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Abstract

This final degree project is a study focused on the detection of relevant modulators from
genetic expressions in order to help in the analysis and treatment of diagnosed breast
cancer patients. The identification of the genes will be established from those that con-
tribute in the classification of breast tumor subtypes and the ones that take part in the
prediction of a possible relapse. Two methodologies will be used to find the results: Firstly,
the neural networks will be used in the classification model. Then, we will apply inter-
pretability techniques in order to provide validity to the result, allowing us to extract the
pathways that have largely determined the output. Secondly, we have worked with the
previous idea to compute the relapse prediction, but the results were not as good as we
expected. However, two estimators that are able to model the patients relapse have been
constructed. The contribution of each variable will be studied in order to establish which
modulators have more prominence when modeling the risk of relapse.

Keywords: Modulators; Gene expression; Breast cancer; Neural Networks; Saliency; Pre-
diction; Estimators



Resum

L’objectiu d’aquest treball de fi de grau és identificar un conjunts de moduladors rell-
evants obtinguts a partir d’una sèrie d’expressions genètiques amb la finalitat d’ajudar
en l’anàlisi i el tractament de pacients amb càncer de mama. La identificació d’aquests
gens es farà analitzant un model de classificació amb l’habilitat de predir els subtipus de
tumors mamaris. També formaran part d’aquest conjunt els moduladors que participen
activamentent la predicció del temps de recaiguda del pacient. Els resultats s’han obtingut
fent ús de dues metodologies: en primer lloc, s’utilitzaran les xarxes neuronals per dis-
senyar un model de classificació. A continuació, s’aplicaran tècniques d’interpretabilitat
per tal de proporcionar validesa al resultats obtinguts. D’aquesta manera, es podrà iden-
tificar els moduladors que han determinat el resultat. En segon lloc, s’ha treballat amb la
idea anterior per calcular la predicció del temps de recaiguda, però els resultats no han
estat positius. No obstant, s’han constrüıt dos estimadors capaços de modelar el temps de
recaiguda dels pacients. Posteriorment, s’estudiarà la contribució de cada variable amb la
finalitat d’establir quins moduladors han tingut més protagonisme a l’hora de modelar el
risc de recaiguda.

Paraules clau: Moduladors; Expressió genètica; Càncer de mama; Xarxes neuronals;
Interpretabilitat; Predicció; Estimadors

Resumen

El objetivo de este trabajo de fin de grado es identificar conjuntos de moduladores rele-
vantes obtenidos a partir de una serie de expresiones genéticas con la finalidad de ayudar
en el análisis y el tratamiento de pacientes con cáncer de mama. La identificación de estos
genes se hará analizando los resultados de un modelo de clasificación capaz de predecir
los subtipos de tumores mamarios. También formarán parte de este conjunto los modu-
ladores que participan en la predicción del tiempo de recáıda del paciente. Los resultados
se han obtenido a partir de dos metodoloǵıas: en primer lugar, se utilizarán las redes neu-
ronales para diseñar un modelo de clasificación. A continuación, se aplicarán técnicas de
interpretabilidad para proporcionar validez a los resultados obtenidos. De este manera, se
podrán identificar los moduladores que han determinado el resultado. En segundo lugar,
se ha trabajado con la idea anterior para calcular la predicción del tiempo de recáıda, pero
los resultados no han sido los esperados. No obstante, se han construido dos estimadores
con la capacidad de modelar el tiempo de recáıda de los pacientes. Posteriormente, se
estudiará la contribución de cada variable para establecer qué moduladores han tenido
más protagonismo en el modelado del riesgo de recáıda del paciente.

Palabras clave: Moduladores; Expresión genética; Cáncer de mama; Redes neuronales;
Interpretabilidad; Predicción; Estimadores



Collaboration

This Final Degree Thesis has been developed in the context of a collaboration agreement
between IDIBELL institution and the research group SPCOM (Signal Processing and
Communications) from the UPC.

Figure 1: IDIBELL and SPCOM logotypes

Josep Vidal and Margarita Cabrera, the advisors of this project, are part of the Signal
Processing and Communications Group1. It is a research team focused on the development
and analysis of advanced digital signal processing techniques at the Signal Theory and
Communications Department (TSC) of the Universitat Politècnica de Catalunya. Thanks
to the department, we have had access to the CALCULA computing services2, needed for
the training of the neural networks used in this project.

Bellvitge Biomedical Research Institute (IDIBELL)3 is a research center promoted by
Bellvitge University Hospital and Viladecans Hospital focused in cancer, neuroscience,
translational medicine and regenerative medicine. Miquel Àngel Pujana and Eline Blom-
maert are two investigators from Breast Cancer research group, whose task aims to better
understand breast cancer development, the onset of subtypes and their therapeutic re-
sponse and resistance. Their work is focused on deciphering and integrating the molecular
mechanisms that are affected by common gene variations and rare mutations. During the
evolution of the project, we have received great feedback from them: they have provided
the data, helped to understand it and they also have come up with very good ideas based
on their excellent experience holding up the progress of this work.

1SPCOM website: https://futur.upc.edu/SPCOM
2CALCULA services website: https://www.tsc.upc.edu/en/it-services/computing-services
3IDIBELL website: https://idibell.cat/
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1 Introduction

1.1 Context and justification

The world has been paralyzed with the arrival of a global pandemic affecting the rhythm of
our lives. Our attention is now focused on the evolution of the SARS-CoV-2 (COVID-19)
and the administration of the vaccines, but we must not forget that there are other dis-
eases that are also affecting population during the last year. The first wave of coronavirus
infections, having occurred between the months of March and June of 2020, produced a
21% drop in cancer diagnoses in Spain, meaning that one of five cancer patients has ei-
ther not been detected or has been diagnosed late. 4 This will cause an increase in cancer
deaths in 2021 and in the subsequent years. We cannot afford this deceleration in the
breast cancer diagnosis. It is a disease that has affected thousands of women who are
currently also suffering the ravages of the pandemic.

During the entire period of confinement, we have been waiting for the researchers to find
a cure, but it is not an easy task. Given the fact that we live in an advanced society, all
of us have come to the conclusion that it is important to do research in the health field.
It is necessary to have resources to allow an automatic analysis of patient data, in order
to help the doctors and the researchers who are currently collapsed at their work.

We have been fortunate to collaborate in this project with two excellent researchers:
Miquel Àngel Pujana and Eline Blommaert, working in the cancer area of the IDIBELL
institution. The research proposal consisted in modeling the behavior of the genes in the
different subtypes of breast tumor cancer. The identification of breast cancer subgroups
and their molecular drivers requires integrated views of the genome of a representative
number of patients [1]. Even though classification of breast cancer is very useful in deepen-
ing breast cancer knowledge, another of the main objectives was to use the gene expression
information to predict an approximation of the relapse time for each patient. As in the
previous case, the researchers were interested on knowing which factors determine this
risk.

4La Vanguardia [01/02/2021]: La covid retrasa el diagnóstico de cáncer de unas 55.000 personas.
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1.2 Motivation

We have seen how necessary it is to dedicate effort and dedication to research. We would
like to contribute with new knowledge, acquired by using statistical techniques and models,
that can be helpful to analyse and thus improve cancer treatment. The data science field
can offer results obtained from another point of view, as many methodologies can be
applied to data in order to offer results that we did not know a priori. We can find
cross relationships in the variables, linear and non-linear dependencies among the data,
identification of the most informative variables, etc.

Distinguishing the signal from the noise requires both scientific knowledge and
self-knowledge.

Nate Silver

The idea is to combine the knowledge acquired from data analysis together with the
experience of doctors and researchers in the sector. Usually, the health sector is forewarned
with the credibility of data science results, as models seem to be mysterious black boxes.
The justification of the results is important in the field of health. This is why we propose
to provide explanations to all the results found, since they can be reliable and used in
the treatment and detection of breast cancer. The objective is to identify the modulators
that have influenced the predictions, being able to know why those variables have been
decisive in the output of the models. Together with the self-knowledge of the researchers,
we want to obtain conclusions sustained on the scientific basis.

1.3 Objectives

The milestones we set out to achieve in this project are the following ones:

• Can we identify cancer subtypes?

• Can we reliably predict the relapse time?

• Can we identify salient modulators in both cases?

The first two points focus on obtaining a classification of the different subtypes of breast
cancer and a prediction of the relapse time from the genetic expressions from a set of pa-
tients. In both models, we want to provide the relevant salient features5 in each prediction,
in order to justify the result.

* One of the initial objectives was to validate the results obtained with control data. This
objective was modified, since we had two highly experienced researchers whose collabo-
ration confirmed the results obtained from their knowledge and experience.

5The defining elements that distinguish one target from another.
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1.4 Work Packages

Next, we show the division of tasks established to meet the proposed objectives. Each
work package has a brief description to put the development of the proposed task in
context.

1. Exploratory data analysis

Basic inspection of the dataset: range values for each variable, find possible er-
rors/abnormal values, find missing values, compute data transformations, perform
a graphical summary of the data.

2. Feature extraction

From the entire set of genes available to make a selection of those that can be used
for each model .

3. Build models

• Cancer subtype prediction

• Relapse time prediction

4. Salient modulators identification

Definition of the most relevant input features applying integrated gradients.

5. Factor analysis and results evaluation

Try to find an explanation for the results obtained later evaluated by IDIBELL
researchers.

The previous points correspond to the initial plan of the project. As you will see, the
development of the project has had a few variations that are described below.

• Due to the obtained results of the second model, it has been necessary to expand
other ways of modeling the problem. At the beginning, the idea was to work with
neural networks, as it was done in the first classification problem. The obtained
results were not quite good, as can it be seen in Section 6.2.1. Consequently, it was
proposed to study the regression problem as a classification problem (separating the
relapse time temporal axis into bins), which did not generate satisfactory results
either. Finally, it was proposed to work with two different estimators. The first one
(Section 6.2.2) was not parametric and it was not useful, since we wanted to study
the relationships between genes and relapse risk. The other estimator was parametric
and it already included the modulators that allowed us to make an analysis of the
importance of each factor in the prediction (Section 6.2.3)

• Apart from the exploratory data analysis, a statistical analysis that includes correla-
tions has been carried out, unsupervised hierarchical clustering and dimensionality
reduction techniques. Some testings have been proposed by the IDIBELL team and
others have been done to perceive the interaction of the variables that we were
working with.

