
DISCREPANCY OF MINIMAL RIESZ ENERGY POINTS

JORDI MARZO AND ALBERT MAS

Abstract. We find upper bounds for the spherical cap discrepancy of the set of
minimizers of the Riesz s-energy on the sphere Sd. Our results are based on bounds
for a Sobolev discrepancy introduced by Thomas Wolff in an unpublished manuscript
where estimates for the spherical cap discrepancy of the logarithmic energy minimiz-
ers in S2 were obtained. Our result improves previously known bounds for 0 ≤ s < 2
and s 6= 1 in S2, where s = 0 is Wolff’s result, and for d − t0 < s < d with t0 ≈ 2.5
when d ≥ 3 and s 6= d− 1.

1. Introduction and main results

For an N point set XN = {x1, . . . , xN} on the unit sphere Sd = {x ∈ Rd+1 : |x| = 1}
the Riesz s-energy of XN is given by

Es(XN) =
∑
i 6=j

1

|xi − xj|s
if 0 < s < d,

and the logarithmic energy of XN is given by

E0(XN) =
∑
i 6=j

log
1

|xi − xj|
.

For 0 ≤ s < d, we denote the minimal Riesz and logarithmic energy achieved by an N
point set by

Es(N) = inf
XN

Es(XN), (1.1)

where XN runs through the N point sets XN ⊂ Sd.
Problems related to these minimal energies or with their minimizers, in the spherical

and in other settings, have been extensively studied, see the recent monograph [6]. It
is well known that the continuous Riesz and logarithmic energy of the normalized
surface measure on the sphere gives the constant of the leading term of the asymptotic
expansion of the normalized discrete energy. Moreover, due to the work of a number
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of authors, see [9, 10] and references therein, it is known that for d ≥ 2 and 0 < s < d
there exist constants C, c > 0 such that

− cN1+s/d ≤ Es(N)− Es(σ̃)N2 ≤ −CN1+s/d (1.2)

for N ≥ 2, where

Es(σ̃) =

∫
Sd

∫
Sd

1

|x− y|s
dσ̃(x) dσ̃(y) = 2d−s−1 Γ

(
d+1

2

)
Γ
(
d−s

2

)
√
πΓ
(
d− s

2

) ,

and σ̃ is the normalized surface measure in Sd given by the relation σ = ωdσ̃, where

σ is the surface measure on the sphere and ωd = σ(Sd) = 2π
d+1
2 /Γ

(
d+1

2

)
. For the

logarithmic case s = 0 it is known that

E0(N) = E0(σ̃)N2 − 1

d
N logN +O(N), (1.3)

where

E0(σ̃) =

∫
Sd

∫
Sd

log
1

|x− y|
dσ̃(x) dσ̃(y) =

ψ0(d)− ψ0(d/2)

2
− log 2,

and ψ0 denotes the digamma function.
Several conjectures about the lower order terms in the Riesz and logarithmic as-

ymptotic expansions (1.2) and (1.3) and, in some particular dimensions, about the
value of the coefficients appearing in the expansion can be found in the literature; see
[3, 5, 9, 10, 28, 31].

There are still many fundamental unresolved questions about the distribution of the
minimizers. Recall that XN = {x1, . . . , xN} ⊂ Sd is well-separated if

min
i 6=j
|xi − xj| ≥ CN−

1
d

for some constant C > 0, [10]. The minimizers are known to be well-separated if
0 ≤ s < 2 for d = 2 and d− 2 ≤ s < d for d ≥ 3, but for 0 ≤ s < d− 2 and d ≥ 3, the

best bound is O(N−
1
s+2 ), [12, 16, 17, 23].

It is classical that minimizers of the Riesz and the logarithmic energy on Sd are
asymptotically uniformly distributed, meaning that

lim
N→+∞

1

N

N∑
j=1

f(xj) =

∫
Sd
f(x) dσ̃(x) for all f ∈ C(Sd),

or, equivalently, that the sum of Dirac delta measures µN = 1
N

∑N
j=1 δxj converges in

the weak-∗ topology to the normalized surface measure σ̃. It is also a well known fact
that the N point sets in a sequence {XN}N are asymptotically uniformly distributed
if and only if the spherical cap discrepancy converges to zero

lim
N→+∞

sup
x∈Sd,r>0

∣∣∣#(XN ∩Dr(x))

N
− σ̃(Dr(x))

∣∣∣ = 0,

where Dr(x) = {y ∈ Sd : |x − y| < r} is a spherical cap with center x ∈ Sd and
(Euclidean) distance r > 0. Loosely speaking, the speed of this convergence is a
measure of how well distributed are the N point sets in the sequence {XN}N .
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Our objective is to provide upper bounds for the spherical cap discrepancy ofN point
sets of minimizers of the Riesz and logarithmic energy. Previous work concerning this
problem deals basically with the Coulomb or Newtonian case s = d − 1. Other Riesz
parameters, including the logarithmic case, have been considered in the literature.
However, results are far less precise and far from complete [25]; specifically, see [27]
for s < 0 and [14, 15] for s = d.

The particularity of the case s = d − 1 can be seen from the fact that, for d ≥ 2,
|x|1−d is (modulo a constant) the fundamental solution of the Laplacian on Rd+1

−∆(|x|1−d) = (d− 1)ωdδ0,

where δ0 is a Dirac delta at the origin. Points which minimize the (d − 1)-energy
are called Fekete points and, in this setting, the known results in the literature are
typically valid for sufficiently regular d-dimensional surfaces in Rd+1, not only for Sd.
The first result is due to Kleiner [20] and yields that the spherical cap discrepancy

of a set of Fekete points on the sphere is O(N−
1
3d ). Sjögren [33] improved this result

to O(N−
1
2d ). In 1996 Korevaar [21] conjectured that the right bound was O(N−

1
d ).

Finally, Götz [19] proved Korevaar’s conjecture, up to a logarithmic factor, giving the

best known result O(N−
1
d logN).

For all other cases, 0 ≤ s < d with s 6= d− 1, the best results are due to Brauchart
who established the bound

O(N−
d−s

d(d−s+2) ) if 0 ≤ s < d, (1.4)

see [7] for 0 < s < d and [8] for the logarithmic case, see also [27]. Observe that, in
the harmonic case s = d − 1, Brauchart’s result gives a bound of the same order as
Kleiner’s.

However, for the logarithmic case on S2, Wolff proved in an unpublished manuscript
[37] the bound O(N−1/3), which is better than the O(N−1/4) following from Brauchart
(1.4). For more information about Wolff’s manuscript see Remark 4.3. Our objective
in this work is to generalize Wolff’s approach to the Riesz and logarithmic energies on
Sd. In this regard, our main result is an upper bound for the spherical cap discrepancy
of the energy minimizers that improves Brauchart’s result in the range 0 ≤ s < 2 for
d = 2 (where s = 0 is Wolff’s result) and in the range d− t0 < s < d, for d ≥ 3, where

t0 = 1+
√

17
2

> 2. In all these cases, when s = d− 1 Götz’s mentioned result is still the
best one.

Theorem 1.1. Let XN = {x1, . . . , xN} ⊂ Sd be an N-point set of minimizers of the
Riesz s-energy, for some 0 < s < d, or the logarithmic energy, for s = 0. Then

sup
D

∣∣∣#(XN ∩D)

N
− σ̃(D)

∣∣∣ . χ[0,d−2](s)N
− 2
d(d−s+1) + χ(d−2,d)(s)N

− 2(d−s)
d(d−s+4)

with constants depending only on d and s, where the supremum runs over all spherical
caps D ⊂ Sd.

Remark 1.2. The same bound above holds when the discrepancy is defined in terms
of the so called K-regular sets instead of the spherical caps, [33].
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Observe that, in the harmonic case s = d − 1, our result gives a bound between
Kleiner’s and Sjögren’s results. Note also that all these results, ours and Götz’s sharp
result, are far from the optimal spherical cap discrepancy established by Beck for N

point sets on Sd, which is of order N−
d+1
2d , up to a logarithmic term, [2]. In fact,

the spherical cap discrepancy of energy minimizers is expected to be far from Beck’s
bound. According to [14] the order of magnitude of the discrepancy should be the

same O(N−
1
d ) for all 0 ≤ s < d.

Theorem 1.1 gives a quantitative proof of the asymptotic equidistribution of the
energy minimizers. For an extension of these results to Green energies on manifolds,
like the ones studied in [4], see the recent paper [34].

Following Wolff’s approach, Theorem 1.1 on the spherical cap discrepancy will follow
from a sharp estimate of a discrepancy defined in terms of Sobolev norms. We will
introduce now the needed concepts.

1.1. Spherical harmonics and Sobolev discrepancy. Given an integer ` ≥ 0,
let H` be the vector space of the spherical harmonics of degree `, i.e., the space of
eigenfunctions of eigenvalue `(`+ d− 1) of the the Laplace-Beltrami operator

−∆Y = `(`+ d− 1)Y, Y ∈ H`. (1.5)

The value h` = dimH` is the multiplicity of the eigenvalue `(`+d−1), and it is easily
seen to be h` ≈ `d−1.

For the Hilbert space L2(Sd) of square integrable functions on Sd with the inner
product

〈f, g〉 =

∫
Sd
f(x)g(x) dσ(x), f, g ∈ L2(Sd),

one has the decomposition L2(Sd) =
⊕

`≥0H`. Therefore, for f ∈ L2(Sd), one has the
Fourier representation

f =
∑
`,k

f`,kY`,k, f`,k = 〈f, Y`,k〉 =

∫
Sd
f Y`,k dσ, (1.6)

where {Y`,k}h`k=1 is a real orthonormal basis of H`.
Given r ≥ 0 we consider the standard L2(Sd)-based Sobolev spaces of order r defined

in terms of their representation on the Fourier side, namely,

Hr(Sd) =

{
f ∈ L2(Sd) :

+∞∑
`=0

h∑̀
k=1

(1 + `2)r|f`,k|2 < +∞

}
with the norm

‖f‖Hr(Sd) =

(
+∞∑
`=0

h∑̀
k=1

(1 + `2)r|f`,k|2
)1/2

.

