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Abstract
Fuel electrode supported solid oxide cells (SOCs) have been developed on an industrial scale using
the aqueous tape-casting technique. The NiO–yttria-stabilized zirconia Y2O3–ZrO2 (YSZ) fuel
electrode and YSZ electrolyte have been manufactured by multilayer co-laminated tape casting.
Details of the tape-casting slurry formulations are described and discussed. Two types of cells were
fabricated with different microstructures of the NiO–YSZ support discussed. Good electrochemical
performance and stability in SOFC mode at 750 ◦C and 0.7 V for both button cells reaching
around >0.75 W cm−2 and with no measurable degradation after >700 h were observed. The
selected cell was scaled up to large-area cells (36 cm2 of the active area) and electrochemically
tested at 750 ◦C in a single repetition unit (SRU) in SOFC (Solid Oxide Fuel Cell), SOEC (Solid
Oxide Electrolysis Cell) and co-SOEC (Solid Oxide co-Electrolysis Cell) mode, and in a short-stack
of two SRUs in SOFC mode. A current up to 17 A was obtained at 1.4 V (0.7 V cell−1) with the
short-stack configuration in SOFC mode, corresponding to∼0.5 A cm−2 and 24 W. The
performances of the aqueous-based SOC cells can be considered highly remarkable, thus
supporting the success in scaling the fabrication of SOC stacks using more environmentally
friendly processes than conventional ones.

1. Introduction

Global warming and air pollution represent a big concern for society and affect the policies and regulations
of mobility and energy-intensive industries. To reach CO2 emission neutrality by 2050, several
decarbonization strategies are being explored mainly based on renewable energy sources [1]. However, the
main problems associated with a renewable energy scenario are the matching of supply and energy demand
and all the industrial and transport demands that cannot be straightforwardly electrified. In this scenario,
hydrogen arises as one of the most promising solutions to be used as a sustainable energy vector within
schemes able to convert renewable electricity into a gas easy to transport and store. Power-to-gas and
gas-to-power routes (P2G and G2P) are considered the key to deploying variable renewable energy
sources beyond their direct application as an electricity source. Moreover, those P2G and G2P routes are
smartly coupling the two major energy infrastructures of our modern society, i.e. gas and electricity
networks [2].

Solid oxide cell (SOC) technology is an efficient electrochemical converter to either store electricity from
renewable sources, in the form of hydrogen or syngas, or produce electricity and heat from clean hydrogen.
The highly efficient reversibility and low electrical consumption, which are related to the high operating
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temperatures (650 ◦C–900 ◦C), make SOC technology a preferred mid-term option against other types of
fuel cells and electrolysers like proton exchange membrane cells (PEM) and alkaline cells (AC) [3]. However,
PEM and AC are more mature technologies due to their lower operating temperatures (20 ◦C–200 ◦C),
which simplifies the material requirements and balance of plant [4].

SOC technology is based on different ceramic materials assembled in multi layers that needs to be robust,
efficient, durable and affordable. State-of-the-Art (SoA) cells are composed of an electrolyte based on
yttria-stabilized zirconia Y2O3–ZrO2 (YSZ), a fuel electrode made of NiYSZ cermet and an oxygen electrode
formed by a composite of La1-xSrxMnO3-δ and YSZ (LSM–YSZ) or by mixed ionic–electronic conductors
such as La1-xSrxCo1yFeyO3-δ (LSCF). In contrast to LSM–YSZ, LSCF does not present problems like
delamination and large polarization losses at intermediate temperatures (IT) [5, 6], which has converted it
into the SoA oxygen electrode for IT–SOCs. However, LSCF reacts with the typical YSZ electrolyte forming
SrZrO3 insulating phases, which requires the use of a diffusion barrier of Ce1-xGdxO2-δ (GDC) that prevents
dramatic polarization losses [7]. Regarding the configuration, depending on the supporting layer, one can
define fuel electrode supported cells (FESC) or electrolyte supported cells (ESC) [8]. FESC and ESC
configurations should present a functional and mechanical balance between thickness and supporting-layer
porosity to allow a good gas circulation between the electrode surface and the reactive sites, in the first case,
and between thickness of the electrolyte and its ohmic resistance to minimize the total area specific resistance
of the device (ASR), in the second case [9].

