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Abstract: Urban areas can be considered high-potential energy producers alongside their notable
portion of energy consumption. Solar energy is the most promising sustainable energy in which
urban environments can produce electricity by using rooftop-mounted photovoltaic systems. While
the precise knowledge of electricity production from solar energy resources as well as the needed
parameters to define the optimal locations require an adequate study, effective guidelines for optimal
installation of solar photovoltaics remain a challenge. This paper aims to make a complete systematic
review and states the vital steps with their data resources to find the urban rooftop PV potential.
Organizing the methodologies is another novelty of this paper to create a complete global basis for
future studies and improve a more detailed degree in this particular field.

Keywords: rooftop photovoltaic potential; solar photovoltaics; urban solar potential; LIDAR; GIS;
machine learning

1. Introduction

At present, the population accommodated in urban environments consists of more
than 50% of the world’s population. Due to the rise of urban area migration, this fraction is
estimated to reach 70% by 2050. This leads to urban energy consumption increase to 75% of
global energy demand estimated by 2030 [1]. Moreover, due to the rise of the energy crisis
and environmental degradation concerns [1], determining the renewable energy potential
has become an essential aspect in energy policies and regulation developments [2]. Recently,
in most of the energy efficient housing schemes, it is considered that a building should have
the same amount of electrical energy production as its annual electrical energy requirement
which is called a net-zero energy building [3].

Urban areas can be considered high-potential energy producers alongside their sig-
nificant share of energy consumption [1]. Urban building rooftops provide promising
locations for solar photovoltaic installations [4] and can contribute effectively to make
nearly net-zero energy buildings [3]. Rooftop solar photovoltaics can be considered an
effective solution for urban energy management to solve urban energy requirements and
environmental problems [1].

Optimal photovoltaic (PV) installation research has started to make progress mostly
in developed European and American counties [1], however, an efficient methodology for
determining rooftop solar photovoltaic potential remains a challenge [4].

With the vast technology development in recent years, there are several attempts
conducted to determine the urban solar photovoltaic potential. The study scope is one of
the important aspects of rooftop photovoltaics potential estimation [5]. Applying the same
techniques for rooftop photovoltaics potential detection is frequently not possible at local,
regional, or continental scales, caused by the lack of data diversity in some regions, the
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high cost of accessing the data sources, and time-consuming procedures. Therefore, there
is also a lack of urban solar energy production potential maps on global scales for future
unified urban energy planning [1].

This study aims to review the various methodologies available for determining the
urban rooftop PV potential and states the best available methods to create a complete global
basis for future research. The novelty of this paper is to have a complete systematic review
on the development of determining the urban rooftop PV potential by taking into account
the majority of high impact attempts since 2010. This paper is confidentially the first paper
that considers all the essential aspects of determining the urban rooftop PV potential as a
whole package. It states the vital pathway by presenting the sub-potentials step by step
along with their data resources to find the urban rooftop PV potential. Organizing the
methodologies based on their approaches is another novelty of this paper. This paper also
aims to present the past decade high impact attempts for determining the urban rooftop
PV potential presented in the Scopus® search engine.

The structure of the presented paper is as follows: Section 2 is divided into two sub-
sections. The first sub-section introduces different sub-potentials and their essential factors
as well as data sources. The second sub-section illustrates the different methodologies
and their approaches for determining the urban rooftop PV potential and their practical
contribution. Section 3 shows the results of the systematic review. Section 4 presents
a discussion on the results to form a better outlook for future studies and applications.
Section 5 states the conclusion.

2. Materials and Methods

One of the essential steps of determining the urban PV potential is defining the data
sources and their availability in addition to the methodology selection. First different
sub-potentials and their essential factors, as well as data sources, are introduced. Then,
methodologies and their approaches for determining the urban rooftop PV potential are
illustrated.

2.1. Sub-Potentials and Their Essential Factors

The dramatic development of technology in recent years has led to several attempts for
urban solar photovoltaic potential determination. While factor selections strongly depend
on the project scales and data availability, four different sub-potentials must be evaluated
generally to determine rooftop photovoltaic overall potential. These sub-potentials are
shown in Figure 1 and described as follows.

rooftop photovoltaic potential

Sub-potentials | The physical The geographic The technical The economic
potential potential potential potential

Factors s s moftop transformation .
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Figure 1. Sub-potentials and their essential factors for rooftop photovoltaic potential determination.
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2.1.1. Physical Potential

This sub-potential presents the resource’s maximum energy limit which in this study
is the sun’s total energy received by the urban areas [2,6]. Most of the considered factors
for solar radiation estimation are related to meteorological data e.g., the monthly radiation,
monthly clearness index [2]. Meteorological data can be obtained from ground-based
meteorological stations [7], satellite observations [8], or different solar models by calculating
the needed data from other available data sources [7]. Satellite data is preferable to
measurement station data due to the better spatial coverage, increased resolution, and low
missing data ratio (<1%) [8,9].

2.1.2. Geographic (Urban) Potential

This sub-potential states the impact of the built environment and the location constraints [6,9]
which is usually determined by excluding reserved zones such as roads, beaches, rivers and lakes,
and protected areas such as National Parks. However, these exclusion criteria are meaningless in
determining the available roof area for photovoltaic installations [2]. Instead, the geographical
potential expresses attempts to find suitable rooftops to install photovoltaics considering the essen-
tial factors such as the rooftop geometry, other buildings and trees shading effects, superstructures
located on rooftops, rooftops inclinations, and rooftops slopes [6,9]. Regarding the methodology,
project scale, and data availability in the study area, different data can be used for detecting the
suitable rooftop photovoltaic potential. These data can be obtained from a variety of data sources
such as statistical institutions data which present the number of buildings and the population
in the urban areas [2], statistical construction data [10], Corine Land Cover data which present
the urban land use, cadastral data [2], LIDAR data [4,6], GIS data [2,11] which can be modified
using ArcGIS tools [6,12-15], and Google satellite images [1] or digital urban maps obtained from
Google Earth™ [10].

