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Abstract—Safety-related systems, such as those in automotive,
avionics and space, impose the existence of appropriate safety
measures to meet the safety requirements of the system. In the
case of the highest integrity level functionalities (e.g. ASIL-D
in automotive), diverse redundancy must be deployed to avoid
unreasonable risk of a single fault leading the system to a
failure (e.g. using lockstepped cores). However, existing lockstep
solutions are either (1) highly intrusive and inflexible coupling
two cores with hardware means, or (2) costly in terms of execution
time and monitoring if a software monitor thread checks that
cores running redundantly preserve sufficient staggering.

This paper presents SafeDE, a Diversity Enforcement hard-
ware module providing light-lockstep support by means of
a non-intrusive and flexible hardware module that preserves
staggering across cores running redundant threads, thus bringing
time diversity. SafeDE reconciles the lightness and flexibility of
software-only solutions, even allowing using the cores without any
lockstepping, as well as the tighter staggering of hardware-only
solutions that allow using staggering values of few cycles, instead
of hundreds of microseconds, as for software-only solutions. Our
integration of SafeDE in a RISC-V FPGA-based space multicore
from Cobham Gaisler shows that staggering is effectively pre-
served, and SafeDE overheads are negligible in terms of area
and performance due to staggering.

I. INTRODUCTION

Increased autonomy levels and improved features in cars,
satellites and planes lead to increasing performance demands
for those systems. Existing multicores and accelerators deliver
the level of performance needed. However, safety-related sys-
tems such as those in automotive, space and avionics need
to meet specific safety requirements for their adoption. Those
requirements are dictated by the specific safety integrity level
of the functionality at hand, and are particularly demanding
for the highest levels (e.g. Automotive Safety Integrity Level,
ASIL, D in automotive [16]).

A key safety requirement for the highest integrity level
systems is the capability of not causing a failure due to a
single fault. Those faults are normally mitigated by means
of diverse redundancy [5], so that redundancy exists but it is
sufficiently diverse so that a single fault affecting all replicas
would cause different effects, thus allowing, at least, detecting
the fault.

Solutions for diverse redundancy often relate to Error
Correction Codes (ECC) for storage and Cyclic Redundancy
Coding (CRC) for communications [2]. Computing elements
(e.g. cores), instead, usually require full replication and thus,
resort to dual (DMR) [10], [21], [24] or triple modular
redundancy (TMR) [18]. However, such redundancy is not
enough and diversity is also needed to avoid that a single fault
(e.g. a voltage droop or a permanent fault) affects redundant
instances identically. Such diverse redundancy is achieved with
lockstepping, where two (or more) identical cores execute the

same software redundantly, but with some staggering among
them, so that the state of the cores differs at any point in
time, and thus, a fault cannot produce the same error in all
redundant copies, which could go unnoticed otherwise.

Lockstepping, in the form of Dual Core LockStepping
(DCLS) [15], [35], [37], is generally implemented at hardware
level tying two cores together operating with few cycles of
staggering (i.e. the head core executes the same software N
cycles ahead of the trail core). External requests are generated
by one of the cores (e.g. head one), but not sent until compared
to those of the other core (e.g. trail one). Upon a match,
loads, stores, interrupts and any other type of request is sent,
but just once (not redundantly). Responses are duplicated
and delivered to both cores preserving the staggering (i.e.
delivering them N cycles later to the trail core). This ensures
consistent states across lockstepped cores, but with some
staggering to preserve diversity. Such a solution, however,
makes only one of the cores be visible at software level, and
precludes the user from using those cores independently.

Light-weight software-only lockstepping has been proposed
to reduce the cost of full lockstepping [3]. Such light-weight
lockstepping resorts to software redundancy, and to the ex-
istence of a software monitor enforcing staggering across
redundant threads. While such a solution has been proven
effective, and compatible with Commercial Off-The-Shelf
(COTS) processors, it requires native lockstepping (hardware-
based) for the core running the monitor, and imposes some
non-negligible staggering (e.g. 100µs) to allow the monitor
to collect information of the progress of redundant threads
without causing too high relative interference.