Tape-casting and screen-printing techniques are typically used for mass manufacturing of both FESC and
ESC SOCs [10–12]. More specifically, tape casting is devoted to the manufacture of supporting layers with a
thickness from few to several hundred microns, while screen-printing is used for deposition of thinner layers
on top. Green tape quality depends on various parameters, like the slurry solvent, binder, surfactant,
dispersant and plasticizer, while the final microstructure of the sintered layer is controlled by the type of pore
former, the solvent and the sintering process [13–15]. Tape-casting solvent can be either organic or aqueous.
Organic solvents present the advantage of easier slurry preparation due to similar dielectric constants as the
ceramic powders [16, 17]. However, organic-based tape casting is not environmentally friendly due to the use
of toxic solvent and hazardous additives. Those elements are also problematic from a health and safety point
of view regarding the risks of flammability, explosion and worker contamination. Fortunately, those risks can
be minimized by using water-based slurries, which makes the aqueous-based tape casting attractive for the
SOC industry. Nevertheless, slurry formulation is more complex due to the polarity of the water molecule
that affects the slurry dispersion and stability [18]. Most of the literature is dedicated to organic-based tape
casting applied to SOCs, while only a few publications directly refer to aqueous-based slurries especially
formulated for the fabrication of large-area cells. Beyond well-known water-based alumina slurries, dense
YSZ and porous NiO–YSZ, YSZ, Sc2O3-doped ZrO2 (SSZ) and LSM films based on aqueous solutions were
successfully obtained [19–23]. Regarding porous layers, Cassidy et al showed that combining rice starch and
PMMA as pore formers allows the formation of different types of porous layers in terms of size and
morphology [14]. Zhou et al used other types of starch combined with aqueous solutions as a pore former
for FESC button cells that provided a power density close to 500 mW cm−2 at 0.7 V and 800 ◦C [24]. Other
groups reported large-area YSZ ESCs of 100 cm2 giving 200 mW cm−2 at 0.7 V and 800 ◦C [25], while
large-area FESCs made by multi layer tape casting reached 0.7 W cm−2 in a stack configuration with
1 A cm−2 at 750 ◦C [26]. Overall, further work in organic solvent-free formulations for SOC materials is
needed to continue the progression in the implementation of environmentally friendly aqueous-based SOC
large-scale manufacturing strategies.

In this work, fuel electrode supported SOCs made using aqueous-based tape-casting and screen-printing
techniques were fabricated and structurally and electrochemically characterized in fuel cell (SOFC) and
electrolysis (SOEC) modes. Advanced microstructural and electrochemical characterization in button cells
as well as long-term operation were first conducted to optimize the formulations for a proper cell
microstructure. Afterward, large-area cells of 36 cm2 of active area were produced and tested in single
repeating unit (SRU) and short-stack configurations in SOFC, SOEC (steam electrolysis) and co-SOEC
(steam and CO2 co-electrolysis) modes, offering remarkable performance results.

2. Experimental

2.1. Cell fabrication
Two types of button cells were manufactured by Francisco Albero FAE S.A.U [27], based on an aqueous
multi layered tape casting process, for the fuel electrode (support and functional layer) and electrolyte,
followed by screen-printing for the deposition of the barrier layer and the oxygen electrode. Tape-casting
slurries were prepared with a powder:solvent:binder:plasticizer:dispersant mass ratio of 23:5:4:1:1. PEG 400
(Panreac), Duramax B1000 (Rohm and Hass) and Dolapix PC 75 (Zschimmer and Schwarz) were used as the
plasticizer, binder and dispersant, respectively, and water was used as a solvent.
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Regarding the first type of cell, Cell 1, the support layer of the fuel electrode was made by ball milling
powders of NiO (Kceracell), YSZ (8% Y2O3–ZrO2, KCeracell) and rice starch (Sigma–Aldrich) as the pore
former with a weight ratio 7:4:1 of NiO:YSZ:starch before being mixed with the previously described slurry
for the final tape-cast. The functional layer slurry was prepared following the same approach, using NiO:YSZ
in a 3:2 weight ratio, while only YSZ powder was used for the electrolyte slurry. The half-cells were
co-sintered at 1350 ◦C, presenting an area of 8.0× 8.0 cm2 and a total thickness around 280 µm, considering
a YSZ electrolyte of 12–20 µm YSZ. The second type of cell, Cell 2, was made by adjusting some parameters
within the fuel electrode (support and functional layer) composition and thickness. The support was
modified by replacing the starch pore former with PMMA (Sigma–Aldrich, Germany) and by sensibly
changing the NiO:YSZ:pore former ratio to 4:4:1. The functional layer was also adjusted using a NiO:YSZ
mass ratio of 1:1. After assembling the 10 µm electrolyte layer with the fuel electrode layers, green tapes were
laser cut to obtain button cells of 2 cm2 in diameter and 1.54 cm2 of active area. Finally, a pre-sintering step
was performed at 500 ◦C for 1 h to remove the pore former followed by a sintering step at 1350 ◦C for 3 h,
thereby obtaining a co-sintered half cell with a total thickness of 430 µm.

