
SafeTI: a Hardware Traffic Injector for
MPSoC Functional and Timing Validation

Oriol Sala†,‡, Sergi Alcaide†, Guillem Cabo†,‡, Francisco Bas†,‡, Ruben Lorenzo†,
Pedro Benedicte†, David Trilla†, Guillermo Gil†, Fabio Mazzocchetti†, Jaume Abella†

†Barcelona Supercomputing Center (BSC)
‡Universitat Politècnica de Catalunya (UPC)

Abstract—Functional and timing validation of safety-related
MPSoCs requires testing specific traffic patterns in the on-chip
interconnects. Generally, testing needs to be performed by using
software tests whose degree of control on the traffic generated
is indirect, and limited to behavior that can be triggered by
software, thus often unable to produce traffic generated by
peripherals. Therefore, untested traffic scenarios can be abundant
and, to a large extent, it is hard to know what traffic scenarios
have been effectively tested.

This paper presents the safe traffic injector, SafeTI, which al-
lows injecting programmable traffic in AMBA AHB interconnects
with high flexibility and degree of control, thus easing achieving
high coverage in terms of traffic scenarios tested, and mitigating
the uncertainty due to the difficulties to relate software tests with
actual traffic scenarios tested. We also integrate successfully the
SafeTI in an industrial MPSoC for the space domain proving the
effectiveness of the proposed traffic injector.

I. INTRODUCTION

Increasing performance demands in safety-related systems
imposes the adoption of MultiProcessor Systems-on-Chip
(MPSoCs) to reach the required performance levels within lim-
ited power envelopes [17]. Examples of those MPSoCs can be
found in the space domain (e.g. Cobham Gaisler’s LEON [7]
and NOEL-V families [8]), in the automotive domain (e.g.
Infineon AURIX family), and in the avionics domain (e.g.
NXP P/T/LS and Xilinx Zynq UltraScale families).

Safety-related MPSoC devices and systems built on top
must comply with specific safety requirements dictated by
the corresponding domain-specific safety standards and guide-
lines (e.g. DO254 [20] and DO178C [19] for avionics, and
ISO26262 [13] for automotive). Such compliance imposes
strict verification and validation (V&V) processes to obtain
evidence that the system behaves according to its specifications
by construction, and stressful tests cannot spot any misbehav-
ior.

In the context of MPSoCs, on-chip traffic across compo-
nents must go through V&V to prove that on-chip components
behave correctly in functional terms, and multicore timing
interference due to contending traffic in on-chip interconnects
does not exceed estimated bounds. Generally, such V&V
processes resort to specific software benchmarks intended to
trigger the behavior to be verified and/or validated [10]–[12].
Unfortunately, software-only solutions suffer from two main
limitations:

1) Some behavior, such as, for instance, burst accesses, may
not be directly triggered by software running locally in
the MPSoC, and may only be generated by incoming
traffic through peripherals (e.g. Ethernet interfaces).
Therefore, complex solutions are needed to generate
such traffic with multiple systems connected or resorting
to loopback modes in peripherals, which ultimately lead
to limited traffic patterns.

2) Controllability to exercise specific interference scenarios
is too low to have certainty on whether the desired
scenarios have been effectively tested. For instance,
scenarios where core access patterns to DRAM memory
need to collide with incoming Ethernet traffic or DMA
transactions in the interconnect or memory require an
unrealistic degree of control by software only means
due to the asynchronous nature of Ethernet and DMA
controllers.

This paper tackles these challenges by providing a new
safe traffic injector, SafeTI1, which allows evaluating arbitrary
traffic patterns in on-chip interconnects with high degree of
flexibility and control on the traffic injected. In particular, the
contributions of this work are as follows:
• We architect and implement SafeTI, which allows inject-

ing programmable traffic in on-chip interconnects so that
several parameters can be configured, including: traffic
duration (e.g. a finite or infinite sequence of transactions),
transaction type (read or write), burstiness (length of the
transaction), and sequence of transactions to produce any
pattern desired.

• We tailor SafeTI to ease its portability to different com-
munication interfaces (e.g. AXI, ACE), and integrate it to
work with the AMBA Advanced High-performance Bus
(AHB) interface.

