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In the study of epidemic dynamics a fundamental question is whether a pathogen initially affecting
only one individual will give rise to a limited outbreak or to a widespread pandemic. The answer to
this question crucially depends not only on the parameters describing the infection and recovery
processes but also on where, in the network of interactions, the infection starts from. We study
the dependence on the location of the initial seed for the Susceptible-Infected-Susceptible epidemic
dynamics in continuous time on networks. We first derive analytical predictions for the dependence
on the initial node of three indicators of spreading influence (probability to originate an infinite
outbreak, average duration and size of finite outbreaks) and compare them with numerical simulations
on random uncorrelated networks, finding a very good agreement. We then show that the same
theoretical approach works fairly well also on a set of real-world topologies of diverse nature. We
conclude by briefly investigating which topological network features determine deviations from the
theoretical predictions.

I. INTRODUCTION

As the present pandemic keeps reminding us, disease
spreading plays in our world a role that can hardly be over-
estimated [1]. To understand how an infectious pathogen
in a single individual develops into a widespread epidemic
it is crucial to investigate the relationship between the
topology of the interaction pattern and the collective
properties of the contagion [2, 3]. Among the nontrivial
questions that spreading phenomena in complex networks
raise, the effect of the exact location where the contagion
is seeded is one of the most interesting. Is the course of
an epidemic strongly depending on where the pathogen
first appears? Is it possible to calculate this dependence,
thus identifying a priori influential spreaders to be mon-
itored? Are purely topological quantities (centralities)
able to provide information on the size or duration of
an outbreak started in a given node? After the seminal
paper by Kitsak et al. [4] these questions have attracted
a lot of interest. The natural framework for investigat-
ing these issues is the stochastic Susceptible-Infected-
Removed (SIR) model, where susceptible nodes can be
infected by neighboring nodes in a network and then
spontaneously recover, acquiring permanent immunity.
Spreading influence is naturally measured by considering
the average final size Sn of an outbreak originated by a
seed placed in node n. Such a quantity is finite (on any
finite network) for any value of the parameters describing
the dynamics. Initially, the focus has been on the identi-
fication of topological centralities, such as degree, K-core
or eigenvalue centrality, sufficiently correlated with out-
break size, in the sense that ranking nodes based on the
centrality provides the correct ranking also for what con-
cerns Sn. Many methods and associated quantities have
been considered to perform this goal [5]. The mapping
of SIR static properties to bond percolation has allowed

to recognize Non-Backtracking centrality as the solution
of the problem for random networks at criticality [6] and
to calculate, via message-passing methods, the spreading
influence throughout the whole phase-diagram [7].

Concerning instead epidemic processes without per-
manent immunity (such as the Susceptible-Infected-
Susceptible, SIS) activity has been much more lim-
ited [8, 9], because in this case the very definition of
spreading influence is not trivial, since above the epidemic
threshold a fraction of all outbreaks lasts indefinitely in
time. Very recently, we have tackled this issue and stud-
ied the problem of influential spreaders for SIS dynamics
in discrete time [10]. In that paper, we have considered
three different quantities that measure spreading influ-
ence and applied an existing theoretical framework [11]
(conceptually equivalent to the quenched mean-field ap-
proach [2]) to calculate them analytically. Numerical
simulations, performed on random uncorrelated networks,
have confirmed the validity of the approach, revealing a
satisfactory overall agreement with the theoretical predic-
tions.

While the work in Ref. [10] constitutes a first system-
atic approach to the study of spreading influence for SIS
dynamics in networks, some questions remain open. The
first has to do with the extension of the results to SIS
in continuous time, which is, in many respects, a more
realistic model for infectious disease. The framework of
Ref. [11] is easily applicable to a discrete time dynamics
where, in particular, the duration of the infected state
is set deterministically to 1 for all individuals. Because
of that, at the same time a node gets infected, the node
that transmitted the infection to it (infector) necessarily
becomes susceptible again. This is very different from
what happens when the duration of the infected state is
a random variate (as in continuous-time SIS): in such a
case the infector remains infected for some time after the
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infection event, so that the effective degree of the newly
infected individual for further spreading the disease is
temporarily reduce by one. These dynamical correlations
among the state of neighbors make the application of the
approach of Larremore et al. to SIS in continuous time
nontrivial and in principle less accurate.

Another relevant question left completely open is the
validity of the approach beyond random uncorrelated net-
works. Real-world topologies are in general very different
from the synthetic networks considered in Ref. [10], as
they may include arbitrary degree distributions and corre-
lations, local clustering, mesoscopic structures (communi-
ties, core-periphery) and so on. Is the theoretical approach
able to accurately describe spreading influence also for
such interaction patterns? How do different topological
properties affect the predictive power of the theory?

In this paper we tackle these major questions, providing
an exhaustive response to the first and, by investigating
the SIS model on a set of real-world structures, highlight-
ing the different role that some topological properties play
in determining the validity of the approach on generic
networks.

II. THEORETICAL APPROACH

We consider the standard SIS dynamics in continuous
time on an undirected unweighted network. Each node
i can be either susceptible or infected. Infection and
healing dynamics are ruled by two Poisson processes. At
rate (probability per unit time) µ each infected node
recovers spontaneously, becoming susceptible again. An
infected node may transmit the contagion to each of its
susceptible neighbors. This occurs independently at rate
β for each one of the susceptible neighbors. We consider
an initial condition with a single node n infected, while
all the others are in the susceptible state and we are
interested in calculating the dependence on the seed node
n of the probability bn to observe a finite outbreak, of the
average duration Tn and of the average size Sn of finite
outbreaks [10].

