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Abstract—Clustering analysis is widely used to stratify data
in the same cluster when they are similar according to specific
metrics. The process of understanding and interpreting clusters
is mostly intuitive. However, we observe each cluster has unique
shape that comes out of metrics on data, which can represent the
organization of categorized data mathematically. In this paper,
we apply novel topological based method to study potentially
complex high-dimensional categorized data by quantifying their
shapes and extracting fine-grain insights about them to interpret
the clustering result. We introduce our Organization Component
Analysis method for the purpose of the automatic arbitrary
cluster-shape study without assumption about the data distribu-
tion. Our method explores a topology-preserving map of a data
cluster manifold to extract the main organization structure of a
cluster by the leveraging of the self-organization map technique.
To do this, we represent self-organization map as graph. We
introduce organization components to geometrically describe the
shape of cluster and their endogenous phenomena. Specifically,
we propose an innovative way to measure the alignment between
two sequences of momentum changes on geodesic path over the
embedded graph to quantify the extent to which the feature
is related to a given component. As a result, we can describe
variability among stratified data, correlated features in terms
of lower number of organization components. We illustrate
the utilization of our method by applying it to two quite
different types of data, in each case mathematically detecting
the organization structure of categorized data which are much
profounder and finer than those produced by standard methods.

Index Terms—Self-Organization Map, Topology-preservation,
Sequence similarity, Topological Data Analysis, Cluster Analysis

I. INTRODUCTION

Cluster analysis is used as a matter of course throughout
the experimental sciences to extract scientific information
from data [1]. But it turns out that many well-performed
segmentation results cannot be turned into profound insights
easily. Because the process of making clusters is a generic
mathematically oriented process but lacks the intuition and
domain knowledge that is often required to interpret and drill
down into the algorithmic results. However, cluster ”Geometric
Features” can still be disclosed from metrics on the dataset,
which could represent mathematically the fine-grain structure
of complex data.

Geometric features of data can reveal clusters of diverse
shapes, sizes and densities as demonstrated in Fig.1. Clusters

can be spherical (a), elongated (linear) (b), loop (c), tendril
(d), and heterogeneous (e) [2]. We are interested in studying
such features of data since we assume insight into the shape
of scientifically relevant data, it has a good chance of giving
insight into the science itself. Experience has shown that this
assumption is a reasonable one. For example, the study of
loops and their higher-dimensional analogues has recently
offered insight into questions in biophysics [3] and natural-
scene statistics [4]; and, the study of tendrils has recently
offered insight into oncology [5]. However, aforementioned
figures say we should not select a final set of model types
and then we build individual model, but we should make
modeling mechanism that can study all arbitrary shapes and
computed easily. Therefore, the basic goal of this paper is
to introduce a generalized method for studying geometric
features of clustered data.

Fig. 1: Clusters of diverse shapes in R2

In our methodology, we propose a novel clustering result
interpretation method by combining techniques from algebraic
topology and statistical learning to give a quantitative basis for
the study of the geometric features (shape) of a data cluster.
It learns to interpret a data cluster with correct topology
preservation map as modeling mechanism that doesn’t make
assumptions about the form of the mapping function. As
a result, we can generally apply it to study the geometric
feature of arbitrary cluster-shape. Moreover, this topology
preservation map describes the idea of closeness in terms of
relationships between sets rather than euclidean distance in the
feature multidimensional space. The key objective is that once
we represent high dimensional data by mapping functions on
small space, we can efficiently give direct insight into the data.

Another important factor is the objective of clustering
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algorithm. Since various discriminative definitions of a cluster-
shape can be formulated, depending on it. For example,
Density-based clustering such as DBSCAN [6], ISB-DBSCAN
[7] or RNNDBSCAN [8] is famous for its capability of finding
out arbitrary shape clusters from datasets. These approaches
regard clusters as regions in the data space in which the data
points are dense, and separated by regions of low data point
density (noise). Since these methods apply a local cluster
criterion to detect regions that may have an arbitrary shape and
the data points inside a region may be arbitrarily distributed
[9]. For such shape, it is very hectic to determine their innate
structure or quantify them by applying correlation oriented
techniques since the assumption of linear relationship between
all variables behind these techniques do not often hold true
for this arbitrary distributed data. Throughout this paper, we
are interested to extract insights from arbitrary cluster-shape
by not making assumptions about linearity. To do this, we
propose a novel Directional Sequence Similarity method to
locally measure the non-linear relationships between features.

Furthermore, in practice, not all features are important
and relevant to the overall clustering task, many of them
are often correlated and redundant, which may result in
adverse effects such as low efficiency and poor performance,
and also, dramatically increasing computational cost. Feature
selection is one effective mean to identify relevant features
for dimension reduction [10]. Once a reduced (active) feature
subset is chosen, conventional clustering algorithm can then be
applied by using the active features. Consequently, unselected
(illustrative) features remain untouched that can be applicable
to interpret the local prototype of cluster. In our approach, we
consider active features to model the overall clustering space
and also illustrative features to interpret the local establishment
of each cluster with maximum comprehensiveness.