• We integrate SafeTI in a commercial space MPSoC
based on RISC-V compliant cores from Cobham Gaisler’s
NOEL-V on an FPGA. We evaluate SafeTI showing
its capabilities and flexibility, and compare it against
software-only traffic injector counterparts, which are in-
trinsically limited by their software nature.

The rest of the paper is organized as follows. Section II
provides some background on MPSoC V&V, and introduces
relevant related work. Section III presents SafeTI architecture.
Section IV describes how SafeTI has been integrated in
Gaisler’s NOEL-V MPSoC with an AMBA AHB interface.
SafeTI is evaluated in Section V. Section VI draws the main
conclusions of this work.

II. BACKGROUND & RELATED WORK

V&V activities for safety-related MPSoCs and systems built
on top must consider those aspects related to the concurrent ac-
cess of multiple components to the interconnect. Those aspects
include both purely functional behavior of the components and
the interconnect itself, as well as timing behavior.

Different methods and tools exist applicable to inject traffic
for functional and timing V&V: (i) performance simulators, (ii)
circuit simulators, (iii) hardware emulated injectors, and (iv)
software stress tests. This section provides some background
on each of those approaches.

1Available as an open-source component at https://bsccaos.github.io [5].

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution 
to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/IOLTS52814.2021.9486689



A. Traffic Injection with Performance Simulators
Gem5 [4] is a performance simulator targeting multiple

Instruction Set Architectures (ISAs) and CPU models. Gem5
also models the memory system and cache coherence proto-
cols. Garnet [16] is an interconnect model part of Gem5, which
includes a network-on-chip (NoC)-only configurable synthetic
traffic injector. Garnet allows to configure the duration of the
simulation, the injection rate, senders and receivers for the
traffic, amongst others. Gem5 and Garnet have been used
as part of some NoC proposals for their evaluation, such as
SMART [14] and OpenSMART [15].

GNoCSim [9] is a NoC simulator with embedded synthetic
traffic generation capabilities. Much in the line of Garnet,
GNoCSim allows injecting synthetic traffic patterns, but it also
allows injecting traffic patterns traced a priori.

Synfull [3] is also a synthetic traffic generator targeting
cache coherence traffic. Synfull is based on tracing traffic in
a performance simulator and smartly compressing patterns to
inject them in a NoC simulator in the form of synthetic traffic.

While those tools have some similarities with SafeTI in
terms of features offered, they are software models, thus
targeting much higher abstraction levels for MPSoCs than RTL
designs (e.g. simplified performance simulators) and/or with
a much higher performance cost by modelling the MPSoC
RTL at software level. Instead, SafeTI is a hardware module
that is synthesized in an FPGA along with the MPSoC, and
has already been integrated with a commercial MPSoC for
the space domain as part of this paper. Hence, SafeTI can
inject traffic at speed (e.g. at the operating frequency of
the FPGA, 100 MHz in our paper), whereas performance
simulators would typically inject it at rate several orders of
magnitude slower depending on whether a simplified model
or RTL implementation of the MPSoC is used.

B. Traffic Injection with Circuit Simulators
Traffic injection can be performed using circuit simulators

such as, for instance, Verilator [22] or Questasim [21], where
test vectors can be injected in the desired signals to produce
specific behavior. Unfortunately, this type of tools operates
at RTL, Verilog, SystemVerilog or VHDL abstractions, thus
being extremely slow (i.e. even slower than performance
simulators), and thus limiting drastically the scenarios that
can be practically simulated. This is particularly true when
large parts of the MPSoC need to be simulated (e.g. multiple
cores, caches, a bus and a memory controller). Instead, using
SafeTI, the traffic injector is synthesized along with the
MPSoC and injection occurs at speed in the FPGA, and also
allows fabricating an ASIC with SafeTI embedded to perform
periodic tests, as needed in safety-related MPSoCs.

C. Traffic Injection with Hardware Emulated Injectors
Xilinx AXI Traffic Generator (ATG) [23] is an IP for traffic

generation in AXI4 interfaces. Our work has many similarities
with the ATG since both are highly flexible and programmable
traffic injectors. However, there are some key differences
related to their usability and their capabilities. In terms of
usability, Xilinx’s ATG has a restrictive licensing model that,
among other things, imposes the use of the ATG on Xilinx
devices only. Moreover, it is intended for AXI4 protocols.
Instead, SafeTI is based on a MIT license, hence allowing any
type of modification and use, with a target release date – after
completing validation and documentation – of Q2 2021. On the
technical side, since SafeTI is intended not only for high traffic
generation, but also for highly controllable traffic generation, it
allows scheduling pauses in between transactions and loading

Fig. 1. High level schematic of SafeTI.

multiple traffic patterns so that a single write operation into
the SafeTI allows choosing across different patterns easily.

