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1
Introduction

1.1 Cell migration

Cells are the basic biological structure of all organisms and their behavior
has been and still is a key field of study in biology. A crucial property of cells
is their ability to move, which is fundamental in many vital processes like wound
healing, immune responses and cancers metastasis [1]. Cell migration takes two
major features: determination of the direction in which to move and the movement
itself. The process where the cell is not stationary anyomore and its symmetry is
broken toward a specific direction is called polarization. [2]

Once the cell has a well-defined front and rear, it crawls on the surface by
using a simple mechanical cycle consisting on protrusion, adhesion and contraction.
Actually, these steps take place continuously and simultaneously, so they can be
studied all at once [3]. For the protrusion, cells use flat motile appendages called
lamellipodia. These appendages are made of actin filaments (F-actin), enveloped
by the cell membrane, that grows because of the polymerization of actin monomers
(G-actin). The latter diffuses in the cytoplasm and assembles onto uncapped
filament barbed ends, at the leading edge. Actin polymers crosslink and generates
a meshwork, which has been characterized as a complex viscous gel. Adhesion
complexes, comprised of a protein called integrin, remain the cell attached to the
substrate. Finally, lamellipodial contraction is mainly caused by myosin motors.
Myosin molecules are distributed throughout the cell and each one develops a
pN-range force [4]. This process does not disturb the stiff actin network in the
front half of the lamellipod but actin chains disassembles backwards generating a
retrograde flow inside the cell. This organization of the actin-myosin network, as
well as the adhesion system, is the responsible for the movements and forces of the
motile cell. It has been shown experimentally in [5] that lamellipodia fragments
are able to move without a nucleus, this is why it makes sense to focus just on this
components and not in the cell body.

Commonly, before the cell crawls by itself via the actin-myosin continuous
cycle, it needs an external cue for the cell to polarize. Among all the ways to
orientate a cell, here we see two that have been well studied before. On the one
hand, we know some proteins of the Rho family like GTPases stimulate actin
polymerization. Both active GTPases in the membrane and cytosolic inactive
GTPases work as a closed system via activation/inactivation. Then, active forms
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4 CHAPTER 1. INTRODUCTION

might increase their concentration on one side, which will be the front side of
the cell [6]. Secondly, we know that friction gradients on the extracellular matrix
do stimulate cell movement, what has been well studied in [2]. The cell moving
because of a chemical cues we call it chemotaxis, while if the movement occurs due
to a stiffness gradient on the substrate it is known as durotaxis.

Figure 1.1: Schematic of the motile cell. There is already a well defined leading
and rear edge. Lamellipodium grows in the front because of actin polymerization.
Actin network disassembles backwards, which induce a retrograde flow. Myosin
motors generate contractile stress on the actin meshwork and traction force due
to cell attachments.

1.2 Mathematical modelling of cell migration

Cell motility has been well investigated and has a very rich experimental data.
It is also safe to say that most of molecular parts underlying cell migration are
known. Thus, numerous mathematical models have been proposed to replicate
experimental results in order to understand and reproduce this process. Although
mathematical models do not work directly with biological objects in the lab, they
are essential since they are highly reliable and allow us to describe complex systems.
Computational simulations also helps to carry out expensive experiments with low-
cost tools and they provide new insights in cell motility.

Most of the cell migration models are built using several physical laws. The
fundamental ones are the force balance principle and the conservation of mass.
Moreover, all this occurs in such small space that inertia is negligible. We can
differentiate two kind of forces. Active ones, which consume energy via ATP
hydrolysis, like actin polymerization or myosin contractile stress. And passive ones,
which conserve or dissipate energy, like friction or membrane tension. Conservation
of mass states that the number of molecules can change owing only to transport
(convection or diffusion) or chemical processes. These principles are used in most
of models. However, constitutive relations, which are additional assumptions that
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complement previous laws, must be discussed explicitly. For example, some models
like the one in [3] do not consider actin meshwork as a viscous gel strip, but as
viscoelastic or actin transport is driven just by convection and it does not diffuse
in [4]. Actin polymerization velocity is also open to different descriptions in order
to give the best approximation: while some consider that it evolves as function of
the cell length like ∼ 1/x [3], others think that it develops like ∼ exp(−x) [7].

Regarding to initial polarization, a challenge is to know which specific polar-
ization mechanism or combination of mechanisms works in every specific system.
Together with lab work, modelling remains relevant to comprehend this problem.
Another question that nowadays is still asked is whether motility starts by polar-
izing the cell front via protruding appendages or by defining first the rear and then
allowing protrusion in the opposite side. In [8] they refer to mathematical models
where actin flow accelerate in the future rear edge, and only then the opposite edge
starts to enlarge. They justify this by saying that inward actin flow in one edge
bundle the gel and result in a membrane tension drop, which allow the protrusion
of the other edge. In fact, recent experiments confirmed that membrane tension is
a crucial regulator of cell polarization [11]. Here we expect a similar behaviour of
the cell when actin flow increase due to friction gradients and we combine it with
external-signaling cues of GTPases proteins.

We develop here a one-dimensional model of the cell. This kind of representa-
tions are less accurate than two-dimensional ones because they do not reproduce
the correct shape of the cell. However, 1D models are also useful since they are
computationally less expensive, so we can execute simulations multiple times and
with different purposes. Our objective is to develop a model that includes essen-
tial components of motility such as the velocity and stress of the actin meshwork,
myosin-based contraction of the gel or the implementation of different kind of
polarization mechanisms.
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2
Mathematical framework

2.1 Actin mechanics

Actin mechanics involve the physics of a fluid in motion. The forces on the cell are
the internal active and passive stress, and the friction force due to the contact with
the substrate. Let σ be the total gel’s stress. Then, the force-balance equation of
F-actin is

∂σ

∂x
= ηv (2.1)

where the right hand-side of the equation describes the interaction of the cell with
the extracellular matrix and η is the friction coefficient. All the model parameters
are listed in Table 1. We describe the actin network as a purely viscous gel. Thus,
the total stress σ is the sum of active stress, due to actin-myosin interaction and
passive stress generated by the viscosity. Then, σ can be written as

