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Original Article

Near infrared spectroscopy determination of
chemical and sensory properties in tomato

Dong Sun1, Jordi Cruz2, Manel Alcalà1, Roser R del Castillo3,4, Silvia Sans3

and Joan Casals3,4

Abstract
Fast and massive characterization of quality attributes in tomatoes is a necessary step toward its improvement; for sensory

attributes this process is time-consuming and very expensive, which causes its absence in routine phenotpying. We aimed

to assess the feasibility of near-infrared spectroscopy as a fast and economical tool to predict both the chemical and sensory

properties of tomatoes. We built partial least squares models from spectra recorded from tomato puree and juice in 53

genetically diverse varieties grown in two environments. Samples were divided in calibration (210 samples for chemical

traits, 45 samples for sensory traits) and validation sets (60 and 10, respectively) using the Kennard and Stone algorithm.

Models from puree spectra gave validation r2 values higher than 0.97 for fructose, glucose, soluble solids content, and dry

matter (RSEP% ranged 3.5–5.8). r2 values for sensory properties were lower (ranging 0.702–0.917 for taste-related traits

(RSEP%: 9.1–20.0), and 0.009–0.849 for texture related traits (RSEP%: 3.6–72.1). For sensory traits such as explosiveness,

juiciness, sweetness, acidity, taste intensity, aroma intensity, and mealiness, NIR spectroscopy is potentially useful for

scanning large collections of samples to identify likely candidates to select for tomato quality.
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Introduction

Worldwide, the tomato (Solanum lycopersicum L.) is
the second largest vegetable crop, with 182.3 million
tons produced for fresh vegetable markets and food
processing industries.1 In recent years, consumer
demand in developed countries for tomatoes with
better sensory qualities has impelled breeders to
obtain varieties with high organoleptic and nutrition-
al quality, whether by developing new materials or
reintroducing landrace varieties that were no longer
widely cultivated.2 The sensory profile of tomatoes
encompasses a complex set of interrelated organolep-
tic attributes, such as sweetness, acidity, taste and
aroma intensities, mealiness, and skin perception.
Some of these attributes have been partially correlat-
ed with chemical parameters such as dry matter
(DM), soluble solids content (SSC), total acidity
(TA), the relative abundance of reducing sugars
(mainly glucose and fructose) and acids (mainly
citric and malic), and the interaction of these traits
with the complex matrix of volatile compounds that
give tomatoes their distinctive taste.3–5 However, the
complexity of the relations between chemical traits
and human senses makes it very difficult to accurately
predict organoleptic properties from chemical

composition, and sensory analysis remains the most
accurate method to characterize these quality traits.
Both sensory and chemical analyses are time-
consuming and expensive, making them unsuitable
for screening large numbers of varieties as required
in breeding programs. Thus, breeding has largely
ignored organoleptic attributes, resulting in tomatoes
that diverge from consumers’ ideotypes and in com-
plaints about tomato quality.

Near-infrared (NIR) spectroscopy is a well-
established technique for determining the components
of fruits and vegetables,6 and it can be used on easily
prepared samples.7–9 NIR spectroscopy has been
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applied directly on intact tomatoes to discriminate
between varieties,10,11 determine ripening stages,12,13

quantify color,14–16 and measure physical proper-
ties17–19 and chemical parameters such as DM, SSC,
total sugars, glucose, fructose, ethylene, lycopene,
pH, TA, citric acid, and malic acid.14,15,17,18,20–24

NIR spectroscopy minimizes sample preparations,
enabling rapid quality control by aiding decision
making in the field and/or during fruit processing.

However, in a breeding program, breeders search
for the genotypical value of each material, and the
phenotypical variation between individuals due to
environmental effects becomes an important source
of bias if we consider a single fruit.25 Thus, given
the high intravarietal variability for some organolep-
tic traits in tomato,26,27 breeders usually use a homog-
enized mixture from several fruits (i.e. puree,
squeezed fruits using a blender) to represent acces-
sions and approximate their genotypic value.
Centrifuging and/or filtering the puree produces a
clear liquid (i.e. juice). Various spectroscopy techni-
ques, including NIR, mid-infrared (MIR), and atten-
uated total reflectance-Fourier transform infrared
(ATR-FTIR), have been used to predict chemical
parameters in fresh tomato puree,28 in juice,29–32

and in commercial tomato products such as concen-
trate or ketchup.33,34 Spectra from puree or juice from
harvested tomatoes predict chemical parameters
better than spectra from intact fruits: whereas R2

values from intact fruits usually fall between 0.5 and
0.9.14,15,17,18,20,35 R2 values from puree or juice are
usually higher than 0.90.28,31,36 Although obtaining
the puree or juice implies a pre-treatment of the
sample, increasing the costs of the analysis, it enables
to better approach the mean value of the genotype.
Nevertheless, the complete optimization of the pro-
cess is obtained when the NIR models are constructed
based on spectra from intact fruits.