The previously described procedure for the second type of cells was replicated to fabricate the support
and electrolyte of the large-area cells. However, sensible adjustments regarding the support layer porosity and
thickness were realized to improve the mechanical strength of the cell, as it is more critical for larger areas.
Sintered samples present a size of 7.8× 7.8 cm2 and an active area of 36 cm2 after the barrier layer and
oxygen electrode deposition.

A cation diffusion Gd0.2Ce0.8O2 (GDC) barrier layer was screen-printed and sintered at 1250 ◦C for all
the tested cells, to avoid reactivity and generation of insulator secondary phases such as SrZrO3 between the
electrolyte and the oxygen electrode, as has been extensively discussed by the community [7, 28–31]. Finally,
the oxygen electrode made by La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) was deposited by screen-printing and sintered at
1200 ◦C, in all cases. All the samples were microstructurally characterized by scanning electron microscopy
(SEM, Zeiss Auriga). Special attention has been paid to the quality of the obtained interfaces.

2.2. Electrochemical characterization
Electrochemical characterization of button cells was carried out in a commercial ProboStatTM (NorECs AS)
sample holder placed inside a high-temperature tubular furnace and employing a potentiostat/galvanostat
PARSTAT 2273. Gas tightness between the fuel and oxygen chambers was ensured using a Ceramabond™

ring covering the sample edge. Pt meshes on both sides of the cell were used as current collectors. Moreover,
the current collection was enhanced by using Ni slurries at the fuel electrode and a commercial LSCF paste
(KCeracell) at the oxygen electrode.

Large-area cells were tested in a homemade test bench able to measure either single cells or stacks. The
test bench was equipped with a DC power supply and electronic loads that allowed reversible operation. An
SRU consisting of a large-area cell and two interconnectors, was initially assembled as follows, before being
placed on the system. Compressive sealing, Ni foam at the fuel electrode and Ag mesh at the oxygen electrode
were used to avoid gas leakage and to ensure the current collection, respectively. Moreover, current collection
was enhanced by painting the fuel electrode and oxygen electrode with Ni paste and LSC ink, respectively.
Interconnectors developed and manufactured by AMES [32] were placed between the cell and the system
endplates to ensure a proper gas distribution. Once the SRU set inside the test bench, 40 kg were loaded on
top of it through a four-point spring compressive system.

Independently of the cell size, heating and cooling ramps of 1 ◦C min−1 were employed. After the sealing
and fuel electrode reduction processes, the cell temperature was maintained at 750 ◦C for the whole set of
electrochemical characterizations. For the purposes of clarity, details about the fuel composition or fuel and
air flows are specified in the title of each figure. SOFC and SOEC operation modes were characterized by
means of polarization curves. Moreover, long-term operations and reversibility cycling (SOFC and SOEC)
were carried out for the complete characterization of the produced cells. Electrochemical impedance
spectroscopy (EIS) was also performed on button cells in a range of frequencies from 1 MHz to 0.1 Hz and
by applying an AC signal of 50 mV–100 mV, under open circuit voltage (OCV) conditions, 0.7 V (SOFC) and
1.3 V (SOEC), to obtain more information about the electrochemical behaviour of the cells under the
different operation modes and to evaluate their reversibility.

