
Noname manuscript No.
(will be inserted by the editor)

A Context-Aware Monitoring Architecture for
Supporting System Adaptation and Reconfiguration

Oscar Cabrera · Marc Oriol · Xavier
Franch · Jordi Marco

Received: date / Accepted: date

Abstract Context: Modern services and applications need to react to changes
in their context (e.g. location, memory consumption, number of users) to im-
prove the user’s experience. To obtain this context, a monitoring infrastructure
with adequate functionality and quality levels is required. But this monitoring
infrastructure needs to react to the context as well, raising the need for context-
aware monitoring tools. Objective: Provide a generic solution for context-aware
monitoring able to effectively react to contextual changes. Method: We have
designed CAMA, a service-oriented Context-Aware Monitoring Architecture
that can be easily configured, adapted and evolved according to contextual
changes. CAMA implements a decoupled architecture and manages a context
domain ontology for modelling the inputs, outputs and capabilities of moni-
toring tools. Results: CAMA has been demonstrated in three real use cases.
We have also conducted different evaluations, including an empirical study.
The results of the evaluations show that (1) the overhead introduced by the
architecture does not degrade the behavior of the system, except in extreme
conditions; (2) the use of ontologies is not an impediment for practitioners,
even when they have little knowledge about this concept; and (3) the rea-
soning capabilities of CAMA enable context-aware adaptations. Conclusions:
CAMA is a solution useful for both researchers and practitioners. Researchers
can use this architecture as a baseline for providing different extensions or
implementing new approaches on top of CAMA that require context-aware
monitoring. Practitioners may also use CAMA in their projects in order to
manage contextual changes in an effective way.

Oscar Cabrera
CoDeS, Chilpancingo, Mexico
E-mail: cabrera.bejar82@gmail.com

Marc Oriol · Xavier Franch · Jordi Marco
Universitat Politècnica de Catalunya, Barcelona, Spain
E-mail: moriol@essi.upc.edu, franch@essi.upc.edu, jmarco@cs.upc.edu

2 Oscar Cabrera et al.

Keywords Context-aware computing · Context acquisition · Context life
cycle · Software adaptation · Software reconfiguration · Context ontology

1 Introduction

Context-awareness is a key feature in modern approaches and computer para-
digms, such as Pervasive Computing, Smart Cities and the Internet of Things.
This feature implies that services and applications must be aware of their
changing contexts to automatically adapt their functionality in order to im-
prove the quality of experience (QoE) of its users [16]. Context-awareness
requires several components and processes working together with the aim to
accomplish the context life cycle, which embraces context acquisition, mod-
elling, reasoning and dissemination [19].

To illustrate this with an example, a video streaming service platform might
be interested to acquire the QoE reported by its end-users in Social Media as
contextual information for its services. For optimal performance, the configu-
ration of the monitoring tools needs to be aware and adapt to the context as
well. For instance, depending on the number of messages that users share in
Social Media, the monitoring tools could adapt the keywords and frequency of
monitoring to adjust the amount of messages collected. If an excessive amount
of messages is obtained, it would be adequate to use more restrictive keywords
in order to improve precision in expense of recall, whether if not many mes-
sages are obtained, it would be preferable to use less restrictive keywords to
improve recall in expense of precision.

In the context life cycle, the first of the phases, context acquisition, is re-
sponsible for (1) gathering the context raw data from different entities (agents
and resources) and (2) disseminating the gathered data to the interested par-
ties. Context acquisition is implemented through monitoring tools that in-
tegrate software services and sensors as data gathering instruments [33, 40].
However, monitoring tools are software applications themselves; therefore, they
also need to be aware of their own context to deliver the best possible func-
tionality with adequate quality [45].

In this paper, we are interested in context-aware monitoring, which basi-
cally raises two main challenges to be solved related to the two aforementioned
responsibilities of context acquisition, namely data gathering and dissemina-
tion. First, context-aware monitoring tools should support dynamic capabil-
ities, i.e., reconfiguration and adaptation to continuously obtain and provide
reliable context information. This characteristic is necessary to bind the behav-
ior of the monitoring tool to the behavior of the context-aware system under
supervision [4]. If the system incorporates new features or changes the behav-
ior of existing ones, the monitoring tool needs to be able to gather different
data. In addition, a context-aware monitor needs to react automatically when
a source of data becomes temporarily unavailable. This challenge generates a
first research question (RQ):

A Context-Aware Monitoring Architecture 3

– RQ1: In what way can we provide a context-aware monitoring tool with the
required reconfiguration and adaptation capabilities to face the constantly
changing situation of the services and applications that compose a context-
aware system?

This RQ can be decomposed into the following sub-RQs, considering the ty-
pology of events that may trigger a reconfiguration as explained above.

– RQ1.1: In what way can a context-aware monitoring tool manage the su-
pervision of new features or entities?

– RQ1.2: In what way can a context-aware monitoring tool manage dynamic
capabilities (i.e., reconfiguration, adaptation and evolution) when new re-
quirements or changes in the context data, functions or quality features of
an entity are detected?

– RQ1.3: In what way can a context-aware monitoring tool manage the failure
of a data gathering instrument?

Note that the sub-RQs are related to the reconfiguration capabilities of a
context-aware monitoring tool. However, RQ1.1 is more related to research
the capability of adding new monitors for monitoring new features or entities;
RQ1.2 is related to research the capability of reconfiguring monitors that are
already deployed; and RQ1.3 investigates the capability of detecting failures
in a monitoring tool and replacing it.

Second, the gathered data needs to be classified according to a well-defined
data schema in order to avoid risks in data management, mainly in its dissem-
ination and storage, due to ambiguity, inconsistencies and poor integrity and
characterization. This challenge yields a second research question:

– RQ2: In what way can we structure, store and manage the data gathered
by a context-aware monitoring tool in order to be easily disseminated to
other components?

To the best of our knowledge, and as discussed later in the state of the
art section, none of the existing context-aware monitoring frameworks fully
satisfy all the presented RQs. To cover such a gap, we propose CAMA, a
Context-Aware Monitoring Architecture. It is based on state of the art soft-
ware patterns of service-oriented architecture [34], enabling to plug and play
different monitors that can be easily reconfigured, evolved and adapted for
supporting highly dynamic environments. CAMA includes a component to
handle a context ontology for conceptualizing the inputs, outputs and capa-
bilities of monitoring tools that can be useful to disseminate a unified and
representative schema of monitored data. The ontological approach proposed
in this paper includes the context ontology presented in [11] in the core of
CAMA, and proposes its extension in every instance of the architecture in a
particular scenario, yielding to scenario-specific context domain ontologies.

It is important to highlight the importance of using an ontology in the core
of CAMA against other alternatives. In a previous work [10], we discussed
the context modelling research, perspectives and formalism, and we found
that one of the most suitable context modelling techniques are ontologies, in

4 Oscar Cabrera et al.

spite of some of its weaknesses and the existence of other popular techniques,
such as key-value, mark-up scheme, graphical, object oriented and logic-based
approaches [35]. Nowadays, we find that several authors working on context-
aware computing choose ontologies for modelling context information [2][3][37].
The main reasons are: ontologies enable the sharing of knowledge by open
dynamic agents (e.g., web services), they supply semantics for intelligent agents
to reason about context information, they promote the interoperability among
devices and computational agents, they enable semantic interoperability and
provide common understanding of the structure of context information classes
among users, and they provide inference mechanisms for predicting user needs
and expectations, among others. CAMA could also be realized using one of
the other aforementioned alternative techniques, but due to the characteristics
discussed above, we considered the ontologies as the most suitable modelling
technique in CAMA, as it can also provide the semantic data structure that
can be used for different data sources (e.g., databases).

The feasibility of the proposed context-aware monitoring architecture has
been demonstrated through three specific use cases belonging to different do-
mains: smart city apps and services, a platform for saving home energy con-
sumption, and a video streaming service. This diversity shows that our pro-
posed solution can be applied to different domains and software platforms.
Those use cases have also helped us to identify the requirements that such
context-aware monitoring framework should have. Additionally, to demon-
strate the feasibility of the proposed approach, we have performed different
evaluations, including an empirical study that focuses on the usability of the
proposed ontology that is managed by participants with different degrees of
modeling ontologies and monitoring expertise. The results of the evaluations
show that:

– Extending our proposed ontology with new monitoring tools to supervise
new features or entities can be achieved in a timely and correct manner
even with a low expertise in ontologies and monitoring (RQ1.1).

– Multiple monitoring tools can be reconfigured in parallel with an adequate
performance (high frequency of reconfigurations and a low response time)
(RQ1.2).

– Failing measure instruments can be replaced in parallel with an adequate
performance (high frequency of replacements and a low response time)
(RQ1.3).

– The data gathered by the architecture can be easily structured, stored and
managed to be disseminated to other components (RQ2).

The rest of this paper is structured as follows. Section 2 surveys the related
work. Section 3 presents the research method that has been used to define
our proposed solution. Section 4 describes the CAMA monitoring architec-
ture. Section 5 provides the details on the CAMA ontological basis. Section 6
provides implementation details of the proposed architecture and ontology.
Section 7 evaluates different features of the monitoring architecture and the
ontology proposed in this work. Finally, Section 8 presents the conclusions.

A Context-Aware Monitoring Architecture 5

2 State of the art

In the last recent years, several research approaches have emerged in the field
of context-aware monitoring. Most of them are aligned with trending com-
puter paradigms (e.g., Pervasive Computing, Smart Cities and the Internet of
Things).

We have conducted a literature review and evaluated the related work
by analyzing how they address the RQs defined in Section 1. The selection
of papers has been conducted following some systematic principles. We have
searched for papers containing the keywords “context” and “monitoring” us-
ing the Google Scholar database. Due to the enormous amount of results, we
picked the 25 most relevant papers according to the database ranking. From
these 25 results, 14 were discarded for being out scope, leading to 11 papers
to analyse. Then we conducted a backward snowballing process to obtain ad-
ditional relevant papers that the string-based search could have missed. We
included the works that were cited by more than one paper and were in the
scope of context monitoring. In this step, 4 new papers were added, yielding to
15 papers. Then we grouped those papers that referred to the same proposal,
leading to 13 proposal. Finally, we applied forward snowballing techniques to
obtain the last version of those proposals.

The list of papers and its analysis is shown in Table 1 and described be-
low.

Table 1: Analysis of related work

RQ1
RQ2

RQ1.1 RQ1.2 RQ1.3

S
u

p
p

o
rt

ed
(Y

es
/
N

o
)

S
co

p
e

(G
en

er
ic

/
S

p
ec

ifi
c)

M
o
d

e
(A

u
to

./
M

a
n
u

a
l)

S
u

p
p

o
rt

ed
(Y

es
/
N

o
)

S
co

p
e

(G
en

er
ic

/
S

p
ec

ifi
c)

M
o
d

e
(A

u
to

./
M

a
n
u

a
l)

S
u

p
p

o
rt

ed
(Y

es
/
N

o
)

S
co

p
e

(G
en

er
ic

/
S

p
ec

ifi
c)

M
o
d

e
(A

u
to

./
M

a
n
u

a
l)

A
p

p
ro

a
ch

(O
n
t.

