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Abstract

This thesis presents some contributions to the state of the art of state estimation, auto-

matic control and trajectory planning fields applied to autonomous vehicles.

Such contributions have a common aspect throughout the thesis, all of them are model-

based techniques. The Linear Parameter Varying (LPV) and Takagi-Sugeno (TS) theory

are used to generate control-oriented models by using the non-linear embedding approach.

Several vehicle models are proposed depending on the application and estimation-control-

planning technique. First, non-linear vehicle formulations are presented. Later, the same

models are represented in the LPV form.

In the area of control and estimation, the thesis shows different approaches for different

applications: normal and racing driving modes. First, for normal driving, gain-scheduling

(GS) LPV state feedback techniques are developed. In the first instance, an LPV-Linear

Quadratic Regulator (LQR) design via Linear Matrix Inequality (LMI) formulation is

stated for control at low velocities. Later, a cascade scheme including kinematic and

dynamic control layers is presented to improve the last design. Here, both controller

designs are set up using the LPV-LQR design via LMI formulation and a LPV-Unknown

Input Observer (UIO) is presented for estimating vehicle states and exogenous friction

force. Second, for racing driving, optimal techniques are explored leading to introduce

the Model Predictive Control (MPC) technique as a basis for racing behaviours. In

the first instance, the cascade scheme is maintained where the outer control layer is

governed by a TS-MPC controller. At this point, an advanced estimation technique is

proposed, the TS-Moving Horizon Estimator-UIO (TS-MHE-UIO). It is shown that by

using the TS formulation both optimal-based controller and estimator reduce greatly the

computational effort in comparison to their non-linear formulation. Then, the idea of

designing a unique controller is explored through the LPV-MPC technique. In this case,

it is shown the potential of this strategy being able to be executed in real time in small

embedded platforms for controlling the vehicle in racing situations. Finally, an online

robust MPC is considered that aims at improving the computational load using zonotope

theory while preserving high levels of robustness and performance in racing scenarios.

In the area of planning, the thesis focuses on trajectory planning approaches from the

optimal point of view. First, the non-linear MPC is formulated as a planner (NL-MPP)

in space domain where the goal is the minimization of the total lap time. Later, an

innovative real time solution is explored leading to a LPV-MPP. The method follows

the structure of the model predictive optimal strategy where the main objective is to

maximize the velocity while fulfilling varying constraints such as obstacles. In particular,
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the aim is on reformulating the non-linear original problem into a pseudo-linear problem

by convexifying the objective function and making use of the LPV vehicle formulation.



Resumen

Esta tesis presenta algunos avances en los campos de la estimación de estados, el control

automático y la planificación de trayectorias aplicados a vehículos autónomos.

Tales contribuciones comparten un particular aspecto a lo largo de la tesis, todas ellas

son técnicas basadas en modelos. La teoría de Variación Lineal de Parámetros (VLP) y

Takagi-Sugeno (TS) se utilizan para generar modelos orientados al control mediante el

uso de enfoques de inclusión no lineal y de no linealidad sectorial. Se proponen diferentes

modelos de vehículos según la aplicación y la técnica de estimación-control-planificación.

Primero, se presentan los modelos de vehículos en la formulación no lineal. Más tarde,

dichos modelos se reformulan como VLP.

En el área de control y estimación, la tesis muestra diferentes enfoques para diferentes

aplicaciones: modos de conducción normal y de carreras. Primero, para la conducción

normal, se desarrollan técnicas de retroalimentación de estado VLP de programación de

ganancia (PG). En primera instancia, un diseño de Regulador Cuadrático Lineal (RCL)

VLP a través de la formulación de Desigualdad de Matriz Lineal (DML) se establece

para el control del vehiculo a bajas velocidades. Más tarde, se presenta un esquema

en cascada que incluye capas de control cinemático y dinámico para mejorar el último

diseño. Aquí, ambos diseños de controlador se realizan utilizando el diseño VLP-LQR a

través de la formulación LMI y un Observador de Entrada Desconocida (OED) VLP está

preestablecido para estimar los estados del vehículo, así como la fuerza de fricción que

actúa sobre el vehículo. Segundo, para la conducción en carreras, se exploran técnicas

óptimas que conducen a introducir la técnica de Control de Modelo Predictivo (CMP)

como base para los comportamientos de carrera. En primera instancia, el esquema en

cascada se mantiene donde la capa de control externa está gobernada por un controlador

TS-CMP. En este punto, se presenta una técnica de estimación avanzada, el TS-Moving

Horizon Estimator-UIO (TS-MHE-OED). Se demuestra que al usar la formulacion TS,

tanto el controlador como el estimador óptimos reducen en gran medida el esfuerzo com-

putacional en comparación con su formualción no lineal. Luego, la idea de diseñar un

controlador único se explora a través de la técnica VLP-CMP. En este caso, se muestra el

potencial de esta estrategia para poder ejecutarse en tiempo real en pequeñas plataformas

integradas para controlar el vehículo en situaciones de carrera. Finalmente, se considera

un CMP robusto en línea que tiene como objetivo mejorar la carga computacional uti-

lizando la teoría de zonótopos mientras preserva altos niveles de robustez y rendimiento

en escenarios de carreras.

En el área de planificación, la tesis se centra en los enfoques de planificación de trayec-

torias desde el punto de vista óptimo. Primero, el CMP no lineal se formula como un
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planificador (NL-MPP) en el dominio espacial donde el objetivo es la minimización del

tiempo de vuelta total. Más tarde, se explora una solución innovadora en tiempo real

que conduce a un VLP-MPP. El método sigue la estructura de la estrategia óptima

de modelo predictivo donde el objetivo principal es maximizar la velocidad mientras se

cumplen las limitaciones dinámicas del vehiculo. En particular, el objetivo es reformular

el problema original no lineal en un problema pseudo-lineal convexificando la función

objetivo y haciendo uso de la formulación del vehículo VLP.
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Chapter 1

Introduction

1.1 Context of the thesis

The results presented in this thesis have been developed at the Research Center for

Supervision, Safety and Automatic Control (CS2AC) of the Universitat Politècnica de

Catalunya (UPC) in Terrassa, Spain. The research was jointly supervised by Dr. Vicenç

Puig and Dr. Joseba Quevedo, and was sponsored by the Agència de Gestió d’Ajuts

Universitaris i de Recerca (AGAUR) through an FI grant. The supports are gratefully

acknowledged.

1.2 Motivations

The Victoria Transport Policy Institute (VTPI) presents a recent report exploring the

impacts of autonomous driving in the near future [Litman, Todd., 2019]. This report

highlights a rapid advance in the autonomous vehicle industry but it will not be until

2040 when we begin to appreciate most of the impacts that this technology entails:

(1) reduction of accidents by taking humans out of the driving task [Morando et al.,

2018, Papadoulis et al., 2019]; (2) inclusion of citizens with low physical mobility by the

introduction of door-to-door transportation services; (3) reduction of congestion by route

sharing (passengers and goods) and a centralized mobility intelligence; (4) decrease of

energy consumption and pollution by relying on electric vehicles with a smarter vehicle

control.

1
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To achieve these benefits, many different engineering disciplines have to row in the same

direction and research on innovative algorithms. Three software blocks are clearly differ-

Figure 1.1: Overview of the different blocks playing a roll in the autonomous vehicle

entiated in autonomous guidance: perception, localization and motion layers (see Figure

1.1). Motion block is composed by trajectory planning and automatic control techniques

whose development has attracted a lot of attention in the automotive field during the

last years, as testified by the increasing number of publications dealing with these topics.

The increasing need for safety and reliability has motivated the research on techniques

using advanced vehicle representations for controlling both longitudinal and lateral vehi-

cle dynamics at the same time. However, a still more motivating problem due to its high

complexity is emerging in recent years. This is the autonomous racing driving [Formula

Student., 2019, Roborace., 2019].

From a planning and control point of view, this last is a more challenging problem since

the vehicle has to go as fast as possible without exceeding the limits of maximum overall

acceleration and thus avoid slipping. Additionally, solving the racing problem requires a

huge amount of calculations per second which implies the need of new algorithms able

to run on embedded systems at high speed. Consequently, researching in the racing field

allow us to develop more reliable algorithms for normal autonomous driving in cities and

highways.

On the other hand, the huge interest on reducing the design complexity of non-linear

based algorithms as well as reducing their computational load in optimization-based

problems has attracted the attention of the research community. In particular, the linear

parameter varying (LPV) paradigm has allowed a manner of applying linear techniques

to solve non-linear problems offering guarantees of stability and performance.
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1.3 Thesis objectives

The objectives of this thesis are the following:

• to state clearly the differences and connections between the current vehicle models

for control purposes;

• to study the benefits of decoupling kinematics and dynamics when controlling the

vehicle;

• to show how control strategies developed using the LPV representation could solve

non-linear control problems with similar performance but reducing the design com-

plexity and computational effort;

• to study the trajectory planning task for racing vehicles and propose an on-line

optimal-based strategy able to avoid obstacles;

• to investigate additional techniques to the Extended Kalman filter based on a

vehicle model formulated in the LPV framework;

• to study an approach for the design of robust MPC controllers for uncertain LPV

systems that can guarantee some desired performance;

• to implement the developed algorithms in real platforms.

1.4 Outline of the thesis

The thesis is organized as follows:

Chapter 2 provides an overview of the most advanced projects in the autonomous

vehicle field and present the state of the art of the different parts involved in the motion

layer, i.e. planning, control and estimation algorithms.

Vehicle modeling part presents different vehicle model formulations for the model-

based planning and control techniques presented in next chapters. It is made up of two

chapters:
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• Chapter 3 presents the different non-linear vehicle representations used in this

thesis. From a mass-point formulation and considering the bicycle representation,

this chapter shows different kinematic, dynamic and error-based models.

• Chapter 4 addresses the LPV modeling. In particular, the mathematical repre-

sentations presented in Chapter 3 are reformulated into a LPV form by using the

non-linear embedding approach. This allows to obtain a polytopic LPV model for

a given non-linear system. This LPV modeling is the basis for the next planning,

control and estimation approaches.

Control and estimation part presents the results that constitute a contribution to the

state of the art of motion control and state estimation for autonomous vehicles. It is

made up of five chapters:

• Chapter 5 proposes a control approach for autonomous vehicles using a Lyapunov-

based technique with a LQR-LMI tuning. In particular, using the kinematic model

of the vehicle, a non-linear control strategy based on Lyapunov theory is proposed

for solving the control problem of autonomous guidance. To optimally adjust the

parameters of the Lyapunov controller, the closed-loop system is reformulated using

an LPV formulation. Then, an optimization algorithm that solves the LQR-LMI

problem is used to determine the controller parameters. Furthermore, the tuning

process is complemented by adding a pole placement constraint that guarantees

that the maximum achievable performance of the kinematic loop could be achieved

by the dynamic loop. The obtained controller jointly with a trajectory generation

module are in charge of the autonomous vehicle guidance. Finally, the chapter

illustrates the performance of the autonomous guidance system in a virtual re-

ality environment and in a real scenario achieving the proposed goal: to move

autonomously from a starting point to a final point in a comfortable way.

• Chapter 6 presents a solution for the integrated longitudinal and lateral control

problem of urban autonomous vehicles. It is based on a GS-LPV control approach

combined with the use of an UIO for estimating the vehicle states and friction force.

Two GS-LPV controllers are used in cascade configuration that use the kinematic

and dynamic vehicle models and the friction and observed states provided by the

UIO. The LPV–UIO is designed in an optimal manner by solving a set of LMIs. On
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the other hand, the design of the kinematic and dynamic controllers lead to solve

separately two LPV–LQR problems formulated also in LMI form. The UIO allows

to improve the control response in disturbance affected scenarios by estimating and

compensating the friction force. The proposed scheme has been integrated with a

trajectory generation module and tested in a simulated scenario. A comparative

study is also presented considering the cases that the friction force estimation is

used or not to show its usefulness.

• Chapter 7 presents a novel approach to solve the autonomous guidance problem

for racing vehicles. This approach is based on the use of a cascade control where

the external loop solves the position control using a novel TS-MPC approach and

the internal loop is in charge of the dynamic control of the vehicle using a TS-LQR

technique designed via LMIs. Both control techniques use a TS formulation of the

kinematic and dynamic models of the vehicle. In addition, a novel TS-MHE-UIO

is presented. This method estimates the dynamic states of the vehicle optimally

as well as the force of friction acting on the vehicle that is used to reduce the

control efforts. The innovative contribution of the TS-MPC and TS-MHE-UIO

techniques is that using the TS model formulation of the vehicle allows us to solve

the non-linear problem as a linear optimization problem, reducing computation

times by 10-20 times. To demonstrate the potential of the TS-MPC, a comparison

between three methods of solving the kinematic control problem is performed:

using the NL-MPC with compensated friction force, using the TS-MPC approach

with compensated friction force and using TS-MPC without compensated friction

force is presented.

• Chapter 8 considers the LPV theory to represent the non-linear dynamics of the

testing vehicle and implement an LPV-MPC approach that can be computed online

in embedded platforms with reduced computational cost under racing behaviour.

In the proposed strategy, the unknown future vehicle states for performing the

prediction is a problem since the LPV model has to be instantiated. This issue is

solved by using the predicted data from the last control optimization. The optimal

time problem is solved by an optimal offline trajectory planner that calculates

the best trajectory under the constraints of the circuit. An identification of the

system model based on optimization is also carried out. The planning and control
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scheme is validated in simulation and experimentally in a real platform where the

effectiveness of the proposed LPV-MPC is demonstrated.

• Chapter 9 presents an effective online robust model predictive control solution

for autonomous vehicles that aims at improving the computational load while pre-

serving high levels of robustness and performance in racing scenarios. A scheme

composed by a nominal controller (tube-based LPV-MPC) and a faster correc-

tive controller (LPV-H∞) is proposed. The robustness is introduced by means

of computing a constrained tube based on the maximum disturbance-uncertainty

considered. Then, for computing the robust tube, a polytopic local controller is

designed as a H∞ controller able to reject external disturbances and a finite number

of reachable sets are computed online using zonotope theory taking into account

the system dynamics and the local controller. Finally, the proposed strategy is

tested and the performance is compared against a current state of the art tube

based MPC. It is demonstrated the effectiveness of this approach in a disturbed

racing scenario being able to reject strong exogenous disturbances and fulfilling

imposed constraints at a reduced computational cost.

Trajectory planning part presents a new trajectory planning algorithm that consti-

tutes a contribution to the current state of the art. It is made up of one chapter:

• Chapter 10 presents the space-domain and the time-domain representations as

well as their optimal formulations for trajectory planning. Then, it presents the

effective online planning solution (LPV-MPP) for autonomous vehicles where the

focus is on improving the computational load while preserving high levels of per-

formance in racing scenarios. The method follows the structure of the model pre-

dictive optimal strategy where the main objective is to maximize the velocity while

smoothing the dynamic behaviour and fulfilling varying constraints. In particular,

the aim is on reformulating the non-linear original problem into a pseudo-linear

problem by convexifying the objective function and making use of the LPV vehicle

formulation. In addition, the ability of avoiding obstacles is introduced in a sim-

ple way and with reduced computational cost. Finally, the approach is tested and

compared the performance of the proposed strategy against its non-linear approach

through simulations. Moreover, the performance of the planning approach is tested
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in a racing scenario. First, in a free obstacles track and consecutive in a scenario

considering static obstacles. The simulation results show the effectiveness of the

proposed strategy by reducing the algorithm elapsed time while finding appropriate

trajectories under several input/state constraints.

Finally, the thesis is concluded by:

• Chapter 11, which summarizes the main conclusions and suggests possible lines

of future research;

• Appendix A presents the development of the reference-based kinematic model for

control.



Chapter 2

Background and State of the Art

2.1 Vehicle control and state estimation

The automatic control, also known as motion control in the self-driving field, consists

on following a given reference provided by the trajectory planner by taking action over

a set of actuators of the vehicle such as steering motor, electric motor and brake pump.

This problem is generally defined by three aspects:

• vehicle behaviour to be controlled/estimated (lateral, longitudinal or both)

• vehicle model complexity (kinematic, linear dynamic, non-linear simplified dynamic

or non-linear dynamic)

• control/observer strategy

Up to now, different control problems have been treated such as the longitudinal control,

the lateral control and the mixed one, that includes both cases. The goal in the longitu-

dinal control task is to maintain the linear velocity of the vehicle around a given velocity

set point. It is also known as cruise control. At this point, the driver is released of the

accelerating and braking tasks, being the autonomous system the responsible. This case

is included in the level 1 of automation defined by the Society of Automotive Engineers

(SAE) [SAE., 2016]. The lateral control is in charge of controlling the yaw movement of

the vehicle by acting over the angle of the front wheels. Unlike longitudinal control, the

human driver only controls the acceleration and brake, being the automatic controller

8
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in charge of turning. The last control problem is the mixed one. In this case, the vehi-

cle governs the complete 2D motion, i.e., full control of the accelerating, braking, and

steering tasks and rises to the levels 2-5 of automation.

In turn, most of these control problems in the literature rely on a vehicle model. This

problems are often called model-based control problems and control-oriented model is

the name given to the model representation. A model is a set of differential equations

that defines a particular behaviour such as kinematics, longitudinal dynamics, lateral

dynamics, etc. In the context of autonomous guidance of autonomous vehicles, the

objective of the vehicle model is to provide a relationship between physical inputs and

dynamic variables of the vehicle, i.e. accelerations, velocities, etc. Vehicle models can be

classified, in an increasing order of complexity, into two categories:

• Kinematic formulations, also known as mass point models, can represent the vehicle

motion in a range of conditions which does not involve dynamics, assume null

skidding and consider lateral force to be so small that can be neglected. They

are widely used due to its low parameter dependency [Rajamani, Rajesh., 2011].

Notice that different complexity versions for the kinematic model can be found

in the automotive field literature such as the mass point model and the bicycle

kinematic model.

• Dynamic representations are generally composed by two subsystems most of time

in the vehicle field literature. Tire modeling represents the interaction between

the wheel and the road. In this model, the complexity comes in the form of non-

linear relations between slip angles-ratios and lateral-longitudinal tire forces. Ve-

hicle modeling states the relation between lateral-longitudinal tire forces and body

frame accelerations. Simplified dynamic models are often used due to their satis-

factory results such as bicycle dynamic representations. However, currently, it is

increasingly common to observe authors using more complex dynamic models as

the 4-wheel dynamic model considering roll, pitch and vertical motions.

In Liniger, Alexander. [2018], the author performs a comparison between the bicycle and

the four wheels model showing a hardly any difference between the two stating that the

main difference is the longitudinal load change which may be also negligible due to the

low center of gravity of racing vehicles.
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The third aspect defining the autonomous guidance problem is the choice of the control

strategy. This selection is often being nested with the choice of the vehicle model, i.e., a

linear model will require a linear technique while a non-linear one will need a non-linear

strategy. In the recent literature, several control strategies have been successfully applied

to guide vehicles showing different advantages and drawbacks.

Some of the most relevant control strategies in the autonomous driving field are: Proportional-

Integral-Derivative (PID), H infinity (H∞), Fuzzy Logic (FL) control, Sliding Mode Con-

trol (SMC), Lyapunov-based control, Gain-Scheduling Linear Parameter Varying (GS-

LPV), Gain-Scheduling Takagi-Sugeno (GS-TS), Linear Quadratic Regulator (LQR) and

Model Predictive Control (MPC).

After describing the three general aspects defining the autonomous guidance, a classi-

fication of control strategies according to the controller behaviour and vehicle model

complexity can be made. This labeling will serve in order to illustrate what kind of

solutions are being more used for solving the autonomous guidance problem. Table 2.1

shows such a classification with the corresponding references.

Depending on the type of control problem that we want to solve, all of them could be a

good option, however from a full autonomous point of view the mixed control problem

should be considered.

The approach of using a kinematic model for achieving a mixed control strategy is a

good idea for starting since offers nice results. Lyapunov theory has become a standard

method for analyzing stability of non-linear systems [Dixon, Warren E., et al., 2001],

but also for obtaining model-based strategies for controlling in this case longitudinal and

lateral behaviours jointly. In addition, robust techniques like H∞, SMC or MPC have

been also proposed for solving the kinematic mixed problem.

However, controlling a vehicle is more complex than governing a kinematic model. For

mobile robots that move at very low speeds and their mass is not so large, kinematic

models may even be the best option. But, controlling a real vehicle, whose mass is larger

and moves at higher speeds, is a more challenging problem. This is why having a good

knowledge of vehicle dynamics is especially interesting and therefore dynamic models are

required.
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Kinematic Model

Control Strategy Long Lateral Mixed

PID/PID Adaptive Li, Hui-min, et al. [2016]

H∞ Nawash, Nuha. [2005]

FL Li, Hui-min, et al. [2016],

Wang, Xinyu, et al. [2015]

SMC/SMC Adaptive Alcalá, Eugenio, et al. [2016]

Lyapunov Indiveri, Giovanni. [1999],

Alcalá, Eugenio, et al. [2016],

Blažič, Sašo. [2010],

Dixon, Warren E., et al. [2001]

GS-LPV

GS-TS Blažič, Sašo. [2010]

LQR

MPC Li, Shengbo, et al. [2010] Olsson, Christian. [2015],

González, Ramón, et al. [2011]

NL-MPC Geiger, Andreas, et al. [2012] Farrokhsiar, Morteza et al. [2013]

LPV-MPC

Dynamic Model

Control Strategy Long Lateral Mixed

PID/PID Adaptive Nie, Linzhen, et al. [2018] Marino, Riccardo, et al. [2011],

Zhao, Pan, et al. [2012]

H∞

FL Soualmi, B., et al. [2014], Guo, Jinghua, et al. [2018]

Zhang, Changzhu, et al. [2018]

SMC/SMC Adaptive Soualmi, B., et al. [2014] Tagne, Gilles, et al. [2013],

Nam, Kanghyun, et al. [2015],

Hu, Chuan, et al. [2019]

Lyapunov Attia, Rachid, et al. [2014]

GS-LPV Guo, Jinghua, et al. [2019] Németh, Balázs, et al. [2016]

GS-TS Soualmi, B., et al. [2014],

Nguyen, Anh-Tu et al. [2016]

LQR Kang, Juyong, et al. [2008] Gonzales, J., et al. [2016]

MPC Guo, Hongyan, et al. [2019] Olsson, Christian. [2015]

NL-MPC Zheng, Yang, et al. [2016] Keviczky, Tamás, et al. [2006], Gao, Yiqi, et al. [2014],

Gray, Andrew, et al. [2013], Carvalho, Ashwin, et al. [2015],

Attia, Rachid, et al. [2014], Liniger, A., et al. [2015]

Besselmann, Thomas. [2010], Verschueren, Robin, et al. [2016]

LPV-MPC Besselmann, Thomas. [2010]

Table 2.1: Classification of control techniques according to the type of model and the
type of control problem considered.
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In Table 2.1, it can be observed how many of the control strategies solve the problem

of lateral control using the dynamic model. FL control allows the vehicle to perform

in a similar way than the human brain, obtaining for lateral control satisfactory results

being a simple control algorithm. The case of SMC results to obtain right results by

obtaining a control law in an off-line way. However, reaching such a control law when

using complex models could be a tedious task. The MPC approach is a suitable control

technique that has shown interesting results for autonomous vehicle steering task. Unlike

the SMC technique, it performs on an on-line way as an optimal constrained algorithm.

GS-LPV and GS-TS approaches address the control of non-linear systems using a family

of linear controllers where each one guarantee stability and performance for a different

operating point of the system.

However, solving the dynamic lateral control problem is not enough to fix the full au-

tonomous vehicle problem. Thus, only by addressing the dynamic mixed control problem

the purpose will be fulfilled. It can be appreciated in the dynamic mixed problem column

of Table 2.1 that LPV and MPC are the only techniques applied to solve the complete

autonomous vehicle problem. It may be due to the fact that the development of other

techniques like Lyapunov-based or SMC may result in a more complex task.

2.2 LPV and TS systems

The LPV systems were first introduced by J. S. Shamma to distinguish these from the

LTI and LTV systems [Shamma, Jeff S., 1988, 2012]. Specifically, LPV systems are

defined as finite-dimensional linear time-varying plants whose state space matrices are

fixed functions of some vector of varying and measurable parameters [Sename, Olivier,

Peter Gaspar, and József Bokor., 2013]. LPV systems have proven to be suitable for

controlling non-linear systems by incorporating non-linearities in the varying parameters,

which will depend on some endogenous signals such as states, inputs or outputs.

On the other hand, the TS systems were introduced by Takagi and Sugeno in Takagi,

Tomohiro, and Michio Sugeno. [1985] before the LPV systems. These provide an effective

way to represent highly non-linear systems in terms of fuzzy sets and fuzzy reasoning

applied to a set of linear sub-models [Cao, Yong-Yan, and Paul M. Frank., 2001].
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Throughout the thesis, some control and estimation problems are approached from a TS

perspective. However, given the equivalence with the LPV modeling paradigm as the

author discusses in Rotondo, Damiano, et al. [2015], only the LPV methodology will be

explained and referenced.

In this section, some basic concepts about modeling of LPV systems are defined. Next

chapters focus mostly on control, planing and estimation techniques based on models

formulated as LPV in state-space (SS). However, there exist other alternatives such as

LPV input-output (LPV-IO) modeling from experimental data [Ali, Mukhtar, Hossam

Abbas, and Herbert Werner., 2010, Mejari, Manas Dilip., 2018].

We dissect such modeling tasks by encompassing them in two kinds of methods: analyt-

ical and experimental methodologies. On the one hand, the analytical methods consist

in obtaining an LPV formulation from a non-linear physical model of the system gener-

ally represented in state-space (LPV-SS). In this thesis, the method used for generation

of LPV systems is the non-linear embedding approach [Kwiatkowski, Andreas, Marie-

Theres Boll, and Herbert Werner., 2006]. However, other approaches have been addressed

for the formulation of LPV models such as in Rotondo, Damiano, et al. [2015], where

the concept of sector non-linearity is used.

On the other hand, the experimental methods are based on obtaining LPV models with

a particular structure from input-output data (LPV-IO) of the real system [Sename,

Olivier, Peter Gaspar, and József Bokor., 2013, Toth, Roland., 2010, Bachnas, A. A., et

al., 2014, Mejari, Manas Dilip., 2018]. The identification problem consists in estimating

recursively through a parameter adaptation algorithm the unknown parameters and the

model order from the measurements of the inputs and outputs.

In addition, some recent works show that combining input and output data with the

state-space representation leads to an analytical-based LPV model obtained by means

of an experimental methodology. In Rizvi, Syed Zeeshan, et al. [2018], a state-space

LPV identification is presented using a least-squares support vector machine (LS-SVM)

algorithm. Taking advantage of analytical and experimental methodologies and following

a similar learning spirit, an LPV-SS representation identified by means of using least-

squares and back propagation algorithms can be obtained using Artificial Neuro Fuzzy

Interference Systems (ANFIS) approach [Jang, J-SR., 1993].
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An LPV system is defined as

ẋ = A(ζ)x+B(ζ)u

y = C(ζ)x

where the vector of scheduling variables ζ ∈ Rnζ is assumed to be measured or estimated

in real-time being nζ the number of scheduling variables. x ∈ Rs, u ∈ Rn and y ∈ Rp are

the state, input, and output vectors, respectively, and A(ζ) ∈ Rs×s, B(ζ) ∈ Rs×n and

C(ζ) ∈ Rp×s are varying matrices of appropriate dimensions.

There exist different analysis and synthesis approaches studied to date in the litera-

ture (linear fractional transformation approach, grid-based techniques, etc [Hoffmann,

Christian, and Herbert Werner., 2014] ). However, one of the most popular and the one

addressed in this thesis is the polytopic approach [Hoffmann, Christian, and Herbert

Werner., 2014].

Then, a system is called polytopic LPV system when it can be represented by matrices

A(ζ), B(ζ) and C(ζ), where the scheduling vector ζ ranges over a fixed polytope Θ =

{ζ ∈ Rnζ : Hζζ ≤ bζ}, resulting in the following representation

ẋ =
N∑
i=1

µi (ζ) (Aix+Biu)

y =

N∑
i=1

µi (ζ)Cix ,

(2.1)

where the system matrices Ai, Bi and Ci define the so-called vertex systems and µ(·) is

known as the vertex membership function given by

µi(ζ) =

nζ∏
j=1

ξij(η
j
0, η

j
1), ∀i = 1, ..., N , (2.2)

ηj0 =
ζj − ζj(k)

ζj − ζj

ηj1 = 1− ηj0 ,

(2.3)
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where ξij(η
j
0, η

j
1) is the function that performs the N possible combinations as the fol-

lowing example shows for the two scheduling variables case

µ1 = η2
0 × η1

0 , µ2 = η2
0 × η1

1 ,

µ3 = η2
1 × η1

0 , µ4 = η2
1 × η1

1 .
(2.4)

In addition, next conditions must be satisfied

N∑
i=1

µi(ζ) = 1, µi(ζ) ≥ 0, ∀ζ ∈ Θ . (2.5)

2.3 Vehicle planning

Every autonomous vehicle application requires of an accurate planning of the route in

order to perform the desired journey. This can be either an offline or an online task,

but in both cases the planner has to provide a set of references for the automatic control

module, which will try to reproduce the expected behaviour acting on the real system,

i.e., the vehicle.

In this thesis, three classifications are carried out for planning algorithms. These cover

the time dependency, the driving mode and the solving method.

Temporary dependence is one of the most interesting classifications [Paden, B., et al.,

2016]. Planning methods can be divided into two large groups: trajectory planning and

path planning. Trajectory planning is given when there exists a temporary dependent

position evolution, i.e. the planning strategy computes temporal-based functions (posi-

tions and velocities). Otherwise, it is referred to path planning when the route planned

is not time dependent, i.e. only lateral position and orientation are considered.

Another classification is depending on the behavioral mode: normal driving and racing

driving. Racing mode refers to a planning based on taking the vehicle to its dynamic

limits while normal planning refers to highways and city trajectory planning under a

normal driving mode.
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2.3.1 Planning for normal diving

In the literature [Katrakazas, C., et al., 2015, Paden, B., et al., 2016, González, David,

et al., 2015], planning algorithms are clustered in four families according to the method-

ology: graph-search-based methods, curves-based methods, sampling-based techniques

and optimal-based approaches.

