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Abstract
Chemotaxis can be understood as the directed cell migration towards a nonisotropic chemoat-
tractant gradient present in the surrounding environment. This response to external chemical
stimuli is employed by eukaryotic cells as a central mechanism lying behind biological pro-
cesses like development, immune response, and metastasis of tumor cells in multicellular tis-
sues, or sourcing of food and formation of pluricellular structures in unicellular organisms [1, 2].
The focus of the following project stands on the model organism Dictyostelium discoideum. A
biochemical model that pursue to elucidate the molecular mechanisms responsible for polar-
ization of the cell and the locomotion in Dictyostelium cells during chemotaxis is studied. The
starting point will be a simplified model of a conservative system based on [3], the latter is com-
pound by two coupled networks describing complex interactions between certain phospholipids
localized at cell membrane and enzymes from the cytosol. After reproducing gradually the com-
plete model from [3] searching for excitability properties, it will be discussed the influence of
such coupling on the system dynamics. Computational simulations of the spatiotemporal behav-
ior in one and two dimensions were performed, using deterministic and stochastic equations,
i.e. the Chemical Langevin equation. The incorporation of a dynamic phase field is employed
to characterize the cell shape in two dimensions.
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1 Introduction

1.1 Model organism: Dictyostelium discoideum
One example of eukaryotic cells that requires chemotaxis as a way to migrate to substantial
spots is the cellular slime mould Dictyostelium discoideum. Its widespread use being a model
organism may be explained considering the striking and short life cycle that it displays, and the
simplicity of its culture on nutrient agar plates. Withal, an important part of Dictyostelium pro-
teins are more resembling to human orthologs than those from Saccharomyces cerevisiae [4]. As
long as nutrients are present in abundance in nearby medium, it exhibits a vegetative behavior
living as a single motile amoeboid cell that develop randomly oriented pseudopodia. Since the
soil habitat that harbor these cells may not always be a constant supply of bacteria, a morpho-
genetic process emerges in Dictyostelium cells after starvation. Therefore, unicellular amoebae
begins to act as aggregation centers and secrete chemoattractant cyclic AMP (cAMP) with the
purpose to gather together cells into a slug to prevent the nutritional stress. The Dictyostelium
cells self-organize spatiotemporally at cellular level in a wavelike form due to the cAMP signal-
ing system [5]. The multicellular mass passes through differentiated stages of a developmental
programme until forming a fruiting body with spores. Eventually, these spores will be dispersed
to new spots to germinate and give rise to new amoeba single cells which may be able to find
new food sources [6]. A new cycle of life has been initiated.
Accordingly, Dictyostelium discoideum feeds, communicates and forms a multicellular struc-
ture due to chemotaxis. This process exhibits three stages: directional sensing of the chemical
species, symmetry breaking which leads to cell polarity and, finally, motility due to the for-
mation of pseudopodia associated to a cytoskeletal remodeling, as can be seen in Fig.1. Thus,
chemotaxis involves a signal processing system that interprets temporal and spatial external
cues and gives rise to oriented motility [7]. Central to this study will be the complex interac-
tions beneath the signaling pathways that trigger the symmetry breaking in Dictyostelium cells.

Figure 1: Snapshots of a movie recording Dictyostelium discoideum, where the fluorescent part is associated to
actin, which links to cell membrane and has affinity to PIP3, leading to the cell movement.

1.2 Cellular symmetry breaking in Dictyostelium discoideum
The network of interconnected signaling pathways leading to cell symmetry breaking and po-
larity starts with G protein-coupled receptors (GPCR) displaced uniformly along the cell mem-
brane, exclusively in eukaryotic cells. These protein complexes are able to detect external
molecules and are responsible for signal transduction pathways. They become activated when
certain ligand, e.g. cAMP, binds to them and generates a conformational change, by exchanging
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the G-protein bound from GDP to GTP [9, 10, 11, 12]. G-proteins mediate intracellular events as
Ras activation, which happens downstream G-protein signaling. Ras is a subfamily of small G-
proteins that has a key activity in chemotaxis, among other fundamental cell processes. Due to
its binary active (Ras-GTP) and inactive (Ras-GDP) molecular form, it can act as a switch con-
trolling intracellular signaling pathways. Ras is switched on by guanine-nucleotide-exchange
factors (GEFs), responsible for catalyzing the reaction from GDP to GTP. The backward re-
action is catalyzed by GTPase-activating proteins (GAPs), which inactivates the Ras protein
[9]. The cell symmetry is lost when a chemoattractant is approached to a particular side of the
membrane, since Ras will be activated only at the edge closest to the gradient [8, 13].
From previous studies, it was found that the chemotactic signaling pathways display properties
of an excitable system. Therefore, the interactions between Ras molecules are portrayed in the
further work since the asymmetric signals are able to emerge spontaneously due the excitability
of this signaling network. The spatiotemporal dynamics of Ras is excitable even in the absence
of downstream pathways [3], as I try to prove in the present research. The hallmark of an
excitable system is how it responds to an external stimulus depending on whether it is above
or not a certain intrinsic threshold. After each excitation we can find a refractory period, in
which the system cannot support another excitation. We can determine whether our system is
excitable when we find oscillations or traveling waves applying supra-threshold conditions. Two
feedback loops are required for such dynamics: one positive-feedback allowing the response to
supra-threshold cues in all-or-none manner, and another one negative-feedback which is delayed
in order to generate the refractory period [3].
Moreover, Ras-GTP activates phosphoinositide 3-kinase (PI3K), the enzyme responsible for the
production of the phoshphatidynolisitol (3,4,5)-triphosphate (PIP3) from phoshphatidynolisitol
(4,5)-biphosphate (PIP2), which are phospholipids located on the plasma membrane. This re-
action is more catalyzed at the membrane area under a higher cAMP concentration, leading to
an accumulation of PIP3, which in turn is responsible for the actin polymerization, that enables
pseudopodia formation [14]. While, the reverse reaction is catalyzed by phosphatase and tensin
homolog (PTEN): PTEN’s substrate is PIP3 and its product is PIP2. This reactions is predomi-
nant on the lagging edge of the cell, where the chemoattractant concentration is much lower than
in front [15]. The alternation of chemical species between the leading and rear edges induces
quick cellular movement: in the front region, polymerized actin induces protrusion activities,
whereas at the tail, cell structure is retracted by the contractile force of myosin II [17, 16].
In such a context, we may have two different domains: a PIP3-enriched/PIP2 depleted domain
and PIP2-enriched/PIP3-depleted domain. Hence, there are two possible stable states for the
same system that can be described as a bistable dynamics, constituting an underlying support
for the stationary dynamics of the PIP3-enhanced domain [9]. Building a positive feedback on
Ras-GTP from this bistable network can maintain and stabilize the asymmetric signal generation
arising from Ras excitability. By coupling these two networks, we can reconstitute the cellular
symmetry breaking phenomena present in processes as polarization, migration and division [3].
However, the present study tries to prove that the critical role is played by Ras excitability
network.
Establishing a biochemical model for the spatiotemporal dynamics of Ras and PIP3 wave pat-
terns is the main purpose of the current project. The model is constituted by reaction-diffusion
equations of two coupled signaling systems: Ras and PIP3, inspired by a previous research [3],
presented in Fig.2.

9



Figure 2: Simplified scheme of a cell highlighting the coupled Ras-PIP3 system at the plasma membrane and
illustrating the most relevant reactions for this project at the leading edge during chemotaxis.