Since (1 + `2)r, (1 + `r)2, and 1 + `2r are comparable for all ` ≥ 0 with constants only
depending on r, in the sequel we may use at our convenience any of these expressions
to estimate the norm ‖·‖Hr(Sd). Recall that Hr(Sd) is continuously embedded in Ck(Sd)
if r − k > d/2.
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For any Borel measure µ on Sd, we consider a “dual” Sobolev norm of µ defined by

‖µ‖H−r(Sd) = sup

{∫
Sd
ψ dµ : ψ ∈ C∞(Sd), ‖ψ‖Hr(Sd) = 1

}
.

When the measure is of the form µ = hσ for some h ∈ L2(Sd), by an abuse of notation
we will simply write ‖h‖H−r(Sd).

Following [26, 37], we introduce a discrepancy with respect to the norm in a partic-
ular Sobolev space. The reason for the exponent (s− d)/2 in the following definition
will become clear in Lemma 2.4, where we relate the Sobolev discrepancy to the Riesz
or logarithmic energy.

Definition 1.3. Let XN = {x1, . . . , xN} be a set of N points on the sphere Sd. Given
ε > 0 and 0 ≤ s < d, the Sobolev discrepancy of XN is

Dε
s,d(XN) = ‖µXN ,ε‖H s−d

2 (Sd)
,

where

µXN ,ε =
( 1

N

N∑
j=1

χDj
σ(Dj)

− 1

ωd

)
σ

and Dj = DεN−1/d(xj).

Remark 1.4. In [37] Wolff considered a homogenous Sobolev norm instead. But both
in the original work of Wolff and in the present article, these norms are used to pass
from the spherical cap discrepancy (an L∞ estimate) to the Sobolev discrepancy (a
“dual” Sobolev estimate), and then to the asymptotics of the energy. One can check
in the proof of Theorem 1.1 that the zero order term, say ‖f‖L2(Sd), can be absorbed
by the dominant term. Thus, our final conclusion completely agrees with Wolff’s.

Our following result is an estimate of the Sobolev discrepancy of minimizers. Ob-
serve that for d− 2 ≤ s < d the estimate is sharp, and thus, using (1.2), for this range
of parameters the Sobolev discrepancy is roughly the square root of the difference
between (normalized) continuous and discrete energies.

Theorem 1.5. Let XN = {x1, . . . , xN} ⊂ Sd be an N point set of minimizers of the
Riesz s-energy, for some 0 < s < d, or the logarithmic energy, for s = 0. Then for
every ε > 0 small enough depending only on d and s,

N−
1
2

+ s
2d . Dε

s,d(XN) . N−
1
d +N−

1
2

+ s
2d

with constants depending only d, s, and ε.

Remark 1.6. It is well known that the linearization of the quadratic Wasserstein
distance is precisely the homogenous Sobolev norm considered by Wolff (see Remark
1.4) [35, 7.6]. Moreover, Peyre has recently shown that the quadratic Wasserstein
distance is bounded above by the the homogenous Sobolev norm and therefore Wolff’s
result can be read in terms of a quadratic Wasserstein discrepancy, [29].
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1.2. Notation. Given d ≥ 2 integer, we denote by ∆ and ∇ the spherical Laplacian
and spherical gradient on Sd ⊂ Rd+1, respectively. Given s ≥ 0 and two different
points x, y ∈ Rd+1, let the Riesz kernel of order s acting on (x, y) be defined by

Rs(x, y) :=

{
|x− y|−s for s > 0,

− log |x− y| for s = 0.

For 0 ≤ s < d and f ∈ L2(Sd), we define the spherical Riesz transform of f by

Rsf(x) :=

∫
Sd
Rs(x, y)f(y) dσ(y) for x ∈ Sd.

We denote the Riesz s-energy of a Borel measure µ on Sd by

Es(µ) :=

∫
Sd

∫
Sd
Rs(x, y) dµ(y) dµ(x). (1.7)

When µ = fσ with f ∈ L2(Sd), we write Es(f) instead of Es(fσ), hence

Es(f) =

∫
Sd
f(x)Rsf(x) dσ(x) =

∫
Sd

∫
Sd
Rs(x, y)f(x)f(y) dσ(y) dσ(x).

Given a spherical cap D ⊂ Sd and an integrable function f, we denote

−
∫
D

f(x) dσ(x) =
1

σ(D)

∫
Sd
f(x) dσ(x).

1.3. Structure of the article. Section 2 contains the preliminaries. In there, we
provide basic properties of the Riesz or logarithmic kernels and the spherical Riesz
transform, namely, we show that the operator Rs diagonalizes in the standard basis
of spherical harmonics, we find its eigenvalues in a closed form and their asymptotic
behavior, and we study the relation between the Riesz or logarithmic kernels and the
Laplace-Beltrami operator on the sphere, giving some heuristics.

Section 3 focuses on asymptotic estimates of Riesz or logarithmic energies on the
sphere. The main result is an estimate of the continuous energy of small discs centered
at the discrete minimizers in terms of the minimal energy Es(N). This, together with
the asymptotic expansion of the minimal energy, is a key tool to derive the estimates
of the Sobolev discrepancy given in Theorem 1.5, which is proven in Section 4.

Finally, in Section 5 we give the proof of Theorem 1.1, which is a straightforward
application of Theorem 1.5 and Proposition 5.2.

2. Spectral analysis of the Spherical Riesz transform

In this section we provide basic properties of the Riesz or logarithmic kernels and the
spherical Riesz transform. On one hand, we show that the operator Rs diagonalizes
in the standard basis of spherical harmonics. In addition, we find its eigenvalues in a
closed form using hypergeometric functions, and we analyze their asymptotic behavior.
This is the purpose of Proposition 2.2, a key result that will be systematically used in
the sequel. In particular, it allows us to relate in Lemma 2.4 below the s-energies Es
to the dual Sobolev norms ‖ · ‖H(s−d)/2(Sd) for 0 ≤ s < d.

On the other hand, we explore the relation between the Riesz kernels and the
Laplace-Beltrami operator on the sphere. Essentially, we show that the kernel Rs+2
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can be obtained by applying the Helmoltz differential operator −∆+Cd,s to the kernel
Rs, where Cd,s is a suitable constant depending on d and s; see Lemma 2.5 for the
precise statement. In the particular case of s = d − 2 > 0, we get that Rd−2 is a
multiple of a fundamental solution of −∆ + (d− 2)d/4.

Even though the asymptotic behavior of the eigenvalues for the spherical Riesz
transform is obtained in Proposition 2.2 for the whole range 0 ≤ s < d by a direct
argument, it is of interest to see how one can get it in the subcritical regime (0 < s <
d − 2) from its knowledge in the critical (s = d − 2) and supercritical (d − 2 < s <
d) regimes by an iteration argument based on the connection between Rs and Rs+2

mentioned before. We develop this argument at the end of this section. This served us
to see how, for every positive integer m, the Sobolev norms ‖ · ‖Hm(Sd) defined in terms
of the spherical harmonics decomposition correspond to the standard Sobolev norms
given by pure derivatives, and gave us an intuition for extending Wolff’s arguments
for (s, d) = (0, 2) to the whole range 0 ≤ s < d. These last considerations are treated
in Lemma 2.7.

2.1. Fourier multipliers. This part is devoted to show that the spherical harmonics
diagonalize the spherical Riesz transform, and to find the asymptotic behavior of the
eigenvalues. With this at hand, we find a simple expression in terms of the Fourier
coefficients which serves to connect the Riesz or logarithmic energy to a dual Sobolev
norm.

For the expression of the Riesz potential and the Riesz energy of a function f ∈
L2(Sd) written in terms of spherical harmonics, we recall the following definition of a
generalized hypergeometric function.

Definition 2.1. For integers p, q ≥ 0 and complex values ai, bj, the generalized hy-
pergeometric function is defined by the power series

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!
,

where (·)n is the rising factorial or Pochhammer symbol given by (x)0 = 1 and

(x)n = x(x+ 1) · · · (x+ n− 2)(x+ n− 1) =
Γ(x+ n)

Γ(x)
, n ≥ 1,

for x 6= 0,−1,−2, . . .

The Laplace-Fourier coefficients of the Riesz and logarithmic kernel are known; see
[1]. A proof is included here for the sake of completeness.

Proposition 2.2. Let 0 ≤ s < d and let {Y`,k}`,k for ` = 0, 1, . . . and k = 1, . . . h` be
an orthonormal basis of spherical harmonics in L2(Sd). Given f ∈ L2(Sd), we have

Rsf(x) =

∫
Sd
Rs(x, y)f(y) dσ(y) =

∑
`,k

A`,s f`,k Y`,k(x) (2.1)

for almost all x ∈ Sd, and

Es(f) =

∫
Sd

∫
Sd
Rs(x, y)f(x)f(y) dσ(y) dσ(x) =

∑
`,k

A`,s |f`,k|2,
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where f`,k =
∫
Sd f Y`,k dσ and

A`,s =
2d−sΓ

(
d−s

2

)
Γ
(
d− s

2

) 3F2

(
− `, `+ d− 1,

d− s
2

;
d

2
, d− s

2
; 1
)

= πd/2
2d−s−1Γ

(
d−s

2

)
Γ
(
s
2

+ `
)

Γ
(
s
2

)
Γ
(
d− s

2
+ `
) .