/
N

o
t

O
n
t.

)

S
u

p
p

o
rt

ed
Q

u
er

ie
s

(R
ic

h
/

P
o
o
r)

Proposal
MobiCon [26, 27] Y G A Y S A Y S A N R
CARE [6] Y G ? Y S A N N/A N/A ? R
Orchestrator [23] Y G A Y G A Y S A N R
SeeMon [21, 22] Y G A Y S A N N/A N/A N R
CoMon [25, 28] Y S A Y G A Y G A N R
HiCon [12] Y G A Y S A N N/A N/A N R
CLAD [31, 32] N N/A N/A Y S A Y G A N P
Contory [38] Y S A Y G A Y G A N R
DYNAMICO [42, 43, 44] Y S A Y G A N N/A N/A N R
CALM [20] N N/A N/A N N/A N/A N N/A N/A N P
H-SAUDE [13] Y G M Y G A N N/A N/A N R
SINDI [29, 30] Y G A Y S A N N/A N/A N R
Esposito et al. [14] Y G ? N N/A N/A N N/A N/A O R
CAMA (our proposal) Y G A Y G A Y G A O R

RQ1.1 - In what way can a context-aware monitoring tool manage the super-
vision of new features or entities? Most of the approaches have an extensible

6 Oscar Cabrera et al.

architecture capable of adding new monitoring tools to gather new metrics with
a generic scope and in an automatic manner (i.e., without manually recompil-
ing or linking the code) [12, 21, 22, 23, 26, 27, 29, 30]. Other approaches can
add new monitoring tools but their scope is limited to just the healthcare en-
vironment [13], or to particular technologies, like cellphone devices [25, 28, 38]
or SOA governance platforms [42, 43, 44]. CARE [6] and Esposito et al. [14]
can handle multiple monitoring tools, but it is not clear if adding one may
require some manual intervention. Finally, CLAD [31, 32] and CALM [20] do
not provide the capability to add new monitoring tools.

RQ1.2 - In what way can a context-aware monitoring tool manage dynamic
capabilities (i.e., reconfiguration, adaptation and evolution) when new require-
ments or changes in the context data, functions or quality features of an en-
tity are detected? Some approaches include reconfiguration capabilities with
a generic scope and in an automatic manner [13, 23, 25, 28, 38, 42, 43, 44].
Other approaches can reconfigure the monitoring tools dynamically but are
limited to a specific scope (e.g., they can just activate/deactivate monitoring
tools) [6, 12, 21, 22, 26, 27, 29, 30, 31, 32]. Finally, CALM [20] and Esposito
et al. [14] do not support dynamic reconfigurations.

RQ1.3 - In what way can a context-aware monitoring tool manage the failure of
a data gathering instrument? Most of the contributions are not able to detect
and replace a failing monitoring tool [6, 12, 13, 14, 20, 21, 22, 29, 30, 42, 43, 44].
Only CoMon [25, 28], CLAD [31, 32] and Contory [38] have mechanisms to
detect and replace failing monitoring tools with a generic scope and low effort.
MobiCon [26, 27] and Orchestrator [23] can detect when a monitoring tool is
unavailable but other types of failures are not investigated.

RQ2 - In what way can we structure, store and manage the data gathered by
a context-aware monitoring tool in order to be easily disseminated to other
components? Most approaches provide an API with a rich query mechanism
to gather data, but without using an ontology [12, 13, 21, 22, 23, 25, 26,
27, 28, 29, 30, 38, 42, 43, 44]. The lack of an ontology hampers the ability to
integrate the data with other sources or tools in a richly manner, as ontologies
are well-known to be a powerful instrument that facilitates knowledge and
data sharing between different frameworks. Esposito et al. [14] present the
only approach that defines an ontology to provide semantics to the monitored
data. CARE [6] provides an architecture that would eventually interact with
ontological reasoners, but this aspect was not addressed in the paper. Finally,
some approaches provide just a simple API to gather the monitored data
without rich semantics [20, 31, 32].

Although all the approaches satisfy some of the RQs to a certain extent,
none of them fully satisfies all the presented RQs. As depicted in Table 1, none
of the existing approaches fully satisfies more than 2 out of 4 RQs.

Finally, it is worth to mention that context-aware monitoring is related
to Application Performance Management (APM). APM tools monitor and

A Context-Aware Monitoring Architecture 7

manage the performance of complex software applications by supporting the
detection, diagnosis and resolution of performance problems [1, 7, 18, 39].
However, APM tools are driven by performance issues, whereas context-aware
monitoring is driven by contextual changes (which might include, but are not
limited to, performance). Furthermore, to the best of our knowledge, current
APM tools do not have context-aware self-adaptive capabilities.

To improve this state of the art, we have developed CAMA, a monitoring
system capable of adding new monitoring tools (RQ1.1), with reconfiguration
capabilities (RQ1.2), able to replace failing monitoring tools (RQ1.3) and able
to provide access to the monitored data by means of a rich semantics mecha-
nism with the elements structured and defined through an ontology (RQ2).

3 Research Method

To address our RQs, we have applied the Design Science Research (DSR)
method [15]. DSR is a research methodology that offers guidelines to conduct
research and is usually applied in the fields of Engineering and Computer
Science.

DSR defines 4 types of knowledge contributions depending on the maturity
of the problem (or application domain) and the maturity of the solutions in
the existing literature (see Fig. 1).

So
lu

tio
n

M
at

ur
ity

Application Domain Maturity

Hi
gh

Lo
w

High Low

Improvement: Develop new
solutions for known problems

Research Opportunity and
Knowledge Contribution

Invention: Invent new
solutions for new problems
Research Opportunity and
Knowledge Contribution

Routine Design: Apply
known solutions to known

problems
No Major Knowledge

Contribution

Exaptation: Extend known
solutions to new problems
(e.g., adopt solutions from

other fields)
Research Opportunity and
Knowledge Contribution

Fig. 1: DSR Knowledge Contribution Framework [15]

8 Oscar Cabrera et al.

The contributions of this paper fit into the Improvement category. In this
category, the domain application is a well-known and established field of re-
search (in our case, the challenges in context-aware adaptive monitoring),
whereas the existing solutions do not fully satisfy the problems being addressed
(as described in the previous section).

DSR contributions in the Improvement category provide their results in
the form of artifacts at one or more levels of abstraction (see Table 2).

Table 2: Contribution levels in DSR [15]

Contribution level Example artifacts
More abstract, complete
and mature knowledge.

Level 3. Well–developed de-
sign theory about embedded
phenomena.

Design theories (mid–range
and grand theories).

⇔ Level 2. Nascent design
theory–knowledge as opera-
tional principles/architecture.

Constructs, methods, mod-
els, design principles, tech-
nological rules.

More specific, limited,
and less mature knowl-
edge.

Level 1. Situated implementa-
tion of artifact.

Instantiations (software
products or implemented
processes).

In this work, we tackle the RQs by producing the needed artifacts at Level
1 and Level 2 (see Table 3).

Table 3: Contribution levels in our RQs

RQ Level 2 Level 1
RQ1 CAMA: A software architecture

for Context-aware monitoring
tools.

An instantiation of CAMA by adding a
set of monitoring tools for Social Network
monitoring.

RQ2 A domain context ontology for
CAMA.

An instantiation of CAMA by extending
the ontology with the concepts of the So-
cial Network monitoring domain.

These artifacts are part of the results of the EU H2020 project SUPER-
SEDE1. Their development has been conducted in an iterative manner. We
first conducted several interviews and on-site workshops with three use cases
of the project, namely Siemens, SEnerCon and ATOS to understand their
needs related to context monitoring. Each use case belongs to a different do-
main, namely smart city apps and services, a platform for saving home energy
consumption, and a video streaming service, respectively. The initial meetings
with the use case providers were used to specify the purpose, requirements
and scope of the artifacts to be developed. Subsequent regular meetings (both
online and on-site) were conducted to assess that the development of CAMA
fulfilled the defined objectives.

1 http://www.supersede.eu

http://www.supersede.eu

A Context-Aware Monitoring Architecture 9

4 CAMA: A Software Architecture for Context-aware Monitoring

4.1 Architecture (DSR Level 2)

We propose in this section CAMA, a Context-Aware Monitoring Architecture
able to integrate different individual monitoring tools. CAMA is intended to
support the constant changes in the context that characterize the situation of
different entities including not only the services and applications that conform
the context-aware system under supervision, but also its own components.

To design CAMA, we have considered several high-level requirements that
we identified with the help of the use cases involved. The four first ones derive
from the RQs presented in Section 1, whilst the latter four are necessary
quality requirements obtained from the use cases in order to make the resulting
architecture usable in practice:

– Req1: CAMA must provide the capability to add new monitoring tools
with minimal effort. This requirement addresses RQ1.1.

– Req2: CAMA must provide the capability to reconfigure the monitoring
tools automatically. This requirement addresses RQ1.2.

– Req3: CAMA must provide the capability to replace a failing monitoring
tool automatically. This requirement addresses RQ1.3.

– Req4: CAMA must provide the capability to access the monitored data
using a rich semantics method mechanism with the elements structured
and defined through an ontology. This requirement addresses RQ2.

– Req5: CAMA must facilitate its integration with other systems in order
to support activities that are built on top of context monitoring (e.g.,
decision-making, self-healing, self-improvement,. . .).

– Req6: CAMA must allow the integration of several monitoring tools that
monitor different software components or devices, and are not limited to a
particular scope or technology.

– Req7: CAMA must be secure in terms of authentication and authorization
in order to grant access only to those who have the required permissions.

– Req8: CAMA must perform in such a manner that any malfunction or
low performance of any monitor does not affect the monitored system.

To satisfy these requirements, CAMA is structured as a loosely coupled
architecture that is organized as follows (see Fig. 2):

– Group of monitoring tools. This set of components represent the mon-
itoring tools that gather context-related data (e.g., number of tweets per
second), supporting then Req6. Each monitor component in the architec-
ture represents a monitoring tool, which is composed by one or more mea-
sure instruments that implement a specific logic to gather data from soft-
ware services, applications and physical devices (channels in Fig. 2). The
measure instruments’ perspective of the architecture is useful when mon-
itoring tools provide different APIs to retrieve different aspects of soft-
ware systems. Measure instruments send the gathered data as events to

10 Oscar Cabrera et al.

Monitoring

Orchestrator

Monitor 1

Measure

Instrument 1

Measure

Instrument 2

Channel 1 Channel n Channel 2
Data

collection

Repository

Retrieve

collected data

Output

collected

data

Input (what to collect)

Monitor 2

Measure

Instrument 1
Data

collection

Developer/SysAdmin

SysAdmin/other component

Message/ data flow Composition Component Channel
Group of monitoring

tools

Monitor 3

Measure

Instrument 1

Measure

Instrument 2

Ontology Manager

Registration and

conceptualization of monitors

Sends list of monitors, capabilities

(config, operational, etc.), actions, etc.