Unlike chemical parameters, sensory properties of
foods derived from plants have seldom been correlat-
ed with NIR spectra.37–39 In tomatoes few studies
have addressed this issue; Peirs et al.40 correlated
aroma, sweetness, acceptance, mealiness, juiciness,
and firmness of eight varieties with NIR spectra,
and Cl�ement et al.41 concluded that NIR spectrosco-
py was useful in determining two factors related to
tomato acceptance, maturity (related to color, firm-
ness, TA, pH, DM, and lycopene) and “gustatory
index” (related to electrical conductivity, SSC, TA,
and pH), although in this work no sensory attributes
where directly modelled. Accordingly, the potential of
NIR technology to predict the tomato sensory profile
has not been fully explored.

In the current study, we aimed to assess the feasi-
bility of NIR spectroscopy for predicting chemical
parameters (DM, SSC, glucose, and fructose) and
sensory attributes (sweetness, acidity, taste intensity,
odor intensity, skin perception, mealiness, firmness,
juiciness, and explosiveness) in tomatoes and to

explore its use for scanning large collections of sam-
ples to identify potential candidates for selection in
breeding programs. To broaden the applicability of
the models obtained, the experimental design includ-
ed a set of 53 tomato varieties representing great
genetic diversity.

Materials and methods

Samples and analysis

To ensure the inclusion of wide genetic diversity for
different fruit quality traits (morphology, sugar, and
acid content),42 we obtained samples from 53 differ-
ent varieties (pure lines and commercial hybrids rep-
resentative of the different groups described for
tomato, including 30 fresh-market varieties, 14
cherry varieties, 7 ripening mutants, and 2 processing
varieties). All varieties were grown in two environ-
ments: in soil in an open field and in a soilless culture
in a plastic greenhouse. Fruits were collected at the
red-ripe stage. Chemical analyses were done on all
varieties. Due to the sensory panel’s limited capacity,
descriptive sensory evaluations were done on only 20
phenotypes (i.e. 10 genotypes (five fresh-market/five
cherry type)� two environments); all varieties were
tasted in three different sessions. The experimental
fields, chemical analyses, and sensory analyses are
described in detail elsewhere.42

Briefly, regarding sensory traits, trained panelists
evaluated four flavor-related traits (sweetness, acidi-
ty, taste intensity, odor intensity) in purees and three
texture-related traits (skin perception, mealiness, and
firmness) in longitudinal slices for the fresh-market
type and in fruit halves for the cherry type. For the
cherry varieties, two additional texture-related traits
important in consumer acceptance (juiciness and
explosiveness)42 were evaluated in whole fruits. The
definition of the sensory traits provided by
Hongsoongnern and Chambers43 were used in the
training of the panel. With regard to the explosiveness
trait, here we refer to the force in which the liquid
inside the fruit is released when it is clenched with
the teeth. Each attribute was evaluated in a 0 (low
intensity) to 10 (high intensity) scale by nine trained
panelists. The average was used as the quantitative
score for each variable. The reproducibility of the
sensory variables was evaluated by means of the stan-
dard error of the reference method (SE), as described
in section “Data analysis”.

For the 10 varieties undergoing sensory analysis,
two biological replicates (different fruits) were taken
for each combination of variety, environment, and
tasting session (sensory set: 120 samples ¼10 varie-
ties� 2 environments� 3 session taste� 2 biological
replicates). For the other 43 varieties, 2 biological
replicates were taken for each combination of variety
and environment (chemical set: 172 samples¼ 43 vari-
eties� 2 environments� 2 biological replicates).
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Each replicate (sensory set, and chemical set) con-

sisted in a minimum of four to five fruits. Chemical

analyses and NIR spectroscopy were to be done on all

292 (120þ 172) samples.
Regarding the chemical analysis procedure, for

each sample, 500 g of the corresponding tomatoes

(minimum of four to five fruits per replicate) were

pureed in a blender to obtain a homogeneous mixture

(i.e. puree). SSC (hand held refractometer, in �Brix)
and DM (65�C, 72 h, in %) were determined in the

purees. In order to extract the sugars quantitatively,

about 30 g of puree were three consecutive times

mixed with about 20mL of water, filtered and

brought together to a volume of 100mL (i.e. juice).

Glucose and fructose (in g/100 g fresh weight) were

determined in the juices with a high performance

liquid chromatography system equipped with a

pump (Beckman 110B, Fullerton, CA, USA), an

injector (Hewlett Packard Serie 1100, Palo Alto,

CA, USA), a refractive index detector (Beckman

156, Fullerton, CA, USA), and a 250mm� 4.6mm

Luna NH2 column (Phenomenex, Torrance, CA,

USA). Each analysis was repeated twice (two techni-

cal replicates).