(2.2)

Additionally, there exists C > 0 only depending on s and d such that

C−1

1 + `d−s
≤ A`,s ≤

C

1 + `d−s
for all ` ≥ 0. (2.3)

In particular,

Es(f) ≈
∑
`,k

1

1 + `d−s
|f`,k|2. (2.4)

Proof. We first consider the case s > 0. If we set Fs(t) = (2− 2t)−s/2, then Rs(x, y) =
Fs(〈x, y〉). By Funk-Hecke formula, see [13, page 11],∫

Sd
Fs(〈x, y〉)Y`,k(x) dσ(x) =

ωd−1

C
d−1
2

` (1)

(∫ 1

−1

Fs(t)C
d−1
2

` (t)(1− t2)
d−2
2 dt

)
Y`,k(y),

and the expression for Rsf(x) follows if we set

A`,s =
ωd−1

2s/2C
d−1
2

` (1)

∫ 1

−1

C
d−1
2

` (t)(1− t)
d−s
2
−1(1 + t)

d−2
2 dt.

The expression for Es(f) follows then by orthogonality, that is,∫
Sd

∫
Sd
Rs(x, y)Y`,k(x)Y`′,k′(y) dσ(x) dσ(y) = A`,sδ(`,k),(`′,k′).

From [18, page 281] one can get a closed expression in terms of an hypergeometric
function∫ 1

−1

C
d−1
2

` (t)(1− t)
d−s
2
−1(1 + t)

d−2
2 dt

= 2d−
s
2
−1 Γ

(
d−s

2

)
Γ
(
d
2

)
Γ (`+ d− 1)

Γ (`+ 1) Γ (d− 1) Γ
(
d− s

2

)3F2

(
− `, `+ d− 1,

d− s
2

;
d

2
, d− s

2
; 1
)
.

(2.5)

From Saalshütz’s theorem, we get

3F2

(
− `, `+ d− 1,

d− s
2

;
d

2
, d− s

2
; 1
)

=
Γ
(
s
2

+ `
)

Γ
(
d− s

2

)
Γ
(
s
2

)
Γ
(
d− s

2
+ `
) ,

which yields (2.2).
Finally, the asymptotic expression for the quotient of gamma functions

lim
n→+∞

Γ(n+ α)

Γ(n)nα
= 1, α ∈ C,

proves (2.3) because, clearly, A`,s 6= 0.
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The endpoint case s = 0 is obtained using F0(t) = −1
2

log(2 − 2t), taking the
derivative with respect to s and evaluating at s = 0 the expression (2.5). �

Remark 2.3. From Proposition 2.2 it follows that, at a formal level,

1

|x− y|s
=
∑
`,k

A`,sY`,k(x)Y`,k(y) =
∑
`

A`,s
∑
k

Y`,k(x)Y`,k(y)

=
∑
`

A`,s
ωd

2`+ d− 1

d− 1
C

d−1
2

` (〈x, y〉),

where 〈x, y〉 is the cosine of the angle between x and y, and Cα
` (t) is the Gegenbauer

polynomial orthogonal on [−1, 1] with respect to (1 − t2)α−
1
2 with the normalization

Cα
` (1) =

(
2α+`−1

`

)
. But as

A`,s
ωd

=
2d−s−1Γ

(
d+1

2

)
Γ
(
d−s

2

)
Γ
(
s
2

+ `
)

√
πΓ
(
s
2

)
Γ
(
d− s

2
+ `
) ,

we get that A`,d−1 = ωd(d− 1)/(2`+ d− 1) and, thus,

1

|x− y|d−1
=
∑
`

C
d−1
2

` (〈x, y〉).

In particular, it is well known that for the Coulomb potential and x, y ∈ S2 one has

1

|x− y|
=
∑
`

P`(〈x, y〉),

where P`(t) is the Legendre polynomial of degree ` normalized by P`(1) = 1.

Using Proposition 2.2, in the following result we highlight the important connection
between ‖ · ‖H(s−d)/2(Sd) and the Riesz or logarithmic s-energy Es introduced in (1.7).
Observe that, in what follows, the reason for the choice of the exponent (s − d)/2 is
essentially (2.4).

Lemma 2.4. Given 0 ≤ s < d, there exists a constant C > 0 only depending on s and
d such that, for every h ∈ L2(Sd),

C−1‖h‖2
H(s−d)/2(Sd) ≤ Es(h) ≤ C‖h‖2

H(s−d)/2(Sd). (2.6)

Proof. By a limiting argument, it suffices to prove the lemma when h is smooth. On
one hand, in (2.4) we showed that if h =

∑
`,k h`,kY`,k then

Es(h) ≈
∑
`,k

1

1 + `d−s
|h`,k|2.

Writing every ψ ∈ C∞(Sd) as ψ =
∑

`,k ψ`,kY`,k, by Cauchy-Schwarz inequality, we
have ∣∣∣ ∫

Sd
ψhdσ

∣∣∣2 =
∣∣∣∑
`,k

h`,kψ`,k

∣∣∣2 ≤ (∑
`,k

|h`,k|2

1 + `d−s

)(∑
`,k

(1 + `d−s)|ψ`,k|2
)

≈ Es(h)‖ψ‖2
H(d−s)/2(Sd),
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which yields the first inequality in (2.6) by taking the supremum on ψ ∈ C∞(Sd).
Let us now prove the second inequality. Since h is smooth by assumption, it is

not hard to see that Rsh is smooth too. Thanks to (2.1) and (2.3) we have that
Rsh =

∑
`,k A`,s h`,k Y`,k with A`,s ≈ (1 + `d−s)−1. Hence, we can estimate

Es(h) =

∫
Sd
hRsh dσ ≤ ‖h‖H(s−d)/2(Sd)‖Rsh‖H(d−s)/2(Sd)

≈ ‖h‖H(s−d)/2(Sd)

(∑
`,k

(1 + `d−s)|A`,s h`,k|2
)1/2

≈ ‖h‖H(s−d)/2(Sd)Es(h)1/2,

and the second inequality in (2.6) follows. �

2.2. The Laplace-Beltrami operator on the Riesz kernel. In this section we give
useful identities which connect the logarithmic and the Riesz kernels of different indexes
through the Laplace-Beltrami operator. All of them are collected in the following
lemma, which will be systematically used in Section 3 to get the asymptotic estimates
for the energies.

Lemma 2.5. Let x0 ∈ Sd. Then for d ≥ 2 and s > 0, as a function of x ∈ Sd,(
−∆ +

1

4
s(2d− 2− s)

)
Rs(x, x0) = s(d− 2− s)Rs+2(x, x0) for all x 6= x0. (2.7)

Furthermore, in the special case of d > 2 and s = d− 2, we have(
−∆ +

1

4
(d− 2)d

)
Rd−2(·, x0) = Cd(d− 2)δx0 , (2.8)

in the sense of distributions, where δx0 denotes the Dirac measure at x0 and Cd =
2πd/2/Γ (d/2). Indeed, for every open set Ω ⊂ Sd with smooth boundary and such that
x0 ∈ Ω, and every f ∈ C2(Ω) ∩ C1(Ω), we have

Cd(d− 2)f(x0) =

∫
Ω

Rd−2(x, x0)
(
−∆ +

1

4
(d− 2)d

)
f(x) dσ(x)

+

∫
∂Ω

(
Rd−2(x, x0)∇f(x)− f(x)∇Rd−2(x, x0)

)
·ν(x) dσ′(x),

(2.9)

where σ′ denotes the (d− 1)−dimensional Hausdorff measure.
In the logarithmic case s = 0 and d > 2, we have

−∆R0(x, x0) = (d− 2)R2(x, x0)− d− 1

2
for all x 6= x0, (2.10)

and, when s = 0 and d = 2,

−∆R0(·, x0) = 2πδx0 −
1

2

in the sense of distributions. That is, for every open set Ω ⊂ S2 with smooth boundary
and such that x0 ∈ Ω, and every f ∈ C2(Ω) ∩ C1(Ω), we have
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2πf(x0) = −
∫

Ω

R0(x, x0)∆f(x) dσ(x) +
1

2

∫
Ω

f(x) dσ(x)

+

∫
∂Ω

(
R0(x, x0)∇f(x)− f(x)∇R0(x, x0)

)
·ν(x) dσ′(x).

(2.11)

Proof. Let ∆Rd+1 denote the standard Laplacian on Rd+1 and π : Rd+1 \ {0} → Sd be
the spherical projection given by π(y) = y/|y| for y ∈ Rd+1 \ {0}. It is well known
that if f : Sd → R then the spherical Laplacian of f can be computed through ∆Rd+1

by the formula
∆f(x) = (∆Rd+1(f ◦ π))(π(y)) (2.12)

at the points x = π(y) where f ◦ π is twice differentiable.
We will consider the case s > 0, the logarithmic case s = 0 follows easily along the

same lines. Take x0 ∈ Sd. A computation shows that, as a function of y ∈ Rd+1 \ {0},

∆Rd+1

(
Rs(π(·), x0)

)
(y)

= s
{

(s+ 2)Rs+4(π(y), x0)
( |x0|2

|y|2
− (y · x0)2

|y|4
)
− dRs+2(π(y), x0)

(y · x0)

|y|3
}
.

Using the definition of Rs, that x = π(y), and that |x0| = |x| = 1, we then get

∆Rd+1

(
Rs(π(·), x0)

)(
π(y)

)
= s
{

(s+ 2)Rs+4(x, x0)
(

1− (x · x0)2
)
− dRs+2(x, x0)(x · x0)

}
= s|x− x0|−s−2

{
(s+ 2)

1− (x · x0)2

|x− x0|2
− d(x · x0)

}
.