Provides data

schema

Fig. 2: Context-aware monitoring architecture

the repository, following the event-driven messaging design pattern. Mon-
itoring tools and their measure instruments can be developed either from
scratch or integrate available (commercial and open source) monitors to
collect the data.

– Monitoring orchestrator. This component is responsible for first reg-
istering, and then orchestrating, the group of monitoring tools in the ar-
chitecture. For these tasks, the monitoring orchestrator provides an inter-
face from which a developer or system administrator (hereafter, sysAdmin)
can register and integrate monitoring tools into the architecture, satis-
fying Req1. Then, the orchestration starts with the input of the devel-
oper/sysAdmin indicating “what to collect”, and based on this informa-
tion, the component executes actions at runtime over the monitoring tools
that have been integrated into the architecture (e.g., applying assignments,
changes, new configurations), allowing the monitoring tools to be recon-
figured automatically. Once the monitoring tools are configured, they run
independently of the orchestrator. In such a manner, a malfunction or bad
performance of a monitoring tool does not affect the whole system, satis-
fying Req8. If the orchestrator fails, only the (re)configurations would be
unavailable. Nevertheless, for critical systems, this can be mitigated by
replicating and deploying more than one orchestrator.

– Ontology manager. This component provides and manages an ontology
that characterizes the context of entities (agents or resources) through con-
text information (time, location, environment, etc.). Thus, each monitoring
tool that can be considered as a resource is registered and conceptualized
in the ontology by considering the context information that the monitoring
tool is able to supervise. The registration and conceptualization tasks start

A Context-Aware Monitoring Architecture 11

when the orchestrator receives a subscription request of a new monitoring
tool with the following parameters: name, type, description, endpoint, in-
puts and outputs (Table 4 provides an example of such parameters for
the SocialMentionAPI monitoring tool). The ontology manager maps such
parameters into classes and properties (datatype and object properties)
or creates an instance if such type of monitoring tool has already been
modelled. From this perspective, the ontology knows the list of monitoring
tools that have been registered, the context information that a monitoring
tool or mechanism is able to retrieve and provide (e.g., in the scope of the
social environment, the messages of a certain social network), the opera-
tional and configuration capabilities of the monitoring tools, their status
(by means of self-monitoring), as well as the actions that can be done over
them. These actions that can be triggered by the reasoning capabilities
of the ontology and by external components that are responsible for data
analysis and decision-making have the aim of maintaining the health of
both the entire architecture and the entities that are being supervised.
Such mechanisms enable the detection and replacement of failing monitor-
ing tools, and hence, satisfying Req3. The ontology also provides the data
schema of monitored data for a unified and structured dissemination, satis-
fying Req4. To allow the dynamic addition of monitoring tools and provide
the capability to deal with different monitored elements of heterogeneous
monitoring tools, the ontology has been designed to be easily extensible
and adaptable for each domain. More details about the ontology are given
in Section 5.

– Repository. This component is responsible for storing the output of each
monitoring tool that is structured by means of the data schema provided by
the ontology through the ontology manager. The monitoring tools know the
structure of such schema and can communicate with the repository through
the interface provided by this component, which in turn can be used by a
sysAdmin or other external component to collect the monitored data, also
satisfying Req4. The interface of the repository component also provides the
methods required for instantiating it using different types of components.
For instance, it can be instantiated with Kafka for messaging systems to
capture and publish data, or MySQL for data persistence, among others.

The resulting architecture is a service-oriented architecture (SOA). We
consider that adopting and applying the SOA principles and patterns is the
way to ensure Req5. Just to illustrate the consequences of such decision, the
different APIs of the monitoring tools should be wrapped as RESTful micro-
services to provide highly decoupled services performing small tasks. Such
perspective allows the reconfiguration of monitoring tools, satisfying Req2.
Finally, to avoid unauthorized access, the communication among components
can be done through an Enterprise Service Bus (ESB), which can easily include
a security module handling authentication and authorization, satisfying Req7.

The sequence diagram to configure and run the monitoring tools is depicted
in Fig. 3. The operational process of CAMA starts when a user (a developer

12 Oscar Cabrera et al.

Table 4: example of parameters to register the SocialMentionAPI monitoring
tool in the ontology

name SocialMentionAPI
type Social networks monitor

description
it is a social media search and analysis platform that aggregates
user generated content from across the universe into a single
stream of information

endpoint http://localhost:8080/SocialMentionAPI
inputs {keywords, timeslot, confStatus, outputFormat}
outputs {idOutput, author, message, link, timestamp}

or sysAdmin) requests from the monitoring orchestrator (Orchestrator) the
context information that should be collected. At this stage, the Orchestra-
tor should be aware of the available monitoring tools (Monitor). Such task is
supported by the ontology provided and managed by the Ontology Manager,
which is responsible for registering and modelling inputs, outputs and config-
uration capabilities of the monitoring tools. With the information provided by
the ontology, the Orchestrator is able to perform different (re)configuration
operations over the monitoring tools. Therefore, if a Monitor fails and there is
another one able to supervise the same context information (which is discov-
ered thanks to the reasoning capabilities of the ontology), the failing Monitor
can be replaced. Once the available monitoring tools are identified, the On-
tology Manager will return them to the Orchestrator. The Orchestrator will
then configure each Monitor accordingly, which in turn will run the Measure
Instruments that periodically will gather and send the data to the Repository.

Concerning technological details, the Monitors to be plugged into the Or-
chestrator should be wrapped as RESTful micro-services. Finally, all the con-
text information retrieved by the Monitors is stored in the repositories defined
in the Repository component (e.g., MySQL). To store and disseminate a uni-
fied and structured set of monitored data, this component is also supported by

MonitorMonitor Measure InstrumentMeasure Instrument

OrchestratorOrchestrator

input (what to collect)

Ontology ManagerOntology Manager

getMonitors(...)

forAll

monitor in monitorList

forAll

monitor in monitorList

forAll

monitor in monitorList

new service_client()

monitorList

list of configuration results

configure(configuration)

configuration result

run(configuration)

for each eventfor each eventfor each event

RepositoryRepository

gather_data()

send_data()

Fig. 3: Sequence diagram to configure and run the monitors

A Context-Aware Monitoring Architecture 13

the schema of the ontology that conceptualize the outputs of the monitoring
tools.

4.2 CAMA instantiated in a real use case (DSR Level 1)

In this section, we present a real use case where CAMA was applied. We use
the monitoring needs of three companies (Siemens, Atos and SEnerCon) that
participated in the SUPERSEDE European project. These needs were basi-
cally aligned with the state of the art as reported in Section 2. For instance,
in an on-site workshop with the companies’ representatives, we identified that
their current technologies do not provide mechanisms to add new monitoring
tools at runtime (e.g., to gather new context information). In terms of concrete
operational needs, the companies were interested in monitoring: 1) user activ-
ity data, including page views, clicks, apps, ratings, etc.; 2) social networks
activity, mainly when an event is being covered; 3) system stability including
RAM activity, hard disk, processes, etc.

To cope with these needs, we have implemented and deployed in CAMA
four types of monitoring tools for: App Marketplaces, Twitter, User events
and IT infrastructure (see Fig. 4).

Fig. 4: Monitoring architecture instantiated in a real use case

As it can be seen in Fig. 4, the Marketplaces monitoring tool has been im-
plemented through three measure instruments: iTunesAPI, googlePlayAPI and
appTweak. The two first measure instruments use the official APIs to connect
with the Marketplaces of iTunes and Android, respectively; whereas the last
measure instrument integrates a popular tool used by more than 80000 apps
for monitoring app reviews and comments. Similarly, we have also deployed

14 Oscar Cabrera et al.

in the architecture of CAMA a monitoring tool for Twitter, integrating two
measure instruments to retrieve tweet’s information: Twitter API2 and Social
Mention API3. The former is the official Twitter API, whereas the latter is
a popular monitoring tool developed by socialmention.com. Marketplaces and
Twitter monitoring tools were implemented and deployed in the architecture
of CAMA with the aim of improving users’ QoE of applications deployed in
marketplaces and streaming services such as live webcasting of sport events.
For instance, such streaming service was used to stream the Olympic Games
2016, and the Twitter monitoring tool was able to retrieve 18,355 tweets, which
were later used for analysis to improve the QoE of such service.

Other monitoring tools that we have implemented and deployed in CAMA
are the User events and IT infrastructure monitoring tools with the aim of im-
proving users’ QoE through monitoring user events listening clickstreams and
the IT infrastructure (specifically, regarding hard disk monitoring). Such mon-
itoring tools have been implemented through a specific measure instrument
called HTML clickstreams to retrieve the user activity and Nagios API4 to
retrieve the disk information, respectively. For instance, regarding the HTML
clickstreams, we were able to collect 260,637 user events in a period of 80 days.

During the execution of CAMA, the ontology handled by the ontology
manager is aware of the inputs, outputs and configuration capabilities of the
mentioned monitoring tools. With this information, the monitoring orches-
trator can perform actions over the monitoring tools. For instance, when the
Twitter API fails, identified by means of monitoring logs and the reasoning ca-
pabilities of the ontology, the orchestrator can change the Twitter API by the
Social Mention API, which can feed the same required data in the monitoring
infrastructure. Finally, the data collected by the instantiated monitoring tools
is sent to Kafka, which is a publish-subscribe messaging system, and then such
data is unified, structured and stored in a repository. At the end, a sysAdmin
can retrieve the collected monitored data from the repository by means of the
interface provided by the repository component.

5 Context ontology for CAMA

This section provides details on the context domain ontology managed by the
ontology manager.

One of the well-known problems of data management, storing and data
characterization is the lack of semantics (schema-less) [17]. This should be
overcome by the definition of an ontology [10] that should link the inputs and
outputs of monitoring tools and data sources.

2 https://dev.twitter.com/
3 http://socialmention.com/
4 https://www.nagios.org/

https://dev.twitter.com/
http://socialmention.com/
https://www.nagios.org/

A Context-Aware Monitoring Architecture 15

5.1 Domain Context Ontology (DSR Level 2)

The proposed domain context ontology for CAMA has been built by reusing
an existing generic ontology, which was presented in a previous work [11]. The
main aim of such generic ontology is to be easily reused, extended and adapted
for specific or generic purposes. These capabilities of the generic ontology
follow three levels of abstraction: upper, middle and lower levels. In general,
these levels provide classes in different levels of abstraction, being the classes
of the middle level used for building domain-specific ontologies.