σ = µ
∂v

∂x
+ ξρaρm (2.2)

where the first term refers to the viscous stress, being µ the viscosity coefficient and
the second term is the active stress produced by the contractile forces. ρa and ρm
are the actin and myosin densities respectively and ξ is the contractility constant.
Substituting the expression for the stress we have the extended momentum balance
equation

∂

∂x

(
µ
∂v

∂x
+ ξρaρm

)
= ηv (2.3)

To complete the formulation we need to specify the boundary conditions of the
equation. We impose the tension at the leading and rear edge and we call this
the membrane tension σm, which depends on the membrane extension. In the
expansion phase of spreading, the cell length increases rapidly until it reaches a
steady state length. Actually, the membrane has initially many folds that flatten
during spreading and they let the cell to grow freely. During this process, the
membrane does not restrain cell growth so we consider σm = 0. However, when
all membrane folds deplete, this is, when cell length have grown about a 50% [9]
of the initial length, we will calculate the membrane tension as σm = κ(L − L0).
κ is a constant parameter and L0 the initial cell length when all folds deplete. We
consider σm an outward tension without regard of the cell direction, so it follows
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that (
µ
∂v

∂x
+ ξρaρm

) ∣∣∣∣∣
left edge

= −σm (2.4)

(
µ
∂v

∂x
+ ξρaρm

) ∣∣∣∣∣
right edge

= σm (2.5)

2.2 Transport mechanisms in cell migration

It is important to note that the previous mechanical variables change with position
depending on the density of the actin network. We describe the actin and myosin
density as a function of the position x and the time t and we will see that the motion
of both densities are affected by the velocity v. However, while v is calculated in
the lab frame of reference, the actin and myosin density movement depend only
on the action inside the cell, i.e. the cell frame.

To find the velocity of the gel at each position in the cell frame, we use the
classical velocity addition

v(x) = ṽ(x) + vcell(x) (2.6)
This is, at each x, the velocity of the actin network in the lab frame v is the
velocity in the cell frame ṽ plus the velocity of the cell vcell. The velocity of the
cell at each position is computed assuming that vcell = v+ vp (vp is the protrusion
velocity computed in equation 2.17) in the leading and rear edge and interpolating
linearly along the length. Finally, we can calculate the velocity of the whole cell
by computing the average between vcell at the leading and rear edge.

2.2.1 Actin

We describe the conservation law for the actin density ρa(x, t) as the motion equa-
tion for a physical quantity in a velocity field. In this particular case, considering
the one dimension equation we have the following transient convection-diffusion-
reaction equation

∂ρa
∂t

+
∂

∂x

(
ṽρ−Da

∂ρa
∂x

)
= kp − kdρa (2.7)

where the source term involves kp and kd, this is, the polymerization and de-
polymerization rate respectively and Da is the diffusive parameter. Note that
depolymerization depends on the density, while polymerization depends only on
the actin monomers, which is constant. The boundary conditions of the transport
problem are essentially no flux boundary conditions. This means that there is no
actin crossing the cell boundary. The BC equation reads

ṽρa −Da
∂ρa
∂x

= 0 on ∂Ω (2.8)
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We can decide which initial condition we state for ρ according to each need. Here
we work with a small random generated profile centered on one since actin density
is assumed to be distributed uniformly along the cell.

ρa(x, 0) =
ρ0

ρ0

, ρ0(x) = 1 + 0.105

(
U(0, 1)(x)

2
− 1

)
(2.9)

being U(0, 1) the uniform distribution in the (0, 1) interval.

2.2.2 Myosin

We develop our model where the internal flow is generated in part by myosin
motors. They can stretch or squeeze the actin network in order to generate a
mechanical stress and induce movement. To model the myosin distribution, we
assume that they may be either bound or unbound to F-actin meshwork. Despite
myosin motors attach and detach F-actin, total amount of mass is conserved. Thus,
we follow the procedure done in [10] by combining both equations for bound and
unbound myosin concentration into one single transport equation.

∂ρm
∂t

+
∂

∂x

(
ṽρm −Dm

∂ρm
∂x

)
= 0 (2.10)

We impose boundary conditions to ensure no concentration of myosin go across
the edges.

ṽρm −Dm
∂ρm
∂x

= 0 on ∂Ω

2.3 Polarization of signaling cues

In early events of migration, the cell can receive external signals in order to ori-
entate it towards the proper direction. To achieve a polarized state, they are
subjected to transient stimulus in the form of a shallow chemical gradient or a
strongly localized signal on the cell membrane. The cell then responds by reorga-
nizing into two well-defined regions, the front and the back edge. This all has well
studied in [6].

There are many proteins involved in this process, like members of Rho GTPasas
family such as Cdc42, Rac and Rho. They can be found in most of living being and
they play a central role in cell motility. In our model we consider a simplified sys-
tem compounded just of GTPasas because it helps to cover the essential features,
although other proteins could be candidates for similar phenomena. Every Rho
GTPasa cycle between the plasma membrane in a active form and cytoplasm as
inactive forms. Actually, rates of transition and relative diffusion rates are known
from experimental data. Here we followed a model for the signaling polarization
called wave-pinning. The idea of the model relies on two reaction diffusion PDEs
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with bistable kinetics, namely, propagation of fronts. We also considered a posi-
tive feedback from the activation form on its own production via GEFs (Guanine
nucleotide Exchange Factors). On the other hand, the conversion from active to
inactive forms is considered constant. Both equations, for active GTPase density
R and inactive forms Ri are

∂R

∂t
−DR

∂2R

∂x2
= konRi − koffR (2.11)

∂Ri

∂t
−DRi

∂2Ri

∂x2
= koffR− konRi (2.12)

where kon and koff are the activation and inactivation rates respectively. The
diffusion rate of the membrane-bound (active) form is known to be significantly
smaller than the inactive one, so that DR � DRi

. Bistabilty requires that one of
activation or inactivation rates (or both) be nonlinear. Here we have chosen one
of the simplest assumption, this is a positive feedback from the activated forms,
whereas the reverse conversion takes place constant. The expressions are

kon = k0 +
γR2

K2 +R2
, koff = 1 (2.13)

where k0 = 1s−1 is a basal GEF conversion rate, γ = 1 the maximal rate and
K = 1 the saturation parameter.