A. Quenched Mean-Field theory

Inspired by the approach developed by Larremore et
al. in Ref. [11], we write an equation for the probability
cn(t) that an outbreak starting from a seed node n has
a duration smaller than or equal to t. We compute it by
means of a one-step calculation, considering the system
with only node n infected at time t = 0 and making the
assumption of a locally tree-like network, so that we can
consider outbreaks propagating to the different neighbors
of n as independent. To do so, we consider the probability
cn(t + dt) that a seed node n generates an outbreak of
duration smaller than or equal to t + dt, with dt an
infinitesimal time interval. Due to the Poisson nature of
the infection and healing processes, in the interval dt the

node n can heal with probability µdt and can infect each of
its kn nearest neighbors with probability βdt. Otherwise,
with probability 1− µdt− knβdt, nothing happens. If a
recovery event takes place, then the outbreak stops and
consequently its duration is necessarily smaller than any
t′ > dt. If the node infects one of its nearest neighbors,
the newly infected node m, together with the seed node n,
still infected, can give rise to another outbreak, starting
at time t = dt from the pair (n,m) of infected neighbors.
For the global outbreak to be shorter than t + dt, this
induced outbreak must have a duration shorter than t. If
nothing happens, the node n will still be infected at time
dt, so we must impose that the subsequent outbreak it
generates has a duration not larger than t. Denoting by
cnm(t) the probability that the adjacent pair of infected
nodes (n,m) generate an outbreak of duration not larger
than t, we can write

cn(t+ dt) = µdt+
[
1− (µ+ knβ)dt

]
cn(t)

+
∑
m

anmβdtcmn(t), (1)

where anm is the adjacency matrix of the network, and we
assume that the duration probabilities cn(t) and cnm(t)
are time translation invariant. Rearranging the terms and
taking the limit dt→ 0 we arrive at the equation

dcn(t)

dt
= µ−

[
µ+ knβ

]
cn(t) + β

∑
m

anmcmn(t). (2)

We note that this equation is more complicated than
the corresponding equation for cn in the case of discrete
time dynamics with unit recovery time treated in Ref. [10].
In that case a node necessarily heals immediately after
infecting a neighbor and for that reason the equation
for cn depends only on cm. Here instead Eq. (2) for cn
depends on cnm. This is a consequence of the fact that n
can be still infected at time t+ dt, so dynamical correla-
tions unavoidably arise: m can infect, in the successive
dynamical event, only km − 1 neighbors, instead of km.
Nevertheless we neglect in the following these correlations
assuming the factorized form cnm(t) ≈ cn(t)cm(t), so that
the equation for cn(t) finally reads

dcn(t)

dt
= µ−

[
µ+ knβ

]
cn(t) + βcn(t)

∑
m

anmcm(t), (3)

to be integrated with the initial condition cn(0) = 0. As
we will see in Sec. III, numerical evidence backs up the
factorization assumption for the probability cnm(t).

B. Probability that an outbreak is finite

The probability of observing a finite outbreak starting
from the single seed node n is given by bn = limt→∞ cn(t).
Imposing the stationarity condition ċn = 0 in Eq. (3), bn
can be obtained by solving iteratively the self-consistent
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equation:

bn =
µ+ βbn

∑
m anmbm

µ+ knβ
. (4)

In Appendix A we show that all the bn are equal to 1 when
λ ≡ (β/µ)ΛM ≤ 1 (where ΛM is the largest eigenvalue of
the adjacency matrix) while the fixed point bn = 1 loses
its stability, and thus another solution bn < 1 appears,
when λ > 1.

C. Average duration of a finite outbreak

To compute the average duration Tn of a finite outbreak
seeded in node n, we consider the outbreak duration
distribution Pn(t), that is given by

Pn(t) =
1

bn

dcn(t)

dt
, (5)

where the prefactor guarantees normalization, since we
are only considering finite outbreaks 1.

Let us define cn(t) = bn − fn(t), with fn(0) = bn and
limt→∞ fn(t) = 0. We can thus write

Tn =

∫ ∞
0

t′Pn(t′)dt′ = − 1

bn

∫ ∞
0

t′
dfn(t′)

dt′
dt′

=
1

bn

∫ ∞
0

fn(t′)dt′. (6)

Rewriting Eq. (2) in terms of fn(t) we obtain

−dfn(t)

dt
= µ

fn(t)

bn
− βbn

∑
m

anmfm(t)

+ βfn(t)
∑
m

anmfm(t), (7)

where we have used the steady state condition Eq. (4). By
solving numerically this equation and plugging fn(t) back
into Eq. (6), the average duration of a finite outbreak
seeded in n can be evaluated.

In Ref. [10], a similar equation for the average outbreak
size was simplified by performing a linearization, based
on the assumption that fn(t) decays to zero very quickly,
in such a way that we can disregard the last term in the
right hand side of Eq. (7). While in the discrete time case
such approximation works [10], in continuous time it fails.
The failure can be traced back to the linearized equation
being unphysical at intermediate times for sufficiently
large values of the degree kn (see Appendix B).

1 We notice that this prefactor was incorrectly omitted in Ref. [10]

D. Average size of a finite outbreak

For predicting the average outbreak size, we have to
slightly modify the generating function approach devel-
oped in Ref. [11] in order to take into account once again
the dynamical correlations among nearest neighbors. Let
us define yn as the final size of an outbreak starting from
node n. The following relation is satisfied by yn:

yn =
∏
m

(1− znm) +
∑
m

znmynm, (8)

where znm is a random variable with value 1 if n has
infected node m, and 0 otherwise, and ynm is the size
of the outbreak generated by the infected pair of adja-
cent nodes (n,m) 2. We restrict our attention only to
finite outbreaks and we introduce the moment generating
functions relative to their distribution, as

φn(s) ≡ E
[
e−syn |yn <∞

]
, (9)

and

φnm(s) ≡ E
[
e−synm |ynm <∞

]
, (10)

where the expectation value is calculated over the realiza-
tions of the random pairs (znm, ynm).