Observe that

1− (x · x0)2 =
(
1 + (x · x0)

)(
1− (x · x0)

)
=
(
1 + (x · x0)

) |x− x0|2

2
. (2.13)

Therefore,

∆Rd+1

(
Rs(π(·), x0)

)(
π(y)

)
= s|x− x0|−s−2

{s+ 2

2

(
1 + (x · x0)

)
− d(x · x0)

}
=
s

2
|x− x0|−s−2

{
(2d− 2− s)

(
1− (x · x0)

)
+ 2(s+ 2− d)

}
=
s

2
|x− x0|−s−2

{
(2d− 2− s) |x− x0|2

2
+ 2(s+ 2− d)

}
=
s

4
(2d− 2− s)Rs(x, x0) + s(s+ 2− d)Rs+2(x, x0)

which, together with (2.12), yields (2.7). For the logarithmic case s = 0, the previous
computations lead to

∆Rd+1

(
R0(π(·), x0)

)(
π(y)

)
=

1

2
|x− x0|−2

{
(2d− 2)

|x− x0|2

2
+ 2(2− d)

}
=
d− 1

2
+ (2− d)R2(x, x0),
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which proves (2.10).
We now address (2.8). Given x0 ∈ Ω ⊂ Sd and ε > 0 set Ωε := Ω \ Dε(x0), whose

boundary is the disjoint union of ∂Ω and ∂Dε(x0) if ε is small enough. We denote by ν
the outward unit normal vector (tangent to Sd) on ∂Ωε. An integration by parts gives∫

Ωε

Rd−2(x, x0)
(
−∆ +

1

4
(d− 2)d

)
f(x) dσ(x)

=

∫
Ωε

∇Rd−2(x, x0)·∇f(x) dσ(x)−
∫
∂Ωε

Rd−2(x, x0)∇f(x)·ν(x) dσ′(x)

+
1

4
(d− 2)d

∫
Ωε

Rd−2(x, x0)f(x) dσ(x)

=

∫
∂Ωε

∇Rd−2(x, x0)·ν(x) f(x) dσ′(x)−
∫
∂Ωε

Rd−2(x, x0)∇f(x)·ν(x) dσ′(x)

+

∫
Ωε

(
−∆ +

1

4
(d− 2)d

)
Rd−2(x, x0) f(x) dσ(x).

(2.14)

Since dist(x0,Ωε) > 0, the last term on the right hand side of (2.14) vanishes by (2.7).
Note also that∣∣∣ ∫

∂Dε(x0)

Rd−2(x, x0)∇f(x)·ν(x) dσ′(x)
∣∣∣

≤ ‖∇f‖L∞(Ω)ε
−d+2σ′(∂Dε(x0)) = O(ε).

(2.15)

Arguing as in (2.12), we have that ∇Rd−2(x, x0) = −(d− 2)Rd(x, x0)((x · x0)x− x0).
Moreover, for x ∈ ∂Dε(x0) the outward unit normal vector with respect to Ωε ⊂ Sd is

ν(x) =
x0 − x− ((x0 − x) · x)x

|x0 − x · x− ((x0 − x) · x)x|
=

x0 − (x0 · x)x

|x0 − (x0 · x)x|
,

which leads to ∇Rd−2(x, x0) ·ν(x) = (d−2)Rd(x, x0)|x0− (x0 ·x)x|. Observe also that,
from (2.13), |x0 − (x0 · x)x|2 = 1− (x0 · x)2 = 1

2

(
1 + (x0 · x)

)
|x− x0|2. Therefore,∫

∂Dε(x0)

∇Rd−2(x, x0)·ν(x) f(x) dσ′(x)

=
d− 2

εd−1

∫
∂Dε(x0)

(1 + (x0 · x)

2

)1/2

f(x) dσ′(x).

(2.16)

Since the integrand is continuous near x0, we deduce that

lim
ε→0

∫
∂Dε(x0)

∇Rd−2(x, x0)·ν(x) f(x) dσ′(x) = Cd(d− 2)f(x0), (2.17)

where

Cd := lim
ε→0

ε1−dσ′(∂Dε(x0)) =
2πd/2

Γ
(
d
2

) .
Finally, taking the limit ε→ 0 in (2.14) and using (2.15) and (2.17), we get (2.9). The
statement in (2.8) is a consequence of (2.9) taking Ω = Sd, thus ∂Ω = ∅.
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Observe that in the logarithmic case ∇R0(x, x0) = −R2(x, x0)((x · x0)x − x0), and
then formula (2.16) becomes∫

∂Dε(x0)

∇R0(x, x0)·ν(x) f(x) dσ′(x) =
1

ε

∫
∂Dε(x0)

(1 + (x0 · x)

2

)1/2

f(x) dσ′(x).

Hence, the same argument yields the case d = 2. �

Alternatively, one can prove (2.7) and (2.8) by using the explicit formula for the
Laplace-Beltrami operator in spherical coordinates (with pole at x0) as the Riesz kernel
would only depend on one of the variables.

2.3. From the supercritical to the subcritical regime through iteration. By
a direct argument, in Proposition 2.2 we found the asymptotic behavior of the eigen-
values for the spherical Riesz transform for the whole range 0 ≤ s < d, see (2.3).
However, it is of interest to see how one can get it in the subcritical regime from its
knowledge in the critical and supercritical regimes by an iteration argument based on
(2.7). This is the purpose of this section.

We begin by showing, directly from (2.8), the asymptotics (2.3) in the critical regime
0 < s = d − 2. Given f ∈ L2(Sd) set f`,k =

∫
Sd f Y`,k dσ, hence (2.1) gives Rsf =∑

`,k A`,s f`,k Y`,k. Thanks to (2.8) and (1.5), we get∑
`,k

f`,k Y`,k = f =
1

Cd(d− 2)

(
−∆ +

1

4
(d− 2)d

)
Rd−2f

=
1

Cd(d− 2)

(
−∆ +

1

4
(d− 2)d

)∑
`,k

A`,d−2 f`,k Y`,k

=
∑
`,k

f`,k
A`,d−2

Cd

(`(`+ d− 1)

d− 2
+
d

4

)
Y`,k.

(2.18)

Since this holds for all f ∈ L2(Sd) we deduce that

A`,d−2 = Cd

(`(`+ d− 1)

d− 2
+
d

4

)−1

and (2.3) follows in this case.
Assuming now that (2.3) holds in the (super)critical regime 0 < d− 2 ≤ s < d, let

us deal with the case s ∈ (0, d−2). Let m ∈ N be such that s ∈ [d−2(m+1), d−2m),
thus indeed m is the unique integer such that (d − s)/2 − 1 ≤ m < (d − s)/2. Then
s+ 2m ∈ [d− 2, d) and, by assumption,

A`,s+2m ≈
1

1 + `d−s−2m
for all ` ≥ 0. (2.19)

Furthermore, if we set sj = s+ 2j for j = 0, 1, 2, . . . ,m, iterating (2.7) we deduce that

Rsm(·, x) =
−∆ + sm−1(d−1

2
− sm−1

4
)

sm−1(d− 2− sm−1)
Rsm−1(·, x)

=
−∆ + sm−1(d−1

2
− sm−1

4
)

sm−1(d− 2− sm−1)
· · ·
−∆ + s0(d−1

2
− s0

4
)

s0(d− 2− s0)
Rs0(·, x).

(2.20)
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Then similarly to what we did in (2.18), from (2.1), (2.20), and (1.5) we have∑
`,k

A`,s+2m f`,k Y`,k = Rsmf

=
−∆ + sm−1(d−1

2
− sm−1

4
)

sm−1(d− 2− sm−1)
· · ·
−∆ + s0(d−1

2
− s0

4
)

s0(d− 2− s0)
Rs0f

=
−∆ + sm−1(d−1

2
− sm−1

4
)

sm−1(d− 2− sm−1)
· · ·
−∆ + s0(d−1

2
− s0

4
)

s0(d− 2− s0)

∑
`,k

A`,s f`,k Y`,k

=
∑
`,k

A`,s
`(`+ d− 1) + sm−1(d−1

2
− sm−1

4
)

sm−1(d− 2− sm−1)

· · ·
`(`+ d− 1) + s0(d−1

2
− s0

4
)

s0(d− 2− s0)
f`,k Y`,k.

This combined to (2.19) leads to

A`,s = A`,s+2m
sm−1(d− 2− sm−1)

`(`+ d− 1) + sm−1(d−1
2
− sm−1

4
)
· · · s0(d− 2− s0)

`(`+ d− 1) + s0(d−1
2
− s0

4
)

≈ 1

(1 + `d−s−2m)(1 + `2m)
≈ 1

1 + `d−s

for all ` ≥ 0, and (2.3) follows in the subcritical regime.

Remark 2.6. From the previous computations, if d > 2 we can get the explicit
expressions

A`,d−2 =
2πd/2

Γ (d/2)
· 1
`(`+d−1)
d−2

+ d
4

and

A`,d−2k = A`,d−2
2

`(`+d−1)
d−4

+ d+2
4

· 4
`(`+d−1)
d−6

+ d+4
4

· · · 2(k − 1)
`(`+d−1)
d−2k

+ d+2(k−1)
4

for all k ≥ 2 integer such that d − 2k > 0. A similar formula can be shown for A`,0
if d = 4, 6, 8, . . . by taking into account (2.10) to pass from A`,0 to A`,2. We omit the
details.

