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GABRIEL-ZISMAN COHOMOLOGY AND SPECTRAL SEQUENCES

IMMA GÁLVEZ-CARRILLO, FRANK NEUMANN, AND ANDREW TONKS

ABSTRACT. Extending constructions by Gabriel and Zisman, we develop a func-
torial framework for the cohomology and homology of simplicial sets with very
general coefficient systems given by functors on simplex categories into abelian
categories. Furthermore we construct Leray type spectral sequences for any map
of simplicial sets. We also show that these constructions generalise and unify the
various existing versions of cohomology and homology of small categories and
as a bonus provide new insight into their functoriality. Cohomology of simplicial
sets, cohomology of categories, Gabriel-Zisman cohomology, spectral sequences

INTRODUCTION

The purpose of this article is to investigate systematically the functoriality of Gabriel-
Zisman cohomology and homology of simplicial sets. Gabriel-Zisman (co)homology
was introduced by the authors in [15] inspired by constructions originally due to
Thomason [33], Gabriel-Zisman [12] and Dress [9] in order to give a simplicial
interpretation of the various (co)homology theories for small categories includ-
ing Baues-Wirsching and Hochschild-Mitchell (co)homology (compare [2, 14, 26]).
Gabriel-Zisman (co)homology is defined for any simplicial set X with most gen-
eral coefficient systems given by functors from the associated simplex category
∆/X to a given abelian category A . More precisely, we will work here with gen-
eral coefficient system functors from ∆/X with values in arbitrary abelian cate-
gories A , which are complete with exact products when considering cohomol-
ogy and which are cocomplete with exact coproducts when considering homology.
In particular, all constructions will work just fine when using coefficient systems
functors with values in the category Ab of abelian groups. It turns out that these
general coefficient systems, which we call Gabriel-Zisman natural systems, pro-
vide a systematic framework to study the (co)homology of simplicial sets, espe-
cially with respect to general naturality and functoriality properties. In particular
we will also show in a direct way how Thomason (co)homology of small categories
can be interpreted as Gabriel-Zisman (co)homology using the nerve construction
and how its functoriality and naturality properties are just direct consequences of
those of Gabriel-Zisman (co)homology. Another advantage of our approach is that
using duality we get at once both cohomology and homology theories for small
categories and simplicial sets. Furthermore, we will construct Leray type spectral
sequences for Gabriel-Zisman cohomology and homology for any map f : X → Y
of simplicial sets and identify the lower terms of these spectral sequences for par-
ticular coefficient systems. The Leray-Serre spectral sequences in cohomology and
homology for Kan fibrations of simplicial sets are specialisations of these general
Leray type spectral sequences (compare [9, 12]). We aim to use these general Leray
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type spectral sequences in the future for calculations in various different situations
and frameworks from algebraic geometry, algebraic topology and category theory.

In a related homological context, Fimmel [11] developed a theory of Verdier du-
ality for a particular class of cohomological coefficient systems on simplicial sets,
corresponding via geometric realisation to sheaves on topological spaces. Such a
duality theory was first conjectured by Beilinson and allows for interesting appli-
cations for example to Beilinson’s theory of local adeles [3] and to buildings for
representations of reductive algebraic groups over finite fields. We expect that our
general functorial formalism and the construction of Leray type spectral sequences
developed here will give new insights and calculational tools in these algebraic sit-
uations.

Similar constructions as those considered here could also be made for cubical
instead of simplicial sets as indicated by recent work of Husainov on the homology
of cubical sets [21, 22].

The article is structured as follows: In the first section we will recall fundamen-
tal constructions from the theory of simplicial sets and then introduce the general
concepts of Gabriel-Zisman cohomology and homology of simplicial sets, study
their functorial properties and show how these constructions unify and generalise
existing notions of cohomology and homology of small categories. We also discuss
several interesting examples for future exploration and applications. In the second
section we will construct Leray type spectral sequences in Gabriel-Zisman coho-
mology and homology for any map of simplicial sets within our general frame-
work. We will then specialise the coefficient systems for particular situations to
be able to identify the lower pages of these spectral sequences in more familiar
terms. And finally, the classical Leray-Serre spectral sequences for cohomology
and homology of a Kan fibration of simplicial sets will be derived as special cases.

1. GABRIEL-ZISMAN (CO)HOMOLOGY OF SIMPLICIAL SETS

1.1. Categories of simplices and simplex categories. We will collect in this sub-
section several fundamental concepts from the theory of simplicial sets and small
categories, which will be needed later (compare also the systematic accounts in [12,
17, 23, 25, 16] and [30]).

Let ∆ as usual be the category whose objects are the totally ordered finite sets
[m] = {0 < 1 < · · · < m} and whose morphisms are the order preserving functions
θ : [m] → [n] between them. Alternatively, we can regard∆ as a full subcategory of
the category Cat of small categories, whose objects are the categories [m] = (0 →
1 → · · · → m).

Among the morphisms of ∆ are the coface maps

δi : [n− 1] → [n], 0 ≤ i ≤ n

δi(0 → 1 → · · · → n− 1) = (0 → 1 → · · · → i− 1 → i+ 1 → · · · → n),

composing the arrows i− 1 → i → i+ 1, and the codegeneracy maps

ηj : [n+ 1] → [n], 0 ≤ j ≤ n,

ηj(0 → 1 → · · · → n+ 1) = (0 → 1 → · · · → j → j → · · · → n)

inserting the identity morphism idj in the j-th position. These morphisms δi and
ηj satisfy the usual cosimplicial identities and give a set of generators and relations
for the category ∆ (compare [5], [17] and [25]).

Let C be a category. A simplicial object in C is a functor X : ∆op → C . Dually,
a cosimplicial object in C is a functor X : ∆ → C . In particular, if C = Set is the
category of sets a functor X : ∆op → Set is called a simplicial set and a functor
X : ∆ → Set a cosimplicial set. Simplicial objects in a category C form a category
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∆opC , where the morphisms are natural transformations. Dually, we have the
category of cosimplicial objects ∆C .

In the category ∆opSet of simplicial sets we can consider for every integer n ≥
0 the representable simplicial set ∆[n] = Hom∆(−, [n]) called the standard [n]-
simplex. The n-simplices Xn of a simplicial set X are given as Xn = X([n]) and we
sometimes will also write X• = {Xn}n≥0 to denote a simplicial set. As usual, we
will denote by di : Xn → Xn−1 for 0 ≤ i ≤ n the face maps and by sj : Xn → Xn+1

for 0 ≤ j ≤ n the degeneracy maps.
The Yoneda Lemma readily implies that the n-simplices of a simplicial set X are

in bijective correspondence with the morphisms of simplicial sets from ∆[n] to X
i.e., Xn

∼= Hom∆opSet(∆[n], X). Thus morphisms of simplicial sets ∆[n] → ∆[m]
can be identified with morphisms [n] → [m] of ∆ and vice versa.

Definition 1.1. Let X be a simplicial set. The category of simplices or simplex category
of X is the comma category ∆/X whose objects are the simplices x of X and whose
morphisms x → x′ are morphisms θ of ∆ such that x = X(θ)(x′). Alternatively,
the objects are pairs ([m], x), where x : ∆[m] → X , and morphisms are commuting
triangles,

∆[m]
θ //

x
""❊

❊❊
❊❊

❊❊
❊

∆[m′]

x′

||①①
①①
①①
①①

X.

Given a map f : X → Y of simplicial sets there is a functor

∆/f : ∆/X → ∆/Y

given by (∆/f)(x) = fx.

The opposite category of the category of simplices ∆/X of X can also be inter-
preted as the Grothendieck construction for the functor X : ∆op → Set, that is, as
the category

(∆/X)op =

∫

∆op

X.