We rewrite the condition yn <∞ in terms of the events
that n could generate. An outbreak starting from n is
finite if and only if, for every neighbor m, either the
infection does not pass from n to m, or m is infected by
n, but the outbreak generated by (n,m) is finite. Hence,
defining the following sets of events:

Zn = {znm = 0, ∀m},
Wn = ∪mWnm,

Wnm = {(ynm <∞) ∩ (znm = 1)},

we can rewrite the condition for yn, expressing the gener-
ating function in Eq. (9) as

φn(s) = E
[
e−s[

∏
m(1−znm)+

∑
m znmynm]|Zn ∪Wn

]
. (11)

Since Wn is the union of all independent events Wnm,
we can write

2 Note that in the discrete-time version, the first term in the right
hand side of Eq. (8) is replaced by 1, since in that case, after the
first event, the seed node necessarily recovers; in continuous time
instead the size yn is equal to 1 if and only if znm = 0 for all m,

i.e., if the seed node n heals before infecting any of its nearest
neighbors.
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E
[
e−s[

∏
m(1−znm)+

∑
m znmynm]|Zn ∪Wn

]
P (Zn ∪Wn) = E

[
e−s[

∏
m(1−znm)+

∑
m znmynm]|Zn

]
P (Zn) (12)

+
∑
m

E
[
e−s[

∏
m(1−znm)+

∑
m znmynm]|Wnm

]
P (Wnm). (13)

The elements in the previous equation are defined as
follows: P (Zn) is the probability that node n heals before
infecting any of its kn neighbors m. Since we are dealing
with Poisson processes, we have

P (Zn) =
µ

µ+ knβ
. (14)

P (Wnm) is the probability that n infectsm, before healing,
conditioned to the fact that the outbreak starting after
the first time step from this pair of infected nodes is finite.
We can therefore write it as

P (Wnm) = bnm
βanm
µ+ knβ

, (15)

so that

P (Zn ∪Wn) =
µ+ β

∑
m anmbnm

µ+ knβ
, (16)

where bnm is the probability that the outbreak generated
by the pair of adjacent infected nodes (n,m) is finite. We
also have

E
[
e−s[

∏
m(1−znm)+

∑
m znmynm]|Zn

]
= e−s (17)

and

E
[
e−s[

∏
m(1−znm)+

∑
m znmynm]|Wnm

]
= φnm(s)

≈ φn(s)φm(s)

where the last factorization derives from the assumption
of independent outbreaks, which, in terms of the sizes,
translates into the assumption that the size of an outbreak
generated by a pair (n,m) is the sum of the sizes of the
two distinct single-seed outbreaks. In Sec. III we present
numerical evidence backing up this factorization.

Denoting ηn = β
∑
m anmbnm, plugging the previous

equations into Eq. (12) and then into Eq. (11), we obtain

φn(s) =
µ

µ+ ηn
e−s +

∑
m

βanmbnm
µ+ ηn

φn(s)φm(s). (18)

Taking the derivative with respect to s and setting s = 0
we obtain

φ′n(0) = − µ

µ+ ηn
+ φ′n(0)

∑
m

βanmbnm
µ+ ηn

φm(0)

+ φn(0)
∑
m

βanmbnm
µ+ ηn

φ′m(0). (19)

From the definition of the generating function, φm(0) = 1
while φ′n(0) is given by

φ′n(0) =
dφn(s)

ds

∣∣∣∣
s=0

= −
∑
s

sPn(s) = −Sn, (20)

where Pn(s) is the size distribution of finite outbreaks.
Hence, Eq. (19) provides the prediction for the average
size of finite outbreaks

Sn = 1 + α
∑
m

anmbnbmSm, (21)

where we have used the factorization bnm = bnbm im-
plied by the factorization cn(t) = cn(t)cm(t) discussed in
Sec. II A.

We emphasize that the results obtained so far are valid
throughout the whole phase-diagram, since we have not
made any assumption on the value of the parameter λ.

III. NUMERICAL RESULTS FOR SYNTHETIC
NETWORKS

In this Section we compare the theoretical predictions
obtained above with the results of numerical simula-
tions of SIS dynamics on random networks with power-
law degree distribution P (k) ∼ k−γ . To avoid any
form of correlation by degree we build the networks us-
ing the Uncorrelated Configuration Model (UCM) [12],
with minimum degree kmin = 3 and maximum degree
kmax = min{N1/2, N1/(γ−1)}. We consider in particular
two values of the exponent γ, corresponding to different
properties of the topology and of the SIS dynamics taking
place on it.

Considering the degree exponent γ = 2.25 as represen-
tative of the case γ < 5/2, we have highly heterogeneous
networks with largest eigenvalue ΛM well approximated
by the ratio

〈
k2
〉
/ 〈k〉 [13]. The corresponding principal

eigenvector is localized on a subextensive subgraph coin-
ciding with the set of nodes with largest core index in the
K-core decomposition [14]. For these topologies, quenched
mean-field theory and annealed network theory give, in
the large N limit, the same critical properties, that agree
very well with numerical simulations [15]. Based on this,
we expect the present approach to be successful in pre-
dicting the spreading influence of individual nodes, the
agreement improving as larger networks are considered.