2.4. The connection to Sobolev spaces on the sphere. The computations in
Section 2.3 served us to see how, for every positive integer m, the Sobolev norms
‖ ·‖Hm(Sd) defined in terms of the spherical harmonics decomposition correspond to the
standard Sobolev norms given by pure derivatives, giving us an intuition for extending
Wolff’s arguments for the case (s, d) = (0, 2) to the whole range 0 ≤ s < d. In order
to clarify this, let us first make some considerations on the Sobolev spaces Hm(Sd). Of
course, H0(Sd) = L2(Sd). Looking at the spherical harmonics, for every given j ∈ N
an integration by parts and (1.5) show that∫

Sd
|∆jY`,k|2 dσ =

∫
Sd
Y`,k ∆2jY`,k dσ = `2j(`+ d− 1)2j ≈ `4j (2.21)
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and∫
Sd
|∇∆jY`,k|2 dσ = −

∫
Sd
Y`,k ∆2j+1Y`,k dσ = `2j+1(`+ d− 1)2j+1 ≈ `4j+2 (2.22)

for all ` ≥ 0, with constants only depending on d and j. Moreover, by the orthogonality
of the basis {Y`,k}h`k=1,`≥0, we also get∫

Sd
Y`,k ∆jY`′,k′ dσ = 0 (2.23)

for all j ∈ N ∪ {0} whenever (`, k) 6= (`′, k′).
Given an odd number m ∈ N set i = (m − 1)/2. Then using (1.6), (2.21), (2.22),

and (2.23), for every f ∈ L2(Sd) we see that

‖f‖2
Hm(Sd) ≈

+∞∑
`=0

h∑̀
k=1

(1 + `2m)|f`,k|2 ≈
+∞∑
`=0

h∑̀
k=1

i∑
j=0

(`4j + `4j+2)|f`,k|2

≈
i∑

j=0

+∞∑
`=0

h∑̀
k=1

(∫
Sd
Y`,k ∆2jY`,k dσ −

∫
Sd
Y`,k ∆2j+1Y`,k dσ

)
|f`,k|2

=
i∑

j=0

(∫
Sd
f ∆2jf dσ −

∫
Sd
f ∆2j+1f dσ

)
=

i∑
j=0

∫
Sd

(
|∆jf |2 + |∇∆jf |2

)
dσ,

where the comparability constants only depend on d and m. The same argument
applies in case that m ∈ N is even. Thus, we get the following well-known result.

Lemma 2.7. For m = 0, 2, 4, 6, 8, . . . we have

‖f‖2
Hm(Sd) ≈ ‖f‖

2
L2(Sd) + ‖∇f‖2

L2(Sd) + ‖∆f‖2
L2(Sd) + ‖∇∆f‖2

L2(Sd)

+ . . .+ ‖∆
m−2

2 f‖2
L2(Sd) + ‖∇∆

m−2
2 f‖2

L2(Sd) + ‖∆
m
2 f‖2

L2(Sd),

and for m = 1, 3, 5, 7, 9, . . . we have

‖f‖2
Hm(Sd) ≈ ‖f‖

2
L2(Sd) + ‖∇f‖2

L2(Sd) + ‖∆f‖2
L2(Sd) + ‖∇∆f‖2

L2(Sd)

+ . . .+ ‖∇∆
m−3

2 f‖2
L2(Sd) + ‖∆

m−1
2 f‖2

L2(Sd) + ‖∇∆
m−1

2 f‖2
L2(Sd).

With the expressions of ‖ · ‖Hm(Sd) from Lemma 2.7 at hand, one can now take a
new look to (2.6).

3. Asymptotic estimates of Riesz energies

This section focuses on asymptotic estimates of Riesz and logarithmic energies on
the sphere. The main result, namely Corollary 3.7, is an estimate of the continuous
Riesz energy of small discs centered at the discrete minimizers in terms of the minimal
energy Es(N) defined in (1.1), plus error terms. This, together with the asymptotic
expansion of the minimal energy, will be a key tool in the next section to derive the
estimates of the Sobolev discrepancy given in Theorem 1.5.

To prove Corollary 3.7, we treat the supercritical and subcritical regimes separately.
In the first one, we essentially make use of the separation of the point minimizers, a
decomposition of the sphere in dyadic annuli, and Gauss-Green formula (2.9). This
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is carried out in Lemma 3.2, Proposition 3.3, and Theorem 3.4 below. Since in the
subcritical case the separation property is not known to hold, in Lemma 3.1 below we
overcome this difficulty by making use of the fact that Rs(·, x0) is superharmonic near
x0 when 0 ≤ s < d − 2 for d > 2, as (2.7) shows. The original argument of Wolff for
the logarithmic kernel on S2 was already based on the use of superharmonicity.

Lemma 3.1. For d > 2 and 0 < s < d − 2 there exist δ, C > 0 depending only on s
and d, such that for every a, b ∈ Sd,

−
∫
Dr(a)

−
∫
Dr(b)

Rs(x, y) dσ(x) dσ(y) ≤ Rs(a, b) + Cr2

with, say, 0 < r < δ
100
.

For d ≥ 2 there exist C > 0 depending only on d such that for every a, b ∈ Sd,

−
∫
Dr(a)

−
∫
Dr(b)

R0(x, y) dσ(x) ≤ R0(a, b) + Cr2

for all 0 < r ≤ 1.

Proof. Let a, b ∈ Sd and δ > 0 small enough to be chosen later on. We take r > 0
such that, say, 0 < r < δ

100
and we split the argument into two cases,

Dr(b) ⊂ D2δ(a) or Dr(b) ⊂ Sd \Dδ(a).

Observe that from Lemma 2.5, we get

∆xRs(x, y) = s

[
(2d− s− 2)

4
|x− y|2 − (d− s− 2)

]
Rs+2(x, y).

Thus, there exist δ > 0 small enough depending on s and d such that for |x− y| < 10δ

∆xRs(x, y) ≤ 0.

In the first case Dr(b) ⊂ D2δ(a), we get Dr(a), Dr(b) ⊂ D2δ(a) and, therefore,

∆xRs(x, y) ≤ 0 and ∆yRs(x, y) ≤ 0

for all x ∈ Dr(a) and y ∈ Dr(b). Then, we get

−
∫
Dr(b)

Rs(a, y)dσ(y) ≤ Rs(a, b) and −
∫
Dr(a)

Rs(x, y)dσ(x) ≤ Rs(a, y)

for all y ∈ Dr(b) and, therefore,

−
∫
Dr(a)

−
∫
Dr(b)

Rs(x, y) dσ(x) dσ(y) ≤ Rs(a, b). (3.1)

In the second case Dr(b) ⊂ Sd \Dδ(a), we take δ > 0 as in the first case. Observe
that for x ∈ Dr(a) and y ∈ Dr(b) we have |x− y| > δ

2
and therefore, from the explicit

expressions above, ∆xRs(x, y) is bounded above by a constant Cs,d > 0 depending
only on s and d. By a computation similar to one in Lemma 2.5, we have

∆x|x− x0|2 = d(2− |x− x0|2)
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for all x0 ∈ Sd, and therefore if |x − x0| ≤ 1 we have ∆x|x − x0|2 ≥ d. Then taking
C = Cs,d/d and x0 = a, we get

∆x(Rs(x, y)− C|x− a|2) ≤ 0, x ∈ Dr(a).

From this superharmonicity and the corresponding mean value inequality we obtain

−
∫
Dr(a)

Rs(x, y)dσ(x)− C−
∫
Dr(a)

|x− a|2dσ(x) ≤ Rs(a, y)

and, thus,

−
∫
Dr(a)

Rs(x, y)dσ(x) ≤ Rs(a, y) + Cr2. (3.2)

Similarly, we get

−
∫
Dr(b)

Rs(a, y)dσ(y)− C−
∫
Dr(b)

|y − b|2dσ(y) ≤ Rs(a, b),

and

−
∫
Dr(b)

Rs(a, y)dσ(y) ≤ Rs(a, b) + Cr2. (3.3)

Combining (3.2) and (3.3) we finally obtain

−
∫
Dr(a)

−
∫
Dr(b)

Rs(x, y) dσ(x) dσ(y) ≤ Rs(a, b) + Cr2,

and the result follows together with (3.1).
In the logarithmic case we argue as above and take a, b ∈ Sd and 0 < r ≤ 1. Then,

in the distributional sense, for every y ∈ Dr(b),

∆x

(
R0(·, y)− d− 1

2d
| · −a|2

)
≤ 0 in Dr(a),

and

∆y

(
R0(a, ·)− d− 1

2d
| · −b|2

)
≤ 0 in Dr(b).

It follows that

−
∫
Dr(a)

−
∫
Dr(b)

R0(x, y) dσ(x) dσ(y) ≤ R0(a, b) +
d− 1

d
r2.

�
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Lemma 3.2. Let d > 2, 0 < s < d, r0 > 0, and x0, x1 ∈ Sd be such that |x0−x1| > r0.
Then

Rs(x0, x1) =
ds(d− 2− s)
(d− 2)Cdrd0

∫ r0

0

∫
Dr(x0)

rd−1
(
Rd−2(x, x0)− r2−d)Rs+2(x, x1) dσ(x) dr

+
d(d− s)(d− 2− s)

4(d− 2)Cdrd0

∫ r0

0

∫
Dr(x0)

rd−1Rd−2(x, x0)Rs(x, x1) dσ(x) dr

+
ds(2d− 2− s)
4(d− 2)Cdrd0

∫ r0

0

∫
Dr(x0)

rRs(x, x1) dσ(x) dr

+
d

Cdrd0

∫
Dr0 (x0)

(
1− 1

4
|x− x0|2

)
Rs(x, x1) dσ(x),

(3.4)

where Cd = 2πd/2/Γ (d/2).

Proof. Let 0 < r < r0. Applying (2.9) with Ω = Dr(x0) and f(x) = Rs(x, x1), we get

Cd(d− 2)Rs(x0, x1) =

∫
Dr(x0)

Rd−2(x, x0)
(
−∆ +

1

4
(d− 2)d

)
Rs(x, x1) dσ(x)

+

∫
∂Dr(x0)

Rd−2(x, x0)∇Rs(x, x1)·ν(x) dσ′(x)

−
∫
∂Dr(x0)

Rs(x, x1)∇Rd−2(x, x0)·ν(x) dσ′(x)

=: I1(r) + I2(r) + I3(r),

(3.5)

where, as before, σ′ stands for the (d− 1)-dimensional Hausdorff measure. The proof
of (3.4) is based on multiplying (3.5) by rd−1 and integrating over all r ∈ (0, r0). We
deal with the three terms on the right hand side of (3.5) separately. On one hand,
using (2.7), we get

I1(r) = (d− 2− s)
∫
Dr(x0)

Rd−2(x, x0)
(d− s

4
Rs(x, x1) + sRs+2(x, x1)

)
dσ(x). (3.6)

Regarding I2(r), since Rd−2(x, x0) = r2−d for all x ∈ ∂Dr(x0), the divergence theorem
and (2.7) yield

I2(r) = r2−d
∫
Dr(x0)

∆Rs(x, x1) dσ(x)

= r2−ds

∫
Dr(x0)

(1

4
(2d− 2− s)Rs(x, x1)− (d− 2− s)Rs+2(x, x1)

)
dσ(x).

