically, the linear
programming technique discussed in Section B.3] can be adapted to the study of the classes of
matroids described in Section 2.1 by using the following linear programming problems or their
extensions to multiple pairs or triples of sets.

Linear Programming Problem 3.15. Given a polymatroid (@, ), and subsets 4, B C @,
determine if there is an extension (Qz,,r) such that x, is a common information for the pair
(A, B).

Linear Programming Problem 3.16. Given a polymatroid (Q,r) and subsets U,V, Z C @,
determine if there is an extension (Qz,,7) such that z, is an AK-information for the triple

UV, 2).

Those linear programming problems can be used to disprove that a given matroid is folded
linear or almost entropic. To that end, one can also apply Linear Programming Problems [3.9]
or B.I0 (or their extensions) to any port of the given matroid. The corresponding common
information or AK-information exists if and only if the optimal value is equal to 1.

Nevertheless, by PropositionB. 17, that technique is useless for matroids of rank 3. A modular
pair of flats (A, B) in a matroid M consists of two flats such that AN B is a common information
for (A, B). A flat A is modular if (A, B) is a modular pair of flats for every flat B. In a modular
matroid, all flats are modular. Clearly, every matroid that admits a modular extension is CI-
compliant. This is the case of the matroids with rank 3, because every such matroid can be
extended to a projective plane [25].

Proposition 3.17. Every matroid of rank 3 is Cl-compliant, and hence also AK-compliant.

In this work, we used the Gurobi™ optimizer for solving the linear programming problems,
and the SageMath matroid package for specific matroid operations.

4 Classification of Matroids on 8 Points

The matroids AG(3,2), AG(3,2)", Fs, Qs, Vs (Vamos matroid), Ps, and Lg appearing in this
section and in Section [ are described in the Appendix of Oxley’s book [44]. Given a sparse
paving matroid M, a new such matroid M’ can be obtained by relaxing one of its circuit-
hyperplanes, that is, by transforming it into a basis. In that situation, M’ is called a relazation
of M.

4.1 Matroids that are not Ingleton-compliant

Mayhew and Royle [41] provided a comprehensive list of matroids on up to 9 points, specifying
how many of them are simple, paving, or sparse paving. They also presented the list of all 44
non-linear matroids on 8 points, which are sparse paving and of rank 4. Since every matroid on
at most 7 points is linear, those are the smallest non-linear matroids. Exactly 39 of them are not
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Ingleton-compliant, which implies by Theorem B.14] that they are neither almost entropic nor
algebraic. Those 39 matroids, which include Fg and Q)g, are relaxations of the binary affine cube
AG(3,2), with AG(3,2)" and the Vamos matroid Vg the ones among them with, respectively,
most and fewest circuit-hyperplanes. The matroids in [41] are named according to the database
provided by the same authors in [49]. In this work we follow the same notation.

4.2 Folded Linear Matroids

The 5 remaining non-linear matroids on 8 points are Pj, Py, Py, and P3, which are relaxations
of Pg, and a relaxation Lg of Lg. Take @ = {0,1,...,7} as the ground set of those sparse paving
matroids. The circuit-hyperplanes of Ps are

0127,0136,0235, 1234, 0456, 1457, 2467, 3567, 0347, 1256,
while the ones of Lg are
0246, 1357,0156, 2347, 0127, 3456, 0457, 1236.

The matroid P is obtained from Pg by relaxing the circuit-hyperplane 3567 of Ps. The relax-
ation of 0347 from P; gives the matroid Py, while Pj is obtained from P; by relaxing 1256. The
relaxation of both 0347 and 1256 from P; produces the matroid Ps. Finally, the matroid L is
obtained from Lg by relaxing the circuit-hyperplane 0457.

By applying Linear Programming Problem to those five non-linear matroids, we found
out that they are 1-Cl-compliant, and hence also 1-AK-compliant by Proposition B7l We
explored the possibility that some of them were folded linear matroids. To that end, we combined
the technique to find linear representations of matroids presented in [44] Section 6.4] with the
tools for folded linear matroids given in [5] and we concluded that only Ps and L§ are folded
linear matroids.

Proposition 4.1. The smallest non-linear matroids that are folded linear are precisely P3 and
L.