• Graph-search-based planning. These strategies discretize the configuration

space of the vehicle and represent it in the form of a graph. Then, using particular

algorithms such as Dijkstra or A∗ find the shortest path in the graph. The solution

does not take into account dynamic aspects of the vehicle and high precision in the

solution requires a high computational cost being not recommended for real-time

applications. Generally, these methods are more oriented to mobile robotics and

belong to the path planning group.

• Curves-based planning. These algorithms initially require way-points that de-

scribe a global road map. Then they try to find the curve that best approximates

the way-points by ensuring comfort, continuous vehicle accelerations and some

other parameters in order to compute the trajectory. Clothoid, polynomial, Bézier

and spline curve-based methods are probably the most common in the autonomous

guidance field and, generally, belong to the trajectory planning group. The main

advantage of this planning group is its low computational cost. In Elbanhawi, Mo-

hamed, Milan Simic, and Reza N. Jazar. [2014], a trajectory planning approach

based on Bézier splines is presented. In Talamino, J. P., et al. [2019], authors

propose different trajectory planning approaches based on quintic splines.

• Sampling-based planning. This family of techniques appear to give solution

to the expensive search in wide spaces where other algorithms are not capable.

The approach consists on randomly sampling the configuration space looking for

connectivity. These techniques have gained a lot of interest in the autonomous

vehicle field during the last years. The most used strategies are the Probabilistic

Road-map Method (PRM) and the Rapidly-exploring Random Tree (RRT). The

RRT algorithm [LaValle, Steven M., 1998] was proposed by La Valle as an efficient

method for finding feasible trajectories for high-dimensional non-holonomic sys-

tems. The rapid exploration is achieved by taking a random sample from the free
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configuration space and extending the tree in the direction of the random sample.

This strategy has been very used in mobile robots tasks and now it is being intro-

duced in autonomous vehicles field. Due to the lack of smoothness of conventional

RRT method, different approaches have been developed to find feasible but also

smooth trajectories. An interesting strategy is to use an RRT that is expanded by

considering not only the vehicle dynamic model, but also the controller [Kuwata,

Yoshiaki, et al., 2009]. It runs a forward simulation by computing control actions

in order to predict where the vehicle will be. Despite of the good results of RRT

and its approaches it has been demonstrated to converge to a non-optimal solu-

tion. Due to the lack of optimality, a variant that includes the solution to such

a drawback is presented in Karaman, Sertac, and Emilio Frazzoli. [2010], which

was called RRT*. In Karaman, Sertac, and Emilio Frazzoli. [2011], an analysis of

the behaviour of Probabilistic Road Maps method (PRM) and RRT is made. The

main contribution of this work is the introduction of PRM* and RRT* which have

demonstrated to be optimal although at a higher computational cost. Recently,

Fast Marching Tree (FMT*) [Janson, Lucas, and Marco Pavone., 2016] has been

proposed as an asymptotically optimal and faster alternative to PRM* and RRT*.

Authors in Schmerling, Edward, Lucas Janson, and Marco Pavone. [2015] propose

differential versions of PRM* and FMT* and prove asymptotic optimality of the

algorithms for control affine dynamical systems, a class that includes models of

non-slipping wheeled vehicles.

• Optimal-based planning. The optimal methods consist of minimizing or max-

imizing a cost function subject to different constraints such as vehicle dynamics,

bounded vehicle variables, road limits and even obstacles.

Despite referring to these methods in González, David, et al. [2015], authors do not

name the application of predictive-based optimal technique to solve the optimiza-

tion problem. At the same time, they talk about certain disadvantages such as high

time consumption in each optimization as well as the dependence of global way-

points. In Katrakazas, C., et al. [2015], authors do not even talk about predictive

optimal planning since they allude to real-time motion planning algorithms.

In Liu, C., et al. [2017], the authors propose a path planning strategy based on

non-linear Model Predictive Control (MPC) for the case of driving in highways.

A unicycle kinematic model is used for predicting future vehicle states and the
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approach ensures safety by being able to generate free collision trajectories. In

Plessen, Mogens Graf, et al. [2017], a trajectory planning strategy is presented using

linear programming tools. This approach combines kinematic-based modeling with

obstacle avoidance to provide a solution to highway planning problem. In a similar

way, a trajectory planning strategy based on solving a non-linear optimization is

presented in Hegedüs, F., et al. [2017], where a lane change methodology to be

employed in highways is proposed.

In the literature, we can also find some recent works where the problem of planning

in cities or places with a complex environment, i.e. moving obstacles, is solved.

This scenario is one of the most challenging because the ability to deal with a

variety of mobile obstacles is one of the main skills included in the planner. In

Ahmadi Mousavi, M., et al. [2018], a path planning method is introduced which is

based on solving a LTV MPC using a kinematic formulation of the vehicle. Besides,

this is able to deal with multiple obstacles by means of a convex formulation.

2.3.2 Planning for racing driving

Autonomous vehicle racing is a variant of the field of autonomous driving that is at-

tracting many researchers in recent years given the challenge that supposes [Formula

Student., 2019, Roborace., 2019]. Such a problem involves a complex interaction with

the environment due to the fast vehicle dynamic variation, i.e. high linear and angular

accelerations, what implies directly a short reaction time in certain situations.

Starting from the premise that the four families of planners presented in Section 2.3.1

have interesting strategies and have achieved very good results recently, in this thesis we

will focus attention on optimization based strategies for various reasons:

• obtaining optimal solutions (local or global)

• possibility of taking into account vehicle dynamics

• ability to introduce obstacles as constraints

• restriction of dynamic variables and their time derivative
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The way of guiding a vehicle as quickly as possible requires a planning algorithm able

to get certain road information (e.g. track curvature in the next meters) from the en-

vironment perception layer (online information) or a previously mapped track (offline

information). The resultant trajectory must not only remain inside the track limits but

also fulfill the dynamic constraints such as velocity, acceleration and slip angle limits.

While respecting these constraints, the trajectory should also minimize the time to reach

the end of the track as well as the difference between front and rear slip angles to avoid

understeering and oversteering situations. Additionally, the trajectory should be updated

online as the vehicle progresses along the track with the aim of avoiding unexpected static

and/or dynamic obstacles.

The resolution of this problem is not trivial at all and there are few studies under this

topic, being the main motivation for its research. The objective of this type of planners

is to find the optimal trajectory while maximizing the speed or minimizing the lap time.

One of the main conditions of racing planning is to accurately consider the dynamics of

the vehicle in the algorithm calculations. In this way, one common strategy is to handle

the vehicle acceleration vector as well as the front and rear wheels slip angles under an

optimization problem to find their optimal values.

In Caporale, Danio, et al. [2018], the problem of trajectory planning for a racing ap-

plication is solved by means of two stages. The first solves a convex optimization that

consists in minimizing the length and curvature of the path using a geometric representa-

tion. This optimization results in the optimal trajectory. Then, obtaining the curvature

of such an optimal trajectory and using an equation that relates the curvature, speed

and the maximum lateral force tires can sustain, then the optimum velocity profile is

obtained.

In Alrifaee, B., et al. [2018], a real-time MPC for racing trajectory planning is presented.

The key point of this planning approach resides in reformulating the initial non-convex

problem into a linearly constrained convex quadratic optimization problem (QP) that

can be solved in real-time. A point mass kinematic model is used for predicting future

states while constraining vehicle accelerations.

In Verschueren, Robin, et al. [2014], the authors present a racing planning strategy

based on non-linear MPC using a kinematic representation of the vehicle. Years later,
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the same authors enhance this version by introducing a dynamic vehicle model between

other improvements [Verschueren, Robin, et al., 2016].

According to Liniger, A., et al. [2015], the authors propose a racing path planning strat-

egy based on linear MPC strategy. This optimization procedure uses a linearized dynamic

model of the vehicle which allows the real-time implementation. The paper presents the

results with and without obstacles demonstrating in both cases a high performance.

The weaknesses that all the previous works have in common, and that this thesis ad-

dresses, are the use of models of reduced complexity (kinematic-based models basically)

and/or the use of a path-based planner formulation.

At this point, a classification within the techniques based on optimization can be made.

Then, a summary of optimal-based approaches for normal and racing planning is pre-

sented in Table 2.2. This sorting depends mainly on three variables: time-dependent

trajectory, type of vehicle modeling and behavioral driving mode (scenario).

Table 2.2: Optimal planning works depending on the type of vehicle prediction model
and the scenario. TP and PP refer to trajectory and path planning, respectively

Scenes \ Models L. Kin. NL. Kin

Highways

Highways & obs Liu, C., et al. [2017]PP
City & obs Ahmadi Mousavi, M., et al. [2018]PP

Plessen, Mogens Graf, et al. [2017]TP
Racing Alrifaee, B., et al. [2018]TP

Caporale, Danio, et al. [2018]TP Verschueren, Robin, et al. [2014]TP
Racing & obs

Scenes \ Models L. Dyn. NL. Dyn.

Highways Hegedüs, F., et al. [2017]TP
Highways & obs

City & obs

Racing Liniger, A., et al. [2015]PP Verschueren, Robin, et al. [2016]TP
Racing & obs Liniger, A., et al. [2015]PP
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Vehicle modeling
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Chapter 3

Control-oriented modeling

3.1 Introduction

Nowadays, some of the most advanced control, planning and estimation techniques are

based on differential mathematical models that describe some mechanical properties of

the road vehicle. These operational properties are the result of dynamic interactions of

the different components conforming the vehicle structure, i.e. chassis, wheels, tires, etc.

Playing a major role the pneumatic tire.

Choosing an appropriate model is sometimes a relevant and critical task when control-

ling a system. In particular, the vehicle modeling choice will depend on the current

scenario-vehicle and the control-planning-estimation technique that is going to be used.

For example, if the proposed scenario consists on controlling a vehicle at low speeds

applications then, the mass-point kinematic models have demonstrated to achieve good

enough results in the past [Alcalá, Eugenio, et al., 2018.A, Broggi, Alberto, et al., 2012,

Tzafestas, Spyros G., 2013].

However, situations where the task consists on controlling, planning and/or estimating

variables for an autonomous racing car require a vehicle model that represents accurately

the real dynamic behaviour [Caporale, Danio, et al., 2018, Brunner, Maximilian, et al.,

2017, Verschueren, Robin, et al., 2016, Liniger, A., et al., 2015].

In this chapter, vehicle modeling is discussed while gradually increasing its complexity,

thereby allowing the presentation of a set of vehicle models in terms of a wide range of

22
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application. Fig. 3.1 shows a clear overview of the different physics-based formulations

used in this thesis for autonomous driving strategies. Red block represents the kinematic

formulations. Green rectangle depicts dynamic model representations. Blue block refers

to extended model representations as a combination of red and green blocks.

The wide range of applications goes from driving at low speeds to racing environments.

Special attention will be given in next sections to discuss some properties of the models

from a mathematical and control point of view.

Figure 3.1: Tree diagram of different physics-based models used for control, planning
and estimation purposes

For simplicity, the non-linear models presented below are continuous-time (CT) systems

of the form

ẋ(t) = g (x(t), u(t)) . (3.1)

Note that, the majority of the physical systems of interest for control purposes are ex-

pressed in CT. If the objective is an implementation in an embedded system, probably

the design strategies will require a discrete-time (DT) modeling. Such models can be

obtained from CT models using discretization techniques, such as Euler or more sophis-

ticated approaches [Kazantzis, Nikolaos, et al., 2005].
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3.2 Kinematic model

The known as kinematic model provides a simple mathematical description of the vehicle

movement. The equations that govern the system are a set of trigonometric relation-

ships that describe its motion. There are several variants when representing the kine-

matic model mathematically. In this thesis, the "mass-point" representation has been

considered as the kinematic model. However, other portrayals such as the "bicycle" rep-

resentation are adopted in the literature for kinematic models [Kong, Jason, et al., 2015,

Rajamani, Rajesh., 2011]. Under the assumption of driving at low speed (less than 5 m
s ),

 

Figure 3.2: Mass-point kinematic representation

the vehicle can assume null skidding and consider lateral forces to be so small that can be

neglected. Basically, this model represents the transformation of a vehicle velocity vector

represented in Polar coordinates into a vehicle Cartesian frame located at the center of

gravity (CG) of the vehicle. The mass-point kinematic equations are introduced below:


ẋ = v cos(θ + α)

ẏ = v sin(θ + α)

θ̇ = ω

, (3.2)

where ẋ, ẏ and θ̇ represent the longitudinal, lateral and angular velocities, respectively,

in the body frame (see Figure 3.2). The velocity vector at the CG is denoted by v

which performs an α angle with the longitudinal velocity vector (ẋ) called vehicle’s CG

slip angle. Besides, angle θ represents the orientation of the vehicle. X and Y describe
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the vehicle’s position in the inertial coordinate frame. The kinematic model motion

is performed by controlling the magnitudes of the velocity vector (v) and the angular

velocity (ω).

Its high simplicity and low dependence on parameters makes this representation very

useful for low longitudinal and angular velocity applications. Note that, from the control

perspective, the mass-point kinematic model is singular at v = 0 and therefore not

controllable at this point.

3.2.1 Reference-based kinematic model

Considering the uncontrollability characteristic of the kinematic model (3.2), this section

focuses on the development of a representation controllable at v = 0. Introducing the

idea of virtual reference vehicle (VRV), and using the real car for comparison, allows to

generate useful error variables in position and orientation. Under this idea, a reference-

based model is presented. This model variation is defined as the difference between real

vehicle position and orientation (x, y and θ) and desired position and orientation (xd,

yd and θd). However, this set of errors are expressed with respect to the inertial global

frame XY (see Figure 3.2). For control purposes is convenient to express the errors in

the vehicle frame such that the lateral error is always measured in the lateral axis of the

vehicle. Thus, a rotation over the road orthogonal axis is considered as


xe

ye

θe

 =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1



xd − x

yd − y

θd − θ

 , (3.3)

where subindexes d and e represent desired and error values, respectively. To develop

the reference-based model, it is necessary to impose the non-holonomic constraint of the

form

ẋ sin(θ) = ẏ cos(θ) . (3.4)
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Figure 3.3: Reference-based kinematic representation. VRV vehicle, real vehicle be-
low

Hence, computing the time derivative of (3.3) and using (3.2), (3.4) and some trigono-

metric identity, we obtain the following open-loop error system

ẋe = ωye + vd cos θe − v

ẏe = −ωxe + vd sin θe

θ̇e = ωd − ω

, (3.5)

where vd refers to the desired linear velocity, ωd to the desired angular velocity, xe, ye

and θe are the longitudinal, lateral and heading errors, respectively, represented in the

vehicle frame. Details about the development of (3.5) are presented in Appendix A.
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3.2.2 Curvature-based kinematic model

For control purposes, a kinematic model represented in the curvilinear coordinate system

is obtained as the error of heading angle and lateral position with respect to the center

line of the track [Verschueren, Robin, et al., 2014]. Observing Figure 3.4, obtaining two

 

 

Figure 3.4: Curvature-based kinematic representation

different definitions for vector vxc and matching them, the following constraint can be

stated

(r − ye)ωc = vx cos θe − vy sin θe , (3.6)

where vx and vy are the longitudinal and lateral linear speeds, respectively, ωc is the

desired rotation speed with rotation center O and r is the radius of the curve. Conse-

quently, defining the road curvature κ as the inverse of the radius r, the rate of change

of the desired heading angle is expressed as

ωc =
vx cos θe − vy sin θe

1− yeκ
κ . (3.7)
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Then, the orientation error dynamics can be defined as

θ̇e = ω − vx cos θe − vy sin θe
1− yeκ

κ . (3.8)

Using (3.7), the time derivative of the projected travelled distance along the trajectory

(ṡ) is defined as follows

ṡ = rωc =
vx cos θe − vy sin θe

1− yeκ
. (3.9)

Regarding the lateral error, note that, vyc corresponds with the time derivative of ye.

Finally, the curvature-based model is given as

ẏe = vx sin θe + vy cos θe

θ̇e = ω − vx cos θe − vy sin θe
1− yeκ

κ

ṡ =
vx cos θe − vy sin θe

1− yeκ

. (3.10)

Note that, κ is a function of s and assumed to be known. Like the reference-based model,

the curvature-based representation is also controllable from a control design point of view.

Note also that, this model does not include the longitudinal error (xe) as in (3.5) due to

a particular interest of control in this work.

3.2.3 From vehicle body to inertial coordinates

Both reference-based (3.5) and curvature-based (3.10) model variables are based on vehi-

cle body frame. Transforming this representation to the inertial (or global) coordinates

frame (XY in Figure 3.2) may be of interest. The following expressions allow such a

conversion
X = xd + xe cos θ − ye sin θ

Y = yd + ye cos θ + xe sin θ .
(3.11)
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Figure 3.5: Bicycle dynamic model representation

3.3 Dynamic model

Unlike kinematic model, the dynamic representation is characterized by using forces for

performing movement. In this thesis, a bicycle representation of the vehicle is considered

when using a dynamic model (see Figure 3.5).

There are several differences between a mass-point kinematic model and a dynamic bicy-

cle model. The dynamic model is more appropriate for working at higher speeds due to

the non-assumption of negative slip angles on the front and rear wheels. The slip angle

is defined as the difference between the orientation of the speed vector of a wheel and

the orientation of the wheel. In addition, vehicle dynamic modeling generally includes

the tire model which is of special interest in the study of vehicle dynamics and becomes

relevant when studying the behaviour of a vehicle.

At this point, we distinguish among two ways of representing the dynamic model: Carte-

sian and Polar representations (see Figure 3.1).

Note that, throughout this thesis, the vehicle motion is performed by applying an accel-

eration vector in the axis of rear wheel (a) and actuating on the steering angle (δ).
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3.3.1 Lateral tire model

The lateral tire model represents the lateral dynamics of the tire which is of special

interest in the automotive field since this is the only element of the vehicle in contact

with the road surface. The lateral force in a tire is a function of the slip angle. The

expression of the slip angles on the front and rear wheels represented in the Cartesian

frame is respectively

αf = δ − tan−1

(
vy
vx
−
lfω

vx

)
αr = − tan−1

(
vy
vx

+
lrω

vx

) , (3.12)

where lf , lr are the distances from CG to front and rear tires, respectively and δ is the

steering angle of the front wheel.

There are various representations for this model. In this thesis, we present two: a linear

formulation for small slip angles situations and the simplified Magic Formula [Pacejka,

Hans., 2005] representing the real tire force curve (see Figure 3.6).
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Figure 3.6: Tires lateral force and tires stiffness coefficients as functions of the slip
angle. Force in Newtons and angle in degrees

• Lateral tire model at small slip angles.

Several experiments show that for small slip angles, the lateral tire model can be

considered as a linear function where the lateral force is proportional to the slip

angle
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Fyf = Cfαf

Fyr = Crαr

, (3.13)

where Cf , Cr are the tire cornering stiffness coefficients of the front and rear tires

(dotted lines in Figure 3.6), respectively and Fyf , Fyr are the front and rear lateral

tire forces, respectively.

• Simplified Magic Formula tire model.

The linear model can be interesting when the slip angle variable remains small.

However, in situations where this does not occur and such variable becomes larger

a more sophisticated model is required. The simplified Magic Formula tire model

provides a non-linear approach to calculate the resulting lateral force from a wide

range of slip angles (solid curves in Figure 3.6). Then, the lateral force is calculated

as follows

Fyf = Fzfd sin (c tan−1(bαf ))

Fyr = Fzrd sin (c tan−1(bαr))
, (3.14)

where Fzf , Fzr are the vertical load on the front and rear wheels, respectively, d

represents the peak value of the curve, c is the shape factor and b is the stiffness

factor. To learn how these parameters are adjusted see Chapter 4 of Pacejka, Hans.

[2005].

3.3.2 Cartesian dynamic model

Consider the inertial accelerations of the vehicle as

ax = v̇x − ωvy

ay = v̇y + ωvx

(3.15)

at the CG in the direction of x and y axes. Applying Newton’s second law and considering

the respective trigonometric functions due to the planar motion, the Cartesian dynamic

model is given by
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v̇x = a−
Fyf sin δ

m
−
Fdf
m

+ ωvy

v̇y =
Fyf cos δ

m
+
Fyr
m
− ωvx

ω̇ =
Fyf lf cos δ − Fyrlr

I

, (3.16)

where Fyf and Fyr are computed using either (3.13) or (3.14) and the sum of friction

and drag forces is formulated as

Fdf =
1

2
CdρAr(vx)2 + µmg , (3.17)

where Cd is the aerodynamic drag coefficient, ρ is the mass density of air, Ar is the

vehicle frontal area, m is the vehicle mass, g is the gravity and µ represents the static

friction coefficient.

3.3.3 Polar dynamic model

The following formulation of the dynamical model is the Polar representation. Unlike

Cartesian representation, this presents a more complex formulation. However, Polar

representation matches better with the kinematic reference-based model (3.5) since they

have related states and inputs, e.g. the velocity (v) is a kinematic control action which

is also an state of the dynamic vehicle model. The streamlined Polar dynamical model

of the road vehicle can be written as

v̇ = a cosα+
Fyf sin(α− δ) + Fyr sinα− Fdf

m
+ ωv sinα

α̇ = −asinα

v
+
Fyf cos(α− δ) + Fyr cosα

mv
− ω(1 + v cosα)

ω̇ =
Fyf lf cos δ − Fyrlr

I

. (3.18)

Remark 3.1. Note that, although the slip angles on the front and rear wheels are the

same in both Cartesian and Polar representation, the mathematical formulation that

allows their calculation in Cartesian coordinates (3.12) differs from the Polar one being

αf = δ − α−
lfω

v cosα
(3.19)

αr = −α+
lrω

v cosα
. (3.20)
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Thus, forces in Polar coordinates frame are computed as

Fyf = Cfαf (3.21)

Fyr = Crαr (3.22)

Fdf =
1

2
CdρAr(v cosα)2 + µmg . (3.23)

3.4 Combined kinematic and dynamic models

The purpose of combining dynamic and kinematic models is to generate a complete

vehicle model for control, planning and estimation strategies.

3.4.1 Polar dynamic and Reference-based model (PDRB)

Introducing into the same model both the Polar dynamic model (3.18) using the linear

formulation of the tire model (3.13) and the reference-based kinematic model (3.5), the

following state-space representation is obtained

ẋ =



v̇

α̇

ω̇

ẋe

ẏe

θ̇e


= f(x, u, vd, ωd) (3.24)

=



a cosα+

(
Cf

(
δ−α−

lf ω

v cosα

))
sin(α−δ)+

(
Cr

(
−α+ lrω

v cosα

))
sinα−Fdf

m + ωv sinα

−a sinα
v +

(
Cf

(
δ−α−

lf ω

v cosα

))
cos(α−δ)+

(
Cr

(
−α+ lrω

v cosα

))
cosα

mv − ω(1 + v cosα)(
Cf

(
δ−α−

lf ω

v cosα

))
lf cos δ−

(
Cr

(
−α+ lrω

v cosα

))
lr

I

ωye + vd cos θe − v

−ωxe + vd sin θe

ωd − ω



.
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3.4.2 Cartesian dynamic and Curvature-based model (CDCB)

Putting into a same model representation the Cartesian dynamic model (3.16) using the

Magic Formula tire model (3.14) and the curvature-based kinematic model (3.10) the

following combined model is obtained

ẋ =



v̇x

v̇y

ω̇

ẏe

θ̇e

ṡ


= f(x, u, κ) (3.25)

=



a−
sin δFzfd sin

(
c tan−1

(
bδ−b tan−1

(
vy
vx
−
lf ω

vx

)))
m − µg + ωvy

Fzfd cos δ sin

(
c tan−1

(
bδ−b tan−1

(
vy
vx
−
lf ω

vx

)))
m +

Fzrd sin

(
c tan−1

(
−b tan−1

(
vy
vx

+ lrω
vx

)))
m − ωvx

lfFzfd cos δ sin

(
c tan−1

(
bδ−b tan−1

(
vy
vx
−
lf ω

vx

)))
−lrFzrd sin

(
c tan−1

(
−b tan−1

(
vy
vx

+ lrω
vx

)))
I

vx sin θe + vy cos θe

ω − vx cos θe−vy sin θe
1−yeκ κ

vx cos θe−vy sin θe
1−yeκ



.

3.4.3 CDCB model in space domain representation

Model (3.25) is convenient for control purposes due to its time-domain representation.

However, optimal time racing focuses on minimizing lap time and thus, the time variable

needs to be converted into an optimization variable. For that reason, we propose using the

model reparametrization from Gao, Yiqi, et al. [2012]. Such a new formulation is based on

the space domain and the road curvature is given as a function of s hence, the trajectory

optimization under the space-based domain becomes feasible. On the contrary, using

a time-based domain would not be possible to solve a predictive optimization problem

like the one presented in next section because time would not appear explicitly as an

optimization variable.
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Denoting xc =
[
vx vy ω ye θe s

]T
as the state vector of the control model (3.25),

then, a new state vector x̃c =
[
ṽx ṽy ω̃ ỹe θ̃e t̃

]T
is obtained by applying ((̃·)

denotes a variable in the space domain)

˙̃xc =
dxc
ds

=
dxc
dt

dt

ds
= ẋc

1

ṡ
= ẋc

˙̃t , (3.26)

leading consequently to the following model equations

˙̃ye =
ṽx sin θ̃e + ṽy cos θ̃e

ṡ
˙̃
θe =

ω̃

ṡ
− κ

˙̃t =
1

ṡ
.

(3.27)

Note the time (t̃) is now in the space domain and hence, as function of s. The explicit

model equations are given by

˙̃x =



˙̃vx

˙̃vy

˙̃ω

˙̃ye
˙̃
θe

˙̃t


= f(x̃, u, κ) (3.28)

=



a−

sin δd sin

(
c tan−1

(
bδ−b tan−1

(
ṽy
ṽx
−
lf ω

ṽx

)))
m

−µg+ω̃ṽy
ṡ

d cos δ sin

(
c tan−1

(
bδ−b tan−1

(
ṽy
ṽx
−
lf ω̃

ṽx

)))
m

+

d sin

(
c tan−1

(
−b tan−1

(
ṽy
ṽx

+ lrω̃ṽx

)))
m

−ω̃ṽx
ṡ

lf d cos δ sin

(
c tan−1

(
bδ−b tan−1

(
ṽy
ṽx
−
lf ω̃

ṽx

)))
−lrd sin

(
c tan−1

(
−b tan−1

(
ṽy
ṽx

+ lrω̃ṽx

)))
I
ṡ

ṽx sin θ̃e+ṽy cos θ̃e
ṡ

ω̃
ṡ − κ

1
ṡ



,
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where

ṡ =
ṽx cos θ̃e − ṽy sin θ̃e

1− ỹeκ
. (3.29)

3.5 Conclusions

This chapter discussed a variety of models that describe the vehicle motion. These

models can be used to design control, planning and estimation strategies. Furthermore,

these models can be extended to consider roll, pitch and vertical motions.

The models described in this chapter were

• Reference-based kinematic model

• Curvature-based kinematic model

• Lateral tire model

• Cartesian dynamic model

• Polar dynamic model

• Polar dynamic and reference-based model (PDRB)

• Cartesian dynamic and curvature-based model (CDCB)

• CDCB in space domain representation

On the one hand, the kinematic representation can be useful for applications where the

range of speed does not exceed 5 m
s . Besides, its low parameter dependency makes this

simple vehicle model very interesting for a wide range of mobile robotics applications. On

the other hand, dynamic and combined models encourage thinking about more complex

autonomous driving applications, to the point of considering driving situations near the

dynamic limit of the vehicle, i.e. autonomous racing.

Note that, Cartesian and Polar dynamic models simply differ in their representation,

one being the trigonometric transformation of the other. However, the Polar formula-

tion contains more non-linear expressions that, from a control perspective, can create

difficulties in the design process.
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In addition, a space domain representation was presented for a particular planning strat-

egy discussed in next sections. The transformation from vehicle body coordinates to

inertial coordinates frame was also presented.



Chapter 4

LPV representation

4.1 Introduction

In this chapter, the non-linear embedding approach is used for obtaining an LPV repre-

sentation of each one of the models presented in Chapter 3. In addition, this chapter will

focus on state-space (SS) representation to build a set of models suitable for planning,

control and estimation techniques.

Note that, the set of LPV models developed hereafter are CT (continuous-time) and

that its DT (discrete-time) formulation can be obtained using Euler techniques or more

sophisticated ones [Toth, Roland, Peter SC Heuberger, and Paul MJ Van den Hof., 2010].

In the following sections, the LPV formulation is presented without the output equation

since, unless the use case indicates the contrary, we consider that we can either measure

or estimate the complete set of vehicle states.

4.2 Reference-based kinematic LPV model

Denoting the state and control vectors, respectively, as

x =


xe

ye

θe

 , u =

 v

ω

 , (4.1)

38
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we can obtain the LPV representation for the reference-based kinematic model (3.5).

Then, considering ω, vd, θe ∈ R as the scheduling variables, the LPV system becomes

ẋ = A(ω, vd, θe)x+Bu−Br , (4.2a)

where

A (ω, vd, θe) =


0 ω 0

−ω 0 vd
sin θe
θe

0 0 0

 , (4.2b)

B =


−1 0

0 0

0 −1

 , r =

 vd cos θe

ωd

 . (4.2c)

4.3 Curvature-based kinematic LPV model

Denoting the state and control vectors, respectively, as

x =


θe

s

ye

 , u =


vx

vy

ω

 , (4.3)

the LPV form for the curvature-based kinematic model (3.10) can be obtained. Then,

considering vx, vy, θe, ye and κ ∈ R as the scheduling variables, the LPV system becomes

ẋ = B(vx, vy, θe, ye, κ)u , (4.4a)

where

B(vx, vy, θe, ye, κ) =


B11 B12 1

B21 0 0

B31 B32 0

 (4.4b)

with
B11 = −κ cos θe

1− yeκ
, B12 =

κ sin θe
1− yeκ

B21 =
vx cos θe − vy sin θe

(1− yeκ)vx
, B31 = sin θe , B32 = cos θe . (4.4c)
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4.4 Simplified Magic Formula LPV model

The lateral force tire model formulated using the simplified Magic Formula is now con-

verted into an LPV representation.

