
data

Article

NagareDB: A Resource-Efficient Document-Oriented
Time-Series Database

Carlos Garcia Calatrava 1,2,* , Yolanda Becerra Fontal 1,2, Fernando M. Cucchietti 1 and Carla Diví Cuesta 1

����������
�������

Citation: Calatrava, C.G.; Fontal,

Y.B.; Cucchietti, F.M.; Cuesta, C.D.

NagareDB: A Resource-Efficient

Document-Oriented Time-Series

Database. Data 2021, 6, 91. https://

doi.org/10.3390/data6080091

Academic Editor: Maarten Marx

Received: 14 July 2021

Accepted: 6 August 2021

Published: 13 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Barcelona Supercomputing Center, Plaça Eusebi Güell, 1–3, 08034 Barcelona, Spain;
yolanda.becerra@bsc.es (Y.B.F.); fernando.cucchietti@bsc.es (F.M.C.); carla.divicuesta@bsc.es (C.D.C.)

2 Department of Computer Architecture, Universitat Politècnica de Catalunya (BarcelonaTech), C. Jordi Girona,
31, 08034 Barcelona, Spain

* Correspondence: carlos.garcia@bsc.es

Abstract: The recent great technological advance has led to a broad proliferation of Monitoring
Infrastructures, which typically keep track of specific assets along time, ranging from factory ma-
chinery, device location, or even people. Gathering this data has become crucial for a wide number
of applications, like exploration dashboards or Machine Learning techniques, such as Anomaly
Detection. Time-Series Databases, designed to handle these data, grew in popularity, becoming
the fastest-growing database type from 2019. In consequence, keeping track and mastering those
rapidly evolving technologies became increasingly difficult. This paper introduces the holistic design
approach followed for building NagareDB, a Time-Series database built on top of MongoDB—the
most popular NoSQL Database, typically discouraged in the Time-Series scenario. The goal of
NagareDB is to ease the access to three of the essential resources needed to building time-dependent
systems: Hardware, since it is able to work in commodity machines; Software, as it is built on
top of an open-source solution; and Expert Personnel, as its foundation database is considered the
most popular NoSQL DB, lowering its learning curve. Concretely, NagareDB is able to outperform
MongoDB recommended implementation up to 4.7 times, when retrieving data, while also offering a
stream-ingestion up to 35% faster than InfluxDB, the most popular Time-Series database. Moreover,
by relaxing some requirements, NagareDB is able to reduce the disk space usage up to 40%.

Keywords: time series database; resource-saving approach; document-oriented database; data
stream; MongoDB

1. Introduction

The great progress in the technological field has led to a dramatic increase in deployed
monitoring devices. Those devices, commonly called sensors, are employed in a broad
number of scenarios, ranging from traditional factories and commercial malls to the largest
experiment on Earth [1].

The continuous polling of the sensor’s readings is considered beneficial, as it helps
not only in supervising the status of the monitored assets, but also in understanding
the behavior of the monitored systems by collecting insights [2]. Moreover, sensor data
started being used in Data Analysis and Machine Learning approaches such as Industrial
Predictive Maintenance, in order to anticipate to future failures, and Anomaly Detection,
aimed at identifying rare events or observations.

In general, in order to optimize the value extracted from data, it is necessary to
keep a large historical record. In consequence, Monitoring Infrastructures are expected to
work closely with database management systems, whose goal is to efficiently store and
manipulate data for its later retrieval.

While General-purpose database management systems (GDB), such as Relational
Database Management Systems, have been historically capable of managing a wide range

Data 2021, 6, 91. https://doi.org/10.3390/data6080091 https://www.mdpi.com/journal/data

https://www.mdpi.com/journal/data
https://www.mdpi.com
https://orcid.org/0000-0002-8185-3667
https://doi.org/10.3390/data6080091
https://doi.org/10.3390/data6080091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/data6080091
https://www.mdpi.com/journal/data
https://www.mdpi.com/article/10.3390/data6080091?type=check_update&version=1

Data 2021, 6, 91 2 of 20

of scenarios, they were found inefficient, or even unsuitable, in handling the Velocity and
Volume of nowadays’s large Infrastructures [3].

In order to address the specific challenges of Monitoring Infrastructures, specialized
systems like Time Series Database Management Systems (TSBD) arose. TSBD are specially
tailored to the nature of sensor readings, where each entry is associated with a timestamp,
being able to efficiently represent them as a sequence of values over time.

As monitoring systems attracted more and more interest, along with the Internet of
Things (IoT) boom, TSDB grew in popularity, becoming the fastest-growing database type
from 2019 [4]. In not many years, altogether with the NoSQL movement, DBMS moved
from one-size-fits-all, where one single technology was applied to every scenario, to a
situation in which a single scenario, such as Time Series, could be implemented with a
plethora of different technologies [3], each one with different performance, functioning,
requirements, and even query language.

As a consequence, implementing capable solutions involving Time-Series databases
became fairly laborious to small and medium-sized organizations [5] (SMEs), that wanted
to benefit from Monitoring data, but lacked the resources needed to build those specialized
data handling architectures, facing three different obstacles:

• Hardware: Handling real-time data requires computing resources in line with the
Monitoring Infrastructure’s size. Moreover, as time passes and more data is gathered,
the storage requirements grow accordingly. A common approach to tackle this prob-
lem is to just keep a fixed amount of data, following FIFO method: As new data is
stored, the oldest is removed. This is therefore a double-sided sword, since it prevents
storage costs to grow, but it also implies that data is being discarded, and potentially
relevant information is lost.

• Software: While some databases are open-source, most popular databases offer both
a limited-free version and a commercial-enterprise edition. However, license pricing
is only one of the many considerations to take into account: for example, large-scale
Monitoring Infrastructures typically require the software to be horizontally-scalable,
so, able to scale out by adding more machines.

• Expert Personnel: Following Monitoring Infrastructure’s rising interest, TSDB be-
came the fastest-growing database category, leading to a plethora of new databases.
Furthermore, each database typically has a different query language and a completely
different way-of-thinking associated with its usage. However, Data Engineers are
expected to select and master the most appropriate solution for each situation. Conse-
quently, experts are not easy to find or train, nor cheap to hire [6].

The main contributions of this paper is towards relieving the above explained prob-
lems, helping in the democratization of Monitoring Infrastructures, by lowering down the
barriers to employing a Time-Series Database. Concretely, we demonstrate and benchmark
the novel approach followed for implementing NagareDB, a resource-efficient Time-Series
database built on top of MongoDB—a database typically discouraged in the Time-Series
scenario [7–9].

NagareDB intends to ease access to the essential resources needed by: First, by working
on top on a open-source and broadly-known database such as MongoDB, which relieves
SMEs from licensing costs, and personnel from learning to use from scratch yet-another
database. Secondly, by offering a fair trade-off between efficiency and requirements, which
makes it able to be deployed in commodity machines while offering outstanding performance.

More precisely, our experiments show that NagareDB is able to outperform Mon-
goDB’s time series data model, providing up to a 4.7 speedup when querying, while also
offering a 35% faster synchronous real-time ingestion, in comparison with InfluxDB, the
most popular Time Series Database, whose non-scalable version is open source.

Moreover, thanks to the optional usage of a naive-but-efficient data type approxima-
tion, NagareDB is able to provide further querying speedup while reducing the disk space
consumption up to 40%, which makes it able to store an almost 1.7 times bigger historical
period in the same disk space.

Data 2021, 6, 91 3 of 20

2. Background
2.1. Solutions Categorization

Concerning Time-series data management, Databases can be efficiently-implemented
following a wide range of data models such as key-value or column oriented data models [10].
However, this research focuses on their outcomes and purpose, in disregard of their internal
implementation. Consequently, Time-series databases could be classified either in General-
Purpose DB, or Purpose-Built Time-Series DB, which, in turn, could be considered either
Native TSDB or Adapted TSDB.

General-purpose databases (GDB). GDB intend to meet the needs of as many appli-
cations as possible. In consequence, GDB are designed to be independent with regard to
the nature of the data to be handled. Thanks to this Swiss army knife behavior, GDB are
typically the most popular DBMS, which makes it easier to find expert personnel in their
usage [4]. However, this flexibility is gained at the expense of efficiency, since GDB are
not tailored to benefit from the specifics of any particular scenario [11]. Hence, system
performance is limited, and strongly attached to the design decisions made by the database
engineers, while fitting the particular scenario into the GDB.

Native Time-Series databases (N-TSDB). N-TSDB are DBMS that are optimized for
storing and retrieving time series data, such as the one produced by sensors or smart
meters. As TSDB are tailored to the specific requirements of Time series data, they can
be offered as an out-of-the-box solution, meaning that not many design decisions have to
be taken, speeding up the deployment time. However, as a consequence of their intrinsic
specialization, their popularity is substantially reduced, in comparison to General-purpose
DBMS [4].

Adapted Time-Series databases (A-TSDB). This specific case of TSDB does not em-
ploy a new database engine, but borrows one from a GDB. Specific functionalities and
design decisions, with respect to the time series nature, have been implemented on top of a
GDB, offering the outcome as an out-of-the-box solution. Thus, the newly created database
looses the ability of handling scenarios that was typically able to. As the foundation data
model is inherited from the GDB, the optimization approaches than can be performed are
limited. Thus, A-TSDB rely on the popularity and robustness of the chosen GDB, while
providing an scenario-optimized solution.

2.2. Time-Series Properties

Time-Series DBs are tailored to the specifics of Time-Series data, which empowers
their efficient data handling. Some of the most fundamental properties of time-series
data [12,13] are:

• Triple-based Data Model. Time series data is mainly composed of three parts: The
subject to be measured (f.i sensor ID), the measurement, and the timestamp at which
the measurement was read.