The value γ = 3.5, as an instance of networks with
γ > 5/2, shows instead markedly different spectral proper-
ties [13]. The principal eigenvector is in this case localized
on the hub with largest degree and on its immediate neigh-
bors [16]. The corresponding eigenvalue is approximately
given by 1/

√
kmax. In this case quenched mean-field pre-

dictions are very different from those of the annealed
network theory. Neither of the theories agrees well with
numerical simulations. In particular the quenched mean-
field theory estimate for the threshold provides only a
lower-bound for the true value, which is determined by
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Figure 1. Numerical check of assumptions used in our theo-
retical analysis. (a) Factorization of the probability that an
outbreak initiated at two randomly chosen adjacent nodes
(n,m) is finite. (b) Assumption about the average size of finite
outbreaks of an outbreak initiated at two randomly chosen
adjacent nodes. Results correspond to networks with degree
exponent γ = 2.25 and size N = 104.

a very complex interplay between hubs in the network,
which are distant but can mutually reinfect each other [17].
Therefore we do not expect a full agreement between the-
ory and simulations, starting from the position of the
threshold, which is expected to be larger than λ = 1 and
to grow further as network size is increased.

We simulate SIS dynamics by means of an optimized
Gillespie algorithm [18]. Network size is generally N =
104 nodes. Average values are obtained by performing at
least 1000 realizations of the stochastic process for each
seed. The numerical evaluation of the observables we
are interested in is intrinsically difficult, because the dis-
tinction between finite and infinite outbreaks is clear-cut
only for infinite networks. For networks of finite size all
outbreaks last necessarily only a finite amount of time,
reaching eventually the absorbing, healthy state. It is
nevertheless possible to distinguish between truly finite
outbreaks and putatively infinite ones, which end only
because of the network finite size, by identifying two differ-
ent components in the distribution of outbreak durations.
See Appendix C for details. Close to the threshold, the
distinction becomes conceptually impossible, as the two
components get inextricably superposed. This makes a
comparison between theory and simulations unfeasible in
the vicinity of the critical point.

As a preliminary step, we have checked in numerical
simulations the validity of the factorization for the proba-
bility cnm(t) that an outbreak starting from two adjacent
seed nodes (n,m) lasts a time smaller than or equal to
t. To arrive at Eq. (3) it was assumed the factorization
cnm(t) = cn(t)cm(t). Considering the limit of infinite
time, this factorization implies that bnm = bnbm, i.e., the
probability of an outbreak starting with a pair of nodes
being finite is equal to the product of the probabilities
that each node induces independently a finite outbreak.
The validity of this factorization is checked numerically in
Fig. 1(a). Additionally, in the calculation of the average
outbreak size, a second assumption was made, namely
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n

0.2

0.4

0.6

0.8

1.0

b n
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Figure 2. Numerical results for the probability bn in networks
with degree exponent γ = 2.25 and size N = 104. Main
plot: Comparison of bn vs the theoretical prediction bQMF

n

obtained from Eq. (4) for different values of λ = αΛM . Inset:
Comparison of the average 1−〈b〉 vs the theoretical prediction
from Eq. (4) as a function of λ.

that the average size Snm of a finite outbreak starting
from a pair of infected nodes (n,m) is equal to sum of the
average sizes of finite outbreaks starting independently
from n and m, namely, Snm = Sn+Sm. This assumption
is numerically checked in Fig. 1(b). These two results
support the validity of the theoretical approach developed
in the previous Section.

A. γ = 2.25

Figure 2 compares the probability bn to observe a finite
outbreak starting from seed n, measured in simulations,
with the predicted value given by Eq. (4). The agreement
is excellent, except for the smallest value of λ. This
discrepancy is a consequence of the fact that the effective
threshold for finite size is larger than its asymptotic value
λc = 1: hence for λ = 1.1 the theory predicts bn < 1
while for most seeds bn = 1, as the system is below the
effective threshold. This interpretation is confirmed by the
inset, where the average value 〈b〉 = N−1

∑
n bn is plotted

against λ: 〈b〉 follows well the theoretical prediction, valid
in the thermodynamic limit, only for λ− 1 > 0.2.

In Fig. 3 we report the comparison between simulations
and theory concerning the duration of finite outbreaks, for
both subcritical and supercritical values of the parameter
λ. Also in this case the agreement is fully satisfactory, the
only limited discrepancies occurring around the transition,
as expected. A very good agreement is found also in Fig. 4,
where the average size of finite outbreaks starting in node
n is compared with the solution of Eq. (21). We conclude
that the theoretical approach presented above describes
very accurately the spreading influence of nodes in random
uncorrelated networks with γ < 5/2.

One might wonder whether a similar good agreement
between theory and simulations could have been achieved
by using the theory for discrete time SIS dynamics pre-
sented in Ref. [10]. We notice that the result for the
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Figure 3. Comparison of the numerically evaluated average
duration of finite outbreaks Tn vs the theoretical prediction
TQMF
n obtained from Eqs. (7) and (6) in networks with de-

gree exponent γ = 2.25 and size N = 104. (a) Theoretical
subcritical regime λ < 1. (b) Theoretical supercritical regime
λ > 1.
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Figure 4. Comparison of the numerically evaluated average
size of finite outbreaks Sn vs the theoretical prediction SQMF

n

(from Eq. (21)) in networks with degree exponent γ = 2.25
and size N = 104. (a) Theoretical subcritical regime λ < 1.
(b) Theoretical supercritical regime λ > 1.

average size of finite outbreaks is identical in continuous
and discrete time in the subcritical regime; however, this
is a coincidence that does not happen for the other ob-
servables and in the supercritical region. As an example,
Fig. 5 shows the strong difference between the numerical
probability bn to observe a finite avalanche and the cor-
responding discrete time prediction. This plot confirms
that taking into account the continuous time nature of
the dynamics is necessary for correctly predicting the
spreading influence.