2.1.3. The Technical (Electricity Generation) Potential

The maximum electricity production by transforming the solar energy received by the
available roof area into electrical energy considering the technical characteristics [7,9] of
the solar photovoltaic technology such as the efficiency and the performance [6] is the third
sub-potential. The performance ratio is the difference between standard test conditions
performance and the actual output of the system [16] which occurs due to the deviation
from standard test conditions, and the losses of panel mismatch [6], dirt and accumulated
dust particles [17], cables and inverters [6,18]. So, it is required to have an appropriate
energy management strategy to improve system performance [19].

In addition to the technical characteristics of photovoltaics, the space needed between
photovoltaic modules to avoid shadowing is another important aspect of determining the
technical potential [2].

2.1.4. The Economic Potential

For a complete realistic potential assessment, the rooftop photovoltaic installation’s
economic attractiveness under current market conditions must be investigated [20] by
taking into account economical parameters such as installation costs, maintenance costs, in-
stallation lifetime, interest rate [11], operational cost [9], as well as cost constraints, societal
constraints, and government regulations [21]. Due to the complexity of analysis conditions,
such as uncertainly of the decision-making environment, projects interactions factors, as
well as the need of maximizing the benefit and installed capacity [22], economic potential
is frequently considered beyond the study scope and referred to future investigations [7].
However, building owners will only consider investing in rooftop photovoltaic installations
when these facilities are economically justifiable [20]. In recent years, some individual
framework analyses developed to assess economic potential [22], and economic crite-
ria such as resource, risk factor, and engineering feasibility were established based on
rooftop photovoltaic projects [23]. There are also some suggestions for economic factor
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involvements, such as the development of a techno-economic potential by maximizing the
technical potential by taking into account economic factors [9].

2.2. Methodologies and Their Approaches

There are a vast variety of urban solar photovoltaic potential determining attempts in
recent years, using the same procedure presented in Figure 2. The first step is data collection
which strongly depends on the data availability and the selected approach, followed by
preparing and extracting the needed data in the pre-processing step. Different algorithms
are used to prepare the data. Processing is the next step in which different approaches are
used to determine the rooftop photovoltaic potential which leads to presenting the result
in the final step.

Data Collection

) 2

Data Pre-processing

) 2

Processing

L 2

Results

Figure 2. Steps for detecting rooftop photovoltaic potential.

As mentioned in Section 2.1, four different sub-potentials must be determined which
leads to overall potential estimation. There are different models and algorithms for detect-
ing the sub-potential, and each attempt has a central point which this study aims to present
the novelty points of each methodology. So, the tools and approaches used to build the
database and determine solar photovoltaic potential can be classified as follow.

2.2.1. Statistical Sampling Approach

The roof-integrated photovoltaic systems potential estimation for Spain’s urban areas
was done based on a statistically representative stratified-sample of vector GIS maps, and
data such as land uses and building densities. The central point of the methodology is a
stratified statistical sampling based on the definition of representative building typologies.
The mean available photovoltaic installation area was calculated with a 95% confidence
level and +32% error [2]. This method was also used as a basis to quantify the amount
of thermal and electrical energy by the installation of solar hot water systems and pho-
tovoltaic systems in Spain to produce a quantitative picture of the possible limitations
of roof-top solar energy [11]. The energy capacity of the grid-connected photovoltaic on
building rooftops was also determined with a stratified sampling technique using statisti-
cal construction data, and Google Earth ™ digital urban maps exported and scaled with
the AutoCAD® software application. The mean roof area was determined with the 95%
confidence level and the sample error margin of 10% by taking into account data such
as building type, orientation, roof tilt angle, location, shading. The maximum residential
rooftop photovoltaic potential in Andalusia (Spain) was calculated for two different roof
types, namely flat roofs and pitched roofs which could satisfy the energy demand portion
of 78.89%, which presents a dramatic reduction of external energy dependence to only
21.02% [10]. Table 1 presents a summary of attempt for this approach. With the develop-
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ment of advanced technologies in recent years, the use of this approach seems to be fading.
This is due to the dramatic increase of computation facilities for human aiding purposes.
One of the vital data to find rooftop photovoltaic potential are meteorological data, and
due to the obvious usage of this data, it is not mentioned in any summary of attempt
tables. Statistical data also represent the data obtained statistically such as population,
building density, national dataset, census information, and municipalities dataset. Worth
mentioning, error rates depend on methodology, data accuracy, and validation method.

Table 1. Statistical sampling approaches.

. Location Area  Roof Area Annual Generated Demand o
Ref Data Location (km2) (km?) Electricity Coverage (%) Error (%)  Year
GIS .

LI Statistical  OPAIN 505,990 571 32 2008
Google .