• Smooth and continuous stream. The writing of time series data is relatively stable,
and its generation is typically done at a fixed time frequency.

• Immutable data. Once data is read and written, it is never updated, except in case of
manual revisions.

• Decaying query probability. Recent data is more likely to be queried. Thus, as
newer data is ingested, the older data has less chances of being consulted.

2.3. TSDBs Requirements

Time-series databases can be implemented following a wide range of approaches in
order to benefit one or another feature or specific use case requirements. For example, a
given TSBD could be designed in order to maximize the ingestion speed, while other might
intend to speed up data retrieval.

While optimizing at the same time some of these requirements might be possible,
sometimes it is necessary to find a trade-off [14–16]. In addition, some non-functional require-
ments might depend on the target users or even the business model of the database developers.

Data 2021, 6, 91 4 of 20

This research classifies TSBD requirements according to the resource that benefit or
compromise the most, as explained in Section 1. Concretely:

• Software. Requirements regarding software characteristics or database functionalities,
involving query or data types, allowed operations, etc.

• Hardware. The ones regarding the ability of the database to reduce or to optimize the
machine(s) speed or resources usage.

• Expert personnel. These requirements describe the different ways the user is able to
interact with the database, including the facility of its usage or the compatibility of
the database with the user’s environment.

Thus, some of the most relevant requirements on time series databases are [4,10,12]:

• Software.

– Continous calculations. The TSDB is able to resolve functions continuously,
taking into account the recently ingested data, and the historical information,
keeping the outcomes internally. An example is the continuous calculation of the
last hour average value, for a given item.

– Time Granularity. It defines the smallest time unit precision in which a times-
tamp can be stored and interpreted. For example, a given TSDB could be able to
store up to seconds, being unable to keep information regarding the millisecond
in which the data was generated.

– Aggregation. When aggregating, the database is able to group multiples val-
ues and perform operations over them, returning a single result. The retrieval
of the minimum/maximum value during a given time period is an example
of aggregation.

– Downsampling. It is the process of reducing the sampling rate of a given data
source or sensor, taking into account a specific time granularity or sample interval.
For example, if the database stored a sensor reading in minute-basis, the database
should be able to retrieve its data in hourly intervals, showing, for example, the
average of the total sensor readings for each hour.

– License. A license regulates, among others, who and how the database can be
used. Since this research focus on being resource-efficient, the price or cost of
licenses, for using a given database, is especially relevant.

• Hardware.

– Distribution/Clusterability. Scalability and load balancing features are able
to compensate machine failures, preventing the system from down-times. More-
over, by scaling horizontally, the database is able to increase its storage or its
performance, by adding further nodes or machines to the cluster.

– Retention Policy. In a TSDB, a data Retention Policy specifies for how long data
should be kept in the system, until being deleted. The possibility of setting up
retention policies is crucial for TSDB, as keeping the data forever is not typically
affordable for most users, as hardware storage might be limited and expensive.

– Storage Approach and Compression Algorithms. The approach followed for
implementing the data persistence will directly affect the storage usage of the
database and its compression capability. For example, databases implemented
following column-oriented data models are likely able to compress data more effi-
ciently, by means of Run Length Encoding [17]. Moreover, each database employs
a given compression algorithm, reducing either its disk usage, its compression
time or finding a trade-off [18].

– Ability to support highly concurrent writes. Data is typically ingested at
a regular pace, following the Smooth and continuous stream property explained
in Section 2.2. However, it is important for the database to be able to ingest
it as fast as possible, as it enables a wider range of scenarios, including more
demanding ones.

Data 2021, 6, 91 5 of 20

– Ability to retrieve data speedily. Queries should be answered as fast as
possible, as the TSDB might be the cornerstone of further systems or operations,
such as data exploration or visualization, data analysis, or machine learning
techniques such as predictive maintenance or anomaly detection [19,20].

• Expert personnel.

– Database and Query Language Popularity. As a database raises more interest,
it becomes easier to find expert personnel on its usage, clear documentation and
even courses or training material. The same effect happens with the query
language: While some databases use their own language, some others mimic,
inherit or support a more popular and external query language, in order to
facilitate its querying.

– Interfaces. Interfaces can be used by programming languages to communicate
to a database. Thus, the more interfaces a database provides, the easier it becomes
to adapt to personnel expertise.

– Operative Systems. As it happens with interfaces and query languages, users
might be specialized in a given operative system. Moreover, some companies
could promote the usage of a given operative system. Thus, as more Operative
Systems the database is able to be deployed in, the more possibilities it will have
to fit in its user’s environment.

3. Related Work

The problem of handling time-series data has been addressed by employing or de-
veloping different database solutions laying in one of the three categories explained in
Section 2.1. Concretely, just DB-ENGINES, the Knowledge Base of Relational and NoSQL
Database Management Systems [4], keeps track of more than 35 Time Series Databases,
such as InfluxDB, KdB+, Prometheus, Graphite, or TimescaleDB. While their shared goal is
to empower data management, their approaches, strengths and weaknesses are different,
being InfluxDB the most popular Native Time-Series, and TimescaleDB the most popular
Adapted Time-Series database [4]. Thus, some of the most relevant technologies related to
this research are:

MongoDB. It is a general-purpose open-source database written in C++ [21]. It offers
an extremely flexible data model, since its base structure is document-oriented, so, made
out of JSON-like documents. These documents act like independent dictionaries where the
user can freely add of remove new fields, releasing the database of up-front constraints.
Thus, there is no need to set up or alter any enforced global schema, as it would happen in
relational databases [22,23]. However, this flexibility implies constant metadata repetition,
such as the key of the key-value JSON dictionary pairs. This negative impact is partially
palliated by its data compression mechanisms [24]. It is able to scale horizontally freely,
by means of shards and replicas, which makes it possible to create a database cluster
composed by commodity machines. Regarding its interaction methods, it has its own query
language and a really wide range of interfaces to work with. It is able to perform continuous
queries when retrieving new values by means of change streams and to aggregate and
down-sample data. Last, it can be installed on Linux-based systems, OS X, and Windows,
which makes it able to reach a great number of users. However, although it is considered
the most popular NoSQL DBMS [4,25], its usage in the Time-Series domain has been
typically discouraged due to its time-expensive query answering [7–9], and its timestamps
are limited to milliseconds [26], which might be insufficient for high-demanding use cases.
Last, although it provides optional retention policies, in the form of capped collections,
they are tight to the insertion date of a given sensor reading, and not to its generation
date [26], which might be problematic for some time-series use cases, in case of delays or
non-chronological insertions.

InfluxDB. It is a native Purpose-Built Time-Series database [27] written in GO. From
2016, it is considered the most popular TSDB [4]. It supports plenty of programming
languages and two different querying approaches: Flux, its own query language, and

Data 2021, 6, 91 6 of 20

InfluxQL, as SQL-like support, each having different limitations. It is able to efficiently
perform a wide range of operations, such as continuous querying, down-sampling and
aggregations. Moreover, is able to efficiency reduce and limit disk usage, by means of its
compression mechanisms and its data retention policy. However, it provides a commercial
enterprise version and an open-source version, with some limitations. Among others,
the open-source version is not able to grow horizontally, so the deployment is limited to
one single machine [27], not being able to carry out data sharding or replication, which
strongly limits the performance, at the same time that reduces the system availability and
fault-tolerance. Regarding its potential user’s operative systems, it can be installed on
Linux-based systems and OS X, but not on Windows itself. Last, although it is the most
popular TSDB, its popularity score is almost twenty times smaller than other general-
purpose databases, such as MongoDB [4].

TimescaleDB. It is an adapted open-source TSDB built over PostgreSQL, one of the
most popular General-Purpose DBMS [4]. Thus, it inherits PostgreSQL’s broadly known
SQL query language and its powerful querying features and interfaces, which lowers
down its learning curve. Moreover, it is able to run on Windows, OS X, and Linux, which
makes it able to reach a wide number of potential users. However, due to the limitations of
the underlying rigid Relational data model, its scalability might be compromised, and its
performance might vary depending on the query [28]. Moreover, as its underlying data
model is row-oriented, its disk-usage consumption is significantly greater than other TSDB,
such as InfluxDB [28], and its compression mechanisms are not likely able to demonstrate
its full potential [29].

To sum up, on the one hand, MongoDB is a general-purpose and open source database,
but despite being considered the most popular NoSQL DBMS, its usage in the time-series
scenario has been discouraged. On the other hand, TimescaleDB relies on a well-known
SQL solution and offers good optimizations, but generally worse than Native TSDBs. Last,
InfluxDB offers an upstanding performance, but its usage is limited to Linux-based and OS
X, at the same time that its full version is commercial-licensed, which reduces the number
of users that could benefit from it. In addition, as it is a native TSDB, it becomes necessary
to learn a new technology from scratch.

NagareDB’s goal is to provide a fair trade-off between efficiency and resources de-
mand, offering an optimized TSDB solution that relies on a moldable, open-source, and
well-known NoSQL General-purpose DBMS.

4. Design Approach

This section describes the holistic and most relevant design decisions materialized
in NagareDB, with the goal of creating an efficient and balanced Adapted Time-series
database. In addition, it states the main differences between the MongoDB Recommended
Implementation [30] for Time-Series (briefed as MongoDB-RI), and other related solutions.

