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The Minimum Linear Arrangement problem (MLA) consists of finding a mapping π from 
vertices of a graph to distinct integers that minimizes 

∑
{u,v}∈E |π(u) − π(v)|. In that 

setting, vertices are often assumed to lie on a horizontal line and edges are drawn as 
semicircles above said line. For trees, various algorithms are available to solve the problem 
in polynomial time in n = |V |. There exist variants of the MLA in which the arrangements 
are constrained. Iordanskii, and later Hochberg and Stallmann (HS), put forward O (n)-time 
algorithms that solve the problem when arrangements are constrained to be planar (also 
known as one-page book embeddings). We also consider linear arrangements of rooted 
trees that are constrained to be projective (planar embeddings where the root is not 
covered by any edge). Gildea and Temperley (GT) sketched an algorithm for projective 
arrangements which they claimed runs in O (n) but did not provide any justification of 
its cost. In contrast, Park and Levy claimed that GT’s algorithm runs in O (n log dmax) where 
dmax is the maximum degree but did not provide sufficient detail. Here we correct an error 
in HS’s algorithm for the planar case, show its relationship with the projective case, and 
derive simple algorithms for the projective and planar cases that run without a doubt in 
O (n) time.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A linear arrangement π of a graph G = (V , E) is a lin-
ear ordering of its vertices (it can also be seen as a per-
mutation), i.e., vertices lie on a horizontal line. In such 
arrangement, the distance d(u, v) between two vertices 
u, v can be defined as d(u, v) = |π(u) − π(v)| where π
maps the n vertices to the n distinct integers in [1, n]. The 
Minimum Linear Arrangement problem (MLA) consists of 
finding a π that minimizes the cost D = ∑

{u,v}∈E d(u, v)

[4,15]. In arbitrary graphs, the problem is NP-hard [4]. For 
trees, various algorithms are available to solve the problem 
in polynomial time [6,16,15]. Goldberg and Klipker [6] de-
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vised an O (n3) algorithm. Later, Shiloach [16] contributed 
with an O (n2.2) algorithm. Finally, Chung [15] contributed 
with two algorithms running in O (n2) time and O (nλ)

time, respectively, where λ is any real number satisfying 
λ > log 3/ log 2. The latter algorithm is the best algorithm 
known.

There exist several variants of the MLA problem; two of 
them are the planar and the projective variants. In the pla-
nar variant, namely the MLA problem under the planarity 
constraint, the placement of the vertices of a free tree is 
constrained so that there are no edge crossings. These ar-
rangements are known as planar arrangements [12], and 
also one-page book embeddings [1]. Two undirected edges 
of a graph {s, t}, {u, v} ∈ E cross if π(s) < π(u) < π(t) <
π(v) when, without loss of generality, π(s) < π(t), π(u) <
π(v) and π(s) < π(u). To the best of our knowledge, the 
first O (n) algorithm was put forward by Iordanskii [10]. 
s article under the CC BY-NC-ND license 
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Sixteen years later, Hochberg and Stallmann (HS) [9] put 
forward another O (n)-time algorithm. However, their al-
gorithm contains an error which is corrected in this paper.

In the projective variant, namely the MLA problem un-
der the projectivity constraint, a rooted tree is arranged so 
that there are no edge crossings (i.e., the arrangement is 
planar) and the root is not covered. These arrangements 
are known as projective [12,13]. A vertex w is covered 
by an edge {u, v} if π(u) < π(w) < π(v) when, without 
loss of generality, π(u) < π(v). Fig. 1(a) shows a projec-
tive arrangement while Fig. 1(b) shows an arrangement 
that is projective if we take vertex 2 as the root but not 
if we take vertex 1 as the root. Gildea and Temperley (GT) 
[5] sketched an algorithm to solve this variant. The tree 
shown in Fig. 1 is the smallest tree for which there is 
a vertex that, when chosen as the root, makes the min-
imum cost of the projective case be greater than that of 
the planar case (there are no other 6-vertex trees where 
that happens). While GT claimed that their sketch runs in 
O (n) [5, p. 2], Park and Levy (PL) argued that it runs in 
time O (n log dmax), where dmax is the maximum degree. 
However, PL did not give enough detail to support their 
conclusion [14]. In this article, we show that this is an 
overestimation of the actual complexity: the problem can 
be actually solved in O (n) time.