Before proving Proposition ], we describe how to use the techniques from [5] [44] to that
end. Unless otherwise stated, the blocks in the matrices appearing in this section are square
matrices of size £. We use capital letters to represent them. As usual, the identity and zero
matrices are denoted by I and 0, respectively.

Consider a matroid M = (Q,r) of rank m on n points, a field F, and a positive integer £.
Assume that Q = {0,1,...,n — 1} is the ground set of M. Every F-linear representation of
the polymatroid (Q, ¢r) is called an (F, £)-linear representation of M, and it is determined by a
block matrix over [F of the form

Boo -+ Bon-
B = : : ; (3)
Br-10 -+ Bm—1n-1
where each block B; ; is a square matrix of size £. If V; is the vector subspace of F" spanned
by the columns in the i-th block-column, then (V;);cq is an F-linear representation of the

polymatroid (@, ¢r). By the next result, there exists such a matrix in which every block is
either invertible or zero.
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Lemma 4.2. Suppose that A = {0,1,...,m — 1} is a basis of M. For each j =m,...,n—1,
consider the fundamental circuit C(j, A), that is, the only circuit contained in AUj. Then there
exists a block matriz of the form

I --- 0| Bom -+ Bona

: . : . . ) (4)
0 - I Bm—l,m T Bm—l,n—l

providing an (F, £)-linear representation of M. Furthermore, in every such representation, each
block B;; with j > m is invertible if i € C(j, A) and it is zero otherwise.

Proof. If B’, a block matrix of the form (@), is an (F,¢)-linear representation of M, then the
submatrix T' formed by the block-columns corresponding to the basis A is invertible. Clearly,
B =T~ !B’ is an (F,/)-linear representation of M of the form (). Consider j > m. Without
loss of generality, suppose that C(j, A) ={0,...,s—1,j} for some s < m. Since the submatrix
of B formed by the block-columns corresponding to C'(j, A) has rank s, it is clear that B; ; = 0
if s <7< m—1. If otherwise, 0 < i < s — 1, the rank of the submatrix formed by the
block-columns corresponding to C'(j, A) \ i equals s, which implies that B; ; is invertible. [

Following [5], we are going to use two operations on block matrices representing folded linear
matroids. Namely, block-column scaling and row-block scaling.

Lemma 4.3 ([5] Proposition 2.12). Let M be an (-folded linear matroid represented by a block
matriz B of the form @B) and let G be an invertible ¢ x ¢ matriz. Then, for eachi=0,...,m—1,
the matriz

Boo -+ Bon-1
GBip -+ GBjp1
Bm—l,O o Bm—l,n—l

is also an (F,{)-linear representation of M, and the same applies to the matrix

Boo -+ BojG -+ Bon-1

By10 -+ Bn-1;G -+ Bp_in-
for each 7 =0,...,n—1.

Block scaling can help significantly in simplifying the study of (F, ¢)-linear representations.
By the following lemma, we can assume that several blocks B; ; in (@) equal the identity matrix.
It is a straightforward generalization of [44, Theorem 6.4.7], the analogous result for linear
representations of matroids.

Lemma 4.4. Let M be an (-folded F-linear matroid that admits an (I, £)-representation B' of
the form {@l). Take V ={0,...,m —1} and W = {m,...,n — 1}. Consider the bipartite graph
G with set of vertices V.UW such that (i,j) € V x W is an edge if and only if B ; # 0. Let
E be the set of edges of a maximal acyclic subgraph of G. Then a sequence of block scalings
provides an (F,{)-representation B of the form @) such that B; ; =1 if (i,j) € E.

Proof. Adapt the proof of [44, Theorem 6.4.7] in the obvious way. O
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The graph G is connected for many matroids, and in this case we can assume that n — 1
blocks B; ;j with j > m are equal to I. We are now ready to prove Proposition 4.1l

Proof of Proposition [{.1]. Let M be one of the matroids Py, P, P), P3 and suppose that it is an
{-folded F-linear matroid for some field ' and some positive integer £. Since 0123 is a basis, by
Lemmas and 4 we can assume that M admits an (F, ¢)-linear representation of the form

I 00 0|0 I I I
0 I 00T 0 I A (5)
0 0 I 0|I B 0 C
000 1I|I DUFEO

We next consider the circuit-hyperplanes 0456, 1457, and 2467. The submatrices corresponding
to those sets are, respectively,