4.1. Data Model

As in any adapted database, the overlying data model adaptability is limited by the
malleability of the foundation data model. Taking this into account, our Time-Series Data
Model approach has the following key features:

Medium-sized time-shaped bucketing. Sensor readings are packed together in medium-
sized buckets or documents, following the nature of time. Concretely, a document clusters
together the readings of three consecutive units of time. For instance, if the frequency unit
in which a sensor is reading values is set to minute (First unit), all readings belonging to
the same hour (Second unit) will be packed together, for afterwards being bucketed in a
daily document (Third unit). This structure can be seen in Figure 1: The showed document
represents the 15th day of Month 02/2000 (3rd time unit), that stacks together all 24 day
hours (2nd time unit), were each hour has 60 readings, one per minute (1st/base time
unit). By contrast, MongoDB-RI packs together readings in small-sized buckets, taking just
2 time units. This can be seen in Figure 2, were a document represents an just hour and

Data 2021, 6, 91 7 of 20

its minutely readings. While this could be efficient for short-ranged queries, it severely
penalizes medium and high ranged historical queries, as the storage device is asked to
retrieve a large amount of documents, that could be scattered. Since long queries are more
resource-consuming than small ones, this approach is considered more balanced.

Time rigidity. Following the smoothness property explained in Section 2.2, sensor
readings are organized via a rigid schema-full approximation, meaning that there is a
pre-defined rigid structure for their storage, where each reading has an specific allocation
and position. This bucket structure, consisting in a dictionary of arrays, is created as a
whole when a sensor reading, belonging to it, is received. This structure can be seen in
Figure 1, where the document representing the 15th day of 02/2000 has several pre-defined
and fixed-size data structures. As one of the most important features in MongoDB is its
schema-less design, enforcing a schema could be seen as counter-intuitive at first sight,
however, imposing a structure provides two important benefits, perfectly suited for time-
dependent data: First, it allows to store time-sorted data in disk, and second, it allows
to leverage from implicit information, inherent to the structure design, such as the value
array position. Conversely, MongoDB recommended data model (Figure 2) following its
schema-less nature, keeps sensor readings dictionaries, where the key provides recurrent
explicit information about time (f.i the minute when the reading was performed), and the
value contains the sensor reading itself.

Sensor elasticity. With respect to the sensor dimension, it follows the schema-less
approximation inherent to MongoDB. Consequently, new sensors can be incorporated or
removed in an elastic way, without having to alter any global schema, as it could happen
in rigid data models such as relational ones [22,23].

Pre-existing timestamps. Every sensor reading is implicitly assigned to an already
existing timestamp. Thus, timestamps are not calculated on the fly, as it happens in
MongoDB-RI.

Data-driven bucket identification. Each bucket is identified and sorted by sensor’s
reading time. By contrast, MongoDB-RI identifies and sorts buckets by metadata, such
as insertion time. However, in Time-series scenarios, sorting by insertion time is not
necessarily equal to sorting by data-generation time, as data could be delayed or even
ingested disorderly.

4.2. Access Structures and Layered Bucketing

Sensor readings, containerized in buckets as explained in Section 4.1 and in Figure 1,
are hash-distributed and grouped, according to time, in so-called MongoDB collections.
More precisely, a MongoDB collection, containing a set of documents sorted by a B-Tree, is
intended to keep the data produced in a given month, and in a specific year. For example,
as it can be seen in Figure 1, the bucket containing the readings of sensor 0001 for the day
15 February 2020 is classified in the collection Month 2000_02.

This bucketing approach intrinsically enables, on the one hand, the possibility of
performing efficient lazy-querying, eventually performing several small queries (one per
bucket) instead of a big one (whole database query). Moreover, querying can performed by
means of chained queries, so, performing several time-consecutive queries, relieving the
system from searching or holding data that is not yet needed. On the other hand, when
querying speed is crucial, this bucketing approach also enables efficient parallel querying,
as data is already naturally grouped, being able to perform several queries to different
buckets at the same time. Last, benefiting from both the decaying and immutability proper-
ties of Time-series (Section 2.2), this bucketing approach allows the natural compaction of
already filled-up buckets, that are not likely to be updated, which also have less possibilities
of being queried.

Using a more granular bucket distribution, such as grouping data by its generation
day, instead of its generation month, while tempting for high-granularity data, is currently
discarded in this approach, but subject to future re-considerations. This is due to the
fact that MongoDB’s WiredTiger Storage Engine requires the Operative System to open

Data 2021, 6, 91 8 of 20

two files per collection, plus one per each additional index [26], which could overwhelm
the Operative System’s open files table. This is, actually, a recurrent problem found in
InfluxDB [31], which makes it necessary for database administrators to apply patches, for
example with the ulimit command [32]. However, as NagareDB is intended to be a fast-
deploying and resource-compromised solution, this self-imposed limitation was preferred.

By contrast, MongoDB-RI’s strategy is to keep data stored as a whole, accessing it via a
single B-tree. However, this B-tree is intended to be kept in RAM [26], independently from
the time range of the query to be performed. While this benefits efficiency, it potentially
misallocates RAM resources. Conversely, the approach proposed in this research intends to
save resources, by selectively loading and replacing small indexes based on the time-range
of the queries, following a Least Recently Used approach.

Month 2000_02

Month 2000_01

Month 2009_12

[....]

 _id:

 0: [..., ..., ...]
 1: [..., ..., ...]
 2: [56.56, 57,56,, 115.70]

 [...]

 23: [..., ..., ...]

 day: 30,
 sensorID: 0001 _id:

 0: [..., ..., ...]
 1: [..., ..., ...]
 2: [56.68, 57.56, ..., 115.7]

 [...]

 23: [..., ..., ...]

 day: 15,
 sensorID: 0001

m
in

m
ax

Figure 1. Schematic simplification of NagareDB’s Access Structures and Data Model, when querying
for Sensor0001 readings, for hour 2 AM of day 15 February 2020. Colour shows the query path,
until reaching the sensors’ readings, that can be retrieved without further processing, as they are
physically sorted, already.

Data 2021, 6, 91 9 of 20

 _id: ObjectID()
 sensorID: "Sensor0001"
 date: 2018-06-30T13:00:00Z
 readings:

min max

 _id: ObjectID()
 sensorID: "Sensor0001"
 date: 2018-06-30T13:00:00Z
 readings:

 _id: ObjectID()
 sensorID: 0001
 date: 2000-02-15T02:00:00Z
 readings:

 1: 57.56,
 0: 56.68,
 3: 59.51,
 2: 58.24,

 [...],

 59 : 115.7

Figure 2. Schematic simplification of MongoDB-RI’s Access Structures and Data Model, when
querying for Sensor0001 readings, for hour 15 February 2020 T02. Colour shows the query path,
accessing though a B+ tree, until reaching the corresponding minutely readings, that have to be
processed, as they are stored in an (unsorted) dictionary.

4.3. Retention Policies

Retention policies are crucial in Time-Series databases, as the amount of data to be
kept is limited by the available resources. Concretely, retention policies describe for how
long a record needs to be stored in the system.

In order to tackle this problem, NagareDB proposes a flexible retention policy strategy,
with the aim of finding a good trade-off between resource-saving and efficiency.

Concretely, the flexible retention policy is configured with a maximum and a minimum
retention time. Thus, data will be eventually bulk-deleted in some point in between the
minimum and the maximum allowed time.

The main advantage of this strategy is its instant and inexpensive bucket delete
operations. For instance, if the retention time is set in terms of months (so, the number of
buckets), the oldest data could be deleted as a whole, by dropping the monthly bucket.

By contrast, in fixed retention policy strategies, such as the ones of MongoDB-RI [26]
or InfluxDB [33], when a new record is received, the oldest one is removed, meaning that
each insert operation is potentially triggering an implicit delete operation, which reduces
insert performance, at the same time that overloads the system.

Moreover, MongoDB’s retention policy is based capped collections, and takes into
account the last inserted record. However in Time-series scenarios, insertion time order is
not necessarily equal to data-generation order, as data could be received disorderly.

Data 2021, 6, 91 10 of 20

4.4. Data Types

MongoDB has a wide number of available data types [26], which can be inherited to
any specific-purpose database built on top. Concretely, but not exclusively:

• Array
• Date: Milliseconds since the Unix epoch (1 January 1970)
• Decimal128: High-precision decimal.
• Document
• Double: 64-bit signed floating point.
• Int32/64: 32-bit or 64-bit signed integer.
• String

In spite of the wide variety of data types provided by MongoDB, decimal values are
always requesting, at least, 64 bits for storage. While the usage of 64-bit double-precision
decimals might be required for some high-precision scenario, more modest and resource-
limited scenarios might find a more balanced solution by limiting the number of decimals
digits, using a 32-bit data type for its representation.

Furthermore, this would allow users to store the same historical period of data using,
theoretically, up to half of the disk storage resources or, said in another way, to keep up to
two times more historical data in the same disk space.

As 32-bit decimals are not implemented in MongoDB, and taking into account that one
of the main goals of this research is to provide a resource-balanced solution, the proposed
approach includes one further, optional, and naive data type, understood as a on-query-time
limited decimal. This naive data type relies on two different data types:

• 32-bit signed Integer: It keeps the decimal number without the decimal point.
Thus, the integer part and the fractional part of the number are stored together,
without separation.

• BSON Document: It is a meta-data configuration document, functioning as a dictionary,
that keeps, per each sensor, which is the desired maximum number of decimal digits.
Also, it keeps a default setting, that will be used if no specific configuration is set, for
a given sensor.

This naive-but-effective approach is intended to enable the storage of decimal numbers
in 32 bits, while limiting the foreseen overhead produced by the type casting. Data rounding
is automatically done at insertion time, and the consequent type casting is accordingly
performed during ingestion and query time.