The remainder of the article is organized as follows. 
Section 2 introduces the notation and reviews HS’s algo-
rithm. Section 3 corrects and completes HS’s algorithm 
[9]. The error is located in a recursive subprocedure 
(embed_branch) of HS’s algorithm. In Section 4, we 
present two detailed O (n)-time algorithms for the pro-
jective case that stem from HS’s algorithm. HS’s algorithm 
already contained a ‘subalgorithm’ for solving the projec-
tive case although the authors did not identify it as such 
in their article [9]. Indeed, their algorithm can be rein-
terpreted as consisting of two main steps: finding a cen-
troidal1 vertex (as in Iordanskii’s algorithm [10]) and then 
solving the projective case for the input tree rooted at that 
vertex. Hence the first algorithm for the projective case is 
obtained extracting the relevant part from HS’s original al-
gorithm, completing and simplifying it and, critically, using 
the correction indicated in Section 3. Our second algorithm 
for the projective case is a re-engineered version based on 
intervals that results into a more compact, clearer and sim-
pler algorithm that can be utilized to solve also the planar 
case and can be seen as a formal interpretation of GT’s 
sketch. Indeed, Section 4 unifies, in a sense, HS’s algorithm 
and GT’s sketch. Put differently, solving the minimization 
of D on a tree under planarity is equivalent to solving the 
projective case for a tree rooted at a specific vertex. For 
instance, the minimum D under planarity for the tree in 
Fig. 1 is obtained when calculating the minimum D under 
projectivity when the tree is rooted at the vertex marked 
with a square in Fig. 1(b). Section 5 draws some general 
conclusions and indicates some future paths for research.

1 In this paper we follow the same terminology and notation as in [7, 
Pages 35-36]. Therefore, we consider the center to be the set of central
vertices, the vertices whose eccentricity is equal to the radius, and the 
centroid to be the set of centroidal vertices, the set of vertices whose 
weight, i.e., the size of the largest subtree, is minimum.
2

Fig. 1. Two different linear arrangements of the same free tree T . a) A 
minimum projective arrangement of T rooted at 1 with cost D = 7; the 
circled dot denotes the root. b) A minimum planar arrangement of T with 
cost D = 6 under the planarity constraint; the squared dot denotes its 
(only) centroidal vertex.

2. Notation and review

Throughout this paper we use T = (V , E) to denote a 
free tree, and T r = (V , E; r) to denote a tree T rooted 
at a vertex r where n = |V |. Free trees have undirected 
edges, and rooted trees have directed edges; we consider 
the edges of a rooted tree to be oriented away from the 
root. In rooted trees, we refer to the parent of a vertex u
as p(u); in a directed edge (u, v), p(v) = u. We use T r

u
to denote a subtree of T r rooted at u ∈ V (if u = r then 
T r

u = T r ), and �u to denote the set of neighbors of ver-
tex u in T . We call T r

v an immediate subtree of T r
u rooted 

at v if (u, v) ∈ E(T r). Extending the notation in [9], we 
use T r

u,1, · · · , T r
u,k to denote the k immediate subtrees of a 

subtree T r
u of T r sorted decreasingly by size. We also use 

n1 ≥ · · · ≥ nk ≥ 1 to denote their sizes, i.e., ni denotes the 
size of T r

u,i ; we omit the vertex when referring to imme-
diate subtrees of T r . Henceforth assume, without loss of 
generality, that k is even. Recall that π(u) is the position 
of u ∈ V in the linear arrangement.