The study will start with a simplified conserved model, and step by step, I will include new
terms to achieve a complete model capable of reproducing the oscillatory and wave travelling
characteristics of an excitable system. Performing analysis of phase space and phase diagrams,
I attempt to study the system dynamics and the regime that is interesting for the symmetry
breaking. Another focus is settled on the influence of PIP3 positive feedback on Ras spatiotem-
poral dynamics, which will be considered as almost redundant for Ras wave generation, because
chemotaxis is performed even in absence of PIP3 gradient [18]. However, PIP3 needs the acti-
vation from Ras to generate waves.
Therefore, a model with the minimal requirements describing such properties considering non-
linear reaction diffusion equations is studied and built from now on. The corresponding simula-
tions to this model are carried out in one dimension and extended to two dimensions. Initially,
deterministic equations were considered for the computational study and, finally, stochastic
equations, as the chemical Langevin equation. The last part of the project is about reproducing
the cell shape using a dynamic phase field. The phase field takes two opposite values depend-
ing whether it is inside or outside the cell domain and helps to maintain the no-flux boundary
conditions during the cell movement.
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2 Background models and recent research
Foregoing efforts were put on the development of a model for the spatiotemporal dynamics
of the above mentioned molecular mechanisms to recover the excitable dynamics observed
in the chemotactic signaling pathways in Dictyostelium discoideum or other similar amoeboid
eukaryotic cells. The most relevant articles concerning the model studied in the present work
are found in [3, 15]. The theoretical model built in article [15] for the phosphatidynlinositol
lipid reactions on the membrane represents the template used in [3] for the dynamics of the
Ras signaling system. During the progress of the present work, we can find an analysis of the
combined model of the Ras and PIP3 networks from [3].
As a brief summary of the coupled model by Fukushima et al.: first, they considered a conser-
vative model for the PIP3 signaling system, where PIP2 phosphorylation to PIP3 is catalyzed
by PI3K and the dephosphorylation from PIP3 to PIP2, by PTEN. These reactions are contem-
plated as Michaelis-Menten reactions using the maximum reaction rate and Michaelis constant.
The activation of PI3K by Ras-GTP is also considered to give account of the PI3K membrane
translocation and to trigger other travelling waves. Another MM-type binding reaction diffusion
equation is added to describe PTEN interaction with plasma membrane.
To obtain an excitable network for the Ras signaling regulatory system, they applied the model
described in [15] as a prototype, where GEFs and GAPs control positive and negatively Ras
behavior implementing MM-type enzymatic reactions. The GEFs term involves two elements
described as the basal activity of Ras and a positive feedback from PIP3, where arises the
coupling between these two networks. The recruitment of GAPs to the plasma membrane is
described by two positive feedback mechanisms with a MM-type enzymatic reaction equation.
More elements are added to this theoretical model, which will be explained with more details
in the further project.
Other mathematical models using reaction-diffusion equations have been suggested to describe
the underlying phenomena behind the cell migration in Dictyostelium discoideum [19, 20, 21,
22, 26, 27, 28]. Moreover, an auxiliary dynamic phase field is implemented to simulate the cell
shape and evolution during the movement. Such a technique for the cell morphodynamics can
reproduce deformable boundaries and maintain the no-flux boundary conditions at the edge,
and it has already been employed in several studies [20, 23, 24, 25].
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3 Project purpose and development
The current work attempts to bring a connection between previous studies related to Dic-
tyostelium discoideum spatiotemporal dynamics, illustrating more general mathematical models
[20, 24, 25], and a more detailed biochemical model. To have a more biochemical context would
allow us to design more appropriate experiments controlling with inhibitor drugs the desired
genes expressions. Articles [20] and [24] implement a bistable model with minimum require-
ments to describe a reaction-diffusion process controlled by an effective concentration giving
account for the interplay between activated Ras, PI3K or PIP3. The model presented in [25] con-
sists of a generic wave-forming reaction-diffusion system capable of reproducing bistable and
excitable dynamics. The biochemical model studied in [3] is examined to determine whether it
is appropriate candidate for the desired role.
The starting point will be a simple conserved model derived of [3] analogous to the classical
phosphorylation-dephosphorylation conserved system, which displays monostability. Conse-
quently, new feedbacks will be added to construct bistability. The conservation will be inter-
rupted by including new elements to the system and other enzyme dynamics, obtaining ex-
citability. The complete model will be achieved by studying step by step each case designing
algorithms in Python and Matlab to perform phase space and phase diagrams analysis. The
reaction-diffusion models are numerically integrated employing finite differences method in
one and two dimensions. Finally, to figure out if such a model is capable of cell locomotion, a
dynamic phase field is coupled to the system.
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4 Results and Discussion

4.1 Simple conserved model, slaving GAPs dynamics
The model studied afterwards and presented in [3] for the Ras excitable network, considering the
activation and inactivation from GEFs and GAPs, has the following reaction diffusion equations:

∂ [Ras−GDP]
∂ t

= RGAP−RGEF + k−λRas−GDP[Ras−GDP]+D∇
2[Ras−GDP] (1)

∂ [Ras−GT P]
∂ t

= RGEF −RGAP−λRas−GT P[Ras−GT P]+D∇
2[Ras−GT P] (2)

in which, k stands for membrane association rate of Ras-GDP and λRas−GDP is the dissociation
rate. In Eq. (2), λRas−GDP is the membrane dissociation rate of Ras-GTP. As we see, RGEF
positively regulates Ras by activation, giving Ras-GTP and RGAP inactivates it, producing Ras-
GDP. The corresponding equations to the latter terms are:

RGEF =

(
VGEFs +

Vf eedback[PIP3]
KPIP3 +[PIP3]

)(
[Ras−GDP]

KGEFs +[Ras−GDP]

)
(3)

RGAP =VGAPs[GAPs]
(

[Ras−GT P]
KGAPs +[Ras−GT P]

)
(4)

Equations (3) and (4) are characterized as a Michaelis Menten type enzymatic reaction. The first
one has two elements corresponding to Ras activation (with the maximum reaction rate VGEFs
and Michaelis constant KGEFs ) and to positive feedback from PIP3 (Vf eedback and KPIP3). Equa-
tion (4) describes the negative regulation of Ras. The GAPs distribution on plasma membrane is
controlled by a positive and negative influence of Ras-GDP and Ras-GTP, respectively, resulting
in two positive feedback loops.

∂ [GAPs]
∂ t

=VGAPsass[GAPs]cyt

(
[Ras−GDP]

KRas−GDP +[Ras−GDP]

)(
Kα +α[Ras−GT P]
Kα +[Ras−GT P]

)
−λGAPs[GAPs]+D∇

2[GAPs] (5)

[GAPs]cyt = [GAPs]total−χ[GAPs] (6)

where, in Eq. (5) the MM-type enzymatic reaction (with maximum reaction rate VGAPsass and
Michaelis constant KRas−GDP) stands for the positive regulation from Ras-GDP. Since Ras-
GTP has a negative effect on GAPs, the reaction is described with the parameters kα and α ,
which are the half-maximum concentration of Ras-GTP for negative regulation of GAPs and
the indicator of the negative regulation magnitude of GAPs. In addition, we have Eq. (6) for
the GAPs conservation: [GAPs]cyt is the cytosolic concentration, [GAPs]total is the total amount
of GAPs available for the reaction, the overline stands for average concentration and χ is a
transforming factor from membrane surface concentration to a volume cytosolic concentration.
For notation simplicity, Ras-GTP will be designated as X, Ras-GDP as Y and GAPs as Z. As
a first assumption, we can slave GAPs dynamics, neglecting the diffusion and considering fast
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dynamics:

0 =VGAPsass [GAPs]cyt

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)
−λZ[Z]

Z =
VGAPsass [GAPs]cyt

λZ

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)
Substituting this expression in Eqs. (1-2) and choosing Vf eedback = 0, we end up with the fol-
lowing model:

∂ [X ]

∂ t
=V ∗GAPs

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)(
[Y ]

KGAPs +Y

)
−VGEFs

(
[X ]