The methodology for building the generic ontology with the three levels of
abstraction is described below:

– Upper-level ontology. It was built through a systematic mapping of differ-
ent ontologies allowing to retrieve and consolidate the most abstract classes
of such ontologies. In general, we applied a class hierarchy study for iden-
tifying the most used abstract classes in the first and second levels of the
hierarchies specified in the studied ontologies. It allows to consolidate and
define a generic structure of abstract classes and that we called upper-level
ontology. The building process details are described in [10].

– Middle-level ontology. It was defined based on the upper-level ontology and
structured in a modular way to enhance its reusability, following the inte-
gration process method prescribed by Pinto and Martins [36]. In general,
we applied a study of different ontologies related to the classes specified in
the upper-level ontology (e.g., for the Time class we studied ontologies of
time). It allows to consolidate and reuse vocabulary of different ontologies
in a modular way. The building process details are described in [11].

– Lower-level ontology. It is the only level that depends on the domain and it
is created following a set of initial criteria and semantic principles given by
the middle and upper level ontologies and through functional requirements
identified by means of competence questions.

In this work, we focus on the development process of the lower-level on-
tology, as this is the only level that requires to be tailored for each specific
domain. The other levels (middle and upper levels) have been integrated in
CAMA without requiring any modification.

We have selected the classes of the first two levels (upper and middle levels,
with a total of 20 classes) that lie in the heart of CAMA and are shared by all
its possible monitoring instances, providing a unifying view of the monitoring
infrastructures. In Fig. 5. those classes that can be reused to model any kind of
monitoring tool are depicted as grey and yellow rectangles with a continuous
line.

It is also important to highlight the reuse capability of the ontologies pre-
sented in the paper. Such reusability can be carried out at different levels of
abstraction. For example, in the case of CAMA, we have not started from
scratch, but we have reused the upper and middle levels of abstraction of the
ontology and extended it with the specific Domain-level (see Fig. 5). Starting

16 Oscar Cabrera et al.

a new knowledge without any basis may cause re-building existing ontologies
yielding significant cost and efforts.

Fig. 5: Conceptualization of a monitoring tool through the CAMA ontology

5.2 Ontology instantiated in a real use case (DSR Level 1)

Considering the structure of the upper and middle levels of the proposed ontol-
ogy derived from the previous task, we build its lower level (domain-specific
ontology). Such third level (domain level; 5 classes) is scenario-dependent,
meaning that every particular instance of CAMA will present its own ontol-
ogy; this is why it corresponds to the concept of domain ontology [24]. The
third level depicted in Fig. 5, represented as dotted orange rectangles, corre-
sponds to the social networks monitoring tools.

The proposed context ontology for CAMA, including the upper, middle and
lower levels, has the aim to fulfill certain functional requirements, including the
conceptualization of inputs, outputs and general capabilities of a monitoring

A Context-Aware Monitoring Architecture 17

tool. According to Uschold and Gruninger, the functional requirements of an
ontology are defined through competency questions that it should respond
to, i.e., a type of questions that the customer is expecting that the ontology
answers [41]. In this regard, the competence questions that can be queried in
the proposed ontology are the following:

– What are the parameters that can be configured in a monitoring tool?
– What kind of context information can be monitored by a monitoring tool?
– What is the monitored data gathered by a specific monitoring tool?
– What kind of response format is given by a certain configuration instance?
– What instances of a monitoring tool or related configurations are activated?
– What are the monitoring tools that can monitor a specific service or appli-

cation (e.g., retrieve all the monitoring tools that can monitor the Twitter
or the CPU of a system)?

As depicted in the ontology proposed for CAMA (see Fig. 5), a monitoring tool
has been conceptualized to represent that “any monitoring tool is a monitoring
program, which in turn is, following the hierarchy of concepts, a computer
program, a software and a computational entity”. From this perspective, we
can also represent that “any instance of the SocialNetworksMonitoring class
is related to one or more instances of the SocialNetworksMonitoringProfile
class for describing its generic profile information such as extended name, the
endpoint where the monitoring service can be accessed by the orchestrator of
the architecture or by another client application, the detailed description of
the monitoring tool, etc.”. Such modelling can be applied to any monitoring
tool for representing its inputs, outputs and capabilities.

The input of the monitoring tool has been conceptualized to represent that
“any instance of the SocialNetworksMonitoring class has a status On or Off
indicating if the monitoring tool is activated or not”. Each instance of the
SocialNetworksMonitoring class can be related to one or more instances of
the SocialNetworksMonitoringConfProf class consisting of different parame-
ters that can be configured, such as the configuration status that represents if
a certain configuration is activated or not, the keywords that are going to be
searched, the response format (json, xml or csv) and so on. Note that these
parameters represented as datatype properties in the ontology are intended to
be generic from any social network monitoring tool.

The output of a monitoring tool (monitored data) is modelled to indicate
that:

“One or more instances of the SocialNetworksMonitoredData class is pro-
duced by an instance of the SocialNetworksMonitoringConfProf class. Each
instance of the SocialNetworksMonitoredData class has a timestamp and one or
more number of data items (instances of the SocialNetworksDataItems class),
each of them consisting of different response properties such as id (unique
hash id), message, link, timestamp, image (story or item image), user (author’s
username), user image (author’s profile image), user link (author’s profile url),
domain (the origin source’s domain), source (the original source’s name), and
type (blogs, microblogs, etc.)”.

18 Oscar Cabrera et al.

Note that the specified response properties are an approximation of a re-
sponse of social networks monitoring tools; however, not all of them are manda-
tory. As depicted in Fig. 5, we are expecting generic information such as the
id, message, author message, timestamp and link of the monitored data.

5.3 Supporting material for building domain ontologies

In Fig. 5 we have conceptualized three levels of abstraction specifying the up-
per, middle and domain level classes of the CAMA ontology. For the domain
level, we provide as an example a new type of monitoring tool named Social-
NetworksMonitoring that may help the reader to analogously create a new
type of monitoring tool. We describe in Table 5 the input and output data
needed by each specific-level class depicted in Fig. 5. This information (hier-
archy and glossary of terms) simulates the state that a modeler interested in
using this ontology would find as a starting point.

Table 5: Glossary of data

Class Parameter/data Description
SocialNetworks
Monitoring

idSNMTool Identifier of the monitoring tool
statusSNMTool Specifies if the monitoring tool is running or not

SocialNetworks
Monitoring
Profile

name Name of the monitoring tool
endpointSNMTool URI of the monitoring tool
description A short description of the monitoring tool

SocialNetworks
Monitoring
ConfProf

idConf Identifier of a configuration
confStatus Status specifying whether the configuration is up

and running or not
accounts Accounts that are going to be monitored
keywords The keywords that we want to search for
timeslot The timeslot between two monitoring invocations
kafkatopic The topic that is used for storing the monitored

data in Kafka.
SocialNetworks
Monitored
Data

idOutput Identifier of each output of the monitoring tool
searchTimestamp Time in which the data has been collected
numDataItems How many data items have been collected

SocialNetworks
Data Items

idItem The identifier of the item
author The author of the social network message
message The text of a social network message
link The link to the original message
timestamp The timestamp in which that message was created

6 Implementation

A prototype of the framework has been implemented in Java 8 with REST-
ful services built on JAX-RS and running under Apache Tomcat. The code,
deployment instructions and API documentation are available in Zenodo [8].

The monitoring tools currently implemented are:

A Context-Aware Monitoring Architecture 19

– Twitter → Twitter API: monitors in real-time the tweets that satisfy a
specific search criteria (e.g., keywords, accounts, etc.) and retrieves the
messages and some metadata (e.g., user, timestamp, tweetID, etc.). To
obtain the tweets, this component uses the Streaming API provided by
Twitter5.

– Marketplaces → googlePlayAPI: monitors in real-time the feedback pro-
vided by users to a specific app in GooglePlay and retrieves the messages,
ratings and some metadata (e.g., user, timestamp, etc.). To obtain the
feedback, this component uses the Google Play Developer API6.

– Marketplaces → iTunes API: monitors in real-time the feedback provided
by users to a specific app in AppStore and retrieves the messages, ratings
and some metadata (e.g., user, timestamp, etc.). To obtain the feedback,
this component uses the RSS Feed Generator of iTunes7.

– User events → HTML clickstreams: monitors the clickstream of a user
in an HTML web page. To obtain the clickstream, this component uses
JavaScript functions that listen to the user events.

Regarding the implementation of the ontology, all the levels and modules
of the ontology and the social networks monitoring tools have been imple-
mented separately into the Protégé editor in OWL to facilitate the reuse of
the proposed resources. The implemented resources are available in Zenodo [8].

7 Evaluation

We have conducted a set of activities that evaluates how CAMA satisfies the
different RQs defined (see Table 6).

Table 6: List of evaluation objectives

RQ# Evaluation objective
RQ1.1 Assess that CAMA provides the capability to add new monitoring tools with

minimal effort
RQ1.2 Assess that CAMA provides the capability to reconfigure the monitoring tools

automatically
RQ1.3 Assess that CAMA provides the capability to replace a failing monitoring tool

automatically
RQ2 Assess that CAMA provides the capability to access the monitored data using

a rich semantics method with structured elements defined by the ontology

5 https://dev.twitter.com/streaming/overview
6 https://developers.google.com/android-publisher/
7 https://rss.itunes.apple.com/

https://dev.twitter.com/streaming/overview
https://developers.google.com/android-publisher/
https://rss.itunes.apple.com/

20 Oscar Cabrera et al.

7.1 Evaluation of RQ1.1

This subsection describes the evaluation that assesses CAMA’s capability to
add new monitoring tools with minimal effort. Adding new monitoring tools
does not require any change in the code of the monitoring system, and only
requires registering it with its inputs and outputs in the ontology of CAMA.

To this aim, we have prepared an exercise to extend the ontology with
a new monitoring tool that was filled by different practitioners (see protocol
below). We assume that the new monitoring tool to be added already provides
a web service interface and, therefore, there is no need to programmatically
implement a web service wrapper (although it could be done if needed).

7.1.1 Protocol of the evaluation

To carry out this evaluation, we conducted the following tasks:

1. Definition of a scenario/exercise consisting of the development of a domain
ontology for conceptualizing monitoring tools where inputs, outputs and
general capabilities should be specified. The scenario was beta-tested by 2
researchers whose feedback helped to make the instrument fit for purpose.
Details of the scenario/exercise are provided in [9].

2. Selection of the participants to run the exercise. To conduct this task, we
recruited 18 researchers and practitioners from different research centers
and companies with different expertise and background on monitoring of
services and applications, and/or ontologies (this information is included
in Table 7).

3. Explanation to the participants of the aim of this practice, providing them
the supporting material described in Section 5.3, and also giving them
general considerations of the scenario.

4. Execution of the exercise by the participants.
5. Analysis of results, in terms of the time taken for them to build the ontology

and the quality of the result.