First, the arctangent function (3.12) is neglected to simplify the formulation. Note that,

this assumption is coherent since the slip angle value remains under 0.1745 rad where

tan−1(α) ≈ α.

Second, the Magic Formula model equations for front and rear wheels in (3.14) are

reformulated in a LPV representation for a proper introduction in the final LPV vehicle

model. Hence, a least-squares algorithm is used to find two polynomials as

Fy(α) = p1α
n + p2α

n−1 + ...+ pnα+ pn+1 , (4.5)

where p constants are the estimated coefficients that define the particular model structure

and n represents the order of the corresponding polynomial.

Once the polynomial is adjusted, the non-linear embedding approach is used to obtain

its LPV representation. Then, the following formulation is proposed

Fy = C(α) α , (4.6)

where

C(α) = p1α
n−1 + p2α

n−2 + ...+ pn + pn+1/(α+ ε) (4.7)

is the tire stiffness coefficient as a function of the slip angle and ε is a very small constant.

In Figure 3.6, both, front and rear tire stiffness coefficient curves are presented as dashed

lines. Note that, as α becomes close to zero in (4.7), C(α) grows exponentially. To avoid

such behavior, it is advised to add a saturation in the α ∈ [0, 0.0075] range such that

C(α) remains limited.

4.5 Cartesian dynamic LPV model

The model presented in (3.16) can be considered as highly non-linear. That is why

certain simplifications are applied prior to its LPV reformulation.
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Note that, since the slip angles always remain at very small angles under non-aggressive

driving, we can assume the elimination of the arctangent function in (3.12). This will

help in the process of embedding non-linearities into linear parameters.

Then, substituting (3.12) into (4.6), the result into (3.16) and grouping by state and

input variables we obtain

v̇x =
−Fdf
mvx

vx +
Cf sin δ

mvx
vy +

(
Cf lf sin δ

mvx
+ vy

)
ω −

Cf sin δ

m
δ + a

v̇y = −
(Cr + Cf cos δ)

mvx
vy −

(
Cf lf cos δ − Crlr

mvx
− vx

)
ω +

Cf cos δ

m
δ

ω̇ = −
Cf lf cos δ − Crlr

Ivx
vy −

Crl
2
r + Cf l

2
f cos δ

Ivx
ω +

Cf lf cos δ

I
δ

. (4.8)

Note that, the term −Fdf
m is independent of any state and input variable. Then, the

solution is to multiply and divide by the same state or input variable to obtain the

desired relationship.

From here, we can represent (4.8) as an LPV model by embedding the non-linearities

inside linear parameters that vary in a defined interval (polytope). Denoting the schedul-

ing variables as δ ∈ R, vx ∈ R and vy ∈ R, the vehicle dynamic LPV model is presented

as

ẋ = A(δ, vx, vy)x+B(δ, vx, vy)u , (4.9a)

where state and input vectors are

x =


vx

vy

ω

 , u =

 δ

a

 (4.9b)

and matrices A and B are

A(δ, vx, vy) =


A11 A12 A13

0 A22 A23

0 A32 A33

 (4.9c)
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B(δ, vx, vy) =


B11 B12

B21 0

B31 0

 (4.9d)

A11 =
−Fdf
mvx

, A12 =
Cf sin δ

mvx
, A13 =

Cf lf sin δ

mvx
+ vy (4.9e)

A22 = −
Cr + Cf cos δ

mvx
, A23 = −

Cf lf cos δ − Crlr
mvx

− vx (4.9f)

A32 = −
Cf lf cos δ − lrCr

Ivx
, A33 = −

Cf l
2
f cos δ + l2rCr

Ivx
(4.9g)

B11 = −
Cf sin δ

m
, B12 = 1 , B21 =

Cf cos δ

m
, B31 =

Cf lf cos δ

I
. (4.9h)

4.6 Polar dynamic LPV model

Before jumping directly to the final LPV formulation, a previous representation is pre-

sented by developing (3.18) and grouping terms as function of the states and input

variables

v̇ = (sinα−
Fdf
mv

)v −
Cf sin(α− δ) + Cr sinα

m
α+

Crlr sinα− Cf lf sin(α− δ)
mv cosα

ω

+
Cf sin(α− δ)

m
δ + cosαa

α̇ = −
Cf cos(α− δ) + Cr cosα

mv
α+

(
1

mv

(Crlr cosα− Cf lf cos(α− δ)
v cosα

)
− (1 + v cosα)

)
ω +

Cf cos(α− δ)
mv

δ − sinα

v
a

ω̇ =
Crlr − Cf lf cos δ

I
α−

Cf l
2
f cos δ + Crl

2
r

Iv cosα
ω +

Cf lf cos δ

I
δ

.

(4.10)

From here, we can express the previous non-linear model as a pseudo-linear one by using

the non-linear embedding approach. Denoting the scheduling variables as δ,∈ R, α,∈ R

and v,∈ R, the vehicle dynamic LPV model is presented as

ẋ = A(δ, α, v)x+B(δ, α, v)u (4.11a)
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with state and input vectors

x =


v

α

ω

 , u =

 δ

a

 (4.11b)

and matrices A and B as

A(δ, α, v) =


A11 A12 A13

0 A22 A23

0 A32 A33

 (4.11c)

B(δ, α, v) =


B11 B12

B21 B22

B31 0

 (4.11d)

A11 = (sinα−
Fdf
mv

) , A12 = −
Cf sin(α− δ) + Cr sinα

m
(4.11e)

A13 =
Crlr sinα− Cf lf sin(α− δ)

mv cosα
, A22 = −

Cf cos(α− δ) + Cr cosα

mv
(4.11f)

A23 =

(
1

mv

(Crlr cosα− Cf lf cos(α− δ)
v cosα

)
− (1 + v cosα)

)
(4.11g)

A32 =
Crlr − Cf lf cos δ

I
, A33 = −

Cf l
2
f cos δ + Crl

2
r

Iv cosα
, (4.11h)

B11 =
Cf sin(α− δ)

m
, B12 = cosα (4.11i)

B21 =
Cf cos(α− δ)

mv
, B22 = −sinα

v
(4.11j)

B31 =
Cf lf cos δ

I
. (4.11k)

4.7 Polar dynamic with reference-based LPVmodel (PDRB-

LPV)

In this section, models (4.2) and (4.11) are introduced into a same model representation

ẋ = A(δ, α, v, ω, vd, θe)x+B(δ, α, v)u+Brr (4.12a)
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with state and input vectors

x =



v

α

ω

xe

ye

θe


, u =

 δ

a

 , r =

 vd cos θe

ωd

 (4.12b)

and matrices A and B as

A(δ, α, v, ω, vd, θe) =



A11 A12 A13 0 0 0

0 A22 A23 0 0 0

0 A32 A33 0 0 0

−1 0 0 0 ω 0

0 0 0 −ω 0 A56

0 0 −1 0 0 0


(4.12c)

B(δ, α, v) =



B11 B12

B21 B22

B31 0

0 0

0 0

0 0


, Br =



0 0

0 0

0 0

1 0

0 0

0 1


(4.12d)

A56 = vd
sin(θe)

θe
. (4.12e)

4.8 Cartesian dynamic with curvature-based LPV model

(CDCB-LPV)

In this section, we present the LPV representation after joining the curvature-based (4.4)

and Cartesian models (4.9). The state space representation is given by

ẋ = A(vx, vy, θe, κ, ye, δ)x+B(δ)u (4.13a)
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with state and input vectors

x =



vx

vy

ω

θe

s

ye


, u =

 δ

a

 (4.13b)

and matrices A and B as

A(vx, vy, θe, κ, ye, δ) =



A11 A12 A13 0 0 0

0 A22 A23 0 0 0

0 A32 A33 0 0 0

A41 A42 1 0 0 0

A51 0 0 0 0 0

A61 A62 0 0 0 0


(4.13c)

B(δ) =



− 1
m sin δCf 1

1
m cos δCf 0

1
I cos δCf lf 0

0 0

0 0

0 0


, (4.13d)

where
A11 =

−Fdf
vx

, A12 =
Cf sin δ

mvx
, A13 =

Cf lf sin δ

mvx
+ vy

A22 = −
Cr + Cf cos δ

mvx
, A23 = −

Cf lf cos δ − Crlr
mvx

− vx

A32 = −
Cf lf cos δ − lrCr

Ivx
, A33 = −

Cf l
2
f cos δ + l2rCr

Ivx

A41 = −κ cos θe
1− yeκ

, A42 =
κ sin θe
1− yeκ

A51 =
vx cos θe − vy sin θe

(1− yeκ)vx
, A61 = sin θe , A62 = cos θe

(4.13e)

Remark 4.1. Note that in last chapter, model CDCB (3.25) was developed using the

simplified Magic Formula model for the lateral tire model. However, the CDCB-LPV
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representation is developed using the linear lateral tire model formulation (3.13).

4.9 Trajectory planning LPV model

The model used for trajectory planning is an extension of the CDCB-LPV representation.

The dynamics of the vehicle, represented by states vx, vy and ω, have exactly the same

LPV representation. However, the rest of the model suffers of some reformulation. In

particular, the front and rear wheels slip angles are introduced as states and the s state

is removed.

Then, the continuous time state space representation is given by

ẋ = A(vx, vy, θe, κ, ye, δ)x+B(δ)u (4.14a)

with state and input vectors

x =



vx

vy

ω

θe

ye

αf

αr


, u =

 δ

a

 (4.14b)

and matrices A and B as

A(vx, vy, θe, κ, ye, δ) =



A11 A12 A13 0 0 0 0

0 A22 A23 0 0 0 0

0 A32 A33 0 0 0 0

−A41 A42 A43 0 0 0 0

0 A52 0 A54 0 0 0

0 A62 A63 0 0 0 0

0 A72 A73 0 0 0 0


(4.14c)
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and

B(δ) =



− 1
m sin δCf 1

1
m cos δCf 0

1
I cos δCf lf 0

0 0

0 0

1 0

0 0


, (4.14d)

being

A11 =
(
−µg
vx
− ρCdAvx

2m

)
, A12 =

Cf sin δ
mvx

, A13 =
(
Cf lf sin δ
mvx

+ vy

)
A22 =

(
− Cr+Cf cos δ

mvx

)
, A23 =

(
− Cf lf cos δ−Crlr

mvx
− vx

)
, A32 = −Cf lf cos δ−lrCr

Ivx

A33 =
(
− Cf l

2
f cos δ+l2rCr

Ivx

)
, A41 = κ

(1−yeκ) , A42 = κ
(1−yeκ) sin θe , A43 = 1

A52 = cos θe , A54 = vx , A62 = −1
vx

A63 =
−lf
vx

, A72 = −1
vx

, A73 = lr
vx

(4.14e)

Note that this model uses the Magic Formula LPV model presented in Section 4.4.

However, for a easier comprehension Ci(αi) is denoted by Ci being i = f, r. Note also

that when discretizing this continuous time system the last two states, i.e. αf and αr

are not time dependent and then they do not need to be discretized.

Remark 4.2. There is not only one non-linear embedding option. Depending on how the

designer encapsulates the non-linearities into varying parameters the result will differ

and consequently, the quality of the representation.

4.10 Conclusions

In this chapter, the procedure for the generation of LPV systems as well as the formula-

tion of the models of the previous chapter have been addressed.

In particular, it has been shown that starting from the non-linear representation of a

system and using analytical methodologies, the LPV formulation in state space can be

achieved. Among the analysis and synthesis methodologies, the polytopic approach has

been presented giving rise to the LPV polytopic system.
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LPV representations for the different non-linear models presented in the previous chap-

ter have been developed. Note that the embedding of non-linearities into the varying

parameters is not unique and therefore there is an optimal structure that in many cases

is not trivial to find.

In the non-linear embedding process, we find the need to construct varying parameters

that are singular in zero longitudinal velocity. However, in Chapter 3, the dynamic

model as a whole, and the tire model in particular, was presented as a system with the

same singularity. Consequently, in the next chapters oriented to control, planning and

estimation, this problem will be treated preventing a zero linear velocity (vx = 0).

Finally, comparing both combined LPV models, PDRB and CDCB, a greater mathemat-

ical complexity has been observed in the development and management of the first one.

In the PDRB-LPV model, the reference matrix stands out, making it a more extensive

and less common structure model. However, the biggest difference between the two, and

positive for the CDCB-LPV model, is the simplicity and low dependence of scheduling

variables in the input matrix (B).
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Chapter 5

Kinematic Lyapunov-based control

with LQR-LMI tuning

The content of this chapter is based on the following work:

• [Alcalá, Eugenio, et al., 2018.A]. Alcalá, E., Puig, V., Quevedo, J., Escobet, T., &

Comasolivas, R. (2018). Autonomous vehicle control using a kinematic Lyapunov-

based technique with LQR-LMI tuning. Control engineering practice, 73, 1-12.

5.1 Introduction

In the last decades, Lyapunov theory has become a standard rule for analyzing stability

of non-linear systems [Freeman, Randy, and Petar V. Kokotovic., 2008, Dixon, Warren

E., et al., 2001], but also for obtaining model-based strategies for controlling the studied

systems [Alcalá, Eugenio, et al., 2016, Blažič, Sašo., 2010, Dixon, Warren E., et al., 2001].

In particular, when working with LPV systems, a LMI-based expression can be used for

checking Lyapunov stability. Such a LMI formalism has become a standard for analysis

and control design in recent years [Duan, Guang-Ren, and Hai-Hua Yu., 2013].

In this chapter, a non-linear kinematic Lyapunov-based control is proposed for solving

both, the lateral and longitudinal control problem. An optimization algorithm for ad-

justing non-linear controller parameters is also proposed. This algorithm is based on

50
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formulating the closed-loop system in LPV form. Then, the Lyapunov controller param-

eters are obtained based on Linear-Quadratic Regulation-LMI (LQR-LMI) approach.

The idea behind the proposed tuning approach is rooted in the work of Farag, A., and

H. Werner. [2004], where an approach for fixed structure controller is proposed splitting

the problem into a convex and a non-convex sub-problems. A method for solving the

convex sub-problem via LMIs is presented in El Ghaoui, L., and V. Balakrishnan. [1994].

The trajectory generation, which uses a map and a global planner to compute the best

trajectory for reaching the destination, is briefly presented. This trajectory is coarsely

defined by a reduced number of global way-points, which are defined by its global po-

sitioning system (GPS) coordinates and the vehicle orientation. In order to execute

the maneuvers comfortably, a local planner computes a smooth trajectory by adding

intermediate local way-points defined by their GPS position, orientation and the desired

linear and angular velocities.

Finally, the proposed techniques for vehicle motion control are first tested in a virtual

reality environment (SYNTHIA [Ros, German, et al., 2016]). Then, a real on-field test

scenario using an electric Tazzari vehicle is used for showing effectiveness in real condi-

tions.

5.2 Vehicle description

The results presented in this paper are part of the project called Elektra1 that aims

to develop autonomous guidance technology for road vehicles. For such a purpose, an

electric Tazzari zero vehicle [Tazzari Zero., 2006] is used (see Figure 5.1). This system

is a non-holonomic platform that can move like a normal road vehicle. This platform is

composed by a set of sensors and actuators, as well as a PC and an electronic control unit

(ECU) that manage all algorithms and communications between them. The diagram of

the control architecture is depicted in Figure 5.2. On one hand, the vehicle has on board

an inertial measurement unit (IMU), GPS and stereo cameras to obtain information

about the environment and current state. Proper algorithms have to be employed in order

to convert that crude information on convenient data for understanding the environment

and localize the vehicle. On the other hand, a set of actuators are employed to perform
1http://adas.cvc.uab.es/elektra/
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Figure 5.1: Electric Tazzari Zero vehicle used for testing

Elektra

Obstacle detection

Non-linear automatic control
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Brake
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Figure 5.2: Elektra control architecture. The large block on the left represents the
physical vehicle devices. The rest of the blocks represent software algorithms

the motion (steering and driven electric motors) as well as turning on the lights and

opening doors. The rest of modules in Figure 5.2 (perception, localization, planning and

control) compose the software for performing the autonomous guidance task. This paper

specially focuses on the non-linear automatic control module. However, the trajectory

planning task is introduced for better understanding.

All the algorithms involved run over a trunk PC (6-core i7 5930K, 32GB DDR4) running
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ROS on GNU/Linux (Ubuntu distribution). An NVIDIA GTX Titan X board is used

to run GPU-based algorithms for perception-image analysis.

The ECU, based on a Cortex-M4 MCU, runs a custom embedded software which com-

municates the PC control actions to the different car actuators (steering, throttle, brake,

lights, horn), as well as reads the values of the car state sensors (steering, throttle, brake,

speed, doors, battery).

The communication net is based on CAN bus protocol. Its cycle is currently set to 100

ms, which is sufficient for running all required algorithms.

5.3 Trajectory generation

This section addresses the module responsible of generating the trajectory planning for

achieving the desired goal (observe this module in the overall vehicle architecture pre-

sented in Figure 5.2). Information from other modules, such as obstacle avoidance and

localization, is received in order to compute free-collision trajectories. Figure 5.3 shows

the trajectory generation module and its sub-modules as well as the input and output

data.

 

Figure 5.3: Trajectory generation diagram. Sub-index Wp refers to Way-point and d
to desired variables

In case the perception detects an obstacle the obstacle avoidance strategy provides a

new way-point (Obstacle avoidance way-point) to avoid such an obstacle. Location goal

represents the coordinates of the desired final point. x, y and θ are the current states of

the vehicle.
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At this point, the vehicle is in charge of managing two planning stages: Global and

Local planning. They can be seen as two overlapping and connected layers being the

Global planner the upper one. Note that, both planners represent their coordinates and

orientation (x, y and θ) with respect to the inertial global frame.

5.3.1 Global Planner

A human-vehicle interface based on the OpenStreetMap [Haklay, Mordechai, and Patrick

Weber., 2008] open software is used to introduce the route as a set of way-points along

the street (cyan ball in Figure 5.4). Moreover, information about close obstacles is

introduced with the goal of recomputing the global trajectory. The position of each

way-point is provided in the Universal Transverse Mercator (UTM) coordinate system.

Once the global plan is defined, it provides way-point information (xWp, yWp, θWp) to

the local trajectory planner.

5.3.2 Local Planner

Passenger comfort determines driving quality. The most remarkable variables affecting

passenger comfort are the lateral and longitudinal accelerations. High accelerations will

annoy passengers, who will find it very difficult to maintain posture. The ISO 2631-1

[International Organization for Standarization., 1997] standard recommends an overall

vehicle acceleration (aw) less than 0.315 m
s2
, which is defined as

aw =
√
a2
wx + a2

wy + a2
wz . (5.1)

Following Solea, Razvan, and Urbano Nunes. [2007] and Bianco, CG Lo, Aurelio Piazzi,

and Massimo Romano. [2004], a quintic spline-based trajectory planner is implemented

that generates smooth trajectories with a velocity profile with continuous acceleration

and low levels of jerk, ensuring the passenger comfort. Our work adopts a simplified

version of such an algorithm: instead of using smooth but variable velocities in straight

sections, which is harder for the tracking control task, constant velocity sections are

proposed. The algorithm defines three operation modes

• Acceleration stage: computes a smooth velocity profile under bounded acceleration.
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Figure 5.4: Global trajectory
planning. Cyan point represents

a global way-point

Figure 5.5: Local trajectory
planning. Small blue points rep-

resent the planned route

• Constant velocity stage: maintains a constant velocity reference using the control

module.

• Deceleration stage: computes a smooth velocity profile under bounded negative

acceleration.

This module will provide a set of local way-points to the control module (small blue

points in Figure 5.5). Each local way-point is defined as a set of desired values (xd, yd,

θd, vd and ωd) as it is shown in Figure 5.3.

5.4 Automatic vehicle control

The automatic control strategy tackles the problem of generating an appropriate be-

haviour to follow the desired trajectory. Thus, it is in charge of computing smooth

control actions (vehicle speed and steering angle) such that the vehicle is capable of

achieving the required speed and orientation at the next local way-point (observe this

module in the overall vehicle architecture presented in Figure 5.2).

In this section, a non-linear automatic control strategy based on the Lyapunov theory

[Alcalá, Eugenio, et al., 2016, Aicardi, Michele, et al., 1995, Dixon, Warren E., et al.,

2001, Samson, Claude, and Karim Ait-Abderrahim., 1990] is introduced for trajectory

tracking and navigation among way-points as well as a tuning methodology based on

LPV LMI-based linear-quadratic regulation (LQR) approach.

The idea of the Lyapunov method is to define a control law that ensures the stability and

the asymptotic elimination of the error between the real and desired vehicle trajectory.
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Figure 5.6 shows the Lyapunov control sub-modules as well as input and output variables.

The controller receives the set-points of the trajectory provided by the Local planner

 

Figure 5.6: Lyapunov based controller diagram

(xd, yd, θd, vd and ωd) and the current localization of the vehicle (x, y, θ). With all this

information, a set of errors (xe, ye, θe) are computed by using (3.3) which will be used

by the Lyapunov-based controller.

5.4.1 Lyapunov control design

Using the kinematic model presented in Section 3.2.1, the Lyapunov-based controller is

designed according to the following Theorem.

Theorem 5.1. Given the reference-based kinematic model of the vehicle (3.5), the control

law 
v = k1xe + vd cos θe

ω = ωd + k2vd
sin θe
θe

ye + k3θe

(5.2)

stabilises the closed-loop dynamics in the Lyapunov sense if the controller parameters k1,

k2 and k3 are positive.

Proof. Following the Lyapunov’s stability, the following Lyapunov function candidate is

proposed

V (e) =
k2

2
x2
e +

k2

2
y2
e +

1

2
θ2
e . (5.3)

Its time derivative is

V̇ (e) = k2xeẋe + k2yeẏe + θeθ̇e . (5.4)



Kinematic Lyapunov-based control with LQR-LMI tuning 57

Now, by substituting the open-loop equations (3.5) in (5.4)

V̇ (e) = k2xevd cos θe − k2xev + k2yevd sin θe + θeωd − θeω . (5.5)

By inspection, an expression of the controller in terms of control actions v and ω is

determined  v

ω

 =

 k1xe + vd cos θe

ωd + k2vd
sin θe
θe

ye + k3θe

 , (5.6)

such that

V̇ (e) = −k2k1x
2
e − k3θ

2
e < 0 (5.7)

fulfilling the Lyapunov’s Theorem under the condition that the control parameters satisfy

k1, k2, k3 > 0 . (5.8)

Once the control equations have been obtained the closed-loop error system has the

following shape by inserting (5.6) in (3.5)


ẋe

ẏe

θ̇e

 =


ωye − k1xe

−ωxe + vd sin(θe)

−k2vd
sin θe
θe

ye − k3θe

 . (5.9)

Observe that from (5.7), the convergence of xe and θe is guaranteed, i.e.

lim
t→∞

xe(t) = 0 lim
t→∞

θe(t) = 0 . (5.10)

However, the convergence of ye is not ensured. In order to demonstrate that limt→∞ ye(t) =

0, the proof relies on the result presented in Theorem 1.2 of Dixon, Warren E., et al.

[2001] that shows

lim
t→∞

θ̇e(t) = 0 (5.11)

when using the control law (5.6). Hence, (5.11) leads to

lim
t→∞

k2 · vd(t) ·
sin θe(t)

θe(t)
ye(t) = 0 (5.12)
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considering (5.10) and (5.9). And, consequently

lim
t→∞

ye(t) = 0 (5.13)

assuming that, when following the desired trajectory, the velocity control action vd(t) is

not null and θe ∼= 0 such that

lim
θe→0

sin θe
θe

= 1 . (5.14)

Thus, the achievement of the global asymptotic stability can be concluded.

5.4.2 Lyapunov control adjustment via LQR-LMI

The condition (5.8) guarantees that the controller is stable, but it does not allow to

establish performance specifications. In this section, an iterative algorithm for adjusting

the non-linear Lyapunov controller using a LQR-LMI based strategy is proposed.

The method starts by rewriting the closed-loop error system (5.9) in the LPV form. The

small-angle approximation is applied to simplify the LPV formulation since the error of

orientation (θe) remains close to zero

sin θe
θe
≈ 1 . (5.15)

Considering ω, vd ∈ R as the scheduling variables and Ks = [k1 k2 k3]


ẋe

ẏe

θ̇e

 =

Acl(Ks,ω,vd)︷ ︸︸ ︷
−k1 ω 0

−ω 0 vd

0 −k2vd −k3



xe

ye

θe

 . (5.16)

At this point, taken (5.15) in consideration, the control strategy (5.2) can be seen as a

state feedback control law in the form u = Kx+ r

 v

ω

 =

K(Ks,ω,vd)︷ ︸︸ ︷ k1 0 0

0 k2vd k3



xe

ye

θe

+

 vd cos θe

ωd

 . (5.17)
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The scheduling variables are bounded in a box (see Figure 5.7) defined by the operating

conditions. The controller is scheduled according to the expressionK(Ks, ω, vd) in (5.17).

The controller parameters (5.8) will be determined using the LQR technique via LMI as

Figure 5.7: Bounding box governed by the robust controller K(Ks, ω, vd). Vi, with
i = 1, ..., 4, represent the vertexes of the bounding box

suggested in Duan, Guang-Ren, and Hai-Hua Yu. [2013] using the LMI solution for the

H2 problem given by

Acl(Ks, ω, vd)P + (Acl(Ks, ω, vd)P )T + 2αP > 0

Acl(Ks, ω, vd)P + (Acl(Ks, ω, vd)P )T < 0 −Y R
1
2K(Ks, ω, vd)P

(R
1
2K(Ks, ω, vd)P )T −P

 < 0

trace(Q
1
2P (Q

1
2 )T ) + trace(Y ) < γ

P ≥ 0, Y = Y T > 0 , ∀vd ∈ [vd, vd], ω ∈ [ω, ω] ,

(5.18)

that is converted into an LMI by means of the following change of variable: W =

K(Ks, ω, vd)P , where Ks ∈ R1×s, P ∈ Rs×s is the Lyapunov matrix and the result of

the LMI problem. Q ∈ Rs×s, R ∈ Rr×r, Y ∈ Rn×n and γ ∈ R are tuning parameters in

the LMI-LQR problem being s and n the number of states and inputs, respectively.

However, this procedure would deliver a free structure state feedback controller K, i.e.

not keeping the structure of the Lyapunov control law (5.17). To preserve this structure

is not an easy task as discussed in El Ghaoui, L., and V. Balakrishnan. [1994] since leads

to a non-convex problem.
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Here, to preserve the fixed structure of the control law (5.17), an optimization problem

that has as decision variables the control parameters (Ks) and as objective function the

infinity norm of the Lyapunov matrix (P ) eigenvalues, is used to maximize the LQR

performance as follows

min
Ks

‖eig(P )‖∞

s.t.

P = LQR-LMI-problem({Ks,i}4i=1)

Ks,i ∈
(
0,Ks,i

]
, ∀i = 1, ..., 4 ,

(5.19)

where eig() function returns a vector containing the eigenvalues of square matrix P. The

function LQR-LMI-problem has as input the set of Ks vectors and solves the following

set of LMIs

Acl(Ks,i, ωi, vdi)P + (Acl(Ks,i, ωi, vdi)P )T + 2αP > 0 ∀i = 1, ..., 4

Acl(Ks,i, ωi, vdi)P + (Acl(Ks,i, ωi, vdi)P )T < 0 ∀i = 1, ..., 4 −Y R
1
2K(Ks,i, ωi, vdi)P

(R
1
2K(Ks,i, ωi, vdi)P )T −P

 < 0 ∀i = 1, ..., 4

trace(Q
1
2P (Q

1
2 )T ) + trace(Y ) < γ

P ≥ 0, Y = Y T > 0 .

(5.20)

Note that, in (5.19) and (5.20), i represents each one of the polytope vertexes in Figure

(5.7), Ks,i represents the i optimization vectors Ks. The parameter α represents the

boundary for setting the kinematic closed-loop poles (see Figure 5.8). Note that, in

(5.19), Ks,i is the upper boundary for the control parameters. Such a boundary has

been chosen as an arbitrary very high value in order to ensure the optimal gains are

found.

In order to select the constraint for the pole placement α in (5.20), the fact that the

Lyapunov controller provides the set point to the dynamic loop has to be taken into

account. This internal loop has been implemented by using two decoupled PI controllers

adjusted by means of the pole placement technique. In order to achieve a good kinematic

reference tracking, the dynamic control loop has been considered four times faster than

the kinematic one. This leads to locate the kinematic closed loop poles in a specific region
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between 0 and α (see Figure 5.8). Such a restriction is presented in the form of a LMI in

the optimization problem (5.19) as: Acl(Ks,i, ωi, vdi)P+(Acl(Ks,i, ωi, vdi)P )T +2αP > 0.

At this point, four polytopic controllers, one at each vertex (Ki), are considered (see

Figure 5.8: Representation of the pole placement issue. Dominant kinematic poles
must be slower than the dominant dynamic poles. α represents the hyper-plane location

Figure 5.7). Then, at every control iteration the control gain is computed as

K =
4∑
i=1

µiKi , (5.21)

where the vertex membership function µi is calculated using (2.2)-(2.5).

It is important to note that due to the high non-convexity of the optimization problem,

common gradient-based solvers are not applicable and thus, genetic algorithms have been

useful for solving it. This heuristic algorithm does not ensure a global optimal solution

but only a local optimal solution.

5.5 Simulation results

In this section, the behaviour of each module previously introduced is evaluated, i.e.

global and local planning, and automatic control. For this purpose the modules have

been evaluated in SYNTHIA 2 [Ros, German, et al., 2016]. It runs over Unity 3 which

is a game development platform.
2http://synthia-dataset.net/
3https://unity3d.com/es
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In this environment, localization is considered ideal and neither noises nor disturbances

have been added. However, the point of interest is that vehicle dynamics is modeled in re-

alistic manner considering the complex vehicle physics [Garcia Angel., 2010]. The global

planner defines the route composed with a set of way-points along the scenario (cyan

points in Figure 5.10). The local trajectory planner has been adjusted and constrains

the overall vehicle acceleration as explained in Section 5.3.2. All algorithms are executed

in a regular manner within a period of 0.1 s. The complete diagram for simulation can

be seen in Figure 5.9.