KGEFs +[X ]

)
+k−λX [X ]+D∇

2[X ]

(7)
∂ [Y ]
∂ t

=VGEFs

(
[X ]

KGEFs +[X ]

)
−V ∗GAPs

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)(
[Y ]

KGAPs +Y

)
−λY [Y ]+D∇

2[Y ]

(8)
where, we defined V ∗GAPs ≡ VGAPs

VGAPsass [GAPs]cyt
λZ

. The similarity with a conserved system of
phosphorylation and dephosphorylation processes is remarkable if we forget the membrane
association and dissociation rates (k = λX = λY = 0) and diffusion coefficient (D = 0) and
consider kX = 0, α = 1, for the moment. Thus, the most simple model obtained is:

∂ [X ]

∂ t
=V ∗GAPs

(
[Y ]

KGAPs +Y

)
−VGEFs

(
[X ]

KGEFs +[X ]

)
(9)

∂ [Y ]
∂ t

=VGEFs

(
[X ]

KGEFs +[X ]

)
−V ∗GAPs

(
[Y ]

KGAPs +Y

)
(10)

where, [X ] + [Y ] = total, which is considered to be constant. The corresponding scheme to
simple system of Eqs.(9-10) is Fig. 3:

Figure 3: The scheme of the model for the simple conserved model without feedbacks (α = 1, kX = 0
molecules ·µm−2).

Plotting the stationary points as a function of the maximum reaction rate V ∗GAPs, we can find
what type of dynamics displays this system. The system reaches a single stable solution for
different values of V ∗GAPs, so it is monostable. The maximum stable state that can be found is the
total concentration. Therefore, it is interesting to see the system behavior when changing V ∗GAPs
and the total concentration, represented in Fig.4. For the following analysis, I used VGEFs = 400
s−1, KGEFs = 3500 molecules ·µm−2 and KGAPs = 40 molecules ·µm−2, listed in the appendices
(Tables1-3).
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Figure 4: Figure of the stationary points changing V ∗GAPs (left) and the phase diagram (right) of the simple
conserved model for α = 1, kX = 0 molecules ·µm−2

GEFs and GAPs have an opposite effect on Ras proteins, same as kinases and phospatases for
phosphoproteins. In many cell-signalling networks can be found that these opposite interactions
constitute a universal motif. Signalling pathways interpret and transmit external cues from cell
membrane to intracellular components using cascades of these motifs. Such cycles may present
complex dynamics as bistability or oscillations [29]. Bistability can be obtained introducing a
positive feedback in our simple conserved model by setting α = 0.001, which corresponds to
the positive feedback from Ras-GTP.

Figure 5: Figure of the stationary points for different values of V ∗GAPs (left) and phase diagram for V ∗GAPs and
total concentration (right) for α = 0.001, kX = 0 molecules ·µm−2

In Fig. 5 left plot, for a certain region of V ∗GAPs value, we obtain three different solutions for
the steady-state. There are two stable solutions coinciding with low and high X concentration
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and an unstable intermediate state, connecting the other two solutions. When the parameter is
increased the system reaches a different stable state unlike for low values, as in a hysteresis.
The phase diagram for the parameters V ∗GAPs and the total concentration, presented in Fig. 5
right plot, shows us whenever we have one or more steady-state solutions.
The hysteresis shape can be changed by adding the positive feedback from Ras-GDP, kX =
3000 molecules ·µm−2. The interactions between the two opposite enzymes result in a bistable
switch, as is displayed in the following figure where the high and low concentration can be
considered as on and off state:

Figure 6: Figure of the stationary points as a function of V ∗GAPs (left) and the phase diagram for V ∗GAPs
controlling the total concentration (right) for α = 0.001, kX = 3000 molecules ·µm−2

Figure 7: Scheme of the model with the feedbacks from Ras-GTP and Ras-GDP (α = 0.001, kX = 3000
molecules ·µm−2)

Therefore, a conserved system with two feedbacks (one positive and one negative) affecting the
system dynamics, described in Fig. 7, results in a bistable dynamics for a large interval of the
parameter V ∗GAPs, when it is larger than 800 s−1. As can be seen in Fig. 6, the stable solutions are
the low and high concentration, which correspond to zero or total protein concentration. And
below V ∗GAPs = 800 s−1, the system reaches a single steady-state, regardless the total concentra-
tion.
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4.2 Model with membrane association and dissociation rates
The conservation is lost whether considering the membrane association and dissociation rate for
Ras-GDP (k and λRas−GDP ≡ λX ) and membrane dissociation for Ras-GDP (λRas−GT P ≡ λY ):

∂ [X ]

∂ t
=V ∗GAPs

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)(
[Y ]

KGAPs +Y

)
−VGEFs

(
[X ]

KGEFs +[X ]

)
+ k−λX [X ]

(11)
∂ [Y ]
∂ t

=VGEFs

(
[X ]

KGEFs +[X ]

)
−V ∗GAPs

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)(
[Y ]

KGAPs +Y

)
−λY [Y ]

(12)
The scheme characterizing the interactions corresponding to the system from Eqs. (11-12) is
displayed in Fig. 8.

Figure 8: The no-conserved model scheme with k = 45 molecules ·µm−2s−1, λX = 0.003 s−1 and λY = 0.2 s−1.

The Fig. 9 corresponding to the steady-state solutions of this system as a function of the pa-
rameter V ∗GAPs allows us to evaluate the displayed dynamics. The parameters KX , Kα , α , KGAPs,
VGEFs and KGEFs have the same values as in the previous section, the entire list can be found in
the appendices (Table 2).

Figure 9: Stationary points of X (left) and of Y (right) controlling V ∗GAPs and k = 45 molecules ·µm−2s−1,
λX = 0.003 s−1 and λY = 0.2 s−1.
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where, the unstable points found for the region VGAPs ∈ [810,900] s−1 represent the oscillatory
dynamics of the system. Outside this oscillatory regime, the system is monostable.
The dependence between the stationary X points and Y points can be found considering that

∂ [X ]

∂ t
=V ∗GAPs

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)(
[Y ]

KGAPs +Y

)
−VGEFs

(
[X ]

KGEFs +[X ]

)
+ k−λX [X ] = 0

=
∂ [Y ]
∂ t

=VGEFs

(
[X ]

KGEFs +[X ]

)
−V ∗GAPs

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)(
[Y ]

KGAPs +Y

)
−λY [Y ]⇒

VGEFs

(
[X ]

KGEFs +[X ]

)
−V ∗GAPs

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)(
[Y ]

KGAPs +Y

)
= k−λX [X ] = λY [Y ]⇒

k−λX [X ] = λY [Y ]⇒ [Y ] =
k−λX [X ]

λY

It is distinguishable how the new system is deprived of bistability after the addition of membrane
association and dissociation rates. The hysteresis shape has become a sigmoidal curve, where
the dynamics reaches a single final state. So, the emerged question is to figure out when exactly
the bistability vanishes. Decreasing slowly the new added constants (k, λX and λY ) and plotting
the stationary points while changing the parameter V ∗GAPs helps us to elucidate this issue.

• For k ·n, λX ·n and λY ·n with n = 0.1:
Now, the sigmoidal curve starts to resemble more to a step shape, analysing Fig.10. The
system is monostable for all values of V ∗GAPs, except for the interval [920, 940] s−1, where
we find oscillations. This interval became smaller in comparison to the previous case with
n = 1.

Figure 10: Stationary points of X (left) and Y (right) controlling V ∗GAPs and k = 4.5 molecules ·µm−2s−1,
λX = 0.0003 s−1 and λY = 0.02 s−1.