Taking into account that a 32-bit signed Integer is able to represent a maximum value of
231 − 1 and a minimum value of −231, this on-query-time limited decimal is able to represent,
for example, a maximum number of 21.474, 9999, when using four decimals, given that the
number of decimal digits has to be static, and each decimal digit should be able to range
from 0 to 9.

This self-imposed limitation is optional, and targeted to sensors with low or medium
magnitude order variability. Concretely, its target scenarios are the ones in which Moni-
toring Infrastructures set up a retention policy, as explained in Section 4.3. For example,
for resource-limited scenarios involving anomaly detection or predictive maintenance, in
which real anomalies or failures rarely occur, it will likely be more relevant to keep more
historical data, if the sensor data fits in this naive decimal data type, than keeping more
decimal digits [34,35].

Regarding InfluxDB, its available data types are [33]:

• 64-bit floating-point numbers
• 64-bit integers: Signed and unsigned
• Plain text string
• Boolean
• Unix timestamp

Which makes it mandatory to use 64 bits for any kind of number.

Data 2021, 6, 91 11 of 20

4.5. Further Considerations
4.5.1. Horizontal Scalability

It is inherited from MongoDB, providing it via shards and/or replicas. By constrast,
InfluxDB is only able to grow horizontally in its commercial version.

4.5.2. Compression

MongoDB uses snappy compression [36] by default, which intends to minimize the
compression time. However, NagareDB is set up to use Zstandard compression. ZSTD
is able to offer higher compression rates, while slightly reducing query performance [37].
However, as one of the main objectives of the proposed approach is to reduce resource
requirements, this option is preferred.

4.5.3. Timestamps

MongoDB’s date type is limited to milliseconds. Thus, NagareDB is also limited to it.
While it would be possible to create a new data type for storing nanoseconds, we consider
it enough to keep up to milliseconds, as NagareDB is intended to provide a good trade-off
between resources and features offer, not specifically targeting the highest demanding
use cases. Conversely, InfluxDB uses nanosecond precision. This makes InfluxDB a more
time-precise database, but it also implies that in a not-that-precise scenario it will keep
unnecessary date information [38].

4.5.4. Query Parallelization

The bucketing technique explained in Section 4.2 enables intrinsic query paralleliza-
tion, as data is already equally distributed in buckets. However, as NagareDB is intended
to provide a good resource-outcomes compromise, query parallelization is only enabled for
queries whose nature is CPU-DISK balanced, and limited to half of the available threads.
For instance, queries that request a historical period will not use query parallelization, as
their CPU usage is low. Conversely, queries involving data aggregation, which requires
higher CPU usage, are parallelized.

4.5.5. Time-Series Granularity and Frequency

NagareDB is intended for discrete time series, with stable frequency and round
timestamps, following the smooth property explained in Section 2.2. For instance, users are
expected to define the baseline granularity for each sensor, and/or a default one. Thus,
when receiving a reading, the timestamp will be truncated to the desired granularity. By
contrast, InfluxDB does allow non-truncated timestamps, but strongly recommends to
truncate them, as otherwise efficiency drops significantly [39]. This self-imposed limitation
provides extended performance, at the same time that prevents users from inefficient practices.

5. Experimental Setup

The experimental setup is intended to enable the evaluation of the performance of
NagareDB in moderate-demand use cases, as well as the effects of implementing more
lightweight data types, such as the one explained in Section 4.4.

Concretely, the experimental set up is made against two different solutions: First, the
MongoDB recommended implementation (MongoDB-RI), as a reference point. Second,
InfluxDB, as it is considered the most popular Time-Series Database [4].

5.1. Virtual Machine

The experiment is conducted in a Virtual Machine (VM) that emulates a commodity
PC, in accordance to NagareDB’s goals, as explained in Section 1.

More precisely, the VM is configured as follows:

• OS Ubuntu 16.04.7 LTS (Xenial Xerus)
• 4 threads @ 2.2 Ghz (Intel® Xeon® Silver 4114)
• 8 GB RAM DDR4 2666 MHz (Samsung)

Data 2021, 6, 91 12 of 20

• 300 GB-fixed size (Samsung 860 EVO SSD)

5.2. Comparative Software

• MongoDB 4.4 CE: Time-series Recommended Implementation, referred as MongoDB-RI.
• InfluxDB OSS 2.0: Referred as InfluxDB.
• NagareDB-64b: When globally using MongoDB’s 64-bit decimal data type.
• NagareDB-32b: When using the limited-precision data type explained in Section 4.4,

set up to keep 4 decimals.

5.3. Data Set

In order to generate synthetic Time-series, we simulate a Monitoring Infrastructure
based on the industrial settings of some external collaborators of our institution. Concretely,
it is composed of 500 sensors, equally segmented in five different monitoring areas. Each
sensor is globally identified by a number between 1 and 500, and ships data every minute.

Sensors readings (R) follow the trend of a Normal Distribution with mean µ and
standard deviation σ:

R ∼ N (µ, σ2) : µ ∼ U (200, 400), σ ∼ U (50, 70)

where each sensor’s µ and σ are uniformly distributed.
The simulation is ran until obtaining a 10-years historical period, from year 2000 until

year 2009, included, so no retention policy is set. In consequence, the total amount of triples
is 2,628,000,000.

Other configurations, such as ones including a bigger number of sensors, are likely to
provide similar results. This is due to the fact that seek times, in SSD devices, are typically
a constant latency [40,41], in contrast with HDD devices. This effect makes HDD devices to
be discouraged for database applications, to the extend that not even InfluxData has tested
InfluxDB on them [42].

6. Evaluation and Benchmarking

This section demonstrates the performance of NagareDB in comparison to other
database solutions, as explained in Section 5.

Concretely, the evaluation and benchmarking is done in three different aspects: Storage
Usage, Data Retrieval Speed, and Data Ingestion Speed. Thanks to this complete evaluation,
it is possible to analyze the performance of the different solutions during the persistent
data life-cycle, with regard to the database scope: From being ingested, to being stored and,
lately, retrieved.

6.1. Storage Usage

After ingesting the data, as explained in Section 5.3, the disk space usage of the
different database solutions is as shown in Figure 3.

On the one hand, MongoDB-RI is the implementation that requires more disk space.
This could be explained due its schema-less implementation and by its snappy [36] compres-
sion mechanisms intended to improve query performance while reducing its compression
ratio, following the implications explained in Section 4.5.2.

On the other hand, both InfluxDB and NagareDB-64b require the same amount of disk
space, which could be explained by its shared pseudo-column oriented data representation
and by its powerful compression mechanisms.

Last, NagareDB-32b is able to reduce the disk usage by 40%, in comparison to both
InfluxDB and NagareDB-64b, thanks to its lightweight data type, explained in Section 4.4.
In consequence, NagareDB-32b is able to store, approximately, a 1.7 times bigger historical
period in the same disk space.

Data 2021, 6, 91 13 of 20

Version August 5, 2021 submitted to Data 13 of 20

6. Evaluation and Benchmarking520

This section demonstrates the performance of NagareDB in comparison to other521

database solutions, as explained in section 5.522

Concretely, the evaluation and benchmarking is done in three different aspects:523

Storage Usage, Data Retrieval Speed and Data Ingestion Speed. Thanks to this complete524

evaluation, it is possible to analyze the performance of the different solutions during525

the persistent data life-cycle, with regard to the database scope: From being ingested, to526

being stored and, lately, retrieved.527

6.1. Storage usage528

After ingesting the data, as explained in section 5.3, the disk space usage of the529

different database solutions is as shown in Figure 3.530

0

5

10

15

20

25

MongoDB-RI NagareDB-32b NagareDB-64b InfluxDB

Figure 3. Storage consumption comparison, in GBs

On the one hand, MongoDB-RI is the implementation that requires more disk space.531

This could be explained due its schema-less implementation and by its snappy[36]532

compression mechanisms intended to improve query performance while reducing its533

compression ratio, following the implications explained in section 4.5.2.534

On the other hand, both InfluxDB and NagareDB-64b require the same amount535

of disk space, which could be explained by its shared pseudo-column oriented data536

representation and by its powerful compression mechanisms.537

Last, NagareDB-32b is able to reduce the disk usage by 40% percent, in comparison538

to both InfluxDB and NagareDB-64b, thanks to its lightweight data type, explained in539

section 4.4. In consequence, NagareDB-32b is able to store, approximately, a 1.7 times540

bigger historical period in the same disk space.541

6.2. Data Retrieval542

The testing query set is composed by 12 queries (Table 1), intended to cover a wide543

range of use-case scenarios, while providing insights of the database’s performance and544

behaviour. They lay in 4 different categories:545

• Historical querying: Obtain sensor readings for a specific time range. Answered546

with a dataframe. [Q1 - Q7]547

• Timestamped querying: Obtain sensor readings for a specific time instant. An-548

swered with a dictionary. [Q8]549

• Aggregation querying: Derives group data by analyzing a set on individual data550

entries. It is divided in two sub-categories:551

– AVG Downsampling: Reduce the granularity of the data by performing an552

average of individual readings. Answered with a dataframe. [Q9 - Q10]553

– Single Value Aggregation: Obtains a single value from a set of individual554

readings, such as the Minimum value. Answered with a triplet (SensorID-555

Timestamp-Value). [Q11]556

• Inverted querying: Ask for moments in time that matches certain value condition,557

instead of values in a specific instant. Answered with a dataframe. [Q12]558

Figure 3. Storage consumption comparison, in GBs.

6.2. Data Retrieval

The testing query set is composed by 12 queries (Table 1), intended to cover a wide
range of use-case scenarios, while providing insights of the databases’ performance and
behavior. They lay in four different categories:

Table 1. Experimental data retrieval queries.