Overall, both hardware-based and light software-based lock-
stepping pose a number of limitations to achieve diverse
redundancy. This paper, addresses this challenge by proposing
a different tradeoff achieving most of the benefits of both
approaches with low cost.

This paper presents SafeDE1, a Diversity Enforcement hard-
ware module providing light-lockstep support by means of
a non-intrusive and flexible (programmable) hardware mod-
ule that preserves staggering across cores running redundant
threads, thus bringing time diversity. In particular, SafeDE is a
tiny hardware module performing the same monitoring tasks as
the software-only solution, but with a much lower staggering
(just few cycles instead of 100µs), and without requiring native
lockstepped cores. Compared to native hardware lockstepping,
SafeDE can be integrated without modifying IP cores, thus
with limited intrusiveness, and allows using cores indepen-

1Available as an open-source component in https://bsccaos.github.io [6].
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dently instead of always in lockstep mode. In particular, the
contributions of this paper are as follows:
• We present SafeDE, a new hardware/software scheme for

efficient, flexible and lowly-intrusive light lockstepping to
achieve diverse redundancy.

• We implement and verify SafeDE in VHDL.
• We successfully integrate SafeDE in a space SoC based

on Cobham Gaisler’s NOEL-V cores, implemented in a
FPGA, which is already a commercial setup for this plat-
form reaching commercial readiness by early 2022 [11].

The rest of the paper is organized as follows. Section II
provides some background. SafeDE is presented in Section III
and evaluated in Section IV. Section V reviews related work.
Section VI concludes this paper.

II. BACKGROUND

This section provides some background on the need for
some form of lockstepped execution in safety-related systems,
and on the existing solutions to achieve it.

A. Redundancy, Diversity and Sphere of Replication

Safety-related systems are designed so that unreasonable
risk due to software faults of any kind and systematic hardware
faults is avoided by design, verification and validation (V&V).
However, random hardware faults cannot be avoided and
appropriate safety measures need to be deployed, such as for
instance, diverse redundancy for the highest safety integrity
levels (SIL for short).

There are two main approaches to achieve diverse redun-
dancy: using diverse hardware and/or software so that replicas
(e.g. redundant threads) execution is diverse in nature, or using
identical hardware and software and enforcing diversity by
making identical replicas run on identical hardware (but not
the same hardware unit) with some staggering so that hardware
state is different at any point in time. Generally, the latter
is preferred since it reduces design as well as V&V costs
because only one software unit and hardware unit needs to be
designed, verified and validated, rather than having to do so
for multiple units. This is, for instance, the case of DCLS in
Infineon AURIX multicores [15].

Lockstep operation is usually implemented comparing only
off-core activities such as load and store requests, as well
as interrupts and exceptions. Thus, cores execute software
redundantly with some staggering and include some buffering
capabilities to store off-core requests of the head thread until
they are compared with the trail thread ones, as well as to store
off-core responses for the trail thread, which are delivered to
the corresponding core with some staggering w.r.t. the head
thread. Other off-core resources, such as storage elements
(e.g. caches, memories) and communication elements (e.g.
buses, crossbars) build upon ECC and CRC to reach diverse
redundancy.