Now we summarize the core ideas and tools derived 
by HS [9]. Firstly, using Lemmas 6, 11 in [9], it is easy to 
see that an optimal projective arrangement of T r is ob-
tained by arranging the immediate subtrees of T r inwards, 
decreasingly by size and on alternating sides, namely 
T r

1, T
r
3, · · · , r, · · · , T r

4, T
r
2 or T r

2, T
r
4, · · · , r, · · · , T r

3, T
r
1. Im-

mediate subtrees of T r can be arranged in any of the two 
orders, whereas immediate subtrees of T r

u , u �= r have to 
be placed according to the side in which u is placed with 
respect to p(u): if u is placed to p(u)’s left then the op-
timal order is T r

u,1, T
r
u,3, · · · , u, · · · , T r

u,4, T
r
u,2 (Fig. 2(a)), 

and if u is placed to p(u)’s right the optimal order is 
T r

u,2, T
r
u,4, · · · , u, · · · , T r

u,3, T
r
u,1 (Fig. 2(b)). Notice that the 

root is not covered in any of these planar arrangements, as 
required by the projectivity constraint [12,13].

Secondly [9, Theorem 12], an optimal planar arrange-
ment of a free tree T is obtained when T is rooted at 
one of its centroidal vertices. Therefore, an optimal pla-
nar arrangement of a free tree T is an optimal projective 
arrangement of T c , where c denotes one of the (possible 
two) centroidal vertices of T . For the calculation of a cen-
troidal vertex, HS defined s(u, v), which we call directional
size of subtrees. The directional size s(u, v) in a free tree 
T , for {u, v} ∈ E(T ), is the size of T u

v (Fig. 3). Notice that 
s(v, u) + s(u, v) = n. They also outlined a way of calcu-
lating all of the s(u, v) in O (n) time [9, Section 6], but 
did not provide any pseudocode; here we provide it in Al-
gorithm 2.1. Using the s(u, v) for all edges in T , we can 
construct a sorted adjacency list of the tree which we de-



L. Alemany-Puig, J.L. Esteban and R. Ferrer-i-Cancho Information Processing Letters 174 (2022) 106204

Fig. 2. a,b) Optimal arrangements of T r
v according to the relative position of v with

E in an optimal projective arrangement, divided into the anchor (the part of the
the edge (u, v) to the right). The length of the anchor of edge (p(u), u) is the su
Fig. 3. a) A free tree with s(u, v) = 7, s(v, u) = 3 and s(v, w) = s(w, v) =
5. b) The free tree in a) rooted at v; |V (T v

u )| = s(v, u). Borrowed from [9, 
Fig. 7].

note as L, with the pseudocode given in Algorithm 2.2 [3], 
and with it we calculate one of the centroidal vertices. Al-
gorithm 2.3 reports the pseudocode for the calculation of 
the centroidal vertex. All algorithms have O (n)-time and 
O (n)-space complexity.

We also need to consider the rooting of the list L with 
respect to a given vertex w , denoted as Lw . This operation 
is called root_list(L, w) in the pseudocode. It transforms 
the representation of an undirected tree into a directed 
tree and consists of the action of removing edges of the 
form (u, p(u)), where u �= w , from L, starting at the given 
vertex w which acts as a root. In other words, vertex w in-
duces an orientation of the edges towards the leaves (i.e., 
away from w), and we have to remove one of the two 
edges (u, v), (v, u) from L for every {u, v} ∈ E . Since this 
can be done fairly easily in linear time, we do not give the 
pseudocode for this operation.

3. Minimum planar linear arrangements

In [9], HS present an easy-to-understand algorithm to 
calculate a minimum planar linear arrangement for any 
free tree in linear time. The idea behind the algorithm was 
presented in Section 2. The implementation has two proce-
dures, embed and embed_branch, that perform a series 
of actions in the following order:

• Procedure embed gets one centroidal vertex, c, uses it 
as a root and orders its immediate subtrees by size.