ID Query Type #Sensors Sensor
Condition Period Value

Condition
Target

Granularity

Q1 Historical 1 Random Day - Minute
Q2 Historical 1 Random Month - Minute
Q3 Historical 1 Random Year - Minute

Q4 Historical 10 Consecutive Day - Minute
Q5 Historical 10 Consecutive Month - Minute
Q6 Historical 10 Consecutive Year - Minute

Q7 Historical 10 ID mod 50 = 0 Year - Minute

Q8 Timestamped 500 All Minute - Minute

Q9 Aggregation (AVG) 1 Random Year - Hour
Q10 Aggregation (AVG) 20 Consecutive Year - Hour
Q11 Aggregation (MIN) 1 Random Day - Minute

Q12 Inverted 1 Random Year V ≤ µ−
2σ||V ≥ µ + 2σ

Minute

• Historical querying: Obtain sensor readings for a specific time range. Answered
with a dataframe. [Q1–Q7]

• Timestamped querying: Obtain sensor readings for a specific time instant. Answered
with a dictionary. [Q8]

• Aggregation querying: Derives group data by analyzing a set on individual data
entries. It is divided in two sub-categories:

– AVG Downsampling: Reduce the granularity of the data by performing averages
of individual readings. Answered with a dataframe. [Q9–Q10]

– Single Value Aggregation: Obtains a single value from a set of individual
readings, such as the Minimum value. Answered with a triplet (SensorID-
Timestamp-Value). [Q11]

• Inverted querying: Ask for moments in time that matches certain value condition,
instead of values in a specific instant. Answered with a dataframe. [Q12]

Each query is executed 10 times, one per each year (2000...2009), and we record the
average execution time. The querying is always performed using Python Drivers. In order

Data 2021, 6, 91 14 of 20

to ensure the fairness of the results, the cache is cleaned and the databases rebooted after
the evaluation of each query.

6.2.1. Historical Querying

As it can be seen in Figure 4, NagareDB is able to retrieve historical data up to 5 times
faster than MongoDB-RI, while also outperforming InfluxDB in every historical query. In
addition, the plotting shows some interesting insights:

• MongoDB is faster when retrieving small historical ranges in comparison to when
retrieving big ones. Concretely, NagareDB speeds up MongoDB by 2.5 in daily queries
(Q1, Q4), while doubling the speedup when requesting a larger historical period. In
contrast, InfluxDB performs better when retrieving more historical data.

• NagareDB-32b is generally faster than NagareDB-64b, but the difference is almost
negligible in this category. This is due to the fact that, while it handles smaller data, it
also performs internal type castings, as explained in Section 4.4.

• NagareDB slightly reduces its performance when retrieving sparse data (Q7). This
effect also occurs in InfluxDB, but more notoriously.

Version August 5, 2021 submitted to Data 14 of 20

ID Query Type #Sensors Sensor Condition Period Value Condition Target Granularity

Q1 Historical 1 Random Day - Minute
Q2 Historical 1 Random Month - Minute
Q3 Historical 1 Random Year - Minute
Q4 Historical 10 Consecutive Day - Minute
Q5 Historical 10 Consecutive Month - Minute
Q6 Historical 10 Consecutive Year - Minute
Q7 Historical 10 ID mod 50 = 0 Year - Minute
Q8 Timestamped 500 All Minute - Minute
Q9 Aggregation (AVG) 1 Random Year - Hour

Q10 Aggregation (AVG) 20 Consecutive Year - Hour
Q11 Aggregation (MIN) 1 Random Day - Minute
Q12 Inverted 1 Random Year V ≤ µ− 2σ || V ≥ µ + 2σ Minute

Table 1: Experimental data retrieval queries

Each query is executed 10 times, one per each year (2000..2009), and we record559

the average execution time. The querying is always performed using Python Drivers.560

In order to ensure the fairness of the results, the cache is cleaned and the databases561

rebooted after the evaluation of each query.562

6.2.1. Historical Querying563

As it can be seen in Figure 4, NagareDB is able to retrieve historical data up to 5564

times faster than MongoDB-RI, while also outperforming InfluxDB in every historical565

query. In addition, the plotting shows some interesting insights:566

• MongoDB is faster when retrieving small historical ranges in comparison to when567

retrieving big ones. Concretely, NagareDB speeds ups MongoDB by 2.5 in daily568

queries (Q1, Q4), while doubling the speedup when requesting a larger historical569

period. In contrast, InfluxDB performs better when retrieving more historical data.570

• NagareDB-32b is generally faster than NagareDB-64b, but the difference is almost571

negligible in this category. This is due to the fact that, while it handles smaller data,572

it also performs internal type castings, as explained in section 4.4.573

• NagareDB slightly reduces its performance when retrieving sparse data (Q7). This574

effect also occurs in InfluxDB, but more notoriously.575

0

2

4

6

8

·10−2 Query 1

0

0.5

1

1.5

Query 2

0

5

10

15

20

Query 3

0

10

20

30

40

50

Query 7

0
2 · 10−2
4 · 10−2
6 · 10−2
8 · 10−2

0.1
0.12
0.14
0.16

Query 4

0

1

2

3

4
Query 5

0

10

20

30

40

50
Query 6

MongoDB-RI NagareDB-32b NagareDB-64b InfluxDB

Figure 4. Historical querying response timesFigure 4. Historical querying response times.

6.2.2. Timestamped Querying

Timestamped querying requests all sensor values for a given timestamp. Hence, it
does not benefit from the columnar design that NagareDB and InfluxDB follow, being
penalized [29]. Thus, MongoDB, based on small buckets, is able to outperform them.

However, as it can bee seen in Figure 5, NagareDB is able to outperform InfluxDB
using any of its data types. Moreover, NagareDB-32b is able to provide much better
performance than NagareDB-64b. This is due to the fact that the data buckets, that have
to be loaded to RAM, are much smaller, with the advantage that there is only one value
requested per bucket, so the data type parsing overhead is greatly reduced.

Finally, it is important to take into account that this kind of query is answered fast,
even in the case of InfluxDB, which shows the worst speedup. Concretely, NagareDB-32
only needs 0.065 seconds in order to answer the query. Thus, despite of the fact that
MongoDB outperforms all three alternatives, the response times are still far acceptable.

Data 2021, 6, 91 15 of 20

Version August 5, 2021 submitted to Data 15 of 20

6.2.2. Timestamped Querying576

Timestamped querying requests all sensor values for a given timestamp. Hence, it577

does not benefit from the columnar design that NagareDB and InfluxDB follow, being578

penalized [23]. Thus, MongoDB, based on small buckets, is able to outperform them.579

However, as it can bee seen in Figure 5, NagareDB is able to outperform InfluxDB580

using any of its data types. Moreover, NagareDB-32b is able to provide much better581

performance than NagareDB-64b. This is due to the fact that the data buckets, that have582

to be loaded to RAM, are much smaller, with the advantage that there is only one value583

requested per bucket, so the data type parsing overhead is greatly reduced.584

Finally, it is important to take into account that this kind of query is answered fast,585

even in the case of InfluxDB, which shows the worst speedup. Concretely, NagareDB-32586

only needs 0.065 seconds in order to answer the query. Thus, despite of the fact that587

MongoDB outperforms all three alternatives, the response times are still far acceptable.588

0

0.1

0.2

0.3

0.4

Query 8

MongoDB-RI NagareDB-32b NagareDB-64b InfluxDB

Figure 5. Timestamped querying response times

6.2.3. Aggregation Querying589

Both NagareDB and InfluxDB greatly surpass MongoDB-RI. This behaviour is even590

more notable in downsampling queries (Q9-10), as seen in Figure 6. More precisely:591

• InfluxDB is more efficient when performing queries that involve big amounts of592

data, but the outcome is calculated by reducing it, such as downsampling queries.593

However, when the result consists in one single value, such as minimum-value594

detection queries (Q11), NagareDB is able to outperform it.595

• NagareDB-32b outperforms NagareDB-64b as NagareDB-32b is able to read values596

slightly faster, without the negative impact of performing numerous type castings.597

Concretely, unlike when querying historical data, NagareDB-32b needs to process598

all the data, but it is only request to perform one type casting per every 60 sensor599

readings (R) (on the average result, in this case), as the base granularity is minute,600

but the target granularity is hour:601

∑60
i=1 R(i)

60
10precision =

∑60
i=1

R(i)
10precision

60

0
2
4
6
8

10
12
14 12.8

0.54 0.54 0.4

Query 9

0

5

10

15

20

25

30
25.12

1.53 2.02 1.28

Query 10

0

1

2

3

4

5

6
·10−2 Query 11

MongoDB-RI NagareDB-32b NagareDB-64b InfluxDB

Figure 6. Aggregation querying response times

Figure 5. Timestamped querying response times.

6.2.3. Aggregation Querying

Both NagareDB and InfluxDB greatly surpass MongoDB-RI. This behavior is even
more notable in downsampling queries (Q9–10), as seen in Figure 6. More precisely:

• InfluxDB is more efficient when performing queries that involve big amounts of data,
but the outcome is calculated by reducing it, such as downsampling queries. However,
when the result consists in one single value, such as minimum-value detection queries
(Q11), NagareDB is able to outperform it.

• NagareDB-32b outperforms NagareDB-64b as NagareDB-32b is able to read values
slightly faster, without the negative impact of performing numerous type castings.