I 0 I I 00 I I 00 I I
01 0 I I 1 0 A 01 I A
or B ol lorscl ™ |10 ¢
01 D E 01 D 0 01 E 0

Each of these matrices has rank 3¢. Gaussian elimination transforms those matrices into

I 0 I I I 1 0 A I T 0 C

01 0 I 0 I D 0 0 I E 0

0 0 B —I "l o 0 T I "l o 0 I I

0 0 0 DB '+ E-T 00 0 C—B+D 00 0 A—-I+E

Therefore,

D=(I-E)B (6)
C=B-D=EBRB (7)
A=I1-FE (8)

Since 3567 is a basis, the corresponding submatrix has full rank. Gaussian elimination on it
yields

I D FE 0
0 I I 1
0 0 I A
0 0 0 C—-B+BA

By the previous equations, C — B+ BA = EB — BE, and hence
EB # BF, (9)

which is possible only if £ > 1.
Clearly, the submatrix corresponding to the set 0347 has rank 3¢ if and only if C = A. But
C # A because, otherwise, B = E~! — I by () and (§), and then EB = BE, a contradiction
with ([@). As a consequence, P; and P) do not admit any (I, £)-linear representation.
Similarly, the submatrix corresponding to 1256 has rank 3/ if and only if D = E. We claim
that this is impossible and, as a consequence, Pj is not a folded linear matroid. Indeed, if
D = E, and since I — E = A by (§) and thus invertible, then B = (I — E)"'E by (@) and

(I-E)EB=(I—-E)E(I-E)'E=E(I-E)I-E)'E=E?>=(I-E)BE
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which is a contradiction with (@)).

Since both 1256 and 0347 are bases of Ps, it is still possible to find an (F,¢)-linear repre-
sentation for it. If there exists such a representation, then the matrices corresponding to 0347
and 1256 have full rank, and hence the matrices B — E~! + I and E — (I — E)B are invertible.
After substituting A, C, and D in (@) according to (&), (@) and (@), the following plausible
(F, £)-linear representation for Ps is obtained

I 00 0]0 I I I
0 I 00/|I 0 I I-E (10)
001 0[I B 0 EB
0001I|I I-E)B E 0

As a matter of fact, if we take

11 0 2
B—<1 0>andE—<2 0>

it can be checked that it results in a (GF(5),2)-linear representation for that matroid.
We next prove in a similar fashion that Lj is also a folded linear matroid. If this is the case,
by Lemmas and [£.4] there exists an (F, ¢)-linear representation of the form

I 00O0|I I O I
0 I 00D C 1 A
00 O|FE I I B
000 I|F G 1 0

Proceeding in the same way as before, from the circuit-hyperplanes 0156, 0246, 1357, 2347, and
3456 we can conclude that

G=1, F=D, B=I, A=D,and C=1—-E+D.

Since 0457 is a basis, the corresponding submatrix

I 1 1 I I I I I
0o D CA)| |0DI-E+D D
O FE I B)| |0 E 1 1
0 F G 0 0 D 1 0
has full rank. By Gausian elimination, we obtain

I I I I

0 I D! 0

0 0 I-ED' I

0 0 DED'—FE 0

hence DED~! — E has full rank. In particular, this implies that ¢ > 1. In conclusion, if L} is
a folded linear matroid, it admits an (F, ¢)-linear representation of the form

I 0 0 01 I 0 I
01 00D I-E+D I D (11)
0 0TI 0|F I I I
000 I|D 1 I 0
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with DE # ED and I — E + D invertible. Take i, with 2 = —1. The choice

0 -1 7 0
D_<1 0 )andE—(O —i>

does result in a (GF(5?),2)-linear representation of L}. This can be checked by using a com-
puter. ]

4.3 Algebraic Matroids and Skew-Field Representable Matroids

There exist folded linear matroids that are not algebraic [9], but none on 8 points.
Proposition 4.5. FEvery folded linear matroid on 8 points is algebraic.