Spectra measurement

A Foss NIR spectrometer system model 5000 (Foss,

Hilleroed, Denmark) was used to record spectra in

samples of puree and juice. Given the different phys-

ical states of the two types of samples, different spec-

trometer units were selected for each type. Tomato

juice spectra were acquired in transflectance method

with a Rapid Content Analyzer (RCA) accessory and

also using a gold transflector, which doubles the opti-

cal pathway. First, 10mL of juice was added to a

reflectance vessel; then a 1mm immersion diffuser

was placed in the reflectance vessel to fix the optical

path length at 2mm and the vessel was introduced

into the analyzer. Tomato puree spectra were

acquired in reflectance method with an OptiProbe

Analyzer (Foss, Hilleroed, Denmark). This accessory

is used for registering highly scattering liquids and

slurries, like the tomato puree which is liquid but

with a big amount of solids in suspension (flesh,

seeds and peels, which cause a lot of differences in

the baseline of raw NIR spectra).
First, 10mL of puree was placed in a plastic tube;

then the probe was placed in the tube with a reflecting

mirror in front of the probe window to fix the optical

path length at 2mm.
For both types of samples (juice and puree), the

spectral range was 1100–2498 nm and the resolution

was 2 nm. Scan number was 32 and 3 spectra were

acquired for any sample, using the mean spectrum for

computations. Background spectra were acquired

every 1 h.

Data analysis

All the chemical and sensory parameters were pre-
dicted from puree spectra. Additionally, glucose and
fructose content was predicted from juice spectra as
well. The juice is a clear liquid but puree contains
flesh, seeds and peels, which cause a lot of differences
in the baseline of raw NIR spectra. Prediction
models, using Partial Least Squares (PLS),44 were
constructed separately for both types of samples.

To reduce peak overlap, noise, and baseline drift,
we tried various preprocessing methods: standard
normal variate (SNV),45 Multiplicative Scattering
Correction (MSC),46 Savitzky-Golay smoothing,47

and first and second-order derivatives with second
order polynomial approximation and 7–41 point
window size, and combinations of these. In all
cases, the pretreated spectra and the property values
were mean centered before being submitted to the
regression algorithm. To select calibration and
validation-prediction sample sets, we used the
Kennard and Stone algorithm, adjusting them to
ensure similar standard deviations. The sample
sample sets were carefully selected and the inter-
correlation between Y-variables was studied to
avoid undesired indirect prediction. The best models
were established from the calibration set, considering
common statistics such as correlation (R2) and root
mean square error of calibration (RMSEC). To deter-
mine the optimal number of factors, we sought the
number that explained the largest proportion of Y-
variance without significantly decreasing the
RMSEC.

Specific spectral bands were selected to cover the
absorbance peaks of the target substance and mini-
mize noise and interferences. To identify the optimum
spectral range, we applied the jack-knifing criterion,48

which provides an indication of the wavelengths that
most strongly influence the performance of a model.
Further, to identify outliers in the calibration set,
samples with high values for sample leverage, X-resid-
ual variance, or Y-residual variance were considered
outliers if the residual values did not decrease after
adding one PLS factor to the plot of variance resid-
uals versus sample leverage. After selection of spectral
bands and outliers removing in calibration set, the
best models were chosen.

For each PLS model, the number of latent varia-
bles (LVs) has been determined from a plot of the Y
explained variance, RMSEC and the root mean
square error of cross validation (RMSECV) against
the number of factors, the optimal number of LVs is
the one that with a maximum explained variance
shows a minimum value of the error and using the
minimum number of LVs.

To determine the predictive ability of the PLS
models in the validation samples, which were not
used to build the models, we considered the coeffi-
cient of determination between X and Y (R2),
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RMSECV for models with no validation dataset’s

evaluation, the root mean square error of prediction

(RMSEP), and standard error of prediction (RSEP

%) of the mean value, as well as the ratio of the stan-

dard deviation of the original data to the standard

error of prediction (RPD) and the ratio of the

range of the original data to the standard error of

prediction (RER).
RMSEC/CV/P, RSEP%, RPD and RER were cal-

culated as follows

RMSEC=CV=P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ypredi � yrefi

� �2

n� 1

vuut

RSEP% ¼ RMSEP
�yref

� 100

RPD ¼ SDyref

RMSEP

RER ¼
Max yrefi¼1;n

� �
�Min yrefi¼1;n

� �
RMSEP

where n is the number of samples, yref and ypred are the

reference and predicted value of any sample, and

SDyref is the standard deviation of the validation ref-

erence data.
To develop and calculate PLS models, we used

commercially available software (Unscrambler X,

Camo ASA; Trondheim, Norway).
The reproducibility of the reference analysis meth-

ods was evaluated through the standard error of the

reference method (SE), which indicates the uncertain-

ty of the analysis due to the chemical method (n¼ 2

technical replicates) or the panelists (n¼ 9 panelists).

SE was calculated as follows

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 xi;1 � xi;2ð Þ2
2n

s

Results and discussion

Characteristics of NIR spectra

Raw spectra of both juices and purees showed two

absorbance peaks (1386–1578 nm and 1860–

2212 nm) and a noise signal from 2350 to 2498 nm

(Figure 1(a) and (b)). These two peaks are mostly

due to the O–H bond in water molecules, which can

decrease the weight of the signal from the target sub-

stance. Further, throughout the entire range of spec-

tra, the variation between each spectrum was larger in

purees (Figure 1(b)) than in juices (Figure 1(a)), due

to interference from solid matters in purees.