• Procedure embed puts immediate subtrees with an 
even index in one side of the arrangement and im-
3

 respect to v ’s parent. c) Depiction of the directed edges (p(u), u), (u, v) ∈
 edge (u, v) to the left of the vertical line), and the coanchor (the part of 
m n j for even j ∈ [2, k].

Algorithm 2.1: Calculation of directional sizes for 
free trees. Cost O (n) time, O (n) space.

1 Function compute_s_ft(T ) is
2 In: T free tree.
3 Out: S = {(u, v, s(u, v)), (v, u, s(v, u)) | {u, v} ∈ E}.
4 S ← ∅
5 u∗ ← choose an arbitrary vertex
6 for v ∈ �u∗ do
7 (_, S ′) ←comp_s_ft_rec(T , (u∗, v))
8 S ← S ∪ S ′

9 return S

10 Function comp_s_ft_rec(T , (u, v)) is
11 In: T free tree, (u, v) directing edge.
12 Out: s the size of T u∗

v in vertices, 
S = {(u, v, s(u, v)), (v, u, s(v, u)) | {u, v} ∈ E(T u∗

v )}.
13 s ← 1
14 for w ∈ �v do
15 if w �= u then
16 (s′, S ′) ← comp_s_ft_rec(T , (v, w))
17 s ← s + s′
18 S ← S ∪ S ′

// s = s(u, v), n − s = s(v, u)

// Append at end in O (1)

19 S ← S ∪ {(u, v, s), (v, u, n − s)}
20 return (s, S)

Algorithm 2.2: Calculation of the sorted adjacency 
list for free trees. Cost O (n) time, O (n) space.

1 Function sorted_adjacency_list_ft(T ) is
2 In: T free tree.
3 Out: L, the decreasingly-sorted adjacency list of T .

// Algorithm 2.1
4 S ← compute_s_ft(T )

5 Sort the triples (u, v, s) in S decreasingly by s using counting 
sort [3]

6 L ← {∅}n

7 for (u, v, s) ∈ S do
// Append at end in O (1)

8 L[u] ← L[u] ∪ (v, s)

9 return L
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Algorithm 2.3: Calculation of a centroidal vertex of 
a free tree. Cost O (n) time, O (n) space.

1 Function find_centroidal_vertex(T ) is
2 In: T free tree.
3 Out: A centroidal vertex of T .

// Algorithm 2.2
4 L ← sorted_adjacency_list_ft(T )

5 return find_centroidal_vertex(T , L)

6 Function find_centroidal_vertex(T , L) is
7 In: T free tree, L sorted adjacency list of T .
8 Out: A centroidal vertex of T .
9 u ← choose an arbitrary vertex

10 while true do
// O (1) time since L[u] is sorted

11 (v, s) ← largest entry in L[u]
12 if s > n/2 then u ← v
13 else return u

mediate subtrees with odd index in the other side 
(the bigger the subtree, the farther away from the cen-
troidal vertex), calling procedure embed_branch for 
every subtree.

• Procedure embed_branch calculates recursively a 
displacement of all nodes with respect to the place-
ment of the centroidal vertex (of the whole tree) in 
the linear arrangement.

• Procedure embed calculates the centroidal vertex’s po-
sition (the sum of sizes of trees on the left of the 
centroidal vertex) and applies the displacement to the 
rest of the nodes.

Algorithm 3.1: Step (5) from procedure embed.

1 π(c) ← le f t Sum + 1
2 relPos[c] ← 0
3 for each vertex v do
4 π(v) ← π(c) + relPos[v]

From Algorithm 3.1, we can see that vector relPos
must contain the displacement of all nodes from the po-
sition of the centroidal vertex in the linear arrangement. 
Note that these are only the last lines of embed. The prob-
lem lays in procedure embed_branch, which does not 
calculate correctly the displacement vector relPos. In Al-
gorithm 3.2, we give a correct version of procedure em-
bed_branch, where changes with respect to HS’s version 
are marked in red. Lines 6 to 10 are needed to calculate 
the correct displacement. For a vertex u �= c, variable un-
der_anchor is the number of nodes of T c

u between u and 
p(u). Adding under_anchor to parameter base (line 10), we 
obtain the correct displacement. There is also a slight mod-
ification in the recursive calls (lines 14 and 17) which is 
the addition of all the parameters needed.