Proof. Since linear matroids are algebraic, we only need to consider P3 and Lg. Both are
algebraic over all fields with finite characteristic [10, Example 35]. The result for P; was first
proved by Lindstrém [31]. O

The notion of linear representations of matroids over fields can be extended to linear repre-
sentations over skew-fields. Matroids that admit such a representation are said to be linearly
representable over a skew-field, or skew-field representable for short. The relation between skew-
field representable matroids and folded linear matroids has been studied in [47, [54]. It is known
that there exist folded linear matroids that are not representable over any skew-field [47]. In
the other direction, some connections have been made in [54]. We found that, for matroids with
at most 8 points, these two classes of matroids coincide.

Proposition 4.6. A matroid on at most 8 points is skew-field representable if and only if it is
a folded linear matroid.

Proof. Every linearly representable matroid is also skew-field representable. Skew-field repre-
sentable matroids are Cl-compliant, so the 39 non-Ingleton compliant matroids discussed above
are not representable over skew-fields. The techniques in Section can also be adapted to
representations over skew-fields. In particular, one can prove in that way that P, Pj and Py
are not skew-field representable. Moreover, the matrix (I]) provides a representation of L§ over
the quaternion division ring R(4, j, k) by taking £ =i and D = j. A representation of P3 over
the quaternion division ring is obtained from the matrix (I0) by taking B =k and E =j. O

Remark 4.7. The only matroids on 8 points for which it is not known whether they are
algebraic, almost entropic, or entropic are Py, P}, and Pj.

We can summarise the current classification of matroids on 8 points as follows. There are
44 matroids that are not linear (Section [.I]) and, among them, exactly two are folded linear
(Proposition [A1]). Also, on 8 points, a matroid is skew-field representable if and only if it is
a folded linear matroid (Proposition [£.6]), and the folded linear ones are algebraic (Proposi-
tion [LH)). There are three matroids on 8 points for which it is not known whether they are
algebraic, almost entropic, or entropic (Remark 7). A classification of these three matroids
will conclude the characterization of algebraic, entropic, and almost entropic matroids on 8
points.
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4.4 Exploring Larger Matroids

By taking into account the results in [18] about linear rank inequalities derived from the common
information property, one may expect that there are Ingleton-compliant matroids that are not
Cl-compliant. As a consequence of the results in Sections [4.1] and [4.2] a matroid on 8 points is
1-CI-compliant if and only if it is Ingleton-compliant. Mayhew and Royle [41] found out that
every matroid on 9 points that is not Ingleton-compliant contains a minor on 8 points with the
same property. By solving Linear Programming Problem for many matroids on 9 points
from the database [49], we found 171 sparse paving matroids of rank 5 on 9 points that are
Ingleton-compliant but not CI-compliant. All 171 matroids are listed in Table [

One of those examples is the tic-tac-toe matroid, which is described in Section Bl It was
shown to be non-linearly representable by Alfter and Hochstéttler [3]. Actually, they proved
that it does not satisfy the so-called generalized Fuclidean intersection property, and the same
proof can be used to show that it is not CI-compliant. It is not known whether the tic-tac-toe
matroid is algebraic or not. By solving Linear Programming Problem [B.16] we checked that
it is 1-AK-compliant. We did not find among the other 170 examples any matroid that is not
1-AK-compliant but, due to computational limitations, our exploration was incomplete. Of
course, the dual matroids of those 171 matroids are not folded linear. Nevertheless, we checked
that they are 1-Cl-compliant and hence, by Proposition B.7 also 1-AK-compliant.

5 Secret Sharing for Matroid Ports

Consider a finite set of players P, a special player p, ¢ P and Q = Pp,. For a polymatroid
(Q, f), we notate T',(f) for its port at p, and o(f) = max,ep f(z)/f(po). Let T be a connected
access structure on the set P. Then the parameters o(I') and A(I") introduced in Section
and the optimal value k(T") of Linear Programming Problem B.§ are characterized as follows.

e (I') =min{o(f) : (Q, f) is a polymatroid with I' = T',(f)}.
e o(I") =inf{o(f) : (@, f) is an entropic polymatroid with T' = T',(f)}.
o \T') =inf{o(f) : (Q,f) is a linear polymatroid with I' = T's(f)}.
The following parameter has been recently introduced by Csirmaz [13].
e (') = min{o(f) : (@, f) is an almost entropic polymatroid with I' = T's(f)}.