 

 

Figure 5.9: Complete motion diagram composed by the trajectory planning and the
Lyapunov control

The section is divided in two simulations tests. On one hand, the Test A is presented.

It is composed by a circuit designed for testing the algorithms along the whole range of

urban velocities (i.e. 0 - 60 km
h ). It offers also different curvature curves. On the other

hand, Test B is composed by a geometrically simpler circuit in which the vehicle works
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Figure 5.10: SYNTHIA scenario: Screen shot of the simulation. External view in the
left side and view from inside in the right side

at lower velocities (i.e. 0 - 18 km
h ). It is designed with the idea of simulating the real

experiment.

5.5.1 Test A

For this test, the scheduling variables have been bounded in the following intervals:

ω ∈ [−1.417, 1.417] rads and vd ∈ [0.1, 16.7]ms . The vd interval starts in 0.1ms since the

null velocity is a singular point for the controller and it has to be avoided. Both in

simulation and in the real test, the vehicle begins the performance by applying a little

force over the rear wheels in order to achieve this low velocity bound and being inside

vd interval. The matrices and variables used for adjusting the LQR optimization are

Q =


10 0 0

0 2 0

0 0 1

 , R =

 1 0

0 1

 , γ = 0.0001 .

The control parameters are presented in Table 5.1 for each bounding box vertex. Note

that the controller gains are only function of the linear velocity. This is because of

the vehicle geometry is symmetric with respect to its longitudinal axis. The results of

applying the Lyapunov control technique adjusted by means of the LQR-LMI approach

are shown in Figure 5.11 and 5.12. Figure 5.11 shows the proposed circuit and the

trajectory result. Such a circuit has been designed with the idea of offering the vehicle

different levels of difficulty. Then, a set of curves with different curvature has been

introduced. From Figure 5.12.a, it can be seen that the velocity profile is divided in
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vd ω k1 k2 k3

i=1 0.1 -1.42 3.9 1.1 1.5
i=2 16.7 -1.42 3.6 1.2 2.1
i=3 0.1 1.42 3.9 1.1 1.5
i=4 16.7 1.42 3.6 1.2 2.1

Table 5.1: Test A - Control parameters for each vertex of the bounding box (see
Figure 5.7)
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Figure 5.11: Results on SYNTHIA (Test A): Desired path (blue line) and real tra-
jectory (dashed green line)

two different velocity sections. Observe that it is complex to differentiate reference

and response signals. Thus, this means that barely exists velocity error and that the

velocity tracking is working correctly. Figure 5.12.b depicts the evolution of the angular

velocity. The reference proposed by the trajectory planner is followed quite well allowing

the vehicle to mitigate the possible lateral error that can exist. Regarding the position

errors (see Figure 5.12.c and d), the longitudinal one reaches a quite low error (around

0.02 meters) and the lateral error evolves in the millimeter scale.

An evaluation of the control in terms of quadratic error has been done obtaining 0.0231

m2 of MSE (Mean Square Error) for the longitudinal position and an amount of 0.0087

m2 for the lateral position.
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Figure 5.12: Results on SYNTHIA (Test A): (a) Linear velocity reference and re-
sponse. (b) Angular velocity reference and response. (c) Longitudinal error obtained

during the simulation. (d) Vehicle lateral error

5.5.2 Test B

In this test, due to the differences of the scenario with respect to Test A (i.e. velocity

and geometry) the scheduling variables have been bounded in the following intervals:

ω ∈ [−1.417, 1.417] rads and vd ∈ [0.1, 5]ms . As in Test A, vd interval starts in 0.1ms . The

matrices and variables used for adjusting the LQR optimization are

Q =


10 0 0

0 2 0

0 0 1

 , R =

 1 0

0 1

 , γ = 0.0001 .
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The set of control parameters found for this scenario are presented in Table 5.2 for each

bounding box vertex. The results of applying the Lyapunov control technique adjusted

vd ω k1 k2 k3

i=1 0.1 -1.42 0.27 0.23 0.31
i=2 5 -1.42 0.78 1.07 1.2
i=3 0.1 1.42 0.27 0.23 0.31
i=4 5 1.42 0.78 1.07 1.2

Table 5.2: Test B - Control parameters for each vertex of the bounding box (see
Figure 5.7)

by means of the LQR-LMI approach are shown in Figure 5.13 and 5.14.
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Figure 5.13: Results on SYNTHIA (Test B): Desired path (blue line) and real tra-
jectory (dashed green line)

Figure 5.13 shows the proposed circuit and the trajectory result. This circuit has been

proposed with the idea of simulating the real experimental test.

From Figures 5.14.a and b, it can be seen that both velocity references are followed

presenting low levels of error. However, the relevant signals when performing a trajectory

tracking task are the position errors. They are depicted in Figures 5.14.c and d. Observe

that the longitudinal error is in the range of ± 0.05 m and the lateral error evolves in a

range of few centimeters.

Furthermore, in order to value the simulation an evaluation of the control performance

in terms of quadratic error has been done. The obtained results are 0.0269 m2 of MSE
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for the longitudinal position and an amount of 0.0053 m2 of MSE for the lateral position.

Note that due to the differences in geometry and velocities on both circuits (Tests A and
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Figure 5.14: Results on SYNTHIA (Test B): (a) Linear velocity reference and re-
sponse. (b) Angular velocity reference and response. (c) Longitudinal error obtained

during the simulation. (d) Vehicle lateral error

B) they cannot be compared. Test A develops at higher velocity than Test B, but has

wider and longer curves than Test B achieving in this manner a lower lateral acceleration

in the curves. Hence, we can affirm that lateral error is function of the lateral acceleration

that the vehicle suffers when arrives to a curve and that the results are consistent.

Remark 5.2. The algorithms in SYNTHIA have been programmed by using C# for Unity

environment, linking at the same time functions programmed in C++ over Visual Studio

2012.

Remark 5.3. The LMIs have been solved with YALMIP and SeDuMi solvers, while the

optimization problem (5.19) has been solved by using Matlab genetic algorithm ”ga”.
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5.6 Experimental results

Once planning and control systems have been evaluated and the simulations have proved

to be satisfactory, a real scenario is used to validate their integrated applicability. The

validation results of the complete vehicle behaviour over a real scenario are presented (see

Figure 8.6.a). The test consists in starting from an initial position (red circle), reaching

a constant velocity while following the desired trajectory and finally stopping in front of

a detected pedestrian (yellow circle). The scenario where the test has been performed is

a geometrically simple circuit.

(a)

(b)

Figure 5.15: In field test: (a) Space used to perform tests. (b) Visualization in real
time of testing results in ROS

The results of perception, localization and obstacle avoidance modules have been omitted

in this work. However, they are used in the real validation (e.g. obstacle avoidance
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module is in charge of varying the position of the next global way-point if an obstacle

is detected). The experimental controller has been adjusted with the same parameters

than in simulation (Test B). They can be seen in Table 5.2.

Remark 5.4. For this real scenario, the algorithms have been programmed in C++ over

a ROS-Ubuntu platform.

The experimental vehicle has as control inputs the linear velocity and the steering angle.

Then, the angular control action (ω) computed by the controller is converted into steering

angle as

δ = tg−1
((lf + lr)ω

v

)
, (5.22)

where lf and lr are the distance from the CG to the front and rear axes, respectively.

The vehicle has two main hardware constraints: the maximum resolution of steering and

velocity. On one hand, the steering system has a maximum resolution of two degrees.

This is a hard constraint that limits the lateral control. Such limitation produces a

nervous steering angle action while trying to achieve the null error. On the other hand,

the speed system has a maximum resolution of 1km/h. This issue generates a limitation

when controlling the longitudinal behaviour of the vehicle. Thus, it is easy to have an

error in the longitudinal speed control and in the longitudinal position.

In Figure 8.6.b, the real trajectory is shown through rviz ROS tool 4. It shows multiple

data in real time: the stereo visualization, the global way points (green arrow), the

completed path (white lines) and the real trajectory (yellow lines).

Figure 5.16 shows the resultant behaviour of the system during the experimental test.

Figure 5.16.a depicts how the vehicle follow the velocity reference although being not

able to eliminate completely the error in steady state. This issue may be caused by

the resolution constraint of 1 km/h and the localization errors as well as the controller

adjustment. In this experimental test, the control action measured and sent to the

steering actuator is the steering angle. Hence, such a steering variable has been depicted

in Figure 5.16.b. It can also be seen the problem of resolution, i.e. small jumps of 2

degrees, and how the response does not exactly match the reference produced by the

trajectory planner. Figures 5.16.c and 5.16.d show the longitudinal and lateral errors,

respectively. These graphs are used to validate the performance of the vehicle. In this

case the response is not exactly the expected one. However, the vehicle is stable and
4 http://wiki.ros.org/rviz
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can correct the trajectory at every instant of time in spite of the constraints appointed

and localization errors. Finally, Figures 5.16.e and 5.16.f represent the signals sent by

the controller to the actuators of the vehicle. The Lyapunov controller produces a sharp

velocity action trying to reduce the error, while the steering signal is smoother in spite of

the huge difference between the reference and the response. Moreover, as in simulation,

an evaluation of the control performance in terms of quadratic error has been done.

The obtained results are 0.8178 m2 of MSE for the longitudinal position and an amount

of 0.3099 m2 of MSE for the lateral position. Comparing these results with the ones

obtained in simulation Test B, it can be appreciated the huge difference that exists in

between of simulation and reality scenarios.

The objective of this experimental test is to follow the trajectory proposed minimizing the

lateral and longitudinal errors at the fastest rate possible. The validation is performed

graphically and using the Mean Square Error method. We can conclude that the goals

have been achieved although with localization and hardware problems. The vehicle is

able to go through the way-points being stable and mitigating the errors. The test was

performed 50 times and the goal was achieved in 41 of them. The main problems are

due to localization drift. An example video of the vehicle performing in SYNTHIA and

real scenarios can be seen in YouTube5.

5.7 Conclusions

In this chapter, a non-linear control strategy based on Lyapunov theory has been in-

troduced for solving the control problem of autonomous vehicle guidance. This chapter

has also proposed an iterative algorithm for adjusting the parameters of the non-linear

controller to achieve not only stability but also performance specifications. This algo-

rithm relies on a LQR-LMI based strategy using a LPV representation of the closed-loop

kinematic error model. Furthermore, such an adjustment is complemented by adding a

restriction between dominant dynamic poles and dominant kinematic poles for holding

a correct physical behaviour. The obtained LPV-Lyapunov controller jointly with a tra-

jectory generation module are in charge of moving the vehicle. It has been presented the

performance of the vehicle in simulation obtaining satisfactory results, and it has been
5 https://www.youtube.com/watch?v=K0omhJXawTo
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Figure 5.16: Result of relevant vehicle variables during one of the experimental tests
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achieved the expected goal of moving autonomously from a starting point to a final point

in a comfortable way in a real test.



Chapter 6

GS-LPV control including friction

force estimation and compensation

mechanism

The content of this chapter is based on the following work:

• [Alcalá, Eugenio, et al., 2018.B]. Alcalá, E., Puig, V., Quevedo, J., & Escobet, T.

(2018). Gain-scheduling LPV control for autonomous vehicles including friction

force estimation and compensation mechanism. IET Control Theory & Applica-

tions, 12(12), 1683-1693.

6.1 Introduction

Friction forces are one of the most significant disturbances that affect a vehicle. These

forces are dependent on the type of materials involved in the wheel-road contact. The

most common, rubber-asphalt, generates a magnitude of friction force that can be drasti-

cally altered if the vehicle suddenly crosses a wet or even frozen area. For this reason, the

estimation and subsequent compensation is of great interest in the field of autonomous

driving. Different works have stated the importance of estimating the friction force [Grip,

Havard Fjaer, et al., 2008, Rajamani, Rajesh, et al., 2011, Khaleghian, Seyedmeysam,

Anahita Emami, and Saied Taheri., 2017].

73
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Several approaches have been recently studied in the state-disturbance estimation area for

autonomous vehicles including observer-based [Yi, Kyongsu, Karl Hedrick, and Seong-

Chul Lee., 1999, Svendenius, Jacob., 2007] and statistical [Dakhlallah, Jamil, et al.,

2008] methods. Among observer-based techniques, the unknown input observer (UIO) is

gaining interest. This strategy has been widely used for fault detection and isolation as,

e.g. in Rotondo, Damiano, et al. [2018]. These type of observers allow to estimate the

states of a system as well as disturbances or unmodeled uncertainty in the system. In

the automotive field, authors in Wang, Yan, David M. Bevly, and Shih-ken Chen. [2013]

use the UIO method to estimate the longitudinal tire force of the vehicle.

This chapter constitutes an improvement with respect to the previous chapter. A solution

for the integrated longitudinal and lateral dynamic control problem of urban autonomous

vehicles is presented. This solution is based on a gain-scheduling LPV control approach

combined with the use of an UIO for estimating the vehicle states and friction force.

The contribution of this article is three-fold. First, we present a novel LMI formulation

for the LPV-UIO observer design based on an optimal approach. It follows the control-

observer duality principle and introduces also a constraint for the decay rate. Second,

a friction force compensation mechanism based on the estimation provided LPV-UIO

is proposed for reducing the control effort and increasing the response when such a

disturbance actuates. Third, we present the design of an LPV-LQR approach for solving

the integrated lateral and longitudinal control for autonomous vehicles. This approach is

based on a cascade design of the the kinematic and dynamic controllers. Such a cascade

scheme is based on the idea that the dynamic closed-loop behaviour is designed to be

faster than the kinematic closed-loop one.

The proposed scheme is integrated with a trajectory generation module and tested in a

simulated scenario. A comparative study is also presented considering the cases that the

friction force estimation is used or not to show its usefulness.

6.2 Vehicle description and control-oriented modeling

The vehicle used for testing the strategies addressed in this chapter is the Tazzari Zero

vehicle [Tazzari Zero., 2006] (see Figure 5.1). Notice that it is the same vehicle than in

the last chapter.
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The use of a cascade control scheme implies two model-based control techniques that

consequently, implies two models. On one hand, the outer layer is governed by a kine-

matic behaviour (see Section 3.2). This is based on the velocity vector movement in

order to compute longitudinal and lateral velocities referenced to a global inertial frame.

External forces are not considered in this case. On the other hand, the inner layer is

governed by a dynamic behaviour (see Section 3.3). The motion is generated by applying

forces over the driven wheels and mass, inertial and tire parameters are considered.

For a control design purpose, the LPV representation is used to transform non-linear

formulations into pseudo-linear formulations. Both kinematic and dynamic LPV models

employed in this chapter have been presented in (4.2) and (4.11), respectively. Table

(6.1) presents the characteristic vehicle parameters used in the models.

Table 6.1: Kinematic and dynamic model parameters

Parameter Description Value
lf Distance from CG to front axle 0.758 m
lr Distance from CG to rear axle 1.036 m
m Vehicle mass 683 kg
I Vehicle yaw inertia 560.94 kg m2

Cd Drag coefficient 0.36
Ar Vehicle frontal area 1.91 m2

ρ Air density at 25◦C 1.184 kg
m3

µo Nominal friction coefficient 0.5
Cf Front tire stiffness coefficient 25000 N

rad

Cr Rear tire stiffness coefficient 25000 N
rad

Remark 6.1. Due to the unknown real static friction force, i.e. µmg in (3.17), a nominal

constant friction coefficient (µo) is considered in the friction force part of the dynamic

model for control and estimation as µomg.

6.2.1 Dynamic LPV model reformulation

At this point, the polar dynamic LPV representation (4.11) is pretended to be used.

However, such a model is not completely ready for performing good control behaviour

in the application that will be proposed later and thus, some changes have to be made

before.
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First, considering an unknown friction force disturbance, denoted as Ffr, acting on the

vehicle then, the state-space model for the polar dynamic representation (4.11) is refor-

mulated as

ẋ = A(δ, v, α)x+B(δ, v, α)uD + EFfr , (6.1a)

where disturbance input matrix is

E =


−1
m

0

0

 . (6.1b)

Note that the real friction force actuating in the vehicle wheels is the sum of the nominal

one and the estimated variation.

Second, the stability analysis of an open-loop polytopic LPV system using LMIs consists

in the resolution of a problem of as many LMIs as vertices have the polytope. However,

when the problem consists in looking for a set of controllers for each vertex of the

polytope, i.e. polytopic control design, the complexity of such a problem size and the

degree of conservatism grow significantly [Apkarian, Pierre, Pascal Gahinet, and Greg

Becker., 1995], sometimes even saturating the problem. In Tanaka, Kazuo, and Hua O.

Wang. [2004], a more complex LMI-based formulation is presented that allows working

with a matrix B of the system dependent on variant parameters. On the other hand,

Apkarian, Gahinet and Becker proposed a method based on the transfer of such variant

parameters from matrix B to matrix A through the extension of new states [Apkarian,

Pierre, Pascal Gahinet, and Greg Becker., 1995].

In this chapter, the Apkarian proposal has been used and the LPV system (6.1) can be

further simplified by incorporating the parameter dependency of matrix B into matrix

A leading to

˙̃x = Ã(δ, v, α)x̃+ B̃uf . (6.2)

To do so, the system is augmented by adding a fast dynamic filter as suggested by

Apkarian, Pierre, Pascal Gahinet, and Greg Becker. [1995] in the form

ẋf = Afxf +Bfuf (6.3)
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 δ̇

ȧ

 =

 −ψ 0

0 −ψ

 δ

a

+

 ψ 0

0 ψ

 uF

uδ

 ,

where ψ represents the filter gain, uF is the new longitudinal behaviour input and uδ is

the new lateral behaviour input. Note that, this new added states have fast dynamics

and will not disturb the dynamic model (6.1).

Then, the system (6.1) is transformed into a new fifth order system with state and input

vectors as

x̃ =



v

α

ω

δ

a


, uf =

 uδ

ua

 , (6.4a)

and matrices Ã, B̃ and Ẽ as

Ã(δ, v, α) =



A11 A12 A13 B11 B12

0 A22 A23 B21 B22

0 A32 A33 0 B32

0 0 0 −ψ 0

0 0 0 0 −ψ


, (6.4b)

B̃ =



0 0

0 0

0 0

ψ 0

0 ψ


, Ẽ =



1
m

0

0

0

0


. (6.4c)

At this point, the model still presents some features that will difficult the control design

task. One of them is that the input δ = 0 has been identified as a singular point. Hence,

the third step is to avoid it and a change of variable has been applied by shifting the δ

interval

δ ∈
[
δ, δ
]
→ σ ∈

[
δ − ε, δ + ε

]
, (6.5)

converting σ into the new scheduling variable and being ε a constant value greater than

δ.
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In addition to all these arrangements, it was found that the angular velocity channel

lacks integral action, thus leading to a steady state error. Then, the final step consists in

adding such an integral action through the controller. Then, a new state (ip) has been

added as the integral of the state ω

i̇p = −ω . (6.6)

Therefore, starting from (6.4), taking into account these considerations and denoting the

scheduling variables as σ, v, α ∈ R, the vehicle dynamic LPV model can be expressed as

follows

ẋD = AD(σ, v, α)xD +BDuf + EDFfr , (6.7a)

with state and input vectors

xD =



v

α

ω

σ

a

ip


, uf =

 uδ

ua

 , (6.7b)

and matrices AD, BD and ED as

AD(σ, v, α) =



A11 A12 A13 B11 B12 0

0 A22 A23 B21 B22 0

0 A32 A33 0 B32 0

0 0 0 −ψ 0 0

0 0 0 0 −ψ 0

0 0 −1 0 0 0


, (6.7c)

BD =



0 0

0 0

0 0

ψ 0

0 ψ

0 0


, ED =



−1
m

0

0

0

0

0


. (6.7d)
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The model (6.7) will be used for designing the dynamic state feedback control. Hereafter,

in order to simplify the notation, the scheduling variables dependency of state space

matrices is omitted.

6.3 LPV-UIO Design

Owing to the lack of available sensors for measuring all states, i.e. there is no one

that measures the slip angle, the design of a state estimator has been considered in

this section (see Figure 6.1). The LPV-UIO tackles the problem of estimating both

the dynamic states and the friction force affecting the vehicle. Such an estimator has

been designed following an optimal approach exploiting the duality between the LQR

and Kalman filter approaches. In a recent work [Pletschen, Nils, and Klaus J. Diepold.,

2017], Pletschen and Diepold present a TS Kalman filter strategy with a decoupled

stability and performance methodology. Unlike that approach, this chapter presents an

LPV Kalman filter with both, stability and performance criteria integrated in a single

design procedure.

6.3.1 System description

The proposed UIO estimation scheme is developed for LPV systems affected by exter-

nal disturbances. The measurement model for the dynamical one presented in (6.1)

considering the available sensors leads to consider the following output matrix

C =

 1 0 0

0 0 1

 , (6.8)

due to the lack of measuring of dynamic states as the slip angle and the estimated vector

state is denoted as

x̂DO =


v̂

α̂

ω̂

 . (6.9)

The proposed disturbance estimation is based on the UIO approach. Such a procedure

is based on computing the difference between the real system and the model used for
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observation

CEFfr = ẏ − C
(
Ax̂DO +Bu

)
. (6.10)

Thus, considering Γ = (CE)+, the friction force disturbance can be obtained as

Ffr = Γ
(
ẏ − C

(
Ax̂DO +Bu

))
. (6.11)

And consequently, decoupling the considered disturbance, the system (6.1) can be rewrit-

ten as follows

˙̂xDO = Aox̂DO +Bou− EΓẏ , (6.12)

where

Ao = (I − EΓC)A

Bo = (I − EΓC)B .

Then, the state estimation will depend on the observer gain L and presents the form

˙̂xDO =
(
Ao − LC

)
x̂DO +Bou− EΓẏ + Ly . (6.13)

6.3.2 Description of the design method

To design the observer gain L in (6.13), the polytopic approximation of system (6.1) is

used obtaining

A(ζ) =
N∑
i=1

µi(ζ)Ai , (6.14)

where Ai are the dynamic matrics at the vertexes of the defined polytope, N is the

number of polytopic vertices, ζ is the vector containing the scheduling variables and the

vertex membership function µi(ζ) is given by

µi(ζ) =

nζ∏
j=1

ξij(η
j
0, η

j
1) , ∀i = 1, ..., N , (6.15)

ηj0 =
ζj − ζj(t)
ζj − ζj

ηj1 = 1− ηj0 ,

(6.16)
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where each variable ζj is known and varies in a defined interval ζj ∈
[
ζj , ζj

]
∈ R, nζ is the

number of scheduling variables and ξij(·) corresponds with the function that performs

the N possible combinations. In addition, next conditions must be satisfied

N∑
i=1

µi(ζ) = 1, µi(ζ) ≥ 0, ∀ζ ∈ Θ . (6.17)

Then, the observer gain is given by

L(ζ) =
N∑
i=1

µi(ζ)Li , (6.18)

where Li are obtained using the following proposition that provides an optimal design

based on the Riccati equations of the Kalman filter.

Proposition 6.2. Let the observer tuning parameters Q = QT ≥ 0, R = RT > 0, the

optimal performance bound γ > 0, the decay rate λ > 0, the output matrix C in (7.10)

and the matrices Ai in (6.14). Then, the polytopic observer gains in (6.18) are obtained

by finding Y and Wi satisfying the following LMIs


Y Ai +ATi Y −WiC − CTW T

i + Y 2λ Y (Q
1
2 )T Wi

Q
1
2Y −I 0

W T
i 0 −R−1

 < 0 ,

 γI I

I Y

 > 0 , ∀i = 1, ..., N ,

(6.19)

considering Y = Y T > 0 and applying the transformation Li = Y −1Wi.

Proof. Considering the Kalman filter Ricatti equation for every vertex of the polytopic

model (6.14), the following inequality is obtained

Ṗ = (Ai − LiC)P + P (Ai − LiC)T +Q+ LiRL
T
i < 0 ,

where Q ∈ Rs×s, R ∈ Rn×n, P ∈ Rs×s and Li ∈ Rs×n. At this point, we introduce an

extra performance term, i.e. the decay rate (λ), for ensuring a fast dynamic response of

the observer

(Ai − LiC)P + P (Ai − LiC)T + 2λP +Q+ LiRL
T
i < 0.
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Then, by multiplying first each term of the last inequality by Y = P−1 from the left-hand

and the right-hand sides and then by introducing Wi = Y Li, the following inequality is

obtained

Y Ai −WiC +ATi − CTW T
i + Y 2λ+ Y QY +WiRW

T
i < 0.

From here, we reformulate the inequality in order to use the Schur complement

Y Ai +ATi Y −WiC − CTW T
i + Y 2λ

−
[
Y (Q

1
2 )T Wi

] −I 0

0 −R

 Q
1
2Y

W T
i

 < 0.

Applying such a complement to this inequality, the first LMI of (6.19) is obtained. The

second LMI starts from bounding the Lyapunov matrix

P < γI.

Applying first the change of variable Y = P−1 and then the Schur complement

γI − IY −1I > 0,

 γI I

I Y

 > 0 ,

where the condition P > 0 is included.

Note that the problem has solution if and only if there exist Y ∈ Rs and Wi ∈ Rs×p,

being s the number of states and p the number of measurable states. Matrices Q and R

represent the process noise covariance and the sensor noise covariance, respectively.

Remark 6.3. Note that, unlike the control design problem where the stability criteria

does depend on the input matrix (B), the observer design process by duality depends on

the output matrix (C) and not on the input matrix. That is why it is not necessary to

increase the state-space model as presented in (6.2.1) for the design of observers.
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6.3.3 Dynamic LPV-UIO design

The dynamic LPV-UIO addresses the problem of estimating the dynamic state vector

in (6.9) as well as estimating the friction force acting over the vehicle. At this point,

the LPV model developed in (6.1) is used for solving the Proposition 1 using the output

matrix (7.10). The scheduling variables, i.e. σ, v and α, are bounded in the following

intervals

σ ∈ [0.087, 0.96]rad and v ∈ [1, 18]
m

s

α ∈ [−0.1, 0.1] rad .

The proposed design matrices and parameters are: R = 0.01I2×2, Q = 0.01I3×3, γ = 0.1

and λ = 12. The solution of such a Proposition 6.2 returns the polytopic observer gains

(see Table 6.2). Then, at every time step, the interpolated observer gain is obtained by

means of (6.18).

Table 6.2: Dynamic controllers Li for each one of the vertices of the polytope

L1 = 103

 0.4183 −0.0000
0.0000 6.7870
−0.0000 0.9276

 , L2 = 103

 0.4183 −0.0000
−0.0000 6.7660
−0.0000 0.9257



L3 = 103

 0.4183 −0.0000
−0.0000 7.4632
−0.0000 0.9985

 , L4 = 103

 0.4183 −0.0000
−0.0000 7.2325
−0.0000 0.9765



L5 = 103

 0.4183 −0.0000
−0.0000 6.8785
−0.0000 1.1487

 , L6 = 103

 0.4183 −0.0000
−0.0000 6.8547
−0.0000 1.1467



L7 = 103

 0.4183 −0.0000
−0.0000 6.6182
−0.0000 0.7658

 , L8 = 104

 0.0418 −0.0000
−0.0000 1.1831
−0.0000 0.1677
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6.4 Control Design using LPV Approach

The automatic control strategy addresses the problem of generating an appropriate ve-

hicle behaviour from a desired reference. In this work, two cascade state feedback LPV

controllers are proposed for controlling appropriately the behaviour of the vehicle (see

Figure 6.1). Furthermore, a trajectory planner [Bianco, CG Lo, Aurelio Piazzi, and

Figure 6.1: Complete autonomous driving control scheme with two LPV controllers
and a LPV-UIO with friction force compensator. Note that both KD and KC have the

negative sign embedded

Massimo Romano., 2004] is used being in charge of providing the correspondent position

and velocities references to the kinematic controller.

In this approach, a cascade methodology is employed where the internal and fast loop

corresponds to the dynamic control and the external one to the kinematic control. On

one hand, the kinematic control (KC in Figure 6.1) is in charge of computing smooth

control actions (linear and angular velocities) such that the vehicle is capable of achieving

the required speed, position and orientation at the next local way-point. On the other

hand, the dynamic control strategy (KD in Figure 6.1) allows the vehicle to follow the

angular and linear velocity references provided by the kinematic control loop. To this

aim, the dynamic control generates forces to the rear wheels and a steering angle signal

for the front wheels.
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6.4.1 Description of the design method

Note that the design overview has been developed for the case of the dynamic model in

(6.7). Furthermore, the same procedure is used for designing the kinematic controller by

just considering the kinematic model in (4.2).

To design the controller KD, the polytopic approach of the system in (6.7) is used in the

same way it was presented in (6.14). Then, using (6.15) and (6.16), the controller gain

is obtained by means of

KD(ζ) =
N∑
i=1

µi(ζ)KDi , (6.20)

where KDi are obtained using the following proposition which presents a LMI based

formulation for solving the LPV-LQR problem.

Proposition 6.4. Given the LQR parameters Q = QT ≥ 0, R = RT > 0, the optimal

performance bound γ > 0, the decay rate η > 0 and the matrices ADi obtained using

(6.14). Then, the polytopic control gains in (6.20) are obtained by finding P and Wi

satisfying the following LMIs

ADiP + PADi − (BDWi)
T −BDWi + 2ηP < 0 W T

i RWi P (Q
1
2 )T

P (−Q
1
2 )−1

 < 0 , ∀i = 1, ..., N

0 < P < γ

, (6.21)

and applying the transformation KDi = WiP
−1.

Proof. Considering the LQR Riccati equation for every vertex of the polytopic model

(6.7), the following inequality is obtained

(Ai −BDKDi)
TP + P (Ai −BDKDi) +Q+KT

DiRKDi < 0 .

At this point, we split the last inequality in two new ones. The first resultant is the pure

Lyapunov stability term

(ADi −BDKDi)
TP + P (ADi −BDKDi) < 0 ,
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where, to ensure a fast dynamic response of the controller, a decay rate term (η) has

been added obtaining

(ADi −BDKDi)
TP + P (ADi −BDKDi) + 2ηP < 0

and applying KDi = WiP
−1 we obtain the following LMI

ADiP + PADi − (BDWi)
T −BDWi + 2ηP < 0 .