(3.7)

Finally, arguing as in (2.16), we deduce that

I3(r) =
d− 2

rd−1

∫
∂Dr(x0)

(1 + (x0 · x)

2

)1/2

Rs(x, x1) dσ′(x). (3.8)
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A combination of (3.8) and the smooth coarea formula, see [11, page 160], leads to∫ r0

0

rd−1I3(r) dr = (d− 2)

∫
Dr0 (x0)

1 + (x0 · x)

2
Rs(x, x1) dσ(x)

= (d− 2)

∫
Dr0 (x0)

(
1− |x− x0|2

4

)
Rs(x, x1) dσ(x).

(3.9)

Therefore, if we multiply (3.5) by rd−1 and we integrate over all r ∈ (0, r0), using (3.6),
(3.7) and (3.9) we finally get (3.4). �

Proposition 3.3. Let d > 2 and 0 < s < d. There exists C > 0 only depending on d
and s such that∣∣∣∣Rs(x0, x1)−−

∫
Dr0 (x0)

Rs(x, x1) dσ(x)

∣∣∣∣ ≤ C
(
ϕd−2(s)22k + 1

)
2ksr2

0 (3.10)

for all k ≥ 0, all x0, x1 ∈ Sd with |x0 − x1| ≥ 2−k and all 0 < r0 ≤ 2−k−2, where we
have set ϕd−2(s) = 0 if s = d− 2 and ϕd−2(s) = 1 otherwise.

Proof. Thanks to (3.4), we can write

Rs(x0, x1)− 1

|Dr0(x0)|

∫
Dr0 (x0)

Rs(x, x1) dσ(x)

=
ds(d− 2− s)
(d− 2)Cdrd0

∫ r0

0

∫
Dr(x0)

rd−1
(
Rd−2(x, x0)− r2−d)Rs+2(x, x1) dσ(x) dr

+
d(d− s)(d− 2− s)

4(d− 2)Cdrd0

∫ r0

0

∫
Dr(x0)

rd−1Rd−2(x, x0)Rs(x, x1) dσ(x) dr

+
ds(2d− 2− s)
4(d− 2)Cdrd0

∫ r0

0

∫
Dr(x0)

rRs(x, x1) dσ(x) dr

− d

4Cdrd0

∫
Dr0 (x0)

|x− x0|2Rs(x, x1) dσ(x)

+
( d

Cdrd0
− 1

|Dr0(x0)|

)∫
Dr0 (x0)

Rs(x, x1) dσ(x)

=: S1 + S2 + S3 + S4 + S5.
(3.11)

We are going to estimate the terms S1, . . . , S5 separately. However, all the estimates
rely basically on the assumptions |x0 − x1| ≥ 2−k and r0 ≤ 2−k−2. On one hand, we
easily see that

|S1| ≤ Cϕd−2(s)2k(s+2)r−d0

∫ r0

0

∫
Dr(x0)

rd−1(|x− x0|2−d − r2−d) dσ(x) dr

≤ Cϕd−2(s)2k(s+2)r2
0.

(3.12)

Similarly,

|S2| ≤ Cϕd−2(s)2ksr2
0, |S3| ≤ C2ksr2

0 and |S4| ≤ C2ksr2
0. (3.13)
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Finally, by taking local chards on Sd, one can show that
∣∣|Dr(x)| − Cdrd/d

∣∣ ≤ Crd+2

for all 0 ≤ r ≤ 2 and all x ∈ Sd. Hence,

|S5| ≤ Cr−2d
0

∣∣|Dr(x)| − Cdrd/d
∣∣ ∫

Dr0 (x0)

Rs(x, x1) dσ(x) ≤ C2ksr2
0. (3.14)

Plugging (3.12), (3.13) and (3.14) in (3.11), we obtain (3.10), as desired. �

Theorem 3.4. Let d > 2, 0 < s < d, and ρ > 0. There exists C > 0 only depending
on d, s and ρ such that

1

N2

∑
i 6=j

∣∣∣∣Rs(xi, xj)−−
∫
Dj

−
∫
Di

Rs(x, y) dσ(x) dσ(y)

∣∣∣∣ ≤ Cε2
(
N−

2
d +N−1+ s

d

)
(3.15)

for all 0 < ε ≤ ρ/8, all N ∈ N, and every sequence of points {xj}j=1,...,N ⊂ Sd such that
|xi−xj| ≥ ρN−1/d for all i 6= j, where we have set Dj = DεN−1/d(xj) for j = 1, . . . , N .

Proof. First of all, note that Di ∩ Dj = ∅ for all i 6= j since 0 < ε ≤ ρ/8 and
|xi−xj| ≥ ρN−1/d. Therefore, the left hand side of (3.15) is well defined and finite for
all s ≥ 0.

Given i 6= j, since ρN−1/d ≤ |xi−xj| ≤ 2, there exists some integer k ≥ 0 such that

ρN−1/d/2 ≤ 2−k ≤ |xi − xj| ≤ 2−k+1. (3.16)

Then, using the triangle inequality and (3.10), we can estimate∣∣∣∣Rs(xi, xj)−−
∫
Dj

−
∫
Di

Rs(x, y) dσ(x) dσ(y)

∣∣∣∣
≤
∣∣∣∣Rs(xi, xj)−−

∫
Dj

Rs(xi, y) dσ(y)

∣∣∣∣
+−
∫
Dj

∣∣∣∣Rs(xi, y)−−
∫
Di

Rs(x, y) dσ(x)

∣∣∣∣ dσ(y)

≤ C
(
ϕd−2(s)22k + 1

)
2ksε2N−2/d.

(3.17)

In addition, due to the constraint |xi − xj| ≥ ρN−1/d for all i 6= j, it is not hard to
show that there exists C > 0 only depending on d such that, for every i and k,

#{j : 2−k ≤ |xi − xj| ≤ 2−k+1} ≤ C2−kdρ−dN. (3.18)

Therefore, a combination of (3.16), (3.17) and (3.18) leads to∑
i 6=j

∣∣∣∣Rs(xi, xj)−−
∫
Dj

−
∫
Di

Rs(x, y) dσ(x) dσ(y)

∣∣∣∣
≤ C

∑
1≤i≤N

∑
0≤k≤log2( 2N1/d

ρ
)

∑
j: 2−k≤|xi−xj |≤2−k+1

(
ϕd−2(s)22k + 1

)
2ksε2N−2/d

≤ Cρ−dε2N2−2/d
∑

0≤k≤log2( 2N1/d

ρ
)

2−k(d−s)(ϕd−2(s)22k + 1
)
.

(3.19)
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Recall that if s = d− 2 then ϕd−2(s) = 0, thus from (3.19) we obtain in this case∑
i 6=j

∣∣∣∣Rd−2(xi, xj)−−
∫
Dj

−
∫
Di

Rd−2(x, y) dσ(x) dσ(y)

∣∣∣∣ ≤ Cε2N2−2/d
(3.20)

for some C > 0 only depending on d, s and ρ. On the other hand, if s 6= d − 2 then
ϕd−2(s) = 1, and from (3.19), we get∑

i 6=j

∣∣∣∣Rs(xi, xj)−−
∫
Dj

−
∫
Di

Rs(x, y) dσ(x) dσ(y)

∣∣∣∣
≤ Cρ−dε2N2−2/d

∑
0≤k≤log2( 2N1/d

ρ
)

2−k(d−2−s)

≤ Cε2N2−2/d(1 +N (s−(d−2))/d) = Cε2(N2−2/d +N1+s/d)

(3.21)

for some C > 0 only depending on d, s and ρ, as before. In any case, (3.15) follows
directly from (3.20) and (3.21). �

Remark 3.5. The estimate (3.15) may not seem sharp but, as far as one bases it on
a pointwise estimate of the factor inside the sum independently of i, in the spirit of
(3.19), one cannot expect anything better than (3.15). This is essentially because the
estimate in (3.10) is sharp for points on the sphere satisfying 2−k ≤ |xi− xj| ≤ 2−k+1.
That is to say, there exists C > 0 such that

C−12k(s+2)r2
0 ≤

∣∣∣∣Rs(x0, x1)−−
∫
Dr0 (x0)

Rs(x, x1) dσ(x)

∣∣∣∣ ≤ C2k(s+2)r2
0 (3.22)

whenever s 6= d − 2 and 2−k ≤ |x0 − x1| ≤ 2−k+1, where x0, x1 and r0 are as in
Proposition 3.3. To see this simply note that |S1| in (3.11), which is comparable to
2k(s+2)r2

0 and has a positive integrand, is the dominant term in the decomposition
given in (3.11) as k → +∞. Thus, all the other terms Sj can be absorbed by S1 for k
big enough, and everything is comparable for k small. This reasoning gives the lower
bound in (3.22).

Remark 3.6. It is not hard to extend Theorem 3.4 to the more general case d ≥ 2
and 0 ≤ s < d by a suitable modification of Lemma 3.2 and Proposition 3.3 using the
corresponding identities from Lemma 2.5, for example (2.11) instead of (2.9) when
d = 2, or (2.10) instead of (2.7) when s = 0. We omit the details for the sake of
shortness.