B. γ = 3.5

As mentioned above, for γ = 3.5 we do not expect a per-
fect agreement between theory and simulations, because
of the known shortcomings of QMF theory for these mildly
heterogeneous networks. This is confirmed by Fig. 6. The
probability to originate a finite outbreak starting from
node n is definitely larger than the theoretical predic-
tion given by Eq. (4). Only for strongly supercritical
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Figure 5. Numerical results for the probability bn in networks
with degree exponent γ = 2.25 and size N = 104. Main
plot: Comparison of bn vs the theoretical prediction bQMF

n

obtained from the discrete time theory [10] for different values
of λ = αΛM . Inset: Comparison of the average 1− 〈b〉 vs the
theoretical prediction for discrete time [10] as a function of λ.
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Figure 6. Numerical results for the probability bn in networks
with degree exponent γ = 3.50 and size N = 104. Main
plot: Comparison of bn vs the theoretical prediction bQMF

n

obtained from Eq. (4) for different values of λ = αΛM . Inset:
Comparison of the average 1−〈b〉 vs the theoretical prediction
from Eq. (4) as a function of λ.

cases (λ ≥ 3) the discrepancy becomes small. This is
a consequence of the fact that the effective threshold in
simulations is much larger than λc = 1 (see the inset). At
variance with the γ < 5/2 case, the disagreement becomes
even larger as λ grows. The qualitative difference with
the case γ = 2.25 discussed above is apparent also in
the comparison between theoretical and numerical results
for the average duration of finite outbreaks, see Fig. 7.
While for strongly subcritical values of λ the agreement is
reasonably good, the performance of the theory is reduced
close to λc and in a large interval of λ values above it.
This is even more evident when finite outbreak average
sizes are considered, see Fig. 8.

Although it is clear that QMF theory implies a sys-
tematic miscalculation of the spreading influence in this
regime of γ values, it is remarkable that for networks of
this size errors are not exceedingly large. While we know
that for larger systems the inaccuracy would be larger,
still the theory can be taken as a fair approximation for
not too small networks.
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Figure 7. Comparison of the numerically evaluated average
duration of finite outbreaks Tn vs the theoretical prediction
TQMF
n evaluated from Eqs. (7) and (6) in networks with de-

gree exponent γ = 3.50 and size N = 104. (a) Theoretical
subcritical regime λ < 1. (b) Theoretical supercritical regime
λ > 1.
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Figure 8. Comparison of the numerically evaluated average
size of finite outbreaks Sn vs the theoretical prediction SQMF

n

evaluated from Eq. (21) in networks with degree exponent
γ = 3.50 and size N = 104. (a) Theoretical subcritical regime
λ < 1. (b) Theoretical supercritical regime λ > 1.

We conclude this section by answering to a question
that naturally arises due to the plurality of observables
quantifying spreading influence for SIS: Do all definitions
identify the same nodes as more influentials? In Fig. 9
we plot the duration Tn and size Sn as a function of the
probability bn to have a finite outbreak, for γ = 2.25
and various values of λ > 1. We see that for small
λ, Tn and Sn decrease with bn, as expected. In this
case a node originating many infinite outbreaks is also a
good spreader generating large finite outbreaks. Rather
surprisingly, things change for larger λ. In such a case,
the nodes having high probability of giving rise to infinite
outbreaks, generate shorter finite outbreaks. Hence they
are good spreaders in one sense and bad ones in the other.
Notice however that outbreaks in this case are minuscule.

C. Centralities as predictors

In the previous subsection we have shown that the QMF
theoretical approach provides good predictions for the
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Figure 9. Theoretically predicted average duration (left) and
size (right) of finite outbreaks vs probability of having a finite
outbreak bn in networks with degree exponent γ = 2.25 and
size N = 104. (a) and (b):λ = 1.3; (c) and (d):λ = 2; (e) and
(f):λ = 3; (g) and (h):λ = 6

spreading influence of individual nodes in uncorrelated
random networks. Hence we have a way to calculate
the size of a finite outbreak or its duration, with reason-
able accuracy, without actually performing simulations.
Another relevant issue in this context has to do with
the correlation between spreading influence and network
centralities [4, 5, 19–22]. Is the spreading influence of a
given node predictable based on some topological prop-
erty, such as degree, eigenvalue centrality or the many
other centralities available on the market? We investigate
this issue for the synthetic networks considered above,
focusing on degree, eigenvector and K-core centralities,
taking advantage of the knowledge about SIS dynamics
in random networks gained in recent years.

In Fig. 10 we plot the average finite outbreak size as a
function of the degree kn of the seed node. While there
is clearly a strong correlation between the two quantities,
it is evident that the correlation is far from perfect: some
nodes with degree equal to the minimum kmin generate
on average outbreaks larger than some nodes with degree
even 10 times larger. This clearly shows that the annealed
network assumption that degree completely determines
the spreading properties of each node is only a rough
approximation.

Fig. 11 shows instead the same Sn values as a func-
tion of the eigenvector (EV) centrality νn, defined as the
component on node n of the principal eigenvector of the
adjacency matrix [23]. From this plot it appears that, in
the case γ = 2.25, the EV centrality is a better predictor
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Figure 10. Comparison of the numerically evaluated average
size of finite outbreaks Sn vs the degree centrality kn in net-
works of size N = 104. (a) Degree exponent γ = 2.25. (b)
Degree exponent γ = 3.50. Simulations correspond to λ = 0.9.
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Figure 11. Comparison of the numerically evaluated average
size of finite outbreaks Sn vs the eigenvector centrality νn in
networks of size N = 104. (a) Degree exponent γ = 2.25. (b)
Degree exponent γ = 3.50. Simulations correspond to λ = 0.9.
Networks used are the same as in Fig. 10.

of spreading influence than degree. We can estimate quan-
titatively the accuracy of both predictions by calculating
the linear correlation coefficient R between Sn and the
corresponding centrality. The values R = 0.952, found
for degree, and R = 0.982, for EV centrality, indicate the
superior performance of the latter.