The second LMI establishes the LQR performance. Then, multiplying by the left and

right the second part of the Riccati equation we achieve

P (Q
1
2 )TQ

1
2P + PKT

DiRKDiP < 0

and applying the change KDi = WiP
−1 it is converted to

P (Q
1
2 )TQ

1
2P +W T

i RWi < 0 .

At this point, by rearranging the elements we obtain

W T
i RWi − P (Q

1
2 )T (−Q

1
2 )P < 0

and using the Schur complement, the resulting LMI is as follows

 W T
i RWi P (Q

1
2 )T

P (−Q
1
2 )−1

 < 0 .

Note that the problem has solution if and only if there exist P ∈ Rs×s, H ∈ Rn×n and

Wi ∈ Rn×s, being n the number of control actions and s the number of states. Observe

also that decreasing the parameter γ increases the performance of the control loop. Next

subsections provide details of the particular control design for the dynamic and kinematic

vehicle controllers.
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Remark 6.5. Assuming that in the first LMI of (6.21) the matrix BD was dependent on

varying parameters, i.e. BD(ζ), this would result in

BD(ζ)W (ζ) =

N∑
i=1

µi(ζ)

N∑
j=1

µj(ζ)BDiWi . (6.22)

This entails the resolution of a much more complex and large problem due to the double

polytopic sum. But, it also implies a more conservative degree since the controller of

each vertex of the polytope has to be robust against all possible values of BD(ζ).

6.4.2 Dynamic LPV control design

The dynamic control addresses the tracking of the linear and angular velocity references

of the vehicle by applying force to the wheels and an angle to the front wheels.

At this point, the augmented LPV model previously developed (6.7) is used for solving

the Proposition 2. The chosen scheduling variables are σ, v and α which are bounded in

the same intervals than the ones presented in Section 6.3.3.

The proposed design matrices Q and R are presented in Table 6.5. Parameters γ and η

are set as 0.001 and 3, respectively. The solution of Proposition 6.4 returns the polytopic

control gains KDi . Then, the controller obtained at each control iteration follows the

rule presented in (6.20).

The proposed control scheme for this dynamic loop is a state feedback plus feedforward

control. The function of feedforward matrix is to make the gain of the system unitary.

Such a matrix is computed following the next expression

Nff =

[
C̃
(
−B̃K − Ã

)−1
B̃

]−1

, (6.23)

where matrices Ã and B̃ are the ones presented in (6.4), K is a sub-block of KD in which

the last column has been omitted as it is proposed in Franklin, Gene F., J. David Powell,

and Michael L. Workman. [1998]. Matrix C̃ is of the form

C̃ =

 1 0 0 0 0

0 0 1 0 0

 . (6.24)
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Therefore, the complete control law is expressed as

uf = KD

[
x̂DO σ a ip

]T
+NffrD , (6.25)

where the state vector is the one presented in (6.7b) although with the estimated dynamic

states shown in (6.9), rD represents the reference vector which corresponds with the

kinematic control signal uC and uf is the control input to the Apkarian filter added

(6.3).

At this point, the dynamic control action uDF (see Figure 6.1) is computed as the sum of

the Apkarian filter result (xf ) and the vector generated by the friction force compensator

in (6.11)

uDF =

 δ

a

+
1

m

 0

Ffr

 . (6.26)

It is interesting to note that, the dynamic model is singular at longitudinal velocity

equal to zero (see Section 3.3). As seen in previous sections, linear speed is a scheduling

variable and that is why it moves in a defined range. However, the membership of zero

and consequently values close to zero to this interval, e.g. v ∈ [0, 1], may be a problem in

the control design causing the obtaining of very large gain controllers in such an interval.

The solution involves translating the problematic variable, in this case the linear speed,

so as to avoid operating in a range close to zero. Thus, this means that when computing

the controller at v = 0, we are actually computing the controller at v = 1 and using it as

we were in v = 0. In this way we solve a problem that otherwise it should be addressed

with hybrid control techniques.

6.4.3 Kinematic LPV control design

Kinematic control is in charge of controlling the position and orientation by means of

actuating over the linear and angular velocities of the vehicle.

At this moment, the kinematic LPV model (4.2) is employed for solving the Proposition

6.4. Three scheduling variables (vd, ω and θe) are bounded in the following intervals

vd ∈ [1, 18]
m

s
, ω ∈ [−1.417, 1.417]

rad

s
, θe ∈ [−0.14, 0.14]rad .
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Table 6.3: Dynamic controllers Ki for each one of the vertexes i of the polytope

K1 = 104

[
−0.7845 −0.1760 −0.0802 −0.0002 0.0027 −0.3280
0.0000 0.1073 −0.2441 0.0000 −0.0107 0.5575

]

K2 = 104

[
−0.6129 −0.7835 −0.2095 −0.0000 0.0010 −1.3048
0.0003 0.1559 −0.2622 0.0000 −0.0111 0.6480

]

K3 = 104

[
−1.7823 −0.1366 −0.1164 0.0001 0.0046 −0.3888
0.0003 0.0988 −0.2684 0.0000 −0.0111 0.5564

]

K4 = 104

[
−0.6104 −0.4180 −0.2686 −0.0000 0.0044 −3.1728
0.0002 0.1591 −0.2621 0.0000 −0.0111 0.6489

]

K5 = 104

[
−0.6104 −0.4180 −0.2686 −0.0000 0.0044 −3.1728
0.0002 0.1591 −0.2621 0.0000 −0.0111 0.6489

]

K6 = 104

[
−0.6104 −0.4180 −0.2686 −0.0000 0.0044 −3.1728
0.0002 0.1591 −0.2621 0.0000 −0.0111 0.6489

]

K7 = 104

[
−0.6104 −0.4180 −0.2686 −0.0000 0.0044 −3.1728
0.0002 0.1591 −0.2621 0.0000 −0.0111 0.6489

]

K8 = 104

[
−0.6104 −0.4180 −0.2686 −0.0000 0.0044 −3.1728
0.0002 0.1591 −0.2621 0.0000 −0.0111 0.6489

]

The control design matrices Q and R are presented in Table 6.5 and parameter γ is set

as 0.01. Proposition 6.4 returns for this kinematic case the control matrices KCi for each

one of the polytopic vertexes. Then, the controller obtained at each control iteration

(KC) follows the rule presented in (6.20).

It is important to remark that, in this kinematic case, the Proposition 6.4 has a different

configuration with respect to the dynamic case. The first inequality of (6.21) is negative

and an additional LMI has been added to the Proposition 6.4

ADiP + PADi − (BDWi)
T −BDWi + 2βP < 0. (6.27)
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Being β = 0, the LMI establishes a threshold for ensuring only stability. Thus, in order to

increase the kinematic loop performance β can be increasing while being always positive.

Here, it has been set to 0.1. The following state feedback control law has been used for

controlling the kinematic behaviour loop

uC = KCxC + rC , (6.28)

where xC and rC are the kinematic state and position reference vectors, respectively,

presented in (4.3). Such a reference is provided by a trajectory planner (see Figure 6.1).

Table 6.4: Kinematic controllers Ki for each one of the vertexes i of the polytope

K1 =

[
0.7099 0.5078 −0.0238
0.1899 0.3083 1.5405

]
, K2 =

[
0.7099 0.5078 −0.0238
0.1899 0.3083 1.5405

]

K3 =

[
0.7373 0.2156 0.0158
0.1792 2.0131 4.0841

]
, K4 =

[
0.7373 0.2156 0.0158
0.1792 2.0131 4.0841

]

K5 =

[
0.7099 −0.5078 0.0238
−0.1899 0.3083 1.5405

]
, K6 =

[
0.7099 −0.5078 0.0238
−0.1899 0.3083 1.5405

]

K7 =

[
0.7373 −0.2156 −0.0158
−0.1792 2.0131 4.0841

]
, K8 =

[
0.7373 −0.2156 −0.0158
−0.1792 2.0131 4.0841

]

6.5 Simulation Results

The simulation scenario (see Figure 6.2) chosen for testing the automatic control strategy

tries to cover different driving situations as acceleration stages and velocity reduction on

curves as well as driving on different road conditions, as e.g. asphalt or ice.

To deal with this changing road conditions, the friction force compensation mechanism

is used and compared its result with the case of unknown friction.

Considering this information (circuit shape and varying velocity), a trajectory planner

is in charge on generating a feasible trajectory by means of using a polynomial curve

generation method [Bianco, CG Lo, Aurelio Piazzi, and Massimo Romano., 2004]. This
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Figure 6.2: Proposed circuit for simulation and the result of solving the mixed control
problem

method consists on computing continuous and differentiable curves (velocities and accel-

erations) under an overall constrained vehicle acceleration. Thus, in an offline mode, this

planner algorithm generates the linear and angular velocity references as well as desired

positions and orientations for the outer control loop (i.e. the kinematic control).

The adjustment of the LPV-LQR parameters (Q, R and γ) is made by means of using

the root mean square error (RMSE) approach. This measure allows to find suitable

control parameters by minimizing it. Linear velocity, angular velocity and lateral error

are chosen by an exhaustive search. Moreover, η and β have been selected with the aim

of increasing the performance of the closed loop system. Table 6.5 shows some RMSE

results for different control adjustments and the one considered in the simulations (bold

row). Note that the observer adjustment was presented in Section 6.3.3.

Table 6.5: RMSE obtained for three different configurations of the LQR controllers.
The values of Q and R represent the diagonal values of each matrix

RMSE Kinematic control design Dynamic control design
V ω Y Q R Q R

0.121 0.035 0.0177 [1, 1, 1] [0.004, 0.0001] [0.01, 0.01, 0.01, 0.01, 10, 3000] [0.005, 0.6]
0.124 0.031 0.0196 [3, 5, 15] [0.04, 0.01] [0.01, 0.01, 0.01, 0.01, 100, 30000] [0.005, 0.6]
0.076 0.0127 0.0213 [10, 3, 15] [0.4, 0.001] [0.01, 0.01, 0.01, 0.01, 1000, 90000] [0.005, 0.6]
0.045 0.0077 0.05 [3,2,20] [0.5,0.001] [0.01,0.01,0.01,0.01,100000,90000] [0.01,10]
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In the tuning process, we have observed that the vehicle lateral behaviour implies a more

complex control situation due to the changing reference. Hence, for the dynamic control

case, the weight in Q corresponding to the dynamic integral state has been set much

larger than the rest. The same occurs in matrix R.

The sample times used in both control loops are 0.1 and 0.01 s for kinematic and dynamic

loops, respectively. The control strategy jointly with the trajectory planner are tested

in MATLAB environment. Figures 6.2-6.5 show the vehicle results with known and

unknown friction disturbance in the simulated circuit. Figure 6.6(a) depicts the applied

disturbance profile, i.e. friction force profile depending on the type of road (asphalt and

ice). Finally, Figure 6.6(b) represents the location of the closed loop poles of kinematic

and dynamic controllers, and the thresholds for the decay rate (η and β) used in their

design.

Figure 6.2 depicts the trajectory proposed and the result of both known and unknown

disturbance scenarios. Figure 6.3(a) shows the velocity response and that the friction

force compensation mechanism works. In the case of unknown friction force, the con-

troller is able to reject the disturbance. However, the estimation of the friction force by

means of the UIO allow us to implement a compensation mechanism that makes the con-

troller to reject the disturbance faster than in the case such estimation is not available.

Figure 6.3(b) depicts how the angular velocity performance is higher than the linear

velocity one with respect to the reference. In addition, it can be appreciated how the

compensation mechanism corrects also faster than in the case of unknown disturbance.

Even so, the angular response presents some overshoot behaviour at some time instants.

The controller adjustment may be one of the reasons, but the main reason is the high

abruptness of the angular velocity reference at the end of the curves producing a rough

behaviour on the vehicle.

Figure 6.4 presents position errors for both cases. It can be seen the better performance

when the disturbance is compensated. The mitigation of these errors is crucial for achiev-

ing a good autonomous guidance. However, a near zero lateral error is more important

since it ensures the driving of the vehicle through the center of the road. In our results,

longitudinal error is no longer than 0.5 m in normal driving (i.e. neither accelerating

nor braking). Lateral error remains in the scale of few decimeters being increased when

both velocities (angular and linear) increase. In addition to this graphical comparison,
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a quantitative one in terms of the RMSE has been performed (see Table 6.6). Such a

results verify the improvement of using the friction force compensation mechanism.

Figure 6.5 shows the resulting control actions. The compensation mechanism allows to

reduce the control effort being the action also smoother than in the unknown friction

case. Note also that the steering angle signal in the first part of the simulation is quite

abrupt. This behaviour is due to longitudinal and angular behaviours are highly coupled

and the starting stage deals with high linear accelerations.

Table 6.6: Comparison of both approaches using a quadratic measure and the
maximum error values in meters

Approach RMSEv RMSEω RMSEy xemax yemax
unknown 0.3834 0.0043 0.0204 1.2815 1.1055
estimated 0.2337 0.0041 0.0201 0.082 0.067

Figure 6.6(a) shows the real friction force considered along the circuit simulated and the

estimated force.

Figure 6.6(b) illustrates the closed poles for the kinematic and dynamic loops at a given

operating point. It can be observed that the poles of both loops satisfy the constraints

imposed by the corresponding decay rates η and β (see (6.21) and (6.27)). The satisfac-

tion of this condition allows to design both loops separately, since the dynamic control

presents a faster dynamic behaviour than the kinematic one.

6.6 Conclusions

A gain-scheduling LPV-LQR control scheme has been introduced for solving the mixed

control problem. To this aim, two models, i.e. kinematic and dynamic, have been

expressed in the polytopic LPV form and an approach based on cascade design of the

kinematic and dynamic controllers has been adopted with the aim of increasing the

performance of the system. This is achieved by forcing the inner closed loop dynamics

to behave faster than the outer closed-loop one. Moreover, a novel LPV-UIO design

following the control-observer duality has been presented. This dynamic estimator solves

the problem of the lack of measurability in the case of the slip angle by estimating all

the dynamic states as well as the friction force affecting the vehicle. Then, a friction

force compensation mechanism is presented allowing the vehicle to compensate faster
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Figure 6.3: Velocities of the vehicle: a) Linear velocity reference and response. b)
Desired and simulated angular velocities
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Figure 6.4: Resulting position errors: a) Vehicle longitudinal error along the circuit,
b) Vehicle lateral error
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Figure 6.5: Resulting control actions: (a) Rear wheels acceleration vector, (b) Steer-
ing angle at the front wheels
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Figure 6.6: Disturbance profile and system poles location: a) Real and estimated
disturbances. b) Pole locus of the system in a particular operating point (v = 8.33ms ,
ω = 0.05 rads and α = 0.013rad ). Blue marks are the three slower poles of the dynamic
loop and the red ones are the kinematic poles. Vertical dashed lines represent the

hyper-planes η = 3 and β = 0.1
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the disturbances caused by changes in the friction force as well as reducing the control

effort.

Two novel LMI-based optimal designs for LPV observer and controller have been in-

troduced. They also present new integrated constraints for ensuring a certain level of

control and observation performance.

The obtained gain scheduling LPV-LQR control approach, jointly with the UIO and a

trajectory planning module, has presented suitable results in a simulated scenario. In

the same way, a comparison is shown about the friction force estimation, which shows

the usefulness of this approach.



Chapter 7

Autonomous racing using TS-MPC

including a TS-MHE-UIO estimator

The content of this chapter is based on the following work:

• [Alcalá, Eugenio, Puig, Vicenç and Quevedo, Joseba., 2019.A].

Alcalá, E., Cayuela, V. P., & Casin, J. Q. (2019). TS-MPC for Autonomous

Vehicles including a TS-MHE-UIO estimator. IEEE Transactions on Vehicular

Technology.

7.1 Introduction

This chapter presents the concept of autonomous racing and, consequently, a control

scheme capable of solving the problem of autonomous driving in such a scenario. As

presented in the state of the art (Section 2), there is a few number of approaches that

address the problem of control for racing vehicles. However, some peculiarities such as the

use of an uncoupled control structure motivate the research for another complementary

solution. This motivation lies in the ability to solve two optimization problems (kinematic

control and dynamic observer) at a low computational cost using TS-based models and

allowing real-time calculation on embedded platforms.

The contribution of this chapter is two-fold and focuses on the use of TS polytopic models

for the design of the control and observation layers. First, the MPC technique is designed

99
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using a TS kinematic representation that leads to a quadratic problem. In addition, the

introduction of the terminal set concept allows guaranteeing system asymptotic stability.

Second, the Moving Horizon Estimator (MHE) strategy is merged with the use of a

dynamic vehicle model formulated as TS as well as with the UIO concept, thus allowing

the estimation of states and disturbances through a very fast predictive optimization

(TS-MHE-UIO).

7.2 Overview of the proposed solution

We consider the problem of autonomous guidance of a vehicle in a racing scenario. To

do so, two important tasks have to be carried out: the trajectory planning and the

automatic control.

On one hand, the planning of the trajectory to be followed by the vehicle has to fulfill

a set of racing specifications as well as certain characteristics such as continuous and

differentiable velocity profiles. Thus, this module is in charge of providing discrete and

smooth racing references to the automatic control stage. This racing-oriented trajectory

planner will be presented in Chapter 10. On the other hand, the automatic control is in

charge of following the planned references, thus, moving the vehicle between two ground

coordinates as well as generating smooth control actions for achieving a comfortable

journey. In Figure 7.1, we show the planning-control-estimation diagram proposed in

this work. Observe that two control levels have been designed, one for the position

Figure 7.1: Autonomous guidance diagram with kinematic and dynamic control layers
and a dynamic state estimator with friction force compensator

control and the other one to control the dynamic behaviour of the vehicle, i.e. linear and

angular velocities. In addition, the lack of measurement of certain vehicle states as well
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as the lack of knowledge of external disturbances can generate a problem when applying

the designed control. Thus, a dynamic estimator is introduced to solve this problem (see

Figure 7.1).

The level of difficulty of the control problem applied to vehicle guidance when using

model-based techniques is often determined by two aspects: the behaviour to be con-

trolled (lateral, longitudinal or mixed) and the complexity of the model used for control

design (several options from the simplest kinematic representation to the most elabo-

rated dynamic, through its linear or non-linear formulation). In the following, one of the

most complex configuration, the mixed non-linear dynamic problem, is covered.

7.3 TS control-oriented modeling

The use of a cascade control scheme implies two model-based control techniques that

consequently, implies two dynamics representation. Hence, two control layers are studied

in this chapter. In the outer layer, the kinematic behaviour is governed (see Section

3.2). This is based on the velocity vector movement in order to compute longitudinal

and lateral velocities referenced to a global inertial frame. On the other hand, in the

inner layer the dynamic behaviour is controlled (see Section 3.3), where the motion is

generated by applying an acceleration vector on the driven wheels and mass, inertial and

tire parameters are considered.

Both kinematic and dynamic TS models employed in this chapter have been presented

in Chapter 4. With regard to the kinematic model, the reference-based formulation (4.2)

has been adopted for this control scheme using the polytopic formulation

ẋc = Ac(ζc)xc +Bcuc −Bcrc , (7.1)

where its vector of scheduling variables is defined as: ζc := [ω, vd, θe] and the scheduling

variables are bounded in

ω ∈ [−3, 3]
rad

s
, vd ∈ [0.1, 3.5]

m

s
,

θe ∈ [−0.15, 0.15] rad .
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Note that these interval limits define the polytopic region (Θ) of the TS kinematic model.

Regarding the dynamic model, the continuous Cartesian frame (4.9) has been chosen

given by

ẋd = Ad(ζd)xd +Bdud + EdFfr , (7.2)

where its vector of scheduling variables is defined as: ζd := [δ, vx, vy] and the scheduling

variables are bounded in

δ ∈ [−0.35, 0.35] rad , vx ∈ [0.1, 3.5]
m

s
,

vy ∈ [−2, 2]
m

s
.

In the same way than in previous chapter, an unknown friction force disturbance acting

on the vehicle Ffr has been considered and its input matrix Ed already presented in

Chapter 6. Notice that c and d subindexes denote kinematic and dynamic belonging,

respectively.

7.4 Control Design

In this section, we present the control scheme proposed in this chapter as well as its

design. The control strategy of the vehicle has been divided into two nested layers, see

Figure 7.1. The outermost layer controls the vehicle’s kinematics, i.e. its position and

orientation, and works at a frequency of 20 Hz. On the other hand, the internal loop

controls the dynamic behavior of the vehicle, i.e. its speeds, at a frequency of 200 Hz.

In the following, both control loops are described separately.

7.4.1 Kinematic TS-MPC Design

At this point, we present the formulation of the TS-MPC strategy, which focuses on

solving position and orientation control of the vehicle. This strategy is based on the res-

olution of a QP optimization problem by using the non-linear reference.based kinematic

model in its TS polytopic representation. However, there exist the problem associated

with the lack of knowledge of the matrix of scheduling variables through the entire pre-

diction horizon. In Cisneros, Pablo SG, Sophia Voss, and Herbert Werner. [2016], the use

of the optimized state sequence which is obtained after each optimization is proposed.
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In this work, the scheduling variables are states of the system whose desired values are

known since the trajectory planner generates them. That is why we propose the use of

such references as known scheduling variables for the entire optimization horizon (Hp)

allowing to compute the sequence of varying parameters ζ := [ζ1, ..., ζHp ]. In this way, we

can calculate the evolution of the model more accurately and in anticipation. In addition,

since the basic MPC formulation cannot guarantee the overall stability of the system,

we propose the addition of a terminal constraint and a terminal cost to the optimization

problem.

To formulate the problem, the continuous-time polytopic TS system presented in (4.2)

has been considered. The system discretization is made online by using Euler approach

with a sampling time (Ts) of 50 ms. Notice that in order to avoid a difficult reading,

the sub-index c is omitted in the rest of the subsection. Then, the focus is on a MPC

scheme where the cost function is defined as

Jk =

Hp−1∑
i=0

(
xTk+iQxk+i + ∆uk+iR∆uk+i

)
+ xTk+HpPxk+Hp , (7.3)

where Q = QT ∈ Rs×s ≥ 0, R = RT ∈ Rn×n > 0 and P = P T ∈ Rs×s > 0 represent

the states, inputs and terminal states weights, respectively. At each discrete time k the

values of xk and uk−1 are known and the following optimization problem can be solved

minimize
∆Uk

Jk(∆Uk, Xk)

subject to

xk+i+1 = xk+i +

(
N∑
j=1

µj(ζk+i)Ajxk+i +Buk+i −Brk+i

)
Ts

uk+i = uk+i−1 + ∆uk+i , ∀i = 0, ...,Hp − 1

∆Uk ∈ ∆Π

Uk ∈ Π

xk+Hp ∈ χf ,

(7.4)
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where

∆Uk =


∆uk

∆uk+1

...

∆uk+Hp−1

 ∈ RHp×n , Uk =


uk

uk+1

...

uk+Hp−1

 ∈ RHp×n , (7.5)

being n the number of inputs of the kinematic system. Π and ∆Π are the constraint

sets for the inputs and their derivatives, respectively. Note that system matrices Aj

and B are in discrete time. The set χf represents the terminal state domain. Then,

by introducing both P and χf we force the states to converge into a stable region and

then, to ensure the MPC stability. The computation of these terminal cost and set are

computed by solving two offline LMI-based problems.

First, the controller for each polytopic system (Ai) is found by solving the following

LQR-LMI for discrete-time systems


Y (AiY +BWi)

T Y W T
i

AiY +BWi Y 0 0

Y 0 Q−1
TS 0

Wi 0 0 R−1
TS

 ≥ 0

∀i = 1, ..., N ,

(7.6)

with Y = Y T ∈ Rs×s > 0, QTS = QTTS ∈ Rs×s ≥ 0, RTS = RTTS ∈ Rn×n > 0. This

problem returns the matrices Y and Wi. Then, the resulting controllers are obtained by

Ki = WiY
−1 ∈ Rn×s. Note that the terminal cost matrix P in (7.3) is found to be equal

to Y −1. This LQR design is a particular formulation for the one presented in Theorem

25 of Tanaka, Kazuo, and Hua O. Wang. [2004].

The second problem consists on finding the largest terminal domain χf as a positive

invariant set. To accomplish this, the following constrained optimization problem using
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the previously obtained controllers Ki is solved

maximize
Z

det(Z)

subject to  −Z Z(Ai +BKi)
T

(Ai +BKi)Z −Z

 < 0

KiZK
T
i − u2 < 0 , ∀i = 1, ..., N .

(7.7)

The resulting variable is Z ∈ Rs×s. Hence, we compute the largest terminal set as

the ellipsoid χf = {x|xTSx ≤ 1}, with S = Z−1. Note that this problem is totally

constrained by the maximum values of the control actions.

7.4.2 Dynamic TS-LQR Design

The gain-scheduling technique is used for controlling the dynamic behaviour of the vehicle

in the inner loop. As made with the reference-based kinematic model, the polytopic

dynamic model (7.2) is also discretized using Euler approach but using a Ts of 5 ms. Then,

we solve offline the discrete-time LQR-LMI problem (7.6) for computing the polytope

vertex controllers Ki. Finally, at every dynamic time step Ts, the dynamic controller

gain is computed online using the interpolation rule presented in (6.15) - (6.16)

K(ζ) =
N∑
i=1

µi(ζ)Ki . (7.8)

The offline computation of polytopic controllers allows this control strategy to work at

the desired frequency of 200 Hz.

7.5 TS-MHE-UIO Design

On one hand, the aim of the MHE is to predict the dynamic states for the next iter-

ation by means of running a constrained optimization and using a set of past allowed

measurements. Currently, it is usual to have experimental vehicles with different kind of

sensors mounted on it that allows the measurement of almost every dynamic variable of
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the vehicle. However, most of the cheap versions of sensors are noisy and need of a post

processing. Then, it is at this point where the state estimator gains interest.

The UIO approach deals with the estimation of external disturbances. One of the most

relevant disturbances in road vehicles is the continuous change of road surface. This

is why the coefficient of friction varies producing a remarkable alteration in the total

computation of acting forces, drastically affecting the behavior of the vehicle.

In this section, we present a novel approach combining both the MHE and the UIO, to

converge to an optimal state estimator able to predict disturbances. In addition, using a

TS model formulation for computing the evolution during the established horizon allows

the algorithm to run faster than non-linear model-based MHE and guarantee asymptotic

convergence. To avoid a difficult reading, the sub-index d is omitted in system vectors

but not in systems matrices.

7.5.1 UIO

The UIO goal is to estimate the main disturbances acting over the vehicle. Such a

procedure is based on calculating the difference between the observation model and the

real system [Keller, Jean-Yves, and Mohamed Darouach., 1999]. In this chapter, we have

considered as disturbance the friction force acting on the longitudinal vehicle axis

Ffrk = Γ

(
yk − C

(
x̂k +

( N∑
i=1

µi(ζ)Adi x̂k +Bduk

)
Ts

))
, (7.9)

with

C =


1 0 0

0 1 0

0 0 1

 , x̂ =


v̂x

v̂y

ω̂

 , Γ = (CEd)
+ , (7.10)

where Adi , Bd and Ed are the system matrices in (7.2). Function (·)+ denotes the

pseudoinverse function. Then, at every control iteration and once the state estimation

has been solved, Ffr is computed.



Autonomous racing using TS-MPC including a TS-MHE-UIO estimator 107

7.5.2 TS-MHE Design

In order to design the MHE-UIO, the polytopic TS system (7.2) is used. In this chapter,

it is considered that all the dynamic states are measured being then the filtering task

the main work of the MHE.

The MHE optimization problem is based on minimizing the following cost function

Jk = (x̂k−Hp − xo)TPo(x̂k−Hp − xo) (7.11)

+
0∑

i=−Hp

(
wTk+iQwk+i + sTk+iRsk+i

)
,

where sk+i represents the error between the measured and estimated variables, and wk+i

is the state estimation error.

Therefore, at each discrete time step k, knowing the vectors

Uk =


uk−Hp

uk−Hp+1

...

uk

 ∈ RHp×n , Yk =


yk−Hp

yk−Hp+1

...

yk

 ∈ RHp×p , (7.12)

and the initial state xo, the constrained optimization problem

minimize
X̂k

Jk(X̂k)

subject to x̂k+i+1 = x̂k+i +
( N∑
j=1

µj(ζd)
(
Aoj x̂k+i +Bojuk+i

))
Ts

+ wk+i + EdΓyk+i i = −Hp, ..., 0

yk+i = Cx̂k+i + sk+i i = −Hp, ..., 0

X̂k ∈ Xd ,

(7.13)

is solved online for

X̂k =


x̂k−Hp+1

x̂k−Hp+2

...

x̂k+1

 ∈ RHp×s , (7.14)
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where Xd is the constraint region for the dynamic states, Q = QT ∈ Rs×s ≥ 0, R =

RT ∈ Rs×s > 0, Po = P To ∈ Rs×s > 0 and

Aoj = (I − EdΓC)Adj

Boj = (I − EdΓC)Bdj ,

are the unknown input matrices [Keller, Jean-Yves, and Mohamed Darouach., 1999].

Notice that the time discretization of the continuous model is made online at a Ts of 5

ms.

7.6 Simulation Result

In this section, we validate the performance of the proposed control-observer scheme in

a racing scenario through simulation in MATLAB. The considered vehicle for running

simulations is a 1/10 scale RWD electric vehicle whose dynamics are described by the

following differential equation

ẋ = vx cos θ − vy sin θ

ẏ = vx sin θ + vy cos θ

θ̇ = ω

v̇x = ar +
−Fyf sin δ − Fdf

m
+ ωvy

v̇y =
Fyf cos δ + Fyr

m
− ωvx

ω̇ =
Fyf lf cos δ − Fyrlr

I

αf = δ − tan−1

(
vy
vx
−
lfω

vx

)
αr = − tan−1

(
vy
vx

+
lrω

vx

)
Fyf = d sin (c tan−1(bαf ))

Fyr = d sin (c tan−1(bαr))

Fdf = µmg ,

(7.15)

where the parameters b, c and d define the shape of the semi-empirical Magic Formula

curve.
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The geometric and dynamic parameters used to parameterize the control-oriented and

simulation models are shown in Table 7.1.