[10] Earth ~ Andalusia 87,597 265.52 9.73 GWh 78.89 10 2010
. . (Spain)

Statistical

2.2.2. Mathematical Approach

Photovoltaic solar potential over Piedmont (north-west of Italy) was estimated by
using data such as Publicly Available Joint Research Center of the European Commission
raster maps (used for solar radiation estimation) and the Numerical Technical Regional map
(used for geographical-cadastral analysis) which was analyzed by ArcGIS and processed in
MATLAB®. Worth mentioning is that roof type topology is assumed to be double-pitched
with an angle of 20° and only one of two pitches is considered for module installation.
The roof surface is determined by calculating all coefficients such as roof type, feature,
solar-thermal. The shadowing effect of tall buildings is assumed as a coefficient of 0.46 due
to the lack of 3D city modeling. In the case of energy production, three different scenarios
with different technologies were measured that may reach 6.9 TWh/year in a region at
the best scenario [24]. According to the previous methodology, a new algorithm based on
aerial georeferenced images (ortho-image) was developed in MATLAB® to determine the
available roof area of Turin. The proposed algorithm was able to calculate roof availability,
shadows, pitch brightness, and angle of the installations by using data such as geographical
metadata of Turin and Orthoimagery (ortho-image) data in MATLAB® code. A mean
accuracy error of 10% on overall results was stated. In comparison with previous work, the
available roof area of Turin can be 41% higher. Result in the photovoltaic potential increase
from 508 to 719 GWh/year [25].

The development potential of rooftop photovoltaic technologies along with their
environmental benefit was investigated in Hong Kong. The ground floor was transferred
into the gross roof area, and solar sustainability and architectural sustainability were
calculated to determine photovoltaic rooftop space potential. The rooftops installation
capacity potential for photovoltaic systems and annual energy output were estimated as
5.97 GW and 5981 GWh respectively with an error rate of 10-15%. Encompassing 14.2%
of the total used electricity of Hong Kong. Additionally, approximately 3,732,000 t/y of
greenhouse gas emissions reduction was estimated [26].

Residential solar rooftop potential was presented in Riyadh (Saudi Arabia), to as-
sess the cost-efficiency, by combining two different methodological approaches, namely
standard Leverage cost of electricity approach, and nightlight intensity methodology. It
analyzes Riyadh’s metropolitan areas to identify household clusters and urban zones’
nightlight intensity. Solar photovoltaic rooftop generated electricity cost was determined
based on the technology cost and Riyadh'’s irradiation conditions. The results showed
that rooftop solar PV cannot compete with electricity from the grid due to the current
residential electricity prices. Even assuming aggressive reductions in the investment cost
of solar technology, photovoltaic solar rooftop installations were not encouraging [27].
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An evaluation of the potential contribution of rooftop PV to the future electricity mix
in Spain carried out using ArcGIS and the national geographical database, considered five
sustainable scenarios, each comprising different shares of centralized renewables, rooftop
PV, and storage. The storage capacity was determined for each generation scenario, and
the cost-effective portfolio combination was obtained. The results stated that a sustainable
electricity system at a lower cost than current wholesale market prices, providing up to
nearly 45% of the demand, is possible for Spain [28].

Mumbai (India) rooftop photovoltaic potential was estimated by a methodology
that uses GIS image analysis and high-granularity land public data to predict the value
of building footprint area ratio. After simulating effective sunshine hours in PVSyst,
the installed capacity, the capacity factor of photovoltaic panels, and daily and annual
production were studied. Results presented a potential of 2190 MW which concluded that
photovoltaic systems can provide 12.8-20% and 19.7-31.1% of daily demand with median
and high-efficiency panels, respectively, as well as 31-60% of morning peak demand [29].
The same methodology was also used as the based estimation. To expand the methodology
for other cities of India, extrapolation factors were identified and modeled with the help of
mathematical models and micro-level simulations in the PVSyst. Due to the lack of high-
resolution urban building data, the focus is mainly on developing a workable estimation
instead of an accurate one. After illustrating the methodology to 13 Indian cities with an
overall population of 79 million, the total photovoltaic potential of these cities estimated
about 17.8 GWp [30]. An overview of the approach’s attempts is presented in Table 2.

Table 2. Mathematical approaches.

Ref Tools Data Location Location Area Roof Area Annual Generated Demand Error Year
(km?) (km?) Electricity Coverage (%) (%)
, MATLAB and GIS GIS Piedmont
[24] Software Statistical (Italy) 25,000 43 6900 GWh 28.16 17 2011
[25]  Ortho-image analysis Georeferenced images Turin (Italy) 858 GWh 10 2011
[6] estimate rooftop from Statistical Hong Kong 54 5981 GWh 142 15 2013
ground floor area on-site information
IPIT . Statistical Riyadh 185,000
(271 Nightlight intensity Nighttime satellite images (Saudi Arabia) rooftop 0.7 TWh 2020
Interpolation algorithm National
witl atlal . . ain ,
[28] ith Matlab Spai 505,990 1134 291 TWh 45 2020
ArcGIS—PVCIS geographical—Cartographical
GIS image analysis Statistical Mumbai
129 micro-macro synthesis Google earth (India) 458.27 2190 MW 20 194 2015
mathematical model -
[30] micro-level simulations Statistical —land-use and 13 Indian cities 17.8 GWp 2020

in PVSyst

building stock

2.2.3. Digital Modeling Approach and Commercial Software Packages

A combination between Urban topography of LIDAR data and pyranometer measure-
ments of solar irradiances was proposed and completed by a digital elevation model, Heuristic
vegetation shadowing, and multi-resolution shadowing model in Maribor (Slovenia). This
methodology implemented the roof surfaces rating based on their solar potential and sus-
tainability for photovoltaic systems installation. After analyzing different influential factors,
a comparison was made between the proposed method results and actual measurements
showing a correlation agreement of 97.4% [31].