Concretely, unlike when querying historical data, NagareDB-32b needs to process all
the data, but it is only request to perform one type casting per every 60 sensor readings
(R) (on the average result, in this case), as the base granularity is minute, but the target
granularity is hour:

∑60
i=1 R(i)

60
10precision =

∑60
i=1

R(i)
10precision

60

Version August 5, 2021 submitted to Data 15 of 20

6.2.2. Timestamped Querying576

Timestamped querying requests all sensor values for a given timestamp. Hence, it577

does not benefit from the columnar design that NagareDB and InfluxDB follow, being578

penalized [23]. Thus, MongoDB, based on small buckets, is able to outperform them.579

However, as it can bee seen in Figure 5, NagareDB is able to outperform InfluxDB580

using any of its data types. Moreover, NagareDB-32b is able to provide much better581

performance than NagareDB-64b. This is due to the fact that the data buckets, that have582

to be loaded to RAM, are much smaller, with the advantage that there is only one value583

requested per bucket, so the data type parsing overhead is greatly reduced.584

Finally, it is important to take into account that this kind of query is answered fast,585

even in the case of InfluxDB, which shows the worst speedup. Concretely, NagareDB-32586

only needs 0.065 seconds in order to answer the query. Thus, despite of the fact that587

MongoDB outperforms all three alternatives, the response times are still far acceptable.588

0

0.1

0.2

0.3

0.4

Query 8

MongoDB-RI NagareDB-32b NagareDB-64b InfluxDB

Figure 5. Timestamped querying response times

6.2.3. Aggregation Querying589

Both NagareDB and InfluxDB greatly surpass MongoDB-RI. This behaviour is even590

more notable in downsampling queries (Q9-10), as seen in Figure 6. More precisely:591

• InfluxDB is more efficient when performing queries that involve big amounts of592

data, but the outcome is calculated by reducing it, such as downsampling queries.593

However, when the result consists in one single value, such as minimum-value594

detection queries (Q11), NagareDB is able to outperform it.595

• NagareDB-32b outperforms NagareDB-64b as NagareDB-32b is able to read values596

slightly faster, without the negative impact of performing numerous type castings.597

Concretely, unlike when querying historical data, NagareDB-32b needs to process598

all the data, but it is only request to perform one type casting per every 60 sensor599

readings (R) (on the average result, in this case), as the base granularity is minute,600

but the target granularity is hour:601

∑60
i=1 R(i)

60
10precision =

∑60
i=1

R(i)
10precision

60

0
2
4
6
8

10
12
14 12.8

0.54 0.54 0.4

Query 9

0

5

10

15

20

25

30
25.12

1.53 2.02 1.28

Query 10

0

1

2

3

4

5

6
·10−2 Query 11

MongoDB-RI NagareDB-32b NagareDB-64b InfluxDB

Figure 6. Aggregation querying response timesFigure 6. Aggregation querying response times.

6.2.4. Inverted Querying

In inverted querying, databases are asked to read the sensor values in a given range,
but to only process those who meet certain conditions. In this case, databases are requested
to retrieve outlier triples, as shown in Table 1.

Data 2021, 6, 91 16 of 20

This kind of query can potentially benefit from inverted indexes. These indexing
structures are meant to store a mapping from the value itself, to its location (or timestamp).
Moreover, they are typically sorted, so finding the timestamps corresponding to a range
of values would be rapidly answered. However, while these indexes are available in
MongoDB [26], they are not present in InfluxDB [43].

In despite of the exceptional performance that inverted indexes could provide [44],
they are not included by default in NagareDB. This is due to NagareDB’s goals with respect
to resource-saving, as inverted indexes can require high amounts of disk space and RAM.
Thus, queries on values have to scan all sensor readings in the specified time range, which
is the same behavior as InfluxDB, which also lacks these indexes.

Regarding its comparative speedup against MongoDB-RI, as it can be seen in Figure 7
both NagareDB and InfluxDB are able to provide a speedup greater than 10, being InfluxDB
the fastest. Also, NagareDB-32b slighlty outperforms NagareDB-64b, as it has to carry out
type castings only in a brief subset of the data.

Version August 5, 2021 submitted to Data 16 of 20

6.2.4. Inverted Querying602

In inverted querying, databases are asked to read the sensor values in a given603

range, but to only process those who meet certain conditions. In this case, databases are604

requested to retrieve outlier triples, as shown in Table 1.605

This kind of query can potentially benefit from inverted indexes. These indexing606

structures are meant to store a mapping from the value itself, to its location (or times-607

tamp). Moreover, they are typically sorted, so finding the timestamps corresponding to a608

range of values would be rapidly answered. However, while these indexes are available609

in MongoDB[8], they are not present in InfluxDB[25].610

In despite of the exceptional performance that inverted indexes could provide[28],611

they are not included by default in NagareDB. This is due to NagareDB’s goals with612

respect to resource-saving, as inverted indexes can require high amounts of disk space613

and RAM. Thus, queries on values have to scan all sensor readings in the specified time614

range, which is the same behaviour as InfluxDB, which also lacks these indexes.615

Regarding its comparative speedup against MongoDB-RI, both NagareDB and616

InfluxDB are able to provide a speedup greater than 10, being InfluxDB the fastest. Also,617

NagareDB-32b slighlty outperforms NagareDB-64b, as it has to carry out type castings618

only in a brief subset of the data.619

0
2
4
6
8

10
12
14 12.82

1.14 1.16 1.03

Query 12

MongoDB-RI NagareDB-32b NagareDB-64b InfluxDB

Figure 7. Inverted querying response times

6.2.5. Summary620

The experiments show that NagareDB is able to greatly outperform MongoDB621

Recommended Implementation, our baseline, in 11 out of the total 12 queries. Concretely,622

it extensively outperforms MongoDB when performing middle or high time-ranged623

queries, which are the most time-consuming ones.624

However, when queries involve a tiny amount of consecutive readings, for a big625

number of different sensors, MongoDB-RI is able to retrieve results faster. This is626

mainly because of its small-sized bucketing approach and its lightweight compression627

mechanisms. Nonetheless, as it can be seen in Table 2, these kind of queries are answered628

really fast, in a tenth of a second, even in a worst case scenario such as the one provided629

by Query 8, which turns this drawback into an unimportant obstacle for most scenarios.630

In comparison to InfluxDB, the most popular Time-series database, NagareDB has631

shown to be faster when retrieving Historical data and Timestamped data, while falling632

a little behind when performing Aggregation queries and Inverted Queries.633

Figure 7. Inverted querying response times.

6.2.5. Summary

The experiments show that NagareDB is able to greatly outperform MongoDB Rec-
ommended Implementation, our baseline, in 11 out of the total 12 queries. Concretely, it
extensively outperforms MongoDB when performing middle or high time-ranged queries,
which are the most time-consuming ones.

However, when queries involve a tiny amount of consecutive readings, for a big
number of different sensors, MongoDB-RI is able to retrieve results faster. This is mainly
because of its small-sized bucketing approach and its lightweight compression mechanisms.
Nonetheless, as it can be seen in Table 2, these kind of queries are answered really fast, in
a tenth of a second, even in a worst case scenario such as the one provided by Query 8,
which turns this drawback into an unimportant obstacle for most scenarios.

In comparison to InfluxDB, the most popular Time-series database, NagareDB has
shown to be faster when retrieving Historical data and Timestamped data, while falling a
little behind when performing Aggregation queries and Inverted Queries.

Data 2021, 6, 91 17 of 20

Table 2. Queries execution time, in seconds.

QID MongoDB-RI NagareDB-32b NagareDB-64b InfluxDB

Q1 0.071 0.030 0.033 0.055
Q2 1.557 0.352 0.365 0.495
Q3 19.266 4.469 4.424 5.238

Q4 0.134 0.049 0.049 0.094
Q5 3.618 0.770 0.792 1.130
Q6 45.473 9.520 9.833 12.679

Q7 50.967 12.810 12.603 22.004

Q8 0.023 0.065 0.133 0.399

Q9 12.800 0.542 0.542 0.405
Q10 25.117 1.526 2.017 1.285
Q11 0.044 0.007 0.008 0.024

Q12 12.817 1.140 1.156 1.030

6.3. Data Ingestion
6.3.1. Performance Metrics and Set Up

The simulation is run along with 1 to 5 ingestion jobs, each handling an equal amount
of sensors, and keeping the average writes/second metric. It is performed simulating a
synchronized, distributed and real-time stream-ingestion approach, meaning that sensor’s
data streaming is decentralized, data is stored when received, without waiting, and each
write is not considered as finished until the database acknowledges its correct reception,
and physically persists the Write-ahead log. Thus, this scenario intents to guarantee write
operation durability while simulating an accurate real-time Monitoring Infrastructure.

6.3.2. Results

Regarding stream data ingestion, as seen in Figure 8, MongoDB-RI provides the fastest
writes/second ratio. This is mainly due to two reasons: First, MongoDB-RI uses snappy
compression, which provides a lighter but faster compression, in comparison to any com-
pression technique that NagareDB or InfluxDB uses. Second, MongoDB-RI’s data model
follows a document-oriented data model which is, in fact, a key-value approximation,
where the value is a document that stores a small bucket, considered as a small column of
sensor readings according to time.

Version August 12, 2021 submitted to Data 17 of 20

Table 2: Queries execution time, in seconds.