For γ = 3.5 EV centrality is still correlated with Sn, but
the presence of some structure clearly emerges. Actually,
this plot can be interpreted based on the physical picture
of the SIS transition sketched above. For γ = 3.5 the
principal eigenvector is localized around the largest hub
in the network and its components decay as a function of
the distance from it [16]. This explains the vertical bands
occurring in the right side of the plot, corresponding to
nodes at distance 1, 2, 3 from the hub 3.

A node with k = kmin at distance 1 from the hub is
a much better spreader than a very distant node, even

3 For γ = 3.50 the effect of the distance from the hub is more
visible if a large gap exists between the degree of the first and of
the second hub. For this reason we selected a suitable realization
of the network with such a large gap.

Figure 12. Dependence of the average size Sn of finite out-
breaks generated as a function of the centrality properties
of the seed node. (a) Sn as a function of the degree kn and
distance from the hub dh in a network of degree exponent
γ = 3.50. (b) Sn as a function of the degree kn and the core-
ness ks, defined as the K-core index of the node in the K-core
decomposition, in a network of degree exponent γ = 2.25.
Simulations performed at λ = 0.9. Networks used are the
same as in Fig. 10.

Figure 13. Dependence of the probability 1− bn to generate
an infinite outbreak (i.e. a steady state) as a function of the
centrality properties of the seed node. (a) 1− bn as a function
of the degree kn and distance from the hub dh in a network
of degree exponent γ = 3.50. (b) 1− bn as a function of the
degree kn and the coreness ks in a network of degree exponent
γ = 2.25. Network and simulation parameters as in Fig. 12.

if much more connected. This is very clearly seen if we
plot, as in Ref. [4], Sn as a function of the degree and
of the distance from the largest hub in the network, see
Fig. 12(a). It is clear that, while the spreading influence
depends on the degree, there is also a clear dependence
on the distance from the network hub. Nodes with the
same degree are much better spreaders if they are close
to the node with highest degree. For γ < 5/2 we know
instead that a central role in SIS dynamics is played
by the mutually interconnected subgraph identified by
the maximum core index in the K-core decomposition.
Figure 12(b) nicely confirms this interpretation. In Fig. 13
we present an analogous analysis, performed in this case
on the probability 1− bn to generate an infinite outbreak.
The correlations with kn and ks are now slightly weaker
than for the average finite outbreak size, but the figure still
shows that these centralities are rather good predictors for
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Figure 14. Numerical results for the Tennis real network. (a)
1− 〈b〉 as a function of λ; (b) Numerical bn vs the theoretical
prediction; (c) and (d) Average outbreak duration of finite out-
breaks Tn vs the theoretical prediction in the subcritical and
supercritical regimes, respectively; (e) and (f) Average out-
break size of finite outbreaks Sn vs the theoretical prediction
in the subcritical and supercritical regimes, respectively.

the emergence of a steady state from an infection seeded
in a single node.

IV. REAL-WORLD NETWORKS

So far we have considered random uncorrelated syn-
thetic networks, whose topological properties are well con-
trolled and suitable for performing analytical calculations,
but far from those found in the real-world, where correla-
tions, short loops, communities and other mesostructures
abound [24]. The theory developed above can nevertheless
be applied to any type of network. Is it able to accurately
predict bn, Tn and Sn for SIS dynamics on real-world
structures? If not, what are the topological features that
invalidate it?

We have tested the prediction accuracy of our theory
on a set of real-world networks, selected from the list
considered in Ref. [25]. Due to the substantial amount
of computer time needed to run simulations in large net-
works, we focus on 20 topologies with size between 4000
and 20000 nodes. As expected the performance of our the-
ory varies considerably depending on the topology upon
which SIS dynamics occurs. In some cases, the agreement
between theory and numerics is remarkably good. This is
the case of the Tennis network (see Fig. 14), which indeed
turns out to be rather uncorrelated and unclustered. At
the other end of the spectrum is the GR-QC network,
Fig. 15, which instead exhibits strong violations of our
predictions.

More systematically, we have investigated for all 20
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Figure 15. Numerical results for the GR-QC real network. (a)
1− 〈b〉 as a function of λ; (b) Numerical bn vs the theoretical
prediction; (c) and (d) Average outbreak duration of finite out-
breaks Tn vs the theoretical prediction in the subcritical and
supercritical regimes, respectively; (e) and (f) Average out-
break size of finite outbreaks Sn vs the theoretical prediction
in the subcritical and supercritical regimes, respectively.

networks considered the agreement between the predicted
value SQMF

n for the average size of finite outbreaks and
the outcome Sn of numerical simulations. We measure the
accuracy of the prediction by evaluating for each network
the average mean relative error of the prediction (MRE),
defined as

MRE =
1

N

∑
n

∣∣∣∣ Sn

SQMF
n

− 1

∣∣∣∣ , (22)

and correlating it with two typical topological properties
present in real networks but absent in synthetic uncor-
related ones. We consider in particular the assortativity
coefficient r, used to measure two-node degree correla-
tions [26, 27], and the average clustering coefficient c,
measuring the density of triangles in the network, and
thus its departure from the tree-like assumption [28].

Because of the sampling error, the MRE has a finite ex-
pected value even if the theory is exact (see Appendix D).
However, by increasing the number of sampling averages
it is possible to discriminate whether the measured MRE
is truly finite or just apparently so because of insufficient
statistics.