7.1.2 Results of the evaluation

The results of the activity are presented in Table 7 with the following variables:

– Lev.Ont. Level of expertise in modelling ontologies (from 1-low to 5-high).
– Lev.Mon. Level of expertise in monitoring systems (from 1-low to 5-high).
– T1. Time to read and understand the exercise and supporting material.
– T2. Time to elaborate and write down the solution.
– Usability. Subjective opinion given by the participant stating whether the

proposed ontology is usable or not to conceptualize any monitoring tool.
– Correctness. Quality of the model designed by the participant and eval-

uated by the researchers with possible values:
– Excellent. All needed classes and properties that maintain the model

consistent were specified.

A Context-Aware Monitoring Architecture 21

– Very good. All needed classes were specified; however, some property
(data or object) was not specified.

– Fair. The model is not entirely wrong, but inconsistencies were found.
– Poor. The model does not represent the classes and properties that we

expected, and several inconsistencies were found.
– Improvements. Subjective opinion through which the participant ex-

pressed whether the abstract layer of the proposed ontology (upper and
middle level classes) should be improved.

– Difficulties. Subjective opinion in which the participant expressed whether
s/he had difficulties to understand the exercise and supporting material.

Table 7: Results for the evaluation of adding new monitoring tools in the
ontology

ID L
e
v
.O

n
t

L
e
v
.M

o
n

P
a
r
ti

c
ip

a
n
ts

T
1

(s
e
c
o
n

d
s)

T
2

(s
e
c
o
n

d
s)

U
sa

b
il

it
y

C
o
r
r
e
c
tn

e
ss

Im
p

r
o
v
e
m

e
n
ts

D
iffi

c
u

lt
ie

s

P1 4 1 Researcher 390 853 Yes Very good No Yes
P2 4 1 Practitioner 300 1080 Yes Very good No No
P3 4 3 Practitioner 480 900 Yes Excellent No No
P4 3 3 Researcher 335 932 Yes Very good No No
P5 3 1 Researcher 607 716 Yes Very good Yes No
P6 3 1 Researcher 660 1320 Yes Very good Yes No
P7 3 2 Researcher 252 559 Yes Excellent Yes No
P8 3 2 Researcher 465 895 Yes Excellent Yes Yes
P9 3 4 Researcher 490 900 Yes Excellent No No
P10 3 3 Researcher 240 660 Yes Excellent No No
P11 2 3 Practitioner 240 600 Yes Very good No No
P12 2 3 Researcher 885 1116 Yes Very good No No
P13 2 1 Researcher 457 1822 Yes Fair No No
P14 2 5 Researcher 476 749 Yes Excellent No Yes
P15 1 1 Practitioner 921 840 Yes Very good No Yes
P16 1 2 Researcher 780 1020 Yes Very good No No
P17 1 3 Researcher 931 653 Yes Excellent No No
P18 1 1 Practitioner 220 861 Yes Very good No Yes

Visual representations of the results are depicted in Fig. 6 and Fig. 7,
grouping the results by Lev. Ont. and Lev. Mon., respectively.

The analysis of the results obtained from the empirical study are described
and classified as follows, considering the most relevant findings of Table 7:

– T1 vs Lev.Ont and Lev.Mon. We have analyzed the time to read
and understand the exercise and supporting material (T1) in a two-way
between-subjects ANOVA, with level of expertise in modelling ontologies
(Lev.Ont) and level of expertise in monitoring (Lev.Mon) as a between-
subjects variables. This ANOVA (see Table 8) tests whether there are (1)

22 Oscar Cabrera et al.

ID Lev. Ont Lev.Mon Participants T1 T2 Usability Correctness Improvements Difficulties
P1 4 1 Researcher 390 853 Yes Very good No Yes
P2 4 1 Practitioner 300 1080 Yes Very good No No
P3 4 3 Practitioner 480 900 Yes Excellent No No
P4 3 3 Researcher 335 932 Yes Very good No No
P5 3 1 Researcher 607 716 Yes Very good Yes No
P6 3 1 Researcher 660 1320 Yes Very good Yes No
P7 3 2 Researcher 252 559 Yes Excellent Yes No
P8 3 2 Researcher 465 895 Yes Excellent Yes Yes
P9 3 4 Researcher 490 900 Yes Excellent No No
P10 3 3 Researcher 240 660 Yes Excellent No No
P11 2 3 Practitioner 240 600 Yes Very good No No
P12 2 3 Researcher 885 1116 Yes Very good No No
P13 2 1 Researcher 457 1822 Yes Fair No No
P14 2 5 Researcher 476 749 Yes Excellent No Yes
P15 1 1 Practitioner 921 840 Yes Very good No Yes
P16 1 2 Researcher 780 1020 Yes Very good No No
P17 1 3 Researcher 931 653 Yes Excellent No No
P18 1 1 Practitioner 220 861 Yes Very good No Yes

ID Lev. Ont Lev.Mon Participants T1 T2 Usability Correctness Improvements Difficulties
P14 2 5 Researcher 476 749 Yes Excellent No Yes
P9 3 4 Researcher 490 900 Yes Excellent No No
P3 4 3 Practitioner 480 900 Yes Excellent No No
P4 3 3 Researcher 335 932 Yes Very good No No
P10 3 3 Researcher 240 660 Yes Excellent No No
P11 2 3 Practitioner 240 600 Yes Very good No No
P12 2 3 Researcher 885 1116 Yes Very good No No
P17 1 3 Researcher 931 653 Yes Excellent No No
P16 1 2 Researcher 780 1020 Yes Very good No No
P7 3 2 Researcher 252 559 Yes Excellent Yes No
P8 3 2 Researcher 465 895 Yes Excellent Yes Yes
P1 4 1 Researcher 390 853 Yes Very good No Yes
P2 4 1 Practitioner 300 1080 Yes Very good No No
P5 3 1 Researcher 607 716 Yes Very good Yes No
P6 3 1 Researcher 660 1320 Yes Very good Yes No
P13 2 1 Researcher 457 1822 Yes Fair No No
P15 1 1 Practitioner 921 840 Yes Very good No Yes
P18 1 1 Practitioner 220 861 Yes Very good No Yes

0

500

1000

1500

2000

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18

T1 T2

Lev.
Ont. 4

Lev.
Ont. 3

Lev.
Ont. 2

Lev.
Ont. 1

0

500

1000

1500

2000

P14 P9 P3 P4 P10 P11 P12 P17 P16 P7 P8 P1 P2 P5 P6 P13 P15 P18

T1 T2

Lev.
Mon.

5

Lev.
Mon.

4

Lev.
Mon.

3

Lev.
Mon.

2

Lev.
Mon.

1

Very
Good

(D)

Very
Good

Excel. Very
Good

Very
Good

(I)

Very
Good

(I)

Excel.
(I)

Excel.
(D,I)

Excel. Excel. Very
Good

Very
Good

Fair Excel.
(D)

Excel.
(D)

Very
Good

Excel. Very
Good

(D)

Excel.
(D)

Excel. Excel. Very
Good

Excel. Very
Good

Very
Good

Excel. Very
Good

Excel.
(I)

Excel.
(D,I)

Very
Good

(D)

Very
Good

Very
Good

(I)

Very
Good

(I)

Fair Excel.
(D)

Very
Good

(D)

(I): Improvements, (D): Difficulties

(I): Improvements, (D): Difficulties

(seconds)

(seconds)

Fig. 6: Results for the evaluation of adding new monitoring tools grouped by
Lev. Ont.

ID Lev. Ont Lev.Mon Participants T1 T2 Usability Correctness Improvements Difficulties
P1 4 1 Researcher 390 853 Yes Very good No Yes
P2 4 1 Practitioner 300 1080 Yes Very good No No
P3 4 3 Practitioner 480 900 Yes Excellent No No
P4 3 3 Researcher 335 932 Yes Very good No No
P5 3 1 Researcher 607 716 Yes Very good Yes No
P6 3 1 Researcher 660 1320 Yes Very good Yes No
P7 3 2 Researcher 252 559 Yes Excellent Yes No
P8 3 2 Researcher 465 895 Yes Excellent Yes Yes
P9 3 4 Researcher 490 900 Yes Excellent No No
P10 3 3 Researcher 240 660 Yes Excellent No No
P11 2 3 Practitioner 240 600 Yes Very good No No
P12 2 3 Researcher 885 1116 Yes Very good No No
P13 2 1 Researcher 457 1822 Yes Fair No No
P14 2 5 Researcher 476 749 Yes Excellent No Yes
P15 1 1 Practitioner 921 840 Yes Very good No Yes
P16 1 2 Researcher 780 1020 Yes Very good No No
P17 1 3 Researcher 931 653 Yes Excellent No No
P18 1 1 Practitioner 220 861 Yes Very good No Yes

ID Lev. Ont Lev.Mon Participants T1 T2 Usability Correctness Improvements Difficulties
P14 2 5 Researcher 476 749 Yes Excellent No Yes
P9 3 4 Researcher 490 900 Yes Excellent No No
P3 4 3 Practitioner 480 900 Yes Excellent No No
P4 3 3 Researcher 335 932 Yes Very good No No
P10 3 3 Researcher 240 660 Yes Excellent No No
P11 2 3 Practitioner 240 600 Yes Very good No No
P12 2 3 Researcher 885 1116 Yes Very good No No
P17 1 3 Researcher 931 653 Yes Excellent No No
P16 1 2 Researcher 780 1020 Yes Very good No No
P7 3 2 Researcher 252 559 Yes Excellent Yes No
P8 3 2 Researcher 465 895 Yes Excellent Yes Yes
P1 4 1 Researcher 390 853 Yes Very good No Yes
P2 4 1 Practitioner 300 1080 Yes Very good No No
P5 3 1 Researcher 607 716 Yes Very good Yes No
P6 3 1 Researcher 660 1320 Yes Very good Yes No
P13 2 1 Researcher 457 1822 Yes Fair No No
P15 1 1 Practitioner 921 840 Yes Very good No Yes
P18 1 1 Practitioner 220 861 Yes Very good No Yes

0

500

1000

1500

2000

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18

T1 T2

Lev.
Ont. 4

Lev.
Ont. 3

Lev.
Ont. 2

Lev.
Ont. 1

0

500

1000

1500

2000

P14 P9 P3 P4 P10 P11 P12 P17 P16 P7 P8 P1 P2 P5 P6 P13 P15 P18

T1 T2

Lev.
Mon.

5

Lev.
Mon.

4

Lev.
Mon.

3

Lev.
Mon.

2

Lev.
Mon.