An estimation of photovoltaic potential in Lisbon (Portugal) was conducted by using
LiDAR data, population distribution estimation, Building of a Digital Terrain Model,
Digital Surface Model, aerial digital photography, and ArcGIS solar analyst extension tool.
The result stated that the rooftop potential of 538 identified buildings was about 11.5 GWh.
This amount can supply 48% of local energy demand according to an average consumption
of 4.71 MWh for each person. It is noted that by choosing the photovoltaic location carefully,
10% of the available area can collect 13% of available energy [15].



Sustainability 2021, 13, 7447

7 of 18

By using GIS and LiDAR data, a multi-criteria approach for rooftop photovoltaic
potential estimating in Lethbridge (Canada) was developed, also for determining economic
attractiveness, an economic assessment by utilizing market prices was conducted which
determined economically feasibility of 96% of available rooftops. It is achieved the photo-
voltaic energy production of about 301 GWh with a total uncertainty of 9.5%, which can
cover 38% of electricity demand [7].

A methodology for calculating the building roofs and facades” economic potential for
photovoltaic installation in Karlsruhe (Germany) was proposed. To simulate solar irradia-
tion, the validated lighting simulation tool radiance was applied to a 3D city model. It is
concluded that facades almost have a triple area in comparison with roofs, however, they
only receive 41% of total irradiation due to their non-optimal inclination and orientation.
The results indicated that photovoltaic installation on facades had 13% of the economic
potential. A detailed constant reduction factor was suggested for future studies to fulfill
the lack of reliable information on the suitability of building facades [20].

Extraction algorithms combined with PV system simulations were proposed to de-
termine rooftop photovoltaic potential in Stuttgart (Germany) by using geoinformation
systems and a 3D model. Some steps of roof surfaces and orientations extraction in the
methodology was a semi-automated process based on LiDAR data. Photovoltaic own
consumption was also studied on a building with available electricity consumption data
which represent 25% of annual electricity consumption for the studied building. The re-
sults showed the ratio of photovoltaic consumption and total electricity consumption of
the district is 17%, and the ratio of total PV energy production and the total electricity
consumption was 35% [32].

A methodology for determining photovoltaic potential at the regional and urban scale
of Ludwigsburg (Germany) was developed by using CityGML geometry description and
3D models for simulations, analyses, and visualization on the SimStadt platform. Emission
assessment, economic and technical potential, as well as two different efficiency scenarios
of photovoltaic, wafer-based silicon modules and thin-film modules, were investigated. It
was concluded that by using all available roof space, 77% of the region’s energy demand
could be covered [33].

A method was developed that predicts a photovoltaic potential of over 17,000 rooftops
for Cambridge (USA) based on the combination of 3D models, GIS, and LiDAR with the
Daysim irradiation simulation engine, hourly rooftop temperature, and typical meteoro-
logical climate data annually. The outcome can combine by online mapping and financial
modules such as energy-saving, carbon saving, installation cost, financial payback, module
placement, and system size to interest the potential building owners to install photovoltaic
panels on buildings. The result of simulating noted that annually predicted energy produc-
tion was 3.6% and 5.3% less than actual measured energy production in the student center
and the residential zone, respectively [34].

Residential rooftop solar potential was detected in Erie County (USA) by using remote
sensing data and land use data such as LiDAR data, Microsoft Building Footprint Data,
and National Hydrography Data. Results presented a relative solar potential distribution
among socio-demographic groups and urbanization contexts which indicates that low-
income population had relatively low access to rooftop solar as well as limited access to
potential community solar sites in their neighborhoods [35].

A digital surface model containing the topography, buildings, and trees of Auckland
(New Zealand) was developed by using LiDAR data. In order to calculate roof area
annually solar radiation, a solar radiation tool in ArcGIS was used with the model by
taking into account latitude, date, time, climate condition, orientation, and slope as well as
shading of nearby buildings and trees. For policy insights, census data such as household
income and average number of residents were used to obtain financial potential as well
as electricity demand of neighborhood, but there is still a need of developing a model for
individual houses, as well as market models for adding low-income customers in solar
electricity generation [36].
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Due to the high impact of the shadowing factor on determining available roof area,
an estimation method was proposed for the photovoltaic system in Seoul (South Korea)
to analyze building shadowing by using Hillshade analysis, and rooftop area estimation
was 4,903,079 m? [37]. As concluded in the previous method, shadows play an essential
role in determining the photovoltaic potential of rooftops, so a methodology for estimating
rooftop solar potential was proposed with improvements such as considering localized
characteristics of rooftop on macro-scale, and changing sun location annually. While the
methodology followed hierarchical steps, the main attention was on geographical potential
as the previous methodology which was conducted by collecting and preparing data,
building shadow analysis, and finally estimating rooftop area. It was concluded that in
the whole year of the Gangnam district of Seoul, the photovoltaic potential at noon varied
from 79,117 to 147,222 MWh, while physical and technical potentials were 9,287,982 and
1,130,371 MWh, respectively [38].

A quick-scan yield prediction method was used to determine rooftop photovoltaic
potential and tested in Eindhoven (Netherlands) by reconstructing virtual 3D roof segments
using aerial imagery and developing a fitting algorithm to automatically fit the photovoltaic
modules on rooftops. Aerial imagery, weather, GIS, and LIDAR data are used as quick-
scan method inputs data. Commercial software packages of Solar Monkey, photovoltaic
geographical information system, and the simplified skyline-based approach developed
in photovoltaic material and devices were used to calculate the annual rooftop potential.
Results presented relative standard deviations of 7.2%, 9.1%, and 7.5%, respectively, for
mentioned approaches [39].