It also comes together with a natural projection functor

P op : (∆/X)op =

∫

∆op

X → ∆op,

which is a discrete Grothendieck fibration i.e., a Grothendieck fibration where all
the fibers are sets. In fact, every discrete Grothendieck fibration

P : C → ∆

can be obtained as the Grothendieck construction
∫

∆
X of the functor

X : ∆op → Set, X([n]) = Xn = P−1([n]).

This gives an equivalence of categories

DiscFib(∆)
≃
↔ ∆op

Set

between the category of discrete Grothendieck fibrations over ∆ and the category
of simplicial sets, which is a very special case of the equivalence of 2-categories
between the 2-category Fib(B) of Grothendieck fibrations over a small category
B and the 2-category of contravariant pseudofuncors PsdFun(Bop,Cat) from B

into the 2-category Cat of small categories (see [15, 2.3] and [19]).
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Any contravariant functor from a small category C into the category of sets is a
colimit of representable functors HomC (−, c), and the Density Theorem [25, Chap.
III, §7, Thm. 1] states that we can recover a simplicial set X via the isomorphism

X ∼= colim
([m],x)∈∆/X

∆[m].

Let us here also recall that the nerve N (C ) of a small category C is the simplicial
set N (C )• = {N (C )n} whose n-simplices are given as

N (C )n = HomCat([n],C ).

In more concrete terms, an n-simplex σ of N (C ) is just a string of n composable
morphisms γi in C

σ = (C0
γ1
−→ C1

γ2
−→ · · ·

γn
−→ Cn)

where Ci = σ(i) are objects of C .
The face and degeneracy maps di and sj are then given by precomposition with

the coface and codegeneracy maps di and sj . In other words, the value di(σ) of the
face map di : N (C )n → N (C )n−1 is obtained from σ by omitting the object Ci =
σ(i), and by omitting γ1 if i = 0, composing γi+1 and γi if 0 < i < n, or omitting γn
if i = n. Similarly, the value sj(σ) of the degeneracy map sj : N (C )n → N (C )n+1

is obtained from σ by repeating the object Cj and inserting an identity morphism
idCj .

The nerve construction defines a functor N : Cat → ∆opSet from the category
of small categories to the category of simplicial sets.

We will finally define another simplex category, the simplex category of a small
category.

Definition 1.2. Let C be a small category. The simplex category ∆/C of C is the
comma category whose objects are pairs ([m], f), where [m] is an object of ∆ and
f : [m] → C is a functor, and whose morphisms ([m], f) −→ ([n], g) are morphisms
θ : [m] → [n] of ∆ with f = g ◦ θ.

Thus objects ([m], f) of ∆/C are elements of the simplicial nerve N (C ) of C .
We will often omit the [m] from the notation and regard objects as diagrams or
strings

f = (C0
f1
−→ C1

f2
−→ · · ·

fm
−→ Cm).

The morphisms of ∆/C are as usual generated by omitting or repeating objects Ci
in such diagrams.

The simplex category ∆/C of a small category C is therefore just the simplex
category ∆/N (C ) of the nerve N (C ) of C . It was shown by Illusie [23, VI.3] and
Latch [24] that the functor ∆/− : ∆opSet → Cat is in fact a weak homotopy in-
verse to the nerve functor N : Cat → ∆opSet i.e., for any simplicial set X there is
a weak equivalence of simplicial sets

N (∆/X)
∼
→ X.

Another incarnation of the simplex category of C is given by the Grothendieck
construction of the contravariant diagram of discrete categories given by the sim-
plicial nerve,

(∆/C )op ∼=

∫

∆op

N (C ) where N (C ) : ∆op → Set → Cat.

Let F : C → D be a functor. If D is an object of D , then the fiber CD = F−1(D)
of F over D is the subcategory of C whose objects are the objects C of C such that
F (C) = D and whose morphisms are the morphisms f : C → C′ in C such that
F (f) = idD. The left fiber C /D = F/D of F over D is the category of all pairs (C, u)
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with C an object of C and u : F (C) → D a morphism in D and where a morphism
(C, u) → (C′, u′) is given as a morphism v : C → C′ in C such that u = u′ ◦ F (v).
Dually, we have the notion of a right fiber D/C = D/F of F over D.

If C is a small category, then the simplex category ∆/C is also given as the left
fiber over C of the embedding ∆ → Cat.

More generally, let C be any category and c an object of C . Given any cosimpli-
cial object in C , that is, a functor F : ∆ → C , one can define the simplex category∆/c
as the comma category whose objects are pairs ([m], f), where [m] is an object of
∆ and f : F ([m]) → c is an arrow of C , and whose morphisms ([m], f) −→ ([n], g)
are morphisms θ : [m] → [n] of ∆ with f = g ◦F (θ). The definitions of the simplex
category above are for the obvious functors F : ∆ → ∆opSet and F : ∆ → Cat.
Note that both of these are fully faithful functors.

1.2. Gabriel-Zisman (co)homology of simplicial sets and its functorial proper-
ties. In this subsection we will present a systematic account of the constructions
and fundamental functorial properties of cohomology and homology of simpli-
cial sets with general coefficient systems. The coefficient systems described here
were first introduced by Gabriel and Zisman [12, App. II.4] to analyse the homol-
ogy of simplicial sets and were also discussed systematically by Dress [9]. Fimmel
[11] also used these coefficient systems to construct a Verdier duality theory for
sheaves on simplicial sets. As a particular application of our general framework
we will show how Thomason cohomology and homology of small categories as
introduced and studied by the authors in [15] fits into this picture.

Definition 1.3. Let X be a simplicial set and M be a category. A functor T : ∆/X →
M is called a (covariant) Gabriel-Zisman natural system on X with values in M .

Remark 1.4. A Gabriel-Zisman natural system T will be termed a sheaf if T (x
θ
→

x′) is an isomorphism in M whenever θ is a codegeneracy map si : [n + 1] → [n]
in ∆ (or equivalently, whenever θ is surjective, cf. [11, Definition 3.2]).

We now define a general cohomology theory for simplicial sets using these
Gabriel-Zisman natural systems as coefficients.

Definition 1.5. Let X be a simplicial set and let T : ∆/X → A be a Gabriel-Zisman
natural system with values in a complete abelian category A with exact products.
The Gabriel-Zisman cochain complex C∗

GZ(X,T ) of X is defined as

CnGZ(X,T ) :=
∏

σn∈Xn

T (σn),

for each integer n ≥ 0, with differential

d =

n+1
∑

i=0

(−1)idi :
∏

σn∈Xn

T (σn) −→
∏

σn+1∈Xn+1

T (σn+1).

The components of these di are the morphisms

δi# : T (σn+1 ◦ δ
i) → T (σn+1)

induced by the coface maps δi : [n] → [n + 1]. The n-th Gabriel-Zisman cohomology
of X is the cohomology of this cochain complex,

Hn
GZ(X,T ) = Hn(C∗

GZ(X,T ), d).
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Equivalently, C∗
GZ(X,T ) is the cochain complex associated to the cosimplicial

object

∏

σ0∈X0

T (σ0)
d1

//
d0 // ∏

σ1∈X1

T (σ1)

s0

yy

d2
//d1 //

d0 // ∏

σ2∈X2

T (σ2)

s1

yy

s0

yy

////
//// ∏

σ3∈X3

T (σ3)

yy yy
yy

. . .

given as the cosimplicial replacement
∏∗ T of the functor T : ∆/X → A (see [5,

XI.5], [33]).
For any simplicial set X and a complete abelian category A with exact prod-

ucts, let NatSGZ be the category whose objects are the (covariant) Gabriel-Zisman
natural systems T : ∆/X → A with values in A . A morphism (ϕ, τ) : TX → TY

between Gabriel-Zisman natural systems ∆/X
TX−→ A consists of a morphism

ϕ : Y → X of simplicial sets together with a natural transformation τ : TX◦∆/ϕ −→
TY . The composition of morphisms is given by the following diagram

∆/X

TX

&&▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
∆/Y

∆/ϕoo

τ
=⇒ TY

υ
=⇒

��

∆/Z
∆/ψoo

TZ

xxqq
qq
qq
qq
qq
qq
q

A .