11



Figure 2: Gantt Chart

Figure 2 shows the project timeline represented as a Gantt chart. The work tracking
was done with a weekly meeting with the advisors of the project. Additionally, we met
IDIBELL researchers every two weeks to evaluate the results found.

1.5 Approach and methodology

In this project, we are facing two different problems. The first one, the breast tumor
subtype classification, will be treated as a supervised classification task using neuronal
networks. The second one will be treated as a regression problem that can be modeled in
different ways. As it will be seen, neural networks, regression techniques, support vector
machine and a couple of estimators have been tested in order to study the relapse risk of
each patient.

All the implementations have been programmed in Python. Some of the libraries we
used are: pandas for data storage and processing, sklearn to split the data and for the
construction of some models, pytorch for the design and execution of neural networks,
etc. However, the Cox Proportional Hazard model has been built in R, since the package
function in this language offered better implementation features. All the results have been
accompanied by graphics in order to make the output more illustrative. The libraries we
used are seaborn, matplotlib and plotly.

Finally, as we will see later, an application with Dash has been developed, using graphics
from the plotly library, in order to show the obtained results in an interactive and user-
friendly way.

12



2 Related work

There are many publications that have focused on studying the detection of existing tu-
mor subtypes in breast cancer. Originally, classification of breast cancer was done through
the use of conventional methods such as tumor morphology, grade, and immunophenotyp-
ing for estrogen, progesterone, and HER-2 receptor expression [2]. Such techniques, that
have been useful for several years, are not sufficient to accurately predict biologic behav-
ior of breast cancer. The recently published studies want to provide a better automatic
prediction to move away from the traditional pathological and clinical parameters [3]
driven-decisions.

There are a wide variety of clinical trials that link genetic expressions signatures with
breast cancer classification [3, 4, 5]. The technology focused on the study of these data
is named gene-expression profiling. From this genetic expressions, one can observe that
breast cancer is not homogeneous. One of the publications that have been taken as a
reference [6] has based the classification on the activation of various oncogenic signaling
genes, also named pathways . The idea is to identify tumors that share patterns of pathway
activity and exhibit similar clinical and biological properties. This pattern classification
was done using an unsupervised technique called two-way hierarchical clustering, widely
applied in many similar studies [7, 8] and consequently it will be applied in this study in
Section 4.1.

New technologies, such as neural networks, have provided new ways to research and di-
agnosis [9]. The results of these studies have started to be used by clinical oncologists
in their day-to-day practice, but doctors are still determining how to use these tests and
interpret them properly. The intention of this project is to use neural networks to per-
form the above mentioned classification with the particularity of offering the factors that
have determined the result of the labeling. The idea is to justify the result by sharing the
contribution of each variable in the prediction result.

There also exist other studies focused on the prognosis of each subtype [10]. Most of them
subdivide the patients according to the type of tumor they have, in order to estimate the
risk of failure after the surgery was done; in other words, to estimate the relapse time
they may have [11, 3]. The idea is to find some prognostic and predictive factors that can
predict the future occurrence of breast cancer.

Some studies assure that the best way to analyze these types of results is to use Kaplan-
Meier estimator or the Cox Proportional Hazard model [12, 13]. These two models take
into account the information provided by all the participants involved in the study, in-
cluding those who dropped out during follow-up, regardless of whether they later relapsed
later or not. In this project, we will work with these two estimators and we will also try
to use neural networks, as in the previous problem.

13



3 Data Preprocessing

Figure 3: Preprocessing steps

This section will describe the data preprocessing tech-
niques applied before injecting the genetic expression val-
ues into the models. In data integration (Section 3.1), we
explain the source of the data being used. Next, an explo-
ration of the data (Section 3.2) is carried out, where we
describe the ranges of values for each variable in order to
detect outliers. Once we have a conception of the distri-
bution of the data, we apply some missing value detection
techniques to remove the noise that can interfere in the
decisions of the models (Section 3.3). Finally, some trans-
formations will be described and computed on the dataset
in order to improve the model learning (Sections 3.4, 3.5).
Furthermore, the last section includes a data augmenta-
tion process to avoid data imbalance problem.

3.1 Data Integration

The IDIBELL researchers have provided us a processed data file from the well-known
METABRIC dataset in the medical sector. The Molecular Taxonomy of Breast Cancer
International Consortium database contains labeled sequencing data of 1,980 breast cancer
samples. From the previous database, the institute investigators extracted a set of clinical
data describing the patients. They also computed a set of pathways to be examined. The
algorithm used to determine the scores for the pathways was ssGSEA (a variation on
GSEA algorithm)6.

Figure 4: Variable set from the project dataset.

6Gene Set Enrichment Analysis. There is an R implementation in GSVA package
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Additionally, they also decided to work with a set of immune feature scores. These vari-
ables were extracted from the expression data of the METABRIC dataset by using the
CIBERSORTx algorithm7, a tool that extracts the immune cell related content in each
tumor sample. Furthermore, additional variables have been included since IDIBELL re-
searchers think they can help us to improve the results of the model. All of them can be
found in the Glossary. We include a summary in the Figure 4.

3.2 Data Exploration

In the database, there are a total of 1986 patients described by a set of 53 variables, 14 of
them are pathways scores and 22 are immune feature scores , computed by the previous
mentioned algorithms. In this section, we will start by observing the distribution of values
of the pathways and the immune feature scores:

Continuous Features

Figure 5: The first figure represents the range of values from each pathway. The second one shows the
ranges of the immune cell data. The graph used is a range plot, since we want to see where most of the
data is concentrated in order to detect the outliers in Section 3.3.

7See the implementation in Stanford cibersortx webpage: https://cibersortx.stanford.edu/
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As it can be seen on the upper chart in Figure 5, the values of the pathways are normalized
between -0.5 and 0.5, and the mean of all the variables is very similar. Otherwise, the
values of the variables corresponding to the immune feature scores only take positive
values between 0 and 0.5. According to IDIBELL researchers, the pathways and variables
corresponding to the immune feature scores do not present any outlier, since the ssGSEA
and the CIBERSORTx output returns values normalized between 0 and 1.

In Figure 6, we will see the range of values corresponding to the other continuous variables.
The distribution of each one has been conditioned to the breast tumor subtype. In this
dataset, we have five tumor subtypes: LumA, LumB, Her2, Basal-like and Normal-like.
The Normal-like subtype is not included in the plots because it will not be taken into
account in the models (see the explanation in Section 5).

Figure 6: Representation of the ranges of values from Age, RFS, PROLIF, Lymph Nodes Positive
variables conditioned by the breast tumor subtypes.

Looking at the first plot in Figure 6, we can see that the age at diagnosis distribution
for each type of tumor is very similar, the values are within the life expectancy ranges
that are currently established in society. We can find very young patients, as we find one
around 20 years old. We can also appreciate elderly patients (note the point corresponding
to a patient having an age close to 100 years).

16



The relapse time plot (RFS variable boxplot) shows the relapse time for patients with
RFSE = 1, i.e. the relapsed patients. We do not take into account the patients with
RFS = 0 because it only informs of the duration of the study, since the patient has not
relapsed. We see that the time averages are quite dispersed among the different tumor
subtypes. The patients classified as Basal-like seem to have the earliest relapse time.

As for the PROLIF variable, we see that there are clearly two different distributions,
the LumA subtype has smaller values compared to the distribution of the other tumor
types. As IBIDELL team stated, the values are normalized between -1 and 1, therefore
we do not find any value outside the range established as normal. Finally, in the number
of positive lymph nodes plot we can see some extreme values that appear far away from
the average of the variable. These strange values have been reviewed by the IDIBELL
researchers and they have assured us that they were not outliers, since the real range of
number of positive lymph nodes variable already includes the previous values.

Categorical Features

Next, we will the range of values for categorical variables:

• Integrative clusters (INTCLUST): {1, 2, 3, 5, 6, 7, 8, 9, 10, 4ER-, 4ER+}

• Cellullarity : {Low,Moderate,High}

• Treatment : It is a variable that takes combinations of these three strings: {HT,RT,CT},
corresponding to the treatment administered.

• TP53.mut and PIK3CA.mut : {WT,MUT}

• Nottingham Prognostic Index (NPI ): is the product of three categorical factors (see
the formula in the Glossary). It takes values between 1 and 7.

The integrative clusters variable is a second classification that METABRIC provides apart
from the classification by subtypes. Then, we have the Cellullarity variable that indicates
the amount of cancer cells in the tumor. We also find two variables (TP53.mut and
PIK3CA.mut) that take binary values depending on whether the pathways they describe
presents mutations or not. Last, the Treatment variable indicates the type of treatment
the patient is receiving based on the type of tumor it has. Finally, we examine the grade
and stage variables:

Grade:
1 2 3

LumB 3,81% 41,10% 55,08%
Her2 1,74% 25,32% 72,92%
LumA 17,61% 56,62% 25,76%
Basal 0,09% 9,40% 89,65%

Stage:
0 1 2 3 4
27,68% 32,44% 33,68% 4,96% 1,24%
24,15% 34,74% 32,20% 8,89% -
35,83% 32,86% 28,19% 2,83% 0,28%
19,87% 31,15% 40,06% 8,56% -

Table 1: Distribution of the grade and stage values conditioned to tumor subtypes.
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On the one hand, the variable grade can take three different values. We see that the value
3 is the most common in the majority of tumor subtypes, except for Her2, where the
majority is established in patients whose grade value is 2. The least represented value in
all subtypes is grade = 1. On the other hand, regarding the stage variable, we see that
the values are quite balanced in the values 0, 1 and 2. The percentage decreases when
the value of the variable increases stage = 3. Finally, we can see that stage takes a value
equal to 4 only with the luminal types.