A comparison of rooftop solar energy potential estimation by Unmanned Aerial
Systems (UAS) and LiDAR data was carried out. ArcGIS solar analysis toolbox was used
to determine the rooftop solar radiation values. Results indicated that Higher Resolution
UAS data was a better match, and 36% improvement for aggregate irradiation estimation
by using digital orthophotos from UAS compared to LiDAR [40].

Additionally, a nonlinear PV potential estimation by using LiDAR data and digital
terrain model was presented in Maribor (Slovenia) where PV modules and nonlinear
efficiency characteristics of the solar inverter are estimated by modeled functions by
considering different influential factors such as topography, vegetation, and shadowing
which had a key role in the accuracy of the proposed method. The results of a comparison
between constant and nonlinear efficiency characteristics of solar inverters and PV module
types showed that largest difference detected during summer [14].

Rooftop solar system energy potential and economic performance of Khalifa City and
Zayed City (Abu Dhabi) were estimated by adopting a geographic information system-
based method using digital building shape data provided by the Abu Dhabi government.
The number of buildings, their types, and the rooftop area of each building were calculated
by Esri ArcGIS software. The result indicated that the capacity estimated in Khalifa
City would cover 11 to 20% of the annual electricity building’s demand, however, the
levelized cost of electricity was economically infeasible leading to a policy suggestion for
the government [41]. Table 3 illustrates a summary of the approach’s attempts.
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Table 3. Digital modeling approach and commercial software packages.

Location Area Roof Area

Annual Generated

Demand

Error

Ref Tools Data Location (km?) (km?) Electricity Coverage (%) (%) Year
Rating rooftops LiDAR Maribor
31] Digital elevation model eospatial Slovenia 1 26 2013
3 geosp
- ArcGIS solar analyst LIDAR Lisbon 538
(5] extension tool Statistical (Portugal) rooftop 11.5GWh 8 2012
digital surface model Lethbrid
71 digital elevation model LiDAR—GIS ‘2: 3 8¢ 1243 2.73 3011 GWh 38 2019
ArcGIS (Canada)
3D city model .
[20] ArcGIS Realg’EDS:if dglfﬁce (Iéaerrlsnf:i‘e) 173 930 GWh 2015
Radiance Software Y
modular simulation Stutteart
[32] INSEL model LIDAR c uttgar 15 35 2012
3D model (Germany)
INSEL model Ludwigsbur
[33] 3D model CityGML ;‘G gsn“)g 700 22.26 1318 GWh 77 2017
SimStadt platform ermany
,, 3D model . Cambridge
[34] Daysim simulation GIS—LiDAR (USA) 4881.3 kWh 53 2013
Normalized Digital
= Surface Model LiDAR Erie County
3] Digital Terrain Model Statistical (USA) 271 2020
Digital Surface Model
Digital surface model LiDAR Auckland
[36] ArcGIS statistical (New Zealand) 1364 kWh/m2 2017
Hillshade tool o .
[37] Polygon to Raster tool Bulltémg el_eviltlon nggr:E-Seoul 4903 2016
ArcGIS tatistica (South Korea)
Hillshade tool from Building elevation Gangnam-Seoul
[38] ArcGIS Statistical (South Korea) 4.964 1,130,371 MWh 150 2017
ick- ield Aerial i Eindh
[39] q“‘;rezciigoyf g{g_ﬁggf{y (N:her(f:fgs) 145 rooftop 145 rooftop 1070 kWh/kWp 2020
[40] Digital elevation model UAS-LIDAR Phoenix (U.S) 0.265 0.027 5089 GWh 2020
) nonlinear efficiency Maribor
[14] characteristics model LIDAR (Slovenia) 05 12 2014
Urban Planning and .
1 GIS-based method S S Khalifa—Zayed 23 2 206 GWh .
[41] Esti ArcGIS software Municipalities (Abu Dhabi) (Khalifa) (Khalifa) (Khalifa) 20 (Khalifa) 2020

building-shape data

2.2.4. Optimization Approach

A generated electricity estimator of a photovoltaic system in the northern, southern,
and central parts of South Korea was developed. The results of sensitivity analysis on
impact factors by using an energy system, GIS, and genetic algorithm, showed 1.12,1.37,
and 1.62-fold differences in annual electricity generation based on the regional factor, the
slope, and the azimuth of the installed panel, respectively [42].

Rooftop photovoltaic systems’ cost-optimal economic potential was calculated in Aus-
tria, based on neighborhood energy communities. The photovoltaic system’s profitability
was determined by an optimization model. Then, an algorithm allocated buildings to
settlement patterns. Finally, the cost-optimal economic rooftop PV potential on a large
scale was estimated by upscaling. Different sensitivity analyses were also conducted by
taking into account the electricity prices, distribution grid tariff structures, and photovoltaic
system cost. The results stated that the demand photovoltaic capacity would meet the
Austrian 2030 policy goal of a 100% renewable electricity generation [43]. A summary of
attempts for this approach is presented in Table 4. This approach tries to optimize the
sub-potential overlaps that other approaches tend to find. However, due to the complexity
of this approach and the recent development of more user-friendly advanced technologies,
it seems there are not many attempts in this field.
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Table 4. Optimization approaches.