In this paper, we introduce a new method for the purpose
of interpreting the clustering result through cluster-shape study
which does not have assumption about data either distribution
or shape. Our modeling mechanism organizes an augmented
structure of a data cluster to represent its arbitrary shape by
applying topology to develop tools for studying qualitative
features of a cluster. This cluster-organization contains infor-
mation which is equivalent to the topology-preserving map
of finer-grained dense areas and their interconnection inside a
cluster. We show how to efficiently and automatically interpret
the topology-preserving map to extract not only the innate
cluster structure, but also the causal factors associated with
its formation by computing the non-linear local relationships
between features. For that, we introduce a new Directional Se-
quence Similarity method to locally quantify it. Furthermore,
we use illustrative features to obtain very detailed structure
identification and a great detail on non-homogeneous local
geometrical space within the identified clusters by generic
clustering algorithms with using the active features.

The rest of this paper is organized as follows. The intuition
motivating the cluster-shape interpretation is presented along
with an overview of related work and methods in section 2.
In section 3, the basic notions of cluster-shape interpreting

and background techniques are defined. In section 4, our
novel algorithm Organization Component Analysis (OCA) to
decipher a cluster-shape with respect to its self-organization
map structure is presented. The experimental result of our
OCA method for the purpose of cluster-shape studying is
illustrated in section 5. Section 6 concludes the paper with
a summary and a brief discourse of future research.

II. RELATED WORK

There are various ways to explore the cluster-shape; through
more rigorous analysis or by visualization and human interac-
tion or external knowledge-based supervision or Topological
Data Analysis.

Numerous statistical analytics techniques exist to study the
multivariate data and the shape of cluster. Gaussian mixture
model [11] is a probabilistic model for representing normally
distributed subpopulations within an overall population. It can
describe the shape of cluster as a sequence of overlapped sub-
populations which have Gaussian distribution. Furthermore, in
[12], [13], they discuss two multivariate analysis procedures:
PCA and exploratory factor analysis, which can extract the
latent structure of data. These techniques can identify a small
set of synthetic variables, called eigenvectors or factors, that
explain most of the total variation presented in the original
variables and the shape of cluster. However, there are several
requirements for a dataset such as: normality, homoscedastic-
ity, linearity, sampling adequacy and no significant outliers.
Taking advantage of the self-organization map technique,
we developed an assumption-free and efficient cluster-shape
analysis method.

The other approach is visual analysis that is usually a very
intuitive and manual way to explore the underlying structure of
the data, possibly incorporating human feedback into the pro-
cess. HD-Eye method [14] explores different subspaces of the
data in order to determine clusters in different feature-specific
views of the data. IPCLUS [15] generates feature-specific
views in which the data is well polarized. A polarized data
is a 2D subset of features in which the data clearly separates
out into clusters. Then a kernel-density estimator determines
the views in which the data is well polarized. Finally, the shape
of cluster is defined by exploring different views of the data.
These methods are intuitive which make it difficult to separate
the definition of cluster from the perception of an end-user
and even to automatize them. Our approach mathematically
combines the strengths of statistical and topological methods
to eliminate the need for expert human visual analysis.

Supervision also can play an effective role, because it
takes the specific goal and subjectivity of the analyst into
consideration, which leads our insight of cluster-shape. In
[16], they propose an interactive approach to constrain clus-
tering in which the user can iteratively provide constraints as
feedback to refine the clusters towards the desired concept.
The results indicate that significant profounder insight can be
made with only a few well-chosen constraints. Also, in [17],
they describe an expectation maximization (EM) algorithm,
penalized probabilistic clustering, which interprets pairwise



constraints as prior probabilities that two items should, or
should not, be assigned to the same cluster. This formulation
permits both hard and soft constraints allowing users to specify
background knowledge even when it is uncertain or noisy.
Normally, the supervision should be embedded inside the
clustering algorithm, which lead to poor generalization and
automation. Our proposed Organization Component Analysis
method is not dependent on a particular clustering algorithm,
therefore any clustering result can be analyzed by it efficiently.

Topological Data Analysis (TDA) is a recent and fast-
growing field providing a set of new topological and geometric
tools to study shape of possibly complex data [18]. In [19],
they purpose the Mapper that is a mathematical tool to iden-
tify shape characteristics of datasets by applying topological
method. The Mapper identifies local clusters within the data
and then it studies the interaction between these small clusters
by connecting them to form a graph whose shape captures
aspects of the topology of the dataset. Mapper graphs asso-
ciated to datasets preserve a wealth of information about the
original shapes, but it is computationally expensive especially
for massive datasets and its size grows rapidly with the number
of data points, for that reason, Mapper takes transposed data
matrix to build topological model. In our method, we apply the
self-organization map (SOM) to efficiently learn and build a
topology-preserving mapping that projects multi-dimensional
data onto a lower 2D space by preserving the neighboring
relations of the data.