In the context of the H2020 Mont-Blanc 2020 project [2], IP
for traffic generation is being developed. Differently to SafeTI,
Mont-Blanc 2020’s traffic generator is based on traffic traces
that need to be collected a priori and fed into the generator.
To the best of our knowledge, such traffic injector is not yet
available, its licensing model – if any – is unknown, and lacks
the flexibility of ATG and SafeTI to exercise tight control on
the traffic injected, as required for the validation of safety-
related systems.

D. Traffic Injection with Software Stress Tests
Some solutions have been proposed to generate on-chip traf-

fic on COTS devices by means of specific software programs
(a.k.a. stressing benchmarks) that produce repeated memory
access patterns inducing indirectly traffic in on-chip intercon-
nects [10]–[12]. Those approaches have some advantages, such
as allowing to test patterns at speed and working on top of
COTS MPSoCs. However, disadvantages relate to (a) lack of
flexibility to inject some traffic patterns (e.g. burst sizes caused
only by peripheral devices), (b) lack of controllability due
to the fact that interconnect accesses need to traverse some
core pipeline stages and cache memories before reaching the
interconnect, and (c) lack of observability to tell whether the
desired pattern has been effectively generated.

SafeTI overrides those limitations by providing full control-
lability of the traffic patterns injected and flexibility to generate
any traffic patterns allowed by the protocol of the interconnect.

III. SAFETI FEATURES AND OPERATION

This section presents SafeTI. First, we present its general
structure and operation, then its main features, and finally
the design of the traffic descriptors used for traffic injection.
Details on the internal design and integration of SafeTI are
presented later in Section IV.

A. SafeTI General Structure and Operation
SafeTI’s principal structure is a buffer holding descriptors,

where each descriptor provides all the information needed to
generate a transaction in the interconnect where SafeTI is
attached. Those descriptors need to be preprogrammed before
traffic starts being injected. For that purpose, they are mapped
to a specific address range in the MPSoC, so that they can be
easily set with a simple API.

The process followed to inject traffic consists of:
1) Preprogramming SafeTI by writing as many descriptors

as needed. As described later, operation can be set to
loop over a set of descriptors, so that programming



even a single descriptor makes it possible to generate
an unbounded number of transactions.

2) Activating SafeTI so that it starts generating transactions
in accordance with the descriptors stored.

3) Deactivating SafeTI to stop generating transactions.
Note that if SafeTI is not set to work in loop mode,
SafeTI will deactivate itself whenever transactions for all
descriptors have been generated. Pausing traffic injection
and resuming it later from the point it was stopped is
also allowed.

Figure 1 shows a schematic of the SafeTI. Note that this
schematic does not fully match the actual modules used for its
implementation, but eases the explanation. The actual modules
of SafeTI are described in next section. As shown, SafeTI
includes a control module orchestrating traffic injection. Such
traffic injection is regulated by the configuration registers,
which indicate the starting descriptor and whether traffic
injection is enabled, among other settings. The actual trans-
actions to be injected are stored in the descriptors list. Such
descriptors are converted into transactions in the transaction
generation module. Finally, the AHB interface sends those
transactions through the interconnect when indicated by the
control module. As shown, porting SafeTI to other interfaces
(e.g. AMBA AXI) is expected to require only adapting the
interface module.

B. Features

The main features of SafeTI are the following:
• Enable/disable. The status register in the control module

that allows to enable or disable traffic generation. SafeTI
stores its status on registers so that, whenever traffic gen-
eration is enabled, it either starts from the first descriptor
or resumes injection with the following descriptor to the
last one processed.

• Descriptors. The descriptors module provides a simple
way of configuring AHB transactions so that it is possible
to customize the type of transaction, address, and repe-
titions. Details about the descriptors are provided later
in Section III-C. A descriptor is a set of configuration
registers that encapsulates this functionality. The module
is capable of decoding descriptors as requested by the
control module. Note that each descriptor embeds infor-
mation on what the next descriptor is – if any. Hence,
by properly setting that field of the descriptors, one can
make them loop and produce an unbounded number of
requests.