QID MongoDB-RI NagareDB-32b NagareDB-64b InfluxDB

Q1 0.071 0.030 0.033 0.055
Q2 1.557 0.352 0.365 0.495
Q3 19.266 4.469 4.424 5.238
Q4 0.134 0.049 0.049 0.094
Q5 3.618 0.770 0.792 1.130
Q6 45.473 9.520 9.833 12.679
Q7 50.967 12.810 12.603 22.004
Q8 0.023 0.065 0.133 0.399
Q9 12.800 0.542 0.542 0.405
Q10 25.117 1.526 2.017 1.285
Q11 0.044 0.007 0.008 0.024
Q12 12.817 1.140 1.156 1.030

6.3. Data Ingestion634

6.3.1. Performance metrics and set up635

The simulation is run along with 1 to 5 ingestion jobs, each handling an equal636

amount of sensors, and keeping the average writes/second metric. It is performed637

simulating a synchronized, distributed and real-time stream-ingestion approach, mean-638

ing that sensors data streaming is decentralized, data is stored when received, without639

waiting, and each write is not considered as finished until the database acknowledges640

its correct reception, and physically persists the Write-ahead log. Thus, this scenario641

intents to guarantee write operation durability while simulating an accurate real-time642

Monitoring Infrastructure.643

6.3.2. Results644

1 2 3 4 5
0

500

1000

1500

2000

2500

Ingestion jobs

A
ve

ra
ge

w
ri

te
s/

se
co

nd

MongoDB-RI
NagareDB-32b
NagareDB-64b

InfluxDB

Figure 8. Ingestion evolution

Regarding stream data ingestion, as seen in Figure 8, MongoDB-RI provides the645

fastest writes/second ratio. This is mainly due to two reasons: First, MongoDB-RI uses646

snappy compression, which provides a lighter but faster compression, in comparison647

to any compression technique that NagareDB or InfluxDB uses. Second, MongoDB-648

RI’s data model follows a document-oriented data model which is, in fact, a key-value649

approximation, where the value is a document that stores a small bucket, considered as650

a small column of sensor readings according to time.651

Figure 8. Ingestion evolution.

Data 2021, 6, 91 18 of 20

Conversely, InfluxDB provides the slowest ratio in this scenario. This could be partially
explained by its columnar data model design. This data model benefits batch writes to
single columns (or sensors), so, it is really fast when inserting, at the same time, a lot of
readings of one single sensor. However, this behavior is distant from a real-time scenario,
when all sensors ship their readings altogether, and they have to be inserted at the moment.

Laying in the middle, NagareDB, uses an intermediate data model: While it is using
a document-oriented (so, key-value) approximation as MongoDB-RI does, it holds much
bigger columns than MongoDB-RI, but not as extensive as InfluxDB[45]. In addition,
NagareDB uses ZSTD compression, which provides better compression ratio, at the expense
of slightly slowing down insertion time [37], following NagareDB’s resource-saving goals.
This makes NagareDB data model a some-how hybrid between MongoDB-RI and InfluxDB,
providing, thus, an intermediate performance. In addition, NagareDB-32b is able to slighly
surpass NagareDB-64b, as the data types that it uses are smaller than its high-precision
alternative version.

Finally, all databases have demonstrated to provide an efficient scaling speedup, as
they did not reach the parallel slowdown point, when adding more parallel jobs implies a
speedup decay, not even with five parallel jobs.

7. Conclusions

We introduced the obstacles that users or organizations who lack from resources
might face when dealing with time-series databases, as well as the requirements that a
good TSBD should fulfill. In order to address this problem, and to lower the barriers
to building Monitoring Infrastructures, we introduced the novel approach followed to
create NagareDB, a resource-compromised and efficient Time-series database built on
top of MongoDB, the most popular NoSQL open-source database. Thus, thanks to the
improvements and adaptations performed in NagareDB, and to the inherent MongoDB
features and popularity, NagareDB is able to satisfy all modern TSDB requirements, while
being an easy-to-master solution.

Concretely, our experiment results show that NagareDB is able to smoothly exe-
cute any TSDB typical query or operation, and to comfortably work in commodity PCs,
consuming less disk space than MongoDB’s recommended implementation, while also
outperforming it in up to 377% when retrieving data.

Moreover, when comparing NagareDB with TOP-tier databases, such as InfluxDB,
the most popular Time-series database, our experiments show that NagareDB is able to
compete against it, providing similar global query results. In addition, when ingesting
real-time data, NagareDB is able to outperform InfluxDB by 35%.

Furthermore, NagareDB is built on top of MongoDB’s Community Edition, which is
able to freely scale horizontally, while InfluxDB has this feature restricted to its commercial
version, making it mandatory to follow a monolithic approach, limiting the database to
one single machine.

Finally, our experiments show that NagareDB is able to provide further speedup, and
to reduce its storage consumption up to 40% when relaxing some requirements with regard
data decimal precision, providing an even better resource-outcome trade-off.

8. Future Work

We have preliminary tested NagareDB in demanding and resource-limited real-world
scenarios. We aim to improve it by working out any deficiencies we might identify, and
to continue adding further optimizations and features, extensively testing them in new
challenging scenarios, until releasing it as an out-of-the-box solution. Currently, its official
version is only used internally, at the Barcelona Supercomputing Center, and in some
projects with external collaborators.

Moreover, we expected this approach to encourage more studies with regard to Moni-
toring Infrastructures democratization, as many small organizations could venture to improve
their efficiency thanks to these kind of systems, which currently might feel intimidating.

Data 2021, 6, 91 19 of 20

Author Contributions: C.G.C. has designed and implemented NagareDB, implemented the Mon-
goDB recommended implementation following MongoDB official design approach, and performed
the evaluation and benchmarking on both NagareDB and MongoDB-RI, as well as the initial version
of this research paper. C.D.C. has implemented and executed the evaluation and benchmarking
for InfluxDB, providing further comparison insights. Y.B.F. and F.M.C. have been supervising the
research during the whole process, providing insights, corrections, reviews, and proposing best
practises. They were also in charge of funding adquisition. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was partly supported by the H2020 IoTwins project (Distributed Digital
Twins for industrial SMEs: a big-data platform) funded by the EU under the call ICT-11-2018-2019,
Grant Agreement No 857191, by the Spanish Ministry of Science and Innovation (contract PID2019-
107255GB) and by the Generalitat de Catalunya (contract 2017-SGR-1414).

Data Availability Statement: The dataset used for performing this benchmark, as well as the code
itself, is freely available under demand. Please, reach us at nagaredb@bsc.es, and we will be
glad to help you, in case you are interested in bench-marking NagareDB in your own machine or
hardware ecosystem.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Golonka, P.; Gonzalez-Berges, M.; Guzik, J.; Kulaga, R. Future archiver for CERN SCADA systems. In Proceedings of the Interna-

tional Conference on Accelerator and Large Experimental Control Systems (ICALEPCS2017), Barcelona, Spain, 8–13 October 2017.
2. Jensen, S.K.; Pedersen, T.B.; Thomsen, C. Time Series Management Systems: A Survey. IEEE Trans. Knowl. Data Eng. 2017, 29,

2581–2600. [CrossRef]
3. Stonebraker, M.; Cetintemel, U. “One size fits all”: An idea whose time has come and gone. In Proceedings of the 21st International

Conference on Data Engineering (ICDE’05), Tokyo, Japan, 5–8 April 2005.
4. The DB-Engines Ranking, according to Their Popularity. Available online: https://db-engines.com/en/ranking (accessed on

23 February 2021).
5. Coleman, S.; Göb, R.; Manco, G.; Pievatolo, A.; Tort-Martorell, X.; Reis, M. How Can SMEs Benefit from Big Data? Challenges and

a Path Forward. Qual. Reliab. Eng. Int. 2016, 32, 2151–2164. [CrossRef]
6. Davenport, T.H.; Patil, D.J. Harvard Business Review: “Data Scientist: The Sexiest Job of the 21st Century”. Available online:

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century (accessed on 12 April 2021).
7. Hajek, V.; Klapka, T.; Kudibal, O. Benchmarking InfluxDB vs. MongoDB for Time Series Data, Metrics & Management. An

Influxdata Technical Paper. Available online: https://www.influxdata.com/blog/influxdb-is-27x-faster-vs-mongodb-for-time-
series-workloads/ (accessed on 23 February 2021).

8. Kiefer, R.; Sewrathan, A. How to Store Time-Series Data in MongoDB, and Why That’s a Bad Idea. Available online: https:
//blog.timescale.com/blog/how-to-store-time-series-data-mongodb-vs-timescaledb-postgresql-a73939734016/ (accessed on
23 February 2021).

9. Makris, A.; Tserpes, T.; Spiliopoulos, G.; Anagnostopoulos, D. Performance Evaluation of MongoDB and PostgreSQL for Spatio-
temporal Data. In Proceedings of the International Conference on Database Theory, EDBT/ICDT Workshops, Lisbon, Portugal,
26–29 March 2019.

10. Bader, A.; Kopp, O.; Falkental, M. Survey and Comparison of Open Source Time Series Databases, Lecture Notes in Informatics (LNI);
University of Stuttgart: Stuttgart, Germany, 2017.

11. Patnaik, L.M.; Gill, P.S. GRDB: A general purpose relational database system. In Information System, 10th ed.; Elsevier: Amsterdam,
The Netherlands, 1985; pp. 169–180

12. Zhaofeng, Z. Key Concepts and Features of Time Series Databases. Available online: https://www.alibabacloud.com/blog/key-
concepts-and-features-of-time-series-databases_594734 (accessed on 26 March 2021).

13. Brockwell, P.J.; Davis, R.A. Time Series: Theory and Methods; Springerg: Berlin/Heidelberg, Germany, 1986.
14. Hecht, R.; Jablonski, S. NoSQL evaluation: A use case oriented survey. In Proceedings of the International Conference on Cloud

and Service Computing, Hong Kong, China, 12–14 December 2011; pp. 336–341.
15. Abadi, D. Consistency Tradeoffs in Modern Distributed Database System Design: CAP is Only Part of the Story. IEEE Comput.