The Gabriel-Zisman cochain complex defines in fact a functor

C∗
GZ : NatSGZ → coChn, C∗

GZ(T ) := C∗
GZ(X,T ),

from the category of Gabriel-Zisman natural systems with values in the abelian
category A , to the category of cochain complexes in A . The functor C∗

GZ is defined
on objects as above, and on morphisms by

C∗
GZ(ϕ, τ) : C

∗
GZ(X,TX) −→ C∗

GZ(Y, TY ),

(af )
[n]

f
→X

7−→ (τg(aϕ◦g))[n] g
→Y

.

Gabriel-Zisman cohomology therefore becomes a functor from NatSGZ to the cat-
egory of graded objects in the category A . In fact, the correspondence

T 7−→ H∗
GZ(X,T )

is a cohomological ∂-functor on the category NatSGZ of (covariant) Gabriel-Zisman
natural systems.

Dually, we define homology of simplicial sets with coefficients in contravariant
Gabriel-Zisman natural systems. These coefficients are in fact the original ones
used by Gabriel and Zisman [12, App. III.4] and Dress [9].

Definition 1.6. Let X be a simplicial set and M be a category. A functor T : (∆/X)op →
M is called a (contravariant) Gabriel-Zisman natural system on X with values in M .

Using these general coefficient systems, we define now the Gabriel-Zisman ho-
mology of a simplicial set X .

Definition 1.7. Let X be a simplicial set and let T : (∆/X)op → A be a contravari-
ant Gabriel-Zisman natural system with values in a cocomplete abelian category
A with exact coproducts. The Gabriel-Zisman chain complex CGZ∗ (X,T ) of X is
defined as

CGZn (X,T ) :=
⊕

σn∈Xn

T (σn),
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for each integer n ≥ 0, with differentials

dn :
⊕

σn+1∈Xn+1

T (σn+1) −→
⊕

σn∈Xn

T (σn)

af 7→
n+1
∑

i=0

(−1)i(δi)#(af ),

where (δi)# : T (σn+1) → T (σn+1◦δi) is induced by the coface map δi : [n] → [n+1].
The n-th Gabriel-Zisman homology of X is defined as the homology of this chain
complex,

HGZ
n (X,T ) := Hn(C

GZ
∗ (X,T ), d).

Again, the Gabriel-Zisman chain complex is just the chain complex correspond-
ing to a certain simplicial object in A , given by the simplicial replacement of T .

Let NatSGZ be the category with objects the contravariant Gabriel-Zisman nat-
ural systems T : (∆/X)op → A , and in which a morphism (ϕ, τ) : X → Y is given
by a functor ϕ : X → Y together with a natural transformation τ : TX → TY ◦∆/ϕ.
The composition of morphisms is described by the following diagram,

(∆/X)op

TX

''PP
PP

PP
PP

PP
PP

PP
P

∆/ϕ // (∆/Y )op

τ
=⇒ TY

υ
=⇒

��

∆/ψ // (∆/Z)op

TZ

ww♥♥♥
♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

A .

The Gabriel-Zisman chain complex defines a functor

CGZ∗ : NatSGZ → Chn, CGZ∗ (T ) := CGZ∗ (X,T ),

where for morphisms we define

CGZ∗ (ϕ, τ) : CGZ∗ (X,TX) −→ CGZ∗ (Y, TY )

using the maps
τf : TX(f) −→ TY (ϕ ◦ f).

Dually, Gabriel-Zisman homology therefore defines a functor from NatSGZ to the
category of graded objects in A .

We will give now another interpretation of Gabriel-Zisman (co)homology, which
is useful for analyzing its functorial properties.

Given a cosimplicial object in an abelian category A i.e., a functor

F : ∆ → A

we have the associated cochain complex (C∗(F ), d) of F defined as

Cn(F ) : = F ([n])

for each integer n ≥ 0, with differential

d =

n+1
∑

i=0

(−1)idi : F ([n]) → F ([n+ 1]),

where di = F (δi) and δi : [n] → [n + 1] for 0 ≤ i ≤ n + 1 are the respective coface
maps. We can now define the n-th cohomology of the cosimplicial object F as the
cohomology of the associated cochain complex

Hn(F ) := Hn(C∗(F ), d).

We therefore get a sequence of functors

H∗ = (Hn)n∈N : Fun(∆,A ) → A , F 7→ Hn(F ).
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Now we consider the following general situation. Let C be a small category and
A a complete abelian category. Given two functors P : C → ∆ and T : C → A ,
we have the right Kan extension RanP (T ) of the functor T along P (see [25, Chap.
X]):

C

T

��

P // ∆

RanP (T )

||②
②
②
②
②
②
②

A

It is an object of the functor category Fun(∆,A ), in other words a cosimplicial
object of the abelian category A and we define:

Definition 1.8. Let C be a small category and A a complete abelian category.
Given two functors P : C → ∆ and T : C → A the n-th cohomology of P with
coefficients in T is defined as

Hn(P, T ) := Hn(RanP (T )).

Dually, given now a simplicial object of an abelian category A i.e., a functor

F : ∆op → A

we have the associated chain complex (C∗(F ), d) of F defined as

Cn(F ) := F ([n])

for each integer n ≥ 0, with differential

d =

n+1
∑

i=0

(−1)idi : F ([n+ 1]) → F ([n]),

where di = F (δi) and δi : [n] → [n + 1] for 0 ≤ i ≤ n + 1 are the respective
coface maps. So we can define the n-th homology of the simplicial object F as the
homology of the associated chain complex

Hn(F ) := Hn(C∗(F ), d).

We therefore get a sequence of functors

H∗ = (Hn)n∈N : Fun(∆op,A ) → A , F 7→ Hn(F ).

Now we consider the following general situation. Let C be a small category and A

a cocomplete abelian category. Given two functors P : C → ∆ and T : C op → A ,
we have the left Kan extension LanP (T ) of the functor T along P op (see [25, Chap.
X]):

C op

T

��

P op
// ∆op

LanP (T )

{{✈
✈
✈
✈
✈
✈
✈
✈

A

It is an object of the functor category Fun(∆op,A ), in other words a simplicial
object of the abelian category A and we define:

Definition 1.9. Let C be a small category and A a cocomplete abelian category.
Given two functors P : C → ∆ and T : C op → A the n-th homology of P with
coefficients in T is defined as

Hn(P, T ) := Hn(Lan
P (T )).
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Now we would like to interpret this general cohomology and homology as a
certain Ext and Tor construction, and in order to do so recall the following con-
structions (compare [15, 1.3, Remark 1.7] and [25, X.4], ):

Definition 1.10. Let Ab be the category of abelian groups, and A an additive
category. Then

(1) The category A is cotensored over Ab if there is a functor Hom : Abop ×
A → A , satisfying the natural exponential law

HomA (a,Hom(A, b)) ∼= HomAb(A,HomA (a, b)).

(2) The category A is tensored over Ab if there is a functor ⊗ : Ab × A → A

satisfying the natural exponential law

HomA (A⊗ a, b) ∼= HomAb(A,HomA (a, b)).

Let F : C → Ab, T : C → A be diagrams over C . The symbolic hom HomC (F, T )
as an object of A is determined by natural isomorphisms

HomA (a,HomC (F, T )) ∼= Nat(F,HomA (a, T (−))).

Dually, for diagrams F : C → Ab, T : C op → A , the symbolic tensor product F⊗
C
T

as an object of A is determined by natural isomorphisms

HomA (F⊗
C
T, b) ∼= Nat(F,HomA (T (−), b)).