The intention of our work is to purpose a novel generalized
technique that can study arbitrary shape of clusters by lever-
aging of self-organization map and topology data analysis;
thereby, that is an assumption-free and automated, and it
does not dependent on any particular clustering algorithm.
Especially, in our approach we apply topology-preserving
mapping to optimize the computation cost and increase the
efficiency.

III. BACKGROUND AND NOTATION

In this section, we discuss an overview of technique that
we use leverage in our analytic approach. We firstly illus-
trate a brief mathematical notation, then we revisit the self-
organization map algorithm.

We use D = (d1, d2, ..., dQ) to indicate a full dataset
where di ∈ RM . We suppose an active feature set Ma is
selected and the rest of features Ml are illustrative ones, where
∀Ma,Ml ⊂ M , Ma ∩Ml = ∅ and Ma ∪Ml = M . Then,
clustering algorithm (e.g. DBSCAN) is applied by using the
active features to partition the Q observations into h(≤ Q)
clusters CL = {cl1, cl2, ..., clh} with discretionary shape. In
this paper, we are interested in interpreting the shape of a
particular cluster X = (x1, x2, ..., xN ) where X ∈ CL,
xi ∈ RM and N ≤ Q.

A. Self-organization map

Kohonen’s self-organizing map (SOM) is one of the most
famous neural network models. Self-organization map funda-
mentally is a pattern recognition technique in multivariate data,

in which intra-pattern relations among the features are grasped
without the attendance of a potentially biased or subjective
external influence [20].

The SOM often arranged a set of neurons in a 2D rectan-
gular or hexagonal grid T in size n, to establish a discrete
topological mapping of an input space, X ∈ RM . Ω is
the set of neuron indexes. The neurons are represented by
set of weight vectors V = {v1, v2, ..., vn}, where vi is the
weight vector associated with neuron i and is a vector of the
same dimension −M− of the input, n is the total number of
neurons, and let ri be the location vector of neuron i on the
grid. At the start of the learning, all the weights are initialized
to small random numbers. Then the algorithm repeats next two
steps until the map converges in order to preserve maximum
topological properties of the data on the map [21].

First at each time-step t, presents an input x(t) at random,
and selects the winner neuron:

ν(t) = argmin
k∈Ω

‖x(t)− vk(t)‖ (1)

Second, update the weights of the winner and its neighbors:

∆vk(t) = α(t)η(ν, k, t)[x(t)− vν(t)] (2)

where η is the neighborhood function which Gaussian form
is often used in practice – more specifically:

η(ν, k, t) = exp

[
−‖rν − rk‖

2

2σ(t)2

]
(3)

with σ representing the effective range of the neighborhood,
and it is often decreasing with time.

The coefficients {α(t), t ≥ 0}, termed the ’adaptation gain’,
or ’learning rate’, are scalar-valued that decrease monotoni-
cally, but satisfying:

0 < α(t) < 1, lim
t→∞

∑
α(t)→∞, lim

t→∞

∑
α2(t) <∞ (4)

Furthermore, we apply ”No Move” [20] to learn con-
vergence mechanism in our approach. It considers stopping
condition that defines no-improvement in SOM’s status as no
training samples changing their best match unit in a complete
iteration of the training set. Using this condition, the training
process is stopped as soon as it sees no-improvement.

As a result, the SOM can provide topologically preserved
mapping [22] from input to output spaces, which includes grid
T and weight vectors V . For SOM training, the weight vector
associated with each neuron moves to become the centroid
of a local group of input vectors. The group i is represented
by its centroid vector vi and the local groups are connected
via topological space T. We use it for vector quantization by
subdividing a subset of points into micro-clusters having points
close to each other locally.

IV. ORGANIZATION COMPONENT ANALYSIS

In this section, we will introduce our Organization Com-
ponent Analysis (OCA) method which analyses the shape
of a particular cluster X to extract the Organization Com-
ponents OC = (oc1, oc2, ..., ocC) where occ ∈ RMl and
C ∈ Z ∩ [1, |Ma|].



First of all, train the SOM network to learn the topology-
preserving map (T, V ) and structure of the input data X .
The key observation is that neurons that are adjacent to each
other in the topology should also move close to each other
in the input space, therefore it is possible to explore a high-
dimensional inputs space in the two dimensions of the network
topology.

(a) SOM embedded graph

(b) The blue and red lines are the first and second shape axes.

Fig. 2: Application of OCA to spatial pattern indicator from
the Covertype dataset cluster C3, which is a part of our
empirical study. The Horizontal distance to hydrology and
Elevation are selected active features. (a) shows the locations
of the data points (green) and the weighted graph that is
embedded in the SOM topology space. (b) The blue points
are representing the SOM neurons, while the red and blue
lines are major and minor axis, respectively. The rest of the
items are described in the section IV in details.