3. Results and discussion

3.1. Characterization of button cells
3.1.1. Microstructural properties
Figure 1 shows the initial microstructures for two types of cell supports fabricated during the present study.
SEM images for each cell support at low and high magnifications are presented in figures 1(a)–(d). Two
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Figure 1. SEM images of the fuel electrode supported Cells 1 and 2: (a) and (b) a general view of the cross section, (c) and (d) the
fuel functional layer/electrolyte/barrier-layer/oxygen electrode, and (e) and (f) the fuel functional and support layers.

different tape-cast support microstructures were obtained using two different pore formers. The support of
Cell 1 fabricated with 28% starch (v/v), as a pore former, presented a porosity of∼16% (before reduction).
The thickness of this support was of∼200 µm to achieve enough percolation of gas fuel and the mechanical
requirements of a cell support. In contrast, the support of Cell 2 with 28% PMMA exhibited 26% porosity,
which may significantly ease the fuel diffusion, while decreasing the flexural strength. To guarantee the
required mechanical properties, the support thickness was increased to∼400 µm. Similar microstructures
can be appreciated for the regions of fuel function layer/electrolyte/barrier-layer/electrolyte/oxygen electrode
(figures 1(e) and (f)). Note that the 15 µm thick YSZ electrolyte presents a high density that guarantees the
desired gas tightness and low ohmic resistance contribution. Additionally, a homogeneous 2 µm thick CGO
barrier layer was deposited to avoid the reactivity between the LSCF oxygen electrode and YSZ electrolyte
during the LSCF sintering. A good interfacial adhesion between the electrolyte and both electrodes are also
evidenced, which is a crucial aspect for good cell performance and stability in the long-term. Finally, both the
fuel functional layer and the oxygen electrode present small pore and particle sizes, thus achieving high active
surface areas.

3.1.2. Electrochemical tests under SOFC mode
After microstructural analyses, button cells with different types of support were electrochemically
characterized. In the first electrochemical test, the j–V polarization curves under SOFC mode for both cells
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Figure 2. (a) The j–V and j–P curves for Cells 1 and 2, and Nyquist plots of the EIS spectra measured at 750 ◦C (b) for Cell 1 and
(c) for Cell 2 in SOFC mode under 40 ml min−1 cm−2 of humidified H2 at the fuel electrode and 100 ml min−1 cm−2 synthetic
air at the oxygen electrode.

were determined (figure 2(a)). The performance of Cell 1 was slightly better than Cell 2, reaching power
densities around 0.80 W cm−2 (by extrapolation) and 0.75 W cm−2 for Cells 1 and 2, respectively, at the
operation point of 0.7 V under wet H2 and 750 ◦C. Figures 2(b) and (c) exhibit the EIS results for both cells
obtained at OCV and at an operation point of 0.7 V. The impedance spectra were perfectly fitted to an
equivalent circuit based on an inductance element (L) connected in series with a serial resistance (Rs) and
two ZARC elements composed of a resistance and constant phase elements. The total resistance is slightly
lower for Cell 1 (0.57 Ω cm2 at OCV and 0.35 Ω cm2 at 0.7 V) than Cell 2 (0.68 Ω cm2 at OCV and
0.40 Ω cm2 at 0.7 V), which is in agreement with the results observed on the j–V curves. Whereas at OCV the
difference comes from the low frequency arc (10◦ Hz), it comes mainly from the first arc at the middle
frequency (102 Hz) at 0.7 V that has a resistance of 0.09 Ω cm2 for Cell 1 and 0.15 Ω cm2 for Cell 2. The small
difference observed is then probably due to the difference in the functional layer between the cells, while the
microstructural change between the supports has no clear impact.

3.1.3. Long-term operation test under SOFC mode
After the SOFC electrochemical characterization, the cells were tested for long-term stability, also under
SOFC operation conditions at 750 ◦C, in potentiostatic mode at a voltage of 0.72 V for Cell 1 and in
galvanostatic mode at a current density of 0.65 A cm−2 for Cell 2 (figures 3(a) and (b)), which corresponds
to a power density of 0.45 W cm−2 in both cases. For both cells, two differentiated regions may be observed.
In the first region, an initial performance drop is evidenced during the first∼300 h and∼60 h for Cells 1
and 2, respectively. It is attributed to the typical electrode conditioning commonly associated with the
microstructure conditioning of the ionic and electronic percolation paths and the porosity distribution of
the required morphology for the imposed operation conditions. After the first region, both cells maintained
an almost constant performance with small oscillations for >3000 h for Cell 1 (see figure 1 of the
supplementary information (available online at stacks.iop.org/JPENERGY/3/024002/mmedia)) and 600 h for
Cell 2. In these ranges of time, the degradation rates are slightly negative, around−0.02% kh−1 and
−1% kh−1 for Cells 1 and 2, respectively and, therefore, may be considered negligible. In figure 3, the results
of the EIS tests confirmed a moderate increase in the ohmic and polarization resistances for both cells in
OCV and operating at 0.7 V. In Cell 1, for the 0–700 h period, the ohmic resistances were increased around
0.07 Ω cm−2 (at OCV and 0.7 V), and the polarization resistances augmented 0.23 Ω cm−2 and 0.21 Ω cm−2