Moreover, an external stimulus is known to increase activation of proteins by
upregulating the GEFs that convert inactive forms to active forms. To model this
external stimulus, we added a function fS(Ri) to equation 2.8 and subtracted from
equation 2.9. We note it as

fS = kS(x, t)Ri (2.14)
where kS(x, t) is the increased rate of conversion from inactive to active forms due
to an external signal. We define kS as a graded linear stimulus focused on one side

kS = s(t)(L− x) x ∈ [0, L] (2.15)

with

s(t) =


S0 0 ≤ t ≤ t1

S0

(
1− t− t1

t2 − t1

)
t1 ≤ t ≤ t2

0 otherwise

(2.16)

where S0 = 0.07 and t1,t2 are the points in time at which the stimulus starts to
decrease and is finally null [6].

2.4 Protrusion velocity balanced by signaling cues
and membrane tension

Next, we model the velocity of lamellipodial protrusion, which is driven by actin
polymerization that pushes the plasma membrane forward. The cell membrane
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is the leading structure to be pushed forward so it is reasonable to think that it
also exerts an opposite force against the actin polymerization. This force is the
membrane tension and it has been characterize experimentally and theoretically in
the past together with its relation to actin polymerization describing force-velocity
relations [11].

When there is no opposing forces to actin polymerization, some models like
the one developed by Mogilner and Oster in [12] considered a free growth of the
cell front with velocity vp0 = kpδρ

s. Here kon is the rate of actin assembly at
the front, ρs is the density of polymerizable factors, that promotes or inhibit
actin polymerization, and δ is the size of one single monomer at the tip of the
filament. The free velocity is vp0 = 0.55µm/s [7]. However, the tension of the
plasma membrane imposes a resistance to actin polymerization. Then, the actual
protrusion velocity decreases with respect to the free polymerization velocity as

vp = vp0exp(−σmδ/kBT )− δkd (2.17)

where σm is the resistance tension of the cell membrane per unit length and kBT
is the thermal energy constant [7].

Moreover, in our model we do not consider vp0 as a constant, but we impose
it as a function of active GTPases concentration R. We formulated the function
according to the following assumptions: there is no velocity when R tends to zero
so vp0(0) ≈ 0. When R = 1, which actually may be a real initial condition, we
impose a free velocity vp0(1) = 0.55 and when R � 1 we impose a maximum
velocity vp0(Rmax) = 1.1. Finally, the function we thought best fitted the demands
was a sigmoid

vp0(R) =
1.1

1 + e−10(R−1)
(2.18)

Table 1: Model parameters

Parameter Definition Typical value References

µ Viscous coefficient 30 kPa s µm−2 [12]
ξ Contractility 0.015 kPa [10]
η Friction 3 kPa s [10]
κ Membrane stiffness 0.5 kPa µm−1 [10]
kp Polymerization rate 0.1 s−1 [15]
kd Depolymerization rate 0.1 s−1 [15]
Da Actin diffusion coefficient 0.3 µm2 s−1 [12]
Dm Myosin diffusion coefficient 0.7 µm2 s−1 [12]
koff GTPases inactivation rate 1 s−1 [6]
DR Active GTPases diffusion coefficient 0.1 µm2 s−1 [6]
DRi

Inactive GTPases diffusion coefficient 10 µm2 s−1 [6]
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2.5 Finite element implementation

We solved the model equations by using a finite element scheme for the spatial
derivatives and a θ-method for the time integration when needed. Let us see how
we get the numerical scheme for each equation.

2.5.1 Momentum-balance

Let us consider the main equation for the actin mechanics

∂

∂x

(
µ
∂v

∂x
+ ξρaρm

)
= ηv (2.19)

Recall we noted as µ the viscous coefficient, ξ the contractibility constant and η
the friction parameter. To approximate a solution with the finite element method
we must state first the weak form of the problem, so we consider a proper Hilbert
space V ⊂ H1(Ω). Then, we multiply the whole equation by a test function w ∈ V
and integrate in Ω. ˆ

Ω

w(µvx + ξρaρm)x dx =

ˆ
Ω

ηwv dx

If we apply integration by parts in the left side we get

−
ˆ

Ω

µwxvx dx−
ˆ

Ω

ξwxρaρm dx+ wσ
∣∣∣
∂Ω

=

ˆ
Ω

ηwv dx

We used µvx + ξρaρm = σ and, since in the middle integral it is evaluated on the
edges of the cell, we will note it as the membrane tension σm. Rearranging terms
we obtain the weak form of the problem: find v ∈ V such that

−
ˆ

Ω

µwxvx dx−
ˆ

Ω

ηwv dx =

ˆ
Ω

ξwxρaρm dx− wσm ∀w ∈ V (2.20)

For the discretization, let us set Ω = [0, L] and a partition of the interval given
by X = [x0, ..., xN ] having x0 = 0 and xN = L. Furthermore, we define the space
V h ⊂ V with dimV h = |X| and a basis {Ni} such that Ni(xj) = δij. Thus,
the approximate problem is now to find vh ∈ V h saitsfying the weak form for all
w ∈ V h. In fact, it suffices that equation 2.17 be verified for each function of the
basis, as they generate V h. In this discrete space, functions v is approximated as

vh =
N∑
j=0

Nj(x)vj (2.21)

Substituting in the weak form, we get

−µ
∑
j

(ˆ
Ω

N ′iN
′
j dx

)
vj − η

∑
j

(ˆ
Ω

NiNj

)
vj =

ˆ
Ω

ξN ′iρaρm dx−N0σm +NNσm
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for all i = 0, ..., N . Finally, just can write the whole system of N equations as a
matricial algebraic equation

(−µKv − ηKf )v = f (2.22)

where

Kv =

ˆ
Ω

N ′iN
′
j dx Kf =

ˆ
Ω

NiNj dx f =

ˆ
Ω

ξN ′iρaρm dx−N0σm +NNσm

Once the system is solved, we will have found the velocity v(x) of the cell gel in the
lab frame. Hence, before solving transport equations, we must change the frame
of reference where velocity v is into a cell-frame velocity ṽ. This is done by using
the classic addition vcell + ṽ = v.