Table 7.1: Dynamic model parameters

Parameter Value Parameter Value
lf 0.125 m lr 0.125 m
m 1.98 kg I 0.03 kg m2

Cf 68 N
rad Cr 71 N

rad
d 8.255 c 1.6
b 6.1 µ 0.85

To show the effectiveness of the estimation scheme, we perform the comparison of adding

the online estimated friction force to the TS-MPC control action (compensated in figures)

against not estimating the friction force (no compensated in figures). As it is shown in

Figure 7.1, the current estimated friction force (Ffr) is converted into acceleration to be

properly added to the control variable (a). In addition, we show the promising results of

the TS-MPC approach by performing a comparison against the non-linear MPC approach

(NL-MPC in resulting figures).

The TS-MPC uses planning data to instantiate the state space matrices at every time

step within the MPC prediction stage. Such references from the planner are obtained

by using racing-oriented trajectory planner that will be presented in Section 10.2. To

verify the real-time feasibility of the presented strategies, we perform the simulations on

a DELL inspiron 15 (Intel core i7-8550U CPU @ 1.80GHzx8).

Then, the optimal control problem (8.2) is solved at a frequency of 20 Hz using the solver

GUROBI [Optimization, Gurobi., 2014] through YALMIP [Lofberg, J., 2004] framework.

For the non-linear MPC case, the solver IPOPT is used. This solves the position control

problem in a outer loop (see Figure 7.1). In the inner loop, the dynamic state feedback

control problem (Section 7.4.2) is solved at a rate of 200 Hz to control the velocities of

the vehicle. The dynamic states used by this inner control law are provided by solving

the optimal problem (7.13).

The vehicle model, TS-MPC, TS-MHE-UIO and dynamic TS-LQR parameters are listed

in Tables 7.1, 7.2, 7.3 and 7.4, respectively.
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Table 7.2: Kinematic TS-MPC design parameters

Parameter Value Parameter Value
Q 0.99*diag(0.66 0.01 0.33) u [3.5 3]
R 0.01*diag(0.5 0.5) u [0.1 -3]
Ts 50 ms ∆u [0.3 0.3]
Hp 10 ∆u [-0.3 -0.3]
RTS diag(1 3) QTS diag(1 1.5 3)

Table 7.3: TS-MHE-UIO design parameters

Parameter Value Parameter Value
Q 0.99*diag(0.33 0.33 0.33) Hp 15
R 0.01*diag(0.5 0.5) Ts 5 ms
Po diag(2 2 2) x̂ [ 3.5 2 3]
x̂ [ 0.1 -2 -3]

Table 7.4: Dynamic TS-LQR design parameters

Parameter Value
Q 0.99*diag(0.8 0.01 0.19)
R 0.01*diag(0.5 0.5)
Ts 5 ms

Solving the problem (7.7) to determine the largest terminal set, we obtain matrix S as

S =


0.465 0 0

0 23.813 76.596

0 76.596 257.251

 . (7.16)

The comparison is made in the circuit presented in Figure 7.2.
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Figure 7.2: Simulation circuit used for testing the proposed control technique

It is intended to show a racing situation in which the vehicle goes as fast as possible.

To this aim, a reference obtained in an offline way is provided, which optimizes the

trajectory by minimizing the lap time. In this way the automatic control of the vehicle

becomes a greater challenge having to manage the behavior of the car very close to the

dynamic limits of this. In addition, the vehicle performs under the influence of friction

force disturbance. Figure 7.3) illustrates such a disturbance profile and its estimation

using the TS-MHE-UIO throughout the simulation test.
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Figure 7.3: Static friction force disturbance and its estimation

It can be observed how the observer is successfully able to estimate the changing distur-

bance. Below, in Figure 7.4, we show both, the linear and angular speed profiles provided

by the trajectory planning and the respective vehicle responses for every compared case.
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Figure 7.4: Reference and response velocities for the three cases compared

It can be appreciated a little better response in the linear velocity tracking by the NL-

MPC approach, but also, by the TS-MPC algorithm with force compensation with re-

spect to the non compensation scenario. In Figure 7.5, we illustrate the complete set

of errors, i.e. position, orientation and velocities errors. It is seen the close behaviour

between TS-MPC compensated and NL-MPC compensated.
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Figure 7.5: Time evolution of the tracking errors for each compared kinematic
control strategy

Moreover, it may be appreciated the effectiveness of the compensation mechanism helping

the controller to handle the coming external disturbances, and hence, helping to reduce

the tracking errors. The respective control actions applied to the simulation vehicle are

shown in Figure 7.6.
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Figure 7.6: Resulting control actions. Up: Linear acceleration applied over the rear
wheel axle. Down: Steering angle applied on the front wheel

It is observed a similar response throughout the test even in the no compensated case.

However, little differences in the actuation variables at high speeds may make the states

response to be different.

An interesting aspect of racing behaviour as well as a good difficulty meter of the per-

formance carried out is the slip angle on the wheels. The difference between the front

slip angle and the rear slip angle gives us information about whether the vehicle enters

the understeer or oversteer situation.
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Figure 7.7: Front and rear slip angles for the three compared cases

In Figure 7.7, it can be seen a set of large slip angles at the ending part of the simulation

as well as some difference between the front and rear slip angles (see Figure 7.7 zoom).

The frontal slip angle situation greater than the rear slip angle is known as an understeer

and is a behavior to avoid. In this case, we can appreciate this behavior due to a very

fast and extreme driving in certain curves.

From a real time feasibility point of view, an aspect to highlight when dealing with control

strategies based on optimization is the computational time spent at each optimization

procedure. In Figure 7.8, we show the elapsed time at each kinematic MPC optimization

for the TS-MPC and NL-MPC approaches. It is shown the computational time improve-

ment when using the TS-MPC strategy. Note that the non-linear optimization problem

has been solved using IPOPT solver.



Autonomous racing using TS-MPC including a TS-MHE-UIO estimator 117

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

E
la

p
s
e
d
 t
im

e
 /
 i
t.
 [

s
]

NL-MPC compensated

0 2 4 6 8 10 12 14

Time [s]

0

0.01

0.02

0.03

E
la

p
s
e
d
 t
im

e
 /
 i
t.
 [
s
]

TS-MPC compensated

Figure 7.8: Computational time when solving the kinematic MPC for both of the
compensated cases

Finally, a quantitative comparison is made using the RMSE criterion as performance

measurement. This is shown in Table 7.5.

Table 7.5: Comparison using a quadratic measure

Approach RMSEx RMSEy RMSEθ RMSEv RMSEw
TS-MPC no compensated 0.167 0.015 0.042 0.240 0.131
TS-MPC compensated 0.091 0.013 0.009 0.241 0.116
NL-MPC compensated 0.063 0.008 0.007 0.129 0.063

7.7 Conclusions

In this chapter, a cascade control scheme (kinematic and dynamic) has been presented to

solve the problem of integrated control tracking (lateral and longitudinal) for autonomous

vehicles in racing situations.
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The novel kinematic control has been designed using the MPC technique with the pre-

diction model expressed as a TS model using the non-linear embedding approach. Fur-

thermore, the proper analisys has been made to ensure feasibility and stability by means

of Lyapunov and invariant set theory. On the other hand, the discrete-time LQR-LMI

formulation using the TS-based modeling of the vehicle has been used to address the

dynamic control design.

A comparison has been made between two methods of solving the control problem:

using the NL-MPC and using the TS-MPC approach being the TS model instantiated

at each prediction step within the prediction stage using planning data. It has been

demonstrated that the TS-MPC technique presents a close performance to the non-linear

control problem but in a much faster way (between 10 and 20 times).

In addition, the TS-MHE-UIO has been introduced with the aim of estimating dynamic

states and disturbances acting on the vehicle, such as the friction force. The estima-

tion of the friction force has been used to compensate the disturbance and allow lower

control efforts. It has also been demonstrated the effectiveness of this mechanism in the

comparison performed.



Chapter 8

Autonomous racing using

LPV-MPC

The content of this chapter is based on the following works:

• [Alcalá, Eugenio, et al., 2020.A]. Alcalá, E., Puig, V., Quevedo, J. & Rosolia, U.

Autonomous Racing using Linear Parameter Varying - Model Predictive Control

(LPV-MPC). Control Engineering Practice, 95, 104270

8.1 Introduction

In this chapter, the problem of designing a more advanced control technique to solve the

autonomous racing problem is investigated. In particular, this chapter takes advantage

of the properties of polytopic LPV systems and predictive optimal control to solve a

more challenging driving problem.

The LPV-MPC approach as a novel option to solve driving control problems has been

proposed. In Jungers, Marc, Ricardo CLF Oliveira, and Pedro LD Peres. [2011], Xu,

Zuhua, et al. [2009], Besselmann, Thomas, and Manfred Morari. [2009], Besselmann,

Thomas, Johan Lofberg, and Manfred Morari. [2012], different ways of dealing with the

MPC strategy using an LPV representation are addressed.

To address the racing behaviour, a trajectory planning is computed offline to generate

the racing-based references taking into account the vehicle dynamics and adjusted to the

119
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Figure 8.1: Vehicle used for experimental tests (BARC)

testing circuit. This racing-oriented trajectory planner will be presented in Section 10.2.

The main contribution of this chapter is to merge the LPV paradigm with the MPC

technique to compute the online LPV-MPC strategy for tracking the racing trajectory

which enables real-time embedded system computation.

8.2 Testing vehicle

The Berkeley Autonomous Race Car [Gonzales, J., et al., 2016] (BARC1) is a develop-

ment platform for autonomous driving to achieve complex maneuvers. This is a 1/10

scale RWD electric remote control (RC) vehicle (see Figure 8.1) that has been modi-

fied to operate autonomously. Mechanically speaking, this has been modified with some

decks to protect the on-board electronics and sensors. This vehicle includes a basic net

of sensors for performing localization. A fusion of IMU, encoders and indoor GPS data is

made using a Kalman filter to achieve an accurate localization while testing. An Odroid

XU4 is used to run ROS framework and the control and planning algorithms. For more

details about ROS see O’Kane, Jason M. [2014].
1http://www.barc-project.com/
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Figure 8.2: Schematical view of the experimental set up

The model used in this chapter for simulating the BARC vehicle is presented in 7.15

with parameters in 7.1. Notice that vy and θ are unmeasurable variables and then the

Kalman filter algorithm is in charge of estimating them. In is this chapter, with the

aim of improving the simulation, Gaussian noise has been introduced in the measured

variables as

n(·) ∼ N(0, Co(·)) (8.1)

where Co(·) is the signal covariance (see n(·) vector in Figure 8.2).

8.3 LPV-MPC formulation

In this section, we present a novel formulation for the MPC technique using the LPV

representation of the non-linear vehicle model. When the MPC technique performs the

prediction of future vehicle states, it employs the LPV model. This imply that, at every

time instant, an instantiation of the non-linear vehicle model computed with a known

scheduling vector is required. Such a vector can be given by the trajectory planner or

by the prediction made in the previous MPC optimization.

The model used in this chapter is the CBCD-LPV representation (4.13) where the vector

of scheduling variables is ζ =
[
vx vy θe κ ye δ

]
. The use of this model allows to

formulate the MPC problem as a quadratic optimization problem that is solved at each
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time k to determine the control actions considering that the values of xk and uk−1 are

known

min
∆Uk

Jk =

Hp−1∑
i=0

(
(rk+i − xk+i)

TQ(rk+i − xk+i)

+ ∆uk+iR∆uk+i

)
+ xTk+HpQxk+Hp

s.t.

xk+i+1 = xk+i +
(
A(ζk+i)xk+i +B(ζk+i)uk+i

)
Ts

uk+i = uk+i−1 + ∆uk+i

∆Uk ∈ ∆Π

Uk ∈ Π

ye ∈ [ye, ye]

xk+0 = x̂k ,

(8.2)

where Π = {uk|Auuk ≤ bu} and ∆Π = {∆uk|A∆u∆uk ≤ b∆u} constraint the system

inputs and their variations, respectively. x =
[
vx vy ω θe s ye

]T
is the state

vector, x̂ is the estimated state vector, r =
[
vxr 0 0 0 0 0

]T
is the reference

vector provided by the trajectory planner (see Section 10), u =
[
δ a

]T
is the control

input vector and Hp is the control prediction horizon. The tuning matrices Q = QT ∈

R6x6 and R = RT ∈ R2x2, are semi-positive definite in order to obtain a convex cost

function. The time discretization is carried out using Euler approach and the constant

sampling time Ts.

8.4 System identification

In this section, we present the identification methodology used for adjusting the param-

eters of the vehicle dynamic model. The parameter estimation procedure considers the

non-linear model (3.16) for the vehicle dynamics and the goal is to identify the tire stiff-

ness coefficients Cf and Cr using a least-squares approach. The rest of parameters are

assumed to be known for the particular vehicle and it is assumed to have at disposal

M data samples. The identification procedure determines the unknown parameters that
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provides the minimum of the following objective function

minimize
Cf ,Cr

Jk =
M∑
i=0

( 1

vx
(vxk − v̂xk)2 +

1

vy
(vyk − v̂yk)2

+
1

ω
(ωk − ω̂k)2

)
,

(8.3)

where v̂xk , v̂yk and ω̂k are the one-step predictions based on the non-linear equations

(3.16) after the corresponding discretization in time and vx, vy and ω are their maximum

dynamic values.

Note that since the computational cost of this optimization-based approach is high to

be run in real-time, this is solved offline using IPOPT non-linear optimization solver

[Wächter, Andreas, and Lorenz T. Biegler., 2006].

8.5 Racing results

The way of evaluating the planning and control strategies for racing is by first simulating

the whole autonomous driving system and then testing it in a real framework. To do so,

we have proposed a circuit where the objective is to minimize the lap time while fulfilling

the road constraints. First, solving the racing trajectory planning (Section 10.2) in an

offline way allows us to obtain optimal-based racing references which will be used by the

controller to perform as fast as possible.

Then, at every sampling period, i.e. 30 Hz, the control problem (8.2) is solved to find

the appropriate control actions (δ and a).

The LPV-MPC algorithm is codified in Python 2.7 programming language on ROS

framework and solved in real time employing the Operator Splitting Quadratic Pro-

gram (OSQP) solver [Stellato, Bartolomeo, et al., 2018] running on a DELL inspiron

15 (Intel core i7-8550U CPU @ 1.80GHzx8). The tuning aims to minimize the velocity

and lateral errors while computing smooth control actions. The diagonal terms of the

weighting matrices in the cost function and prediction horizon of (8.2), found by iterative
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tuning until the desired performance is achieved, are

Q = [ 120 1 1 40 0 800 ],

R = [ 6 2 ],

Hp = 20 .

(8.4)

The MPC constraints are defined as

Au =


1 0

−1 0

0 1

0 −1

 , bu =


0.249

0.249

4

1

 , (8.5a)

A∆u =


1 0

−1 0

0 1

0 −1

 , b∆u =


0.05

0.05

0.5

0.5

 , (8.5b)

ye = −ye = 0.4m . (8.5c)

Before validating the presented algorithms in an experimental way, they have been tested

in simulation. Besides, the dynamic system has been properly identified using the identi-

fication method presented in (8.3). Next subsections present simulation and experimental

results from a control perspective.

8.5.1 Simulation test

All simulations are carried out using the ROS framework where control and estimation

algorithms are running. We use a non-linear model formulation (7.15) representing the

real car for simulation.

This model considers a more precise lateral tire force formulation using the simplified

Magic Formula [Pacejka, Hans., 2005] for modeling the non-linear relationship between

front and rear slip angles and lateral tire forces. Also, a more accurate computation of

the tire slip angles is given and white Gaussian noise magnitudes are added to measured
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states with zero mean and covariances

Covx = 1× 10−6 , Coω = 4× 10−8 , Cox = 4× 10−6 , Coy = 4× 10−6 . (8.6)

As shown in Figure 8.2, three algorithms are executed every 30 ms. First, the controller

instantiates the LPV model matrices for the prediction stage. Then, the optimal problem

is solved using for that the current state variables and the references coming from the

planner (see Section 10). Once, the optimal control actions are computed they are

applied to the simulation vehicle. As a consequence, the vehicle change its state and this

is measured by the net of sensors. The sensors are simulated to be realistic by having

Gaussian noise. Finally, the state estimator algorithm deals with the current available

measurements to obtain a precise and complete state vector.

Figure 8.3 depicts the longitudinal velocity profiles, the reference and the response, for

three laps, i.e. the acceleration lap and two consecutive laps. It can be seen that the

controller has some troubles when the vehicle is accelerating but it works acceptably

after 27 seconds. Such problems are related to the lack of modeling of the traction motor

resulting in the controller unable to follow the speed reference perfectly.
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Figure 8.3: Linear velocities in simulation. The reference is provided by the NL-MP
Planner. The response is the result after treating the measured data from the vehicle

sensors

The good performance of the controller can be seen in Figure 8.4. It is seen that the
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controller is able to force the convergence of the errors to zero in spite of the complexity

of driving in a high lateral acceleration situation.
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Figure 8.4: Errors achieved during two simulated racing laps
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Figure 8.5: Two racing laps in simulation controlling the simulation vehicle model

8.5.2 Experimental test

Using the same setup than in simulation, we assess the performance of the LPV-MPC

technique in an experimental way using the BARC platform (see Figure 8.1). The racing

planning is the same than in simulation tests since the track is the same. A resulting

video can be watched at https://www.youtube.com/watch?v=MXz9InvoVBw.

https://www.youtube.com/watch?v=MXz9InvoVBw
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(a)

(b)

Figure 8.6: In field test: (a) Bird view. (b) Vehicle frontal view plus acceleration
circle and vehicle in track localization

The result of the controlled longitudinal velocity for three laps is shown in Figure 8.7. It

shows a good reference tracking although with a bit of steady state error from t = 27 s

and up. In spite of the identification performed, it is possible to attribute this error to

modeling and estimation errors.
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Figure 8.7: Linear velocities in experimental test. The reference is provided by the
NL-MP Planner. The response is the result after treating the measured data from the

vehicle sensors

Figure 8.8 presents the resulting trajectory during the test. The mean lap time achieved

disregarding the first accelerating lap is 6.97 s. Some jumps can be observed along the

vehicle way which are totally attributed to issues in the GPS system. The indoor GPS

works by using ultrasonic sensors allowing to have up to ∼2 cm of error in localization

using triangulation. However, the ultrasonic sensors sometimes experience interference

by external signals which results in little jumps in localization. These jumps are treated

by the Kalman filter, however, when they are very large and continuous it is very difficult

to filter them.
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Figure 8.8: Two experimental racing laps using the BARC vehicle

The computational time of this approach is one of the most interesting advantages.

Figure 8.9 shows the elapsed time when computing the LPV-MPC strategy with a mean

time of 0.0149 s for a prediction horizon of 20 steps. The peaks that can be seen

outside the permitted area (real-time constraint) are due to sudden locations jumps of

the indoor-GPS system, causing the optimizer to solve a more complex and therefore

more computationally expensive problem. In these particular cases, the applied control

action corresponds with the one predicted in the previous optimization.
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Figure 8.9: LPV-MPC computational time during two experimental racing laps

Finally, we can perform a comparison against the control strategies presented in Rosolia,

Ugo, and Francesco Borrelli. [2019] and Rosolia, Ugo, Xiaojing Zhang, and Francesco

Borrelli. [2019]. In both references and this work, the results are obtained after testing

under the same conditions, i.e. the same track and the same vehicle. The resulting

comparison shows us a lap time reduction using the proposed method in this work. The

best lap time achieved in these works is more than 7 s however, in the presented strategy

the mean lap time achieved disregarding the first accelerating lap is 6.97 s. In addition,

the average computational time is also improved being in this work 14.9 ms while in the

other works is around 30 ms.

8.6 Conclusions

In this chapter, an LPV-MPC strategy has been proposed as a novel approach to solve

autonomous driving control problems under realistic conditions in real-time. In addition,

using racing-based references provided by an external planner the controller makes the

vehicle to perform in racing mode. For a good control performance, an offline identifi-

cation of unknown vehicle coefficients has been carried out. The strategies are tested

in simulation and in real experiments that show potential and similar results among

them, thus strengthening the task of the simulator. In the real test, we showed the
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contribution of the controller which is able to solve a 20 steps prediction at 33 Hz and

thus follow the trajectory although with a certain error due to the non-modeled dynam-

ics (see https://www.youtube.com/watch?v=MXz9InvoVBw). The disadvantage found in

this strategy is the system initialization due to the need to instantiate the LPV model.

https://www.youtube.com/watch?v=MXz9InvoVBw


Chapter 9

Fast Zonotope-Tube-based

LPV-MPC

The content of this chapter is based on the following works:

• [Alcalá, Eugenio, et al., 2020.B]. Alcalá, E., Puig, V., Quevedo, J. & Sename,

O. Fast Zonotope-Tube-based LPV-MPC for Autonomous Vehicles. International

Journal of Control, 2019 (submitted).

9.1 Introduction

MPC is an effective control strategy that allows to deal with constrained problems and

multiple-input multiple-output systems. However, dealing with uncertainty or distur-

bances is something that conventional MPC algorithms do not handle and then, robust

MPC (RMPC) formulations have to be considered. In [Mayne, D., 2016], the author

presents a review on current MPC formulations with their limitations and future devel-

opment directions.

During the last years, two differentiated and consolidated approaches for RMPC have

been addressed: Min-max MPC and Tube-based MPC. On the one hand, the min-max or

worst-case problem aims to find the optimal solution based on minimizing the maximum

value of the cost function. In [Liu, C., Li, H., Gao, J., & Xu, D., 2018], authors present

a robust self-triggered min-max MPC approach for constrained non-linear systems with

133
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both parameter uncertainties and disturbances. On the other hand, tube-based MPC is

based on computing a region around the nominal prediction that ensures the state of the

system to remain inside under any possible uncertainty and disturbance [Brunner, F. D.,

Heemels, M., & Allgöwer, F., 2016].

Different variations of tube-based MPC have been presented in the recent literature.

In Gonzalez, R., Fiacchini, M., Alamo, T., Guzmán, J. L., & Rodríguez, F. [2011],

an online tube-based MPC is proposed to ensure robustness for time varying systems

with additive uncertainties. Reachable sets are computed online using a explicit LQR-

based controller and polytopes which results to increase the computation time. Authors

defend a reduction on conservatism using this approach. In Sakhdari, B., Shahrivar, E.

M., & Azad, N. L. [2017], the authors propose a RMPC approach for Adaptive Cruise

Control. They emphasize the high computational effort of computing the reachable

set using polytope-based operations and present an approach based on singular value

decomposition. A different scheme for RMPC strategy is presented in Darup, M. S., &

Mönnigmann, M. [2018]. The authors show the significantly reduction of numerical effort

compared to standard RMPC by identifying a terminal set on which a LQR-based control

law is sufficient. In Kim, Y., Zhang, X., Guanetti, J., & Borrelli, F. [2018], authors

present a RMPC with adjustable uncertainty sets. They propose a less conservative

approach in contrast to standard RMPC problems and illustrate the effectiveness on a

cooperative adaptive cruise control application.

In this paper, we present a robust tube-based MPC approach faster than the state of the

art strategies being able to reject large exogenous disturbances. This optimal algorithm

uses a LPV vehicle model for simulating future vehicle behaviour. We summarize the

innovative points with respect to the state of the art as follows:

• Using zonotope theory we are able to reduce the computational cost of basic oper-

ations, i.e. Minkowski sum and difference, in comparison with current polytopes-

based operations.

• The use of fast zonotope-based calculations allows us to not approximate the tube,

hence obtaining a less conservative result.
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• Using H∞ control design to obtain a gain scheduling polytopic LPV local controller

allows to reject large exogenous disturbances acting over the vehicle. Current tube-

based MPC techniques in the state of the art are using LQR technique.

• Currently, most of the works based on robust MPC design use a local controller

than runs at the same frequency than the nominal controller (MPC). In this work,

we propose a faster loop to achieve a faster and better performance of the control

scheme.

9.2 Problem statement

This chapter addresses the problem of designing an online tube-based MPC for controlling

a simulated vehicle plant formulated as the following non-linear system

x+ = f(x, u) + e , (9.1)

where x ∈ Rs is the state vector, u ∈ Rn the input vector and f(x, u) represents the

non-linear map obtained after modeling the physics of the real system. Vector e ∈ Rs

contains all the unmodeled physics of the real plant and exogenous disturbances acting

over it. Note that, in this article the notation x+ is used for the successor of vector x,

i.e. x = x(k) and x+ = x(k + 1).

At this point, the following uncertain, LPV, discrete-time system is formulated

x+ = Aζx+Bζu+ w , (9.2)

where Aζ and Bζ are the LPV state space matrices which depend on the varying schedul-

ing vector ζ and w ∈ Rs is the exogenous disturbance vector.

Remark 9.1. The system x+ = Aζx+Bζu in (9.2) is an exact realization of x+ = f(x, u)

in (9.1) inside the considered polytopic region and the scheduling vector ζ is known at

each sampling time being a combination of system states and inputs.

The state, control and disturbance vectors are bounded as

x ∈ X , u ∈ U , w ∈W , (9.3)
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where X ⊆ Rs, U ⊆ Rn and W ⊆ Rs.

To achieve the tracking-robust control purpose, two problems are handled:

• Reference tracking control problem. The LPV-MPC strategy deals with the fol-

lowing system

x̌+ = Aζ x̌+Bζu
∗ , (9.4)

for tracking the dynamic references while handling system constraints. This system

will be referred as nominal model throughout the work.

• Robust control problem. The main idea is to compensate the mismatch between

the states of (9.1) and the nominal state vectors (9.4). This difference is computed

as

e = x− x̌ , (9.5)

where e ∈ Rs is the error state. In order to minimize such a mismatch, the following

control law is considered
u = u∗ + u∞

u∞ = K∞ζ e ,
(9.6)

where u∗ represents the optimal action from the R-LPV-MPC, u∞ is the corrective

action and K∞ζ is the state feedback gain computed online as a gain scheduling

controller using H∞-based LMIs for the design.

Finally, the closed loop error dynamics are defined as

e+ = x+ − x̌+ = (Aζ +BζK
∞
ζ )e+ w . (9.7)

9.3 Control and simulation vehicle models

The Driverless UPC Car 1 is a development platform for autonomous racing (see Figure

9.1). This has been properly modified to operate autonomously under racing specifi-

cations. The vehicle counts with a complete net of sensors for performing localization

and environment understanding. A fusion of IMU, encoders and GPS data is made by a

Kalman filter in order to estimate a more precise values of the vehicle states.
1https://driverless.upc.edu/
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Figure 9.1: UPC Driverless vehicle

The Cartesian dynamic LPV representation presented in Section 4.5 is modified to im-

prove the control performance by introducing two new integral states with the aim of

completely remove the steady state error. In addition, the simplified Magic Formula LPV

model (4.6) is used to represent accurately the lateral tire dynamics. Then, denoting the

state and control vectors, respectively, as

x =



vx

vy

ω

x

θ


, u =

 δ

a

 , (9.8a)
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the continuous-time LPV matrices are expressed as

Aζ =



A11 A12 A13 0 0

0 A22 A23 0 0

0 A32 A33 0 0

−1 0 0 0 0

0 0 −1 0 0


(9.8b)

and

Bζ =



B11 B12

B21 0

B31 0

0 0

0 0


, (9.8c)

where A and B coefficients are varying parameters defined in (4.9). Note that, after

increasing the system degree the scheduling vector is still defined as

ζ := [vx, vy, δ] . (9.9)

The vehicle parameters used for this model are properly defined in Table 9.1 and Table

9.2 shows the coefficients used for representing the LPV formulation of the tire stiffness

coefficient (4.7) in the lateral tire model.

Table 9.1: Dynamic model parameters of the Driverless UPC Car

Parameter Value Parameter Value
lf 0.902 m lr 0.638 m
m 196 kg I 93 kg m2

df 8.255 cf 1.6
bf 6.1 µ 1.4
dr 8.255 cr 1.6
br 6.1 ρ 1.225 kg m3

CdAf 1.64 g 9.81 m
s2

CdAl 1.82

9.3.1 Simulation vehicle

For simulation purposes we use a higher fidelity vehicle model. Unlike the model used for

control (9.8), this considers the non-linear simplified Magic Formula model (3.14) where
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Table 9.2: Polynomial parameters of (4.7) for the front and rear tires (upper indexes
f and r)

Parameter Value Parameter Value
n 4 ε 10−4

pf1 -2.167 ×106 pf2 1.284 ×106

pf3 -0.288 ×106 pf4 0.029 ×106

pf5 15.038
pr1 -2.130 ×106 pr2 1.198 ×106

pr3 -0.252 ×106 pr4 0.024 ×106

pr5 14.551

the parameters b, c and d define the shape of the semi-empirical curve. In addition, a

more accurate calculation of the tire slip angles is provided and is sensitive to certain

external disturbances. This is given by

v̇x = ar +
−Fyf sin δ − Fdf

m
+ ωvy − g sinϕ

v̇y =
Fyf cos δ + Fyr − Fw

m
− ωvx

ω̇ =
Fyf lf cos δ − Fyrlr − Fw(lf − lr)

I

αf = δ − tan−1

(
vy
vx
−
lfω

vx

)
αr = − tan−1

(
vy
vx

+
lrω

vx

)
Fyf = df sin (cf tan−1(bfαf ))

Fyr = dr sin (cr tan−1(brαr))

Fdf = µmg +
1

2
ρCdAfv

2
x

Fw =
1

2
ρCdAlv

2
w

, (9.10)

where ϕ and vw are exogenous disturbances and represent the longitudinal road slope

and the lateral wind velocity, respectively. CdAl is the product of drag coefficient and

vehicle lateral cross sectional area and CdAf is the product of drag coefficient and vehicle

frontal cross sectional area. Parameters df ,dr,cf ,cr,bf and br are the simplified Magic

Formula model constants.
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9.4 Online Tube-based LPV-MPC using Zonotopes

In this section, we present the zonotope-tube-based LPV-MPC scheme using zonotopes

to significantly reduce the cost of computing the tube (see Figure 9.3). The main purpose

of this strategy is to achieve robust stability and robust performance in the presence of

modeling errors and exogenous disturbances.