at OCV and 0.7 V, respectively. In Cell 2, the ohmic resistance was almost constant between 0 h and 700 h,
and the polarization resistances increased 0.02 Ω cm−2 and 0.07 Ω cm−2 at OCV and 0.7 V, respectively. For
both cells, the increase in polarization resistance comes from the middle frequency arc that is usually
attributed to the charge transport phenomena at the electrode [33]. Considering the low degradation rates,
this increase for both cells can be attributed to the electrode microstructure conditioning, which was more
significant for Cell 1, as observed in figures 3(a) and (c). Therefore, both cells with different support designs
presented a good performance and long-term stability in SOFC mode.
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Figure 3. Evolution of the power densities and the corresponding Nyquist plots of the EIS spectra, during aging tests determined
at 750 ◦C, in SOFC mode, under pure H2 at the fuel electrode and synthetic air at the oxygen electrode, for: (a) and (b) Cell 1 at
0.72 V, and (c) and (d) Cell 2 at 0.66 A cm−2.

3.1.4. Reversibility test under SOFC/SOEC modes
Once the performance of the developed cells on SOFC was fully characterized, their potential reversibility
was studied using an SOFC/SOEC cycling test using a feeding gas composition of 33% of H2O and 67% H2.
The j–V curves of cells from SOFC mode to SOEC mode are presented in figure 4. Although the
performance in SOFC mode is similar for both series (ASR= 0.25 Ω cm−2), one can see that Cell 1 exhibits a
strong increase in the j–V curve slope at high electrolysis current densities above−0.4 A cm−2, whereas Cell
2 presents a smaller j–V slope change at current densities higher than−0.6 A cm−2. At the operation point
of 1.3 V, Cells 1 and 2 present high ASR values of 1.25 Ω cm−2 and 0.77 Ω cm−2, respectively. These signs of
cell starvation, especially shown by Cell 1, are typically ascribed to microstructural problems of the support,
related to a lack of porosity that hinders the fuel/water diffusion through the fuel electrode support
microstructure [34]. These results are in clear agreement with the already commented on lower porosity
presented by the microstructure of the fuel electrode of Cell 1. It means that operating under the
thermoneutral voltage for steam electrolysis (1.29 V at 750 ◦C), while Cell 1 is limited at a maximum current
density of <−0.6 A cm−2, Cell 2 may reach around−0.8 A cm−2.

3.1.5. Reversibility cycling SOFC/SOEC tests
From the electrochemical tests under SOFC/SOEC modes, Cell 2 presents the most suitable support
microstructure to operate under SOEC mode. Therefore, it was also tested on a more aggressive stability
reversible test operation under SOEC/SOFC cycles for almost 700 h (figure 5(a)). The evolution of the
voltage for Cell 2 reveals a clear difference in degradation rate depending on the operation mode. In each
reversible cycle, the cell voltage under SOEC mode is slightly increased, whereas it remained almost stable
under SOFC mode. After accumulating 19 reversible cycles, considering the first one as electrode
microstructure conditioning, the degradation rates are around∼3.5% kh−1 in SOEC mode and
<1.0%/k h−1 in SOFC mode. The same tendency is observed from the EIS tests (figure 5(b)). The
comparison of the EIS curves at 0 h and after 700 h (after 20 reversible cycles) evidences the small variation
of the total resistance under 0.7 V (SOFC mode) versus a significant increase at 1.3 V (SOEC mode).
Regarding the ohmic resistance, it is nearly identical at 0 h and 700 h in both cases. However, as observed in
the previous long-term test, the polarization resistance is the one increasing after 700 h. There is a clear
increase of both arcs at OCV (102 and 10◦ Hz), while in SOFC mode at 0.7 V, only the first arc (102 Hz) is
slightly increasing compared to the impedance at initial time. In SOEC mode at 1.3 V, a strong increase of
both arcs is observed compared to EIS data at 0 h but also at OCV after 700 h. The change in the low
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Figure 4. The j–V curve of Cell 2, determined at 750 ◦C in SOFC and SOEC modes under 40 ml min−1 cm−2 fuel with a 33/67
H2O/H2 ratio to the fuel electrode and 100 ml min−1 cm−2 synthetic air at the oxygen electrode.