2.5.2 Transport equation

We consider now the transport problem for actin and myosin densities. The nu-
merical approximation can be solved in general since both problems are transient
convection diffusion PDEs. Here we use the equation for the actin density but
the procedure and final system is analogous for myosin concentration ρm (we just
would consider no source term). Recall the equations of actin transport

∂ρa
∂t

+
∂

∂x

(
ṽρa −Da

ρa
∂x

)
= kp − kdρa (x, t) ∈ Ω× [0, T ]

ṽρa −Da
∂ρa
∂x

= 0 on ∂Ω

(2.23)

The same method as in the mechanics equation for the actin motion is used so we
take a proper Hilbert space V and w ∈ V . We multiply the whole equation by w
ans integrate in the domain Ω

ˆ
Ω

w∂tρa +

ˆ
Ω

∂x(ṽρa −Da∂xρa)w =

ˆ
Ω

kpw − kdρaw

applying integration by parts in the second expression we get
ˆ

Ω

w∂tρa +

ˆ
∂Ω

(ṽρa −Da∂xρa)w −
ˆ

Ω

(ṽρa −Da∂xρa)∂xw =

ˆ
Ω

kpw − kdρaw

Since we have no-flux boundary conditions on the front and rear edge, the integral
on ∂Ω is null. Thus, the weak formulation of the problem is: find a ρa in V such
that
ˆ

Ω

w∂tρa −
ˆ

Ω

ṽρa∂xw +

ˆ
Ω

Da∂xρa∂xw +

ˆ
Ω

kdρaw =

ˆ
Ω

kpw ∀w ∈ V (2.24)
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We discretize the problem in the same space V h where we solved the momentum-
balance equation. Therefore, using the discrete approximation ρa =

∑
Nj(x)ρaj

we can write the equation as

n∑
j=0

(ˆ
Ω

NiNj dx

)
ρ̇aj −

n∑
j=0

(ˆ
Ω

ṽN ′iNj dx

)
ρaj +Da

n∑
j=0

(ˆ
Ω

N ′iN
′
j dx

)
ρaj+

kd

N∑
j=0

(ˆ
Ω

NiNj dx

)
ρaj =

ˆ
Ω

kpNi dx

(2.25)

for all i = 0, ..., N . The system of ODEs can be stated as an algebraic matricial
equation

Mρ̇a + (DaK−C + kdM)ρa = f

where each matrix and the right hand side vector are computed as

M =

ˆ
Ω

NiNj dx C =

ˆ
Ω

ṽN ′iNj dx K =

ˆ
Ω

N ′iN
′
j dx f =

ˆ
Ω

kpNi dx

for i, j = 0, ..., N .

The time integration is given by the so called θ-method. The latter discretizes
the temporal derivative by a simple incremental ratio and replaces the other terms
via a linear combination of ρ at time n and n+1, depending on the real parameter θ,
with 0 ≤ θ ≤ 1. The idea is, given a first order ODE y′ = f(x, y), we approximate
it as Y n+1−Y n

∆t
= θf(xn, Y n) + (1 − θ)f(xn+1, Y n+1). We use this scheme because

its ease to change the method by varying θ. Note that for θ = 1 it is the explicit
Euler, if θ = 0 it is implicit Euler and if θ = 1/2 we have Crank-Nicolson. In the
whole work we use θ = 1/2 (Crank-Nicolson method) since it is an implicit and
second order method.

In our equation we have

M
ρn+1
a − ρn

a

∆t
+ (DaK−C + kdM)(θρn+1

a + (1− θ)ρn
a) = θfn+1 + (1− θ)fn

Note that in our particular case, f is constant in time, i.e fn = f for all n. Thus,
θfn+1 + (1− θ)fn = f . Then, the final system to be solved has the form

[
M

∆t
+ θ(DaK−C + kdM)

]
ρn+1
a =

[
M

∆t
+ (1− θ)(DaK−C + kdM)

]
ρn
a + f

(2.26)
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2.5.3 Signaling equations

The last PDEs we need to solve numerically are the equations for both active and
inactive GTPases densities together with the external stimulus ks

∂R

∂t
−DR

∂2R

∂x2
= konRi − koffR + ksRi

∂Ri

∂t
−DRi

∂2Ri

∂x2
= koffR− konRi − ksRi

(2.27)

In order to solve this system we implemented, as before, a finite elements dis-
cretization in space and Crank-Nicolson method for the time integration. After
the time discretization we get

∆R

∆t
= θRn+1

t + (1− θ)Rn
t (2.28)

∆Ri

∆t
= θRi

n+1
t + (1− θ)Ri

n
t (2.29)

where ∆(·) = (·)n+1 − (·)n. Then, if we carry out the weak form and discretize it
in the space we end up having the following system

M
Rn+1 −Rn

∆t
= θ

[
DRKR

n+1 +

ˆ
NikonR

n+1
i dx− koffMRn+1 +

ˆ
NiksR

n+1
i dx

]
+(1− θ)

[
DRKR

n +

ˆ
NikonR

n
i dx− koffMRn +

ˆ
NiksR

n
i dx

]
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with
M =

ˆ
Ω

NiNj dx K =

ˆ
Ω

N ′iN
′
j dx

When solving the coupled system, we note that it is non-linear because of the term
kon (defined in equation 2.13). Therefore, we need to solve it iteratively using a
fixed point method. First, using the equations we need to solve, we define the
residuals

RR = M
Rn+1 −Rn

∆t

− θ
[
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n+1 +

ˆ
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n+1
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ˆ
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i dx

]
− (1− θ)
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n +

ˆ
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n
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ˆ
NiksR

n
i dx

]
(2.32)
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RRi = M
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(2.33)

In particular, we solve it simultanoeusly at each time step with the Newton-
Raphson algorithm. Our aim now is, given Rn and Rn

i , to find Rn+1 and Rn+1
i such

that RR(Rn+1, Rn+1
i ) = 0 and RRi(Rn+1, Rn+1

i ) = 0. If we note Φk =
(

Rn+1

Rn+1
i

)k
,

where k is the iteration counter index, and R =
(
RR

RRi

)
, the equation to solve is

Φk+1 = Φk −K−1(Φk)R(Φk) (2.34)

starting by an initial approximation Φ0 and having

K =


∂RR

∂Rn+1

∂RR
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i
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∂RRi
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i
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At each time step n, our choice for the initial approach is Φ0 =
(