Now let Z : C → Ab be the constant diagram with value Z. Then following the
arguments and their duals in [15, 1.3] we have for any diagram T : C → A that

HomC (Z, T ) ∼= lim
C

T

and for any diagram T : C op → A we have dually

Z⊗
C
T ∼= colimC op T.

Recall that a resolution of Z is a functor B∗ : ∆
op → Fun(C ,Ab) such that, for

each object c of C , the reduced homology groups of the complexes B∗(c) are triv-
ial. A resolution is free if for each n the functor Bn : C → Ab is a coproduct of
representable functors ZHom(c,−).

We now express the general cohomology and homology constructions intro-
duced above as derived functors of lim and colim. Suppose that A is a complete
abelian category, with exact products. Let B∗ be a free resolution of Z. Then the

derived functors of HomC (Z,−) ∼= limC (−) are given by the cohomology of the
following Ext complex,

Ext∗C (Z,−) := HomC (B∗,−).

Dually, suppose that A is a cocomplete abelian category, with exact coproducts.
Then the derived functors of Z⊗

C
(−) ∼= colimC op(−) are given by the homology

of the following Tor complex,

TorC

∗ (Z,−) := B∗⊗C
(−).

Theorem 1.11. Let A be an additive category. For any functor P : C → ∆ there exists a
resolution BP

∗ of the constant functor Z such that

(1) If A is complete and cotensored over Ab, then

RanP (T ) ∼= HomC (BP
∗ , T ) : ∆ → A

natural in T : C → A .
(2) If A is cocomplete and tensored over Ab, then

LanP (T ) ∼= BP
∗ ⊗

C
T : ∆ → A

natural in T : C op → A .
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(3) If P : C → ∆ is a discrete fibration over ∆, then there is a natural isomorphism

BP
n
∼=

⊕

c∈C :P (c)=n

ZHomC (c, d)

and hence BP
∗ is a free resolution of Z.

Proof. We set BP
∗ = ZHom∆(−, P (−)) : ∆op → Fun(C ,Ab) and observe that the

functor BP
∗ (d) = ZHom∆(−, P (d)) : ∆op → Ab is contractible since it is the stan-

dard simplex of dimension P (d). We therefore have a resolution of Z. The natural
isomorphisms of (1) and (2) now follow by expressing the Kan extensions and
symbolic hom and tensor functors in terms of (co)ends:

RanP (T ) ∼=

∫

d∈C

Hom(ZHom∆(−, P (d)), T (d)) =

∫

d∈C

Hom(BP
∗ (d), T (d))

∼= HomC (BP
∗ , T ),

LanP (T ) ∼=

∫ d∈C
op

ZHom∆op(P op(d),−)⊗ T (d) =

∫ d∈C
op

BP
∗ (d)⊗ T (d)

∼= BP
∗ ⊗C

T.

If P : C → ∆ is a discrete fibration over ∆ there is a natural bijection

Hom∆(n, P (d)) ∼=
∐

c∈C :P (c)=n

HomC (c, d)

for each n ≥ 0 and each object d of C . Thus

BP
n (d) = ZHom∆(n, P (d)) ∼=

⊕

c∈C :P (c)=n

ZHomC (c, d)

and therefore the resolution BP
∗ : ∆op → Fun(C ,Ab) of Z is free. �

The following is then immediate:

Corollary 1.12. Let C be a small category and A an additive category, and let P : C → ∆
be a discrete fibration.

(1) If A is complete, with exact products, and T : C → A a functor, then the coho-
mology groups of P with coefficients in T are derived functors,

Hn(P, T ) = Hn(RanP (T )) ∼= ExtnC (Z, T ) ∼= limn
CT = Hn(C , T ).

(2) If A is cocomplete, with exact coproducts, and T : C op → A a functor, then the
homology groups of P with coefficients in T are derived functors,

Hn(P, T ) = Hn(Lan
P (T )) ∼= TornC (Z, T ) ∼= colimC

n T = Hn(C , T ).

As noted earlier, the discrete fibrations P : C → ∆ are just given as the projec-
tions PX : ∆/X → ∆ from the simplex category of a simplicial set X .

Theorem 1.13. Let X be a simplicial set and let T : ∆/X → A be a Gabriel-Zisman
natural system with values in a complete abelian category A with exact products. The
cohomology of PX : ∆/X → ∆ coincides with the Gabriel-Zisman cohomology of X ,

C∗(PX , T ) ∼= C∗
GZ(X,T ), H∗(PX , T ) ∼= H∗

GZ(X,T ),

and Gabriel-Zisman cohomology may be identified as a derived functor,

Hn
GZ(X,T ) ∼= Extn∆/X(Z, T ) ∼= limn

∆/XT = Hn(∆/X, T ).
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Proof. From [12, Appendix II.4], it follows that the right Kan extension RanPX (T )
of T along the forgetful functor PX : ∆/X → ∆,

∆/X

T

��

PX // ∆

RanPX
(T )=

∏
∗ T

{{✇
✇
✇
✇
✇
✇
✇
✇

A

is precisely the cosimplicial replacement
∏∗

T of the functor T : ∆/X → A .
So we apply the above Theorem 1.11 to the right Kan extension RanPX (T )

and use the identification of the cosimplicial replacement
∏∗

T with the Gabriel-
Zisman cochain complex C∗

GZ(X,T ) as constructed above to get the desired iso-
morphisms.

The last isomorphism is just the usual identification of the derived functors of
the limit functor limn

∆/XT with the cohomology of the category ∆/X with coeffi-
cients in T (see [29, 31] or [14]). �

Dually, we also have a similar isomorphism for Gabriel-Zisman homology of
simplicial sets.

Theorem 1.14. Let X be a simplicial set and let T : (∆/X)op → A be a Gabriel-Zisman
natural system with values in a cocomplete abelian category A with exact coproducts. The
homology of PX : ∆/X → X coincides with the Gabriel-Zisman homology of X ,

C∗(PX , T ) ∼= CGZ∗ (X,T ), H∗(PX , T ) ∼= HGZ
∗ (X,T ),

and Gabriel-Zisman homology may be identified as a derived functor,

HGZ
n (X,T ) ∼= Tor(∆/X)op

n (Z, T ) ∼= colim(∆/X)op

n T = Hn((∆/X)op, T ).

Proof. This is basically [12, Proposition 4.2]. Alternatively, we can argue dually
along the same lines as in the proof of Theorem 1.13 using the resolution of the
constant functor Z involving the dual notions, namely the symbolic tensor prod-
uct functor and its derived Tor-functor for contravariant Gabriel-Zisman natural
systems T : (∆/C )op → A . �

Let us now look at several examples to illustrate the broad realm of applica-
tions and the necessity for the use of general Gabriel-Zisman natural systems as
cohomological coefficient systems in contrast to more specialised coeffcients. The
Leray type spectral sequences constructed in the following sections will then pro-
vide useful computational tools in all these frameworks of examples.

Example 1.15 (Thomason (co)homology of categories). We can interpret Thoma-
son (co)homology of categories as introduced by the authors in [15] both in terms
of Gabriel-Zisman (co)homology of simplicial sets and via (co)homology of Kan
extensions.

Let C be a (small) category, A be a complete abelian category with exact prod-
ucts and T : ∆/C → A a (covariant) Thomason natural system. From the general
discussions above we see immediately that there are natural isomorphisms

H∗
Th(C , T ) ∼= H∗(PC , T ) ∼= H∗

GZ(N (C ), T ),

where P = PC : ∆/C → ∆ is the forgetful functor and by identifying the cate-
gories of simplices ∆/C = ∆/N (C ), where N (C ) is the nerve of the category C .
Here the notion of a Gabriel-Zisman natural system T : ∆/N (C ) → A coincides
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with that of a Thomason natural system as we can readily identify the simplex cat-
egory ∆/C of C with the category of simplices ∆/N (C ) over the simplicial nerve
of C (see [15]).