Figure 7: Breast tumor subtype classification

To conclude with this section we show a pie chart in Figure 7 representing the distribution
of tumor subtypes. We see that the predominant class is LumA and the least represented
is Her2 (without taking into account the Normal-like subtype).

3.3 Data Cleaning

This section is focused on the treatment of missing values in order to work with a consis-
tent database.

Missing values

Table 2 shows the distribution of miss-
ings values. We can see that the vari-
able with the highest number of miss-
ings is stage. The pairs of variables
RFS/DSS10 and RFSE/DSSE10 have
the same number of missings. This is be-
cause they are the same metric scaled
differently, therefore the missings are
found in the same patients.

Variable # missings

RFS 3
DSS10 3
RFSE 20
DSSE10 20
grade 88
stage 448
lymph nodes positive 7
NPI 1
CELLULARITY 68
INTCLUST 5

Table 2: Distribution of the missing values. On the left,
the variables having missings and on the right the number
of patients that have missing value in the corresponding
variable.
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Next, we will describe the decisions taken to deal with the missing values:

• Due to the nature of the Integrative clusters variable and the fact that it contains
a small number of missing values (a total of 5 patients, who also have missing in
other variables) we decided to drop this five samples.

• The patients who had three or more variables with missing values were also removed.

Finally, with the remaining patients, the KNNImputer 8 technique has been used in order
to fill the missing fields. The KNNImputer method offered by the scikit-learn library is
one of the most used techniques to impute missing values.

The idea behind this procedure is to use the k-Nearest Neighbors (kNN) algorithm to
find neighboring observations in order to estimate the missing values from them. The
process consists in computing the mean value of the samples to estimate the value of the
missing cell. This algorithm requires the number of neighbors (k) to be used to impute
the unknown value. It is a hyperparameter that must be optimized. To do this, a routine
has been created that tests a RandomForestRegressor using cross-validation with different
values of k. In Figure 8 we show that the optimal value of neighbors has been k = 7.

Figure 8: KNNImputer hyperparameter k tuning. For each value of k we represent the root mean
square error (RMSE) of the trained model

8KNNImputer package: https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNN
Imputer.html
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3.4 Data Transformation

There is a set of variables needed to be transformed in order to work properly with them
later. The first transformation was a normalization of the dataset values in order to set
the ranges of all the variables between 0 and 1. The remaining modifications are focused
on encoding the categorical string variables to categorical integer variables:

• Treatment : The treatment variable has been divided into three binary variables:
HT, RT and CT corresponding to the three types of treatments that a patient can
receive. A 1 has been assigned to each variable if the corresponding therapy was in
the treatment variable.

• Cellularity : {′Low′,′Moderate′,′High′} have been recoded to {1/3, 2/3, 1}.

• TP53.mut and PIK3CA.mut : This variable manifests the possibility of a gene mu-
tation, for TP53 and PIK3CA separately, as {′WT ′ = 0,′MUT ′ = 1}

3.5 Data Augmentation

As it can be seen in Figure 7, we have a data class balancing problem, since we do not
have a balanced distribution among classes. In fact, we have three times more data from
patients categorized as LumA than Her2 diagnosed patients. Due to the difference in
proportions in the labeled data of each subtype we used the SMOTE technique:

SMOTE

One approach to addressing imbalanced datasets is to oversample the minority classes.
The most widely used approach to synthesizing new examples from tabular data is called
the Synthetic Minority Oversampling TEchnique, or SMOTE for short [14].

The process of generating new synthetic data is simple: for each patient samples of the
minority class, we find its k nearest neighbors (by default k = 5). Then, using any distance
metric, the difference between the feature vector from the minority class sample and its
neighbors is calculated. Finally, this difference is multiplied by any random value between
(0,1] and is added to the previous feature vector, obtaining a synthetic sample (Figure 9).

Figure 9: SMOTE technique operation example
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4 Statistical Analysis

In this section, some statistical analysis have been developed to anticipate what we may
find in the results of the models. The idea is to explore the existence of patterns in the
data, to detect clusters, to find redundant variables, etc.

4.1 Hierarchical Clustering Analysis

The intrinsic subtypes Luminal A (LumA), Luminal B (LumB), Her2 and Basal-like have
been extensively studied by microarray and hierarchical clustering analysis. [15, 16, 17, 18].
In this project, it has been decided to also carry out this unsupervised analysis in order
to obtain a classification based on the values of each variable, like the first publications
did. For this study, only the pathways variables have been taken into account.

Figure 10: Pathways Heatmap

In Figure 10, the values for each pathway are represented by a color scale. The values are
between -0.5 and 0.5. In warmer tones, we find the positive values and in colder tones, the
negative values. It is a very illustrative graph, since it allows to see the value distribution
for each individual. The horizontal axis has been ordered according to the tumor subtypes
of the patients. From left to right, we find Basal first, followed by Her2, LumA, LumB
and finally Normal-like breast tumor subtypes. On the vertical axis, we have the set of
pathways with which the study will be carried out.

We could draw some conclusions: the most informative pathways in this classification seem
to be the ERBB2 and ESSR1. For the Basal type, we find very low ESR1 values. For the
Her2 type, we have very high values in ERBB2. On the other hand, in LumA and LumB,
the high values are found in ESR1. Finally, in Normal-like tumors, it seems that there is
no factor that differentiates it from other tumors.
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Two-way hierarchical clustering

The two-way hierarchical clustering is a technique widely used in health data visualization
to see the intrinsic classification that each patient has, based on the values of the factors
studied. The idea is to build a bottom-up9 hierarchy of clusters on both axes: at the
beginning, each observation starts in its own cluster. Then, pairs of clusters are merged
one by one moving up in the dendogram10 lines. The splits are determined by the linkage
method: the data is grouped according to the correlation of each groups, as we can see in
the formula:

correlation coefficient = 1− (u− u) · (v − v)

||(u− u)||2 · ||(v − v)||2
(1)

where v is the mean of the elements of group vector v, and x · y is the dot product of
x and y. The dendrogram on the horizontal axis classifies patients with similar pathway
values. On the vertical axis, we carry out this classification according to the behavior of
the pathways.

Figure 11: Two-way hierarchical clustering

To improve the understanding of the result, we colored the first row of the heatmap by the
tumor subtype classification (Basal : ’violet’, Her2 : ’black’, Normal : ’pink’, LumA: ’blue’,
LumB : ’green’). In Figure 11, we can observe a clear differentiation between two categories:
one that contains patients classified as Basal and a second category that contains the

9Starts from an individual position to address the global variables.
10Arrangement of the clusters produced by the correlation computation
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Luminal patients (both A and B). We can also see that the Her2 and Normal-like subtypes
are scattered within the other breast cancer tumor groups.

A boxplot is attached below (Figure 12) to see the distribution of values for each tumor
subtype. We can see, as it has been verified in the previous plot, that there exist a value
dispersion of the ESR1 and ERBB2 pathways .

Figure 12: Pathways score values conditioned to the type of tumor.

To make the differences between pathways more understandable, we decided to group the
patients by breast tumor subtype computing the mean value of each class, as can be seen
in Figure 13:

Figure 13: Pathway heatmap (grouped by tumor subtype)
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As we concluded in the previous graphs, we see that the behavior of the pathways of
patients diagnosed with Luminal breast cancer subtype are very similar, as they have high
values in ESR1. Otherwise, the patients categorized as Basal-like have small values in the
previous variable, but they have quite high averaged values in the Cell Cycle variable.
Regarding the Her2 tumor, we observe that it takes high values in a variable little affected
in the previous classes, the ERBB2 modulator. Finally, regarding Normal-like patients,
we did not find extreme values in any of the pathways .

In Figure 13, we also added a column corresponding to the unlabeled patients of the
database. These samples can be used in the future to obtain the predictions in both mod-
els. At first glance, it seems that on average they have values similar to the breast tumor
Luminal subtype.

4.2 Data Cluster Visualization

Twenty years ago, a study led by Perou et al [15] determined the existence of various
subtypes of cancer, specifying 6 types: Luminal A, B, and C, Her2, Basal-like and Normal-
like. The results were extracted from an unsupervised analysis of gene expression profiles
over a 65 breast cancer surgical tissues. In this work, we have tried to carry out the same
process with the available genes (review them in Section 3).

Figure 14: Sample of the two dimensionality reduction techniques, on the left Principal Component
Analysis (PCA) and on the right t-distributed Stochastic Neighbor Embedding (t-SNE)

We are facing a problem with multiple variables and we want to understand what re-
lationship exists among them. To do this, the first step has been the reduction of the
number of variables to two dimensions. In the case of PCA [19], these two dimensions cor-
respond to the two most informative components, with the highest variance. Otherwise,
the t-SNE [20] estimates probability distributions of the data.

In Figure 14, we see two large clouds of points and we do not identify any separate set
from the total. Each plot includes two data distribution diagrams on both axes and the
dots have been colored according to the tumor subtype. On the one hand, we clearly see
that the Basal class is quite separated from the others.
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On the other hand, the luminals are concentrated in the same space, without differenti-
ating the class A and B. Patients diagnosed with Her2 are more separated in the t-SNE
plot from the rest. Finally, we see that the Normal-like group appears very dispersed. As
in Figure 13, we decided to add unlabeled patients to see if they could be categorized
into any of the classes. By the dispersion of the points we could categorize the majority
of them in the luminal groups, as we stated in Section 4.1.

4.3 Correlation Study

During the development of the project, the IDIBELL researchers were interested in study-
ing two different groups of patients: those who relapsed early and those who did not relapse
after several years. In this research, we compute the correlations between the pairs of vari-
ables from each population. Next, we will see two heatmaps with the cross correlation of
each population for each pair of variables:

Figure 15: Correlation heatmaps containing pathways and immune scores. On the left, the relapsed
patients in two years. In the left figure, not relapsed patients in five years

In the left heatmap in Figure 15, we observe higher absolute values (dark-colored cells)
than in the right one. At first glance, it is very difficult to conclude whether these differ-
ences are significant. For this reason, the absolute difference between the two correlation
matrices has been calculated.