Rn+1

Rn+1
i

)0

=
(
Rn

Rn
i

)
and we iterate over k the Newton-Raphson algorithm to find the next solution at
n + 1. Moreover, at every k we check whether ||Φk+1 − Φk|| < 10−6 to ensure
convergence. The scheme is presented as

Algorithm 1 Coupled system of R and Ri for any given time-step
1: Compute stimulus function −→ kS
2: Set Φ0

3: while convergence = false do
4: Get RR,RRi and K
5: Compute Φk+1 = Φk −K−1R
6: end while
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2.6 Coupling of the system of PDEs

Most of the equations in our model are coupled, this means, unknown variables
appear in more that one equation. Recall that both momentum-balance equation
and transport equations involved v and ρa or ρm. In fact, transport equation
required ṽ but it was a function of v. We say that this system of PDEs is coupled.
To solve it, at each time step we compute first the mechanic equation (with a given
ρn
a and ρn

m from the previous time step) in order to find vn+1, and then we solve
transport equations to find ρn+1

a , ρn+1
m . This method where, despite the equations

are coupled, each equation is solved separately is called staggered method.

Algorithm 2 Main equations
1: for 1 to endTime do
2: Compute signaling equations −→ R (eq 2.34)
3: Compute momentum-balance equation −→ v (eq 2.22)
4: Compute change of reference frame −→ ṽ (eq 2.6)
5: Compute transport equations −→ ρa, ρm (eq 2.26)
6: end for
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3
Results

3.1 Sensitivity analysis of active acto-myosin dy-
namics at fixed boundary

First, we can ask ourselves if we chose the correct parameters and how solutions
are affected by them. Let us recall the mechanical equation for the actin network

∂

∂x

(
µ
∂v

∂x
+ ξρ

)
= ηv (3.1)

The parameters involved here are viscosity µ, contractility ξ and friction η. All
these parameters have been studied in the lab and are known for different type
of cells. However, by modifying them we can detect some other interesting com-
binations and also verfy our model. Here we performed a sensitivity analysis
by changing parameters around the default values, which initially were µ = 10,
ξ = 0.1, η = 1 (see Table 1 for final values used). Beside this, we can state con-
venient boundary conditions in order to focus on what we need. In this case, we
keet the cell attached to the substrate, so vcell = 0. We also imposed Dirichlet
boundary condition for the velocity of actin flow, namely v = 0 at the rear edge
and v = −0.1 at the front (note its negative sign due to the right-to-left direction
of the flow). These conditions allow a better and easier analysis of what we want
to see.

We study initially how the velocity of the actin network is affected when varying
the parameters. Figure 3.1 shows this velocity along the cell at the end time
(t = 3000s). Since there are too many combinations for all three quantities, here
we pick just a few interesting combinations, which contain default values. For
three different values of viscosity µ = 3, µ = 10 and µ = 30 and two different
elasticity constants ξ = 0.1 and ξ = 0.01, we show v depending on the friction
taking the values η = 0.05, η = 1 and η = 5.

Results show that in general, the velocity of the actin network tends to zero
earlier when friction is higher. For the lowest values of friction, velocity decrease
constantly. Moreover, if we increase contractility with low friction, actin velocity
do not decrease along the cell, but even increases. Finally, it can be deduced that
increasing viscosity reduce the velocity variation and it decreases straighter. In
fact, since our boundary conditions impose velocity in both edges, with higher
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viscosity the velocity graph tends to a straight line.

Figure 3.1: Velocity profiles of the actin meshwork for three different pair of values
of viscosity µ and contractility ξ. For each µ and ξ we plot v on three substrates
with different friction η.

At the beginning of the chapter we considered just the mechanical equation
for the actin network. However, velocity v is involved in actin and myosin trans-
port equations. That is why we also analyse how actin and myosin densities are
affected when changing some parameters. Figure 3.2 shows the plots for the actin
and myosin densities, as well as the actin network stress, for different friction pa-
rameters. We show them only for one pair of viscosity and contractility because
other values are quite similar.

Results show that the lower friction is, v is higher, and therefore there is more
convection so both densities augment in the back. Despite that, while myosin do
always accumulate at the rear edge, for high values of friction, actin density still
grow at the front. Regarding to tension, the higher the friction is, we note higher
stress. The negative sign is due to the direction it is applied, a positive stress
means a traction force and a negative stress means there is a compression force.

Figure 3.2: Actin and myosin concentration and stress for a given viscosity µ = 10
and contractility ξ = 0.1. Each variable is shown for different values of friction η.
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3.2 Early cell spreading

Once a sensitivity analysis is done, we can proceed to test numerically how the
cell migrates following our model. Here we prove the model on the early events
in the cell spreading, this is, we place a cell on the extracellular matrix with no
polarization. A no-polarized state is given by considering constant friction and no
external stimulus, taking the free polymerization velocity vp0 = 0.55µm/s equal in
both edges.

Figure 3.3: Concentration of actin and myosin in the cell for 30 seconds.

Figure 3.3 shows the symmetry on actin and myosin concentration, which is
given by the fact that there is no stimulus to motivate the cell to move. We also
note the cell spreads symmetrically until the membrane tension compensates the
polymerization force. This behaviour was expected and it has been shown also
in the lab [13]. In fact, here we do not take into account the numerous folds the
cell membrane actually has. If we considered them, the cell would extend freely
(with no membrane tension) until it was totally unfolded. In our experiment the
cell length become stable at 13.81µm long. We show the variables at the steady
state in figure 3.4, where we run the simulation for 100 seconds. We show actin
and myosin concentarions in the cell, as well as their evolution at the edges along
time. We also plotted in figure 3.4 the actin velocity, which is also symmetric and
centripetal, this is, actin flows from the edges to the center. Symmetry is also
given by the boundary conditions on the mechanical equations since we imposed
the same membrane tension σm in both edges. Finally, we show in figure 3.4 the
evolution of the actin protrusion velocity at both edges. We note the velocity
decreases and stabilize. This is due to the cell membrane that exerts an opposite
force to actin filament growth. At the steady state, the protrusion velocity, which
pushes the cell membrane outwards, is compensated with the actin inward flow.
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Figure 3.4: Actin and myosin densities inside the spreading cell. Actin velocity
inside the cell. Stress of the actin meshwork along the cell. Actin and myosin
concentration at edges for 100 seconds. Protrusion velocity of F-actin at leading
and rear edge along time. Membrane tension σm during time.