Dually, if A is a cocomplete abelian category with exact coproducts and given
a (contravariant) Thomason natural system T : (∆/C )op → A we have natural
isomorphisms

HTh
∗ (C , T ) ∼= H∗(PC , T ) ∼= HGZ

∗ (N (C ), T ).

As discussed in detail in [14] and [15], Thomason (co)homology generalises all the
other (co)homology theories for small categories in the literature, including Baues-
Wirsching and Hochschild-Mitchell (co)homology (compare for example [2, 7, 26,
28, 29]). Therefore the functoriality properties of these (co)homology theories are
direct consequences of those of Gabriel-Zisman (co)homology as discussed above.

Example 1.16 (Sheaves on topological spaces). Let X• be a simplicial set. We have
the geometric realisation functor

| | : ∆op
Set → T op

given on objects as a coend or colimit as follows (see [12, 5])

|X•| =

∫ [n]

Xn × ∆
n = colim

(

∐

[n]→[m]

Xm × ∆
n
⇒

∐

[n]

Xn × ∆
n

)

where ∆
n is the topological standard n-simplex in R

n+1. We have ∆
n = |∆[n]|.

It turns out that |X•| is a compactly generated Hausdorff topological space. Let
R be a noetherian ring and Shv(|X•|) be the abelian category of sheaves of R-
modules over |X•|. Let σ ∈ Xn i.e., σ ∈ Hom∆opSet(∆[n], X•). We get an induced
continuous map

|σ| : ∆
n → |X•|.

Let F ∈ Shv(|X•|) be a sheaf on |X•| and assume that the inverse image sheaf
|σ|∗F is constant on the subset inn(∆n) of inner points of the topological space ∆

n

for every simplex σ ∈ X/∆. Let Fσ denote the stalk of F at such an inner point.
Then

F : ∆/X• → R−Mod, F (σ) = Fσ

is a Gabriel-Zisman (covariant) natural system, which in fact is a sheaf and Gabriel-
Zisman cohomology H∗

GZ(X•, F ) gives sheaf cohomology H∗(|X•|,F) of the topo-
logical space |X•|. In fact, when starting with a general Gabriel-Zisman (covariant)
natural system on ∆/X•, geometric realisation always produces a sheaf on |X•|

and defines a left exact functor from the category NatSGZ of (covariant) natural
systems to the category Shv(|X•|) of sheaves on the topological space |X•| (see
[11, Prop. 3.1]).

Example 1.17 (Parshin-Beilinson adeles of schemes). LetX be a noetherian scheme
and Qcoh(X) denote the abelian category of quasi-coherent OX -modules. Further-
more let P (X) be the set of points of the scheme X . Let S•(X) be the associated
simplicial set of flags of irreducible closed subschemes of X , ordered by inclusion,
given as follows: consider the set of points P (X) of X with the partial order ≥

on P (X) defined by η ≥ ν if ν ∈ {η}. Then S•(X) is the simplicial nerve of the
partially ordered set (P (X),≥), with the set of n-simplices

S(X)n = {(ν0, ν1, . . . , νn)|νi ∈ P (X); νi ≥ νi+1}

and the usual face and degeneracy maps di and si for 0 ≤ i ≤ n induced from
the partially ordered set structure. If X is an affine scheme, the flags of S(X)• are
just sequences of prime ideals ordered by inclusions. Beilinson [3] (see also [21]
for more details) constructed for any K ⊂ S(X)• and any quasi-coherent sheaf F
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on X a space of adeles A(K,F) which is an abelian group functorial in F . Then
the groups of local adeles A({σ},F), for any simplex σ ∈ S(X)•, give rise to a
Gabriel-Zisman (covariant) natural system by setting (compare [21, 11])

F : ∆/S(X)• → Ab, F (σ) = A({σ},F),

which actually is a sheaf and we have that (see [21, Prop. 2.1.4])

A(K,F) ⊂
∏

σ∈K

A({σ},F).

In particular, we can consider the abelian group of n-dimensional adeles of X with
coefficients in F defined as

A
n(X,F) = A(S(X)n,F).

It turns out that the sequence of groups of global adeles A
n(X,F) on X gives a

cosimplicial abelian group A
•(X,F) and therefore a cochain complex. Its coho-

mology, which is the Gabriel-Zisman cohomology H∗
GZ(S(X)•, F ) for S•(X) cal-

culates sheaf cohomology i.e., if F is a quasi-coherent OX -module, then we have
an isomorphism [21, Thm 4.2.3]

H∗(A•(X,F)) ∼= H∗(X,F).

Parshin [27] gave first a definition of adeles for smooth proper algebraic surfaces
over a perfect field, which was later extended by Beilinson [3] for arbitrary noe-
therian schemes.

Example 1.18 (Buildings of reductive algebraic groups). Let G be a reductive al-
gebraic group over the finite field Fq and Rep(G) be the category of finite dimen-
sional representations of the finite group of Fq-rational points G(Fq). Associated to
G is a simplicial set ∆(G)•, the combinatorial building of G consisting of inclusion
chains in the poset of subgroups of G given by parabolic subgroups. For any sim-
plex σ ∈ ∆(G)• we have a parabolic subgroup Pσ ⊂ G. Let Ru(P ) be the unipotent
radical of a parabolic subgroup P and Ru(P )(Fq) its group of Fq-rational points.
Let M ∈ Rep(G), then we obtain a (covariant) Gabriel-Zisman natural system by
setting

F : ∆/∆(G)• → Rep(G), F (σ) = MRu(Pσ)

and inclusion maps for different simplices. Here MRu(Pσ) ⊂ M and F turns out to
be again a sheaf (see [11]) and Gabriel-Zisman cohomology H∗

GZ(∆(X)•, F ) gives
the cohomology of the building with coefficients being representations as sheaves
on the building (compare [6, 32]).

Remark 1.19 (Higher categories). As mentioned above, Gabriel-Zisman cohomol-
ogy extends and unifies many notions of cohomology of categories. Recall that
the factorisation category (also known as the twisted arrow category) Fact(C ) of
a category C has objects the morphisms f : x → y of C and arrows (h, k) : f → f ′,
where f ′ = kfh in C . Then Baues-Wirsching cohomology H∗(C , D) was de-
fined in [2], for natural systems of coefficients D : Fact(C ) → Ab. The relation
to Thomason cohomology arises from the existence of a functor

ηC : ∆/C → Fact(C )

from the category of simplices to the factorisation category of C , see [15]. We
remark that analogous notions will provide extensions of Thomason and Baues-
Wirsching cohomologies to:

• 2-categories. One can define a category of simplices ∆/D of a 2-category
D , with objects a given by the lax functors a : [m] → D and arrows a → b
given by morphisms σ : [m] → [n] of ∆, where a = bσ. One can also define
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a factorisation category Fact(D), with objects the 1-morphisms f : x → y
of D and arrows (h, k, ξ) : f → f ′, where ξ : kfh → f ′ is a 2-morphism of
D . Furthermore we can give a natural transformation

ηD : ∆/D → Fact(D).

We can define notions of Thomason and Baues-Wirsching cohomologies
for 2-categories D , with coefficient systems on ∆/D and on Fact(D) re-
spectively.

• 2-Segal spaces, also known as decomposition spaces [10, 13]. The 2-Segal
condition specifies a particular class of simplicial sets more general than
nerves of ordinary categories, which are characterised by the 1-Segal con-
dition. It was shown recently, in [4], that a simplicial set X is 2-Segal if and
only if its edgewise subdivision is 1-Segal, and we denote the category de-
fined by this edgewise subdivision by Fact(X). If X is 1-Segal this agrees
with the definition of the category of factorisations above. We can de-
fine notions of Thomason and Baues-Wirsching cohomologies for 2-Segal
spaces X , with coefficient systems on the categories ∆/X and Fact(X) re-
spectively, related once more by a natural transformation

ηX : ∆/X → Fact(X).