Pretreatment decreased baseline drift in juices
(Figure 1(c)) and puree (Figure 1(d)), although the
absorbance of water remained very high and the
noise signal from 2350 to 2498 nm also remained.

Chemical parameters

Reference data. Only 270 out of the potential 292 sam-
ples (both for puree and juice) could simultaneously
be analyzed and their spectrum recorded, because for
some genotype*environment combinations there was
not enough fruits. For each trait analyzed, 60 samples
were selected to serve as a validation set, and the rest
were used for calibration. Table 1 reports the chemi-
cal composition of the samples in the calibration and
validation sets. The environmental and genetic diver-
sity of the accessions studied resulted in large varia-
tions in chemical characteristics, covering the entire
reported range,2 thus favoring the likelihood of suit-
able calibrations and broadening the future applica-
bility of the models.

PLS models. Table 2 summarizes the calibration
models built with the entire spectrum and with the
most useful spectral bands. First, models were con-
structed based on calculations including the entire
range of pretreated spectra from 1100 to 2498 nm.
Using this approach, R2 values for the different
traits ranged from 0.840 to 0.926 (Table 2).

Next, we adjusted the models by selecting the most
useful spectral bands. To determine fructose and glu-
cose in juice samples, we removed the peaks corre-
sponding to water and the high-noise tail, selecting
only the spectral band from 2212 to 2310 nm. In
puree samples, we used a similar region (2200–
2340 nm) to determine DM content; however, to
determine SSC, fructose, and glucose, we excluded
only the high-noise tail and the second main peak
of water (1830–2100 nm) because the puree had a
much lower concentration of water than the juices,
making it possible to also consider the band around
the first peak (1360–1500 nm). Instead of decreasing
the quality of the calibration, including this region
in the models provided useful information, such as
the overtones of O-H in the molecular structure of
fructose and glucose.

After the spectral band selection procedure, the
quality of calibrations significantly improved
(Table 2). R2 values of all models reached values
higher than 0.940 and RMSECV values decreased.
The improvement was especially strong in analyses
of juice samples, where the proportion of water is
very high. Additionally, differences between the
results obtained with the different pretreatments
became smaller.

To further improve the quality of the calibration
models, outliers were excluded. No outliers were iden-
tified in SSC and DM models. Excluding outliers of
fructose and glucose improved the calibration values
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of R2 and RMSEC slightly for all the models except

for glucose in puree (Tables 2 and 3). Figure 2 plots

the predicted values versus the reference values from

the validation set. Predictions for fructose and glu-

cose from juices led to similar results: r2¼ 0.970,

RSEP%¼ 5.8, and r2¼ 0.971, and RSEP%¼ 5.9,

respectively. Interestingly, predictions for these

parameters from purees were slightly better than

those from juices, despite the presence of flesh,

seeds and skins; models developed from purees

yielded r2¼ 0.983 and RSEP%¼ 4.0 for fructose

and r2¼ 0.982 and RSEP%¼ 4.5 for glucose. Better

predictions from purees can be explained by two fac-

tors: the mean proportion of these sugars in the

purees (2 g/100 g) is nearly three times higher than

in the juices (0.76 g/100mL), and the noise from

water is lower in the puree spectra than in the juice

spectra. Moreover, preparing juices requires several

additional steps, so it is more convenient to predict

sugars from spectra registered in puree samples. SSC

consists mainly of sugars,2 and predictions of this

parameter (r2¼ 0.972, RSEP%¼ 3.9) were nearly as

good as those of fructose and glucose. Predictions of

DM were also good (r2¼ 0.976, RSEP%¼ 3.5). The

values of RPD (5.7–7.7) and RER (21.1–26.4) indi-

cate that the models can make good predictions for all

the parameters studied.7,8

Table 4 reports statistics summarizing the predic-

tive ability of the PLS models for chemical parame-

ters in juice or puree obtained in the current study

and in other reported studies. Although, most of the

studies dealing with intact tomatoes or processed

products use NIR spectroscopy, the most relevant

works with tomato purees or juices have been devel-

oped by using MIR technology. For predictions

based on spectra recorded in puree, our results for

DM (r2¼ 0.98) and SSC (r2¼ 0.97) are similar to

those obtained by Scibisz et al.28 (DM: r2¼ 0.96 and

Table 1. Chemical composition of the samples in the calibration and validation sets.