3.3 Polarization of signaling cues

One way to initialize polarization is by external signaling. Here we show the results
of solving the coupled system of GTPases proteins (equation 2.5.3), which guide
the cell when is starts moving. We plot both active GTPases concentration R
[molecules/length] and inactive ones Ri, as well as the external stimulus kS. We
consider first constant initial conditions equal to one for both active and inactive
GTPases and a graded stimulus defined in equation 2.15 for 20 seconds. We show
this on figure 3.5 and as expected, active GTPases proteins polarize according
to the external stimulus. A remarkable property is that this polarized state is
maintained indefinitely, even when we remove the stimulus. We see this by plotting
the molecules concentration until t = 200s.

We next ask whether our cell model is sensitive to new incoming signals. Here
we study this by adding a new identical stimulus toward the other direction. The
response of GTPases is that they do polarize on the other extreme, according to
the new stimulus. Here we add kS at t = 200s until t = 225s but on the other side.
Results show that, in fact, active GTPases change their orientation to the other
edge. We show this on figure 3.6.
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Figure 3.5: Evolution of active and inactive GTPases concentration according to
an external stimulus kS. Despite kS is applied for only 20 seconds, R stays in a
polarized state.

Figure 3.6: Evolution of GTPases concentration when applying an opposite stim-
ulus to a polarized configuration.

Finally, we simulate the GTPases polarization with no external stimulus kS,
but with a random initial condition for the active GTPases. We observe that they
can polarize either rightwards or leftwards. We also note that sometimes, if the
initial condition presents equal peaks in both sides, active GTPases will not be
able to decide which side to polarize so concentration will stabilize being constant.
We see all this cases on figure 3.7.
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(a)

(b)

(c)

Figure 3.7: (a)Rightward polarization of active GTPases from a random initial
condition. (b) Leftward polarization of active GTPases from a (different) random
initial condition. (c) No-polarized steady state of active GTPases.

A similar way to obtain a random polarization is by considering constant initial
conditions for R and Ri and a random kS for the first seconds as shown in figure
3.8. The initial conditions we considered were R(x, 0) = 0.8 and Ri(x, 0) = 1.
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With this initial conditions, we ran 100 times the code. 31 times R polarized to
the right, 36 times to the left and 33 times they stayed stable and did not polarize.
When we considered both R and Ri equal to one at t = 0, more than 40% of the
times R remained stable and did not polarize, that is why we decided to work with
lower initial values of active GTPases.

Figure 3.8: Polarization of active GTPases due to a random external stimulus
applied at first seconds.

3.4 Initial polarization and migration enhanced by
signaling

So far we have modeled the principal mechanisms that develop cell migration:
retrograde flux of actin as well as protrusion generated by F-actin. Moreover, we
considered protursion velocity as a function of active GTPases in equation 2.17,
which increase F-actin growth and induce polarization. In this section we stimulate
the plasma membrane with an external signal in order to generate a gradient of
active GTPases. With a different concentration of R on edges, there will be a
higher protrusion velocity on one side and the cell will start to move.

A crucial advantage of implementing polarization by GTPases cycles between
active and inactive forms is that we can lead the cell through external signals. Let
us consider now the whole motile cell model. First of all, we show that we can
guide the cell from the beginning by activating the external stimulus for a few
seconds. We show this on figure 3.9 by plotting actin and myosin densities during
some time with opposite stimulus. Given that both situations are symmetric, we
can choose either one or the other to study. Here we take the rightward moving
simulation and we run it for 100 second to ensure a steady state. On figure 3.10
we show the behaviour of the principal components of the cell.
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(a)

(b)

Figure 3.9: (a) Actin and myosin densities of the cell initially stimulated with a
right-oriented external signal. (b) Same but with a left-oriented external stimulus.

Figure 3.10: Actin and myosin densities inside the rightward polarized cell. Actin
velocity inside the cell. Stress of the actin meshwork along the cell. Actin and
myosin concentration at edges for 100 seconds. Protrusion velocity of F-actin at
leading and rear edge along time. Membrane tension σm during time.
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We can see in figure 3.10 how actin and myosin perform in our model, starting
from the same initial condition (a cell-length random vector) and how evolve.
They rapidly decrease at the front part of the cell, while both, actin and myosin,
increase in the rear due to the retrograde flow. When they stabilize, actin gets
a concentration of 1.71 in the rear and 0.16 at the front, while myosin reaches
2.76 on the rear and 0.04 at the front. If there are no external interference, this
distribution will remain stable onward.

The velocity of the actin network flux inside the cell when it becomes stable is
shown in the figure 3.10 in the lab and cell frame. Actually, the difference between
both velocities is the velocity of the cell. In the cell frame, the velocity on the rear
is −0.01µm/s, while at the front it is −0.41µm/s. We also show other variables
like the stress, which increases on the edges (on absolute value), or the protrusion
velocity on both edges. Here, the leading edge reaches 0.41µm/s while the rear one
is 0.015µm/s because of the depolymetization rate. We also note that membrane
tension increases until the cell length stabilizes. We show this on figure 3.11. The
very first thing we note is, despite the cell initially is 10µm long, it elongates
until 13.79µm. This is where the free velocity of polymerization is compensated
with the resistance of the cell membrane (at 1.89kPa), which is proportional to
the cell length growth. We also computed the velocity of the cell, which increases
rapidly in the initial seconds until it stabilizes at 0.21µm/s, where the cell travels
at constant velocity.

Figure 3.11: Length and velocity of the right-moving cell for 100 seconds.

In section 3.2 we observed GTPases do polarize with no external stimulus if
a random initial condition was settled for active forms R. We asked ourselves if
the cell also polarize and choose a side to move. Results show that, for a random
initial configuration of R, the cell also polarize towards the side where GTPases
density is higher. We see this in figure 3.12. Here we only plotted the first 30
seconds in order to analyse better the initial process. We can see that, since a
random initial condition requires a low value of R [6], it needs some seconds to
achieve a high enough value and start to move. Actually, the time it takes R to
be big enough depends on how the initial R develop. In 3.12, it takes around 7
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seconds to start moving, where the cell shrink due to retrograde flow. At that
time, active GTPases concentration was 0.65 and it stabilized at 1.71, in units of
molecules/length. At the end time, the cell was 13.88µm long and it traveled at
0.2µm/s speed to the right.