In order to be able to compute pairwise relations between
neurons, an undirected graph G = (E, V,w) is embedded in
the topological space T. If G is represented in T such that
the vertices (V ) of G are distinct elements in T, and an edge
(E) in G is a simple arc connecting its two ends such that
E preserves the grid structure of T, also w : E → R is
a function mapping edges to their values which is euclidean
distance between two ends of each edge in the active feature
subspace ∀Ma ⊂ M . See Fig.2.a, the labeled purple points
and the red lines represent the nodes and edges respectively.

Let V a = [va1, va2, ..., van], vai ∈ RMa be active feature
subset, then the weight of edge between neuron i and j is;

wij =‖ vai − vaj ‖, wij ≥ 0 (5)

Then we compute the axis Ic of the cluster. The axis is the
(vao, vaq) ∈ RMa endpoints of the longest line that can be
drawn through the cluster topological space T. Let ep be a set
of the endpoints where ep = ∅ during the computing of the
first (major) organization component and it will be updated
gradually. The endpoints o 6= q of the Ic belongs to:

argmax
i,j∈{Ω\ep}

‖vai − vaj‖+
∑
k∈ep

(‖vai − vak‖+ ‖vaj − vak‖)


(6)

And the axis and its unit vector are (e.g., the red solid line
and green solid arrow in Fig.2.b),

Ic = −−−−→vaovaq, Îc =
Ic
||Ic||

(7)

Then we update endpoints set:

ep = ep ∪ {o, q} (8)

Next, we describe the organization of the cluster in the
direction of Î by capturing the continuing interaction be-
tween small local clusters (neurons) aligned with the Ic.
To figure out this interaction we compute the geodesy path
P = (p1, p2, . . . , pn′) in the graph G (where P ⊆ Ω, p1 = o,
and pn′ = q) by Dijkstra’s algorithm, which is shown as pink
nodes in Fig.2.b.

Technically, the relation between the neurons in path P
can describe the major axis establishment in RM . In order
to characterize the relationship between the neurons in P ,
we compute a sequence of forward difference vectors ∆ =
[δ1, δ2, ..., δn′−1], δi ∈ RM (Shown as red dotted arrows in
Fig.2.b). Let vi ∈ RM represent the weight vector of ith
neuron in P then

δi ≡ |vi+1 − vi| � vi, ∀i ∈ (P \ {pn′}) (9)

If you imagine standing at ith neuron in RM , the vector δi
tells you the changes rate in direction of i+ 1th neuron.

We propose a Directional Sequence Similarity (DSS)
method to compute the similarity between sequence of differ-
ences in active subspace RMa and in each illustrative feature
on path P . Let A be sequence of difference in active subspace
RMa aligned with Ic (The length of black intervals in Fig.2.b),

A = UL∆T (10)

Where L is diagonal matrix in size M with lii = 1 if i ∈Ma

else lii = 0. To facilitate the computation, we define unit
vector U ∈ RM with ui = Îci if i ∈Ma else ui = 0.

Afterwards we compute sequential alignment between A
and each δ′i ∈ ∆T , which are columns of ∆, to measure the
relationship between directional sequence of changes in active
subspace and each feature i belonged to illustrative subset
Ml. Let occ = [s1, s2, . . . , sM ′ ] be the associated organization



component to the axis Ic, where M ′ = |Ml| and si measures
the sequence alignment between A and δ′i:

si =

∣∣∣∣ A.δ′i
‖ A ‖ × ‖ δ′i ‖

∣∣∣∣ (11)

Where 0 6 si 6 1, a sequence is identical with A when
si = 1 or si = 0 non-identical. And if a si is significantly
similar to A, the ith illustrative feature can be interpreted as
an influencing feature on the organization component occ.

For any cluster, we can identify |Ma| organization com-
ponents by repeating these steps. The first organization com-
ponent corresponds to the major discrete curve that passes
through the multidimensional active feature space and rep-
resents the interrelationship among a chain of local micro-
clusters in direction of main axis. The next organization
components correspond to the same concept that its associated
endpoints have been selected by maximization sum of their
euclidean distance to previously selected endpoints ep in the
active feature multidimensional space. These components can
describe the fine-grain interconnection inside a cluster. And
the most influencing feature in each organization component
can illustrate the gravitational force among a chain of local
micro-clusters. Through these organization components, we
can often find fine-grain patterns in categorized data that
traditional methodologies fail to find. For example in, Fig.2.b,
the red dotted arrows show the first organization component
composition that vividly represents the main repetitive patterns
among the original data points (See green points in Fig.2.a).

We summarize the complete OCA algorithm for extracting
insights from the shape of cluster in Algorithm (1).