frequency arc (10◦ Hz) can be attributed to an increase in the diffusion and conversion issues related to the
gas and water transport inside the electrodes, whereas the middle frequency increase can come from a
degradation of the pathway for the charges inside the electrodes [35]. It is worth mentioning that the
difference in degradation behaviour between SOFC and SOEC modes has been studied in recent years and
can be ascribed to a higher depletion of Ni inside the functional layer of the fuel electrode in SOEC mode
[36–39]. Degradation issues at the oxygen electrode with Sr diffusion and SrZrO3 formation at the interface
YSZ/CGO/LSCF were also found to be more important in SOEC operation than SOFC [40].

3.1.6. Post-test microstructural analysis
The cells tested in the present study were observed by SEM with the aim of identifying the degradation
mechanisms under different operational conditions. The post-test analysis of electrolyte and electrodes are
discussed here and are related to the electrochemical issues observed during the long-term tests. Figure 6
shows the most significant details of the electrolyte–electrode cross-section region for the cells after aging
under SOFC and reversible SOEC/SOFC cycling tests. The electrolyte microstructure of aged SOFC cells
presents the typical intragranular fracture surface (figures 6(a) and (b)), which is identical to a fresh cell
(figures 1(c)–(f)) [41, 42]. In contrast, the electrolyte of the SOEC/SOFC cycled cell evidences an
intergranular fracture mode (figure 6(c)) [43]. Probably, it is related to the high concentration of pores and
voids observed near the fuel electrode/electrolyte interface. These voids present an elongated form, probably
due to the combination and propagation of small voids through the grain boundaries, along the electrolyte,
progressing from the oxygen electrode side to the hydrogen electrode one. Thus, the combination of voids
generates irregular defects at the electrolyte that may reduce the mechanical strength and the contact area
between the electrolyte and electrodes. A similar degradation was also reported elsewhere [43–45], when cells
with the same architecture were operated in SOEC mode at relatively high current densities. The origin of
pores and voids at the electrolytes of cells operated under SOEC/SOFC cycles is probably due to the cation
diffusion in the electrolyte, which is produced by the higher oxygen pressure in SOEC mode compared to
SOFC mode. Considering the different degradation rate between SOEC and SOFC, the electrolyte
degradation and the possible delamination at the LSCF/CGO interface, which is not clearly observed by
SEM, may contribute to the voltage increase under SOEC, during the SOEC/SOFC cycling test.

3.2. Characterization of large-area cells
3.2.1. Microstructural and morphological analysis
From the electrochemical analyses of button cells, Cell 2 evidenced the best balance between the
electrochemical and mechanical properties to operate under reversible SOEC/SOFC cycling tests. Therefore,
button Cell 2 was scaled up to large-area cells with an active area of 36 cm2 (figure 7(a)).

Figure 8 shows representative cross-section SEM images of the electrolyte–electrode interfaces for both
oxygen and fuel sides in large-area cells. Good homogeneity in thickness, especially in the critical electrolyte,
are observed. Full dense electrolytes, with the presence of low levels of closed porosity, and homogeneously
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Figure 5. (a) Evolution of voltage in a reversible cycling test, (b) Nyquist plots of the EIS spectra, for Cell 1, at 750 ◦C, in
SOFC mode at 0.66 A cm−2 and SOEC mode at−0.66 A cm−2 (40 ml min−1 cm−2 of fuel with a 33/67 H2O/H2 ratio and
100 ml min−1 cm−2 synthetic air at the oxygen electrode). The atmosphere at the fuel electrode is switched to pure H2 between
five cycles, for 72 h, before starting a new series.

Figure 6. SEM images of the fuel functional layer/electrolyte/barrier-layer/oxygen electrode region for: (a) Cell 1, after 3500 h,
operating under SOFC mode, (b) Cell 2 after aging for 700 h (c) Cell 2, after 700 h operating under a reversible SOEC/SOFC
cycling test.

porous electrodes were also obtained (figure 8(a)). Finally, figure 8(b) shows a detail of the great adhesion
observed between all the layers in the core of the cell, which is especially critical on the oxygen side for the
combination of layers consisting of fuel functional/electrolyte/barrier layer/oxygen electrode (figure 8(c)).