Parameter Range

Calibration Validation

SD SEMean SD Range Mean

Fructose (J) 4.20–16.23 7.28 2.51 4.78–14.98 7.59 2.53 nd

Glucose (J) 3.39–15.48 6.93 2.58 4.40–14.26 7.59 2.64 nd

Fru ctose (P) 1.06–3.82 1.92 0.60 1.38–3.52 2.03 0.62 0.041

Glucose (P) 0.85–3.95 1.84 0.64 1.19–3.56 1.99 0.65 0.042

SSC (P) 4.20–11.60 5.87 1.47 4.40–10.00 6.07 1.40 0.047

DM (P) 5.17–11.55 7.04 1.57 5.50–11.00 7.43 1.61 0.048

SD: standard deviation, SE: standard error of the reference method, nd: not determined. Units: juice (J), g/L; puree (P), g/100 g.

Figure 1. Spectra of all tomato samples: (a) raw spectra from juices (270 samples); (b) raw spectra from purees (270 samples);
(c) preprocessed spectra from juices (Savitzky–Golay smoothing, first derivative, order 2, 5 points); (d) preprocessed spectra of purees
(Savitzky–Golay smoothing, second derivative, order 2, 11 points).
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SSC: r2¼ 0.98) using ATR–FTIR on a set of cherry,

fresh-market, and processing tomatoes comprising a

total number of samples similar to the present study.

Furthermore, their PLS models proved robust when

applied to external samples grown in the following

year (DM: r2¼ 0.98, and SSC: r2¼ 0.96). Our results

for fructose (r2¼ 0.98) and glucose (r2¼ 0.98) are

slightly better than those obtained by these authors

(r2¼ 0.92 and r2¼ 0.96, respectively), and the same

arguments can be raised for the other statistics

(RSEP% and RPD).
For predicitions based on spectra recorded in

juices, our results for fructose (r2¼ 0.970) and glucose

(r2¼ 0.970) are better than those reported in previous

studies using ATR–FTIR (r2< 0.9).29–31 Very recent-

ly, a study that compares several portable infrared

sensing technologies achieves excellent correlations

for glucose, fructose and SSC (r2¼ 0.97–0.99) from

both puree and juice.36

To ensure the broad applicability of the PLS

models we developed, we included materials that rep-

resents the phenotypic diversity within cultivated

tomatoes: mainly fresh-market and cherry varieties,

but also a few ripening mutants (rin and alc) and

processing varieties. This approach increases the

diversity of the fruit matrix, thus increasing the

noise in the spectra, which should make it difficult

to obtain good models. However, using ATR–

FTIR, Iba~nez et al.34 found that models built with

more diverse groups were generally better than

those built with only one group of tomato (process-

ing, cherry or fresh-market varieties). Further, when

they applied the models to predict the characteristics

of an external sample of processing tomatoes, the

models built with more diverse groups were more

robust than those built with processing tomatoes

alone. They attributed these findings to greater diver-

sity of fruits rather than to a larger number of

Table 2. Comparison of calibration models built with the whole spectrum and with selected spectral bands. [AQ2]

Parameter Pretreatment Factors

Whole spectrum Selected band

Spectral band (nm)R2 RMSECV R2 RMSECV

D1.o2.5p 7 0.819 1.073 0.974 0.411
Fructose (J) D2.o2.5p 7 0.838 1.015 0.970 0.439 2212–2310

MSC.D1.cs5.ss2 7 0.840 1.009 0.957 0.526

D1.o2.5p 7 0.832 1.062 0.949 0.587

Glucose (J) D2.o2.5p 7 0.823 1.090 0.963 0.498 2212–2310

MSC.D1.cs5.ss2 7 0.900 0.818 0.961 0.512

D1.o2.11p 3 0.874 0.215 0.938 0.151

Fructose (P) D2.o2.11p 3 0.784 0.282 0.941 0.148 1100–1850,

MSC.D2.cs3.ss3 3 0.695 0.335 0.916 0.176 2094–2228

D1.o2.11p 4 0.926 0.176 0.961 0.127

Glucose (P) D2.o2.11p 4 0.857 0.245 0.965 0.120 1100–1850,

MSC.D2.cs3.ss3 4 0.821 0.274 0.950 0.145 2094–2228

D1.o2.11p 4 0.915 0.388 0.950 0.315

SSC (P) D2.o2.11p 4 0.813 0.607 0.957 0.292 1100–1834,

MSC.D2.cs3.ss3 4 0.810 0.611 0.956 0.295 2120–2320

D1.o2.11p 5 0.865 0.575 0.947 0.361
DM (P) D2.o2.11p 5 0.787 0.722 0.918 0.448 2200–2340

MSC.D2.cs3.ss3 5 0.676 0.891 0.938 0.368

The best model for every parameter is written in bold type.

J: juice; P: puree; D: Savitzky–Golay derivative; MSC: multiplicative scattering correction; cs: cap size; o: order; p: points; ss: segment size.

RMSECV units: juice (J), g/L; puree (P), g/100 g.

Table 3. Final models for chemical parameters in tomato samples.