We should note that embed needs to calculate a sorted 
adjacency list L to calculate a centroidal vertex c for T c

(Algorithm 2.3). However, in order to calculate the arrange-
ment, we need L to be rooted at c, then we use Lc (see 
Section 2, explanation of root_list).

In Section 4, we give an even simpler algorithm that 
can be seen as a different interpretation of HS’s algorithm 
4

Algorithm 3.2: embed_branch corrected. (For in-
terpretation of the colors in the algorithm(s), the 
reader is referred to the web version of this arti-
cle.)

1 Function embed_branch(Lc , v, base, dir, relPos) is
2 In: (Rooted) sorted adjacency list Lc for T c as described in 

Section 2; v the root of the subtree to be arranged; base the 
displacement for the starting position of the subtree 
arrangement; dir whether or not v is to the left or to the 
right of its parent.

3 Out: relPos contains the displacement from the centroidal 
vertex of all nodes of the subtree.
// the children of v decreasingly sorted by 

size
4 C v ← Lc [v]
5 bef ore ← af ter ← 0
6 under_anchor ← 0
7 for i = 1 to |C v | step 2 do

// v’s i-th child, |V (T c
vi

)| its size
8 vi, ni ← C v [i]
9 under_anchor ← under_anchor + ni

10 base ← base + dir ∗ (under_anchor + 1)

11 for i = |C v | downto 1 do
12 vi, ni ← C v [i]
13 if i is even then
14 embed_branch(Lc , vi ,base − dir ∗ bef ore,−dir, relPos)
15 bef ore ← bef ore + ni

16 else
17 embed_branch(Lc , vi ,base + dir ∗ af ter,dir, relPos)
18 af ter ← af ter + ni

19 relPos[v] ← base

as it uses the same idea for ordering the subtrees but in-
stead of calculating displacements for nodes it only uses 
the interval of positions where a subtree must be arranged.

Prior to HS’s work, Iordanskii [10] presented an algo-
rithm to solve the task of minimizing D under the pla-
narity constraint. He devised a different approach to solve 
the same problem: given a free tree, the algorithm roots 
the tree at its centroid, and then separates the tree into 
chains of vertices, which have to be arranged in such a 
way that a planar arrangement is produced. The proper se-
lection of the chains, coupled with the proper labeling of 
their vertices, produces a minimum planar arrangement. 
An outline of the algorithm that is applied on T c is as fol-
lows [11]:

1. Select an arbitrary vertex v0 in the current decompo-
sition subtree (initial tree).

2. Go from vertex v0 along the branches with the great-
est number of vertices to some hanging vertex vi .

3. Starting from vertex vi , construct a chain along the 
branches with the largest number of vertices to some 
other hanging vertex v j .

4. Assign the highest and lowest numbers to the vertices 
vi and v j from the range allocated for the current de-
composition subtree (1 and n for the initial tree).

5. Enumerate monotonically the chain connecting the 
vertices vi and v j , leaving the corresponding ranges 
of numbers for each selected decomposition subtree.

6. The procedure recursively repeats until all vertices are 
numbered.
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The algorithm requires O (n) comparison operations and 
O (n log n) additional memory.

Iordanskii’s approach differs markedly from HS’s algo-
rithm, e.g., using chains instead of anchors, and here we 
have focused on deriving a couple of algorithms for the 
projective case that stems from HS’s algorithm for the pla-
nar case.