There is also an obvious notion of cohomology of ∞-categories: if we model an
∞-category by a quasi-category, that is, by an inner-Kan simplicial set, then we
can take its Gabriel-Zisman cohomology. We do not see an analogue of Baues-
Wirsching cohomology for ∞-categories.

2. SPECTRAL SEQUENCES FOR GABRIEL-ZISMAN (CO)HOMOLOGY

2.1. (Co)homology spectral sequences for maps of simplicial sets. In this sub-
section we will derive Leray type Gabriel-Zisman (co)homology spectral sequences
for a given map of simplicial sets. In order to do so, we will work first in a more
suitable general categorical setting.

Let C and D be small categories, A a complete abelian category and T : C → A

be a functor. Now let us assume that we also have a functor u : C → D together
with functors P : C → ∆ and Q : D → ∆ such that P = Q ◦ u i.e., we have a
commutative diagram of the form

C
u //

P   ❅
❅❅

❅❅
❅❅

❅ D

Q~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

∆

inducing a commutative diagram between functor categories, where the respec-
tive functors are given by precomposition and right Kan extensions

Fun(C ,A )
Ranu

//

RanP

%%❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏
Fun(D ,A )

u∗

oo

RanQ

yytt
tt
tt
tt
tt
tt
tt
tt
tt
tt

Fun(∆,A )

Q∗

99tttttttttttttttttttt
P∗

ee❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏

It follows immediately from Definition 1.8 and the above that we have an iso-
morphism

H∗(P, T ) ∼= H∗(Q,Ranu(T )).
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From the previous diagram we get now the following Grothendieck composite
functor spectral sequence [18] (compare also [1, 14, 15]).

Theorem 2.1. Let C and D be small categories and T : C → A be a functor to a complete
abelian category. Let u : C → D be a functor together with functors P : C → ∆ and
Q : D → ∆ such that P = Q ◦ u. Then there is a spectral sequence:

Ep,q
2

∼= Hp(Q,Ranqu(T )) ⇒ Hp+q(P, T ),

which is natural in u and T and where Ranqu(T ) denotes the q-th right satellite ofRanu(T ).

Dually, using analogue constructions as just described, we obtain also a homol-
ogy version of the above spectral sequence

Theorem 2.2. Let C and D be small categories and T : C op → A be a functor to a
cocomplete abelian category. Let u : C → D be a functor together with functors P : C →
∆ and Q : D → ∆ such that P = Q ◦ u. Then there is a spectral sequence:

E2
p,q

∼= Hp(Q,Lanuq (T )) ⇒ Hp+q(P, T ),

which is natural in u and T and where Lanuq (T ) denotes the q-th left satellite of Lanu(T ).

We will now derive general Leray type spectral sequences for Gabriel-Zisman
(co)homology for any map of simplicial sets using the machinery developed above.
In special cases, we can in addition also simplify them by using concrete fiber data.
Let us first introduce the following general constructions:

Definition 2.3. Given a map of simplicial sets f : X → Y , the fiber functor

F(−) : ∆/Y → ∆op
Set

is defined as follows:
For each object y : ∆[n] → Y of the simplex category ∆/Y , let Fy be the fiber of

f over y, which is the simplicial set

Fy = ∆[n]×Y X = {(σ, x) ∈ ∆[n]×X : y ◦ σ = f(x)},

given by the pullback

(1)

Fy
❴
✤

ȳ //

��

X

f
��

∆[n] y
// Y.

For each morphism from y : ∆[n] → Y to y′ : ∆[n′] → Y , given by θ : ∆[n] →
∆[n′] and satisfying y = y′ ◦ θ, let Fθ be the simplicial map given as:

θ ×Y X : Fy → Fy′ , (σ, x) 7→ (θ ◦ σ, x).

Remark 2.4. Given a simplicial map f : X → Y and a Gabriel-Zisman natural
system T : ∆/X → A we have induced (covariant) natural systems Ty on the
fibers Fy , for each object y ∈ ∆/Y , defined by

Ty = T ◦∆/ȳ : ∆/Fy → ∆/X → A .

For each q ≥ 0 we get functors

Hq
GZ(F(−), T(−)) : (∆/Y )op → A

defined on objects by
y 7→ Hq

GZ(Fy , Ty)

and on morphisms θ from y to y′ by

θ∗ : Hq
GZ(Fy′ , Ty′) → Hq

GZ(Fy, Ty).

since Ty = θ∗Ty′ .
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Dually, given a Gabriel-Zisman natural system T : (∆/X)op → A we have in-
duced (contravariant) natural systems Ty, and for each q ≥ 0 get functors

HGZ
q (F(−), T(−)) : ∆/Y → A

defined on objects by

y 7→ HGZ
q (Fy, Ty)

and on morphisms θ from y to y′ by

θ∗ : H
GZ
q (Fy , Ty) → HGZ

q (Fy′ , Ty′).

We now make the following definition:

Definition 2.5. Let f : X → Y be a map of simplicial sets and T : ∆/Y → A a (co-
variant) Gabriel-Zisman natural system. The map f is called locally cohomologically
constant if for each morphism θ : y → y′ of the simplex category ∆/Y the induced
map in cohomology

θ∗ : Hq
GZ(Fy′ , Ty′)

∼=
→ Hq

GZ(Fy , Ty)

is an isomorphism.

Let f : X → Y be a map of simplicial sets and T : ∆/Y → A a (covariant)
Gabriel-Zisman natural system. From the pullback square (1) and functoriality of
Gabriel-Zisman cohomology we get an induced map in cohomology

H∗
GZ(∆[n], T∆[n]) → H∗

GZ(Fy , (f
∗T )y),

where for a given simplex y : ∆[n] → Y of Y we let T∆[n] : ∆/∆[n] → ∆/Y → A be
the restricted Gabriel-Zisman natural system and (f∗T )y = (f∗T ) ◦∆/ȳ : ∆/Fy →
∆/X → A the induced Gabriel-Zisman natural system. We make the following
definition:

Definition 2.6. Let f : X → Y be a map of simplicial sets and T : ∆/Y → A a (co-
variant) Gabriel-Zisman natural system. The map f is called locally cohomologically
trivial if for every simplex y : ∆[n] → Y of Y the induced map in cohomology

H∗
GZ(∆[n], T∆[n])

∼=
→ H∗

GZ(Fy, (f
∗T )y)

is an isomorphism.

The following useful lemma gives an alternative description of the fiber of a
general map of simplicial sets.

Lemma 2.7. Let f : X → Y be a map of simplicial sets. The simplex category of a fiber
Fy is naturally isomorphic to the left fiber of ∆/f : ∆/X → ∆/Y over the object y,

∆/Fy ∼= (∆/f)/y.

Proof. An object of the left fiber of ∆/f over y is just a map σ : (∆/f)(x) → y in the
comma category ∆/Y , for some x ∈ ∆/X , as in the following diagram:

∆[m]
x //

(∆/f)(x)
❍❍

❍❍
❍

$$❍
❍❍

❍❍
❍σ

��

X

f

��
∆[n] y

// Y.

Such a diagram may alternatively be interpreted as a map (σ, x) : ∆[m] → ∆[n]×Y
X , and hence as an object of the category ∆/Fy .
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Now a morphism in (∆/f)/y is just a map θ : ∆[m] → ∆[m′] which fits into a
diagram of the form

∆[m]

θ
❙❙❙

❙❙

))❙❙
❙❙❙

x

((

σ

""

∆[m′]
x′

//

σ′

��

X

f

��
∆[n]

y
// Y.

This may be interpreted as a morphism θ : (σ, x) → (σ′, x′) in ∆/Fy . �

Now given any map f : X → Y of simplicial sets we can derive a general coho-
mology spectral sequence, which compares the Gabriel-Zisman cohomology of X
and Y .