• Status monitoring. SafeTI includes a status register
reflecting the current state of the injector.

• Error handling. SafeTI includes error handling features
such as reporting whether a descriptor contains invalid
information, and different types of errors that can occur
in the injection interface, such as receiving an error
signal when performing read or write transaction, or when
performing no transaction.

• Interrupts. SafeTI generates interrupts whenever the
last transaction descriptor is reached, and whenever an
error occurs. Note that, if descriptors are programmed
to describe a loop, there is not such a concept of “last
descriptor” and hence, interrupts are only possible upon
an error.

• Debug support. SafeTI includes a number of registers
exposing its internal state (e.g. what descriptor is being
processed) usable for debug purposes. They can be re-
moved without affecting its functionality, but since SafeTI

Fig. 2. SafeTI descriptors structure.

is mainly conceived for V&V purposes and for online
periodic tests, exposing debug information is a plus.

C. Descriptors specification
Descriptors are used to define and control transactions in

SafeTI. Descriptor types supported by this module can be
classified as read and write descriptors. A single descriptor
uses 20 Bytes of memory. Their structure and contents are
illustrated in Figure 2. Each of the 5 registers in the descriptor
is a 4-bytes word. The specification of those registers is as
follows.
• Control word. The control word is used to configure the

main parameters of the descriptor. Due to its relevance,
it is fully specificed in Register III.1.

Register III.1: DATA DESCRIPTOR CONTROL WORD (ctrl -
0x00)

siz
e

0

31 13

co
un

t

0

12 10

int
rv

0

9 7

de
stfi

x

0

6

src
fix

0

5

irq
e

0

4

typ
e

0

3 1

en

0

0

Reset

size Size of data to be transferred.

count Number of transaction repetitions

intrv Number of clock cycles interval between repetitions
of the same transaction.

dstfix Bit reset (set) for write burst (non-burst) transfer.

srcfix Bit reset (set) for read burst (non-burst) transfer.

irqe Enable interrupt on descriptor completion.

type Descriptor type (read or write).

en Enable data descriptor (enabled or disabled).

• Next descriptor pointer. It indicates the address for the
next descriptor and/or whether it is the last descriptor.

• Destination address. It indicates the destination address
for the descriptor transaction (only relevant for write
transactions).

• Source address. It indicates the source address for the de-
scriptor transaction (only relevant for read transactions).

• Status word. The descriptor status shows if an error has
occurred or if the transaction has been done. It includes
reserved bits for future extensions.

IV. SAFETI ARCHITECTURE AND INTEGRATION

This section provides details on the actual implementation
of SafeTI and about its integration in a Gaisler’s NOEL-V 4-
core MPSoC for the space domain. Hence, we first introduce
the MPSoC and then the SafeTI architecture.



Fig. 3. MPSoC schematic with SafeTI

A. Gaisler’s NOEL-V MPSoC

The MPSoC where we have integrated SafeTI is based
on the NOEL-V RV64 synthesizable VHDL model of a 64-
bit processor that implements the RISC-V architecture [18].
The processor is the first released model in Cobham Gaisler’s
RISC-V line of processors that complement the LEON [7]
line of processors. The 4 NOEL-V cores in the MPSoC
are interfaced using the AMBA 2.0 AHB [1] bus with the
memory and peripheral subsystems. SafeTI integration in the
MPSoC is illustrated in Figure 3, where we refer to SafeTI as
injector. As shown, the injector is connected to the AHB bus
analogously to the cores. For evaluation purposes, we have
also integrated a multicore interference aware Performance
Monitoring Unit (SafePMU) [6], which allows measuring
accurately the interference experienced by the bus masters.
Hence, the SafePMU provides us with accurate measurements
of the delays caused by SafeTI traffic on specific cores.

B. SafeTI Architecture

SafeTI architecture is shown in Figure 4, where we can
see the modules used for its implementation. The current
incarnation of SafeTI acts as an AHB master IP connected
to the main AMBA bus of the aforementioned Gaisler’s
multicore. To some extent, SafeTI acts as a core with limited
capabilities, issuing read and write transactions to the slave
devices attached to the bus. For its configuration and control,
SafeTI implements AMBA Advanced Peripheral Bus (APB)
registers, which are driven through the AHB interface as
shown in the figure.