4. Minimum projective linear arrangements

The two algorithms for the projective that are pre-
sented in this section have O (n)-time and O (n)-space 
complexity, hence our upper bound for the projective case 
is tighter than that given by PL [14]. The first algorithm 
is derived from HS’s for the planar case (Algorithm 4.3). 
This algorithm is obtained after extracting the relevant part 
from HS’s original algorithm, adapting it and simplifying 
procedure embed. The simplifications have to do with re-
ducing the computations that Algorithm 2.1 does, which 
are not necessary in the projective variant (Algorithms 4.1
and 4.2). Algorithm 4.1 is the simplified version of 2.1 that 
calculates only the sizes of the subtrees T r

u of T r for every 
vertex u of T r ; Algorithm 4.2 constructs the rooted sorted 
adjacency list of a rooted tree T r with less calculations 
than Algorithm 2.2 [3]. There is no equivalent to Algo-
rithm 2.3 for rooted trees because we do not need to look 
for any centroidal vertex. Finally, one has to use the correc-
tion of the subprocedure embed_branch Algorithm 3.2. 
Algorithm 4.3 inherits the O (n)-time and O (n)-space com-
plexity from HS’s algorithm.

Algorithm 4.1: Calculation of size of subtrees for 
rooted trees. Cost O (n) time, O (n) space.

1 Function compute_s_rt(T r) is
2 In: T r rooted tree.
3 Out: S = {(u, v, s(u, v)) | (u, v) ∈ E}.
4 S ← ∅
5 for v ∈ �r do
6 (_, S ′) ← comp_s_rt_rec(T r , (r, v))

7 S ← S ∪ S ′

8 return S

9 Function comp_s_rt_rec(T r , (u, v)) is
10 In: T r rooted tree, (u, v) directing edge.
11 Out: s the size of T r

v in vertices, 
S = {(u, v, s(u, v)) | (u, v) ∈ E(T r

v )}.
12 s ← 1

// Iterate on the out-neighbors of v
13 for w ∈ �v do
14 (s′, S ′) ← comp_s_rt_rec(T r , (v, w))

15 s ← s + s′
16 S ← S ∪ S ′

// s = s(u, v)

// Append at end in O (1)

17 S ← S ∪ {(u, v, s)}
18 return (s, S)

The second algorithm for the projective case is based 
on a different approach based on intervals (Algorithms 4.4
and 4.6). Although the pseudocode given can be regarded 
as a formal interpretation of GT’s sketch [5] its correct-
ness stems largely from the theorems and lemmas given 
by HS [9] (summarized in Section 2). In Algorithm 4.4
5

Algorithm 4.2: Calculation of the sorted adjacency 
list for rooted trees. Cost O (n) time, O (n) space.

1 Function sorted_adjacency_list_rt(T r) is
2 In: T r rooted tree.
3 Out: L the decreasingly-sorted adjacency list of T r .

// Algorithm 4.1
4 S ← compute_s_rt(T )

5 Sort the triples (u, v, s) in S decreasingly by s using counting 
sort [3]

6 L ← {∅}n

7 for (u, v, s) ∈ S do
// Append at end in O (1)

8 L[u] ← L[u] ∪ (v, s)

9 return L

Algorithm 4.3: Adaptation of HS’s main procedure 
for the projective case.

1 Function HS_Projective(T r) is
2 In: T r rooted tree at r.
3 Out: An optimal projective arrangement π .

// Steps 1 and 3 of HS’s algorithm
// Algorithm 4.2

4 Lr ← sorted_adjacency_list_rt(T r)

5 relPos ← {0}n

6 le f t Sum ← right Sum ← 0
7 for i = k downto 1 do
8 if i is even then

// Algorithm 3.2

9 embed_branch(Lr , vi , right Sum,1, relPos)
right Sum ← right Sum + ni

10 else
// Algorithm 3.2

11 embed_branch(Lr , vi ,−le f t Sum,−1, relPos)
le f t Sum ← le f t Sum + ni

12 π ← {0}n // empty arrangement
13 π(r) ← le f t Sum + 1
14 relPos[r] ← 0
15 for each vertex v do π(v) ← π(r) + relPos[v]
16 return π

we give the main procedure that includes the call to the 
embedding recursive procedure, given in Algorithm 4.6, 
which could be seen as a combination of HS’s methods
embed_branch and embed excluding the calculation of 
one of the centroidal vertices [9].