1

Very
Good

(D)

Very
Good

Excel. Very
Good

Very
Good

(I)

Very
Good

(I)

Excel.
(I)

Excel.
(D,I)

Excel. Excel. Very
Good

Very
Good

Fair Excel.
(D)

Excel.
(D)

Very
Good

Excel. Very
Good

(D)

Excel.
(D)

Excel. Excel. Very
Good

Excel. Very
Good

Very
Good

Excel. Very
Good

Excel.
(I)

Excel.
(D,I)

Very
Good

(D)

Very
Good

Very
Good

(I)

Very
Good

(I)

Fair Excel.
(D)

Very
Good

(D)

(I): Improvements, (D): Difficulties

(I): Improvements, (D): Difficulties

(seconds)

(seconds)

Fig. 7: Results for the evaluation of adding new monitoring tools grouped by
Lev. Mon.

any differences between the T1’s means for each level of Lev.Ont, (2) any
differences between the T1’s means for each level of Lev.Mon, and (3) any
interaction between Lev.Ont and Lev.Mon. Results show that:
– The main effect of Lev.Ont on T1 was not significant, F (3, 6) = 1.015, p =

0.449. Thus, the time to read and understand the exercise and support-
ing material is independent from the level of expertise in modelling
ontologies.

– The main effect of Lev.Mon on T1 was not significant, F (3, 6) = 0.023, p =
0.995. Thus, the time to read and understand the exercise and support-
ing material is independent from the level of expertise in monitoring.

– The Lev.Ont:Lev.Mon interaction was not significant, F (5, 6) = 0.606, p =
0.700. Thus, the effects of levels of expertise in modelling ontologies and
levels of expertise in monitoring combined differentially do not affect
the time to read and understand the exercise and supporting material.

However, given the small number of observations, we have to be careful
with drawing conclusions from these results.

A Context-Aware Monitoring Architecture 23

Table 8: Results of ANOVA Test - T1 vs Lev.Ont and Lev.Mon

Df Sum Sq Mean Sq F value Pr(>F)
Lev.Ont 3 246750 82250 1.015 0.449
Lev.Mon 3 5486 1829 0.023 0.995
Lev.Ont:Lev.Mon 5 245730 49146 0.606 0.700
Residuals 6 486365 81061

– T2 vs Lev.Ont and Lev.Mon. We have analyzed the time to elaborate
and write the solution (T2) in a two-way between-subjects ANOVA, with
level of expertise in modelling ontologies (Lev.Ont) and level of expertise
in monitoring (Lev.Mon) as a between-subjects variables. This ANOVA
(see Table 9) tests whether there are (1) any differences between the T2’s
means for each level of Lev.Ont, (2) any differences between the T2’s means
for each level of Lev.Mon, and (3) any interaction between Lev.Ont and
Lev.Mon. Results show that:
– The main effect of Lev.Ont on T2 was not significant, F (3, 6) = 0.675, p =

0.598. Thus, the time to elaborate and write down the solution did not
differ between the different levels of expertise in modelling ontologies.

– The main effect of Lev.Mon on T2 was not significant, F (3, 6) = 1.693, p =
0.267. Thus, the time to elaborate and write down the solution did not
differ between the different levels of expertise in monitoring.

– The Lev.Ont:Lev.Mon interaction was not significant, F (5, 6) = 1.563, p =
0.307. Thus, the effects of levels of expertise in modelling ontologies and
levels of expertise in monitoring combined differentially do not affect
the time to elaborate and write down the solution.

However, given the small number of observations, we have to be careful
with drawing conclusions from these results.

Table 9: Results of ANOVA Test - T2 vs Lev.Ont and Lev.Mon

Df Sum Sq Mean Sq F value Pr(>F)
Lev.Ont 3 146872 48957 0.675 0.598
Lev.Mon 3 368212 122737 1.693 0.267
Lev.Ont:Lev.Mon 5 555589 111118 1.533 0.307
Residuals 6 434961 72494

– Correctness vs. difficulties. We have evaluated the correlation between
the quality level of the model designed by the participants (correctness)
and the difficulties that they perceived while reading the exercise and sup-
porting material. In this case, as correctness and difficulties are categori-
cal variables, we conduct a Pearson’s Chi-Square test of independence to
examine the relation between correctness and difficulties (see Table 10).
Results show that the relation between these variables was not significant,
X2(2, N = 18) = 0.41143, p = 0.8141. There is no correlation between the
quality level of the model designed by the participants (correctness) and

24 Oscar Cabrera et al.

Table 10: Results of Pearson’s Chi-square test - correctness vs difficulties

Pearson’s Chi-squared test
data: COvsDItable
X-squared = 0.41143, df = 2, p-value = 0.8141

the difficulties that they perceived while reading the exercise and support-
ing material. Additionally, as it can be seen in the correctness criterion,
the level of expertise in modelling ontologies (Lev.Ont) and monitoring sys-
tems (Lev.Mon) was not an important factor to impact negatively on the
correctness of the models. In fact, only one participant (with Lev.Ont=2
and Lev.Mon=1) provided a solution that was not considered very good or
of excellent quality. Although the model was not entirely wrong, some in-
consistencies were found in his solution. These results allow us to conclude
that the ontology is easy to extend and the resulting extended ontology is,
in most cases, of very high quality.

– Usability. The findings based on the results of usability show that 100%
of the participants, regardless of their expertise, found the proposed on-
tology useful, easily extensible and reusable, providing the concepts and
relationships needed to conceptualize any monitoring tool. Beyond the aid
of the instructions and supporting material that we have made available to
the participants, we consider that this satisfactory result is due to the dif-
ferent features offered by the proposed ontology highlighting the intuitive
and easy representation of entities and context information to characterize
a monitoring tool, the precise and concise primitives needed to represent a
monitoring tool, the short size that makes it easy to handle, and the three-
level approach taken in a previous work [11] for abstracting the primitives
and facilitate the extension of the model.

In addition to the quantitative analysis, we conducted a qualitative anal-
ysis asking participants to provide feedback on how the presented ontology
could be improved. Four participants (22%) provided a suggestion to improve
the proposed model. Some suggestions were about adding more attributes
(i.e., data type properties) to describe this kind of monitoring tools. However,
this suggestion does not affect the proposed ontology since it depends on the
scenario and the modeler to include more or less attributes. Another sugges-
tion was the creation of a middle level class named “MarketplaceService” as a
subclass of “CompService” since a participant did not consider a marketplace
service a type of “SocialNetworkingServices”. We consider that such sugges-
tion manifest the reusability capabilities of the proposed ontology to model
any type of monitoring tool. It is worth noting that we considered correct both
solutions (the proposed model and the suggested improvement) as long as this
differentiation remains consistent with the rest of the model.

A Context-Aware Monitoring Architecture 25

7.2 Evaluation of RQ1.2

This subsection describes the evaluation that assesses CAMA’s capability to
reconfigure the monitoring tools automatically. It is worth to remark that the
analysis and decision-making process that would trigger the adaptation is out
of the scope of this work. Here we evaluate how CAMA enacts a reconfiguration
assuming that an external component has already conducted an analysis and
decision-making process that has resulted in a reconfiguration need.

The use case selected for this evaluation is related to COVID-19. In par-
ticular, the reconfiguration of monitors to gather COVID-19 related messages
shared in social media, and the reconfiguration of monitors that gather reviews
of mobile apps related to COVID-19.

7.2.1 Protocol of the evaluation

The protocol of this evaluation is as follows:

1. Selection of monitoring tools: The monitoring tools selected for this
evaluation are the ones already implemented which had reconfiguration
capabilities. Namely, Twitter, GooglePlay and AppStore (as introduced in
Section 4). In contrast, the monitoring tool of HTML clickstreams was
not tested, as in its current implementation, this monitoring tool does not
provide any parameters to reconfigure.

2. Number of reconfiguration executions: For each monitoring tool, we
need to execute n different random reconfigurations at runtime, being n
the number of executions required for statistical significance. To obtain
such n, we used the following formula [5]:

n =
Z2

αNpq
e2(N−1)+Z2

αpq

where:
– n: is the sample size needed. In our case, it is the number of reconfigu-

ration executions required.
– Zα: is a constant that depends on the confidence level desired in the

experiment. For a typically used 95% of confidence, Zα is 1.96.
– N : is the population size. In our case, the total number of reconfigura-

tions that could be executed is unconstrained. Hence, N = +∞.
– e: is the sample error accepted for the evaluation. In our experiment,

we considered 0.1.
– p and q: are the probability of success and failure respectively. We used

the typical value of 0.5 for each of them.
Since the value of N is +∞, the formula results in a +∞/−∞, which is
undetermined. To resolve such indetermination we applied limit theory.

limN→+∞
Z2

αNpq
e2(N−1)+Z2

αpq
=

Z2
αpq
e2 = 96.04

The resulting number of reconfigurations to execute is 96.04. We decided
to round that number up to 100.

26 Oscar Cabrera et al.

3. Frequency of reconfigurations: We have executed the experiment in
several iterations, where every iteration consists of the 100 reconfigurations
per monitoring tool previously mentioned. In each iteration we used a dif-
ferent frequency of reconfiguration. In the first iteration, we started with
a frequency of one reconfiguration per second for the Twitter monitoring
tool, and one reconfiguration every 250 ms for the GooglePlay and App-
Store monitoring tools. On each iteration, we reduced the time slot, until
reaching 1 reconfiguration every 100 ms for Twitter, and 1 reconfiguration
every 50 ms for GooglePlay and AppStore.

4. Number of monitoring tools: We have executed the experiment in
several iterations (on top of the iterations previously described), using in
each of these iterations a different number of monitoring tools running in
parallel. In the first iteration, we started the experiment with 5 running
monitoring tools (i.e., 5 monitoring tools being reconfigured in parallel 100
times, leading to 500 reconfigurations in the first iteration). On each iter-
ation, we increased the number of running monitoring tools by 5, hence,
subsequent iterations had 10, 15, 20, etc. monitoring tools running in par-
allel.

5. Parameters to reconfigure: Each reconfiguration changes all the param-
eters that can be reconfigured for that monitoring tool. For the Twitter
monitoring tool, they are the timeslot and keywords. For GooglePlay and
AppStore monitoring tools, they are the timeslot and App IDs. To set up
100 randomly generated configurations, we generated the time slots ran-
domly from 1 to 10s (i.e. the time slot of the monitors to gather the data,
not to be confused with the time slot of the reconfigurations in the ex-
periment). For the Twitter monitoring tool, the keywords were obtained
from the list of keywords used by Twitter in the official COVID-19 stream
endpoint, which consists of 564 keywords related to COVID-198. Finally,
for the GooglePlay and AppStore monitoring tools, the apps were obtained
from a list of official contact tracing apps of different countries. The de-
tailed list of apps is available at [9].

6. Measurements: For each reconfiguration, we measure the time it takes
to complete.

7. Participants conducting the experiment: The evaluation was exe-
cuted by the first two authors of this paper guided by their supervisors
(the last two authors of the paper).

8. Infrastructure: We deployed the monitoring tools in a virtual machine
with 2.46 GHz CPU (x2), 4 GB RAM and 200 GB HDD.

The details and fine-grained data of this experiment is located at [9].