25



Figure 16: Absolute difference of correlation matrices

In Figure 16, the differences between the heatmaps can be observed more clearly. The
darker cells represent the variable correlation pairs with the greatest difference between
the two populations studied. To verify that these differences are statistically significant, we
have computed the respective confidence intervals. To affirm if two pairs have a significant
difference, we define two hypotheses:

• Null Hypothesis: The null hypothesis states that there is no significant difference
between the two correlation pairs calculated in each population

• Alternative Hypothesis: There is a clear difference between the two correlation values
obtained in each population.

If there is no overlap between
the two confidence intervals, the
correlation difference is considered
significant. Otherwise, we cannot
affirm the previous case.

In Figure 17, we show the percent-
age of overlap between the confi-
dence intervals obtained in the pre-
vious step. To verify which pairs of
variables have a significant correla-
tion difference, we have to search if
there is a match between the dark-
est points in Figure 16 and those in
Figure 17.

Figure 17: Overlap Percentage Heatmap

26



To facilitate the comparison, we attach two tables: Table 3 shows the ten pairs of pathways
with the greatest correlation difference. In Table 4, we show the same results obtained in
the latter table, but now we are including the immune feature scores.

Var1 Var2 diff corr R2 corr NR5 CI (90%) Var1 CI (90%) Var2 % Overlap

MYC WNT 0.3663 0.3807 0.0144 [0.2079, 0.5305] [-0.0376, 0.0663] 0.0
HIPPO ERBB2 0.3368 -0.285 0.0517 [-0.4487, -0.1029] [-0.0002, 0.1034] 0.0
WNT ERBB2 0.3115 -0.3991 -0.0877 [-0.5459, -0.2286] [-0.139, -0.0359] 0.0
RTK RAS SRC 0.2725 0.29 0.0174 [0.1082, 0.453] [-0.0345, 0.0693] 0.0
SRC ERBB2 0.2429 -0.1892 0.0537 [-0.364, -0.0016] [0.0017, 0.1053] 0.0
HIPPO ESR1 0.238 -0.5471 -0.3091 [-0.6664, -0.4006] [-0.3554, -0.2614] 0.0
TGF.Beta Hypoxia 0.2266 -0.1532 0.0733 [-0.3314, 0.0355] [0.0215, 0.1248] 3.07
NOTCH ESR1 0.2167 -0.1646 0.0521 [-0.3417, 0.0239] [0.0002, 0.1038] 5.32
TGF.Beta SRC 0.2114 0.4318 0.2204 [0.2656, 0.573] [0.1704, 0.2692] 0.89
MYC SRC 0.2066 0.2978 0.0912 [0.1166, 0.4598] [0.0394, 0.1424] 6.15

Table 3: Study of pathways correlation differences.

The first two columns in Table 3 correspond to the pairs of variables to be compared.
The diff column has the absolute correlation difference between both populations: those
who relapse in less than two years (corr R2 ) and those who do not relapse in five years
(corr NR5 ). Below, we show four different plots (Figure 18) with the percentage of over-
lap between the confidence intervals of some pairs of pathways appearing in Table 3.

Figure 18: Confidence intervals overlap examples from Table 3.
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diff corr R2 corr NR5 CI (90%) Var1 CI (90%) Var2 % Overlap

NK cells activated Macrophages M0 0.444 -0.0651 0.3789 [-0.2497, 0.1241] [0.3335, 0.4225] 0.0
NOTCH T cells CD4 memory act. 0.4212 -0.3983 0.0228 [-0.5453, -0.2277] [-0.0292, 0.0747] 0.0
Macrophages M1 Mast cells activated 0.4056 0.1665 -0.2392 [-0.0219, 0.3434] [-0.2875, -0.1896] 0.0
NK cells resting Macrophages M0 0.3708 0.172 -0.1988 [-0.0162, 0.3485] [-0.2482, -0.1484] 0.0
MYC WNT 0.3663 0.3807 0.0144 [0.2079, 0.5305] [-0.0376, 0.0663] 0.0
Hypoxia Plasma cells 0.3601 0.2932 -0.067 [0.1116, 0.4558] [-0.1185, -0.0151] 0.0
HIPPO ERBB2 0.3368 -0.285 0.0517 [-0.4487, -0.1029] [-0.0002, 0.1034] 0.0
ERBB2 Monocytes 0.3238 0.3265 0.0027 [0.1478, 0.4845] [-0.0493, 0.0546] 0.0
WNT ERBB2 0.3115 -0.3991 -0.0877 [-0.5459, -0.2286] [-0.139, -0.0359] 0.0
Dendritic cells activated Neutrophils 0.3107 0.2894 -0.0213 [0.1076, 0.4525] [-0.0732, 0.0307] 0.0

Table 4: Study of pathways and immune feature scores correlation differences.

In Table 4, all the correlation differences are significant because any of the confidence
intervals overlap. These results have been delivered to the IDIBELL team and they will
study the significant variable pairs behaviour in each population.

Auxiliary variables

Figure 19: Correlation heatmap of the remaining quantitative variables

Finally, the correlations between the remaining quantitative variables have been calcu-
lated. In Figure 19, we can see that there is a high correlation between the RFS and
DSS10 variables, as well as the RFSE and DSSE10 variables. The relationship between
the latter variables will be discussed in Section 5, where we will see they contain the same
information. There are two other variables that show a high correlation: the NPI and
grade. This is because the first variable is calculated as follows:

NPI = 0.2 · [Size of the index lesion] + [Node status] + [Grade of tumour] (2)
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5 Feature Selection

After analysing the available variables in the datasets, it is necessary to do a pruning in
the dataset to only work with features that can be useful.

Normal-like subtype

As it can be seen in the exploratory and statistical analysis, it seems that the Normal-like
subclass does not show any pattern in the modulator values. This fact was discussed with
the IDIBELL researchers and they stated that the samples of this subclass were not quite
clear, due to the large presence of normal tissue in the tumors.

There are other studies that have also decided not to use the last mentioned subtype [21,
18]. One of the studies found in the literature [15] mentions there is no certainty whether
the normal breast-like group truly represents breast cancer tissue or was merely a sampling
error of the benign breast tissue embedded in breast cancer tissue.

In fact, the TCGA dataset, one of the most used in this type of research, also discards
this subtype tumor class, as can be seen in the Table 5:

Table 5: This table represents the use of breast tumor subtypes in each dataset. The gray blocks indicate
if the tumor subtype class is available. [22]

.
The remaining four intrinsic subtypes of breast cancer, luminal A and B, Her2 and Basal-
like, are widely accepted in most studies. In addition, it was decided to check if the neural
network was able to capture any pattern of the data that can discriminate the Normal-like
class from the others, but as it can be seen in Figure 20, the results were not satisfactory.
We can see that the percentage of accuracy of the last mentioned class is too small, both
in the training confusion matrix and in the validation one.
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Figure 20: Normal-like class neural network training. On the left, the confusion matrix corresponding
to training. On the right, the same confusion matrix with the validation data.

.

As we previously mentioned, the training of the neural networks will be carried out in
the next sections. In Figure 20, we only show the result of one of the trainings executed
before discarding this class.

Correlated variables

In the statistical analysis, we found that some sets of variables have a lot of correlation.
Correlated variables can introduce redundant information to the models. In Figure 19,
we have seen that there exist a high correlation between DSS10 , DSSE10 and RFSE and
RFS . In fact, they contain the same information but the first pairs are scaled to 10 years.
Consequently, the first two variables will not be considered in the following models.

Other cases

Next, we will explain why some of the dataset variables have been discarded:

• The INTCLUST variable defines a molecular classification different from the one
we are studying, as it is shown in Figure 21. The mentioned feature will not be
considered in both studies, since it does not conform to the proposed objectives.

Figure 21: Breast cancer diagnostics components [21]
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.
• The Treatment variable is conditioned to the tumor breast cancer subtype. There-

fore, this variable will not be included in the training.

Selected features

In Table 6, we show the set of variables that will be considered in the models.

Immune feature scores Pathways Other features

B cells naive Cell Cycle PAM50
B cells memory HIPPO RFS
Plasma cells MYC RFSE
T cells CD8 NOTCH PROLIF
T cells CD4 naive NRF2 Grade
T cells CD4 memory resting PI3K Stage
T cells CD4 memory activated TGF.Beta Number of lymph nodes positive
T cells follicular helper RTK RAS Treatment
T cells regulatory TP53 TP53.mut
T cells gamma delta WNT PIK3CA.mut
NK cells resting Hypoxia Nottingham Prognostic Index
NK cells activated SRC Cellularity
Monocytes ESR1
Macrophages M0 ERBB2
Macrophages M1
Macrophages M2
Dendritic cells resting
Dendritic cells activated
Mast cells resting
Mast cells activated
Eosinophils
Neutrophils

Table 6: Set of variables to be used in both models. The variables used as target are highlighted in
bold.
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6 Experiments and results

In this section, we will detail the models built in the project. The first model is a classi-
fication neural network. The classification task will consist in distinguishing between the
different subtypes of tumors using the features selected in Section 5. The second model is
focused on estimating the relapse time. Since we have a limited set of relapsing patients,
we have tested different methods. We will begin by describing some trials carried out with
neural networks and then we will explain two estimators that have been able to model
the stated problem.

6.1 Tumor Class Prediction

The first objective of this project was to find out if it is possible to predict tumor subtypes
with the available data. We are facing a supervised classification problem that takes the
variable PAM50 as a target. This variable has four possible values: Basal, Her2, LumA
and LumB, the tumor subtypes in which we can classify the patients in the database. It
has been decided to use neuronal networks because we proposed to carry out a saliency
study to provide interpretability to this type of models. (see Section 6.1.2).

6.1.1 Neural Networks

In the design of the neural network architecture, we only have contemplated to use fully-
connected layers (FCNNs). The main characteristic of this structure is that all the nodes
(or neurons) in one layer are connected to the neurons in the next layer. One of the advan-
tages of using this architecture is that it does not impose any structure. In other words,
it does not make assumptions about the data or task the network will perform. In this
kind of network, we need to set some hyperparameters, that are described below:

Architecture

1. The first step was to select the number of hidden layers that the neural network
should have. We have tested networks with one, two, three and four hidden layers.
The best results were obtained with a network containing three hidden layers.