Corollary 3.7. Let {x1, . . . , xN} ⊂ Sd be an N point set of minimizers of the Riesz
s-energy, for some 0 < s < d, or the logarithmic energy, for s = 0. Then there exist
ε0 = ε0(s, d) > 0 such that, if 0 < ε < ε0 and Dj = DεN−1/d(xj) for j = 1, . . . , N ,

1

N2

∑
i 6=j

−
∫
Dj

−
∫
Di

Rs(x, y) dσ(x) dσ(y) ≤ Es(N)

N2
+ Cε2

(
N−

2
d +N−1+ s

d

)
for some constant C > 0 depending only on d and s.
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Proof. If d ≥ 2 and d−2 ≤ s < d the minimizers are well-separated |xi−xj| ≥ cN−1/d,
and by taking ε0 > 0 small enough according to the separation the result follows from
Theorem 3.4 and Remark 3.6. For d > 2 and 0 ≤ s < d − 2 we apply Lemma 3.1 to
spherical caps of radius εN−1/d for ε > 0 small enough. �

4. Estimates of the Sobolev discrepancy

In this section we derive the estimates of the Sobolev discrepancy stated in Theorem
1.5, which are sharp for the range d− 2 ≤ s < d.

The reader should recall from Lemma 2.4 that the Riesz energy of the measure
introduced in Definition 1.3 is roughly the square of the Sobolev discrepancy. The
first result, that can be seen as a sort of Stolarky’s invariance principle, generalizes
Wolff’s result on the Sobolev discrepancy for S2 and s = 0.

Lemma 4.1. Let D1, . . . , DN be spherical caps on Sd of the same radius r > 0. Con-
sider the measures

µi =
χDi
σ(Di)

σ, µ =
1

N

N∑
i=1

µi −
σ

ωd
.

In particular, µ(Sd) = 0. Let K(x, y) = K(|x − y|) be a rotation invariant integrable
kernel. Then

1

N2

∑
i 6=j

∫
Sd

∫
Sd
K(x, y) dµi(x) dµj(y) =

1

ω2
d

∫
Sd

∫
Sd
K(x, y) dσ(x) dσ(y)

+

∫
Sd

∫
Sd
K(x, y) dµ(x) dµ(y)

− 1

N
−
∫
D

−
∫
D

K(x, y) dσ(x) dσ(y),

where D is a spherical cap of radius r centered at the north pole.

Proof. Writing the measure µ in terms of its summands, we have∫
Sd

∫
Sd
K(x, y) dµ(x) dµ(y) =

1

N2

∑
i,j

∫
Sd

∫
Sd
K(x, y) dµi(x) dµj(y)

− 2

Nωd

∑
i

∫
Sd

∫
Sd
K(x, y) dµi(x) dσ(y)

+
1

ω2
d

∫
Sd

∫
Sd
K(x, y) dσ(x) dσ(y).

Due to rotational invariance,∫
Sd
K(x, y)dσ(x) =

1

ωd

∫
Sd

∫
Sd
K(x, y)dσ(x)dσ(y),

and therefore,∫
Sd

∫
Sd
K(x, y)dσ(x)dµi(y) =

1

ωd

∫
Sd

∫
Sd
K(x, y)dσ(x)dσ(y).
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Finally, again by rotation invariance, the integrals∫
Sd

∫
Sd
K(x, y) dµi(x) dµi(y)

are all equal and independent of the center of the spherical cap. �

Proposition 4.2. Let D1, . . . , DN be spherical caps on Sd of the same radius εN−1/d.
Consider the measures

µi =
χDi
σ(Di)

σ, µ =
1

N

N∑
i=1

µi −
σ

ωd
.

Then

Es(σ̃) + Es(µ)− 1

N2

∑
i 6=j

∫
Sd

∫
Sd
Rs(x, y) dµi(x) dµj(y) ≈ ε−sN−1+ s

d

for 0 < s < d, where σ̃ = σ/ωd is the normalized surface measure on Sd. If s = 0, then

1

N2

∑
i 6=j

∫
Sd

∫
Sd
R0(x, y) dµi(x) dµj(y) = E0(σ̃) + E0(µ)− 1

d

logN

N
+O(N−1).

Proof. For 0 < s < d we take K = Rs in Lemma 4.1 to deduce that

1

N2

∑
i 6=j

∫
Sd

∫
Sd
Rs(x, y) dµi(x) dµj(y) = Es(σ̃) + Es(µ)− 1

N
−
∫
D

−
∫
D

Rs(x, y) dσ(x) dσ(y),

where D denotes a spherical cap of radius εN−1/d centered at the north pole n =
(0, . . . , 0, 1). To estimate this last integral we use normal coordinates around the north
pole, say,

Φ(x) =

{
(0, . . . , 0, 1) if x = 0,(
x
|x| sin |x|, cos |x|

)
if x 6= 0,

for x ∈ Rd with |x| ≤ π. For every r > 0, we have∫
D(n,r)

∫
D(n,r)

Rs(x, y) dσ(x) dσ(y)

=

∫
B
(

0, arccos(1− r2
2

)
)∫

B
(

0, arccos(1− r2
2

)
)Rs(Φ(x),Φ(y))

(sin |x|
|x|

)d−1(sin |y|
|y|

)d−1

dx dy,

where B(a, r) is the ball in Rd of center a ∈ Rd and radius r > 0. As there exist
constants C, c > 0 such that c|x−y| ≤ |Φ(x)−Φ(y)| ≤ C|x−y| and 1/2 ≤ sin t/t ≤ 1
for all |t| ≤ π/2, we deduce that∫

D(n,r)

∫
D(n,r)

Rs(x, y) dσ(x) dσ(y) ≈
∫
B
(

0, arccos(1− r2
2

)
)∫

B
(

0, arccos(1− r2
2

)
)Rs(x, y) dx dy.

Finally, it is easy to check that, for 0 < s < d,

−
∫
B(0,r)

−
∫
B(0,r)

Rs(x− y) dx dy = r−s−
∫
B(0,1)

−
∫
B(0,1)

Rs(x− y) dx dy
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and

−
∫
B(0,r)

−
∫
B(0,r)

R0(x− y) dx dy = log
1

r
+−
∫
B(0,1)

−
∫
B(0,1)

Rs(x− y) dx dy,

where we used that |B(0, 1)| = ωd−1/d. Then, since 1
2
|B(0, r)| ≤ σ(D(n, r)) ≤ |B(0, r)|,

we conclude that, for 0 < s < d,

C
N s/d

εs
≤ −
∫
D

−
∫
D

Rs(x, y) dσ(x) dσ(y) ≤ C−1N
s/d

εs
(4.1)

for some constant C > 0 depending only on s and d. In the case s = 0, we get that

−
∫
D

−
∫
D

R0(x, y) dσ(x) dσ(y) =
1

d
logN + C + o(1), N → +∞,

where C ∈ R depends only on d. �

Proof of Theorem 1.5. We first show that the Sobolev discrepancy of the measures
associated to any set of N points is bounded below. Given XN = {x1, . . . , xN} ⊂ Sd
and ε > 0 define the measures

µi =
χDi
σ(Di)

σ, µXN ,ε =
1

N

N∑
i=1

µi −
σ

ωd
,

where Dj = DεN−1/d(xj). Since the µi are probability measures, we have

Es(N) ≤
∫
Sd
· · ·
∫
Sd

(∑
i 6=j

Rs(xi, xj)
)
dµ1(x1) . . . dµN(xN)

=
∑
i 6=j

∫∫
Rs(x, y) dµi(x) dµj(y).

(4.2)

Combining (4.2), the lower estimate for the minimal energy in (1.2), (1.3), Proposition
4.2, and Lemma 2.4, we get the lower bound

Dε
s,d(XN)2 ≥ (−c+ Cε−s)N−1+ s

d , (4.3)

where c > 0 is the constant in (1.2) and C > 0 is the constant in (4.1). Observe that
the bound in (4.3) is not trivial for ε small enough.

For the upper bound we use again Proposition 4.2, Corollary 3.7, the upper estimates
for the minimal energy in (1.2), (1.3) and Lemma 2.4. We obtain that, for all 0 < ε <
ε0(s, d) and 0 < s < d,

Dε
s,d(XN)2 ≤ Cε2N−2/d + (C + Cε−s + Cε2)N−1+ s

d ,

and for s = 0 and d > 2

Dε
0,d(XN)2 ≤ (Cε2 + C)N−2/d.

�
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Remark 4.3. In the manuscript [37], Wolff uses the asymptotic expansion of the
discrete minimal energy∑

i 6=j

log
1

|xi − xj|
=

N2

(4π)2

∫
S2

∫
S2

log
1

|x− y|
dσ(x) dσ(y)− N

2
logN +O(N) (4.4)

as N → +∞, which it seems it was not known at that time. In fact, in the manuscript
Wolff mentions that he borrows the direction ≥ in (4.4) from Elkies [24, page 150] and
proves the other, hence the manuscript must precede Wagner’s bound [36]. This agrees
with the information we have from Eremenko about Wolff giving him the manuscript
around 1992. We will sketch now the main ideas in the manuscript to prove the
inequality ≤ in (4.4). First, Wolff constructs area regular partitions on the sphere
with pieces satisfying the Poincaré inequality. He calls a set of points allowable if it is
defined by taking one point on each of these pieces of the area regular partition. Using
Poincaré inequality he proves that allowable sets have minimal Sobolev discrepancy,
i.e., of order N−1. Finally, by using the case s = 0 and d = 2 of the decomposition in
Lemma 4.1 and Lemma 3.1, he proves that allowable sets (and therefore Fekete points
too) have logarithmic energy bounded above by the right hand side of (4.4).

5. From the Sobolev discrepancy to the spherical cap discrepancy

The final ingredient to prove Theorem 1.1 is to estimate the spherical cap discrep-
ancy using the bounds on the Sobolev discrepancy and a suitable test function. The
main difficulty compared to Wolff’s case [37] is that we need the following result on
interpolation to be able to estimate the test function.