Algorithm 4.6 calculates the arrangement of the input 
tree T r using intervals of integers [a, b], where 1 ≤ a ≤ b ≤
n, that indicate the first and the last position of the ver-
tices of a subtree in the linear arrangement; an approach 
based on intervals (but using chains) was considered ear-
lier by Iordanskii [11]. For the case of T r , the interval is 
obviously [1, n], as seen in the first call to Algorithm 4.6
(line 6 of Algorithm 4.4 and line 8 of 4.5). The loop at line 
7 of Algorithm 4.6 is responsible for arranging all imme-
diate subtrees of T r

u following the ordering described by 
HS (Section 2). Now, let T r

u (u �= r) be a subtree of T r to 
be embedded in the interval [a, b], where u, a and b are 
parameters of the recursive procedure. If one of the im-
mediate subtrees of T r

u , say T r
v with nv = |V (T r

v)|, is to be 
arranged in the available interval farthest to the left of its 
parent u, its interval is [a, a + nv − 1] (lines 10-12); when 
it is to be arranged in the available interval farthest to the 
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right of u, its interval is [b − nv + 1, b] (lines 14-16). No-
tice that the side (with respect to u) to which subtree T r

v
has to be arranged is decided by changing the value of the 
variable side, whose initial value is given in either line 
5 or line 6 depending on the side to which u has been 
placed with respect to its parent (said side is given as the 
parameter τ to the recursive procedure). After T r

v is ar-
ranged, we need to update the left and right limits of the 
arrangement of T r

u : if the subtree T r
v is arranged to the left 

of u, the left limit is to be increased by nv (line 18), and 
when it is arranged to the right of u, the right limit is to 
be decreased by nv (line 19). When all immediate subtrees 
of T r

u have been arranged (line 21), only node u needs to 
be arranged, thus the remaining interval [a, b] has one el-
ement, and then a = b and π(u) = a.

Furthermore, using this recursive procedure, solving the 
planar variant is straightforward, (Algorithms 4.5 and 4.6): 
given a free tree T , we simply have to find a centroidal 
vertex c of T (Algorithm 2.3) where to root the tree and 
then supply T c and Lc as input of Algorithm 4.6. This is 
due to the fact that an optimal planar arrangement for T
is an optimal projective arrangement for T c [9]. Clearly, an 
optimal planar arrangement for T needs not be an opti-
mal projective arrangement for T r for r �= c, as r might be 
covered. Fig. 1(a) shows an optimal projective arrangement 
of the rooted tree T 1, which is not an optimal planar ar-
rangement of T ; Fig. 1(b) shows an arrangement that is 
both optimal planar for T and optimal projective for T 2.

Algorithm 4.4: Linear-time calculation of an opti-
mal projective arrangement.

1 Function arrange_optimal_projective(T r) is
2 In: T r rooted tree at r.
3 Out: An optimal projective arrangement π .

// Algorithm 4.2
4 Lr ← sorted_adjacency_list_rt(T r)

5 π ← {0}n // empty arrangement
// The starting side ‘right’ is arbitrary.
// Algorithm 4.6.

6 Arrange(Lr , r, right, 1, n, π)

7 return π

Algorithm 4.5: Linear-time calculation of an opti-
mal planar arrangement.

1 Function arrange_optimal_planar(T ) is
2 In: T free tree.
3 Out: An optimal planar arrangement π .

// Algorithm 2.2
4 L ← sorted_adjacency_list_ft(T )

// Algorithm 2.3
5 c ←find_centroidal_vertex(T , L)

// list L rooted at c (Section 2)
6 Lc ← root_list(L, c)
7 π ← {0}n // empty arrangement

// The starting side ‘right’ is arbitrary.
// Algorithm 4.6.