2. Once the number of layers had been chosen, we have tested different models varying
the number of neurons for each layer (in the previous step, the tests were made with
different numbers of neurons as well). We tried to increase the number of neurons
with respect to the input, increasing the number of dimensions of the feature space
and also reducing the number of neurons in each layer gradually until reaching
four neurons in the output layer. The network that works best had the following
configuration (see Figure 22):
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Figure 22: Neural Network architecture

We can see that the number of neurons in each layer gradually decreases. The first layer
corresponds to the number of input variables (the second feature selection will be detailed
in the training step). The hidden layers have 30, 20 and 10 neurons respectively. Finally
the last layer corresponding to the ouput contains 4 neurons, the number of classes of the
target variable.

In the output of the last layer an activation function has been added. The two most used
activation functions in deep learning are the sigmoid and the ReLU. During the training
we have used both, but he ReLu is the non-linear function that has worked best.

Training

The training of the neural network has been done by using the cross-validation technique.
Cross-validation is a resampling procedure that has helped us to evaluate the network
training using different data partitions for validation. In all the tests, we have set the
number of folds to 5.

The cross-validation trials allowed us to define the set of variables that would enter to the
final model. We tested all the possible combinations of variables for each model and we
have chosen the set of variables with higher validation accuracy averaged over all folds.
The process is described in Figure 23.
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Figure 23: Cross-Validation process

.The selected set of variables in the final model contains the 14 pathways , the 22 immune
feature scores , the PROLIF variable and the stage and grade features.

Regularization

It has been decided to introduce some regularization parameters to avoid the memorization
of the network and thus to be able to generalize the learning. In pytorch there are several
optimizers. We decided to use the Adam optimizer11 since it is the one that offers the best
performance. This optimizer, based on the stochastic gradient descent technique, offer the
tuning of the following parameters:

• Learning rate (α parameter): indicates the weight update proportion. Larger values
results in faster initial learning. Smaller values slow learning during the training.
We have tested {1e− 2, 1e− 3} values.

• Epsilon: it is used to prevent any division by zero in the implementation. The set
of tested values has been {1e− 8, 1e− 6}.

• L2-penalty: we add a penalty equal to the square of the coefficients magnitude. L2
will not yield sparse models and none of the coefficients will be eliminated (main
difference with L1-penalty). We tested this parameter with {1e− 4, 1e− 6} values.

• Dropout: consists of randomly set to 0 some proportion of the neurons that feed
into a fully connected layer during each step of gradient descent. It helps to reduce
model overfitting.

Results

In Table 17 (see Apendices) you can find the hyperparameters tuning and different trials
varying the number of epochs and batch sizes. The best results are shown in Table 7,
including the accuracy for the test set:

11Adam optimizer implementation
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# lr epochs batch size dropout eps weight decay Tr Val Te

78 0.001 80 200 0.2 1e-08 0.0001 87.0745 82.9787 83.5897
79 0.001 100 100 0.1 1e-08 0.0001 89.0957 84.2553 83.4188

Table 7: Best performance networks

The best models had a learning rate equal to 0.001. The majority achieved a validation
accuracy greater than 80%. It seems that the network did not need much L2-penalty: the
models which have worked better have been those with the lowest value of weight decay
(0.0001). The introduction of the dropout has been positive because it has helped to avoid
overfitting.

In paper [15], the prediction results stated that the easiest class to predict was LumA
patients, followed by LumB and Her2 patients, and Basal-like patients did the worst.

Figure 24: Confusion matrix validated with the test set.

Thanks to data augmentation techniques, we have obtained a fairly balanced accuracy
for all classes. The worst class to predict has been Her2, followed by LumB. Surprisingly,
the Basal-like class has been the class with the least prediction errors.
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We also generated a plot (see Figure 25) containing the wrong classified patients. In fact,
we show the same information that has been provided in the confusion matrix of Figure 24.
However, in this plot, we are adding the classification percentage for each instance. Each
column represents a patient and it is divided into four rows, each one representing a tumor
subtype where we colored the percentage of belonging to each class. The percentages are
obtained by computing the softmax function to the output of the network.

Figure 25: Wrong classified patients output

We can see that the majority of Basal patients have been incorrectly assigned to Her2.
On the other hand, the Her2 are wrongly classified as LumA class. Finally, we see that
the network has problems differentiating the luminal patients.

Once the network has been trained with the learning set (see Figure 23) and having
tested it with the test set (Table 7), we proceed to apply the saliency techniques in order
to explain the modulators contribution in the predictions.
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6.1.2 Interpretability

One of the main objectives of this project was to try to understand how much each fea-
ture of the neural network contributed to the prediction. The neural networks have been
considered veritable black-boxes some years ago. However, in recent years, most of the
research has focused on providing interpretability to machine learning and deep learning
models in order to understand why certain decisions have been made. As Doshi-Velez and
Kim stated [23], the accuracy of a model is a metric that offers an incomplete description
of most real-world tasks. Regarding to this project, focused on predicting medical factors,
the need to justify the results obtained is a must.

Model-Agnostic Methods

The widely used specific models like linear regression, decision trees, etc are interpretable
at a modular level since they can be classified according to whether they are linear,
monotonous, their type of output, etc. However, there exist another type of models, named
agnostic models. The agnostic methods are independent of all the last mentioned char-
acteristics, they are flexible to adapt their results to any type of model. Such models are
responsible for separating the explanations from the machine learning model. One of the
best known methods, SHapley Additive exPlanation model [24], will be used to under-
stand the prediction obtained with the neural network.

Shapley Values

As it was said at the beginning of the section, we want to know the contribution that
each variable has in the prediction. The shapley values, extracted from SHapley Additive
exPlanation method, indicate the distribution of knowledge contribution that each factor
has. It is computed as the average marginal contribution of a variable across all the pos-
sible coalitions of the available features. The shapley values interpretation is the following:

The value of the j-th feature contributed φj to the prediction of this particular
instance compared to the average prediction for the dataset. [25]

and it is calculated as

φj(val) =
∑

S⊆{b1,...,bn}\{bj}

|S|! · (n− 1− |S|)!
n!

(val(S ∪ {bj})− val(S)) (3)

where φj is the Shapley value for j-th feature (bj) for one sample x in the dataset. S is
the subset of the features used in the model. We sum all the coalitions in S that do not
contain the feature bj.
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The [fj(bS ∪ bi)− fj(bS)] factor is the marginal contribution that the feature bj has when
it is added to S coalition. This factor is multiplied by |S|! · (n − 1 − |S|)! , the number
of permutations of S. Then, the result is divided by n! in order to average the result over
all the possible orderings of x.

Figure 26: Saliency heatmap contribution

In Figure 26, we show a heatmap with the corresponding shapley values for each patient.
The horizontal axis has been ordered according to the tumor subtypes. The first row indi-
cates the predictions made by the neural network. The green colored patients correspond
to the samples whose prediction coincides with the target. Otherwise, the red colored
ones are associated to wrong classified patients (to facilitate comparison, the second row
has been colored according to the tumor subtypes of each patient). The following rows
correspond to the shapley values contribution to each variable (conditioned to the average
prediction for the dataset). In the last rows of the figure, we can see the darkest variables,
those which represent the highlighted shapley values in the prediction.

We observe that the immune feature scores have had little contribution to determine the
output of the network. In fact, they do not show large absolute values to be considered rel-
evant in the prediction. Looking at the pathways features, we see that ESR1 and ERBB2
are the determinant features in the patients classification. On the other hand, the vari-
ables PROLIF , stage and grade have also provided a lot of information in the prediction.
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Shapley Values Contribution

ESR1 ERBB2 PROLIF Stage Grade

Basal High Positive - High Positive Medium Positive Low Positive
Her2 Medium Positive Medium Negative High Positive Medium Positive Low Positive
LumA High Negative - - Low Positive -
LumB High Negative - High Positive Medium Positive -

Table 8: Shapley values pattern contribution

In Table 8, we included the features having the largest contributions to the network out-
put. We described the average level of contribution they had in each tumor subtype.

Figure 27: Basal saliency sample Figure 28: Her2 saliency sample

Figure 29: LumA saliency sample Figure 30: LumB saliency sample

In Figures 27, 28, 29 and 30, four patients have been randomly sampled, each one from a
different tumor subtype. We can appreciate the contribution of each variable looking at
the heights of the bars of each plot. For example, we observe that the Basal patient has the
variables ESR1, PROLIF and stage with a positive contribution. If we go back to Figure
26, we can observe the same Basal pattern: the highlighted shapley values have a positive
contribution in the last mentioned variables. We see a similar pattern in Her2 patients
but including the negative contribution of ERBB2 feature. Regarding to luminal patients,
we see that the set of variables that contribute to the prediction are the practically the
same.
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6.2 Relapse Time Prediction

In this second section, we will try to model the relapse time for each tumor subtype. To
do this, the RFSE and RFS variables will be used. The RFS variable quantifies the time
that elapses from the subject’s entry into the study until a certain event occurs. In this
study the event is the relapse of the patient, reported by the RFSE variable. We started
working with different neural networks arquitectures (Section 6.2.1). Nevertheless, we will
end up working with two estimators widely used in the medical sector (Sections 6.2.2 and
6.2.3).

6.2.1 Neural Network

As in the previous classification problem, we have tried to model the relapse time by
training a neural network. The idea was to formulate the problem by using two models.
The first one attends to classify a patient according to the possibility of relapse. If the
network predicts the relapse of a patient, this sample will be injected to a second model
to predict relapse time. The problem had to be separated into two models because it does
not make sense to train the time that a patient stays in the study (does not relapse)
as the relapse time. The main drawback was that the number of relapsed patients was
approximately 450 and it is not efficient to train a network with so many variables and
so little instances.

• The training of the first model was quite good. In the best case, we have obtained
a training accuracy of 74.36%, but a test accuracy of 62%. The class with the best
prediction was the relapsed patients population, with 79.67% of accuracy in the test
dataset. The network structure that worked best had three hidden layers, as the one
used in subtype classification, using the same set of variables.