(a)

(b)

(c)

Figure 3.12: (a)Evolution of active and inactive forms of GTPases proteins at three
different moments starting from a random configuration of active ones. (b)Actin
and myosin concentration along space ans time. (c) Cell length ans cell velocity
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Finally, we were interested in how the cell behaves under two different external
signals. First, we applied the stimulus kS defined in the equation 2.15 to the left
and, after 100 seconds, we applied the same stimulus rightwards for 20 seconds.
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(a)

(b)

(c)

Figure 3.13: Moving cell after apply two external stimulus at t = 0s and t = 100s.
(a)Actin and myosin concentration along space and time. (b) Actin and myosin
density at the right and left edge of the cell during time. Protrusion velocities at
both edges: when the cell moves rightwards the right edge is the front one and
when the cell moves leftwards the left edge is the front one. Membrane tension
during time. (c)Cell length and cell velocity of the moving cell.

Results show that it takes to the GTPases ∼ 2 seconds to reach a high enough
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concentration to change the cell direction. However, the cell reacts instantaneously
and it only needs around 16.8 seconds to arrive to the cruising speed 0.2µm/s on
the other direction. We also note an increase of the cell length when modifying
its way. The cell length gets 14.7µm, which is a 6.3% more than its travel length.
The increase on the cell length involve an increase on the membrane tension since
they are proportional. On figure 3.13 we also show how actin and myosin arise
and fall on both edges when we add an opposite-directed external stimulus. We
note as well the switch between front and rear protrusion velocity. The front side
always stabilize at 0.41µm/s.

3.5 Initial polarization and migration enhanced by
friction gradients

The other method we study here to initialize the cell motion is durotaxis, this
is, the ability of cell to follow gradients of substrate friction. Until now we have
been using η0 = 3 kPa · s/µm as a friction parameter. Let us consider now an
extracellular matrix with a non-constant stiffness η(x). The function η(x) we
use here is a linear gradient, whose slope or direction can be modified to obtain
different outcomes. Results reproduce what has been seen in the lab [2]: with no
external signaling, the cell follows the gradient towards the stiffer region. Since
we are considering just movement because of friction gradients, we are using a
constant free polymerization velocity vp0 = 0.55 at both edges.

We start our experiments with a short sloped gradient, taking η(x) = η0+0.05x.
Figure 3.14 shows actin and myosin density in the cell while the cell moves. We
also show the stiffness of the substrate, where the thicker the more friction there
is. Despite the cell spreads normally until its length is 13.83µm, we note that
the small stiffness variation do not allows the cell to move at high speed. In fact,
vcell = 0.009µm/s. Other variables of the model are comparable to the stationary
cell ones, showed in figure 3.4.

Although we are considering a small gradient on the substrate friction, we could
ask whether the cell behaves different depending on the position we put it. Hence,
we also place the cell on x = 100. Results show that the cell spreads up to a bigger
steady length but its velocity is considerably smaller. Actually, these results were
expected because we already know that higher friction lead to slower retrograde
flux. On figure 3.15 we show the cell spreading until it is 14.78µm and moving at
0.003µm/s.



32 CHAPTER 3. RESULTS

(a)

(b)

Figure 3.14: (a)Actin and myosin concentration of a cell placed on x = 0 and a
substrate with variable friction η(x) = η0 + 0.05x. (b) Cell length and velocity of
the cell for 100 seconds.

(a)

(b)

Figure 3.15: (a)Actin and myosin concentration of a cell placed on x = 100 and a
substrate with variable friction η(x) = η0 + 0.05x. (b) Cell length and velocity of
the cell for 100 seconds.
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We also executed simulations on a matrix with a bigger stiffness gradient. In
particular, we show in figure 3.16 the performance of the cell on a substrate with
friction η(x) = η0 + 0.5x. The cell also follows the increasing resistance, but we
note a non-symmetric actin and myosin profiles, as well as a velocity increase up to
vcell = 0.03µm/s and its length, which reaches 14.6µm at the end of the simulation.

Figure 3.16: Actin and myosin concentration of a cell on a substrate with variable
friction η(x) = η0 + 0.5x.

Figure 3.17: Actin and myosin concentration inside the cell. Actin velocity on the
lab frame and cell frame. Stress of the actin meshwork. Evolution of actin and
myosin concentration on edges for 200 seconds. Front and rear protrusion velocity.
Membrane tension evolution.

On figure 3.17 we show the actin and myosin concentration profiles and their
evolution on cell edges. We also plot the stress of the actin network and protrusion
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velocities on edges. Although protrusion velocities are equal on both sides because
we are using the same v0, we note they slightly decrease. This is a consequence of
the increase of the membrane tension, which is also a result of the increase of the
cell length.

We ran the simulation of the cell on a high stiffness gradient for 200 seconds
(figures 3.16 and 3.17). However, the cell do not arrive to a steady state because
at the end time the cell still spread and its velocity was not constant. In our
simulation with a high friction matrix, the cell takes more than 800 seconds to
reach a steady state. We can get this result also by placing the cell in positions
with higher stiffness, instead of setting the cell on the origin. Here, we set the cell
at x = 35, where it migrates with constant length and velocity. The cell length is
14.54µm and it travels at 0.01µm/s. We show this on figure 3.18. Model variables
are comparable to the steady state results, shown on figure 3.4.

Figure 3.18: Actin and myosin concentration of a cell on a substrate with variable
friction η(x) = η0 + 0.5x placing the cell on x = 35.

We do not show here the case where the gradient increases to the left, but the
cell also follows the stiffness gradient going leftwards.

3.6 Tug of war between adhesion forces and signaling-
based migration

In this final section we activate both ways to initiate the cell migration: the
external signaling and the gradient substrate friction. We do not only activate
them simultaneously, but we will also consider first a friction gradient and then
we will add an external stimulus.