In Fig. 16 we report the values of the MRE in real
networks as a function of the assortativity coefficient r. It
turns out that Nr = 104 is sufficient to reach stationary
MRE values. More importantly, it is apparent that the
average error of the prediction decreases with increasing r.
This means that in disassortative networks, corresponding
to r < 0, in which large degree nodes are preferentially
connected to small degree nodes and viceversa [26], the
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Figure 16. Mean relative error MRE observed in the set of 20
real networks as a function of the assortativity coefficient r, for
λ = 0.7 and increasing number of realizations: (a) Nr = 103;
(b) Nr = 104; (c) Nr = 105. The vertical dashed lines denote
the expected value, Eq. (D3), assuming that the theory is
exact.
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Figure 17. Mean relative error MRE observed in the set of
20 real networks as a function of the assortativity coefficient r,
for λ = 3 and increasing number of realizations: (a) Nr = 103;
(b) Nr = 3 × 103; (c) Nr = 104. The vertical dashed lines
denote the expected value MREth assuming that the theory
is exact.

average error is larger, although still limited (< 7%). On
the other hand, for assortative networks, with r > 0,
in which nodes tend to connect with other nodes with
similar degree, the average error is practically vanishing.
For supercritical values of λ (see Fig. 17) , instead, an
opposite behavior emerges. The errors tend to vanish for
disassortative networks while they remain quite large for
many networks with positive r.

In order to explore more deeply the effects of degree cor-
relations, we consider random networks with given degree
distribution and degree correlations, generated according
to the Weber-Porto (WP) [29] prescription. In this model,
degree correlations are defined in terms of the average de-
gree of the nearest neighbors of nodes of degree k, k̄nn(k),
which is an increasing function for assortative correla-
tions and a decreasing one for disassortative ones [30].
Choosing a form k̄nn(k) ∼ kα, where α < 0 (α > 0) cor-
responds to disassortative (assortative) networks, we find
for the subcritical case the results shown in Fig. 18. As
we can see, WP networks in the subcritical regime behave
in a manner analogous to real networks, with a MRE
decreasing with increasing r. In the supercritical regime,
on the other hand (see Fig. 19), the relative errors are
practically independent of correlations. This observation
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Figure 18. Mean relative error MRE observed in Weber-
Porto networks as a function of the assortativity coefficient
r, for λ = 0.7 and increasing number of realizations: (a)
Nr = 103; (b) Nr = 104; (c) Nr = 105. The vertical dashed
lines denote the expected value MREth assuming that the
theory is exact. Networks used have size N = 104 and degree
exponent γ = 2.25.
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Figure 19. Mean relative error MRE observed in Weber-Porto
networks as a function of the assortativity coefficient r, for
λ = 3 and increasing number of realizations: (a) Nr = 103;
(b) Nr = 3 × 103; (c) Nr = 104. The vertical dashed lines
denote the expected value MREth assuming that the theory is
exact. Networks used have size N = 104 and degree exponent
γ = 2.25.

is not in agreement with the phenomenology observed in
real networks.

Finally, in Fig. 20 we report the values of MRE as a
function of the average clustering coefficient c in our set
of real networks. In this case, no clear dependence on c
can be identified. These results suggest that the presence
of strong disassortative degree correlations reduces the
performance of our theory while other topological features
(different from local clustering) are responsible for the
other discrepancies between our theory and numerical
simulations in real networks.

It is important to remark that the values of MRE
indicate nevertheless a rather impressive overall accuracy
of the theory. The relative error is smaller than 20% for
all networks but one (for which is a still acceptable 31%),
indicating that even in real-world networks, with all their
intricacies, our prediction is a good baseline for estimating
the spreading influence of individual nodes.
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Figure 20. Mean relative error MRE observed in the set of
20 real networks as a function of the clustering coefficient c,
for Nr = 104 and λ = 0.7 (left), λ = 3 (right). The vertical
dashed lines denote the expected value MREth assuming that
the theory is exact

V. CONCLUSIONS

In this paper we have developed a theory that allows to
calculate, for each single node n in a network, the proba-
bility that a continuous-time SIS outbreak started in n
remains finite, its average duration and size. The theoret-
ical treatment is based on a QMF-type approach to SIS
dynamics and hence it shares strengths and weaknesses
with the latter. For strongly heterogeneous uncorrelated
networks with degree exponent γ < 5/2 the theory works
very well and is asymptotically exact for large networks.
For γ > 5/2 instead it constitutes only an approximation,
whose accuracy is good only for not too large systems.
The nontrivial features of the SIS epidemic transition,
even on uncorrelated networks, result in a dependence of
the spreading influence on topological features different
from the simple degree centrality: Depending on the value
of the degree exponent γ the K-core index or the distance

from the largest hub play a relevant role. When applied to
SIS dynamics on real-world networks our theory turns out
to be rather surprisingly accurate, with deviations from
it more related to degree-correlations than to clustering.

When assessing the validity of the present approach it
is to be remarked that we are able to make reasonably pre-
cise predictions for the values of the observables, with no
fitting parameter to be adjusted. This is to be contrasted
with many other approaches for the identification of in-
fluential spreaders for SIR dynamics, where the (much
more limited) goal is the assessment of whether a node
is a better spreader than another, with no prediction for
the actual outbreak size or duration.

Despite this success, there is clearly still room for im-
provement. A first avenue of research should attempt to
improve the theory in order to better predict the behavior
for uncorrelated networks with γ > 5/2. Theories slightly
improving on QMF, such as pair-quenched mean-field [31],
have been proposed, but in order to fully capture the com-
plexity of the SIS epidemic transition for γ > 5/2 one has
to consider a long-range percolation process [17], which
appears not easily applicable to the calculation of the
spreading influence.