V. APPLICATION OF OCA IN THE REAL DATA

In this section, we apply OCA to two datasets from diverse
fields to show the implementation and application of our
proposed OCA method for extracting insight from arbitrary
cluster-shape. We analyzed datasets of (i) cartographic data
of actual forest cover type; (ii) performance data of high per-
formance computing (HPC) STREAM benchmark. We show
that studying the deformation of topology preserved space is
useful and efficient in detecting finer-grain pattern and relation
among the stratified data. The innovation in our paper is to
show that local geometrical feature of clusters is important
and can mathematically lead to novel and profounder insights
from the data. In continue, we discuss the OCA parameter
selection and evaluation method then we go into the analyses
of datasets.

A. Parameter Selection

Our OCA method has only one parameter, which is n in
performing the self-organization map. The size of the map n
is determined by calculating the number of neurons from the
number of data points using n ≈ 5

√
N , which is an integer

close to the result of the right-hand side of the equation, and
N is the number of observations [23].

Algorithm 1 : OCA for cluster shape interpretation

Require: N data points with M features;
Ma : The active feature subset;
Ml : The illustrative feature subset;
n: Size of two-dimensional map;
C ∈ Z ∩ [1, |Ma|]: Number of Components;

Ensure: ep = {} endpoints
OC = {} Organization Compounds

1: Initiate SOM T in size n and train it until converges
as discussed in Section III.A. Let V = [v1, v2, ..., vn],
vi ∈ RM contain neurons weight vectors.

2: Embedding the G = (E, V,w) in the T and compute the
w in RMa (Eq.5)

3: for c = 1 to C do
3.1: Select endpoints o, q of axis Ic (Eq.6)
3.2: Compute axis Ic and unit vector Îc (Eq.7)
3.3: ep = ep ∪ {o, q}. (Eq.8)
3.4: Extract geodesy path P = (p1, p2, . . . , pn′) between o

and q in G by Dijkstra’s algorithm.
3.5: Compute sequence of forward difference vectors ∆ =

[δ1, δ2, ..., δn′−1]. (Eq.9)
3.6: Compute A sequence of changes in active subspace

RMa aligned with Ic (Eq.10)
3.7: Compute occ = [s1, s2, . . . , sM ′ ] associated organiza-

tion component to the axis Ic. Any si measures the
sequence alignment between A and δ′i ∈ ∆T . (Eq.11)

3.8: OC ← OC + occ
4: end for
5: return OC

B. Evaluation Quality of The Map
The important measure of the quality of the mapping is the

topology preservation [24]. We calculate the topographic error,
te, i.e. the proportion of all data vectors for which first and
second Best Matching Units (BMU) are not adjacent units.

te =
1

N

N∑
i=1

u(xi) (12)

where u(xi) is equal to 1 if first and second BMU are
adjacent and 0 otherwise. So te ∈ [0, 1], the map highly
preserves topology when te = 1 or te = 0 poorly.

C. Identifying spatial patterns of wilderness sub-area.
The first application is the identification spatial patterns

of wilderness sub-area. Identifying spatial patterns among
potentially complex Geographical Information System (GIS)
data in a consistent manner is a challenge in the field since
sub-area can be small and have complex relationships. We
show here that OCA can finely lead us to identify these
spatial patterns by analyzing cluster-shape. We also identified
interesting wilderness sub-area and their innate organization
structure that may be important for geoscientists.



Fig. 3: Comanche Peak Wilderness Area, visualizations of the
clustering result (DBSCAN ε = 0.15, MinPts = 30).

We use Covertype1 dataset (580,112 variable pairs, 17
numerical GIS variables such as elevation, slope, aspect,
distance to hydrology, and etc.), to demonstrate fine-grain
spatial patterns that can be identified among GIS data by using
our OCA approach. Instances in the dataset are drawn from
four different wilderness areas from the Roosevelt National
Forest in north Colorado: Rawah, Neota, Comanche Peak and
Cache la Poudre, which are covered with seven different tree
species. The organization components derived from the cover-
type data of species vary from area to area, with some areas-
species having particular pattern. We took the Comanche Peak
areas as a benchmark (253,364 data points), which would tend
to be more typical of the overall dataset, while this area would
probably have Aspen as their primary major tree species,
followed by Krummholz [25].

By applying Robust Independent Feature Selection
[26] method, we find that ”elevation” and ”horizon-
tal distance to hydrology” are an excellent active feature
subset for categorizing wilderness sub-area, since most of
tree species in the studied wilderness areas grow within
specific ranges of altitudes and available moisture in a given
cell. Then we apply the DBSCAN on this area-species by
tuned hyper-parameters ε = 0.15 and MinPts = 30 and
using the active features. As a result, we stratify three distinct
clusters in complex arbitrary shape, see Fig.3. We detect
tendril cluster C1 in the lower part of that altitudinal zone.
In contrast, we identify a small heterogeneous cluster C3
in highest elevation and an elongated cluster C2 with three
tendrils.