Ref

Tools

Data

Location Area Roof Area Annual Generated Demand Error

(km?) (km?) Electricity Coverage (%) (%)  Y¢ar

Location

[42]

GIS-based
optimization
model

Statistical Seoul
on-site Busan-Daejeon
information  (South Korea)

275.33 kWh per

panel (busan) 2014

[43]

Optimization
model

statistical Austria 10 GWp 100 2020

2.2.5. Artificial Intelligence in Commercial Software Packages Approach

The rooftop solar photovoltaic potential in Ontario (Canada) was determined by five
essential steps. Alongside GIS data, census data, municipalities roof print data, Digital
Raster Acquisition Project-East, population, population density, and land area were used.
The Feature Analysis extraction tool in ArcGIS was applied for obtaining roof areas with
a 95% confidence level and an error of 15% on each data point of population. A more
accurate energy modeling by considering an analysis in structures shading and orientation
was suggested to increase the accuracy [44].

A merging national datasets methodology was developed to estimate rooftop solar
potential, rooftop photovoltaic systems distribution, and socioeconomic and demographic
characteristics for four US cities namely Riverside-California, San Bernardino-California,
Washington-DC, and Chicago-Illinois. The National Renewable Energy Lab’s Rooftop
Energy Potential of Low-Income Communities in America (provides residential rooftop
solar potential estimation), Stanford University’s DeepSolar (estimates the installed resi-
dential PV systems), and the United States Census Bureau’s American Community Survey
(estimates of socioeconomic, demographic, and housing characteristics) were the publicly
available data sources. Geographic information systems software was used to map the total
rooftop potential distributions, low and moderate-income market share, and total rooftop
penetration for visual comparison. Four regression models were also developed to explore
the relationships between solar penetration and area-level socioeconomic and demographic
characteristics [45]. Table 5 illustrates an overview of attempts for this approach.

Table 5. Artificial intelligence in commercial software packages approaches.

Ref

Tools

Data Location

Location Area Roof Area Annual Generated Demand Error

(km?) (km?) Electricity ~ Coverage (%) (%) 1¢2¥

[44]

Feature

analyst extraction

in ArcGIS

GIS Part of Ontario

Statistical (Canada)

48,000 25 6909 GWh 5 15 2010

[45]

DeepSolar

GIS software

National
datasets 4 US cities
Statistical

395,387

2020
roof

2.2.6. Artificial Intelligence Approach

A computational data-based machine learning methodology with geographic infor-
mation systems was used to estimate rooftop photovoltaic potentials for 1901 out of 2477
Switzerland’s communes. The supervised learning Support Vector Machine algorithm was
used while six-fold cross-validation was used for detecting the optimal model parameters
and the root-mean-square error evaluates the model’s performance and the accuracy es-
timation. The total number of input data was 1901 communes, 42 points with available
roof characteristics were the labeled data for testing and training. Further, 75% of the data
were devoted to training, and 25% for testing. In addition, 1859 communes had unknown
roof characteristics and must be predicted. This method estimated the monthly global
solar radiation and the geographical potential such as available roof area, roof slope, and
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shadowing effects on the roofs using LiDAR data, different land uses from the CORINE
land cover data in vector polygon format, population density, and building residential
typology. The results stated average value of 81% of each building’s total ground floor area
was equal to the photovoltaic installation’s available roof area, and the estimated energy
production amount was 28% of Switzerland'’s electricity consumption [6]. Different types
of building rooftop shapes can also affect the overall rooftop photovoltaic solar energy
potential. The rooftop shapes of 10,085 buildings in Geneva (Switzerland) based on receiv-
ing solar energy potential and photovoltaic installations useful area were classified with a
machine learning approach using support vector machine classification, by accounting six
different types of roof shapes, flat and shed, gable, hip, gambrel and mansard, cross/corner
gable and hip, and complex roofs. The combination of MATLAB® and solar radiation
analysis tools in geographic information system, as well as LIDAR data, were also used.
It was concluded that the lowest PV potential was for hip roofs, while the highest PV
potential was for the flat and shed roofs. The useful roof area and the building footprint
ratio was close to one for most of the roof shapes, and due to the availability of footprint
areas, they can be used as approximate substitutes to assess useful roof areas for PVs [4]. A
combination of geographic information systems, solar models, and random forests machine
learning algorithm was presented to estimate the potential for rooftop PV solar energy in
Switzerland using Digital Orthophoto Map and LiDAR data. Random forest model was
trained to predict the unknown locations’ variables. The uncertainty of the estimations
measured by provided prediction intervals for the different estimated variables. The result
estimated 25.3% energy production of the total electricity demand [21].

A data mining approach combining machine learning and geographic information
systems was applied to 9.6 million rooftops in Switzerland to address the lack of high-
resolution data and the uncertainties related to existing processing methods. Each step’s
uncertainties were estimated and combined to quantify the final photovoltaic potential
uncertainty. The results stated that the available roof area for photovoltaic installation was
55% of the total Swiss roof surface which could meet more than 40% of Switzerland’s annual
electricity demand. For direct validation, using image segmentation techniques such as
convolutional neural networks to high-resolution aerial imagery for objects detection and
already installed photovoltaic panels was suggested [9]. For instance, a supervised machine
learning method based on convolutional neural networks was developed to use pixel-wise
image segmentation on the Swiss high-resolution aerial photos for detecting the rooftop
solar panels and to determine their sizes. Results indicated that accuracy of about 94% for
a pixel-level set of solar panels was obtained [46].