• For k ·n, λX ·n and λY ·n with n = 0.01:
From Fig.11 a similar behaviour as before can be observed. However, the step shape is
more pronounced than before and the oscillatory dynamics has vanished.
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Figure 11: Stationary points of X (left) and Y (right) controlling V ∗GAPs and k = 0.45 molecules ·µm−2s−1,
λX = 0.00003 s−1 and λY = 0.002 s−1.

• For k ·n, λX ·n and λY ·n with n≤ 0.0001 and n > 0.000001, the system does not reach a
stable state since the dissociation rates are 1 ·107 smaller than the parameters V ∗GAPs and
VGEFs. The system acts disregarding them as there was unlimited constant production and
no dissociation.

• For k ·n, λX ·n and λY ·n with n = 0.000001:
The bistability is recovered since the values for k, λX and λY are negligible in comparison
to the other model parameters. For example, when V ∗GAPs and VGEFs are of the order of
magnitude 100, they are ≥ 1 · 107 than k, λX and λY . Therefore, we return to the first
conserved model with bistability, as it is depicted in Fig.12.

Figure 12: Stationary points of X varying V ∗GAPs and k = 0.000045 molecules ·µm−2s−1, λX = 0.0000 s−1 and
λY = 0.0000 s−1.
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In order to identify which parameters are responsible for low and high concentration states and
for the oscillatory behavior, we add to the study two new cases. The first one will consider k,
λX 6= 0 and λY = 0 and the second one with k, λY 6= 0 and λX = 0.
Completing the same procedure as previously for the rates k, λX 6= 0 and λY = 0 we gather the
subsequent results:

• For k ·n, λX ·n and λY = 0 with n = 1:

Figure 13: Stationary points of X (left) and Y (right) controlling V ∗GAPs and k = 45 molecules ·µm−2s−1,
λX = 0.003 s−1 and λY = 0.0 s−1.

• For k ·n, λX ·n and λY = 0 with n = 0.1:

Figure 14: Stationary points of X (left) and Y (right) as a function of V ∗GAPs for k = 4.5 molecules ·µm−2s−1,
λX = 0.0003 s−1 and λY = 0.0 s−1.
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The figures Fig.13 and Fig.14 are in agreement with what is expected from the equations:

∂ [X ]

∂ t
=V ∗GAPs

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)(
[Y ]

KGAPs +Y

)
−VGEFs

(
[X ]

KGEFs +[X ]

)
+ k−λX [X ] = 0

=
∂ [Y ]
∂ t

=VGEFs

(
[X ]

KGEFs +[X ]

)
−V ∗GAPs

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)(
[Y ]

KGAPs +Y

)
⇒

VGEFs

(
[X ]

KGEFs +[X ]

)
−V ∗GAPs

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)(
[Y ]

KGAPs +Y

)
= k−λX [X ] = 0⇒

k−λX [X ] = 0⇒ [X ] =
k

λX
;

VGEFs

(
[X ]

KGEFs +[X ]

)
=V ∗GAPs

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)(
[Y ]

KGAPs +Y

)
⇒

VGEFs

V ∗GAPs

(
[X ]

KGEFs +[X ]

)(
KX +[X ]

[X ]

)
=

(
Kα +α[Y ]
Kα +[Y ]

)(
[Y ]

KGAPs +Y

)
⇒

const
V ∗GAPs

=
Kα [Y ]+α[Y ]2

KαKGAP +Kα [Y ]+KGAP[Y ]+ [Y ]2

in which, we see that the [X] will be constant for any value of V ∗GAPs and [Y] will have a
dependence on this parameter. The system does not have a final steady-solution for values of
V ∗GAPs smaller than 1000, which causes the vanishing of oscillations.
For further cases when n≥ 0.01, the dynamics does not stabilizes to a final steady-state because
the system behaves as having only membrane association rate k, as λX ≤ 3 ·10−5 s−1, which is
insignificant compared to the other equation parameters. The bistability is found for the same
values as before: n = 0.000001 and the corresponding figure is Fig.15.

Figure 15: Stationary points of X for different V ∗GAPs and k = 0.000045 molecules ·µm−2s−1, λX = 0.0000 s−1

and λY = 0.0000 s−1.
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The last case contemplates k, λY 6= 0 and λX = 0, where we find the complementary steady-state
solutions in order to achieve the total picture with k, λX and λX 6= 0.

• For k ·n, λY ·n and λX = 0 with n = 1:

Figure 16: Stationary points of X (left) and Y (right) controlling V ∗GAPs and k = 45 molecules ·µm−2s−1,
λX = 0.0 s−1 and λY = 0.2 s−1.

Fig. 16 shows us that the system steady-states only emerge for values of V ∗GAPs ≤ 950s−1

and the interval of oscillations [800,950] s−1 is larger than for the complete model.

• For k ·n, λY ·n and λX = 0 with n = 0.1:
From Fig. 17 we see how the interval of oscillations shrinks, as previously for the com-
plete model when reducing the rates values.

Figure 17: Stationary points of X (left) and Y (right) as a function V ∗GAPs and k = 4.5 molecules ·µm−2s−1,
λX = 0.0 s−1 and λY = 0.02 s−1.
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• For k ·n, λY ·n and λX = 0 with n = 0.01:
Observing Fig.18, it is remarkable how the oscillations vanish and X values decrease
describing the same curve as before.

Figure 18: Stationary points of X (left) and Y (right) changing V ∗GAPs and k = 0.45 molecules ·µm−2s−1,
λX = 0.0 s−1 and λY = 0.002 s−1.

• For k ·n, λY ·n and λX = 0 with n = 0.001:
There are no oscillations and the stationary points of X are smaller than in the previous
case, while Y stationary points are constant, in Fig.19.

Figure 19: Stationary points of X (left) and Y (right) for different V ∗GAPs and k = 0.045 molecules ·µm−2s−1,
λX = 0.0 s−1 and λY = 0.0002 s−1.

• For k ·n, λX ·n and λY ·n with n≤ 0.0001 and n> 0.000001, the system does not stabilizes
to a final solution for the formerly mentioned reasons of the order of magnitude.
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In this case, the respective model tells us that:

∂ [X ]

∂ t
=V ∗GAPs
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Kα +α[Y ]
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)(
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KGAPs +Y

)
⇒
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(
[X ]

KGEFs +[X ]

)
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(
[X ]
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(const) = k

which is consistent with the above figures since [Y] is constant and [X] depends on the parame-
ter V ∗GAPs and k. The bistability is also recovered for n = 0.000001 as earlier, displaying exactly
the same behaviour as in Fig. 12 and Fig. 15.
Here the evidence for the complementary behavior of these two cases to give rise the complete
model is manifested. The interactions between the association rate of Ras-GDP k and dissocia-
tion rate of Ras-GTP λY provide the system with an oscillatory dynamics. We see how they are
responsible also for low Ras-GDP ([X]) and high Ras-GTP ([Y]) concentration, and how k and
λX are responsible for the opposite effect.

4.3 Model including GAPs dynamics without slaving
The latter analysis were done considering a fast dynamics and no diffusion for GAPs, however
it is necessary to examine if such approximation is justified in the present system. Therefore,
recovering the initial network for Ras signaling system without the feedback from PIP3 system
and considering the simplified notation:

∂ [X ]

∂ t
=VGAPs[Z]

(
[Y ]

KGAPs +[Y ]

)
−VGEFs

(
[X ]

KGEFs +[X ]

)
+ k−λX [X ]+D∇

2[X ] (13)

∂ [Y ]
∂ t

=VGEFs

(
[X ]

KGEFs +[X ]

)
−VGAPs[Z]

(
[Y ]

KGAPs +[Y ]

)
−λY [Y ]+D∇

2[Y ] (14)

∂ [Z]
∂ t

=VGAPsass[Z]cyt

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)
−λZ[Z]+D∇

2[Z] (15)

in which, the cytosolic concentration is given by [Z]cyt = [Z]total − χ[Z]. Here, we find the
parameter VGAPs different from V ∗GAPs of the GAPs slaved dynamics, where it is defined as
VGAPs

VGAPsass [Z]cyt
λZ

. The scheme reproducing the system properties for the model of Eqs. (13-15)
is shown in Fig.20.
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Figure 20: Scheme for Ras signaling network including GAPs dynamics described by Eqs. (13-15).