We applied OCA in each cluster based on GIS data. In order
to randomize the experiments, we conducted 10 OCA on each
chosen cluster. Then, for each cluster, the average features
influence as well as the standard deviations that have been
computed over all analysis. OCA achieved to the 98%, 95%,

1https://archive.ics.uci.edu/ml/datasets/covertype

(a) SOM embedded graph

(b) The first and second Organization Component and axis

Fig. 4: Application of OCA to Covertype dataset cluster C1;
(a) shows the data points and the SOM embedded graph.(b)
The red and blue dashed arrows represent first and second
Organization Component, respectively.

and 84% topology preservation in average for cluster C1, C2
and C3 respectively by less than 300 iteration in average.

In Fig.4, as an example, we show plots of the organization
components that we have derived from cluster C1. Plot (a)
shows the embedded graph that is computed by our OCA
method. The resulting graph has a structure shaped like a
horizontal letter C. As shown in plot (b), our OCA method
identified two spatial patterns in data. For first OC (red), the
relationships are mainly aligned with increasing the active
feature values where there is a long connected path, but in
other OC (blue), the networks show a significantly decremental
short path. Table.I presents the Directional Sequence Similarity
that is computed by OCA for each cluster. In case of cluster
C1, this very high degree of DSS (69%) is evident with
”Slope” in first OC. There are geological issues that could
explain such spatial pattern. The associated data points to
this OC are mainly belonged to Catamount soil family that
is geomorphically positioned in mountain slopes in nature.
We also determined that the horizontal distance changes to
roadway can describe the spatial pattern associated with the



TABLE I: Application of OCA to Comanche Peak
Wilderness sub-areas, the features influencing in the first and

second organization components for each cluster.

Feature Cluster C1 Cluster C2 Cluster C3
OC1 OC2 OC1 OC2 OC1 OC2

Aspect 0.196 0.248 0.094 0.135 0.020 0.010
Slope 0.688 0.162 0.069 0.238 0.259 0.077
VDT Hydro 0.247 0.305 0.202 0.131 0.148 0.095
HDT Road 0.218 0.462 0.060 0.219 0.184 0.138
Hillshade 9am 0.169 0.206 0.049 0.216 0.192 0.120
Hillshade Noon 0.176 0.219 0.059 0.182 0.361 0.446
Hillshade 3pm 0.183 0.253 0.09 0.149 0.105 0.067
HDT Fire Point 0.196 0.206 0.061 0.100 0.753 0.085
Hillshade mean 0.175 0.222 0.060 0.182 0.191 0.144
Hillshade 9am sq 0.171 0.215 0.053 0.203 0.353 0.246
DT Hydro 0.164 0.201 0.944 0.697 0.293 0.358
Hillshade Noon sq 0.174 0.221 0.059 0.187 0.212 0.171
Hillshade 3pm sq 0.177 0.238 0.072 0.167 0.148 0.103
cosine slope 0.172 0.226 0.058 0.191 0.235 0.208
Interac 9amnoon 0.173 0.202 0.049 0.203 0.268 0.267
Interac noon3pm 0.183 0.248 0.089 0.145 0.092 0.056
Interac 9am3pm 0.179 0.234 0.07 0.162 0.138 0.089

second OC. The associated data points to this OC are mainly
belonged to Bullwark soil family that is geomorphically posi-
tioned in mountain faceted spurs. Note that the faceted spurs
usually ends up to flat area which is appropriate place for
making road. In case of cluster C2, we can see euclidean
distance to hydrology identified as most influencing feature in
first two organization components, with approximately 92%
and 70% DSS. Interestingly, the rest of the features mostly
do not show significant Directional Sequence Similarity with
the active feature set. In cluster C3 case, the cluster is shaped
with the natural fire lines as most influencing feature with DSS
76%.

In order to verify our result, we carried out manually map
visual study via ArcGIS and UCDAVIS 2. On the map, we
just applied the GIS data which have been computed as must
influencing features by our OCA method. As a result, we
could easily identify these sub-areas spatial pattern on map.
For example, once we recognized a spatial pattern in the
hydrological map which is identical to shape of cluster C2,
the OCA of the sub-area reveals its organization structure
significantly similar to euclidean distance to hydrology. We
figure out another instance that the associated sub-area to C3
is a flat (high hill-shade noon) near to the Comanche peak and
it has not been touched with natural fires.

Moreover, we find that a PCA analysis of the same catego-
rized data was not able to detect the indicator to detect spatial
pattern. For example, in Fig.5 we presented the cluster C1
PCA result as contribution bi-plot. The blue vectors are pre-
senting the coordinates of the active features that are calculated
as the correlation between them and the principal components.
As expected, there is a very weak linear correlation between
them that means a PCA analysis of the same data was not able
to identify the spatial connectivity.