7.2.2 Results of the evaluation

Here we present the results of the evaluation following the protocol described
previously. We present the average response times to reconfigure the moni-

8 https://developer.twitter.com/en/docs/labs/covid19-stream/filtering-rules

https://developer.twitter.com/en/docs/labs/covid19-stream/filtering-rules

A Context-Aware Monitoring Architecture 27

tors for each time slot and number of monitoring tools being reconfigured in
parallel.

0

0.5

50

1

10045

1.5

re
sp

on
se

 ti
m

e
(m

s)

104

20040

2

30035

2.5

40030

parallel executions time slot

50025 60020 70015 80010 900
5 1000

Fig. 8: Average response times to reconfigure Twitter monitoring tools

0

2

50

104

re
sp

on
se

 ti
m

e
(m

s)

4

45

6

40
35

30

parallel executions

25 50
20 100

time slot

15015
20010

2505

Fig. 9: Average response times to reconfigure GooglePlay monitoring tools

The results of reconfiguring the Twitter monitoring tools is presented in
Fig. 8. The results show that CAMA is able to reconfigure simultaneously
up to 15 monitors with a time slot of 100 ms smoothly. Between 20 and 25
monitors being reconfigured at the same time, the shortest time slot for smooth
reconfigurations is at 200 ms. With 30 monitors, the limit is at 300 ms, whereas
between 35 and 45 monitors, such limit is at 400 ms. With 50 parallel monitors,
CAMA can handle reconfigurations with a time slot of up to 600ms (i.e., it is
able to reconfigure 50 monitors simultaneously every 600 ms).

28 Oscar Cabrera et al.

0

2

50

4

104

re
sp

on
se

 ti
m

e
(m

s)

6

45

8

40
35

30

parallel executions

25 50
20 100

time slot

15015
20010

2505

Fig. 10: Average response times to reconfigure AppStore monitoring tools

The results of reconfiguring the GooglePlay and AppStore monitoring tools
are presented in Fig. 9 and Fig. 10 respectively. For the GooglePlay monitoring
tools, CAMA is able to reconfigure up to 20 monitors simultaneously with a
time slot of 50 ms. Between 25 and 45 monitors, CAMA is able to reconfigure
them smoothly with a time slot of 100 ms, whereas with 50 monitors, the
response time starts to increase significantly. For the AppStore monitoring
tools, CAMA can reconfigure up to 30 monitors simultaneously with a time
slot of 50 ms. Between 35 and 40 monitors, CAMA is able to reconfigure them
with a time slot of 100 ms. Finally, with 45 or more monitors, the response
time starts to increase significantly.

Finally, it is worth to remark that, if needed, the performance limitations
can be mitigated by running the system in a more powerful machine or in
multiple servers applying load balancing techniques.

7.3 Evaluation of RQ1.3

In this subsection, we describe the evaluation that assesses CAMA’s capability
to replace a failing monitoring tool automatically. It is worth to remark that
the analysis on whether a monitoring tool is failing or not is out of scope of
this evaluation. Here we evaluate how CAMA switches from one monitoring
tool to another, assuming that an external component has detected a failing
monitoring tool.

7.3.1 Protocol of the evaluation

The protocol of this evaluation is as follows:

1. Selection of monitoring tools: The monitoring tools used to replace
their measure instruments are the ones for GooglePlay and AppStore, as

A Context-Aware Monitoring Architecture 29

these two monitoring tools are the only ones that have more than one
measure instrument at the current state of implementation. The measure
instruments for GooglePlay are appTweak and googlePlayAPI, whereas
the measure instruments for AppStore are appTweak and iTunesAPI.

2. Number of reconfiguration executions: As in the previous experiment,
the number of required executions for statistical significance are 100. For
each monitoring tool, we execute 100 replacements from a measure instru-
ment to its alternative.

3. Frequency of reconfigurations: As in the previous experiment, we
have executed several iterations using a different frequency for the measure
instrument replacements in each iteration. We started from one measure
instrument replacement every 250 ms and reduced the time slot on every
iteration until reaching one measure instrument replacement every 50 ms.

4. Number of monitoring tools: We have executed the experiment in sev-
eral iterations (on top of the iterations previously described), using in each
of these iterations a different number of monitoring tools with their mea-
sure instruments being replaced in parallel, starting from 5 until reaching
50.

5. Parameters to reconfigure: We replace the measure instruments from
the original measure instrument to the alternative, and vice versa. Since
such replacements need to take place in a running configuration we use the
same randomly generated configurations used in the previous experiment.

6. Measurements: For each replacement, we measure the time to complete
the replacement.

7. Participants conducting the experiment: As in the previous exper-
iment, the evaluation is executed by the first two authors of this paper
guided by their supervisors (the last two authors of the paper).

8. Infrastructure: As in the previous experiment, we deployed the monitor-
ing tools in a virtual machine with 2.46 GHz CPU (x2), 4 GB RAM and
200 GB HDD.

The details and fine-grained data of this experiment is located at [9].

7.3.2 Results of the evaluation

Here we present the results of the evaluation following the protocol described
previously.

The results of replacing a measure instrument is presented in Fig. 11 for
the GooglePlay monitoring tool and Fig. 12 for the AppStore.

For the GooglePlay monitoring tool, the results show that CAMA is capa-
ble of replacing the measure instrument of up to 15 monitoring tools in parallel
every 50 ms. For 20 to 50 monitoring tools, CAMA is capable of replacing all
their measure instruments in parallel every 100ms with an adequate response
time.

For the AppStore monitoring tool, CAMA has been able to replace the
measure instruments of up to 30 monitoring tools in parallel every 50 ms. For

30 Oscar Cabrera et al.

35 to 45 monitoring tools, CAMA is capable of replacing all their measure
instruments every 100ms, whereas with 50 monitors, the response time starts
to degrade quickly. Nevertheless, we argue that in an environment where this
amount of replacements are required, the system can be deployed in multiple
servers applying load balancing techniques.

0

1

50

re
sp

on
se

 ti
m

e
(m

s)

104

2

45

3

40
35

30

parallel executions

25 50
20 100

time slot

15015
20010

2505

Fig. 11: Average response times to replace a Measure Instrument of the Google-
Play monitoring tool

0

2

50

4

104

re
sp

on
se

 ti
m

e
(m

s)

45

6

40
35

30

parallel executions

25 50
20 100

time slot

15015
20010

250

Fig. 12: Average response times to replace a Measure Instrument of the App-
Store monitoring tool

A Context-Aware Monitoring Architecture 31

Table 11: SPARQL query for retrieving the list of monitors and their status
by configuration

SPARQL query:
SELECT ?MonitorsList ?MServices ?MonitoringInstances ?Status
?AppIDs
WHERE {
?MonitorsList e:isMonitoringToolOf ?SocialNetworkingServices .
?MonitorsList e:isMonitoringToolOf ?MServices .
?MonitorsList e:hasConfigurationProfile ?MonitoringInstances .
?MonitoringInstances e:confStatus ?Status .
?MonitoringInstances e:appID ?AppIDs
}
MonitorsList MServices MonitoringInstances Status AppIDs
GooglePlayAPI MarketPlaces GooglePlayConfProf1 On be.sciensano.

coronalert
GooglePlayAPI MarketPlaces GooglePlayConfProf2 Off com.NIC.

covid19
GooglePlayAPI MarketPlaces GooglePlayConfProf3 On cz.covid19cz.

erouska
GooglePlayAPI MarketPlaces GooglePlayConfProf4 On com.gha.

covid.tracker
SocialMentionAPI Twitter SocialMentionConfProf1 On
TwitterAPI Twitter TwitterConfProf1 Off
TwitterAPI Twitter TwitterConfProf2 On
AppTweakAPI MarketPlaces AppTweakConfProf1 On com.

hamagen
AppTweakAPI MarketPlaces AppTweakConfProf2 On com.moc.gh
AppTweakAPI MarketPlaces AppTweakConfProf3 Off 1503717224
iTunesAPI MarketPlaces iTunesConfProf1 On 1499780720
iTunesAPI MarketPlaces iTunesConfProf2 On 1511740371

7.4 Evaluation of RQ2

In this subsection, we summarize the evaluation that assesses CAMA’s capa-
bility to access the monitored data using a rich semantics method with the
elements structured and defined through an ontology.

We evaluate that the knowledge represented in the ontology is consis-
tent with its scope, i.e., that the ontology has enough information to answer
the competence questions specified in Section 5. The expected results should
demonstrate that the levels and modules, the extension of the ontology, and
the conceptualization of the domain ontology are correct and consistent. After
applying such evaluation, the results showed that the definition of the domain
ontology was correct and consistent with the required functional requirements.
The reader may refer to the annex [9] for more details about the protocol and
results of the evaluation, which have been omitted due to space limitations.

The ontology of CAMA has mainly two roles: the role of responding the
competence questions defined in Section 5.2 through queries in SPARQL, and
the role of reasoning for deducing new context knowledge. In the first role,
CAMA triggers a SPARQL query automatically through its monitoring or-
chestrator component when a Developer/SysAdmin makes a request of what

32 Oscar Cabrera et al.

to collect. Humans also can carry out such role manually outside the archi-
tecture of CAMA, i.e., SPARQL queries can be done manually directly to the
ontology by using ontology editors (e.g., Protege). Whereas the second role
can be executed only automatically by the internal rules, semantics and rea-
soner engines implemented in the ontology. For instance, the SPARQL query
showed in Table 11 can be executed manually by humans or automatically by
CAMA to retrieve the list of monitors registered in the ontology, the moni-
tored services related to the list of monitors, the monitoring instances with
their status (i.e., if an instance of a monitor is working or not) and the list
of apps monitored by the instances. In the second role, the ontology can au-
tomatically detect if a monitoring tool of the SocialNetworksMonitoring class
is not working properly (e.g., by detecting if the data items retrieved by a
specific instance of the SocialNetworksMonitoringConfProf class are null), or
if a reconfiguration of the keywords are needed because there are too many
data items being collected.

7.5 Threats to validity

In this section we discuss the threats to validity of our evaluation and the
actions we have taken to mitigate them.

1. Internal validity. The internal validity of the evaluation concerns our
ability to draw conclusions from the conducted experiments and the out-
comes observed. To mitigate such threat we applied several statistical meth-
ods. In the evaluation of RQ1.1, we applied ANOVA and Chi-square tests
to assess if the differences observed were statistically significant. In the
evaluation of RQ1.2 and RQ1.3, we used statistical methods to compute
the required number of executions for statistical significance, and executed
our experiments accordingly.

2. Construct validity. In the evaluation of RQ1.1, there could be a potential
bias of the study participants when answering the questions. To mitigate
such risk, study participants were not limited to members of the EU project
SUPERSEDE, but other researchers and practitioners from outside the
consortium participated also. On the other hand, results of the evaluation
were not part of any deliverable or document of the project, assessing
that there were no conflicts of interest by the participants belonging to
the consortium. In the evaluation of RQ1.2 and RQ1.3, we generated and
executed the reconfigurations parameters randomly, to avoid any possible
bias on the characteristics of such reconfigurations.