2012, 45, 37–42. [CrossRef]
16. Blok, H.E.; Hiemstra, D.; Choenni, S.; Jong, F.; Blanken, H.; Apers, P. Predicting the Cost-Quality Trade-off for Information

Retrieval Queries: Facilitating Database Design and Query Optimization. In Proceedings of the ACM Tenth International
Conference on Information and Knowledge Management, Atlanta, GA, USA, 5–10 October 2001; pp. 207–214.

17. Jovanovski, J.; Arsov, N.; Stevanoska, E.; Simons, M.J.; Velinov, G. A meta-heuristic approach for RLE compression in a
column store table. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Chicago, IL, USA,
26–28 June 2006; pp. 671–682.

http://doi.org/10.1109/TKDE.2017.2740932
https://db-engines.com/en/ranking
http://dx.doi.org/10.1002/qre.2008
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://www.influxdata.com/blog/influxdb-is-27x-faster-vs-mongodb-for-time-series-workloads/
https://www.influxdata.com/blog/influxdb-is-27x-faster-vs-mongodb-for-time-series-workloads/
https://blog.timescale.com/blog/how-to-store-time-series-data-mongodb-vs-timescaledb-postgresql-a73939734016/
https://blog.timescale.com/blog/how-to-store-time-series-data-mongodb-vs-timescaledb-postgresql-a73939734016/
https://www.alibabacloud.com/blog/key-concepts-and-features-of-time-series-databases_594734
https://www.alibabacloud.com/blog/key-concepts-and-features-of-time-series-databases_594734
http://dx.doi.org/10.1109/MC.2012.33

Data 2021, 6, 91 20 of 20

18. Gupta, A.; Bansal, A.; Khanduja, V. Modern Lossless Compression Techniques: Review, Comparison and Analysis. In Proceed-
ings of the 2nd IEEE International Conference on Electrical, Computer and Communication Technologies, Coimbatore, India,
22–24 February 2017.

19. Ding, N.; Gao, H.; Bu, H.; Ma, H.; Si, H. Multivariate-Time-Series-Driven Real-time Anomaly Detection Based on Bayesian
Network. Sensors 2018, 18, 3367. [CrossRef] [PubMed]

20. Mallak, A.; Fathi, M. Sensor and Component Fault Detection and Diagnosis for Hydraulic Machinery Integrating LSTM
Autoencoder Detector and Diagnostic Classifiers. Sensors 2021, 21, 433. [CrossRef] [PubMed]

21. MongoDB Website. Available online: https://www.mongodb.com/ (accessed on 15 March 2021).
22. Parker, Z.; Poe, S.; Vrbsky, S.V. Comparing NoSQL MongoDB to an SQL DB. In Proceedings of the 51st ACM Southeast Conference,

Savannah, GA, USA, 4–6 April 2013; pp. 1–6.
23. Stonebraker, M. SQL Databases v. NoSQL Databases. Commun. ACM 2010, 53, 10–11. [CrossRef]
24. Gu, Y.; Wang, X.; Shen, S.; Wang, J.; Kim, J. Analysis of data storage mechanism in NoSQL database MongoDB. In Proceedings of

the IEEE International Conference on Consumer Electronics, Taipei, Taiwan, 6–8 June 2015.
25. Yuhanna, N.; Leganza, G.; Perdoni, R. The Forrester Wave™: Big Data NoSQL; Q1 2019 Report; Forrester: Cambridge, MA, USA,

2019.
26. MongoDB Manual. Available online: https://docs.mongodb.com/manual/ (accessed on 15 March 2021).
27. InfluxDB Website. Available online: https://www.influxdata.com/ (accessed on 15 March 2021).
28. Freedman, M.; Sewrathan, A. TimescaleDB vs. InfluxDB: Purpose Built Differently for Time-Series Data. Available online: https:

//blog.timescale.com/blog/timescaledb-vs-influxdb-for-time-series-data-timescale-influx-sql-nosql-36489299877 (accessed on
23 February 2021).

29. Abadi, D.J.; Madden, S.R.; Hachem, N. Column-Stores vs. Row-Stores: How Different Are They Really? In Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 9–12 June 2008; pp. 967–980.

30. Time Series and MongoDB: Best Practices. Available online: https://www.mongodb.com/blog/post/time-series-data-and-
mongodb-part-2-schema-design-best-practices (accessed on 22 March 2021).

31. Too Many Open Files Problem, in InfluxDB Github. Available online: https://github.com/influxdata/influxdb/search?q=too+
many+open+files&type=issues (accessed on 26 March 2021).

32. Bovet, D.P.; Cesati, M. Understanding the Linux Kernel, 3rd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2005.
33. InfluxDB Documentation. Available online: https://docs.influxdata.com/influxdb/v2.0/ (accessed on 26 March 2021).
34. Wang, N.; Choi, J.; Brand, D.; Chen, C.; Gopalakrishnan, K. Training Deep Neural Networks with 8-Bit Floating Point Num-

bers. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, QC, Canada,
3–8 December 2018; pp. 7686–7695.

35. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep Learning with Limited Numerical Precision. In Proceedings of
the 32nd International Conference on International Conference on Machine Learning, Lille, France, 7–9 July 2015; Volume 37,
pp. 1737–1746.

36. Google Snappy Algorithm Github. Available online: http://google.github.io/snappy/ (accessed on 4 July 2021).
37. Zstandard Benchmarking. Available online: https://facebook.github.io/zstd/ (accessed on 26 March 2021).
38. InfluxDB Glossary Reference. Available online: https://docs.influxdata.com/influxdb/cloud/reference/glossary/#precision

(accessed on 26 March 2021).
39. Understanding Dependent Tags In Series Cardinality. Available online: https://www.influxdata.com/blog/tldr-influxdb-tech-

tips-december-15-2016/ (accessed on 26 March 2021).
40. Micheloni, R.; Marelli, A.; Eshghi, K. Inside Solid State Drives (SSDs); Springer: Berlin/Heidelberg, Germany, 2012.
41. Agrawal, N.; Prabhakaran, V.; Wobber, T.; Davis, J.D.; Manasse, M.; Panigrahy, R. Design Tradeoffs for SSD Performance.

In Proceedings of the USENIX Annual Technical Conference, Boston, MA, USA, 23–24 June 2008.
42. InfluxDB Hardware Sizing. Available online: https://docs.influxdata.com/influxdb/v1.8/guides/hardware_sizing/#storage-

volume-and-iops (accessed on 4 July 2021).
43. Indexes Reference, Glossary of Concepts. Available online: https://docs.influxdata.com/influxdb/v1.8/concepts/glossary/

#field-value (accessed on 12 April 2021).
44. Chopade, R.; Pachghare, V. MongoDB Indexing for Performance Improvement, ICT Systems and Sustainability; Springer: Singapore,

2020; pp. 529–539.
45. InfluxDB Storage Engine. Available online: https://docs.influxdata.com/influxdb/v2.0/reference/internals/storage-engine/

(accessed on 12 April 2021).

http://dx.doi.org/10.3390/s18103367
http://www.ncbi.nlm.nih.gov/pubmed/30304817
http://dx.doi.org/10.3390/s21020433
http://www.ncbi.nlm.nih.gov/pubmed/33435428
https://www.mongodb.com/
http://dx.doi.org/10.1145/1721654.1721659
https://docs.mongodb.com/manual/
https://www.influxdata.com/
https://blog.timescale.com/blog/timescaledb-vs-influxdb-for-time-series-data-timescale-influx-sql-nosql-36489299877
https://blog.timescale.com/blog/timescaledb-vs-influxdb-for-time-series-data-timescale-influx-sql-nosql-36489299877
https://www.mongodb.com/ blog/post/time-series-data-and-mongodb-part-2-schema-design-best-practices
https://www.mongodb.com/ blog/post/time-series-data-and-mongodb-part-2-schema-design-best-practices
https://github.com/ influxdata/influxdb/search?q=too+ many+open+files&type=issues
https://github.com/ influxdata/influxdb/search?q=too+ many+open+files&type=issues
https://docs.influxdata.com/influxdb/v2.0/
http://google.github.io/snappy/
https://facebook.github.io/zstd/
https://docs.influxdata.com/influxdb/cloud/ reference/glossary/#precision
https://www.influxdata.com/blog/tldr-influxdb-tech-tips-december-15-2016/
https://www.influxdata.com/blog/tldr-influxdb-tech-tips-december-15-2016/
https://docs.influxdata.com/influxdb/v1.8/ guides/hardware_sizing/#storage-volume-and-iops
https://docs.influxdata.com/influxdb/v1.8/ guides/hardware_sizing/#storage-volume-and-iops
https://docs.influxdata.com/ influxdb/v1.8/concepts/glossary/#field-value
https://docs.influxdata.com/ influxdb/v1.8/concepts/glossary/#field-value
https://docs.influxdata.com/influxdb/v2.0/ reference/internals/storage-engine/

	Introduction
	Background
	Solutions Categorization
	Time-Series Properties
	TSDBs Requirements

	Related Work
	Design Approach
	Data Model
	Access Structures and Layered Bucketing
	Retention Policies
	Data Types
	Further Considerations
	Horizontal Scalability
	Compression
	Timestamps
	Query Parallelization
	Time-Series Granularity and Frequency

	Experimental Setup
	Virtual Machine
	Comparative Software
	Data Set

	Evaluation and Benchmarking
	Storage Usage
	Data Retrieval
	Historical Querying
	Timestamped Querying
	Aggregation Querying
	Inverted Querying
	Summary

	Data Ingestion
	Performance Metrics and Set Up
	Results

	Conclusions
	Future Work
	References