The top-level module implements the APB and AHB-master
bus ports. The SafeTI top-level module can be realized varying
its design parameters that allow varying the AHB and APB
indexes where SafeTI is mapped, the address range where
its control registers are mapped, the particular interrupt line
used, the size of the descriptor list, and the maximum burst
length allowed in the AHB interconnect. The top-level module
includes the 5 following submodules.

1) AHB Master Interface (INJECTOR_AHB): The AHB
master interface front end data width can be configured to 32,
64, or 128 bits. While burst accesses are limited to up to 1KB,
as specified in the AMBA protocol specification [1], they are
limited to 512B in the NOEL-V MPSoC. Upon termination of
a burst, an idle cycle is inserted thus allowing re-arbitration in
the AHB bus. If, eventually, the intended transaction exceeds
the maximum burst length allowed in the MPSoC, the burst is
interrupted whenever the limit is reached, and an idle cycle

is inserted to guarantee re-arbitration before resuming the
descriptor operation with a new burst transaction.

2) APB Slave Interface (INJECTOR_APB): The traffic
injector is controlled and monitored through registers mapped
into a defined APB address space. The complete set of registers
is shown in Table I. Note that registers from 0x10 to 0x24
are used for debug capabilities. The control register allows
enabling/disabling the injector, configuring whether interrupts
can be raised or resetting the injector, among other features.
The status register provides information about any error that
may have occurred, the number of repetitions elapsed of
the descriptor being processed, whether all descriptors have
been already processed, and other details of the descriptor
processing state. The first descriptor pointer points to the
descriptor from where generation of transactions can start.
Note that it may not be necessarily the one in a fixed position
(e.g. position 0) since we may preload multiple traffic patterns
and switch from one to another just changing this register. To
ease the extension of the SafeTI features, a reserved register
(future capabilities) has been added. Finally, debug registers
allow reading the registers of the descriptor being processed,
and what the next descriptor is.

TABLE I
APB REGISTER MAP

APB Address Offset Register
0x00 Control Register
0x04 Status Register
0x08 First descriptor pointer
0x0C Future capabilities register
0x10 Debug Descriptor control word
0x14 Debug Next descriptor pointer
0x18 Debug Destination address
0x1C Debug Source address
0x20 Debug Descriptor status
0x24 Debug Current descriptor pointer

3) Control Unit (INJECTOR_CONTROL): The control unit
is in charge of decoding descriptors and request the read or
write interface module to generate the corresponding transac-
tion for such descriptor. The control unit also monitors the
status and errors of the transactions, and reports errors – if
any – back to the APB Interface.

4) Read Interface Module (INJECTOR_READ_IF): The
Injector Read Interface deals with descriptors for read trans-
actions. In particular, this module implements a Finite State
Machine (FSM) that creates the corresponding read transac-
tion(s). Note that multiple transactions may be needed if data
size exceeds the data bus size in a non-burst transaction, or
data size exceeds maximum burst size in a burst transaction.

5) Write interface module (INJECTOR_WRITE_IF): The
Write Interface module is analogous to the Read Interface one,
but instead or read transactions, it deals with descriptors for
write transactions building on an FSM to manage descriptors
requiring multiple transactions.

V. EVALUATION

A. Evaluation Framework

The MPSoC has been synthesized for a Xilinx Kintex-7
FPGA KC705 FPGA [24], which is particularly suitable to
evaluate space MPSoCs. Results have been collected in a
simulation environment and further validated on the FPGA.
Results in terms of contention cycles have been collected with
the SafePMU.

For the sake of controllability and interpretability of the
results, we have used 3 benchmarks:



rstn
clk

APB_IO

ctrl_out
desc_ptr_out
active
err_status
irq_flag_sts
curr_desc_in
curr_desc_ptr

sts_in

INJECTOR_APB

rstn
clk

ctrl_rst
err_sts_out

read_if_start

d_des_in

status_out

Read_IF_BM

INJECTOR_READ_IF

rstn
clk

des_ptr
active

err_status

curr_desc_out
curr_desc_ptr

status

irq_flag_sts

BM

INJECTOR_CONTROL

Read_IF_BM

Write_IF_BM

d_desc_out
ctrl_rst
err_sts_in

read_if_start

read_if_sts_in

write_if_start
write_if_sts_in

ctrl

rstn
clkctrl_rst

err_sts_out

write_if_start

d_des_in status_out

Write_IF_BM

INJECTOR_WRITE_IF

rstn
clk

APB_IO

INJECTOR_AHB

BM_IO

rstn
clk

APB_IO

BM_IO

Fig. 4. Module internal block diagram and entity ports

Fig. 5. Mapping of masters in the AMBA AHB arbitration. Benchmark refers
to the TUA and INJ to SafeTI.