Lemma 5.1. If 0 ≤ s < d, there exists C > 0 only depending on d and s such that∣∣∣ ∫
Sd
f(x)g(x) dσ(x)

∣∣∣ ≤ C‖f‖θH[(d−s)/2]+1(Sd)‖f‖
1−θ
H[(d−s)/2](Sd)

‖g‖
H
s−d
2 (Sd)

(5.1)

for all f ∈ C∞(Sd) and g ∈ L2(Sd), where θ = (d − s)/2 − [(d − s)/2] ∈ [0, 1) and [t]
denotes the integer part of t ∈ R.

Proof. We decompose f and g in terms of spherical harmonics as

f =
∑
`,k

f`,k Y`,k, g =
∑
`,k

g`,k Y`,k,

where f`,k =
∫
f Y`,k dσ and g`,k =

∫
g Y`,k dσ. Then, using Cauchy-Schwarz inequality,

(2.3) and (2.1), we easily get∣∣∣ ∫
Sd
f(x)g(x) dσ(x)

∣∣∣2 ≤ (∑
`,k

|f`,k||g`,k|
)2

.
∑
`,k

(1 + `d−s)|f`,k|2
∑
`,k

A`,s|g`,k|2

= ‖g‖2

H
s−d
2 (Sd)

∑
`,k

(1 + `d−s)|f`,k|2.
(5.2)

For a general s, the last sum above may correspond to a Sobolev norm of noninteger
order. We are going to estimate it, by interpolation, in terms of Sobolev norms of
integer order. Let m ∈ N ∪ {0} be such that s ∈ [d − 2(m + 1), d − 2m) and set
δ = (d− s)/2−m, hence 0 < δ ≤ 1 and d− s = 2(m+ δ).
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Assume first that δ = 1, thus d− s = 2(m+ 1) and∑
`,k

(1 + `d−s)|f`,k|2 =
∑
`,k

(1 + `2(m+1))|f`,k|2 ≈ ‖f‖2
Hm+1(Sd) = ‖f‖2

H(d−s)/2(Sd).

With this at hand, (5.2) leads to (5.1) when θ = 0.
Assume now that 0 < δ < 1. Using that ` ≥ 0, we can estimate

1 + `d−s = 1 + `2(m+δ) ≤ (1 + `m)2(1 + `2δ). (5.3)

Since 1 < 1/δ < +∞, a combination of (5.3) with Hölder inequality yields∑
`,k

(1 + `d−s)|f`,k|2 ≤
∑
`,k

(
(1 + `m)|f`,k|

)2δ
(1 + `2δ)

(
(1 + `m)|f`,k|

)2−2δ

≤
(∑

`,k

(
(1 + `m)|f`,k|

)2
(1 + `2δ)

1
δ

)δ(∑
`,k

(
(1 + `m)|f`,k|

)2
)1−δ

.
(∑

`,k

(
1 + `2(m+1)

)
|f`,k|2

)δ(∑
`,k

(
1 + `2m

)
|f`,k|2

)1−δ

≈ ‖f‖2δ
Hm+1(Sd)‖f‖

2−2δ
Hm(Sd)

.

The fact that δ < 1 leads to m = [(d− s)/2], and therefore we conclude that(∑
`,k

(1 + `d−s)|f`,k|2
)1/2

. ‖f‖(d−s)/2−[(d−s)/2]

H[(d−s)/2]+1(Sd)
‖f‖1+[(d−s)/2]−(d−s)/2

H[(d−s)/2](Sd)
.

This, together with (5.2), proves (5.1) when 0 < θ < 1. �

Finally, the following proposition combined with Theorem 1.5 proves Theorem 1.1.

Proposition 5.2. Given 0 ≤ s < d, ε0 > 0 and C1 > 0, there exists C2 > 0 only
depending on d, s, ε0, and C1 such that, for every set XN = {x1, . . . , xN} ⊂ Sd with
Sobolev discrepancy

Dε0
s,d(XN) ≤ C1

(
N−

1
d +N−

1
2

+ s
2d

)
, (5.4)

the spherical cap discrepancy of XN satisfies

sup
D

∣∣∣#(XN ∩D)

N
− σ(D)

σ(Sd)

∣∣∣ ≤ C2

(
χ[0,d−2](s)N

− 2
d(d−s+1) + χ(d−2,d)(s)N

− 2(d−s)
d(d−s+4)

)
, (5.5)

where the supremum on the left hand side of (5.5) runs over all spherical caps D ⊂ Sd.

Proof. Let D = Dr(z) for z ∈ Sd and r > 0. Given 0 < ε < r/2 let f±ε ∈ C∞(Sd) be
such that 0 ≤ f±ε ≤ 1,

f+
ε (x) =

{
1 if |x− z| < r + ε,

0 if |x− z| > r + 2ε,
f−ε (x) =

{
1 if |x− z| < r − 2ε,

0 if |x− z| > r − ε.

Note that

σ(D)− Cε ≤
∫
f−ε dσ ≤

∫
f+
ε dσ ≤ σ(D) + Cε (5.6)
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for some constant C > 0 only depending on d. It is not hard to see that f±ε can be
taken in such a way that

‖f±ε ‖Hm(Sd) ≤ C
(
1 + ε−m+ 1

2

)
for all m ∈ N ∪ {0}. (5.7)

For example, take a smooth function φ : R→ R such that χ(−∞,0] ≤ φ ≤ χ(−∞,1) and

set f+
ε (x) = φ

(
ε−1(|x− z| − r − ε)

)
and f−ε (x) = φ

(
ε−1(|x− z| − r + 2ε))

)
. We leave

the details of checking (5.7) for the reader.
Observe that if ε > ε0N

−1/d then f+
ε ≡ 1 in Dε0N−1/d(xj) for all xj ∈ D. Recall also

form Definition 1.3 that µXN ,ε0 = hσ with

h =
1

N

N∑
j=1

χDj
σ(Dj)

− 1

σ(Sd)
, Dj = Dε0N−1/d(xj) for all j = 1, . . . , N .

Therefore,

#
(
D ∩XN

)
N

≤ 1

N

N∑
j=1

1

σ(Dj)

∫
Dj

f+
ε dσ =

∫
f+
ε dµXN ,ε0 +

1

σ(Sd)

∫
f+
ε dσ. (5.8)

Similarly, since f−ε ≤ 1 and it is supported on the spherical cap or radius r−ε centered
at z, we deduce that

#
(
D ∩XN

)
N

≥ 1

N

N∑
j=1

1

σ(Dj)

∫
Dj

f−ε dσ =

∫
f−ε dµXN ,ε0 +

1

σ(Sd)

∫
f−ε dσ. (5.9)

We have all the ingredients to prove (5.5). On one hand, if we first combine (5.8)
and (5.6), and then we use that µXN ,ε0 = hσ, (5.1), (5.7), and (5.4), we get

#
(
D ∩XN

)
N

− σ(D)

σ(Sd)
≤
∫
f+
ε dµXN ,ε0 + Cε =

∫
f+
ε h dσ + Cε

≤ C ‖f+
ε ‖

(d−s)/2−[(d−s)/2]

H[(d−s)/2]+1(Sd)
‖f+

ε ‖
1−(d−s)/2+[(d−s)/2]

H[(d−s)/2](Sd)
‖h‖H(s−d)/2(Sd) + Cε

≤ C
(
1 + ε−[ d−s

2
]− 1

2

) d−s
2
−[ d−s

2
](

1 + ε−[ d−s
2

]+ 1
2

)1− d−s
2

+[ d−s
2

]

×
(
N−

2
d +N−1+ s

d

) 1
2 + Cε

≤ C
1 + ε−([ d−s

2
]− 1

2
)(1− d−s

2
+[ d−s

2
])

ε([
d−s
2

]+ 1
2

)( d−s
2
−[ d−s

2
])

(
N−

1
d +N−

1
2

+ s
2d

)
+ Cε.

On the other hand, combining (5.9) and (5.6), and then using that µXN ,ε0 = hσ,
(5.1), (5.7) and (5.4), we obtain

#
(
D ∩XN

)
N

− σ(D)

σ(Sd)
≥
∫
f−ε dµXN ,ε0 − Cε =

∫
f−ε h dσ − Cε

≥ −C 1 + ε−([ d−s
2

]− 1
2

)(1− d−s
2

+[ d−s
2

])

ε([
d−s
2

]+ 1
2

)( d−s
2
−[ d−s

2
])

(
N−

1
d +N−

1
2

+ s
2d

)
− Cε.
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In conclusion, we obtain the estimate∣∣∣#(D ∩XN

)
N

− σ(D)

σ(Sd)

∣∣∣
≤ C

1 + ε−([ d−s
2

]− 1
2

)(1− d−s
2

+[ d−s
2

])

ε([
d−s
2

]+ 1
2

)( d−s
2
−[ d−s

2
])

(
N−

1
d +N−

1
2

+ s
2d

)
+ Cε.

(5.10)

In order to deal with the right hand side of (5.10), we consider two different cases:
d− 2 < s < d and 0 ≤ s ≤ d− 2.

Assume first that d− 2 < s < d, thus [(d− s)/2] = 0. Then (5.10) leads to∣∣∣#(XN ∩D
)

N
− σ(D)

σ(Sd)

∣∣∣ ≤ Cε−
d−s
4 N−

d−s
2d + Cε. (5.11)

Remember that this estimate holds whenever ε > ε0N
−1/d, hence we can take

ε = N−
2(d−s)
d(d−s+4)

for all N big enough, and then (5.11) yields (5.5).
Let us deal now with the case 0 ≤ s ≤ d− 2. From (5.10), we get∣∣∣#(XN ∩D

)
N

− σ(D)

σ(Sd)

∣∣∣ ≤ Cε−
d−s−1

2 N−
1
d + Cε. (5.12)

As before, this holds whenever ε > ε0N
−1/d, hence we can take ε = N−

2
d(d−s+1) for all

N big enough, and then (5.12) yields (5.5). �
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