Considering the problem as a binary classification, different methodologies were also
tested such as support vector machines (with and without applying kernels) and
decision trees. The support vector machine was not able to find a plane separating
the two classes without making many mistakes, and with decision trees we obtained
an accuracy of the 58.46%.

• Regarding the prediction of the relapse time, we trained a network with the entire
set of relapsed patients. Several architectures and hyperparameters were tested, but
the network was unable to learn. As the results of the network were not good, it was
decided to try with simpler models: linear regression, logistic regression, regression
using kernels introducing non-linear combinations of the data, etc. The results were
not good either, and this led us to look for other alternatives of modeling.
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6.2.2 Kaplan-Meier Estimator

Since the neural networks did not work as expected, we decided to explore other methods
in order to obtain better results that could relate the pathways with the prediction of the
time relapse. We started with a widely used model in the health analytic field introduced
by Edward L. Kaplan and Paul Meier in 1958 [26].

The main objective of the Kaplan-Meier method is to build a survival function estimator
S(t). It is a non-parametric method, since it does not assume any probability function
(as we do not know its real distribution). The estimator is obtained by maximizing the
likelihood function of the population sample. It takes into account the elements described
below:

• An N independent and identically distributed sample of the population, that defines
the number of patients in the study.

• Each patient has a time measure (RFS variable), with a label (RFSE ) based on
whether or not they have relapsed.

• The patients at risk are the elements of the sample waiting to an event. In this
particular case, they do not know if they will relapse or not.

• The time axis will be divided into k partitions (k ≤ N) t1 < t2 < ... < tk.

– At every partition ti, there are ni patients at risk and di relapse events are
observed.

• The discrete hazard rate hi is the probability of an individual to relapse in time ti

In this problem we want to find the maximum likelihood estimation of hi, we will name
it ĥi. We define the survival rate12 as :

S(t) =
∏
i:ti≤t

(1− hi) (4)

The likelihood is then

L(hj:j≤i|dj:j≤i, nj:j≤i) =
k∏

j=1

h
dj
j (1− hj)nj−dj (5)

To build this function, it has been assumed that for each relapse, the event occurs after
the relapse is observed. Therefore the log-likelihood is

log(L) =
k∑

j=1

(dj log(hj) + (nj − dj) log(1− hj))

12A short course on Survival Analysis applied to the Financial Industry: Estimating survival by means
of the Kaplan Meier estimator
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To find the maximum we need to derivate with respect to hi

∂ log(L)

∂hi
=
di

ĥi
− ni − di

1− ĥi
= 0

⇒ ĥi =
di
ni

and replacing in the survival function we obtain

Ŝ(t) =
∏
i:ti≤t

(
1− di

ni

)
(6)

We have decided to build a Kaplan-Meier fitter for each subtype of tumor. The time
intervals have not been sampled uniformly. Each time interval only includes a relapsed
event. In other words, parameter di will always be equal to 1 because only one patient
relapses in each ti.

Figure 31: Kaplan-Meier Survival Plot. The plot above shows the four survival curves corresponding to
the population of each tumor subtype. The plot below includes the number of patients at risk of relapse
in each time period. Since there are few samples of relapsed patients in the database, the IDIBELL
researchers recommended to focus only in the first five years of study of each population.
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Looking at Figure 31, it seems that the curve of LumA is further away from the others.
To verify if this difference is significant, we will use the widely used Log-Rank Test [27],
which formulates the following two hypotheses:

• Null Hypothesis: There is no difference between the survival curves

• Alternative Hypothesis: The survival curves are different:

Log-Rank Test Log rank (Chi-Square) df p-value

LumA LumB 37.46 1 9.32e-10
LumA Her2 56.02 1 7.16e-14
LumA Basal 43.88 1 3.48e-11
LumB Her2 4.64 1 0.0311
LumB Basal 1.51 1 0.2198
Her2 Basal 0.93 1 0.3359

Table 9: Log-Rank Test. In bold, p-values < 0.05 are highlighted

Computing the test, we can see in Table 9 that the p-value is less than 0.05 in all the LumA
combinations, meaning there is a significant difference between the groups compared.
We also observe that the populations corresponding to Her2 and Basal are significantly
different from each other.

As discussed in some publications [15, 10], the patients diagnosed with LumA have the
best overall relapse free survival. LumB and Her2 patients have intermediate outcomes,
and Basal -like patients are the ones having a higher risk of relapse in less time. In Figure
32, there is a graphic extracted from a publication [22] that relates the patient outcome
with breast tumor intrinsic subtypes. The authors describe the same curves behavior that
we have in Figure 31.

Figure 32: Patient outcome based on breast tumor intrinsic subtypes [22]
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6.2.3 Cox Proportional Hazard model

Once we had the results of the previous model, the IDIBELL researchers proposed the
Cox Proportional Hazard model since it seemed interesting to apply the contribution of
the pathways in a model that could include covariates. It is a regression widely used by
medical researchers to investigate the association between the survival time of patients
and one or more predictor variables set instead of a single variable at a time, like in the
Kaplan-Meier model. As in all regressive models, we will obtain a set of coefficients for
each pathway and thus we will be able to see what contribution each variable has in the
prediction. We define the hazard function as

H(t) = h0(t) · exp(β1x1 + β2x2 + ...βnxn) (7)

where t is the survival time, xi are the covariates and βi are the coefficients that measure
the impact of covariates. The values exp(βi) are called the hazard ratios (HR). If the haz-
ard ratio in a variable is greater than 1 indicates that as the value of it covariate increases,
the event hazard increases, and thus the duration of survival decreases. However, if it is
less than 1 indicates that the event hazard decreases, therefore the duration of survival
increases. To work with this model, some modifications on the data have been needed and
are described below:

Data Factorization

The IDIBELL researchers recommended us to split the continuous variables into some
bins in order to obtain more representative results (internally, the R-function computes
too many partitions of the continuous variables and each bin contained a small set of
unrepresentative samples). Next, we will detail the bins generation by each variable:

• Pathways and : are variables whose values are normalized between -0.5 and 0.5. The
values have been discretized as follows:

Genes variables

{
Low if x ∈ [−0.5,mean(var)],

High if x ∈ (mean(var), 0.5]
(8)

• age at diagnosis : it is a variable that takes values between 20 and 100 (in the
METABRIC dataset). Since the range is wide, it has been decided to make three
partitions of the data:

Age at diagnosis


Young if x ∈ (20, 45],

Adult if x ∈ (45, 70],

Elderly if x ∈ (70, 100]

(9)

• number of positive lymph nodes : usually the prognostic significance is evaluated by
counting the number of positive lymph nodes. In publication [28] the authors define
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a high risk from 10 nodes, the same threshold has been established in our data:

Lymph positive nodes

{
Low if x ∈ (0, 10],

High if x ∈ (10,+∞)]
(10)

• The stage and grade variables were already discrete. The first variable takes values
between 0 and 4, otherwise the grade variable range is between 1 and 3.

The meaning of the β coefficients will be conditioned by the reference bin for each vari-
able. To make the comparison easier and following the recommendations from IDIBELL
researchers, the reference bin has been established as the bin that contains the smallest
values (Low bins, Young bin defined by age at diagnosis variable, 0 bin for stage, etc).

Modeling

The procedure for the construction of the models is divided into several steps:

1. First, we will start by constructing some univariate models, that estimate the relapse
time as a function of each single variable in the dataset.

2. These models will be estimated over different sets of populations. The first popu-
lation will consist in the entire set of patients available in the database. The other
populations will correspond to the patients classified according to their tumor sub-
type. In other words, a model will be built for the whole population corresponding
to the Basal, Her2, luminal A and luminal B subtype tumor patients.

3. For each population, the set of variables that have been significant in the modeling
of the relapse time will be extracted. Afterwards, we will model a multivariate cox
regression for each set of features. In this second modeling, all possible interactions
between the variables will be included. Then, we can identify the prognostic factors
according to the sign of the β coefficients of the significant variables.

Figure 33: Relapse modelling process
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Univariate Cox Regression

Each row in Table 10 represents an univari-
ate model using the variable indicated in the
Variable column. Only those variables that
have been significant in their corresponding
model appear in the table (the features which
have had a p-value equal to or less than 0.05).

We see that the variables can take negative
or positive coefficients. If the β coefficient
is positive indicates that as the value of
the variable increases, the event probability
increases, and thus the duration of survival
decreases. However, if it is less than 0
indicates that the event hazard decreases,
therefore the duration of survival increases.

The Table 10 has been computed dividing
the total set of samples into four populations
corresponding to the tumor subtypes.

Variable β p-value

T.cells.CD4.naive -0.29537 0.0018

Cell Cycle 0.34238 0.000283

HIPPO 0.24169 0.00984

NRF2 -0.38125 5.52e-05

Hypoxia 0.20804 0.0265

SRC 0.25439 0.00715

ESR1 -0.57299 8.15e-10

ERBB2 0.2489 0.00764

age at diagnosis (Adult) -0.4765 0.000219

age at diagnosis (Elderly) -0.3140 0.031446

PROLIF 0.8048 2.29e-15

lymph nodes positive 1.4389 <2e-16

NPI 1.16938 <2e-16

stage (1) 0.6861 0.000318

stage (3) 1.02325 1.52e-09

Table 10: Univariate Cox regressions with all
the patients.