In summary, we have identified any wilderness sub-area
occurring consistently aligned with some spatial pattern but

2https://casoilresource.lawr.ucdavis.edu/see/

(a) PCA bi-plot

Fig. 5: Application of PCA to Comanche Peak Wilderness
detected sub-areas C1. The larger the value of the contribution
is, the more the feature contributes to the components.

non-linearly. We note that these spatial patterns are easily
indicated by our methods because of the topology preservation
property enjoyed by our approach. Moreover, we show that
classical multivariate analysis approaches such as PCA, cannot
easily detect these relevant indicators because by their nature
they end up linearly separating points in the dataset that are
in fact topologically close.

D. Diagnosing performance bottleneck in High Performance
Computing (HPC) applications.

The next dataset we studied is a dataset that includes
various Performance Hardware Counters3 (HWC) values in the
HPC STREAM 4 benchmark. Performance hardware counters
values are unique metrics to understand the behavior of
the application in a given hardware. Hardware counters are
available in almost all modern processors, and count micro-
architectural events such as L1, L2, L3: Levels of cache
misses, MSP: Conditional branch instructions mispredicted,
INS: Total instructions executed, and etc. Moreover, we drive
a performance metric ”Overlapping Index” (BOI) to indicate
proportion of shared resources on-chip. The STREAM bench-
mark is a state-of-art HPC benchmark designed to measure
sustainable memory bandwidth (in MB/s) and a corresponding
computation rate for four simple vector kernels (Copy, Scale,
Add and Triad). We executed STREAM application on the
MareNostrum5 where OMP threads number = 40 and
Loop size = 9M to collect the dataset (4264 variable pairs,
9 numerical HWC variables) by specified interval sampling
mechanism 6. We mathematically diagnose patterns in these

3https://icl.utk.edu/papi/
4http://www.cs.virginia.edu/stream/
5https://www.bsc.es/marenostrum/marenostrum
6https://tools.bsc.es/extrae



datasets that characterize the application performance losses
by applying our OCA approach. Note that OCA extracted these
deep insights without requiring the expertise to study the huge
amount of information manually and visually.

In [27], they propose the Completed Instructions (INS)
combined with Instructions Per Cycle (IPC) as an appropriate
active feature subset. This combination focuses the clustering
on the “performance view” of the application. Then, we
applied DBSCAN algorithms to the extracted performance
data by tuned hyper-parameters and using the active features
in order to determine the application structure. Fig.6 shows
the detected clusters (application phases). As a result, we
stratified four distinct clusters in elongated shape. One can
then ask the question if each cluster represents a distinct phase
of application why they show heterogeneous performance
behavior. To answer this question, we applied the OCA to
detect the HPC systems bottleneck that can describe the
variability among stratified data.

Fig. 6: Performance data extracted from STREAM benchmark
execution (OMP threads number = 40 , Loop size =
9M ) , visualizations of the clustering result (DBSCAN ε =
0.015, MinPts = 6).

In this paper, we report the results of the Triad operation
(e.g., Cluster1 in Fig.6), since it is the most complex scenario
and is highly relevant to kernels used in HPC applications. In
order to randomize the experiments, we conducted 10 OCA
on Triad associated cluster and computed the average features
influence as well as the standard deviations over all analysis.
In all conducted experiments, OCA achieves to 94% topology
preservation in average, which shows strong mapping quality.

Fig.7 shows plots of the organization components that
we have identified in cluster1 of previously aforementioned
example. Plot (a) shows the embedded graph that is computed
by our OCA method. Although all data points are represen-
tatives of the same kernel, they can be categorized into three
distinct sub-clusters that do not detected by DBSCAN due
to the fact that we select the ε value to identify the main
application trends. Note that the bottom sub-cluster includes

(a) SOM weight positions

(b) The blue and red lines are the first and second shape axes
respectively.

Fig. 7: Application of OCA to STREAM dataset cluster C1;
(a) shows the locations of the data points and the weight
vectors.(b) The blue points are representing the SOM neurons,
while the red and blue dashed arrows represent first and second
Organization component, respectively.

the majority of the data points. As shown in (b), our OCA
method identified two sub-structures. We identify that the first
organization component indicates the main HPC application
performance behavior and the second one presents the reason
of the inter-cluster stratification. From Table.II, we diagnose
that the magnitude of shared on-chip resources (BOI) can
describe approximately 70% of the performance losses, since
each thread can only use a fraction of the shared resources
at specific moment. Furthermore, we identify the performance
effect of L1\L2, L1 and L2 miss ratio have become the main
concern when following the OC2 trajectory path, it is likely
that approximately 50% of the performance problem is the
L1 and L2 capacity. Also, we detect three sub-groups that
represent distinctive level of L1 and L2 miss ratio.

In advanced experiment, we executed STREAM application
with various combination of OMP NUM THREAD ∈
{1, 2, 4, 8, 16, 24, 32, 40, 48} and Loop size ∈ [10k, 89M ] to
collect 134 datasets (1221 to 11,600 variable pairs, 9 numerical
HWC variables). We conducted the prior process on each



TABLE II: Application of OCA to STREAM data set cluster
C1, the features influencing in the first and second OC.