The laplacian discretization in one dimension is: ∇2C = C(x+dx)+C(x−dx)−2·C(x)
dx2 with C corre-

sponding to Ras-GDP, Ras-GTP or GAPs. For the numerical integration, a simple Euler method
is employed. The time and spatial steps are detailed in Table 1, see appendices.
Previously, we found that the system displays an oscillatory dynamics for certain values of the
parameter V ∗GAPs in the no-conserved model, in particular for the interval [800, 900] s−1 when
n = 1. In order to check if we obtain the same behavior with the no-slaved GAPs dynamics
(Fig.21 and Fig.22), we choose for example two values of VGAPs and compare to the earlier
obtained results. For the simulations performed the parameters k, λX , λY , KX , Kα , α , KGAPs and
KGEFs adopt the values established in Table 2 (appendices).
• For VGAPs = 10 s−1, which is approximately equal to consider in GAPs slaved dynamics

V ∗GAPs ≡VGAPs
VGAPsass [Z]cyt

λZ
≈ 10 · 1300

1.2 · (0.1−0.001 ·22) = 845 s−1. We have already seen
that for this value we obtain an oscillatory dynamics in the previous model. The respective
values are listed in the appendices (see Table2) and the average is computed with the 1D
deterministic simulations of this model. The oscillations are not exactly the same because
the GAPs slaved dynamics is considered as an approximation.

Figure 21: Temporal evolution of Ras-GDP, Ras-GTP and GAPs for VGAPs = 10 s−1 and VGEFs = 400 s−1

according to Eqs. (13-15), with the initial condition defined in [3] (left). Temporal evolution of Ras-GDP and
Ras-GTP for the Eqs. (11-12) for V ∗GAPs = 845 s−1 and VGEFs = 400 s−1 (right).
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• For VGAPs = 16 s−1 ⇒ V ∗GAPs ≡ VGAPs
VGAPsass [Z]cyt

λZ
≈ 16 · 1300

1.2 · (0.1−0.001 ·40) = 1040
s−1 in GAPs slaved dynamics model, we have a single stable steady-state shown in Fig.22:

Figure 22: Temporal evolution of Ras-GDP (X), Ras-GTP (Y) and GAPs (Z) for VGAPs = 16 s−1 and
VGEFs = 400 s−1 according to (13-15), with the initial condition defined in [3] (left). Temporal evolution of

Ras-GDP and Ras-GTP for the Eqs. (11-12) for V ∗GAPs = 1040 s−1 and VGEFs = 400 s−1 (right).

The global oscillations can also emerge when we vary VGEFs parameter, which corresponds
to the regulation of Ras activation. Increasing VGEFs with the other parameters constant, the
system passes through an oscillatory regime as it remains proven in Fig.23 and Fig.24.

• For VGEFs = 550 s−1, the interactions between the active and inactive Ras give rise to
global oscillations:

Figure 23: Spatiotemporal simulation for Ras-GDP (X) (top) and for Ras-GTP (Y) (middle) and temporal
simulation of (13-15) (bottom) for VGAPs = 16 s−1 and VGEFs = 550 s−1, with initial conditions defined in Table 2.
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• For VGEFs = 650 s−1, the system is still displaying global oscillations with a greater
frequency than in the previous case. This indicates us that there is a dependence between
the period of oscillations and the parameter VGEFs, which will be discuss later.

Figure 24: Zero dimensional simulation of (13-15) for Ras-GDP (X), Ras-GTP (Y) and GAPs (Z) when
VGAPs = 16 s−1 and VGEFs = 650 s−1.

• For VGEFs = 900 s−1, the stability of the final state is recovered and the system becomes
monostable again, observing the temporal simulation from Fig.25.

Figure 25: Temporal evolution of Eqs. (13-15) for Ras-GDP (X), Ras-GTP (Y) and GAPs (Z) when
VGAPs = 16s−1 and VGEFs = 900 s−1.
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GAPs dynamics is positively regulated by the cytosolic concentration which in turn is directly
related to the total GAPs concentration available for the reaction. An oscillatory pattern appears
whether controlling the total GAPs concentration ([GAPs]total) and the parameter VGEFs. When
the [GAPs]total is smaller than 0.05 µM, there is not enough GAPs concentration to trigger
the oscillatory dynamics of the system. Above this limit the system exhibits an oscillatory be-
haviour, when regulating the parameter VGEFs. Therefore, a phase diagram presented in Fig.26,
adjusting these two factors, may be a very helpful tool to our study of Ras oscillatory dynamics.

Figure 26: Phase diagram of the system dynamics controlling the parameters VGEFs and [GAPs]total , for the
model of Eqs. (13-15).

The signaling pathways involved in chemotaxis can be interpreted as excitable systems [3, 15].
Fukushima et al. found that Ras dynamics displays excitable characteristics and that the signal
transduction to trigger cell motility happens at this stage. Its main contribution to cell migra-
tion stands on the spontaneous symmetry breaking. An excitable system has only one stable
steady-state solution and due to the nonlinear interactions it displays complex behaviour when
the stimuli exceeds the characteristic threshold. To enlighten the evidence for Ras excitability
described with the former model, a spatio-termporal figure for VGEFs = 500 s−1 is presented in
Fig.27 for different boundary conditions and performing deterministic and stochastic simulation
in one dimension:
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Figure 27: Spatiotemporal evolution for Ras-GTP considering periodic boundary conditions and performing
stochastic simulation until t = 1000s and deterministic afterwards (top), applying no-flux boundary conditions

with stochastic integration up to t = 1000s and deterministic afterwards (middle) and purely deterministic
simulation with no-flux boundary conditions (bottom).

Therefore, we see how a travelling wave is generated and how it propagates due to Ras ex-
citability properties, when applying periodic boundary conditions. Whether employing no-flux
boundary conditions, the wave cease propagating when it finishes at one side of the system and
it does not appear anymore. To remark the excitable properties of Ras network, one may com-
pare the previous plot to a purely deterministic simulation. It is useful to search whether we find
global oscillations that may be confused with excitable dynamics when applying perturbation to
the system, e.g. stochastic integration. The subsequent figures show us that there are no global
oscillations present in the system. Thus, the Ras signaling system displays excitable dynam-
ics for VGEFs = 500 s−1, without the feedback from PIP3 system, as it remains exemplified in
Fig.27.
A stochastic simulation was performed until t = 1000s, employing the Chemical Langevin
equation (CLE) for Ras-GTP, Ras-GDP and GAPs dynamics. For t > 1000s and t ≤ 2500s,
the simulation is deterministic. Spatial-stochastic effects have a relevant contribution in the bio-
chemical networks involved in intracellular processes and other processes at different biological
scales. Whether the chemical species are an intermediate number of particles, the internal noise
is described as a white Gaussian noise using the CLE. Therefore, for the present system we
use a phenomenological mesoscopic approach. Eqs. (13-15) in the framework of the Chemical
Langevin Equations are

∂ [X ]

∂ t
=VGAPs[Z]
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[Y ]

KGAPs +[Y ]
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(
[X ]
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(
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∂ [Z]
∂ t

=VGAPsass[Z]cyt

(
[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]

)
−λZ[Z]+D∇

2[Z]

+

√
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[X ]

KX +[X ]

)(
Kα +α[Y ]
Kα +[Y ]
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| ·ξ5(t)−

√
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(18)

The oscillatory pattern for this system begins at VGEFs = 530 s−1, shown in Fig.28. The period
decreases as VGEFs increases till a certain limit, where the system becomes monostable again.