Variables Basal Her2 LumA LumB
β p-value β p-value β p-value β p-value

Macrophages.M0 -0.4027 0.0486

lymph nodes positive 1.1148 0.000305 1.4556 2.32e-06 2.1969 2.65e-07

NPI 0.7766 0.000104 0.7509 0.000359 0.6876 0.000491 0.9627 6.67e-09

stage (3) 0.8717 0.00663 0.8822 0.0135 0.8373 0.0120 0.7109 0.0343

Dendritic.cells.activated 0.4829 0.0191

PROLIF 0.4955 0.0109 0.3804 0.0216

ERBB2 0.4654 0.0183

SRC 0.6668 0.00136 0.3719 0.0261

Eosinophils -0.4699 0.0199

T.cells.regulatory.Tregs. 0.3921 0.0449

NRF2 -0.4364 0.00865

Table 11: Univariate Cox regressions from four populations, corresponding to tumor subtypes
patients classification. The first column corresponds to the set of variables that have been sig-
nificant in each population. The following columns are the population studied, indicating the β
coefficients and the p-value obtained.
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We observe that in all the models the NPI and stage variables have been relevant in
modeling the time of relapse. Another variable that has also taken on great importance
is the number of positive lymph nodes . By comparing Table 10 with Table 11, we observe
that the five studied groups (all the patients and each subtype tumor populations) share
the last three mentioned variables as relevant in the relapse estimation.

Multivariate Cox regression analysis

The multivariate models will include the set of relevant variables interactions. For example,
if we have three variables x1, x2, x3 the regression formulation will be:

y = b0 + b1*x1 + b2*x2 + b3*x3 + b4*(x1*x2) + b5*(x1*x3) + b6*(x2*x3)

+ b7*(x1*x2*x3)

We obtain a coefficient for each variable and we also include the interaction between all
combinations of features. Since the number of combinations can be high, we will restrict
the number of variables to be considered in each model to five. The variables pruning in
the models that had a greater number of features has been set by IDIBELL. Additionally,
since these models work with the interaction of variables, we will consider the continuous
version of the variables in order to compute them.

We start with the population group that includes all patients. Table 16, in the Appendices,
corresponds to the estimation of the relapse time using a multivariate model for the entire
patient dataset. We can see that there are too many significant factors in the results table.
This is because we work with continuous variables. However, we are not so interested in
the coefficients since they are not consistent with this modification, so now we will observe
the sets of relevant variables. All the combinations that contain the variable number of
positive lymph nodes have been outstanding. Since this feature appeared in the previous
models we can lead to the conclusion that it is an important variable in the prediction
of relapse time. Next, we will see which sets of variables are relevant in the populations
corresponding to the classification by tumor subtypes:

Variable beta p-value

lymph nodes positive 1.32521 0.1285
NPI 0.72632 0.0131
stage 0.99434 0.2153

lymph nodes positive*NPI -0.22448 0.1180
lymph nodes positive*stage -1.21281 0.0352
NPI*stage -0.21889 0.1858
lymph nodes positive*NPI*stage 0.20726 0.0272

Table 12: Basal multivariate cox regression

Variable beta p-value

lymph nodes positive 1.01702 0.143
NPI 0.28617 0.230
stage 0.04708 0.955

lymph nodes positive*NPI -0.14794 0.202
lymph nodes positive*stage -1.21281 0.305
NPI*stage -0.36013 0.833
lymph nodes positive*NPI*stage 0.05312 0.366

Table 13: Her2 multivariate cox regression
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We used the same set of variables in multivariate Basal (Table 12) and Her2 (Table 13)
models. We observe that, in the Basal model NPI factor and the interaction of NPI ,
stage and number of positive lymph nodes variables are significant features, whereas the
Her2 population does not highlight any variable.

Variables beta p-value

lymph nodes positive 0.98947 0.0599
NPI 0.68228 0.0118
stage 1.07702 0.2798
PROLIF -2.94811 0.1990

lymph nodes positive*NPI -0.20633 0.0465
lymph nodes positive*stage -0.37760 0.1583
NPI*stage -0.37050 0.1083
lymph nodes positive*PROLIF 2.27668 0.1029
NPI*PROLIF 0.92392 0.1489
stage*PROLIF 3.00777 0.1815
lymph nodes positive*NPI*stage 0.09775 0.0483
lymph nodes positive*NPI*PROLIF -0.50050 0.0628
lymph nodes positive*stage*PROLIF -1.29949 0.0773
NPI*stage*PROLIF -0.56377 0.3248
lymph nodes positive*NPI*stage*PROLIF 0.27338 0.0549

Table 14: LumA multivariate cox regression.

Variables beta p-value

lymph nodes positive 1.16351 0.1366
NPI 0.95179 0.0161
stage 0.65492 0.5456
PROLIF 8.51151 0.0191

lymph nodes positive*NPI -0.23324 0.1328
lymph nodes positive*stage -0.41278 0.3051
NPI*stage -0.13664 0.5831
lymph nodes positive*PROLIF -0.85707 0.6283
NPI*PROLIF -2.04314 0.0251
stage*PROLIF -3.65626 0.1685
lymph nodes positive*NPI*stage 0.08645 0.2848
lymph nodes positive*NPI*PROLIF 0.33210 0.3505
lymph nodes positive*stage*PROLIF 0.54922 0.5680
NPI*stage*PROLIF 0.89124 0.1411
lymph nodes positive*NPI*stage*PROLIF -0.18080 0.3493

Table 15: LumB multivariate cox regression.

The Tables 14 and 15, corresponding to the luminal patients, have taken also the same
sets of features. We can obsesrve that the NPI variable appears to be significant another
time as part of the interaction with the other variables and individually.

Results analysis

NPI is one of the most relevant variables in relapse time prediction [29]. It has come as a
relevant variable in all the studied models, as well as the number of positive lymph nodes
variable. Other variables that are used in the literature as factors in modeling are: patient
age, tumor size, tumor stage and number of involved auxillary lymph nodes [3]. In fact,
the age at diagnosis factor and the stage features have been relevant in the dataset we are
working with. All the cancer studies that use the beta coefficients in modeling the time
to relapse or the death event establish the following relationship:

• A covariate with β > 0 is called bad prognostic factor

• A covariate with hazard ratio β < 0 is called good prognostic factor

The features that appeared to be relevant in most of the univariate models have positive
betas, they are factors that define a bad prognosis.
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6.3 User Interface

In order to make the results more accessible, an interactive web application has been
created. Most of the plots that appear in this work have been built by the Python Plotly
library. Using the Dash package from the same authors, a space has been developed to
interact with the visualizations presented.

Figure 34: Application tabs

The application has 6 window tabs (see Figure 34):

• Welcome tab: contains a description of the project.

• Hierarchical Clustering tab: includes the study carried out in Section 4.1.

• Dimensionality Reduction: includes the study done in Section 4.2.

• Correlation Study tab: shows the plots that appear in Section 4.3.

• Tumor Prediction tab: includes the results of the patient classification model de-
scribed in Section 6.1.

• Relapse Probability Prediction tab: includes the results of the two estimators used
in Section 6.2.

Next, we show some screenshots of the application:

Figure 35: Shapley values plot from Tumor Prediction tab. The plot shows the shapley values from a
randomly chosen patient. The user is able to select the patient tumor subtype.
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Figure 36: Immune feature scores plot from Hierarchical Clustering tab. The user can select the features
that appear in the heatmap, in order to facilitate the pattern comparison.

Figure 37: Data cluster visualization plot from Dimensionality Reduction tab. The user can filter the
data shown in the above two plots.

The interface is publicly available in:

• Identification of modulators in cancer tumor progression GitHub Repository
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7 Conclusions

Gene expression profiling has given us insight into the molecular complexity of breast
tumors. In this work, we found that, from a relatively small set of genes, it has been
possible to build a model able to classify the patients based on their tumor subtype.
This classification was already obtained by doctors and researchers. From the genes that
they considered relevant, they were capable of diagnosing the tumor subtype for each
patient. The main advantage of using the neural network model proposed in this project
is that we are able to know which the contributions of each variable in the tumor subtype
classification are. The diagnoses are usually offered by checking whether the values of a
certain set of variables are within empirically established ranges. Thanks to the shapley
values, we are able to know which variables have determined the output of each patient,
offering their corresponding contribution. In this way, we can detect the influence of factors
that have also appeared significant in the two-way hiererchical clustering heatmaps. For
example, we have seen that the ESR1 and ERBB2 pathways are clearly decisive in the
classification of the tumor type; or in the opposite case, it seems that the immune feature
scores do not play a relevant role in the prediction.

The other objective of the project was to identify a set of features that was relevant
in predicting the relapse time of patients. It is known, that in most applications, neural
networks are the models that obtain the best results, since they are able to find non-linear
relationships between data that other techniques cannot capture. In this study, we have
worked with a small set of samples of relapsed patients. In the data exploration, we have
seen that the relapse time was different for the different types of tumor. Having such
heterogeneous dataset of relapsed patients has not facilitated the use of neural networks.
It was necessary to look for other alternatives to identify which variables had more weight
when predicting the time of relapse.

One of the best known estimators for modeling the relapse time of cancer patients is
the Kaplan-Meier model. The Kaplan-Meier plots have been very useful to reaffirm that
the relapse time is conditioned by the tumor subtype of the patients, since the curves
for each population were quite different. We can conclude that the patients diagnosed
with LumA are the least likely to relapse, whereas Her2 and Basal patients have the
worst prognosis. The downside of modeling the problem with the previous model is that
it cannot be parameterized with the information extracted from the genetic expressions.
To solve the problem working with covariates, the IDIBELL team proposed to use the
Cox proportional hazard models. With these models, we estimated the contributions of
the introduced covariates. The univariate models have been tested to perform the feature
selection used in the multivariate models. From these models, we observed that NPI ,
stage and the number of positive lymph nodes were very influential when predicting the
relapse time.

The results obtained in this project have been reaffirmed with the researchers knowl-
edge. The challenge of using the proposed models is to provide helpful tools in order to
have different points of view when it comes to diagnosing patients and improving their
treatment.
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8 Future Work

The time invested to the realization of this project has allowed us to obtain the whole set
of results described in the previous sections. Even so, in the near future, we would like to
work on the following ideas:

• Try to obtain more data from relapsed patients. In this project, only a group of
around 450 patients were available. When we have few samples and many variables
that describe them, it is difficult to train a complex model such as a neural network.

• One of IDIBELL’s proposals was to calculate the coefficients of the cox proportional
model with a neural network in order to include nonlinear feature interactions. If we
had more data it would be possible to do better training to get an approximation
of the coefficients, as discussed in the previous point.