Image segmentation with U-Net, a deep learning technology, was developed for
detecting the solar photovoltaic potential of Wuhan’s (China) urban rooftops using a
large range of open-source satellite imagery. Google Earth® satellite map was used to
calculate the 2D information for the building rooftop areas. The annual radiation available
per unit area was obtained from the estimated area and global horizontal irradiation in
Wuhan. Finally, the overall potential was calculated with an error of 9.51% considering the
polycrystalline silicon as photovoltaic panels [1].

Image recognition and machine learning approaches were used to analyze a combi-
nation of publicly available geographical building data and aerial images to determine
the rooftop photovoltaic potential of Freiburg (Germany). All building sizes and exact
locations were determined, and the orthographic aerial image was obtained. Image pro-
cessing algorithms were applied for detecting the roof’s ridgeline and orientations and a
normal distribution function was used to estimate the roof’s tilt due to the lack of height
in single perspective aerial images. The fitted photovoltaic module numbers on detected
roof areas were estimated by an algorithm that incrementally iterated over the usable area
to fit as many photovoltaics as possible. An existed algorithm was also used to calculate
the sun’s position. It is stated that the efficiency of the modules and the inverter system
was simulated as a function of ambient temperature, irradiance, and load factor. Finally, an
economic analysis was conducted by the levelized costs of electricity. It is declared that an
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existing CNN algorithm was also proposed to detect roofs that were already equipped with
photovoltaic installations. According to the validation with a 3D city model, algorithms for
irradiance simulation show an accuracy of about 70% for roof azimuth estimation, and an
accuracy of about 90% for detecting existing solar installations [47].

To address challenges of policy and electricity system planning level of EU, a geospa-
tial methodology using spatial information to determine photovoltaic systems available
rooftop area was developed. It combined statistical and satellite-based data sources with
machine learning to assess technical potential across the EU considering the cost of electric-
ity of which results showed a potential production of 680 TWh annually equal to 24.4% of
energy demand [48].

The rooftop solar technical potential was determined in Hanoi (Vietnam) from the
energy supply perspective using high-resolution remote sensing images technology, ge-
ographic information system, and high-resolution satellite image analysis technology,
combining with artificial intelligence algorithms. The method consists of identifying and
classifying rooftops (segmentation and classification), determining the suitable rooftop’s
surface area for photovoltaic installation, and evaluating each rooftop and each local area’s
overall potential. The annual operation data were collected from a rooftop photovoltaic
power station in Hanoi for efficiency evaluation in real working conditions. It was stated
that the difference between theoretical data and actual data was due to the loss factors of
dust, climatic conditions, the utility grid-connected inverter’s operating conditions. The
results indicate that the rooftop solar power electricity values vary in each district in Hanoi.
Additionally, for the investment efficiency evaluation, the payback in actual operations was
about a year longer than the theoretical calculation. Finally, the total generated electricity
of rooftop solar power was estimated at 37,591,481 MWh [49].

Based on obtaining rooftop features from remote sensing images, an approach to
predict photovoltaic potential was developed in Beijing (China) to simulate monthly and
annually rooftop solar radiation. These rooftop features included 2D outlines rooftop ex-
tracted from remote sensing data of Google maps with a precision of 87% by object-oriented
classification method and building patches were reconfigured using Hough transformation.
Later, 3D rooftop parameters were obtained from the digital surface model of the satellite
and were calculated for five different types of rooftops, namely, flat, shed, hipped, gable,
and mansard. Finally, after calculating non-shadowed area and angle correction factor, a
rooftop photovoltaic potential of 63.78 GWh was measured [50]. Table 6 shows a summary
of the attempt for this approach.
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Table 6. Artificial intelligence approaches.
. Location Area Roof Area Annual Generated Demand Error

Ref Tools Data Location (km?) (km?) Electricity Coverage (%) (%) Year

Supervised learning LiDAR 1901
[6] Support Vector CORINE Land Cover Switzerland 328 17.86 TWh 28 2017

Machine algorithm Statistical communes

Support Vector
) Machine classification Geneva 66,811

(4l MATLAB LIDAR (Switzerland) roof 2018

Solar radiation GIS

Machine Learnin LIDAR
[21] < & Digital Switzerland 41,285 252 16.29 TWh 253 2017

Random Forest model
Orthophoto
Data mining LiDAR . 9,600,000
] Machine Learning statistical Switzerland rooftops 267 24TWh 40 2019
U-Net .
[1] D . Google Earth Wuhan (China) 961 17.3 TWh 9.51 2019
eep learning
-, Geographical .
[47] Image recognition building Freiburg 49,573 524 GWh 2017
Machine learning 1 (Germany) building
Aerial images
[48] Machine learnin: Statistical EU 680 TWh 24.4 2019
& Satellite )

) e 1 . Statistical Hanoi
[49] Artificial intelligence Satellite image (Vietnam) 3359 1394 37,591 GWh 2020
1501 Segmentation Satellite image Beijing (China) 0.678 63.78 GWh 2018

Hough transformation

3. Results

Several attempts and various methods for urban solar photovoltaic potential deter-
mination were conducted due to the dramatic development of technology in recent years
and mostly followed the same path shown in Figure 3. Studies first tend to find the sun’s
total energy received by the urban areas (physical potential), followed by detecting suitable
rooftops to install photovoltaics (geographical potential). The next step was calculating
the maximum electricity production (technical potential) followed by assessing the rooftop
photovoltaic installation’s economic attractiveness (economic potential). Finally, determin-
ing the overall rooftop photovoltaic potential by finding and integrating each step’s suitable
points based on the previous steps. This pathway is called the hierarchical methodology

for rooftop photovoltaic potential determination.