• LDMISS : This benchmark performs sustained 4-byte
load accesses that miss in cache and have to fetch data
from DRAM, accessing it through the AMBA AHB bus.

• STMISS : This benchmark is analogous to previous one,
but with 4-byte stores.

• SWMISS : This benchmark is analogous to previous one,
but with 8-byte stores.

Note that the AMBA AHB bus transfers up to 4 bytes per
transaction beat. Hence, any request of up to 4 bytes is served
in just one beat. Instead, longer requests perform as many
beats as needed to transfer all data in beats of 4 bytes (or up
to 4 bytes). Those multi-beat requests can be performed in the
form of burst requests, so that all beats are transferred in just
one transaction (as long as the maximum transaction length is
not exceeded), or across multiple independent transactions.

Since full cache lines are fetched upon a cache miss
regardless of the data size requested (e.g. 1, 2, 4 or 8 bytes),
we use only LDMISS for loads since 16 bytes are fetched
per load miss to get the full cache line. Those 16 bytes are
fetched in the form of 4 individual 4-byte requests. Instead,
store operations are forwarded to memory without allocating
or replacing cache lines upon a miss, and they send exactly
the data stored in a single burst transactions with either 1 beat

(if data stored is up to 4 bytes) or 2 beats (if data stored is
8 bytes). Hence, we use two different store benchmarks to
illustrate both cases, namely STMISS for 4-byte stores and
SWMISS for wider 8-byte stores.

Regarding workloads, we assess the impact caused by
interference on one of the benchmarks, which we refer to
as Task Under Analysis (TUA for short). Since we have 5
masters active in the AMBA AHB bus, namely the 4 cores
and SafeTI, in order to fairly compare SafeTI with the traffic
generated by benchmarks, we must set its relative position in
the round-robin arbitration identically w.r.t. the TUA. Hence,
as shown in Figure 5, the TUA is run in core 0 (C0) when
SafeTI injects traffic. Instead, if contending traffic is injected
by another benchmark, then the contending benchmark is run
in C0 and the TUA in C1, so that, in both cases, the contender,
either hardware or software, is arbitrated right before the
TUA. Note that contention is injected sustainedly meaning that
SafeTI never stops and the contenting benchmark is restarted
whenever it finishes. Measurements are performed when the
TUA finishes its execution.

B. Results
Figure 6 shows the total contention cycles experienced for

several scenarios. The magenta triangle (at 7.3 millions of
cycles) correspond to the case where LDMISS is the TUA
and also the contender. The dark magenta flat line (also at
7.3 millions of cycles) shows the contention caused by SafeTI
when injecting increasingly large transactions sustainedly, but
without burst transactions. As shown, contention remains
constant and identical to the case of the LDMISS benchmark
as contender since TUA transactions are only made to wait
a 4-byte transaction before being granted access to the bus.
In both cases, contention is injected at maximum rate with 4-
byte transactions regardless of the transfer size since no burst
transactions are used.

If instead we use burst transactions with SafeTI (magenta
raising line), we observe how contention increases noticeably
(note the logarithmic scale of both axes). In fact, contention
roughly doubles as we double transaction length until reaching
512 bytes, which is the maximum transaction size. From that
point onwards, the AMBA AHB interface enforces transac-
tions of about 512 bytes being split into up to 512-byte bursts.
Contention cycles double because each TUA transaction has



4 8 16 32 64 128 256 512 1024 2048
10 5

10 6

10 7

10 8

10 9

Fig. 6. Total contention cycles in logarithmic scale for different transaction
sizes for SafeTI.

4 8 16 32 6412
8
25
6
51
2 4 8 16 32 6412

8
25
6
51
2 4 8 16 32 6412

8
25
6
51
2 4 8 16 32 6412

8
25
6
51
2

1

2

5

10

25

50

75

100

Fig. 7. SafeTI contention cycles for for non-burst and burst cases, for both
LDMISS and STMISS as TUA.

to wait for one SafeTI transaction to be served before being
granted access to the bus, but SafeTI transactions double the
data sent in a single burst as we move along the x-axis.