Parameter Pretreatment Factors Outliers

Calibration Validation

R2 RMSEC r2 RMSEP RSEP% RPD RER

Fructose (J) D1.o2.5p 7 7 0.982 0.330 0.970 0.442 5.8 5.7 23.1

Glucose (J) D2.o2.5p 7 4 0.970 0.445 0.971 0.450 5.9 5.9 21.9

Fructose (P) D2.o2.11p 3 4 0.955 0.127 0.983 0.081 4.0 7.7 26.6

Glucose (P) D2.o2.11p 4 7 0.964 0.122 0.982 0.090 4.5 7.2 26.4

SSC (P) D2.o2.11p 4 0 0.957 0.292 0.972 0.237 3.9 5.9 23.7

DM (P) D1.o2.11p 5 0 0.947 0.361 0.976 0.261 3.5 6.2 21.1

J: juice, P: puree, D: Savitzky–Golay derivative, o: order, p: points. RMSEC and RMSEP units: juice (J), g/L; puree (P), g/100 g.
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samples. These data reinforce the convenience of

seeking maximum diversity of fruit types and param-

eter values in model building.
In summary, the models obtained in the current

study from a wide diversity of tomatoes enable

good predictions of fructose, glucose, SSC, and

DM. The best results were obtained from spectra

recorded in puree, which can be easily and rapidly

prepared. The RPD values obtained indicate that

NIR spectroscopy can be used for quality control of

these chemical traits.

Sensory attributes

Reference data. Taste tests and NIR spectroscopy

could only be done on 26 of the 30 potential samples

of cherry tomatoes and 29 of the 30 potential samples

of fresh-market tomatoes, because for some genoty-

pe*environment combinations there was not enough

fruits. The attributes explosiveness and juiciness, dis-

tinctive characteristics of cherry tomatoes,42 were

measured only in cherry tomatoes. For these attrib-

utes, the calibration set comprised 20 samples and the

validation set comprised six samples. For the remain-

ing attributes, measured in both cherry and fresh-

market tomatoes (sweetness, taste intensity, odor

intensity, mealiness, acidity, firmness and skin percep-

tion), the calibration set comprised 45 samples and

the validation set comprised 10 samples.
Number of samples employed for sensory attrib-

utes is usually lower than these tested for chemical or

physical parameters.35 On the one hand, it is due to
the difficulty and time consuming of carry out many

taste sessions and on the other hand, to the fact that
the individual error associated to each sample

increases parallel to the total number of them. So,
the number of samples that can be managed in

these studies is limited.49,50

Table 5 summarizes the sensory panel’s ratings (0–

10 scale) of the samples in the calibration and valida-
tion sets. Scores for most attributes (sweetness, taste

intensity, odor intensity, acidity, and firmness) cov-
ered a wide range of the scale, though scores for meal-

iness were all <6 and scores for skin perception were
all >4.7. In cherry tomatoes, scores for explosiveness
and juiciness were all >5.

PLS models. After various pretreatments of

raw spectra from purees, we constructed PLS
regression models for all sensory parameters consid-
ering the whole spectral range (1100–2498 nm) and

the spectral range from 2120 to 2320 nm. As
discussed before, the high-noise tail from 2320 to

2498 nm and absorption peaks mainly caused by O–
H overtones were excluded to avoid excessively large

influence of O–H peaks from water in the calibration
models. SNV or Savitzky–Golay smoothing with

derivative algorithms gave the best calibration
results (Table 6). Band selection only improved
the results for acidity and explosiveness.

Figure 3 plots the values predicted in the validation
samples versus the reference values from the calibra-

tion set.

Figure 2. Comparisons between reference and NIRS-predicted values for chemical parameters in the validation samples. Spectra
recorded in puree: (a) fructose, (b) glucose, (c) soluble solids content (SSC), and (d) dry matter (DM).

Sun et al. 7



Ta
bl
e
4.

Co
m
p
a
ri
so
n
o
f
d
im

en
si
o
n
le
ss

st
a
ti
st
ic
s
fo
r
p
re
d
ic
ti
n
g
ch
em

ic
a
l
p
a
ra
m
et
er
s
in

to
m
a
to
es

w
it
h
In
fr
a
re
d
sp
ec
tr
o
sc
o
p
y
in

st
u
d
ie
s
re
p
o
rt
ed

to
d
a
te
.

S
p
ec
tr
o
m
et
er

S
p
ec
tr
a
sa
m
p
le
s

Ty
p
e
o
f
to
m
a
to

N
u
m
b
er

o
f
sa
m
p
le
s

Fr
u
ct
o
se

G
lu
co
se

SS
C

D
M

R
ef
er
en
ce

AT
R
–
FT
IR

40
00
–
70
0
cm

–
1

Ju
ic
e

(c
en
tr
if
u
g
ed

fi
lt
er
ed
)

P
ro
ce
ss
in
g

24
5C

þ
12
5V

r2

R
S
E
P
%

R
P
D

0.
64 7.
5 –

0.
77

7.
3 –

0.
92

4.
1 –

– – –

3
0

AT
R
–
FT
IR

18
80
–
80
0
cm

–
1

Ju
ic
e

(c
en
tr
if
u
g
ed

fi
lt
er
ed
)