3. Conclusion validity. As remarked in the evaluation of RQ1.1, due to
the small number of observations, we have to be careful with drawing
conclusions from the results of the evaluation of such RQ. RQ1.2 and RQ1.3
do not present this threat.

4. External validity. External validity refers to the generalizability of our
conclusions. In RQ1.1, we have evaluated how participants could extend

A Context-Aware Monitoring Architecture 33

the ontology to model other monitoring tools, such as a marketplace mon-
itoring tool. Extending the ontology for other monitoring tools would be
analogous, but further work is required to assess that extending the on-
tology to other monitoring tools would provide similar results. For RQ1.2
and RQ1.3 we have executed our experiments for the GooglePlay and App-
Store monitoring tools, as they are the only ones that have more than one
measure instrument at the current state of implementation. Further exper-
iments with more monitoring tools and measure instruments are needed to
ensure the external validity of our proposal. In any case, for large-scale sys-
tems demanding high amount of resources, we could apply load-balancing
techniques to prevent overloads.

8 Conclusions

In this paper, we have presented CAMA, a context-aware monitoring archi-
tecture for context acquisition, which builds upon a context ontology for mod-
elling inputs, outputs and capabilities of monitoring tools, and data manage-
ment. Such contribution has been developed for supporting highly dynamic
environments that affect different entities including the monitoring infrastruc-
ture, services and applications. For this purpose, CAMA answers the research
questions of the paper as follows:

RQ1. CAMA provides the capabilities of replacing, adding, reconfiguring and
adapting monitoring tools by means of a decoupled architecture based on ser-
vices, which can be orchestrated with the support of an ontology that includes
the reasoning capabilities and the provisioning of a clear schema of parameters
to configure each monitoring tool integrated in the architecture. CAMA fol-
lows SOA principles, enabling extensions to the architecture to obtain, process
and store the data through different methods and techniques.

RQ2. CAMA provides the capability to access the monitored data using a
rich semantics method by means of a context domain ontology. Such ontology
provides a unified and representative schema of the monitored data produced
by the monitoring tools and their related configuration instances.

To demonstrate the feasibility and potential of the proposed approach, we
investigated on real requirements from three companies. On top of that, we
evaluated the feasibility of the proposed ontology of CAMA by means of an
empirical study where different criteria were evaluated. We concluded that
the time consumed by different participants for modelling monitoring tools
is really low. Furthermore, the level of expertise in both modelling ontologies
and monitoring systems was not an important variable to manage the proposed
ontology and supporting material.

One of the main limitations of context-aware monitoring is that it is not
possible to know a priori all the possible contexts in which it might be used.

34 Oscar Cabrera et al.

To tackle this limitation, we have designed the architecture of CAMA and its
ontology in the most generic way possible. On the one hand, the architecture
can add new monitoring tools by means of a decoupled architecture. On the
other hand, the ontology can be extended by using different levels of abstrac-
tion. Nevertheless, the current implementation has only been tested for Social
Network monitoring and further validation is needed.

As future work, we will integrate more types of physical and logical mon-
itoring tools, considering complex scenarios of Smart Cities and Internet of
Things. Additionally, we are planning to support different context-aware sce-
narios including ranking and adaptation of services and applications; evolution
and adaptation of personalized software; and improving the QoE of the user.

Acknowledgements This work was partially supported by the Spanish project GENESIS
TIN2016-79269-R, and SUPERSEDE project, funded by the European Union’s Information
and Communication Technologies Programme (H2020) under grant agreement no 644018.

References

1. Ahmed TM, et al. (2016) Studying the effectiveness of application perfor-
mance management (apm) tools for detecting performance regressions for
web applications: An experience report. In: MSR’16

2. Alenezi M (2020) Ontology-Based Context-Sensitive Software Security
Knowledge Management Modeling. International Journal of Electrical and
Computer Engineering 10(6)

3. Alirezaie M, et al. (2017) An ontology-based context-aware system for
smart homes: E-care@home. Sensors 17(7)

4. Baldauf M, Dustdar S, Rosenberg F (2007) A Survey on Context-Aware
Systems. International Journal of Ad Hoc Ubiquitous Computing 2(4)

5. Berenson ML (1996) Basic Business Statistics: Concepts and Applications,
6th edn. Pearson

6. Bettini C, Maggiorini D, Riboni D (2007) Distributed Context Monitoring
for the Adaptation of Continuous Services. World Wide Web 10(4)

7. Brebner PC (2016) Automatic performance modelling from application
performance management (apm) data: An experience report. In: ICPE’16

8. Cabrera O, et al. (2021) A Context-Aware Monitoring Architecture for
Supporting System Adaptation and Reconfiguration - Software code and
ontology. https://doi.org/10.5281/zenodo.4482144

9. Cabrera O, et al. (2021) A Context-Aware Monitoring Architecture for
Supporting System Adaptation and Reconfiguration - Supporting mate-
rial. https://doi.org/10.5281/zenodo.4478866

10. Cabrera O, Franch X, Marco J (2017) Ontology-based context modeling
in service-oriented computing: A systematic mapping. Data & Knowledge
Engineering 110

https://doi.org/10.5281/zenodo.4482144
https://doi.org/10.5281/zenodo.4478866

A Context-Aware Monitoring Architecture 35

11. Cabrera O, Franch X, Marco J (2019) 3LConOnt: a three-level ontology
for context modelling in context-aware computing. Software & Systems
Modeling 18(2)

12. Cho K, et al. (2008) HiCon: a hierarchical context monitoring and com-
position framework for next-generation context-aware services. IEEE Net-
work 22(4)

13. Copetti A, et al. (2009) Intelligent context-aware monitoring of hyperten-
sive patients. In: PervasiveHealth’09

14. Esposito A, et al. (2008) A Framework for Context-Aware Home-Health
Monitoring. In: UIC’08

15. Gregor S, Hevner AR (2013) Positioning and Presenting Design Science
Research for Maximum Impact. MIS Quarterly 37(2)

16. Gu T, Pung HK, Zhang DQ (2005) A service-oriented middleware for
building context-aware services. Journal of Network and Computer Appli-
cations 28(1)

17. Gudivada VN, Baeza-Yates R, Raghavan VV (2015) Big Data: Promises
and Problems. Computer 48(03)

18. Heger C, et al. (2017) Application performance management: State of the
art and challenges for the future. In: ICPE’17

19. Hong JY, Suh EH, Kim SJ (2009) Context-aware systems: A literature
review and classification. Expert Systems with Applications 36(4)

20. Jatoba LC, et al. (2008) Context-aware mobile health monitoring: Evalu-
ation of different pattern recognition methods for classification of physical
activity. In: IEMBS’08

21. Kang S, et al. (2008) SeeMon: Scalable and Energy-Efficient Context Mon-
itoring Framework for Sensor-Rich Mobile Environments. In: MobiSys’08

22. Kang S, et al. (2010) A Scalable and Energy-Efficient Context Monitoring
Framework for Mobile Personal Sensor Networks. IEEE Transactions on
Mobile Computing 9(5)

23. Kang S, et al. (2010) Orchestrator: An active resource orchestration frame-
work for mobile context monitoring in sensor-rich mobile environments. In:
PerCom’10

24. Kishore R, Sharman R (2004) Computational Ontologies and Information
Systems I: Foundations. Comm of the Association for Inf Systems 14

25. Lee Y, et al. (2012) CoMon: Cooperative Ambience Monitoring Platform
with Continuity and Benefit Awareness. In: MobiSys’12

26. Lee Y, et al. (2012) MobiCon: A Mobile Context-Monitoring Platform.
Communications of the ACM 55(3)

27. Lee Y, et al. (2012) MobiCon: Mobile context monitoring platform: In-
corporating context-awareness to smartphone-centric personal sensor net-
works. In: SECON’12

28. Lee Y, et al. (2016) CoMon+: A Cooperative Context Monitoring System
for Multi-Device Personal Sensing Environments. IEEE Transactions on
Mobile Computing 15(8)

29. Mileo A, et al. (2010) A Logical Approach to Home Healthcare with In-
telligent Sensor-Network Support. The Computer Journal 53(8)

36 Oscar Cabrera et al.

30. Mileo A, Merico D, Bisiani R (2010) Support for context-aware monitoring
in home healthcare. Journal of Ambient Int and Smart Environments 2(1)

31. Murao K, et al. (2009) A Context-Aware System That Changes Sensor
Combinations Considering Energy Consumption. In: Pervasive’09

32. Murao K, Terada T, Nishio S (2010) Toward Construction of Wearable
Sensing Environments. In: Wireless Sensor Network Technologies for the
Information Explosion Era, Springer

33. Oriol M, et al. (2018) Fame: Supporting continuous requirements elicita-
tion by combining user feedback and monitoring. In: RE’18

34. Papazoglou MP, van den Heuvel WJ (2007) Service oriented architectures:
approaches, technologies and research issues. The VLDB Journal 16(3)

35. Perera C, et al. (2014) Context Aware Computing for The Internet of
Things: A Survey. IEEE Communications Surveys Tutorials 16(1)

36. Pinto HS, Martins JP (2001) A methodology for ontology integration. In:
K-CAP’2001

37. Rhayem A, Mhiri MBA, Gargouri F (2020) Semantic web technologies for
the internet of things: Systematic literature review. Internet of Things 11

38. Riva O (2006) Contory: A Middleware for the Provisioning of Context
Information on Smart Phones. In: Middleware’06

39. Shen Y, et al. (2020) Implementation and application of APM monitoring
system under big data of power grid. IOP Conference Series: Materials
Science and Engineering 719

40. Sim J, Lee Y, Kwon O (2014) Context-aware enhancement of personal-
ization services: A method of power optimization. Expert Systems with
Applications 41(13)

41. Uschold M, Gruninger M (1996) Ontologies: principles, methods and ap-
plications. Knowledge Engineering Review 11(2)

42. Villegas NM, Müller HA (2010) Context-Driven Adaptive Monitoring for
Supporting SOA Governance. In: MESOA’10

43. Villegas NM, et al. (2010) DYNAMICO: A reference model for governing
control objectives and context relevance in self-adaptive software systems.
In: Software Engineering for Self-Adaptive Systems II

44. Villegas NM, Müller HA, Tamura G (2011) Optimizing run-time SOA
governance through context-driven SLAs and dynamic monitoring. In:
MESOCA’11

45. Zavala E, Franch X, Marco J (2019) Adaptive monitoring: A systematic
mapping. Information and Software Technology 105

	Introduction
	State of the art
	Research Method
	CAMA: A Software Architecture for Context-aware Monitoring
	Context ontology for CAMA
	Implementation
	Evaluation
	Conclusions