Clearly, 1 < k(I") <T(I") < o(T") < A(I'). Moreover, I' is a matroid port if and only if x(I') = 1,
and this is equivalent to x(I') < 3/2 [33, Theorem 4.4]. An access structure admits an ideal
secret sharing scheme if and only if it is the port of an entropic matroid. Besides, (I") = 1 if
and only if I' is the port of an almost entropic matroid. The parameters £ and A are invariant
by duality, that is, x(I'*) = &(I") and A(I"™*) = A(I") for every access structure I'. By the recent
results in [I3], [29], this is not the case for the parameter 7. If the access structure I' is a minor
of T, then (') < k(T), A(I'") < A(T"), and also 7(I") < &(T").

By using the techniques described in Section B3] new lower bounds on 7 (I") and A(T") were
obtained in [20] for several access structures including the ports of the matroids AG(3,2),
Fs, Qg, and Vg. Moreover, the bounds on A(I') for the ports of Qg and Vg are tight [20].
Subsequently, an improved lower bound on (I') for a port of the Vamos matroid Vg was
obtained in [24] by using the copy lemma instead of the Ahlswede-Ko6rner lemma.

In this work, we continued the search for lower bounds for matroid ports by using those
methods, which, of course, provide relevant lower bounds only when applied to matroids that
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264950 | 265553 | 268475 | 275391 | 282271 304085

264955 | 265555 | 268476 | 275394 | 282272 306452

264956 | 265556 | 268477 | 275398 | 283581 308279

264978 | 265601 | 268486 | 275399 | 283624 308280

264984 | 265602 | 268611 | 275410 | 283626 308285

264994 | 265622 | 268613 | 275411 | 283630 308381

265008 | 265623 | 268765 | 275416 | 283631 308385

265012 | 265696 | 268774 | 275417 | 283632 308386

265014 | 265715 | 268805 | 276341 | 291383 319504

265018 | 265760 | 268958 | 276430 | 292609 320838

265020 | 266399 | 268961 | 276671 | 293346 327043

265023 | 266923 | 269060 | 276792 | 293347 327134

265026 | 266948 | 269061 | 277240 | 293361 327157

265028 | 267669 | 269062 | 277656 | 294990 328810

265129 | 267671 | 269550 | 277673 | 295231 328817

265237 | 267672 | 269551 | 280230 | 299715 328818

265262 | 267675 | 269558 | 280241 | 299721 328917

265270 | 267678 | 269559 | 280246 | 300609 328928

265389 | 267871 | 269704 | 280249 | 300831 328941

265421 | 267897 | 269824 | 280253 | 301018 335557

265422 | 267946 | 269895 | 280254 | 303086 335558

265423 | 268016 | 270130 | 280733 | 303094 350495

265424 | 268017 | 270133 | 280891 | 303095 351377

265437 | 268018 | 273139 | 281004 | 303158 351471

265465 | 268099 | 273141 | 281568 | 303165 351483

265468 | 268115 | 273582 | 281572 | 303175 | tic-tac-toe

265547 | 268120 | 274066 | 281581 | 304062

265551 | 268272 | 274247 | 281794 | 304066

265552 | 268474 | 275082 | 282270 | 304067

Table 1: Ingleton-compliant non-CI matroids with 9 Points
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are not Cl-compliant. We began by exploring the ports of the 39 matroids on 8 points that are
not Ingleton-compliant and we found out that all of them satisfy A(I") > 4/3 and &(T") > 9/8.
A more general result is obtained by combining our bounds with Corollary [3.131

Theorem 5.1. If a sparse paving matroid is not Ingleton-compliant, then at least eight of its
ports satisfy A\(I') > 4/3 and o(I") > 9/8.

Proof. Let M = (Q,r) be a sparse paving matroid that is not Ingleton-compliant. By Corol-
lary BI3] it has a minor M’ = (Q',r’) with |Q’| = 8 that is not Ingleton-compliant. Hence M’
is one of the 39 matroids on 8 points that are not Ingleton-compliant. For every p, € Q' C Q,
the port I of M’ at p, is a minor of the port I" of M at p,. Therefore, A(I') > A(I'") > 4/3 and
(') >o(I") > 9/8. O

Better lower bounds on 7 (I') have been obtained for some of those 39 matroids, which are
presented in Table 2l The names or numbers of the matroids are as they appear in [41], and in
the database [49].