Blue triangles and lines correspond to the case where
STMISS is used as TUA. The dark blue triangle corresponds
to the case where STMISS is also used as contender. The light
blue triangle corresponds to the SWMISS used as contender.
Dark blue (no burst) and light blue (burst) lines correspond
to SafeTI traffic injection. As shown, SafeTI behavior when
injecting write operations in the AMBA AHB is analogous
to that of read operations. In particular, non-burst transactions
keep contention flat whereas burst transactions roughly double
contention as we double transaction size until reaching the
maximum burst size (512 bytes). We also observe that results
for SafeTI and benchmarks as contenders roughly match
whenever the burst size matches. However, SafeTI is much
more flexible and allows, for instance, using any burst size,
thus mimicking the impact that long bursts potentially caused
by peripherals could cause without needing to build complex
tests with I/O operations and challenging synchronization of
asynchronous peripheral activity with the TUA execution.

We have further analyzed the impact in a per transaction

basis using the SafePMU [6], which allows measuring total
access cycles, total contention cycles, and the number of
accesses per master. Results are shown in Figure 7. The first
set of columns corresponds to LDMISS as TUA and read non-
burst traffic injection with SafeTI. The second set of columns
is analogous but using STMISS as TUA and write traffic from
SafeTI. The third and fourth sets of columns are analogous
to the first two sets, but using bursts transactions. Orange
columns correspond to actual contention cycles whereas blue
columns correspond to access cycles as reported by the
SafePMU. Note that y-axis starts at 1 (using the TUA in
isolation as baseline) and is shown in logarithmic scale.

First, we note that pipelining effects may introduce 1-cycle
variations in some cases. For instance, in the first set of
columns (LDMISS as TUA vs non-burst read traffic), injected
traffic causes alternative cases with 0 or 1 interference cycles,
thus leading to an average of 0.5 interference cycles per
request. If we use STMISS as TUA and write traffic from
SafeTI (second set of columns), then pipeline alignment makes
transactions take 1.5 cycles on average and experience no
contention. If we use SafeTI with burst transactions, then
contention per transaction doubles as we double transaction
size as noted before. Note that pipelining effects may make
transaction duration oscillate slightly (around 0.1 cycles on
average). We also observe that read requests experience no-
ticeable contention even with small burst sizes since load
operations stop the pipeline. However, write operations can be
delayed to some extent without impacting performance since
they do not block the pipeline given that cores have a 2-entry
store buffer. Hence, SafeTI write burst transactions of up to 16
bytes cause less than 1 cycle of contention per TUA transaction
on average. However, once the store buffer is saturated (with
32-byte transactions and beyond), doubling SafeTI transaction
size doubles the contention cycles per TUA transaction.

Overall, our results show how SafeTI allows injecting traffic
with high flexibility and degree of control, thus easing V&V
of the SoC, as well as implementing safety measures (e.g.
periodic testing during operation).

VI. CONCLUSIONS AND FUTURE WORK

The ability to inject traffic in MPSoC’s shared resources
is instrumental for the verification and validation of safety-
related MPSoCs, as well as for the deployment of appropriate
safety measures. AMBA interconnects are central elements in
MPSoCs since, generally, all traffic traverses them. However,
injected controlled traffic patterns at specific times in those
interfaces is a challenge in existing MPSoCs either due to the
characteristics of the (limited) hardware support, or due to the
limitations to achieve that goal by software-only means.

This paper presents SafeTI, a flexible and programmable
hardware traffic injector tailored to produce traffic for AMBA
AHB interfaces. We prove its effectiveness integrating it in
a space MPSoC, and showing how traffic can be effectively
tailored providing much more coverage than software-only
solutions. Furthermore, SafeTI has been release as an open-
source component [5].

While SafeTI is already a complete component, a number
of tasks are in front of us: (1) extending its evaluation to more
complex traffic patterns and testing scenarios; (2) tailoring
it to other interfaces such as AMBA AXI and ACE; and
(3) investigating applications of SafeTI for the validation
of distributed interconnects and coherence protocols, and to
evaluate the effectiveness of means against security attacks
(e.g. denial-of-service attacks).



ACKNOWLEDGEMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement no. 871467. This work has also been partially
supported by the Spanish Ministry of Science and Innovation
under grant PID2019-107255GB.

REFERENCES

[1] ARM. AMBA 2.0 Specification, 1999.
[2] Adrià Armejac, Bine Brank, Jordi Cortina, François Dolique, Timothy

Hayes, Nam Ho, Pierre-Axel Lagadec, Romain Lemaire, Guillem López-
Paradı́s, Laurent Marliac, Miquel Moretó, Pedro Marcuello, Dirk Pleiter,
Xubin Tan, and Said Derradji. Mont-blanc 2020 towards scalable and
power efficient european hpc processors. pages 1–6, 2021.

[3] M. Badr and N. E. Jerger. Synfull: Synthetic traffic models capturing
cache coherent behaviour. In 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), pages 109–120, 2014.

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5
simulator. SIGARCH Comput. Archit. News, 39(2):1–7, August 2011.

[5] BSC - CAOS. SafeTI. https://bsccaos.github.io.
[6] Guillem Cabo, Francisco Bas, Ruben Lorenzo, David Trilla, Sergi

Alcaide, Miquel Moreto, Carles Hernandez, and Jaume Abella.
SafeSU: an extended statistics unit for multicore timing interference.
https://people.ac.upc.edu/jabella/ets21.pdf. In IEEE European Test Sym-
posium (ETS), 2021.

[7] Cobham Gaisler. LEON5 processor. https://www.gaisler.com/index.php/
products/processors/leon5.

[8] Cobham Gaisler. NOEL-V Processor.
https://www.gaisler.com/index.php/products/processors/noel-v.

[9] Universitat Politècnica de València. Gnocsim. a cycle-accurate
wormhole-based network simulator. http://www.gap.upv.es/index.php?
option=com content&view=article&id=72&Itemid=108.

[10] G. Fernandez, F. J. Cazorla, J. Abella, and S. Girbal. Assessing
time predictability features of Arm Big. LITTLE multicores. In 2018
30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pages 258–261, 2018.

[11] Mikel Fernández, Roberto Gioiosa, Eduardo Quiñones, Luca Fossati,
Marco Zulianello, and Francisco J. Cazorla. Assessing the suitability of
the ngmp multi-core processor in the space domain. In Proceedings
of the Tenth ACM International Conference on Embedded Software,
EMSOFT ’12, page 175–184, New York, NY, USA, 2012. Association
for Computing Machinery.

[12] Sylvain Girbal, Jimmy Le Rhun, and Hadi Saoud. METrICS: a
Measurement Environment For Multi-Core Time Critical Systems. In
ERTS 2018, 9th European Congress on Embedded Real Time Software
and Systems (ERTS 2018), Toulouse, France, January 2018.

[13] International Standards Organization. ISO/DIS 26262. Road Vehicles –
Functional Safety, 2009.

[14] T. Krishna, C. O. Chen, W. C. Kwon, and L. Peh. Breaking the on-chip
latency barrier using smart. In 2013 IEEE 19th International Symposium
on High Performance Computer Architecture (HPCA), pages 378–389,
2013.

[15] H. Kwon and T. Krishna. Opensmart: Single-cycle multi-hop noc
generator in bsv and chisel. In 2017 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 195–
204, 2017.

[16] Synergy Lab. Garnet. An on-chip Network Model for Diverse Intercon-
nect Systems. https://synergy.ece.gatech.edu/tools/garnet/.

[17] J. Perez-Cerrolaza et al. Multi-core devices for safety-critical systems:
A survey. ACM Comput. Surv., 53(4), 2020.

[18] RISC-V International. RISC-V International website. https://riscv.org/.
[19] RTCA and EUROCAE. DO-178B / ED-12B, Software Considerations

in Airborne Systems and Equipment Certification, 1992.
[20] RTCA and EUROCAE. DO-254 / ED-80, Design Assurance Guidance

for Airborne Electronic Hardware, 2000.
[21] Siemens. Questa Advanced Simulator, 2020.
[22] Veripool.org. Verilator, 2020.
[23] Xilinx. AXI Traffic Generator v3.0. LogiCORE IP Product Guide, 2019.
[24] Xilinx Kintex-7 FPGA. KC705 evaluation kit. https://www.xilinx.com/

products/silicon-devices/fpga/rt-kintex-ultrascale.html.