Theorem 2.8. Let X and Y be simplicial sets and f : X → Y be a map of simplicial
sets. Let A be a complete abelian category with exact products. Given a Gabriel-Zisman
natural system T : ∆/X → A on X , there is a cohomology spectral sequence

Ep,q
2

∼= Hp
GZ(Y, (R

q(∆/f)∗)(T )) ⇒ Hp+q
GZ (X,T )

which is natural in f and T and where Rq(∆/f)∗ = Ranq∆/f is the q-th right satellite of

the right Kan extension Ran∆/f along the induced functor ∆/f : ∆/X → ∆/Y between
the simplex categories.

Proof. Let X and Y be simplicial sets, f : X → Y be a map of simplicial sets and A

be a complete abelian category with exact products. With the categories C = ∆/X
and D = ∆/Y and the functors P = PX : ∆/X → ∆, Q = QY : ∆/Y → ∆
and u = ∆/f : ∆/X → ∆/Y we are exactly in the situation of Theorem 2.1, with
P = Q ◦ u and we get the following commutative diagram:

Fun(∆/X,A )
Ran∆/f

//

RanPX

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
Fun(∆/Y,A )

(∆/f)∗oo

RanQY

yyss
ss
ss
ss
ss
ss
ss
ss
ss
ss
s

Fun(∆,A )

Q∗

Y

99sssssssssssssssssssss
P∗

X

ee❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑

Therefore, Theorem 2.1 gives a spectral sequence of the form

Ep,q
2

∼= Hp(QY , Ranqu(T )) ⇒ Hp+q(PX , T ),

which is natural in u and T .
Identifying the above cohomologies of the functors QY and PX as Gabriel-

Zisman cohomology following Theorem 1.13 we get the desired spectral sequence
of the form

Ep,q
2

∼= Hp
GZ(Y, (R

q(∆/f)∗)(T )) ⇒ Hp+q
GZ (X,T ).

and the naturality of the spectral sequence with respect to f and T follows directly
from the above identifications. �

Remark 2.9. If we start with a Gabriel-Zisman natural system which is actually a
sheaf (see Remark 1.4), then the above spectral sequence corresponds to the Leray
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spectral sequence for sheaf cohomology, in fact, if applying the geometric realisa-
tion functor as in Example 1.16 we will obtain the classical Leray spectral sequence
for sheaf cohomology of a continuous map of topological spaces.

We can identify the E2-term of the spectral sequence further by relating the
satellites of the right Kan extension to derived limit data of the fiber of the simpli-
cial map f .

Corollary 2.10. Let X and Y be simplicial sets and f : X → Y be a map of simplicial
sets. Let A be a complete abelian category with exact products. Let T : ∆/X → A be a
Gabriel-Zisman natural system on X . Then there is a cohomology spectral sequence of the
form

Ep,q
2

∼= Hp
GZ(Y,H

q
GZ(−/(∆/f), T ◦Q(−))) ⇒ Hp+q

GZ (X,T )

which is natural in f and T and where

Hq
GZ(−/(∆/f), T ◦Q(−)) = limq

−/(∆/f)(T ◦Q(−)) : ∆/Y → A .

Proof. For each simplex y of ∆/Y , let Q(y) : y/(∆/f) → ∆/X be the forgetful func-

tor and denote by Hq
GZ(y/(∆/f), T ◦Q(y)) the derived limit

limq

(

y/(∆/f)
Q(y)

−→ ∆/X
T

−→ A

)

.

Using [14, Corollary 1.3] allows us to identify the terms in the E2-page of the spec-
tral sequence in Theorem 2.8 as

Ep,q
2

∼= Hp
GZ(Y,H

q
GZ(−/(∆/f), T ◦Q(−))).

and in addition gives us the desired abutment. �

As a direct consequence, we also have the following general statement for lo-
cally cohomologically trivial maps of simplicial sets. This can be seen as a coho-
mological analogue of Quillen’s Theorem A (see also [8, 29]) for Gabriel-Zisman
cohomology

Proposition 2.11. Let f : X → Y be a map of simplicial sets and T : ∆/Y → A a
(covariant) Gabriel-Zisman natural system. If f is locally cohomologically trivial, then f
induces an isomorphism in cohomology:

H∗
GZ(Y, T )

∼=
→ H∗

GZ(X, f∗T ).

Proof. For every simplex y : ∆[n] → Y of the simplex category ∆/Y we have the
following commutative diagram

Fy
❴
✤

ȳ //

��

X

f
��

f // Y

id
��

∆[n] y
// Y

id
// Y.

The naturality of the spectral sequence of Theorem 2.8 gives a morphism of
spectral sequences E∗,∗

r (id, T ) → E∗,∗
r (f, T ). Because f is locally cohomolog-

ical trivial, we get an isomorphism of E2-pages i.e., E∗,∗
2 (id, T )

∼=
→ E∗,∗

2 (f, T ).
Therefore we also get an isomorphism of the abutments, which implies the state-
ment. �

Dually, we can derive a homology spectral sequence computing the Gabriel-
Zisman homologies for a simplicial map f : X → Y , which gives the dual version
of Theorem 2.8.
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Theorem 2.12. Let X and Y be simplicial sets and f : X → Y be a map of simplicial
sets. Let A be a cocomplete abelian category with exact coproducts. Given a contravariant
Gabriel-Zisman natural system T : (∆/X)op → A on X , there is a homology spectral
sequence

E2
p,q

∼= HGZ
p (Y, (Lq((∆/f)op)∗)(T )) ⇒ HGZ

p+q(X,T )

which is natural in f and T and where Lq((∆/f)op)∗ = Lan
(∆/f)op

q is the q-th left satel-

lite of Lan(∆/f)op , the left Kan extension along the induced functor (∆/f)op : (∆/X)op →
(∆/Y )op between the simplex categories.

Proof. Let X and Y be simplicial sets and A be a cocomplete abelian category with
exact coproducts. Given a map f : X → Y of simplicial sets we have the following
commutative diagram:

Fun((∆/X)op,A )

Lan(∆/f)op
//

colim(∆/X)op

$$❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏
Fun((∆/Y )op,A )

((∆/f)op)∗
oo

colim(∆/Y )op

zztt
tt
tt
tt
tt
tt
tt
tt
tt
tt

A

c

::tttttttttttttttttttt

c

dd❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏❏

Here, c denotes the respective constant diagram functors and ((∆/f)op)
∗

is pre-
composition with (∆/f)op, the induced functor between the simplex categories of
X and Y . The other functors in the diagram are the left adjoints of these, given

by the limits colim(∆/X)op , colim(∆/Y )op and by Lan(∆/f)op , which is the left Kan
extension along the functor (∆/f)op.

We obtain a Grothendieck spectral sequence [18] for the derived functors of the
composite functor

colim(∆/X)op(−) = colim(∆/Y )op Lan(∆/f)op(−)

which can be interpreted as an André spectral sequence as constructed in general-
ity in [14, Section 1.1] (see also [1] and [8]).

In our situation here it converges to the homology of the simplex category ∆/X
of the simplicial set X with coefficients being a contravariant Gabriel-Zisman nat-
ural system T of Fun((∆/X)op,A ). Therefore, [14, Theorem 1.4] gives a cohomol-
ogy spectral sequence of the form:

E2
p,q

∼= Hp((∆/Y )op, (Lq((∆/f)op)∗)(T )) ⇒ Hp+q((∆/X)op, T )

where Lq((∆/f)op)∗ is the q-th left satellite of Lan(∆/f)op .
Identifying the homologies of the involved simplex categories (∆/X)op and

(∆/Y )op with the Gabriel-Zisman homologies of the given simplicial sets X and
Y using Proposition 1.14 finally gives us the homology spectral sequence

E2
p,q

∼= HGZ
p (Y, (Lq((∆/f)op)∗)(T )) ⇒ HGZ

p+q(X,T ).