B. Lockstep Strands

Hardware-based tight lockstepping builds upon two
tightly coupled cores operating with identical state but with
N cycles of staggering, thus meaning that the head core is
exactly N cycles ahead in the exection of the trail core.
Therefore, during fault-free operation, the trail core delivers
exactly the same external signals as the head core but N
cycles later. This is managed with appropriate queues, as

(a) Hardware-only (b) Software-only
Fig. 1. Schematic of hardware and software-based lockstep schemes.

illustrated in Figure 1(a). In particular, output activity of the
head core needs to be stored during N cycles until the trail
core produces the same outputs. Then, they are compared and,
if they match, the corresponding outputs are made visible out
of the lockstepped cores complex, e.g. sending a load request
to memory, storing data or signalling an interrupt. Externally,
lockstepped cores are perceived as just one core since only
the activity generated by one of them is sent. Responses for
those requests of a single core arrive just once, so they need to
be replicated and delivered to both cores. In order to preserve
the staggering, buffering is needed in the trail core side to
keep data during N cycles before delivering it to the core.
Such a scheme introduces a delay of N cycles in any external
access either for the outgoing requests (head core) or for the
incoming responses (trail core). Nevertheless, N is typically
2 or 3 cycles, so the impact of staggering is limited.

Software-based light lockstepping builds upon two cores
able to operate independently executing different programs.
Therefore, redundant threads need being created by software
and scheduled accordingly into the head and trail cores which,
in practice, are identical among them and inherit head or trail
behavior only due to software management of their progress.
The (simplified) operation, which we illustrate in Figure 1(b),
requires of a supporting monitor thread, which runs in another
core, either in the same chip or another. For instance, this
scheme has been devised to run the monitor in a processor
with native hardware lockstepping, thus guaranteeing safety
for the monitor, so that the monitor manages redundant threads
of multiple software components running in a (likely pow-
erful) multicore without lockstepping support. In particular,
the monitor thread creates the two redundant processes and
keeps the trail core stalled. Periodically, the monitor collects
the number of instructions executed by the head and trail cores
(#instr in the figure), and compares them. If the difference,
#instrhead−#instrtrail, is above a given threshold THstag ,
then the trail core is allowed to make progress. Else, the
trail core is stalled. Every Tcheck cycles the monitor repeats
the process. Note that THstag needs to be carefully set to
guarantee that, even if the head core got stalled and the
trail one made progress at its maximum speed during Tcheck
cycles, the head core would still have a number of instructions
executed higher than the trail one. If this is the case, both
cores can be allowed to make progress unsupervisedly during
Tcheck cycles until the next monitoring check. There is an
obvious relationship between the monitoring frequency and
the staggering time: the looser the monitoring (i.e. the higher
Tcheck) so that monitoring overhead decreases, the higher the



Fig. 2. SafeDE architecture.

staggering needed (i.e. the higher THstag). As shown in [3],
THstag needs to be typically at least the maximum number of
instructions that could be executed in 100µs. Those 100µs are
roughly the execution time increase that lockstepped execution
will cause to let the trail core finish the execution of the trail
thread after the head one does so with the head thread.

III. SAFEDE: A DIVERSITY ENFORCEMENT HARDWARE
MODULE

This section presents SafeDE. First, we introduce the archi-
tecture of SafeDE. Then, we analyze its pros and cons in com-
parison with the software-only solution. Finally, we provide
implementation and integration details about its deployment
in a commercial space multicore.

A. SafeDE Architecture

SafeDE is architected to be the hardware counterpart of
software-based light lockstepping. Its objective is keeping as
much as possible the advantages of the software-only solution,
while mitigating its limitations, which we discuss in next
subsection. For that purpose, SafeDE is devised as a tiny
module coupled to each pair of cores potentially needing
to operate lockstepped. This is illustrated in Figure 2. As
shown, SafeDE requires the instruction count values of the
lockstepped cores, as well as an interface signal to stall the trail
core. SafeDE subtracts the number of instructions of the trail
core from those of the head core, #instrhead −#instrtrail,
as in the case of the software-only solution, and compares
the difference against a staggering threshold, THstag . Only
when the head core is not sufficiently ahead of the trail core,
and SafeDE is active, a stall signal is sent to the trail core,
which must be used to stall the core whenever set. Such stall
can be achieved, for instance, stalling all stages (e.g. blocking
pipeline latches), stalling only the commit stage, or stalling
only the fetch stage, to name few alternatives.