When we have a non-constant friction substrate and we turn on the signaling
towards the decreasing gradient, we note the cell does not follow the stiffness
anymore, but obeys our external stimulus. This occurs due to a higher protrusion



3.6. ADHESION FORCES VERSUS SIGNALING-BASED MIGRATION 35

velocity over the retrograde flux. Despite the intern actin flux pushes the cell
because of the friction gradient as seen in section 3.5, GTPases concentration
induce actin polymerization, and so protrusion velocity. Since we develop vp0(R)
by ourselves, we do not refuse that with distinct values of polymerization velocity,
or a higher stiffness slope, the cell would move differently. Here we impose the
friction function η(x) = η0 + 0.5x on the extracellular matrix. Figure 3.19 shows
the cell moving because of the leftward external signaling.

Figure 3.19: Moving cell under on a non constant matrix and subjected to an
leftward external stimulus.

Figure 3.20: Actin and myosin densities inside the cell. Actin velocity inside the
cell. Stress of the actin meshwork along the cell. Actin and myosin concentration
at edges for 100 seconds. Protrusion velocity of F-actin at leading and rear edge
along time. Membrane tension σm during time.
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Note that, since the cell now does not move to more rigid zones, we place the
cell on x = 20 so the it does not enter a negative-friction region, which makes no
physical sense. The cell initially spreads until it is 14.9µm and then, its length
decrease because it is moving to regions with less friction. However, the cell
velocity remain constant at −0.14µm/s, which is less than the velocity obtained
with constant friction in section 3.4. This makes sense because now we have a
contrary force due to friction. On figure 3.20 we show actin and myosin densities
profile, which are not symmetric anymore, but increase in the back of the cell. We
plotted also actin velocity and its stress.

Finally, if we activate the external signaling when some time has passed, we
note how the cell turns around according to the stimulus direction. In particular,
here we show how the cell perform on a matrix with friction η(x) = η0 + 0.5x
for 100 seconds, and then we apply the signaling leftwards for 50 more seconds.
Figure 3.21 shows the cell turnover, while figure 3.22 shows the difference on actin
and myosin concentration at edges and the membrane tension when applying the
external signal. We also plot protrusion velocity, which is equal on both sides until
we activate the stimulus.



3.6. ADHESION FORCES VERSUS SIGNALING-BASED MIGRATION 37

Figure 3.21: Evolution of actin and myosin concentration on a substrate with non-
constant friction for 100 seconds. Then, an external signal is applied leftward for
50 seconds.

Figure 3.22: Actin and myosin concentration profile at the end time. Actin velocity.
Stress of the actin network. Evolution of actin and myosin concentration at the
edges: we observe that the leftward stimulus pushes both proteins to the back part
of the cell. Right and left protrusion velocity. Membrane tension.
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4
Discussion and future work

The aim of this bachelor’s degree thesis was to study the principal components
of cell migration and develop a model that simulates these processes. We also
had implement sensitive polymerization to GTPases and proved that our model
respond accurately to external stimulus, which let us polarize and guide the cell.
Finally, we proved our model in different situations in order to see if it performed
as expected.

We developed a model that let us recreate the motion of a cell by the main
mechanisms of cell motility: edges protrusion, retrograde flow and myosin con-
tractile stress. Governing equations of actin and myosin evolution are essentially
partial differential equations following force balance principle and conservation of
mass. This all, together with the constitutive relations we thought best fit real-
ity, allowed us to elaborate the model we latter used to simulate cell migration.
In addition, evolution of GTPases proteins, that has been described as a coupled
bistable system of PDEs with nonlinear source terms, were implemented in our
model.

Solving the equations has been also a relevant part of the work. Since resolution
had to be computational, it was important to choose the numerical methods that
better solutions give, based on stability and good convergence. Here we used a
finite element scheme to approximate all the partial differential equations because
its easy implementation and quickly adaptation for different purposes. Further-
more, boundary conditions can easily settled when using finite element methods.
Numerical solutions we get were accurate and reliable, so we need no stabilization
methods or mesh refination. For the time integration of the equations, we used
Crank-Nicolson method because it is implicit, which means it is unconditionally
stable, and second order.

Here, we initially did a parametric analysis and study the effect of viscosity,
friction and contractility on the actin network velocity. We observed that lower
friction or higher contractility allows a higher velocity of F-actin inside the cell.
Otherwise, higher viscosity of the gel hinders variations on the velocity. We first
proved our model with no polarization. The cell was placed on the extracellu-
lar matrix and it spread as it did in [13]. We also observed that the cell length
increased when it was totally spread if the cell was placed on a higher stiffness
substrate. Regarding to polarization, we accomplish implementing the cell stim-
ulation via GTPases kinetics and their influence on actin polymerization. The
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cell was observed to maintain its polarized state when the the external signal is
removed. Actually, this is a property of the GTPases bistable system, which pre-
serve active concentration on one edge as a stable state. However, we have seen
that although the cell is already moving, it is sensible to new external signaling
and it can change its direction towards a new way. We finally proved that the
cell can also initiate motion by a randomly generated signaling, which initiates
also a random directed movement of the cell. We have seen that our cell model
is able to move because friction gradients on the cellular matrix as seen in [2].
On small friction gradients, the cell moves at constant length and low velocity.
On the other hand, when we considered bigger gradients, the cell starts moving
fast and then it moves slower while it spreads. It arrives at a steady state, which
can be also achieved if we place the cell on higher stiffness positions. Finally, this
work compare both stimulus, the external signaling to polarize GTPases and a
friction gradient on the substrate, by activating them at once. Results show that
in our model, polarization via membrane GTPases signaling prevails over friction
gradients. This can be explained because the way we define free polymerization
velocity, which is function of active GTPases.

We consider that further interactions, such as considering the actin network as
elastic or testing different parameter values, would be interesting when modelling
cell migration. Different definitions of polymerization velocity as a function of
active GTPases would also contribute to create more reliable and solid models.
Beside this, a great advance would be to take the step to a two-dimensional model,
so we could study accurately the shape of the cell. In this dissertation we just
showed a small part of what computational modelling applied to biology comprises,
and in particular, to cell migration. We believe that this is an important field
because the progress it can contribute to. We know cell migration is essential in
vital processes like cancer, embryonic development and wound healing. Thus, we
encourage in pursuing mathematical developments on this line of work.
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