A zonotope, represented as 〈cw, Rw〉 with the center cw ∈ Rn and the generator matrix

Rw ∈ Rn×p, is a particular form of a polytope defined as the linear image of the unit

cube [Girard, A., 2005, Girard, A., Le Guernic, C., & Maler, O., 2006]

〈cw, Rw〉 = {c+Rx : ‖x‖∞ ≤ 1}. (9.11)

Note that, the linear image of a zonotope W = 〈cw, Rw〉 by a compatible matrix M is

defined as

M ◦W = M ◦ 〈cw, Rw〉 = 〈Mcw,MRw〉. (9.12)

Along this chapter, zonotopes are treated as centered zonotopes denoted by 〈0, Rw〉.

Then, the linear image is defined as

M ◦W = 〈0,MRw〉 (9.13)

and the Minkowski sum of two centered zonotopes W = 〈cw, Rw〉 and G = 〈cg, Rg〉 is

defined as

W ⊕G = 〈0, [Rw, Rg]〉. (9.14)

In this work, zonotopes are used to compute reachable sets and therefore, the tube to

implement the robust MPC architecture. The main reason for the use of zonotopes lies

in their simplicity to operate with sets. Therefore, a set operation such as the Minkowski

sum is reduced to a simple matrix addition. Note that, the use of Minkowski sum or

difference of two polytopes is costly, however, using zonotopes the computational cost is

reduced allowing a fast computation of basic sets operations.

The zonotope-tube-based LPV-MPC requires of some steps to complete the strategy.

First of all, a polytopic state feedback controller is computed offline using a H∞-LMI

based problem (Section 9.4.1). Furthermore, the maximal robust invariant set and the
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terminal cost are computed also offline (Section 9.4.2). Then, at every control iteration,

the state feedback gain K∞ζ is computed as a linear function of the scheduling vector ζ.

Afterwards, the tube is calculated as the maximum reachable values of states and inputs

taking into account the previous control gain (Section 9.4.3). Finally, the MPC problem

is solved where the input and state constraints are updated defining an adaptive and less

conservative tube (Section 9.4.4). Hereafter, the introduced scheme will be explained in

detail.

9.4.1 Local controller design

In this section, the offline design and online computation of the state feedback LPV

controller is addressed. We aim to design a controller to reduce the mismatch between

the states of system (9.1) and the nominal state vectors (9.4) even under the presence

of disturbance. In the most recent literature, the LQR control strategy is one of the

most used techniques when dealing with determining a local control structure to make

the MPC a robust strategy [Gonzalez, R., Fiacchini, M., Alamo, T., Guzmán, J. L., &

Rodríguez, F., 2011, Sakhdari, B., Shahrivar, E. M., & Azad, N. L., 2017, Darup, M. S.,

& Mönnigmann, M., 2018].

However, when dealing with systems subject to external disturbances, the LQR technique

becomes less efficient against such system variations and it is when different methodolo-

gies emerge, as the case of H∞ strategy, resulting more suitable for the application. On

one hand, the H∞ control problem allows to reduce the impact of an external disturbance

to the system output. On the other hand, the obtained control gains may be large which

is sometimes undesirable in applications.

9.4.1.1 Offline design

In this work, a polytopic LPV H∞ controller is designed by means of minimizing the

infinity norm of the transfer function between the disturbance signal and the control

variables.
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The following LPV system is considered for control design purposes

ẋ = Aζx+Bu+ Ed

z = Cx+D1u+D2d
, (9.15)

where state matrix A is function of the scheduling vector ζ, input matrix B is a lin-

earization of Bζ in (9.4) around δ = 0, E is the disturbance input matrix, d represents

the exogenous disturbance vector, z represents the controlled variables vector and C, D1

and D2 are constant matrices of appropriate dimensions.

From the LPV system (9.15) and considering the state feedback control law u = K∞ζ x,

we can formulate the transfer function from d to z as

Gzd = (C +D1Kζ)(sI − (Aζ +BK∞ζ ))−1E +D2 . (9.16)

Hence, the proposed problem consists on finding a polytopic state feedback gain Kζ such

that

‖Gzd‖∞ ≤ γ , (9.17)

holds for the attenuation scalar γ. To find the solution, we solve the H∞ problem in

continuous time via LMIs using the polytopic approach as suggested in Duan, Guang-

Ren, and Hai-Hua Yu. [2013] given by

min
X,Wi

γ

s.t. 
S E XCT +W T

i D
T
2

∗ −γI DT
1

∗ ∗ −γI

 ≤ 0

S = AiX +BWi +XATi +WiB
T

∀i = 1, ..., N ,

(9.18)

being the solutionsX = P−1 andWi = KP−1 where P represents the common Lyapunov

matrix for the polytopic LPV system. Parameter N represents the number of vertexes

in the polytope. Then, the resulting vertices of the new polytopic controller are obtained

by Ki = WiX
−1.
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9.4.1.2 Online computation

At each control iteration, the state feedback LPV control gain Kζ is updated based on

the current value of the scheduling vector ζ. To do so, a convex combination of polytopic

controller vertices, i.e. the set of Ki, is computed as

Kζ =
N∑
i=1

µi(ζ)Ki , (9.19)

where µi(ζ) is given by

µi(ζ) =

nζ∏
j=1

ξij(η
j
0, η

j
1) , ∀i = 1, ..., N , (9.20)

with

ηj0 =
ζj − ζj(k)

ζj − ζj

ηj1 = 1− ηj0 ,

(9.21)

where each scheduling variable ζj is known and varies in a defined interval ζj ∈
[
ζj , ζj

]
∈

R, nζ is the number of scheduling variables and ξij(·) corresponds with the function that

performs the N possible combinations. In addition, next conditions must be satisfied

N∑
i=1

µi(ζ) = 1, µi(ζ) ≥ 0, ∀ζ ∈ Θ . (9.22)

9.4.2 Terminal Robust Invariant Set & Cost

A commonly used approach to guarantee asymptotic stability of deterministic MPC

consists in incorporating both a terminal cost, P , and a terminal constraint set, χf .

In this section, we propose an offline method to compute both P and χf . Thus, the

closed-loop system convergence to the origin is ensured if

• Q = QT ≥ 0, R = RT > 0 and P > 0

• The sets X, χf and U are polytopes containing the origin

• The terminal cost is a Lyapunov function in χf

• χf is the minimal robust positively invariant (mRPI) set, χf ⊆ X.
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On one hand, the computation of P is carried out by solving the LMI-based H∞ problem

(9.18). Furthermore, a set of polytopic robust controllers is found. The optimal problem

solutions, i.e. X and Wi, are used to calculate the controllers at the vertices of the

polytope as Ki = WiX
−1. Note that the Lyapunov function in the optimization problem

is found to be equal to X−1 and will be use later in (9.32) as P .

On the other hand, the terminal set χf will be the mRPI set if and only if it is contained

in any closed RPI set and is convex and unique. Then, the mRPI set for the stable and

disturbed system (9.7) is computed by the following recursive procedure

1. Initialization:

Ω0 = Ek∗

2. Loop:

Ωk+i = A(Ωk)⊕W

3. Termination condition:

stop when Ωk+1 = Ωk. Set χf = Ωk+1

, (9.23)

where A(·) is the set mapping defined as

A(Ωk) = Conv
{ N⋃
i=1

(Ai +BK∞i )Ωk

}
. (9.24)

Note that, Conv{·} represents the convex hull and is used to compute the one-step

reachable set for the polytopic system case. This allows to preserve the convexity of the

resulting set within the recursive iterations.

However, this recursive approximation to compute the mRPI set is intractable and not

realistic since we may need infinite iterations to reach the termination condition. For

that reason, in [Tan, Junbo, et al., 2019], the authors propose an outer approximation

method for computing the mRPI set with a given precision. This approach consists on

replacing the termination condition in (9.23) by the condition of terminating when there

exist a k† iteration such that

Ak†(Ω0) ⊆ Anxp (ε), (9.25)

where Anxp (ε) = {x ∈ Rnx : ‖x‖p ≤ ε} defines a ball of arbitrary small size. Therefore, in

such an article, it is concluded that the set Ωk† is an outer approximation of the mRPI



Fast Zonotope-Tube-based LPV-MPC 145

set Ω∞ with the given precision Anxp (ε) as well as an RPI set too.

In addition, the initialization condition in (9.23) is still not defined. To find Ek∗ , which is

an RPI set for the system (9.7), it is necessary to solve the following iterative algorithm

where there exist a finite k∗ such that the termination condition is reached

1. Loop:

A(Ek) = Conv
{ N⋃
i=1

(Ai +BK∞i )Ek
}

Ek+1 = A(Ek)⊕W

Ek+1 = Conv{Ek+1

⋃
Ek}

2. Termination condition:

stop when Ek∗+1 = Ek∗

. (9.26)

Furthermore, given the stabilized system (9.7), the initial convex set E0 ⊇ Ω∞ can be

computed as

E0 =

p∗−1∑
i=0

Ai(B(r))⊕ p∗ξ

1− ξ
B(r), (9.27)

where ξ ∈ (0, 1), p∗ ∈ N and B(r) = {x ∈ Rnx : ‖x‖∞ ≤ r} is a box containing W . Note

that, we should find a proper E0 such that Ak(B(r)) ⊆ ξB(r) holds for k ≥ p∗.

9.4.3 Online Reachable Sets

This section addresses the reachable sets calculation also known as the one-step forward-

reachable set computation. These sets define the problem of finding the set of states that

can be reached from a given set of states in a set of finite steps [Borrelli, F., Bemporad,

A., & Morari, M., 2017] .

In this approach, the main idea of using reachability theory is to bound the maximum

achievable values for the mismatch error (9.7) between the prediction model and the real

measurements at every sampling time.

To this aim, the one-step robust reachable set from the set Φ is denoted as

Reach(Φ,W ) = {y : ∃x ∈ Φ,∃u ∈ U,∃w ∈W s.t. y = (Aζ +BζK
∞
ζ )x+ w}. (9.28)
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Figure 9.2: Example of reachable sets and new MPC constraints computation for
a prediction horizon of four steps and considering two system states and two control
inputs. State constraints (X̃k) are depicted in the upper row while input constraints

(Ũk) calculations are shown in the lower row

Note that, by using polytopic notation, the robust reachable set Reach(Φ, W) can be

compactly written as

Reach(Φ,W ) = {((Aζ +BζK
∞
ζ ) ◦ Φ)⊕W}. (9.29)

Then, denoting the first initial reachable set as a null zonotope (Φ0 = 〈0n×1, 0n×p〉) and

the disturbance set as a constant predefined zonotope (W = 〈cw, Rw〉), at every sampling

time k a group of reachable sets is computed by

Φk+i+1 = (Aζk+i +Bζk+iK
∞
ζk+i

)Φk+i ⊕W

∀i = 0, ...,Hp

, (9.30)

where Hp is the prediction horizon of the MPC strategy. Note that, each reachable

set depends on its past realisation, the current scheduling vector for computing system

matrices and controller and the uncertainty/disturbance set W .

Finally, these reachable sets are used for computing the concatenation of consecutive

resulting state/input sets in the prediction horizon, known as tube (see Figure 9.2).

9.4.4 MPC design

Considering the previous discussions about the terminal conditions, the local controller

and the reachable sets, in this section, we focus our attention on the tube-based MPC
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Figure 9.3: Robust control scheme composed of a nominal controller (tube-based
LPV-MPC) and a local corrective controller (LPV-K∞

ζ )

implementation. Figure 9.3 shows the complete scheme used in this work. Note that,

the MPC strategy is in charge of controlling the nominal system while the differences

between the real system and the nominal one are compensated by the local controller.

Such a difference may be produced by external sources as a exogenous disturbances,

unmodeled dynamics or by uncertain parameters in the nominal model. Then, in order

to guarantee robustness against all these sources, the reachable sets are used to compute

the input/state space where the feasibility is ensured under the presence of the maximum

disturbances considered in the design.

Remark 9.2. Considering large disturbances acting over the vehicle implies bounding the

differences between the real and the nominal system in a large polytope which will lead

to a more conservative scenario and also to the reduction of the maximum prediction

horizon in the MPC design.

The inputs and states sets are updated at every control iteration and introduced as the

new input/state constraints throughout the prediction window. They are computed as

X̃k+i = X 	 Φk+i , ∀i = 0, ...,Hp,

Ũk+i = U 	K∞ζk+iΦk+i , ∀i = 0, ...,Hp − 1 .
(9.31)

Note that, these sets cannot be empty sets since the optimal problem would not have

solution.

Finally, the grouping of all the previous steps allow us to formulate the optimal problem

as a quadratic optimization problem that is solved at each time k to determine the next
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sequence of control actions considering that the values of xk and uk−1 are known

min
∆Uk,Xk

x̂Tk+HpPx̂k+Hp +

Hp−1∑
i=0

(rk+i − x̌k+i)
TQ(rk+i − x̌k+i)

+ ∆uTk+iR∆uk+i

s.t.

xk+i+1 = xk+i+1 +
(
Aζk+ixk+i +Bζk+iu

∗
k+i

)
Ts

u∗k+i = u∗k+i−1 + ∆uk+i

u∗k+i ∈ U 	 (K∞ζk+iΦk+i)

x̂k+i ∈ X 	 Φk+i

x̂k − xk ∈W

xk+Hp ∈ χf 	 Φk+Hp

, (9.32)

where P ∈ Rs×s > 0 represents the terminal cost computed in Section 9.4.2 and Q =

QT ∈ Rs×s ≥ 0 and R = RT ∈ Rn×n ≥ 0 are the tuning matrices for the states and the

variation of the control inputs, respectively.

9.5 Results

In this section, we validate the performance of the proposed zonotope-tube-based LPV-

MPC control scheme in a racing scenario through simulation in MATLAB. The principal

objective of the presented scheme is to follow the proposed racing-based references en-

suring asymptotic stability and the highest possible levels of robustness and performance

while dealing with exogenous disturbances.

The racing references are provided by a trajectory planner and make the vehicle to

perform close to its dynamic limits. The reference vector (r in Figure 9.3) is composed

by two, the linear longitudinal speed and the angular velocity. Both are depicted using

dashed lines in Figure 9.4. Note that, the linear speed reference belongs to a low velocity

interval, i.e. between 10 and 25 km/h, however, it is the relationship between linear and

angular velocities one of the measures used to determine the level of driving at the limit.

Commonly, a high result in their product its an indicative of racing behaviour which

consequently implies high lateral accelerations.
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Figure 9.4: Dynamic reference tracking. Top: Longitudinal velocity reference and
states (vx) for both compared cases. Bottom: Angular velocity reference and states (ω)

To show the effectiveness of the robust control scheme, we compare the proposed strategy

against a state of the art tube-based MPC scheme [Sakhdari, B., Shahrivar, E. M., &

Azad, N. L., 2017] using the same scenario with several disturbance sources in simulation

using the non-linear vehicle model. Such disturbance variables are chosen to be the road

slope acting over the longitudinal vehicle dynamics and lateral wind affecting the lateral

and angular vehicle dynamics (see Figure 9.5). The non-linear model used for simulation

is a high-fidelity bicycle-based representation of the Driverless UPC vehicle [Driverless

UPC., 2019] used in the Formula Student challenge [Formula Student., 2019] and is

presented in Section 9.3.1. An identified tire model using the simplified Magic Formula

[Pacejka, Hans., 2005] is used for generating accurate lateral forces from front and rear

slip angles.

The LPV-MPC uses the predicted data in the past realisation to instantiate the state

space matrices at every time step within the MPC prediction stage. To verify the real-

time feasibility of the presented strategies, we perform the simulations on a DELL in-

spiron 15 (Intel core i7-8550U CPU @ 1.80GHzx8). Then, the optimal control problem
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Figure 9.5: Disturbances acting on the scenario (d en Figure 9.3). Top: road slope
profile composed by steps and sinusoidal parts. Bottom: Lateral wind velocity profile

in the form of steps and a ramp

(9.32) is solved at a frequency of 30 Hz using the solver GUROBI [Optimization, Gurobi.,

2014] through YALMIP [Lofberg, J., 2004] framework and the local controller is run at

a higher frequency of 200 Hz. The tuning parameters for the robust LPV-MPC and

LPV-H∞ problems are listed in Tables 9.3 and (9.33), respectively.

Table 9.3: Tube-based LPV-MPC design parameters. Q and R matrices are normal-
ized by dividing the respective variable by its interval to the square ι2

Parameter Value Parameter Value
Q 0.8*diag( 0.4

ι2vx
0 0.6

ι2ω
0 0) R 0.2*diag(0.4

ι2δ

0.4
ι2a
)

x [15 1 1.4] x [1 -1 -1.4]
u [0.267 13] u [-0.267 -2]
∆u [0.05 0.5] ∆u [-0.05 -0.5]
Ts 30 ms Hp 5
W diag(0.0744 0.1895 0.1054 0 0)
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E = 0.3



0 0.5 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

0 0.0001 0 0 0 0 0

0.01 0 0 0 0 0 0


(9.33a)

C = 10−4



0.2 0 0 0 0

0 0.2 0 0 0

0 0 0.2 0 0

0 0 0 0.2 0

0 0 0 0 0.1

0 0 0 0 0

0 0 0 0 0


(9.33b)

D1 = 10−4



0 0 −0.2 0 0 0 0

0 0 0 −0.2 0 0 0

0 0 0 0 −0.2 0 0

0 0 0 0 0 −0.2 0

0 0 0 0 0 0 −0.1

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, D2 = 10−3



0 0

0 0

0 0

0 0

0 0

0 0

0.15 0

0 0.15



.

(9.33c)

The reference tracking results are depicted in Figure 9.4. It can be seen the significant

improvement of the presented scheme with respect to the tube-based MPC using LQR

controller as the corrective error approach. Furthermore, the disturbance rejection has

enhanced using a local controller whose design has been based on minimizing the infinity

norm instead of the 2-norm as the case of LQR approach. However, note that using a

H∞ design may produce troubles in the closed-loop response because of the large gains

that are obtained and hence, a meticulous tuning is needed.

In Figure 9.6, the errors or mismatch between the predicted state and the measured state

are presented. Note that, such a vector of errors correspond with the vector entering

the state feedback local controller (e in Figure 9.3). It can be appreciated the better
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Figure 9.6: Mismatch between real and nominal states. evx represents the error in
the longitudinal behaviour, evy the error in the lateral behaviour and eω represents the
error for the angular behaviour. Dotted red lines represent the maximal bounds for

each one of the errors defining then the set W

performance of the strategy presented in this work being able to reject most of the error

produced by the uncertainty and the applied exogenous disturbances.

Figure 9.7 shows the control actions applied during the simulation test. Figure 9.8 shows

the elapsed time per iteration of the complete tube-based LPV-MPC strategy with a

prediction horizon of 6 steps. Hence, we prove the fast computation of this technique

and the real-time implementation possibility on embedded systems.

Finally, a quantitative comparison is made using the normalized root mean squared

error (NRMSE) as performance measurement (see Table 9.4 ). These results highlight

the conclusive improvement of the proposed approach, improving up to thirty times the

angular velocity tracking error with respect to the compared strategy.
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Figure 9.7: Control actions applied to the simulated vehicle (u in Figure 9.3)
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Figure 9.8: Elapsed time per iteration throughout the simulation. The mean time is
0.0164 s
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Approach RMSE vx RMSE ω

State of the art 4.3846 10−4 0.0249
LPV-MPC 3.4227 10−4 8.0762 10−4

Table 9.4: Quantitative results for the tracking variables errors. These are the differ-
ence with respect to their respective reference (see Figure 9.4)

9.6 Conclusion

In this chapter, we have proposed a zonotope-tube-based LPV-MPC scheme for au-

tonomous vehicles focusing on improving the computational load while preserving high

levels of robustness and performance in racing scenarios.

While most of the strategies in the literature overcome the tube-based MPC problem

using linearized models, this chapter aims to reformulate the non-linear equations to be

expressed in an LPV form obtaining better results solving a quadratic optimization. In

addition, the tube is computed using zonotopes theory which makes the calculation of

reachable sets much faster since the propagation using the Minkowski basic set operations

is much easier using zonotopes than polyhedron operations and less conservative since

there are not approximations. Consequently, the prediction horizon can be increased

compared to standard tube-based techniques since, due to the precision of calculation

using zonotopes, the reachable set does not grow conservatively maintaining a more

adjusted shape.

To reject the effect of acting disturbances maintaining robustness, a polytopic local

controller has been designed solving the H∞-based LMI problem. Furthermore, such a

local controller is updated at a higher frequency than the nominal controller (LPV-MPC).

Finally, we have tested and compares the performance of the proposed strategy against a

current state of the art tube-based MPC.We have shown the effectiveness of the presented

approach in a disturbed racing scenario being able to perform online tube-based MPC

with a high performance and reduced computational cost.
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Trajectory planning
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Chapter 10

LPV-MP Planning for Autonomous

Racing considering Obstacles

The content of this chapter is based on the following works:

• [Alcalá, Eugenio, Puig, Vicenç and Quevedo, Joseba., 2019.B]. Alcalá, E., Puig,

V. & Quevedo, J. LPV-MP Planning for Autonomous Racing Vehicles considering

Obstacles. Robotics and Autonomous Systems, 2019.

• [Alcalá, Eugenio, et al., 2020.A]. Alcalá, E., Puig, V., Quevedo, J. & Rosolia, U.

Autonomous Racing using Linear Parameter Varying - Model Predictive Control

(LPV-MPC). Control Engineering Practice, 2019.

10.1 Introduction

The objective of racing planners is to find the optimal trajectory while maximizing the

speed or minimizing the lap time. One of the main conditions of racing planning is to

accurately consider the dynamics of the vehicle in the algorithm calculations in order to

compute real feasible solutions. Then, determining a feasible solution for the autonomous

racing planning is not a trivial task at all and there are few studies under this topic

[Caporale, Danio, et al., 2018, Alrifaee, B., et al., 2018, Verschueren, Robin, et al., 2014,

2016, Liniger, A., et al., 2015]. The weaknesses that these works have in common are

156
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the use of models of reduced complexity (kinematic models basically) and/or the use of

a path-based planner formulation.

In this chapter, we present a novel approach to solve the optimal trajectory planning for

autonomous racing vehicles considering static obstacles throughout the track. Unlike the

works mentioned above, a dynamic vehicle model is used for computing more realistic

trajectories. In order to deal with track constraints, we express the road limits as the

maximum values, positive and negative, of the allowed vehicle lateral error. In addition,

such a way of limiting the road allows a straightforward extension to avoid obstacles. The

way we propose to overcome obstacles is to modify the limit of the track at each instant of

time. In this way, the limit values of the lateral error interval in the optimal problem vary

as a function of the obstacle and vehicle positions. The key idea of this approach is to use

a Optimal Quadratic Programming algorithm that maximizes the velocity vector within

a certain horizon. This optimization-based algorithm uses an LPV model representation

of the vehicle to compute the trajectory in a given prediction window.

The scheduling variables of the LPV system are obtained by taking the shifted result

of the previous optimal iteration. Simulations are carried out using the Driverless UPC

Car. This development platform for autonomous racing was presented in Section 9.3.

The computational time of this approach is reduced drastically in comparison with its

non-linear version making it very suitable for real-time implementations. Finally, the

resulting trajectory is provided to the controller as the current trajectory to be followed

and the process is repeated at the next sampling time.

10.2 NL-MPC as a planner in space domain

The main function of this racing planning task is to find a trajectory within the circuit

that minimizes the total lap time and provides relevant information to the motion control.
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Then, using the space-based vehicle model presented in Section 3.4.3 the following non-

linear optimization problem is solved using a constant sampling space (ds)

minimize
∆U ,X̃

J =

Hp−1∑
i=0

(
x̃Ti Qx̃i + ∆uiR∆ui

)
+ x̃THpPx̃Hp

s. t.

x̃i+1 = x̃i + f(x̃i, ui, κi)ds, ∀i = 0, ...,Hp − 1

ui = ui−1 + ∆ui

Hp = Ltrack/ds

ỹe ∈ [ỹe, ỹe](
ṽxi+1 − ṽxi

∆vx

)2

+

(
ṽyi+1 − ṽyi

∆vy

)2

− 1 ≤ 0 ,

(10.1)

where the decision vector variables are

X̃ = (x̃1, x̃2, ..., x̃Hp)

∆U = (∆u1,∆u2, ...,∆uHp) .
(10.2)

Note that, with the aim of smoothing the performance effort and providing a null tracking

error in steady state, the variation of the input model variables (∆ui) is used as an

optimization variable. State vector, control input vector and the continuous-time non-

linear model are properly defined in Section 3.4.3. Ltrack is the total length of the

circuit, Q = QT ∈ Rs×s ≥ 0, R = RT ∈ Rn×n ≥ 0 and P = P T ∈ Rs×s ≥ 0 are the

weighting matrices. The lateral error (ỹe) is limited in the interval defined by the width

of the track. The last inequality constraint in (10.1) bounds the longitudinal and lateral

vehicle acceleration. This constraint defines an ellipse limited by ∆vx and ∆vy which

are found experimentally.

The adjustment in the cost function is a choice of the designer, however, certain guidelines

must be followed to achieve the objective of minimizing the total lap-time. Furthermore,

in order to achieve numerical reliability, very small weights are used for the rest of

variables in the cost function. The diagonal values of the weighting matrices, found to
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obtain the best trade-off among the different objectives, are

Q = [ 10−8 10−8 10−3 10−5 10−8 10−8 ]

R = [ 0.05 0.01 ]

P = [ 10−8 10−8 10−8 10−8 10−8 1 ] .

(10.3)

Note that using this approach just one optimization is solved. The optimal solution is

the vehicle state vector for a given Ltrack distance.

Finally, before providing the obtained trajectory references to the motion control strat-

egy, a time-based interpolation is made in order to convert the space-based variables into

time-based variables. Before applying the linear interpolation, we have the space-based

state vector (x̃) obtained from the optimization problem 10.1 and among them the time

depending on the space (t̃). Now, we define the query time points as a finer sampling in

the range of t̃. Then, the next interpolation is performed at those query points (ti) to

obtain the vehicle state variables as a function of time (xi)

xi = x̃i +
x̃i+1(ti − t̃i)− x̃i(ti − t̃i)

t̃i+1 − t̃i
, ∀i = 0, ...,Hp , (10.4)

where xi is the new time-dependent variable and ti is the accumulative sampling time.

Note that, this interpolation procedure is carried out for variables ṽx, ṽy, ω̃, ỹe and θ̃e,

but not for t̃i.

10.3 NL-MPC as a planner in time domain (NL-MPP)

In this case, the time is not a state variable anymore and therefore a different way of

minimizing time is looked for. The maximization of the vehicle speed vector is equivalent

to minimizing the time variable. As presented in Section 3.2.2, the velocity vector of the

vehicle in curvature-based coordinates (ṡ) can be computed by

V =
vx cos θe − vy sin θe

1− yeκ
(10.5)

as a relation between the track curvature and the dynamic and error vehicle states.
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Limiting accelerations in the CG of the vehicle is one of the best ways to limit the

dynamics of the vehicle (last non-linear constraint in (10.1)). However, these limits are

directly related to the adhesion of the tires and therefore to the tire force model. That

is why, the limits for the front and rear slip angles as well as minimizing the difference

between them in the cost function are introduced in the formulation of this section. The

objective is to avoid high levels of understeer or oversteer behaviors. These depend on

the front and rear wheels slip angles and are given as

• The understeer situation is given when the front wheels slip angle is greater than

the rear wheels slip angle : αf > αr .

• The oversteer situation is given when the rear wheels slip angle is greater than the

front wheels slip angle : αr > αf .

These two situations should be avoided for a smooth performance of the vehicle. However,

in racing environments it is allowed to have particular levels of understeer and oversteer.

Hence, both objectives can properly be formulated as a weighted non-linear cost function

where it is pretended

• to maximize the linear velocity vector which implies to minimize the travel time

maximize : JV (xk+i, κk+i) =

Hp∑
i=0

‖Vk+i‖2Q (10.6)

• to minimize the difference between the front and rear slip angles with the aim of

avoiding high levels of understeer or oversteer behaviours

minimize : Jα(xk+i) =

Hp∑
i=0

‖αfk+i − αrk+i‖
2
R (10.7)

where Q ∈ R1x1 ≥ 0, R ∈ R1x1 ≥ 0 are the proper weighting scalars.

Additionally, a third component added to the cost function aims to minimize the slack

variable σ introduced over the lateral error state to provide some flexibility to the opti-

mization problem

minimize : Jσ(xk+i) =

Hp∑
i=0

‖σk+i‖2P (10.8)
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where P ∈ R1x1 ≥ 0. Finally, combining previous objectives, a constrained non-linear

optimal control (CNLOC) problem is formulated as follows and solved at each discrete

time step k to compute an optimal trajectory

min
∆Uk,Xk

(
− JV (xk+i, κk+i) + Jα(xk+i) + Jσ(xk+i)

)
s.t.

xk+i+1 = xk+i +
(
f(xk+i, uk+i, κk+i)

)
Ts , ∀i = 0, ...,Hp

uk+i = uk+i−1 + ∆uk+i

uk+i ∈ [u, u]

yek+i ∈ [ye + σk+i, ye − σk+i]

αfrk+i ∈ [αfr , α
f
r ]

(10.9)

where ∆uk+i, also known as slew rate, represents the time variation of uk+i and is used

to add an integral action to the system. ∆Uk and Xk represent the optimal control

input and state variables sequences, respectively. However, note that, although this

CNLOC problem is able to provide a solution to the planning problem there exists a

high computational load when solving it and, hence, becoming a not implementable

solution for online planning problem in real embedded systems.

10.4 Space-domain vs time-domain planning

Both spaces are appropriate depending on the application, being sometimes the use of

one more advantageous than another. From the point of view of a continuous model,

this will be discretized using a constant sample space in the case of space-domain or a

constant sample time in the case of time-domain.