Figure 28: Temporal evolution of deterministic Eqs [13-15] for Ras-GDP (X), Ras-GTP (Y) and GAPs (Z)
when VGAPs = 16 s−1 and VGEFs = 530 s−1.

From Fig. 23 and Fig. 24, we can observe how the period decreases when VGEFs is enhanced,
maintaining the other parameters constant. Hence, the relation between these two factors is:

Figure 29: The dependence between the period of oscillations and the parameter VGEFs.
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Therefore, Ras signaling system described by the Eqs. (13-15) displays monostable, excitable
and oscillatory behavior as a function of the maximum reaction rate for Ras activation, VGEFs,
illustrated in Fig.30 .

Figure 30: The phase space of Ras signaling network. The dynamics can be monostable, excitable or unstable
depending on the value of VGEFs. The unstable points give rise to an oscillatory pattern in the system.

4.4 Combined model for Ras and PIP3 signaling networks
The model developed by Fukushima et al. (2019) contemplates a coupling between the Ras
signaling system and bistable PIP3 signaling system incorporated at the positive regulation of
Ras, RGEF , as can be seen in Eq. (3). Thus, the combined model introduced in [3] is formed by
two coupled signaling networks: one part presented at the beginning of the project Eqs. (1-6)
which stands for the Ras excitable signaling system is:

∂ [Ras−GDP]
∂ t

= RGAP−RGEF + k−λRas−GDP[Ras−GDP]+D∇
2[Ras−GDP]

∂ [Ras−GT P]
∂ t

= RGEF −RGAP−λRas−GT P[Ras−GT P]+D∇
2[Ras−GT P]

RGEF =

(
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KPIP3 +[PIP3]

)(
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)
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(
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)
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=VGAPsass[GAPs]cyt

(
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Kα +α[Ras−GT P]
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)
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And the second model is represented by the reaction diffusion equations reproducing the bistable
dynamics of PIP3:

∂ [PIP3]
∂ t

= RPI3K−RPT EN−λPIP3[PIP3]+D∇
2[PIP3] (19)

∂ [PIP2]
∂ t

= RPT EN−RPI3K +λPIP3[PIP3]+D∇
2[PIP2] (20)

[PIP3]+ [PIP2] = [PIP]total (21)

RPI3K =VPI3K

(
[PIP2]

KPI3K +[PIP2]

)
(22)

RPT EN =VPT EN [PT EN]

(
[PIP3]

KPT EN +[PIP3]

)
(23)

[PI3K] = β [Ras−GT P] (24)
∂ [PT EN]

∂ t
=−RPT EN +VPT ENass [PT EN]cyt

(
[PIP2]

KPIP2 +[PIP2]

)
+D∇

2[PT EN] (25)

[PT EN]cyt = [PT EN]total−χ[PT EN] (26)
Equations (19) and (20) describe the PIP3 and PIP2 dynamics evolution, where PIP3 is gen-
erated from the PIP2 phosphorylation reaction catalyzed by PI3K and the opposite reaction of
dephosphorylation is carried out by PTEN. These reactions are of the type Michaelis-Menten
enzymatic reactions with a maximum reaction rate (VPI3K and VPT EN) and a Michaelis constant
(KPI3K and KPT EN). The sum of PIP3 and PIP2 averaged concentrations is taken as a constant
Eq. (21). The membrane translocation of PI3K is proportional to Ras-GTP, and by consider-
ing the membrane association rate of PI3K (β ), Eq. (24) designates the activation of PI3K by
Ras-GTP. PTEN dynamics is governed by two factors, Eq. (25): PIP3 excludes PTEN from the
membrane, which results in a mutual exclusion on the membrane and PIP2 helps the cytosolic
PTEN to associate to the membrane, where the cytosolic concentration of PTEN is the rest of
the total concentration and the surface concentration multiplied by a constant that converts it to
a volume concentration, Eq. (26) [3, 30].
A scheme for Ras and PIP3 dynamics, designated by Eqs. (1-6) and (19-26) is portrayed in
Fig.31.

Figure 31: Scheme of the coupled Ras-PIP3 system.
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The activation of Ras has an additional term which is given by the feedback from PIP3, that
is also expressed as a MM-type enzymatic reaction. As it was already proven with the model
for Ras without PIP3 feedback, Ras waves generation is regardless the downstream signaling
pathways. Thus, it is interesting to observe which is the repercussion of this feedback on Ras
excitability properties and waves generation. The new phase space from Fig.32 for the coupled
model shows us that the excitability properties and the oscillatory dynamics start for a smaller
value of VGEFs since there is an additional term coming from the PIP3 feedback which makes the
total effective maximum reaction rate higher. Moreover, the curve exhibit an identical sigmoidal
shape with a shift to the left compared to the model without feedback, as can be observed in
Fig.32.

Figure 32: The phase space of the coupled Ras-PIP3 system changing the value of VGEFs, Vf eedback = 25 s−1

which corresponds to the curve displaced to the left (larger points labeled with ” feedback”). The phase space of
Ras signaling system without feedback corresponding to the curve with smaller marks, presented also in Fig.30.

Therefore, such a feedback only lowers the value of the maximum reaction rate of Ras basal
activity for excitable or oscillatory properties. However, PIP3 needs the activation from Ras in
order to generate waves since the phosphorylation reaction depends on PI3K concentration,
which is proportional to Ras-GTP. Hence, a similar phase space is obtained in both cases
(Fig. 30-Fig. 32): without the feedback mechanism, Ras network is excitable starting with
VGEFs = 460 s−1, and if PIP3 regulates positively Ras activation, the excitable dynamics ap-
pears for VGEFs = 420 s−1 and the oscillatory patterns for VGEFs = 480 s−1.
Moreover, the period of oscillations dependence on the parameter VGEFs does not change much
either in Fig.33. We see that global oscillations emerge for a smaller VGEFs, as it was expected.
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Figure 33: The period of oscillations as a function of the parameter VGEFs, with Vf eedback = 25 s−1 are
represented by the pink marks. The period of oscillations as a function of the parameter VGEFs, with Vf eedback = 0
s−1, are the blue dots, displayed in Fig.29. The curves are overlapped except for the first point, indicating that for

the feedback mechanisms the oscillations start earlier.

To see the relevance of PIP3 feedback and the activation from Ras-GTP, the following deter-
ministic simulations were performed. The initial conditions are the final values from stochastic
simulations and after a certain time PI3K activity was cut off. First of all, periodic boundary
conditions were considered to analyze wave propagation for distinct values of VGEFs:

Figure 34: Spatiotemporal simulations for Ras-GTP for VGEFs = 450 s−1 (first), VGEFs = 500 s−1 (second),
VGEFs = 550 s−1 (third) and VGEFs = 600 s−1 (fourth), for Vf eedback = 25 s−1 and periodic boundary conditions.

At the beginning we have stochastic integration up to t = 5000s for the first case and up to t = 1000s for the other
cases, afterwards we have deterministic simulations.
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Figure 35: Temporal evolution for Ras-GDP, Ras-GTP, GAPs, PIP3 and PTEN for VGEFs = 450s−1 (top-left),
VGEFs = 500s−1 (top-right), VGEFs = 550s−1 (bottom-left) and VGEFs = 600s−1 (bottom-right).

• For VGEFs = 450 s−1, in Fig.34 first plot: Stochastic integration was performed up to
t = 5000s, followed by deterministic integration. PIP3 and PTEN waves stop when VPI3K
is inhibited at t = 7500 s as can be seen the respective temporal evolution figure (Fig.35),
because Ras does not activate PIP3 anymore. Also, Ras waves cease because there is no
more positive feedback from PIP3.