~Potential

Technical
Potential

\ \
m : Geographic
/" Potential

/ Physical
Potential

Figure 3. The hierarchical methodology.
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A comparison is made in Figure 4 between the methods’ exploitation in years 2010-2015
and 2016-2020. The major fraction of the attempts in 2010-2015 was devoted to digital
modeling approaches and their related commercial software packages. Mathematical
approaches had second place in the majority of the attempts in 2010-2015, followed by the
statistical sampling approach.

Attempts 2010 - 2015 Attempts 2016 - 2020

° 12%

W Statistical Sampling approach M Statistical Sampling approach
Mathematical approach Mathematical approach

m Digital modeling approach and commercial software m Digital modeling approach and commercial software
packages packages

M Optimization approach

B Optimization approach

M Artificial Intelligence in commercial software packages M Artificial Intelligence in commercial software packages
approach approach
M Artificial Intelligence approach M Artificial Intelligence approach
(a) (b)

Figure 4. (a) Rooftop photovoltaic attempts during 2010-2015; (b) Rooftop photovoltaic attempts during 2016-2020.

The significant share of the attempts in 2016-2020 was for the artificial intelligence ap-
proach. Digital modeling approaches and their related commercial software packages had
the second major share of the attempts in 2016-2020, followed by mathematical approaches.

One of the important points to conclude from this comparison is that the use of the
statistical sampling approach was dramatically reduced from 20% in 2010-2015 attempts to
0% in 20162020 attempts. This is due to the dramatic increase of computation facilities for
human aiding purposes.

Another important point to discuss is that with the advanced development of technol-
ogy in recent years, the artificial intelligence approach had a dramatic increase from 0% in
2010-2015 attempts to 42% in 20162020 attempts. However, digital modeling approaches
and their related commercial software packages had a slight decrease from 40% to 38%
while mathematical approaches had fallen from 27% to 12% in 2010-2015 and 2016-2020
attempts, respectively.

Figure 5 states an increasing number of studies investigated the rooftop photovoltaic
potential to generate energy in cities during the years 2010 till 2020. This increment is
mainly due to technological developments and the need for precise knowledge of solar
energy resources electricity production. Moreover, due to the rise of the energy crisis and
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environmental degradation concerns, determining the renewable energy potential has
become an essential aspect in energy policies and regulatory developments.

Attempts 2010 —2020

LLLLLl

2010-2011 2012-2013 2014-2015 2016-2017 2018-2019 2020-2021

-
N

number of attempts
=
O =R N W H& NN N OO VW O =

year

m Total number of attempts m Economical potenital attempts

Figure 5. Rooftop photovoltaic attempts during 2010-2020.

Another point to mention in Figure 5 is that the number of attempts considering
the economic sub-potential is also growing, especially in recent years. This increase is
because of the fact that building owners will only consider investing in rooftop photovoltaic
installations when these facilities are economically justifiable. So, with the development of
technology in recent years, studies have more tendency to consider economic sub-potential
in their rooftop photovoltaic potential assessment.

4. Discussion

Urban environments can be considered as high-potential electricity producers us-
ing rooftop-mounted photovoltaic systems. There is an increasing number of studies
investigated the rooftop photovoltaic potential to generate energy i cities.

The aim of this study is to present a complete systematic review on determining the
urban rooftop PV potential by taking into account the majority of high impact attempts
since 2010. This paper states the pathway and data resources to find the urban rooftop PV
potential and organizes the methodologies based on their approaches.

For the suitability study of roofs to install PV systems, different factors, and parameters
are considered such as solar radiation, rooftop geometry, rooftop inclination and slope,
shadows, technical energy transformation characteristic, and economical attractiveness,
which each one has a different level of importance. The priority of selecting the factors
and parameters strongly depends on the project scale, location, and data availability. For
instance, some projects tended to neglect the complexity of calculating some parameters due
to their situation and using the same technique is frequently not possible for determining
the PV potential of a house, a city, or a country in different locations around the world.

With the development of technology and improvement in data accessibility, there
are attempts to fulfill this gap by advanced modeling as well as artificial intelligence as
discussed in Section 2.2. In recent years, the use of the artificial Intelligence approach is
growing as can be concluded from Figure 4. Moreover, the development of GIS applications
and remote sensing data such as LIDAR have become useful tools with promising results.
However, the lack of data diversity in some regions, the high cost of accessing the data
sources, and time-consuming procedures, have made this progress bounded, which led
to the lack of urban solar energy production potential maps on global scales. In this
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sense, web-based free access data such as free satellite images from Google has become an
opportunity to carry out actions.

This study suggests the development of a uniform accurate multi-factor artificial
intelligence approach that uses uniform high-resolution open source data such as web-
based free access data to determine urban rooftop’s photovoltaic potential map on a global
scale. So, when there is a tendency to create more sustainable cities, this service may help
to integrate the solar potential into the design and planning of smart cities.

5. Conclusions

This paper aims to make a complete systematic review for introducing sub-potentials
and their essential factors alongside their common data sources. Moreover, it illustrates
different methods to determine urban rooftop photovoltaic potential in order to create a
complete global basis for future studies and applications. Methods of urban solar photo-
voltaic potential determination frequently tend to find the physical potential, geographical
potential, technical potential, and economical potential. These steps are called the hi-
erarchical methodology as shown in Figure 3. However, determining urban rooftop’s
photovoltaic potential map on a global scale with a uniform accurate multi-factor method
with high-resolution open data sources remains a challenge.
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