The other natural continuation of the present research
is in the direction of better understanding spreading influ-
ence for real-world networks. It is likely that progress in
this direction will require the consideration of other suit-
able synthetic network models, allowing to understand one
at a time the effect of the various topological properties.
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Appendix A: Fixed points of bn

In order to study the possible steady state values of the
probability bn, we perform a linear stability analysis of the
differential equation Eq. (3). The constant value bn = 1
is always a solution of Eq. (3). Let us assume a small
variation from this value, defined as cn(t) = 1 − εn(t).
Introducing this expression into Eq. (3) and keeping only
the lowest order terms, we find

dεn(t)

dt
' −µεn(t) + β

∑
m

anmεm(t) =
∑
m

Lnmεm(t)

defining the Jacobian matrix

Lnm = −µδnm + βanm. (A1)

The solution bn = 1 is stable if the largest eigenvalue
of the Jacobian matrix is negative. Given its structure,
we can readily see that the eigenvectors of the adjacency
matrix are also eigenvectors of Lnm, with an associated
eigenvalue ΛL = −µ + βΛA. The largest eigenvalue of
Lnm is thus −µ+βΛM , and the condition for the stability
of the solution bn = 1 is

− µ+ βΛM < 0 ⇒ β

µ
ΛM ≡ λ < 1. (A2)

For λ > 1 the solution bn = 1 becomes unstable, and the
steady state is given by the new stable solution bn < 1
obtained from the recursive relation Eq. (4).

Appendix B: Unphysical nature of the linear
approximation for the average outbreak time

The linear approximation for the quantity fn(t) =
bn − cn(t), obtained by neglecting the quadratic terms in
Eq. (7), takes the form in rescaled time

dfLn (t)

dt
= −f

L
n (t)

bn
+ αbn

∑
m

anmf
L
m(t), (B1)

where α = β/µ. By its very definition, the probability
cn(t) must be an increasing function in the interval [0,∞].
Consequently, the function fn(t) must be a decreasing

function in the same interval, that is, fn(t)dt < 0 for t ≥ 0,
and, with the initial condition fn(0) = bn, we must have
fn(t) ≤ bn for t ≥ 0.

From Eq. (B1), we can compute the slope of the func-
tion fLn (t) at time t = 0 given by

dfLn (0)

dt
= −f

L
n (0)

bn
+ αbn

∑
m

anmf
L
m(0)

= −1 + αbn
∑
m

anmbm

= bn(1 + αkn)− 2, (B2)
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Figure 21. Full function fn(t) and its analogous from the
linear approximation fL

n (t) numerically computed for the hub
(node with maximum degree) in a network of size N = 104

and degree exponent γ = 2.25. (a) Subcritical regime, with
fh(0) = 1. (b) Supercritical regime, with fh(0) = bn < 1.

where we have used the steady state condition Eq. (4).
From Eq. (B2) we can see that, for nodes that fulfill the
condition

bn >
2

1 + αkn
(B3)

fLn (t) is an initially increasing function with positive
derivative, taking at short times values larger than bn.
This situation is completely unphysical, since it would
imply that the probability cn(t) is negative. We therefore
conclude that the linearized equation for fn(t) is unphysi-
cal, and cannot be used to compute the average outbreak
size. This is the situation, in particular, of nodes with
large degree.

In Fig. 21 we report the results of the numerical inte-
gration of the linealized equation, compared with the nu-
merical integration of the full nonlinear equation Eq. (7).
As we can see, for large values of the degree, the linearized
function fLn (t) shows a characteristic maximum in the
vicinity of t = 0, which is absent in the full non-linear
solution.

Appendix C: The distinction between finite and
infinite outbreaks in simulations

Since we are dealing with simulations in finite size sys-
tems we must decide a criterion to distinguish (above
the epidemic threshold) between truly finite outbreaks
(upon which we are performing averages) and outbreaks
which would give rise to the stationary state in an infi-
nite system, but that, in the finite networks we consider,
end only because of fluctuations. In order to determine
such a criterion, we look at the total duration tf of out-
breaks for several realizations of the epidemic process, see
Fig. 22. While close to the transition the distribution of
tf is singly-peaked, if λ is increased two well separated
components appear, one corresponding to small values of

tf , which represent truly finite outbreaks, and the other
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Figure 22. Total outbreak duration Tf in many realizations
of the outbreak process in network with γ = 2.25, N = 104,
λ = 1.1 (left panel) and λ = 1.3 (right panel).

for extremely large values of tf , that we can associate to
putatively infinite outbreaks that are stopped only due to
finite size effects. In the presence of this gap, it is possible
to define a maximum duration T , located between the
two clusters of points, to distinguish the two types of
outbreaks. A duration tf < T implies a finite outbreak,
while tf ≥ T means that the outbreak must be considered
infinite. In view of Fig. 22, we set T = 100 throughout
all simulations reported in the paper. For larger values of
N , clearly it would be possible to operate the distinction
even for values of λ closer to 1, at the price of increasing
T and hence the simulation time.

Appendix D: Expected value of the MRE

When comparing simulations with theory, even in the
case the latter is exact, i.e., the expected value of the
outbreak size is SQMF

n , sampling error implies that the
MRE (Eq. (22)) has a finite value depending on the num-
ber of realizations considered. Indeed, for Nr realizations,
from the central limit theorem

Sn = SQMF
n + ηn (D1)

where ηn is a Gaussian P (ηn) of zero mean and variance
σ2
n/Nr, with σ2

n the variance of outbreak size distribution
for given n. Then the expected MRE value is

MREth =
1

N

∑
n

1

SQMF
n

∫ +∞

−∞
dηnP (ηn)|ηn| (D2)

=
2

N

∑
n

1

SQMF
n

∫ ∞
0

dηnP (ηn)ηn

=
2√

2πNr

1

N

∑
n

σn

SQMF
n

Therefore, by increasing Nr it is possible to discriminate
whether the measured MRE is truly finite or just because
of insufficient statistics.
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