• For VGEFs = 500 s−1, in Fig.34 second plot: The spatiotemporal stochastic simulation for
Ras-GTP stops at t ≤ 1000 s. The deterministic integration is employed for t > 1000 and
for t ≥ 2000 s VPI3K is inhibited, where all waves stop the propagation.

• For VGEFs = 550 s−1, in Fig.34 third plot: The spatiotemporal stochastic simulation for
Ras-GTP is used for t ≤ 1000 s and deterministic simulation for t > 1000. For t ≥ 2000 s
VPI3K is inhibited, where PIP3 waves disappear, but Ras waves are still propagating.

• For VGEFs = 600 s−1, in Fig.34 fourth plot: The same integration approach is used in here.

Therefore, for VGEFs = 450 s−1 and 500 s−1, the waves cease when PI3K activity is main-
tained to zero. However, for bigger values of the maximum reaction rate VGEFs, Ras waves still
propagate with a small readjustment right after PI3K inhibition. To ensure Ras excitable and os-
cillatory dynamics, the same simulations were implemented with no-flux boundary conditions.
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Figure 36: Spatiotemporal simulations for Ras-GTP for VGEFs = 450 s−1 (first), VGEFs = 500 s−1 (second),
VGEFs = 550 s−1 (third) and VGEFs = 600 s−1 (fourth), for Vf eedback = 25 s−1 and no-flux boundary conditions.

Figure 37: Temporal evolution for the coupled system for Ras-GDP, Ras-GTP, GAPs, PIP3 and PTEN when
VGAPs = 16 s−1 and VGEFs = 450 s−1 (top-left), VGEFs = 500 s−1 (top-right), VGEFs = 550 s−1 (bottom-left) and

VGEFs = 600 s−1 (bottom-right), for Vf eedback = 25 s−1.
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• For VGEFs = 450 s−1, in Fig.36 first plot: The stochastic simulation for Ras-GTP is im-
plemented for t ≤ 5000 s, and the deterministic simulation for t > 5000. VPI3K is inhibited
for t ≥ 6000 s.

• For VGEFs = 500 s−1, in Fig.36 second plot: The stochastic integration for Ras-GTP is
when t ≤ 1000 s and the deterministic simulation starts with t = 1000 and for t ≥ 2000 s
VPI3K is inhibited.

• For VGEFs = 550 s−1 and for VGEFs = 600 s−1, in Fig.36 third and fourth figure: The same
approach as before is applied.

For VGEFs = 450 s−1 and Vf eedback = 25 s−1 we have an excitable dynamics for Ras system
because once the wave finishes at one side it does not appear anymore, with no-flux bound-
ary conditions. Although, for the other values, the system is oscillatory since the waves keep
appearing and propagate periodically, as it was established with the phase space.

4.5 Excitability in two dimensions
The preceding results can be broadened when considering the diffusion term for two spatial
dimensions. Therefore, the laplacian of a certain concentration of protein or phospholipid C will
have the following form, where the domain of integration is discretized in small 2D squares of
size dx:

∇
2C =

C(x+dx,y)+C(x−dx,y)+C(x,y+dx)+C(x,y−dx)−4 ·C(x,y)
dx2 (27)

To reproduce the cell size, the domain of integration is taken as a square of 100 grids, with
dx= 0.314µm (Table 1), which is obtained by considering a cell radius of Ro = 5µm. Therefore,
the integration algorithms for the studied model are extended to two dimensions considering
Eq.(27) for the respective protein, enzyme and phospholipid concentrations.
The propagation of a Ras wave for a two-dimensional excitable system is studied for the model
without the PIP3 feedback regulation Eqs. (13-15), Fig.38 and Fig.39, and for the combined
model Eqs. (1-6), (19-26) with the feedback loop, Fig.40 and Fig.41. Such information is helpful
to determine whether the system dynamics displays excitability.

37



Figure 38: Stochastic simulation of Ras-GTP wave expansion VGEFs = 500 s−1 and Vf eedback = 0 s−1, for
several times, when t = 1155s (top-left), t = 1190s (top-right), t = 1220s (bottom-left) and t = 1290s

(bottom-right), with no-flux boundary conditions.

Figure 39: Profile in the y direction of the stochastic simulation of Ras-GTP until t = 1500s for VGEFs = 500
s−1 and Vf eedback = 0 s−1 and deterministic afterwards, with no-flux boundary conditions.
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Figure 40: Stochastic simulation of Ras-GTP wave expansion VGEFs = 470 s−1 and Vf eedback = 25 s−1, for
various times, when t = 530s (top-left), t = 590s (top-right), t = 620s (bottom-left) and t = 670s (bottom-right),

with no-flux boundary conditions.

Figure 41: Profile in the y direction of the stochastic simulation of Ras-GTP until t = 1000s for VGEFs = 470
s−1 and Vf eedback = 25 s−1 and deterministic afterwards, with no-flux boundary conditions.

For this reason, the excitability in two dimensions remains proven for Ras signaling network
in both cases: without PIP3 feedback and with this positive regulation loop from PIP3. The
stochastic integration of the internal noise represents a perturbation that generates a wave. This
wave propagation illustrates the excitable characteristics of the system. It can be perturbed again
and a new wave can emerge after a certain refractory period. Without noise and applying no-flux
boundary conditions, the system does not manifest waves for the selected values of VGEFs as
can be observed in the figures of the system profile in the y direction, Fig. 39 and Fig. 41. Thus,
the confirmation of an excitable behaviour for the given values is achieved.
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4.6 Coupling with an auxiliary phase field
A recently new approach is used to reproduce the cell morphodynamics for the amoeboid mo-
tion, known as an auxiliary dynamic phase field. The eukaryotic cells moving with crawling
motion are considered as a moving boundary problem, so it is useful to employ an additional
field to maintain the no-flux boundary conditions at the edges. The phase field acts as an order
parameter describing the cell area: it is φ = 1 inside the circular domain and φ = 0 outside
the cell. At the cell membrane it takes an intermediate value φ = 0.5 to contemplate a smooth
progression from the inner cell to the exterior. Now, all the variables of concentration are mul-
tiplied by φ . The phase field initial configuration is a circular domain of radius Ro = 5µm and
boundary width ε , where φ takes the following values

r =
√

(x− xo)2 +(y− yo)2

φ(x,y) = 0.5+0.5 · tanh
(Ro− r)
(dx · ε)

where x and y correspond to the points of a square lattice of L = 160 and xo and yo represent
the center of the domain. The evolution of a dynamic phase field is governed by the domain
shape and is controlled by different contributions as surface tension, volume conservation, active
tension and friction force:

τ
∂φ

∂ t
= γ(∇2

φ − G′(φ)
ε2 )−β

(∫
φdx−Ao

)
|∇φ |+α[PIP3]|∇φ | (28)

The first element from Eq. (28) stands for the surface tension force and can be obtained from
the surface energy of a cell with a perimeter L implemented as

Hten = γL = γ

∫ (
ε

2
|∇φ |2 + G(φ)

ε

)
in here γ = 2.0 pN and represents the surface tension parameter, the edge width is ε = 3.5 ·dx
and G(φ) = 18φ 2(1−φ)2 describes a double well potential with two minimum points at φ = 0
and φ = 1. Looking for the line density of surface tension force from the area density F∗ten

Ften =
F∗ten

ε|∇φ |2
=−δHten

δφ

∇φ

ε|∇φ |2
=−γ

(
∇

2
φ − G′(φ)

ε2

)
∇φ

|∇φ |2
(29)

The second component represents a restriction for the volume conservation, where β = 5.066
pN µm−3 is the total area constraint parameter and Ao = π ·Ro

2 is the cell area:

Farea = β

(∫
φdx−Ao

)
∇φ

|∇φ |
(30)

The last part corresponds to the coupling of the phase field with PIP3 production in order to
model how the cell generates a force for the directed motility. The phase field is linked to this
phospholipid because it is responsible for the actin polymerization, which enables the cytoskele-
tal remodeling and protrusion activities leading to directed cell movement. The parameter de-
scribing the active tension is α = 0.03 pN µm−1.
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Finally, at the quasi-steady state the total force has to be approximately zero. Considering the
friction force F =−τv, where the time scale of membrane dynamics is τ = 2.0 pN s µm−2, and
that the phase field evolution can be derived as ∂φ

∂ t =−v∇φ , the Eq. (28) is obtained.