Fr
es
h
-m

a
rk
et

40
C
þ
20
V

r2

R
S
E
P
%

R
P
D

0.
88

a

–

2.
7

a

0.
88

a

–

2.
6

a

– – –

– – –

2
9

AT
R
–
FT
IR

15
00
–
90
0
cm

–
1

Ju
ic
e

(c
en
tr
if
u
g
ed

su
p
er
n
a
ta
n
t)

Fr
es
h
-m

a
rk
et

C
h
er
ry

P
ro
ce
ss
in
g

24
5C

þ
87
V

r2

R
S
E
P
%

R
P
D

0.
87

14
.3

2.
8

0.
89

12
.1

3.
6

0.
95

4.
9

5.
5

– – –

3
1

Tr
a
n
sm

it
ta
n
ce

40
00
–
70
0
cm

–
1

Ju
ic
e

(c
en
tr
if
u
g
ed

su
p
er
n
a
ta
n
t)

Fr
es
h
-m

a
rk
et

C
h
er
ry

40
0C

þ
10
0V

A
p
ro
x.

r2

R
S
E
P
%

R
P
D

0.
97 – 4.
4

0.
98 – 5.
3

0.
99 – 8.
6

– – –

3
6

N
IR

10
00
–
25
00

n
m

Ju
ic
e

(þ
w
a
te
r

ce
n
tr
if
u
g
ed

fi
lt
er
ed
)

Fr
es
h
-m

a
rk
et

C
h
er
ry

20
5C

þ
60
V

r2

R
S
E
P
%

R
P
D

0.
97 5.
8

5.
7

0.
97

5.
9

5.
9

– – –

– – –

Th
is
st
u
d
y

N
IR

10
00
–
25
00

n
m

P
u
re
e

Fr
es
h
-m

a
rk
et

C
h
er
ry

20
5C

þ
60
V

r2

R
S
E
P
%

R
P
D

0.
98 4.
0

7.
7

0.
98

4.
5

7.
2

0.
97

3.
9

5.
9

0.
98 3.
5

6.
2

Th
is
st
u
d
y

AT
R
–
FT
IR

40
00
–
40
0
cm

–
1

P
u
re
e

Fr
es
h
-m

a
rk
et

C
h
er
ry

P
ro
ce
ss
in
g

26
0C

þ
80
V

r2

R
S
E
P
%

R
P
D

0.
92 6.
8

2.
9

0.
96

5.
1

4.
9

0.
98

2.
9

6.
8

0.
96 3.
8

5.
1

2
8

AT
R

40
00
–
70
0
cm

–
1

P
u
re
e

Fr
es
h
-m

a
rk
et

C
h
er
ry

14
0C

þ
40
V
a
p
ro
x

r2

R
S
E
P
%

R
P
D

0.
99 – 6.
2

0.
99 – 7.
7

0.
98 – 9.
6

– – –

3
6

S
p
ec
tr
a
re
co
rd
ed

in
p
u
re
e
o
r
fi
lt
er
ed

p
u
re
e.

a
Ca
lc
u
la
te
d
fo
r
ca
li
b
ra
ti
o
n
sa
m
p
le
s.

8 Journal of Near Infrared Spectroscopy 0(0)



For the attributes related to flavor, the best pre-

dictions were achieved for sweetness (r2¼ 0.917,

RPD¼ 3.5) and odor intensity (r2¼ 0.875,

RPD¼ 2.8); the RSEP% was also low for sweetness

(9.1%), but not for odor intensity (20%) due to its

low mean value in the validation set (3.86). The only

texture-related trait for which predictions were

acceptable was mealiness (r2¼ 0.719, RPD¼ 1.8).

The worst predictions were for firmness (r2¼ 0.381,

RPD¼ 0.5) and skin perception (r2¼ 0.009,

RPD¼ 0.6); plotting predicted vs. reference values

of skin perception resulted in a nearly horizontal

straight line, probably because the skin accounts for

only a very small part of the entire puree sample.

Along these lines, Plans et al.39 found that NIR spec-

troscopy was also useless for predicting skin percep-

tion in common beans (Phaseolus vulgaris L.). For the

particular properties of cherry tomatoes, predictions

were better for explosiveness (r2¼ 0.849, RPD¼ 2.6)

than for juiciness (r2¼ 0.665, RPD¼ 1.6).
To our knowledge, only one other published study

has used NIR spectroscopy to predict most of the

sensory attributes examined in the present study.

Peirs et al.40 analyzed eight tomato varieties; although

no validation results were reported, the best

calibration results were obtained for odor

(R2¼ 0.94) and sweetness (R2¼ 0.90), which were

also the sensory attributes for which the best correla-

tions were found in our study. Their correlations for

mealiness (R2¼ 0.61) and juiciness (R2¼ 0.61) are not

very different from ours. Interestingly, the correlation

they found for skin toughness (R2¼ 0.61) contrasts

with the absence of correlation for skin perception

in our study.
NIR spectroscopy predictions are generally worse

for sensory attributes than for chemical parameters.