L1 L2 L3 L1\L2 L2\L3 MSP BOI
OC1 0.223 0.220 0.159 0.227 0.222 0.051 0.693
OC2 0.492 0.500 0.086 0.483 0.134 0.015 0.189

obtained dataset to diagnose the HPC system bottlenecks.
Fig.8, presents the contour plots of the mean value of

IPC and INS (active subspace), versus the log(loop size) and
the OMP threads number and Fig.9 shows contour plots of
illustrative feature’s Directional Sequence Similarity with the
major organization component. As shown in the plot 8.a, the
application roughly shows highest performance by the small
number of threads and it has high performance in the area un-
der the bell-shaped component as well. We detect significantly
similar pattern in the plot 9.g which identifies the performance
of application mainly influenced by the magnitude of shared
on-chip resources. We also identify a minor difference between
two components in the right tail. It is caused by the imbalanced
thread distribution between sockets that increases the IPC
mean. For example, in OMP NUM THREAD = 16 and
log(Loop size) = 18 case only two threads are assigned to
the second socket; fourteen threads to the first one. From
the plots 9.(a ∼ e), we can conclude that the bottleneck
of the small, medium and big problem sizes is L1, L2 and
L3 misses ratio respectively. The most remarkable aspect of
the plot 9.a, see the yellow area in the small loop size,
is that the exponential relationship between loop size and
OMP number threads. In the same way, we recognize the
similar pattern in the performance of application (IPC), you
can see the lightest orange area in the small loop size in plot
8.a. Although we identify L1 miss rates as a main bottleneck
of small problem size, the performance of application has still
been acceptable, probably, in consideration of the relatively
low latency of L1 cache. It would be worth mentioning that,
on the very small loop size, the performance of application is
reduced quickly by increasing the number of threads, possibly,
due to the fact that parallelism overhead is too remarkable
in case of very small vector size, as it can be seen in the
right side of the plot 9.f. As it can be seen in plot 8.b, there
is roughly a linear relationship between INS and Loop size
due to the vector size. Although the INS does not illustrate a
performance issue, it helps use to segregate main application
trends perfectly.

In order to verify the insight that extracted by the OCA,
we performed manually the HPC performance analysis with
PARAVER 7 toolkit and we identified the same performance
bottleneck as well. However, it is a manual approach.

In summary, our Organization Component Analysis diag-
noses performance bottleneck of HPC applications automati-
cally rather than the visual approach that is too intuitive and
laborious. In case of STREAM benchmark, we identified that
higher magnitude of shared resources on-chip will ruin the ap-
plication performance dramatically. Meanwhile the number of

7https://tools.bsc.es/paraver

Fig. 8: STREAM benchmark, the plots are shown the contour
plots of the mean value of IPC and INS, versus the log(loop
size) and the OMP threads number.

cache misses in the higher level of cache hierarchic will be the
performance bottleneck by increasing the loop size. In general,
the OCA can be a canonical approach to automatically detect
the HPC application performance bottleneck among complex
performance data without expert human visual analysis, which
can broadly be applied to any HPC application.

VI. CONCLUSION AND FUTURE WORK

We have presented a new topology-preserving approach to
study the complex and arbitrary shape of the stratified data
called Organization Component Analysis (OCA). We propose
to make the best use of the self-organization map structure of a
high dimensional categorized data, which is defined on the 2D
grid of neurons, both to recognize and quantify innate cluster
structure and its formation, simultaneously. Whereas cluster
analysis identifies regions of higher density in these data,
OCA is able to extract finer-grain insights from the shape of a
cluster, as it is clearly demonstrated in this article. Here OCA
is a general and an efficient method that is assumption free,
automated, and it can be applied on the result of any clustering
algorithm. Moreover, OCA creates a graph to visualize the
shape of these clusters by way of a graph. Furthermore, we
propose a novel Directional Sequence Similarity method to
compute the similarity between two sequences of changes, in
which the rate of change is taken along a unit vector. Finally,
we have shown that our novel topology-preserving approach
can lead to finer and profounder insights of two real-world
datasets. The usefulness of our OCA technique is not closed
to these two types of applications but can generally be applied
to diverse data types, such as time series, image segmentation,
consumer behavior data and others.

As future work, we would like to come up with a hybrid
clustering approach to obtain very detailed structure identifi-
cation by giving the outer level flexibility to operate on an
approximate coarse grain euclidean space with DBSCAN and
great detail on non-homogeneous local space deformations
with SOM.



Fig. 9: STREAM benchmark, the plots present the contour plots of illustrative feature’s Directional Sequence Similarity with
the major organization component, versus the log(loop size) and the OMP threads number. The red dashed lines show the
threshold of three hierarchical levels of caches (32kB, 1MB and 33MB) receptively.
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