We also applied the linear programs in Section B3] to the ports of matroids 265389, 265421,
265468, 265551, 265556 & 265622, and the tic-tac-toe matroid; all Ingleton-compliant but non-
CI-compliant matroids on nine points. For all of them, we obtained the lower bound A(I') > 6/5.
We were not able to find any non-trivial bound on & (T').

By presenting a suitable linear secret sharing scheme, we prove next that the bound A(I") >
6/5 is tight for at least one of the ports of the tic-tac-toe matroid. Take @ = {0, 1,2} x {0, 1,2}
and, for every (a,b) € @, the 5-element set

Car={(i,J) €Q : i=aorj=1b)

We introduce several sparse paving matroids with ground set @ and rank 5. We call M, the
one whose circuit-hyperplanes are all sets Cy,. The tic-tac-toe matroid M is obtained from
M, by relaxing the circuit Cy;. Finally, for every (a,b) # (1,1), let My, be the matroid that
is obtained from the tic-tac-toe matroid by relaxing the circuit Cg. Clearly, every matroid
M,y is isomorphic to either My or My;. The matroids M, and My, with (a,b) # (1,1) are
representable over every large enough field. We skip the proof of this fact, but we present
[F11-linear representations for M,, Mgy, and My, which are given, respectively, by the following
matrices, whose columns are indexed as (0, 0), (0,1), (0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).

101110011 111110011
110110000 00050110 10
000O0O1T1O0T1]1 10810300 0
000110110 0001106 7 0
06 01 0402 3 15011000 0
101110071
1101 1000O0
000011071
000110110
9076 03 6 06

Let T' be the port of the tic-tac-toe matroid M at p, = (0,0). Let I';; be the port of M,
at p, and, for (a,b) # (1,1), let T'yp be the port of My, at p,. Since they are ports of Fy;-
linear matroids, each of the nine access structures 'y, admits an ideal [Fq1-linear secret sharing
scheme. Every qualified set of I' is qualified in at least five of the six access structures I'11, I'gg,
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Matroid Port Improved bound on & (I")

1490 0,2,3,4,5,6 8/7
1491 0,3,7 33/29
1491 2,4,5,6 8/7
1492 0,1,2,3,4,5,6,7 49/43
1494 3,4,5,6 33/29
1499 0,2,3,4,5,6 8/7
1500 0,2,3,4,5 6 8/7
1501 0,1,2,3,6,7 33/29
1501 4,5 8/7
1502 5, 6 8/7
1502 2,3,4,7 33/29
1508 3,4,5,6 33/29
1509 3,4,5,6 33/29
1510 3,4,5,6 33/29
1518 3,4,5,6 33/29
1520 2,3,4,7 33/29
1524 3,4,5,6 33/29
1525 0,2,4,5 33/29
1525 3,6 8/7
1526 0,2,3,4,5,6 8/7
1527 0,2,4,5 33/29
1528 0,2,3,6 8/7
1529 1,4,5, 7 33/29
1531 2,5,6,7 33/29
1532 4,7 8/7
1532 0,1,2,3,5,6 33/29
1549 3,4,5,6 33/29
1568 3,4,5,6 33/29
1572 2,3,4,7 33/29
1576 3,4,5,6 33/29
1578 3,4,5,6 33/29
1579 0,2,4,5 33/29
1579 3,6 8/7
1580 0,2,3,6 33/29
1641 3,4,5,6 33/29
1646 2,5,6,7 33/29
1654 3,4,5,6 33/29
1656 0,2,3,6 33/29
1657 0,2, 3,6 33/29
1660 0,2, 3,6 33/29
AG(3,2) 1,3,5, 7 49/43
Fy 1,7 8/7
Fy 3,4,5,6 33/29
Qs 1,4,6,7 49/43
Vg 0,2, 36 33/29
Vs 2,3,6,7 33/291
Table 2: Bounds on ports of matroids on 8 points. Improved
in [24]
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To1, To2, I'1g, and I'yg. In addition, the unqualified sets of I' are also unqualified in those six
access structures. Therefore, by combining the ideal linear secret sharing schemes for those six
access structures in a A-decomposition with A = 5, we obtain a linear secret sharing scheme
for T with information ratio 6/5. The reader is referred to [45] [52] for more information about
A-decompositions.

Acknowldegements: We thank Dillon Mayhew and Gordon F. Royle for helpful suggestions
and also for providing us the matroid database [49].
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