Figure 42: Simulation of the cell dynamics when applying an auxiliary phase field, for several times. The
brightest spot at the leading edge indicates PIP3 concentration, which points the direction towards the cell is

migrating.

Due to perturbations, the system is excited at the up-left edge, where a wave is generated, ob-
serving Fig.42, the second snapshot. During the propagation of such a wave, the circular domain
imitating a cell moves towards the direction where PIP3 concentration is higher. Therefore, we
can see how this accumulation creates a force capable of moving the cell to a preferential di-
rection, in Fig.42, the third snapshot. In Fig.42, the last snapshot shows a cell which recovers
its circular shape after the wave’s passing and a refractory period and it is ready for a new
excitation which will produce the required locomotion.
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5 Conclusions and future development
At larger scales than the order magnitude 1 mm, passing from unicellular to pluricellular organ-
isms, evolution and the laws of complexity and self-organization allowed us and other species
to develop sensory organs in order to perceive the surrounding environment. We identify and
interpret the immediate stimuli to survive, feed, interact, learn and carry out many vital func-
tions due to our senses. So, the sensory faculty is essential to sustain oneself. But, what about
the machinery responsible for sensing located at single cell level or unicellular organisms?
An extremely complex network capable of the interpretation and transduction of external cues
is necessary to achieve an effective sensing of the neighbouring medium, at a single cell scale.
The center of attention lies on the chemotaxis in the model organism Dictyostelium discoideum.
The mechanisms portraying these phenomena are described in the present study in order to built
a model disposed to simulate the spatiotemporal dynamics of the chemical species involved.
In the first place, an excitable signaling system is necessary for the symmetry breaking of the
cell. The Ras signaling network, which plays a central role in the asymmetric signal generation,
is pictured as an excitable system to reproduce the intended characteristics and activates the
downstream signaling pathways, as PIP3. The latter system displays a bistable dynamics since
it can exhibit two possible stationary states. A complete model combining these two signaling
networks is employed for the symmetry breaking during cellular decision-making processes
leading to cell polarity and locomotion. Such a network is built from a simple conserved model
similar to the classical phosphorylation-dephosphorylation system adding gradually new feed-
backs, protein dynamics and other elements shattering the conservation.
A relevant point is how Ras excitable system displays waves generation, regardless the down-
stream signaling pathways, as PIP3. The PIP3 positive feedback only lowers the value of the
maximum activation reaction rate of Ras basal activity for excitable or oscillatory properties.
Still and all, the final model of an excitable network for Ras and a bistable for PIP3 (equations
1-6 and 19-26) coupled to a phase field with an initial circular domain can reproduce the di-
rected cell migration during chemotaxis. Summarizing, the main aspects to keep in mind from
this study are:

• The regions of bistability, excitability and oscillations related to Ras signaling system are
found and studied in detailed.

• A stochastic model is built in order to perform more realistic simulations for the symmetry
breaking, cell polarity and cell migration of Dictyostelium discoideum.

• The phase field method is employed to characterise the cell movement.

Dictyostelium discoideum is not the only organism employing chemotaxis, other eukaryotic
cells also avail themselves with chemotaxis, as neutrophils, which need this mechanism to mi-
grate towards the inflammation spots, to chase pathogens [31]. Also, chemotaxis is considered
an important factor in morphogenesis, metastasis, oncogenesis, atherosclerosis, arthritis, peri-
odontitis, psoriasis among others [1, 2, 31, 32]. Therefore, I would like to remark the importance
of a model describing cells ability for a directed motion, which is transcendental to understand
better this process with many vital implications.
For a future research, it would be beneficial for medicine to gain more specific insights into
Ras excitable signaling network, in particular the factors responsible for the threshold or the
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activation. In addition, this model should be extended to neutrophils and complemented with
experimental data. A model considering more elements from the downstream signaling path-
ways can be designed in order to describe better the actin waves and cytoskeletal reorganization.
Besides, this model can be used to study how cortical waves drive fission of motile cells. An-
other interesting application might be to employ this model to engineer self-propeled vesicles,
in the area of soft robotics, with the aim of controlling their locomotion.
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Appendices
Table 1: Time and spatial discretization for the simulations

Parameter Definition Value

dx Spatial discretization 0.314 µm
dt Temporal discretization 0.005 s

Table 2: List of the values of the parameters for Ras simulations from [3]

Parameter Definition Value

VGAPs Deactivation rate of Ras by GAPs 16 s−1

KGAPs Deactivation reaction Michaelis constant of GAPs 40 moleculesµm−2

VGEFs Activation rate of Ras by PI3K 400−600 s−1

KGEFs Activation reaction Michaelis constant of GEFs 3500 moleculesµm−2

Vf eedback Reaction rate of PIP3 feedback regulation 25 s−1

KPIP3 PIP3 feedback regulation Michaelis constant 0.1 moleculesµm−2

λRas−GT P Ras-GTP dissociation rate 0.2 s−1

λRas−GDP Ras-GDP dissociation rate 0.003 s−1

k Ras-GDP association rate 45 moleculesµm−2s−1

VGAPsass GAPs association rate by Ras-GDP 1300 moleculesµM−1µm−2s−1

KRasGDP Association reaction Michaelis constant of GAPs 3000 moleculesµm−2

λGAPs GAPs dissociation rate 1.2 s−1

Kα Half-maximum [Ras-GTP] for GAPs negative regulation 120 moleculesµm−2

α Magnitude of GAPs negative regulation 0.001
GAPstotal Total GAPs concentration 0.1 µM
[Ras−GT P]initial Ras-GTP initial value 1000 moleculesµm−2

[Ras−GDP]initial Ras-GDP initial value 1000 moleculesµm−2

[GAPs]initial GAPs initial value 0 moleculesµm−2

Table 3: List of the values of the parameters for PIP3 simulations from [3]

Parameter Definition Value

VPT EN Dephosphorylation rate of PIP3 by PTEN 3 s−1

KPT EN Dephosphorylation reaction Michaelis constant of PTEN 500 µm−2

VPI3K Phosphorylation rate of PIP2 by PI3K 12 s−1

KPT EN Phosphorylation reaction Michaelis constant of PI3K 300 µm−2

VPT ENass PTEN association reaction rate by PIP2 5000 moleculesµM−1µm−2s−1

KPIP2 Association reaction Michaelis constant of PTEN 2000 µm−2

λPIP3 PIP3 degradation rate independent of PTEN 0.2 s−1

β Magnitude of PI3K activation by Ras-GTP 0.01
χ Transformation constant from surface to volume concentration 0.001 moleculesµMµm−2

PT ENtotal Total PTEN concentration 0.1 µM
PIPtotal Total PIP density on plasma membrane 5000 moleculesµm−2

R Cell radius 5 µm
D Molecules Diffusion coefficient on plasma membrane 0.2 µm−2s−1

[PIP3]initial PIP3 initial value 0 moleculesµm−2

[PIP2]initial PIP2 initial value 5000 moleculesµm−2

[PT EN]initial PTEN initial value 0 moleculesµm−2
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