The naturality of the spectral sequence with respect to f and T follows directly
from the construction. �

Again, we can identify the E2-term of the spectral sequence by relating the
satellites of the left Kan extension to derived colimit data of the fiber of the simpli-
cial map f .

Corollary 2.13. Let X and Y be simplicial sets and f : X → Y be a map of simplicial sets.
Let A be a cocomplete abelian category with exact coproducts. Let T : (∆/X)op → A be
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a contravariant Gabriel-Zisman natural system on X . Then there is a homology spectral
sequence of the form

E2
p,q

∼= HGZ
p (Y,HGZ

q ((∆/f)/−, T ◦Q(−))) ⇒ HGZ
p+q(X,T )

which is natural in f and T and where

HGZ
q ((∆/f)/−, T ◦Q(−)) = colim(∆/f)op/−

q (T ◦Qop
(−)) : (∆/Y )op → A .

Proof. For each simplex y of (∆/Y )op, let Qop
(y) : (∆/f)op/y → (∆/X)op be the for-

getful functor and denote by HGZ
q ((∆/f)/y), T ◦Q(y)) the derived colimit

colimq

(

(∆/f)op/y
Qop

(y)
−→ (∆/X)op

T
−→ A

)

.

Using [14, Corollary 1.5] allows us now to identify the terms in the E2-page of the
above spectral sequence as

E2
p,q

∼= HGZ
p (Y,HGZ

q ((∆/f)/−, T ◦Q(−))).

while the spectral sequence converges to the same abutment. �

2.2. Specialisation of coefficient systems and spectral sequences. In this final
subsection we will specialise the general coefficient systems in order to identify the
E2-terms of the (co)homology spectral sequence further. The classical Leray-Serre
spectral sequences for Kan fibrations of simplicial sets will appear as a special case.
Let us start by introducing some useful special Gabriel-Zisman natural systems in
order to simplify our Leray type spectral sequences in various situations.

Definition 2.14. Let X be a simplicial set and M be a category. A (covariant)
Gabriel-Zisman natural system T : ∆/X → M on X is called invertible or a (covari-
ant) local system if it sends all morphism of ∆/X to isomorphisms of M .

Dually, a (contravariant) Gabriel-Zisman natural system T : (∆/X)op → M on
X is called invertible or a (contravariant) local system if it sends all morphism of
(∆/X)op to isomorphisms of M .

Let X be a simplicial set and M be a category. Let T : ∆/X → M be a (co-
variant) invertible Gabriel-Zisman natural system on X . Then we can define the
functor T−1 : (∆/X)op → M , whose value on objects is the same as for the functor
T and whose value on a morphism α of ∆/X is T−1(α) = T (α)−1. Dually, given
a (contravariant) invertible Gabriel-Zisman natural system T : (∆/X)op → M on
X , we can define similarly the functor T−1 : ∆/X → M , whose value on objects
is the same as for the functor T and whose value on a morphism α of (∆/X)op is
T−1(α) = T (α)−1.

The following proposition gives an alternative description of Gabriel-Zisman
(co)homology for invertible coefficient functors (compare also [12, App. II. 4.4]).

Proposition 2.15. Let X be a simplicial set and A be a complete and cocomplete abelian
category with exact products and coproducts.

Given a (covariant) local system T : ∆/X → A on X , there is an isomorphism

H∗
GZ(X,T ) = H∗(∆/X, T ) ∼= H∗((∆/X)op, T−1),

natural in X and T .
Dually, given a (contravariant) local system T : (∆/X)op → A on X , there is an

isomorphism

HGZ
∗ (X,T ) = H∗((∆/X)op, T ) ∼= H∗(∆/X, T−1),

natural in X and T .
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Proof. In the case of homology, this follows verbatim as in the proof of the proposi-
tion in [12, App. II.4.4] by interpreting Gabriel-Zisman homology of simplicial sets
as Thomason homology of small categories applied to the respective categories of
simplicies (see [15]). The case for cohomology follows analogous from the dual
arguments using ∆/X instead of (∆/X)op. �

Now let f : X → Y be a map of simplicial sets, which is locally cohomologically
constant and let T : ∆/X → A be a Gabriel-Zisman natural system. Then we
obtain an induced covariant functor for each q ≥ 0

Hq
GZ(F(−), T(−))

−1 : ∆/Y → A

defined on objects by
y 7→ Hq

GZ(Fy , Ty)

and which maps morphisms θ from y to y′ in ∆/X to the induced inverse mor-
phism

(θ∗)−1 : Hq
GZ(Fy , Ty) → Hq

GZ(Fy′ , Ty′).

This allows us to derive the following cohomology spectral sequence for locally
cohomologically constant maps of simplicial sets

Proposition 2.16. Let X and Y be simplicial sets and f : X → Y be a map of simplicial
sets, which is locally cohomologically constant. Let A be a complete abelian category with
exact products and T : ∆/X → A be a Gabriel-Zisman natural system on X . Then there
is a cohomology spectral sequence of the form

Ep,q
2

∼= Hp
GZ(Y,H

q
GZ(F(−), T(−))

−1) ⇒ Hp+q
GZ (X,T )

which is natural in f and T .

Proof. This follows from the identification of the E2-page of the general Leray type
spectral sequence in Corollary 2.10 for the particular case of a given locally coho-
mologically constant map of simplicial sets using the natural isomorphism

Hq
GZ(−/(∆/f), T ◦Q(−)) ∼= Hq

GZ(F(−), T(−))
−1).

The abutment of the spectral sequence does not change and it is again natural in f
and T . �

Finally, we will derive the Leray-Serre spectral sequences of a Kan fibration
of simplicial sets in cohomology and homology with local coefficients from our
general setting (compare also [12, App. II.4.4], [9]).

Let f : X → Y first be any map of simplicial sets. Furthermore, let A be a
complete abelian category with exact products and T : ∆/X → A a covariant
local system on X . Then Lemma 2.7 and Proposition 2.15 imply

(Rn(∆/f)∗)(T
−1)(y) = Hn(Fy, T |Fy ),

where T |Fy is given as the composition

∆/Fy
∆/pr2
−→ ∆/X

T
−→ A

If in addition f : X → Y is a Kan fibration of simplicial sets, then

(Rn(∆/f)∗)(T
−1) : y 7→ Hn(Fy , T |Fy)

induces a covariant local system Hq
GZ(f, T ) : ∆/X → A . Dually, we can make

similar considerations starting with a cocomplete abelian category with exact co-
products and a contravariant local system T : (∆/X)op → A on X . We then obtain
a contravariant local system HGZ

q (f, T ) : (∆/X)op → A induced by

(Ln(∆/f)∗)(T−1) : y 7→ Hn(Fy, T |Fy ),
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where T |Fy is now given as the composition

(∆/Fy)
op (∆/pr2)

op

−→ (∆/X)op
T

−→ A .

The following follows now from Theorem 2.8 and Theorem 2.12 and recovers the
Leray-Serre spectral sequence of a Kan fibration (compare also [9]).

Proposition 2.17 (Leray-Serre spectral sequence). Let f : X → Y be a map of simpli-
cial sets, which is a Kan fibration. Let A be a complete abelian category with exact products
and T : ∆/X → A be a covariant local system on X . Then there is a cohomology spectral
sequence of the form

Ep,q
2

∼= Hp
GZ(Y,H

q
GZ(f, T )) ⇒ Hp+q

GZ (X,T )

which is natural in f and T .
Dually, let A be a cocomplete abelian category with exact coproducts and T : (∆/X)op →

A be a contravariant local system on X . Then there is a homology spectral sequence of the
form

E2
p,q

∼= HGZ
p (Y,HGZ

q (f, T )) ⇒ HGZ
p+q(X,T )

which is natural in f and T .

Let us finally remark that when taking geometric realisation again we will re-
cover the Leray-Serre spectral sequence for fibrations of topological spaces.
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