3.2.2. Electrochemical tests
Large-area cells of type 2 were fabricated by FAE at an industrial scale with a shape compatible with current
collectors and end plates developed by AMES (figure 7(a)). These cells were assembled in SRUs consisting of
two interconnects and one cell and short-stacks consisting of two SRUs (figures 7(b) and (c)). Compressive
sealings were employed to facilitate the assembly.
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Figure 7. Pictures of (a) the large-area cell, (b) the SRU and (c) the short-stack made with two large-area cells placed on top of the
lower endplate inside the test station.

Figure 8. SEM images of the large-area cell: (a) a general view of the electrolyte in cross section, (b) the fuel functional/electrolyte
interlayer, and (c) the interlayer between the electrolyte, the barrier layer and the oxygen electrode.

Figure 9. (a) I–V and I–P curves for both the SRU and short-stack of two large-area cells in SOFC mode at 750 ◦C
(25 Nml min−1 cm−2 of H2 at the fuel electrode and 80 Nml min−1 cm−2 of synthetic air at the oxygen electrode), and (b) the
I–V curve for the SRU in SOEC and co-SOEC mode at 750 ◦C (50 Nml min−1 cm−2 of 90/10 H2O/H2 or 65/25/10 H2O/CO2/H2

at the fuel electrode and 150 Nml min−1 cm−2 of synthetic air at the oxygen electrode).

Figure 9(a) shows the I–V polarization curves for the SRU and stack, under SOFC mode, in operational
conditions comparable to the previously described button cells, i.e. under pure wet H2 at 750 ◦C. The SRU
and the two-unit short-stack present the expected OCV (1.19 and 2.24 V, respectively), indicating a gastight
sealing in both cases. While the SRU shows a maximum power of∼8 W, the short-stack approaches 24 W,
which is not corresponding to the expected two-fold increase. This suggests an important contribution of the
common elements, e.g. endplates and current collectors, to the total resistance of the SRUs and stacks in our
setup. Taking this into account (and the results obtained for button cells), excellent values of resistance are
obtained for the large-area cells and interconnects, which share, almost equally, the ASR of the whole stack.
Correspondingly, figure 9(b) shows the I–V curves for the SRU, under SOEC and co-SOECmodes, at 750 ◦C,
and 90/10 H2O/H2 and 65/25/10 H2O/CO2/H2, respectively. In both electrolysis modes, it was possible to
inject in the SRU currents as high as 10 A at 1.3 V. Although the I–V curves for both electrolysis modes are
quite similar, the cell performance under SOEC mode presents slightly better behaviour than under co-SOEC
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operational conditions. This is attributed to the low activation/conversion efficiency of CO2, which may also
affect the degradation issues in the long-term, as reported in previous studies [46]. More extensive research
studies of the cell degradation in the long-term under SOFC and SOEC modes will be carried out in further
works to determine the stability of the aqueous-based large-area SOC cells fabricated here.

4. Conclusions

Multilayer aqueous tape casting of co-laminated and co-sintered half-cells consisting of a NiO–YSZ support,
an YSZ electrolyte and a fuel functional electrode have been developed at an industrial scale and obtained
remarkable electrochemical performance.

Preliminary electrochemical tests based on button cells evidenced for both cells a good performance and
great long-term stability in SOFC mode, as no measurable degradation was observed after >3000 h and 600 h
(after a first stabilization step) for Cell 1 and Cell 2, respectively.

Cell 2 was scaled up to large areas (36 cm2 of active surface) and electrochemically tested at 750 ◦C in an
SRU, consisting of two interconnects and one cell, and also in a short-stack, consisting of two SRUs. The SRU
was able to deliver a maximum power of∼8 W in SOFC mode and accept a total of 10 A of current at 1.3 V
in SOEC and co-SOEC operating conditions. Interestingly, the two-unit short-stack was able to produce
∼24 W under the very same SOFC conditions as the SRU, indicating the presence of excessively resistive
common elements in the setup. Taking this into account, the performance of the aqueous-based SOC cells
can be considered highly remarkable, thus supporting the success in scaling the fabrication of SOC stacks
using more environmentally friendly processes than conventional ones.
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