The sensory properties of foods depend on both their

chemical composition and physical structure.

Moreover, interactions between these two aspects

also influence panelists’ perceptions, which are less

precise than measurements with instruments. In an

extensive review of NIR application to meat quality,

Prieto et al.51 found that RPD values for sensory

attributes were mostly below 1. Values above 2 are

scarce.38,52 Although the RPD values obtained in the

current study for sweetness, odor intensity and explo-

siveness (2.6–3.5) and for acidity, taste intensity,

mealiness, and juiciness (1.6–1.8) are not high

enough to enable the use of NIR spectroscopy for

quality control based on sensory properties, they are

Table 6. Final models of sensory parameters of tomato samples.

Parameter Taste sample Factors Pretreatment

Calibration Validation

R2 RMSECV r2 RMSEP RSEP% RPD

Sweetness Puree 5 SNV 0.712 0.990 0.917 0.559 9.1 3.5

Acidity Puree 4 D2.o2.7pa 0.326 1.532 0.702 0.970 16.8 1.7

Taste intensity Puree 5 SNV 0.342 1.115 0.762 0.672 13.0 1.6

Odor intensity Puree 3 SNV 0.642 1.278 0.875 0.773 20.0 2.8

Mealiness Slices/halves 3 SNV 0.561 0.927 0.719 0.649 29.1 1.8

Firmness Slices/halves 5 SNV 0.335 1.819 0.381 2.170 72.1 0.5

Skin perception Slices/halves 4 D2.o2.7p 0.530 1.214 0.009 0.943 12.4 0.6

Explosiveness Whole fruit 6 D2.o2.7pa 0.653 0.326 0.849 0.232 3.6 2.6

Juiciness Whole fruit 6 D1.o2.7p 0.677 0.337 0.665 0.410 4.9 1.6

D: Savitzky–Golay derivative, NV: standard normal variate, o: order, p: points.
aSelected band 2120–2320 nm.

Table 5. Sensory properties of the samples in the calibration and validation sets.

Calibration Validation

SEParameter Range Mean SD Range Mean SD

Sweetness 2.48–9.49 5.45 1.87 3.74–9.45 6.12 1.95 0.36

Acidity 1.79–8.10 5.70 1.36 3.01–8.10 5.79 1.64 0.36

Taste intensity 2.30–7.70 4.86 1.18 3.53–6.56 5.17 1.05 0.39

Odor intensity 1.62–7.76 3.92 1.99 1.70–6.51 3.86 2.16 0.30

Mealiness 1.11–5.96 2.73 1.38 1.19–4.50 2.23 1.16 0.28

Firmness 1.65–7.96 3.54 1.67 1.89–6.33 3.01 1.12 0.28

Skin perception 4.71–8.89 7.33 0.97 6.93–8.60 7.61 0.57 0.13

Explosiveness 5.00–8.53 6.57 0.90 5.57–7.03 6.53 0.60 0.12

Juiciness 5.83–9.27 8.10 0.93 7.5–9.27 8.37 0.67 0.13

Scores in a 0 (low) to 10 (high) intensity scale.

SD: standard deviation; SE: standard error of the reference method.
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good enough for screening to discard varieties that
are farther from the sensory ideotype. In breeding
programs, where large collections must be screened,
this approach could drastically reduce the number of
samples to be submitted to tasting panels and make it
possible for sensory attributes to be included in phe-
notyping, thus helping breeders meet consumers’
demand for better tasting tomato varieties.

Conclusions

Tomato puree, an easily prepared homogenized mix-
ture of several crushed fruits that mitigates the effects
of the high variability between individual fruits, is
representative of the qualities of a given accession.
Despite the presence of flesh, seeds, and skins, NIR
spectra recorded in puree correlated with chemical
and organoleptic characteristics and allowed us to
predict them. For fructose, glucose, SSC, and DM,
R2 values in the validation samples were higher than
0.97 and RPD values were higher than 5.9, indicating
that NIR spectroscopy can be used for the quality
control of these parameters. Thus, NIR spectroscopy
can replace classical chemical determinations in the
early stages of breeding programs, allowing large col-
lections to be screened.

As expected, the correlations obtained for sensory
properties were lower than those achieved for chem-
ical parameters. However, the R2 and RPD values
indicate that NIR spectroscopy can be used to
screen for explosiveness and juiciness in cherry varie-
ties and for sweetness, acidity, taste intensity, aroma

intensity, and mealiness in a wide variety of tomatoes.
Nevertheless, firmness and skin perception cannot be
satisfactorily predicted. In summary, NIR spectrosco-
py can be useful in breeding programs for scanning
large collections of samples to identify likely candi-
dates for selection based on sensory characteristics.
Further studies should assess the feasibility to use
NIR spectroscopy to predict sensory attributes in
intact fruits, reducing the costs of analysis.
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