On the one hand, in the domain of space, the vehicle model will evolve at constant steps

of space as if it were on a grid where the size of the advanced space is given by the

size of the grid. This representation is very useful when our system is for some reason

based on space. Note that, the curvature-based model presented in 3.2.2 contains the

curvature variable (κ) which is a function of the distance traveled (s) on the track. In

this way, when we make a prediction in the MPC strategy we can know perfectly the

curvature since we know what we are going to advance in that iteration (constant space).
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However, this space-based formulation of the model is complex and therefore its LPV

representation is not trivial.

On the other hand, the planning using the vehicle model expressed in the time domain

loses precision in the solution since the curvature of the track is calculated with the vari-

ables obtained in the previous optimization which may not be global optimal. However,

non-linear expressions of the vehicle model in time-domain are more suitable for LPV

reformulation. Table 10.1 presents the main advantages and disadvantages.

Table 10.1: Advantages and disadvantages

NL-MPP space-domain NL-MPP time-domain
Advantages curvature acts as a reference since loss of accuracy: curvature is calculated

is a space function with previous optimization variables
Disadvantages complex LPV formulation reachable LPV formulation

10.5 LPV-MPP formulation

In this section, we present a novel formulation for the optimal problem in time-domain

(10.9) using the LPV representation of the non-linear vehicle model. The key idea of

this approach relies on the use of an LPV-based modeling which provides the ability to

simulate the vehicle dynamics with a low computational cost. This imply that, at every

discrete time k, a set of Hp instantiations of the LPV representation (4.14) are used

to compute the online trajectory. In addition, in order to formulate the optimization

problem in the same form as (10.9), the non-linear speed function (10.5) has to be

represented in a quadratic form to handle the problem as a constrained linear quadratic

optimal control (CLQOC) problem.

10.5.1 Convexifying the objective function

At this point, the cost function of the CNLOC problem (10.9) consists on a quadratic

term (Jα) and a non-linear part (JV ). In this section, the methodology for convexifying

the non-linear term JV is addressed. The objective is to find out a linear-quadratic

formulation that approximates the non-linear equation of the vehicle velocity

V =
vx cos θe − vy sin θe

1− yeκ
, (10.10)
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such as

V ≈ VQP = sTQs+ qT s . (10.11)

Since the original objective function in the optimization problem is to maximize (11),

then we look for a concave formulation such that it can be introduced in the CLQOC

problem as the minimization of its convex version. Studying the problem, we find that

approximating the original function is a difficult task and only making some assumptions

we can find a suitable result. In particular, on one hand, we observe that there is not a

strong relationship with variable κ, such that s :=
[
vx vy θe ye

]T
. On the other

hand, we consider the use of a diagonal Q matrix which simplifies the approximation of

(10.10) using (10.11).

Least-squares techniques for fitting polynomials are limited for this purpose to provide a

quadratic model, with constant and quadratic terms but avoiding the linear term which

may not fit the objective.

To solve this problem, we propose the following constrained linear quadratic optimal

problem

min
Q,q

M∑
i=0

‖Vi − V QP
i ‖2

s.t.

V QP
i = sTi Qsi + qT si

diag(Q) < 0

(10.12)

where Q = QT ∈ R4×4 < 0 and q ∈ R4 are the optimization variables and M denotes

the length of the optimization problem. Note that due to the last constraint in (10.12),

the resulting V QP is defined as a strictly concave function.

Finally, after formulating the LPV model and the convex objective function, we present

the following CLQOC problem that is solved at each time k to determine the next



LPV-MP Planning for Autonomous Racing Vehicles considering Obstacles 164

sequence of states considering that the values of xk and uk−1 are known

min
∆Uk,Xk

(
−

Hp∑
i=0

V QP (xk+i) +

Hp∑
i=0

‖αfk+i − αrk+i‖
2
R +

Hp∑
i=0

‖σk+i‖2P
)

s.t.

xk+i+1 = xk+i +
(
A(ζk+i)xk+i +B(ζk+i)uk+i

)
Ts , ∀i = 0, ...,Hp

uk+i = uk+i−1 + ∆uk+i

uk+i ∈ [u, u]

yek+i ∈ [yek + σk+i, yek − σk+i]

αfrk+i ∈ [αfr , α
f
r ]

, (10.13)

where R ∈ R1x1 ≥ 0 and P ∈ R1x1 ≥ 0 are weighting scalars. Note that, the third

component in the objective function aims to minimize the slack variable σ introduced

over the lateral error state. This choice is made to provide the optimal problem some

flexibility.

10.6 Introducing Static Obstacles

This section addresses the static obstacle avoidance problem during the planning task.

The procedure is mainly based on two steps. First, the computation of a safety polytope

that contains the obstacle is done based on the information provided by the perception

layer (not presented in this chapter). This polytope is chosen to be a rectangle in this

chapter. Second, the computation of the new lateral bounds of the road taking into

account the obstacle polytope is addressed.

The proper detection and position computation of the particular obstacle are simulated

as if they were done by a higher perception layer using stereo-based cameras. This

hardware provide a cloud of points on the obstacle’s edge with their respective RGB

data and distance to the camera. Then, projecting these cloud points to the hyperplane

hp, we are able to compute the frontal face of the polytope containing the obstacle (see

Figure 10.1). Note that, such a hyperplane is always orthogonal to the road orientation.

At this point, the planning stage computes the polytope that contains the obstacle. First,

the hyperplane hp is extended using a safety distance ys. Then, the rectangle is closed

by using the vehicle diagonal length, denoted by d. Note that, the obstacle is assumed
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Figure 10.1: The above figure depicts how the perception layer detects the vehicle
using stereo-based cameras. Below, the planning layer computes the lateral error area

based on the obstacle set (red box)

to have the same width and diagonal length than the UPC Driverless vehicle (see Table

9.1). In addition, the election of ys is made taking into account the half width of the

vehicle plus an extra distance for safety reasons. Once the polytope is obtained, the

new lateral bounds can be computed. To do so, an incremental variation of the limit of

the lateral error (yek) is determined using Algorithm 1 computing then the lateral error

vector as

Ye = [ye0, ..., yeHp ] . (10.14)

This vector is computed at every discrete time k and introduced as an input to the

CLQOC problem. Note that this approach may be conservative but very efficient com-

putationally.
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Figure 10.2: Simplified view of the planning strategy. The left part represents the set
of inputs, i.e. vehicle position, road limits and track curvature. The right side shows

the planned trajectory for a particular discrete time k

Input : sobs, hp, last predicted vehicle states (4.14b)
Output: Free road limits (Ye)
integrate (10.10) to obtain ŝ using the last predicted states and the reference κ
given the predicted vector ŝ, obtain the vector index (iobs) at which ŝ ≈ sobs
compute ∆ye = hp+ys

Hp
.

for i = 1; i < Hp + 1; i = i+ 1 do∑
Ey += ∆ye;

if ŝ(iobs − i) > 0 then
Ye(i) =

∑
Ey

end
end

Algorithm 1: Road limits algorithm (see Figure 10.1)

10.7 Results

In this section, the performance of the proposed racing LPV-MPP approach (10.13) is

evaluated. To do so, a comparison against its non-linear version (10.9) is presented as

well as the performance in different scenarios. However, before entering into the details,

it is important to emphasize that in racing scenarios it is necessary to have a minimum

of knowledge about the evolution of the track. Thus, in this chapter, we consider the

curvature of the track as a known variable to perform the racing trajectory planning. The

details of the experimental set up and simulated scenarios are presented in the following.
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Figure 10.3: Resulting two laps trajectories for the proposed LPV approach and the
NL approach on the free obstacle scenario

10.7.1 Simulation/Experimental Set Up

For evaluating the proposed architecture, we perform simulations using the UPC Driver-

less vehicle model which is described in Section 9.3 with parameters defined in Table

9.1. Note that, at the first CLQOC iteration the time evolution of the scheduling vector

Input : Current vehicle states (xk), past control input (uk−1), Free road limits (Ye),
Track curvature (κ)

Output: Vehicle states defining the predicted trajectory (xk+i) , ∀i = 1, ...,Hp

if k = 1 then
initialize the evolution of scheduling vector ζ

else
instantiate the scheduling vector ζ using previous predicted data

end
compute the set of Hp LPV instantiations (4.14), i.e. Ak+i and Bk+i , ∀i = 0, ...,Hp

xk+i ← CLQOC(A(ζ), B(ζ), xk, uk−1, Ye, κ) , ∀i = 1, ...,Hp

go to step 1

Function CLQOC(A(ζ), B(ζ), xk, uk−1, Ye, κ):
solve QP (10.13) using GUROBI, xk+i = CLQOC( A(ζ), B(ζ), xk, uk−1, Ye, κ )
interpolate the solution at the control sampling time
return

Algorithm 2: LPV-MP Planning algorithm (see Figure 10.2)

is not known. At this point, we solve this problem by generating such evolution based

on previous knowledge on how the states of the system evolve. Once this initialization
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is done, the predictions are used to instantiate the set of next Hp models of the LPV

model. The sampling time used is Ts = 300 ms and such a prediction horizon Hp is set

to 15 steps, this implies 4.5 s of future behaviour prediction, i.e. the trajectory.

Matrices A(ζ) and B(ζ) in (10.13) are instantiated online before the optimization starts

which implies a set of Hp LPV model instantiations entering the optimal problem. Note

that, tire stiffness coefficients in (4.14e), i.e. Cf and Cr, are also properly instantiated

online using (4.7) and Table 9.1 as a function of αf and αr. The model used in the

CLQOC problem is dependent on the curvature. This means that it is required to know

the curvature of the circuit at every moment to instantiate the vehicle LPV model. In

addition, the limits of the navigable space, i.e. space to which obstacles do not belong,

are required by the optimization problem. These limits will vary depending on possible

static obstacles throughout the track.

The solutions of problem (10.12) are obtained considering

Q = diag
[
−1.2× 10−4 −9.704 3.5× 10−5 −0.154

]
q =

[
1.007 0.187 6.1× 10−7 −0.032

]
.

(10.15)

Note that, since the vector state in (10.13) is the one defined in (4.14b), the obtained

matrices Q and q are restructured properly to be

Q = diag
[
−1.2× 10−4 −9.704 0 3.5× 10−5 −0.154 0 0

]
q =

[
1.007 0.187 0 6.1× 10−7 −0.032 0 0

]
.

(10.16)

The control inputs bounds are set to δ = −δ = 0.3 rad and a = −a = 12m
s2
. Front and

rear wheels slip angles are limited to αfr = −αfr = 0.16 rad. Lateral error limits are set

in next sections since they will vary with the obstacles.

Both the LPV-MPP and NL algorithms are implemented in Matlab R2017a on a Dell

Inspiron 15 5000 Series using a Intel core i7-8550U CPU @ 1.80GHzx8. For solving the

non-linear optimization problem (5) used as baseline solution, IPOPT solver [Wächter,

A, et al., 2006] is used while for solving the QP problems GUROBI solver [Optimization,

Gurobi., 2014] is used, both through YALMIP [Lofberg, J., 2004] framework.

The pseudo-code for the implementation of LPV-MP Planning is shown in Algorithm 2.
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10.7.2 Free Track Racing Planning

In this experiment, we compare the LPV-MPP strategy against its time-domain non-

linear version (see Section 10.3) in a free obstacles track. Algorithm 2 is used to obtain

the LPV-MPP results. To solve the non-linear version for comparison, we solve problem

(10.9).

The simulated trajectories are depicted in Figure 10.3 for one lap. It can be seen how

the non-linear version performs a bit smoother than the proposed LPV approach, even

though at a higher computational cost, around 50 times slower (see Figure 10.5). The

simulated track has a width of 4 m, hence, the lateral error bounds in (10.9) and (10.13)

are set to be symmetric such that ye = −ye = 2 m.

The velocities, slip angles and lateral errors for the whole simulation are displayed in

Figure 10.4. It can be seen that LPV-MPP delivers a similar solution to the NL-MPP

one for the compared vehicle states. The lateral error with respect to the center line

of the road is the most important state for solving this problem. We allow the vehicle

to have up to 2 m of lateral error in order to find the best path. By looking into the

iterations interval [60-80], it can be appreciated that the LPV-MPP ye achieves higher

values implying then the vehicle approaches more to the road limits in comparison to

the NL-MPP response. However, this is still a good solution for the racing trajectory

planning that allows the real time implementation.

In Table 10.2, a comparison is made in terms of mean values. The great difference is

not in the solution but in the elapsed time at each iteration what makes the LPV-MPP

strategy a much faster approach and therefore a suitable option to be implemented on-

line in real-time on embedded systems.

Table 10.2: Mean values of longitudinal velocity and acceleration, elapsed time and
slip angles difference

vx ax te αr − αr
NL-MPP 50.1 0.615 2.961 -4.8 10−4

LPV-MPP 50.6 0.616 0.057 -6.5 10−4
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Figure 10.4: Velocities, slip angles and lateral error throughout the simulation: dotted
lines represent the state limits considered in the optimal problem

10.7.3 Static Obstacles Racing Planning

In this section, the validation is made considering static obstacles within the track. Three

obstacles are introduced in strategic points of the circuit. The objective of the planner

is to maximize the lap velocity while avoiding the three obstacles introduced along the

circuit.

The obstacle detection is assumed to be done outside this planning procedure as it was

explained in Section 10.6. Then, as it is depicted in Figure 10.2, the new limits of the road

are updated at every iteration taking into account the obstacle. Therefore, these limits
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Figure 10.5: Computational time cost for both compared strategies: NL-MPP mean
elapsed time is 2.961 s and LPV-MPP mean elapsed time is 0.0567 s
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Figure 10.6: Resulting one lap trajectories for the proposed LPV approach and the
NL approach on the obstacle scenario

are introduced as a new bounds for lateral error state (ye, ye) in the optimal problem

(10.13).

As in Section 10.7.B, we compare the performance of the NL-MPP and LPV-MPP plan-

ning approaches. The planned trajectories are shown in Figure 10.6. At a first glance, it

can be seen that the NL-MPP approach provides a smoother trajectory. The velocities,

slip angles and lateral errors for the whole simulation are presented in Figure 10.7.
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Figure 10.7: Velocities, slip angles and lateral error throughout the simulation: dotted
lines represent the state limits considered in the optimal problem

In this graphical comparison, it is observed a greater difference between their responses.

Both slip angles, which are important variables in racing, remain inside the allowed

region. However, the LPV-MPP approach perform sharper solutions.

Table 10.3 illustrates the resulting comparison in terms of mean values. It can be observed

that the non-linear approach is able to minimize more the difference between slip angles

reducing then over and understeering behaviours. However, the LPV-MPP performs an

acceptable solution and its computational time is much lower. To conclude this section,
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Table 10.3: Mean values of longitudinal velocity and acceleration, elapsed time and
slip angles difference

vx ax te αr − αr
NL-MPP 49.9 0.613 3.032 -6.4 10−4

LPV-MPP 50.6 0.607 0.062 -8.7 10−4

we measure the elapsed time of both performances. However, we do not observe large

differences comparing to the case without obstacles so we refer to the same Figure 10.5.

10.8 Conclusion

In this chapter, an innovative solution for the online trajectory planning problem con-

sidering static obstacles and focused on racing behaviours has been presented. First, the

space-domain and the time-domain representations are presented as well as their optimal

formulations for trajectory planning. They are later compared.

Then, from the time-domain representation, we propose an effective online planning solu-

tion for autonomous vehicles where we focus on improving the computational load while

preserving high levels of performance in racing scenarios. While most of the strategies

in the literature overcome the planning problem using low complexity-based models, we

aim to reformulate the non-linear vehicle equations to be expressed in an LPV form. To

formulate the MPP problem, we first convexify the non-linear objective function in a

linear-quadratic form. Then, we solve it using the LPV vehicle model for predicting the

trajectory in a particular horizon. In addition, the algorithm has the ability of avoiding

obstacles in a very simple way using exogenous track information. The limits of the

lateral error vary inside the model predictive problem to take into account such static

obstacles.

We test and compare the performance of the proposed strategy against its non-linear

approach through simulations. We focus on the performance of our planning approach

in a racing track. First, in a free track scenario and next in a scenario with static obstacles

allow to show that the proposed method reduces the planning computation elapsed time

while finding a suitable trajectory under the proposed constraints.



Chapter 11

Conclusions and future work

This thesis has proposed some contributions to the state estimation, automatic control

and trajectory planning areas of the self driving field, with an emphasis to their appli-

cation to racing situations. This chapter summarizes the work presented in this thesis,

in order to review the main conclusions and explore the possibilities of further research.

11.1 Conclusions

Estimation, planning and control strategies for autonomous vehicles have been investi-

gated throughout the last decades, and several theoretical and experimental results have

been presented in the literature. Nevertheless, there is still space for further investigation.

This thesis has contributed to the advance of the state of the art of this field.

• Chapters 3 and 4 have addressed the variety of models that describe the vehicle

motion from a non-linear perspective first and then their corresponding LPV rep-

resentation has been formulated. It has been stated the main differences between

kinematic and dynamic vehicle models as well as a comparison between Cartesian

and Polar representations. It has been also shown how the non-linear embedding

approach is used for building the LPV model representation. Finally, a particular

space domain representation has been presented for a specific planning strategy for

racing behaviours.

174
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• Chapter 5 has considered the problem of designing a non-linear control strategy

based on Lyapunov stability criterion for controlling an autonomous ground vehi-

cle. To adjust this controller, an iterative algorithm has been proposed to adjust

the state feedback control law constants while ensuring overall system stability and

certain levels of performance. To do so, using the LPV formulation of the reference-

based kinematic model in closed-loop, an optimal asjustment of the controller has

been made by solving an LQR-LMI based problem. Furthermore, such an adjust-

ment has been improved by forcing the poles of the closed-loop dynamic part to

be faster in comparison to the ones of the closed-loop kinematic part for achieving

a decoupling between the two loops. Finally, it has been shown the performance

of the vehicle in simulation obtaining satisfactory results, and it has been achieved

the expected goal of moving autonomously from a starting point to a final point in

a comfortable way in a real test scenario.

• In Chapter 6, a cascade control scheme for controlling an autonomous vehicle

at normal driving behaviour has been presented. The outer layer controls the

kinematics of the vehicle and the inner layer the vehicle dynamics. Both con-

trol designs have been carried out using the LQR/H2 LMI-based formulation for

polytopic kinematic LPV and dynamic LPV representations. Furthemore, an in-

novative LPV-UIO design has been presented to estimate dynamic vehicle states

as well as the friction force as a exogenous disturbance. Then, a friction force

compensation mechanism has been presented allowing the vehicle to compensate

fast friction changes as well as reducing the control effort. Finally, the obtained

gain scheduling LPV-LQR control approach, jointly with the LPV-UIO and a tra-

jectory planning module, has presented suitable results in a simulated scenario. In

the same way, a comparison has been shown about the friction force estimation,

which shows the usefulness of this approach.

• Chapter 7 has proposed a cascade control/observer structure for solving the au-

tonomous racing problem. Then, a model predictive technique for controlling the

kinematics of the vehicle, a GS-TS controller to deal with the vehicle dynamics and

an optimal estimator have been considered. The novel kinematic control has been

designed using the MPC technique with the prediction model expressed as a TS

model using the non-linear embedding approach. On the other hand, the dynamic

control has been addressed using the LQR strategy, with a TS modeling approach
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and using a discrete-time LMI formulation of the problem (TS-LMI-LQR). A com-

parison has been made between two methods of solving the control problem: using

the NL-MPC and using the TS-MPC approach that is based on instantiating the

TS model at each prediction step within the prediction stage using planning data.

Such comparison has demonstrated a similar control performance but in a much

faster way in the case of the TS-MPC technique. In addition, a novel estimation

formulation (TS-MHE-UIO) has been introduced. This has been brought in with

the aim of estimating dynamic states and exogenous disturbances acting on the

vehicle.

• In Chapter 8, a solution to the racing control problem of autonomous vehicles

has been proposed. An LPV-MPC strategy has been proposed as a novel approach

to provide a realistic driving behaviour in real-time. In addition, using racing-

based references provided by an external planner the controller makes the vehicle

to perform in racing mode. For a good control performance, an offline identification

of unknown vehicle coefficients has been carried out. The proposed strategies have

been tested in simulation and in real experiments showing potential and similar

results among them, thus strengthening the task of the simulator. In the real test,

we have showed the contribution of the controller which have been able to solve

a 20 steps prediction at 33 Hz and thus follow the racing trajectory previously

established. The disadvantage found in this strategy is the system initialization

due to the need to instantiate the LPV model.

• Chapter 9 has considered the study of introducing robust performance to the pre-

vious LPV-MPC scheme. Then, using a zonotope-tube-based LPV-MPC scheme,

the focus has been on improving the computational load while preserving high lev-

els of robustness and performance in racing scenarios. The tube has been computed

using zonotopes theory which makes the Minkowski sum and difference of sets af-

fordable from a computational point of view and less conservative since there is

not approximations. Consequently, we have observed that the prediction horizon

can be increased since, due to the precision of calculation using zonotopes, the

reachable set does not grow conservatively maintaining a more adjusted shape. To

reject the effect of acting disturbances maintaining robustness, a polytopic local

controller has been designed solving the H∞-based LMI problem. Furthermore,
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such a local controller is updated at a higher frequency than the nominal con-

troller (LPV-MPC). Finally, we have tested and compared the performance of the

proposed strategy against a current state of the art tube-based MPC. We have

shown the effectiveness of the presented approach in a disturbed racing scenario

being able to perform online tube-based MPC with a high performance and reduced

computational cost.

• In Chapter 10, an innovative solution for the online trajectory planning prob-

lem considering static obstacles and focused on racing behaviours has been pre-

sented. Two representations, the space-domain and the time-domain, have been

presented as well as their optimal formulations for trajectory planning. In the time-

domain representation, we have proposed an effective online planning solution for

autonomous vehicles where the focus is on improving the computational load while

preserving high levels of performance in racing scenarios. This algorithm has en-

hanced the state of the art solutions since it reformulates the non-linear vehicle

equations to be expressed in an LPV form, hence, speeding up the computations

while preserving similar performance levels. In addition, the algorithm has shown

the ability of avoiding obstacles in a very simple way using exogenous track infor-

mation. We have tested and compared the performance of the proposed strategy

against its non-linear approach through simulations. We have focused on the per-

formance of our planning approach, first, in a free track scenario and later in a

scenario with static obstacles allowing to show that the proposed method reduces

the planning computation elapsed time while finding a suitable trajectory under

the proposed constraints.

11.2 Perspectives and future work

This section resumes the open issues that could be addressed in future work.

• The analysis and synthesis based on LMI techniques for LPV models proposed in

Chapters 5 and 6 have demonstrated to generate controllers with some degree

of conservativeness. Then, future research will study other design approaches such

as the grid-based technique where conservatism is reduced.
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• The different vehicle models used throughout the thesis have proved to be more

than enough for the different applications addressed. However, in order to improve

race behavior, a 4-wheel vehicle model should be developed as future work. Lon-

gitudinal dynamics of the tire and dynamics would be introduced in the steering

column, thus obtaining a model whose control actions would be torques applied to

the steering column and the wheel drive axle.

• The estimation methodologies presented in Chapters 6 and 7 have been de-

veloped for third order dynamic vehicle models. Future research will extend the

MHE-UIO strategy to estimate the complete set of vehicle states, i.e. kinematic

and dynamic variables, using the robust zonotope-tube-based approach applyed in

Chapter 9.

• The trajectory planning approach developed in Chapter 10 has been addressed

under static obstacle racing environment. However, the real world is constantly

moving and therefore interaction with the mobile environment is necessary. Future

research will extend the proposed technique to solve the problem of trajectory

planning with moving obstacles. Furthermore, the study of a robust approach to

ensure safe trajectories is necessary.

• Some of the presented control-estimation techniques have demonstrated an inter-

esting performance in real tests. However, some others have not been experimen-

taly tested. Then, future work will implement the advanced techiques presented

throughtout the thesis in embedded platforms and interesting discussions will be

extracted.

• The racing oriented control technique developed in Chapter 8 has achieved re-

markable results. However, learning-based techniques like ANFIS will be inves-

tigated to verify whether an LPV control structure that represents the NL-MPC

behaviour could be successfully learned.

• The robust MPC have been studied in Chapter 9 by bounding the predicted error

in an adaptive tube considering exogenous disturbances. However, future research

will extend the zonotope-tube-based LPV-MPC technique to be robust also against

uncertain scheduling variables.



Appendix A

Derivation of the reference-based

kinematic model

The content of this appendix is based on the following work:

• Alcalá, Eugenio, et al. [2018.A] Alcalá, E., Puig, V., Quevedo, J., Escobet, T., &

Comasolivas, R. (2018). Autonomous vehicle control using a kinematic Lyapunov-

based technique with LQR-LMI tuning. Control engineering practice, 73, 1-12.

The dynamics of the error posture are what is needed for the trajectory tracking problem.

Hence, (3.3) needs to be differentiated in order to obtain the error model. The equations

of motion for each state of the error model are derived here for completeness.

• Time derivative of xe.

The equation that need to be derived is the one correspondent to the first row in (2)

such as

ẋe = (ẋd − ẋ) cos(θ) + (ẏd − ẏ) sin(θ)

− (xd − x)θ̇ sin(θ) + (yd − y)θ̇ cos(θ)

= ẋd cos(θ)− ẋ cos(θ) + ẏd sin(θ)− ẏ sin(θ)

− (xd − x)θ̇ sin(θ) + (yd − y)θ̇ cos(θ) .

179
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Applying the change θ̇ = ω the last equation can be expressed as

ẋe = ẋd cos(θ)− ẋ cos(θ) + ẏd sin(θ)− ẏ sin(θ)

− (xd − x)ω sin(θ) + (yd − y)ω cos(θ) .

From the equation of ye in (3.3), we know that ye = −(xd − x) sin(θ) + (yd − y) cos(θ)

which appears in the previous equality. Hence

ẋe = ẋd cos(θ)− ẋ cos(θ) + ẏd sin(θ)− ẏ sin(θ) + ωye .

The negative terms of the previous equality, i.e. −ẋ cos(θ) and −ẏ sin(θ), can be devel-

oped using the equations of model (3.2) considering α = 0

ẋ cos(θ) + ẏ sin(θ) = v cos(θ) cos(θ) + v sin(θ) sin(θ)

= v(sin2(θ) + cos2(θ)) = v

and introducing this result in the previous one (ẋe) the following expression is obtained

ẋe = ẋd cos(θ)− v + ẏd sin(θ) + ωye .

By definition: θe = θd − θ, then θ = θd − θe. Replacing θ in ẋe results in

ẋe = ẋd cos(θd − θe)− v + ẏd sin(θd − θe) + ωye .

The trigonometric identities for cos(α− β) y sin(α− β) are used in the next step

ẋe = ẋd(cos(θd) cos(θe) + sin(θd) sin(θe))− v

+ ẏd(sin(θd) cos(θe)− cos(θd) sin(θe)) + ωye

= ωye − v + (ẋd cos(θd) + ẏd sin(θd)) cos(θe)

+ (ẋd sin(θd)− ẏd cos(θd)) cos(θe) .

The non-holonomic constraint for the real wheels is: ẋd sin(θd) = ẏd cos(θd). Therefore

ẋe = ωye − v + (ẋd cos(θd) + ẏd sin(θd)) cos(θe) .
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Following the same procedure that was used before, the terms inside the parenthesis

become

ẋd cos(θd) + ẏd sin(θd) = vd cos(θd) cos(θd) + vd sin(θd) sin(θd)

= vd(sin
2(θd) + cos2(θd)) = vd .

Finally, using the previous equality, the result for ẋe is

ẋe = ωye − v + vd cos(θe) . (A.1)

• Time derivative of ye.

The derivation of the ẏe is similar to the one used for ẋe. The equation that need to be

derived is the one correspondent to the second row in (3.3) such as

ẏe = −(ẋd − ẋ) sin(θ) + (ẏd − ẏ) cos(θ)

− (xd − x)θ̇ cos(θ)− (yd − y)θ̇ sin(θ) .

We had xe = (xd − x) cos(θ) + (yd − y) sin(θ) from (2) which appears in the previous

equality and we also know θ̇ = ω. Hence the last expression can be represented as

ẏe = −(ẋd − ẋ) sin(θ) + (ẏd − ẏ) cos(θ)− xeω

= −xeω + ẋ sin(θ)− ẏ cos(θ)− ẋd sin(θ) + ẏd cos(θ) .

The non-holonomic constraint for the rear wheels is: ẋ sin(θ) = ẏ cos(θ). Therefore

ẏe = −xeω − ẋd sin(θ) + ẏd cos(θcur) .

The error in θ is θe = θd − θ, then θ = θd − θe. Replacing θ in the previous equation

ẏe = −xeω − ẋd sin(θd − θe) + ẏd cos(θd − θe) .
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The trigonometric identities for cos(α− β) y sin(α− β) are used in the next step

ẏe = −xeω − ẋd(sin(θd) cos(θe)− cos(θd) sin(θe))

+ ẏd(cos(θd) cos(θe) + sin(θd) sin(θe))

= −xeω + (ẋd cos(θd) + ẏd sin(θd)) sin(θe)

+ (ẏd cos(θd)− ẋd sin(θd)) cos(θe) .

The same non-holonomic constraint is fulfilled for the reference car ẋd sin(θd) = ẏd cos(θd).

Using this constraint in ẏe

ẏe = −xeω + (ẋd cos(θd) + ẏd sin(θd) sin(θe) .

Following the same procedure that was used before, the terms inside the parenthesis

become

ẋd cos(θd) + ẏd sin(θd) = vd cos(θd) cos(θd) + vd sin(θd) sin(θd)

= vd(sin
2(θd) + cos2(θd)) = vd .

Finally, using the previous equality, the result for ẏe is

ẏe = −xeω + vd sin(θe) . (A.2)

• Time derivative of θe.

The last state that need to be derivated is θe. This one is straightforward, the equation

to differentiate is: θe = θd − θ.

The result is

θ̇e = θ̇d − θ̇ = ωd − ω . (A.3)

Kinematic error model equations
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The obtained result for the error model, equations (A.1) to (A.3), are shown here in

matrix form 
ẋe

ẏe

θ̇e

 =


ωye − v + vd cos(θe)

−ωxe + vd sin(θe)

ωd − ω

 . (A.4)
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