8 Arrange(Lc , c, right, 1, n, π)

9 return π

Algorithm 4.4’s time and space complexities are O (n). 
First, the sorted, and already rooted, adjacency list Lr of T r
6

Algorithm 4.6: Optimal arrangement of a tree ac-
cording to its sorted adjacency list.

1 Function Arrange(Lr , u, τ , a, b, π) is
2 In: (Rooted) sorted adjacency list Lr as described in 

Section 2; u the root of the subtree to be arranged; τ
position of u with respect to its parent p(u); [a, b] interval 
of positions of the arrangement where to embed T r

u ; π the 
partially-constructed arrangement.

3 Out: π updated with the optimal projective arrangement for 
T r

u in [a, b].
4 Cu ← Lr [u] // the children of u decreasingly 

sorted by size
5 if τ is right then side ← right
6 else side ← left
7 for i from 1 to |Cu | do

// the i-th child of u and its size 
nv = |V (T r

v )|
8 v, nv ← Cu [i]
9 if side is left then

10 τnext ← left
11 anext ← a
12 bnext ← a + nv − 1

13 else
14 τnext ← right
15 anext ← b − nv + 1
16 bnext ← b

17 Arrange(Lr , v, τnext, anext, bnext, π)

18 if side is left then a ← a + nv

19 else b ← b − nv

20 side ← opposite side

21 π(u) ← a

can be computed in O (n) (line 4). The running time of Al-
gorithm 4.6 is clearly O (n): the ‘for’ loop (line 7) contains 
constant-time operations, a single recursive call and, since 
each loop consists of du = |�u| iterations (for a vertex u), 
the total running time is O (

∑
u∈V du) = O (n) because ev-

ery vertex is visited only once. The spatial complexity is 
O (n): sorting and building the adjacency list Lu requires 
O (n) space (for any u) and Algorithm 4.6 requires extra 
O (n) space (for the whole stack of the recursion) in the 
worst case (for path graphs). The same can be said about 
Algorithm 4.5.

5. Conclusions and future work

To the best of our knowledge, our work is the first 
to highlight a relationship between the MLA problem un-
der planarity and the same problem under projectivity. We 
have shown that HS’s algorithm for planarity [9] contains a 
subalgorithm to solve the projective case. We suspect that 
Iordanskii’s algorithm for planarity [10] may also contain a 
subalgorithm for the projective case. We have corrected a 
few aspects of HS’s algorithm (Algorithm 3.2).

We provided two detailed algorithms for the projec-
tive case that run without a doubt in O (n) time. One 
that stems directly from HS’s original algorithm for the 
planar case (Algorithms 4.3 and 3.2), and another interval-
based algorithm (Algorithms 4.4 and 4.6) that builds on 
HS’s work but is less straightforward. The latter algorithm 
leads immediately to a new way to solve the planar case 
in O (n) time (Algorithms 4.5 and 4.6) thanks to the corre-
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spondence between the planar case and the projective case 
that we have uncovered in this article.

GT [5] sketched an algorithm for the projective case and 
claimed it to run in linear time. PL [14] added some details 
but not sufficiently, concluding that it runs in O (n log dmax)

time, which, as we have seen, overestimates the actual 
complexity. During the reviewing process of this paper, it 
has come to our knowledge a Master Thesis [2] where an 
error in GT’s algorithm is pointed out. This error does not 
affect our implementation.

It could be the case that a unified approach for pla-
narity and projectivity could also be adopted for the max-
imum linear arrangement problem [8]. To the best of 
our knowledge, a polynomial-time algorithm for the un-
restricted case is not forthcoming. An intriguing question 
is if the maximum linear arrangement problem on trees 
can be solved in linear time for the projective and planar 
variants as in the corresponding minimization problem.
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