• Apply the study of variables to other types of cancer. One of the most used datasets
is the Cancer Genome Atlas. TCGA is a coordinated effort from the National Can-
cer Institute (NCI) and the National Human Genome Research Institute (NHGRI)
decided to give an understanding of the molecular basis of cancer through the appli-
cation of genome analysis technologies, including large-scale genome sequencing. The
dataset contains more than 11,000 tumour samples analysed from 33 cancer types.
Doing an analysis of this dataset could be very interesting, both for the insights
that can be discovered about each cancer and also to be able to make comparisons
between the different genetic expressions.

• With the results obtained in the correlation study (see Section 4.3), the IBIDELL
team has studied the pairs of variables having the most differences between the
patient population relapsed in less than two years and the set of patients that did
not relapse before five years. It would be very enriching to participate in the progress
of this study.

• App improvement: provide more functionalities to the application, such as adding
model training options, user-defined display parameters (for example, coloring the
dimensionality reduction plot by the target decided by the user). It is also considered
adding a visualization of the internal functioning of the neural network (evolution
of loss, state of gradients, activation of neurons, etc).
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Glossary

DSS10 : disease specific survival (in days) at 10 years
Values: Temporary continuous variable
Pages: . 18, 28, 30

DSSE10 : disease specific survival event at 10 years
Values: {0, 1}
Pages: . 18, 28, 30

INTCLUST : breast cancer classification with distinctive molecular profiles and clinical
outcomes, complementary classification to PAM50 variable.
Values: {1, 2, 3, 5, 6, 7, 8, 9, 10, 4ER-, 4ER+}
Pages: . 17, 30

METABRIC : the Molecular Taxonomy of Breast Cancer International Consortium
database is a Canada-UK Project which contains targeted sequencing data of 1,980
breast cancer samples.
Pages: . 14, 17

NPI : Nottingham Prognostic Index = [0.2 x size of the index lesion] + node status +
grade of tumour
Pages: . 17, 28, 47, 48, 51

PAM50 : it is a 50-gene signature that classifies breast cancer tumor subtypes.
Values: {LumA,LumB,Her2,Basal-like,Normal-like }
Pages: . 32

PIK3CA.mut : indicates if the sample contains a mutation in PI3K pathway.
Values: {′WT ′,′MUT ′}
Pages: . 20

PROLIF : cell proliferation is how quickly a cancer cell copies its DNA and divides into
2 cells. If the cancer cells are dividing more rapidly, it means the cancer is faster
growing or more aggressive.
Values: ∈ [0, 1]
Pages: . 17, 38, 39

RFSE : indicates the occurrence of relapse
Values: {0, 1}
Pages: . 17, 18, 28, 30, 41

RFS : indicates the time from diagnosis to occurrence of event (in days)
Values: Temporary continuous variable
Pages: . 17, 18, 28, 30, 41

TP53.mut : indicates if the sample contains a mutation in TP53 pathway.
Values: {′WT ′,′MUT ′}
Pages: . 20

age at diagnosis : age when the patient was diagnosed with breast cancer
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Values: ∈ [20, 100]
Pages: . 16, 44, 45, 48

grade : based on how much the cancer cells look like normal cells.13

Values: {1, 2, 3}
Pages: . 17, 18, 28, 34, 38, 45

immune feature scores : scorings associated with immunity genes
Values: ∈ [0, 0.5]
Variables: ’B cells naive’, ’B cells memory’, ’Plasma cells’, ’T cells CD8’, ’T cells
CD4 naive’, ’T cells CD4 memory resting’, ’T cells CD4 memory activated’, ’T
cells follicular helper’, ’T cells regulatory (Tregs)’, ’T cells gamma delta’, ’NK cells
resting’, ’NK cells activated’, ’Monocytes’, ’Macrophages M0’, ’Macrophages M1’,
’Macrophages M2’, ’Dendritic cells resting’, ’Dendritic cells activated’, ’Mast cells
resting’, ’Mast cells activated’, ’Eosinophils’, ’Neutrophils’
Pages:. 15, 16, 34, 38

number of positive lymph nodes : guides the treatment and helps predict prognosis,
the more lymph nodes that contain cancer, the poorer prognosis tends to be.
Values: Continuous variable
Pages: . 17, 44, 47, 48, 51

pathways : the molecular pathways describe a series of actions among molecules in a
cell that leads to a certain end point or cell function.
Values: ∈ [−0.5, 0.5]
Variables: ’Cell Cycle’, ’HIPPO’, ’MYC’, ’NOTCH’, ’NRF2’, ’PI3K’, ’TGF.Beta’,
’RTK RAS’, ’TP53’, ’WNT’, ’Hypoxia’, ’SRC’, ’ESR1’, ’ERBB2’
Pages: . 13–17, 21, 23, 24, 27, 34, 38, 41, 44, 51

stage : classifies the breast cancer based on how much cancer there is in the body and
where it is when first diagnosed. 14

Values: {0, 1, 2, 3, 4}
Pages: . 17, 18, 34, 38, 39, 45, 47, 48, 51

treatment : treatment received by the patient, the variable takes combinations of the
three possible values.
Values: {′RT ′(radiotherapy ),′CT ′(chemotherapy),′HT ′(hormonal)}
Pages: . 20

13https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/breast-
cancer-grades.html

14https://www.cancer.ca/en/cancer-information/cancer-type/breast/staging
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Appendices

Variable beta p-value

lymph nodes positive 6.878e+00 0.009151
NPI 1.972e+00 0.090502
stage 3.560e+00 0.340729
PROLIF 2.141e+01 0.078492
ERBB2 3.486e+01 0.147558
age at diagnosis 8.514e-02 0.245331

lymph nodes positive*NPI -1.471e+00 0.004927
lymph nodes positive*stage -4.191e+00 0.001937
NPI*stage -9.483e-01 0.276196
lymph nodes positive*PROLIF -1.926e+01 0.005793
NPI*PROLIF -4.771e+00 0.121152
stage*PROLIF -3.268e+00 0.674616
lymph nodes positive*ERBB2 -4.634e+01 0.002670
NPI*ERBB2 -5.765e+00 0.333461
stage*ERBB2 -3.453e+01 0.095011
PROLIF*ERBB2 -1.296e+02 0.124561
lymph nodes positive*age at diagnosis -8.160e-02 0.049876
NPI*age at diagnosis -1.888e-02 0.308022
stage*age at diagnosis -5.173e-02 0.369840
PROLIF*age at diagnosis -3.304e-01 0.083950
ERBB2*age at diagnosis -4.092e-01 0.312343
lymph nodes positive*NPI*stage 8.753e-01 0.001224
lymph nodes positive*NPI*PROLIF 4.126e+00 0.001909
lymph nodes positive*stage*PROLIF 9.468e+00 0.009881
NPI*stage*PROLIF 1.007e+00 0.601811
lymph nodes positive*NPI*ERBB2 9.121e+00 0.001388
lymph nodes positive*stage*ERBB2 3.015e+01 0.000106
NPI*stage*ERBB2 6.790e+00 0.151856
lymph nodes positive*PROLIF*ERBB2 1.534e+02 0.002983
NPI*PROLIF*ERBB2 2.921e+01 0.163665
stage*PROLIF*ERBB2 2.664e+01 0.627782
lymph nodes positive*NPI*age at diagnosis 1.758e-02 0.032853
lymph nodes positive*stage*age at diagnosis 5.723e-02 0.007668
NPI*stage*age at diagnosis 1.208e-02 0.376131
lymph nodes positive*PROLIF*age at diagnosis 3.097e-01 0.004077
NPI*PROLIF*age at diagnosis 7.387e-02 0.128563
stage*PROLIF*age at diagnosis 6.848e-02 0.574055
lymph nodes positive*ERBB2*age at diagnosis 6.301e-01 0.011717
NPI*ERBB2*age at diagnosis 5.664e-02 0.577024
stage*ERBB2*age at diagnosis 5.061e-01 0.126118
PROLIF*ERBB2*age at diagnosis 2.146e+00 0.107648
lymph nodes positive*NPI*stage*PROLIF -2.013e+00 0.002975
lymph nodes positive*NPI*stage*ERBB2 -5.771e+00 6.96e-05
lymph nodes positive*NPI*PROLIF*ERBB2 -3.228e+01 0.000722
lymph nodes positive*stage*PROLIF*ERBB2 -7.767e+01 0.004222
NPI*stage*PROLIF*ERBB2 -6.383e+00 0.625433
lymph nodes positive*NPI*stage*age at diagnosis -1.174e-02 0.005975
lymph nodes positive*NPI*PROLIF*age at diagnosis -6.454e-02 0.001917
lymph nodes positive*stage*PROLIF*age at diagnosis -1.594e-01 0.004205
NPI*stage*PROLIF*age at diagnosis -1.618e-02 0.593267
lymph nodes positive*NPI*ERBB2*age at diagnosis -1.201e-01 0.009480
lymph nodes positive*stage*ERBB2*age at diagnosis -4.468e-01 0.000373
NPI*stage*ERBB2*age at diagnosis -8.933e-02 0.247849
lymph nodes positive*PROLIF*ERBB2*age at diagnosis -2.345e+00 0.003326
NPI*PROLIF*ERBB2*age at diagnosis -4.881e-01 0.144862
stage*PROLIF*ERBB2*age at diagnosis -5.320e-01 0.540693
lymph nodes positive*NPI*stage*PROLIF*ERBB2 1.601e+01 0.001058
lymph nodes positive*NPI*stage*PROLIF*age at diagnosis 3.268e-02 0.001866
lymph nodes positive*NPI*stage*ERBB2*age at diagnosis 8.307e-02 0.000360
lymph nodes positive*NPI*PROLIF*ERBB2*age at diagnosis 4.893e-01 0.001061
lymph nodes positive*stage*PROLIF*ERBB2*age at diagnosis 1.241e+00 0.002736
NPI*stage*PROLIF*ERBB2*age at diagnosis 1.157e-01 0.580115
lymph nodes positive*NPI*stage*PROLIF*ERBB2:age at diagnosis -2.519e-01 7.773e-01 0.000890

Table 16: Multivariate Cox regressions with all the patients.
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