SafeDE parameters. SafeDE has four configuration regis-
ters: THstag , active, CritSec1 and CritSec2.
• THstag stands for the minimum number of instructions

that the head core must be ahead of the trail core.
Typical values are few instructions, very much in line
with hardware-based tight lockstepped cores. Note that
this value is several orders of magnitude lower than that
for software-only solutions.

• active signal indicates whether SafeDE is active or not. If
reset, SafeDE produces no effect. Else, SafeDE operates
normally. Whenever the parameter is set to 1 (input

signal raised), lockstep operation is possible, which is
practically controlled by the other registers.

• CritSec1 and CritSec2 registers indicate whether core
1 (head) and core 2 (trail) have entered the “critical” code
region to be executed in lockstep mode.

SafeDE operation. SafeDE is, at some point, inactive
(active = 0). No action is performed by SafeDE until active
is set, regardless of the values of the other registers. Eventually,
SafeDE is programmed setting THstag as needed, and then
active is set. Once active = 1, CritSec1 and CritSec2 are
reset, and SafeDE awaits for the corresponding activation of
CritSec1 and CritSec2. CritSec1 and CritSec2 are set by
core1 and core2 respectively when they reach their critical
section. The first core entering the critical section will take
the role of the head core. Whenever the head core sets its
CritSec register, its instruction count (#instrhead) resets and
starts counting the committed instructions. If the trail core
activates its CritSec register before the staggering is large
enough (#instrhead−#instrtrail < THstag), the stall signal
is sent to the trail core. As soon as the staggering is enough, the
stall signal is reset and the trail core starts execution. Note that
SafeDE performs the subtraction #instrhead − #instrtrail
and the comparison against THstag every cycle. This allows
using very low values for THstag as opposed to the software-
only solution. Despite performing such action every cycle,
note that #instrhead and #instrtrail barely change every
cycle (e.g. they do not change or just are incremented by
up to very few instructions). Therefore, activity due to the
subtraction and comparison is tiny since most of input signals
remain constant, and hence, signal switching occurs seldom.
Whenever the head core reaches the end of its critical section,
it resets CritSec1. From that point onwards, SafeDE allows
the trail core execute without any stall until it also finishes its
critical region (CritSec2 is also reset).

Software process. To use SafeDE, end users, either by
themselves or with the support from an appropriate API,
need to create the two redundant processes, schedule them
to the head and trail cores, and keep them stopped (e.g. with
SIG STOP signals). Then, SafeDE needs being configured
and set to active state. Finally, both redundant processes need
to be set to active (e.g. with SIG CONT signals).

B. Features and Limitations Analysis

SafeDE offers a different tradeoff to that of the software-
only solution. Next, we detail its main features and limitations
along with whether they are common with the software-only
solution in [3] or not.

1) SafeDE features:

• Low cost. As shown before, SafeDE is a tiny module
offering support to enforce staggering to achieve diverse
redundancy. SafeDE releases the system from having
to allocate a task with strict timing requirements (e.g.
executing at a very specific frequency), as needed in the
case of the software-only solution.

• Low staggering. By being implemented in hardware and
monitoring instruction counts from the head and trail
cores constantly, SafeDE can guarantee diversity even if
staggering is low (e.g. THstag set to few instructions).
This is also an advantage w.r.t. the software-only solution,
which requires heavier activities by being conducted by



software means, reading remote registers, issuing inter-
rupts to stall/resume execution in a core, etc., so needing
a much higher staggering than SafeDE.

• Flexibility. SafeDE can be enabled/disabled at will, thus
being usable at very fine granularity. Still, the granularity
is dictated by the ability of the software to create the
redundant processes and stop/resume them at start up.
Hence, flexibility is high, but the granularity at which
SafeDE can be used is similar to that of the software-
only solution.

• Low intrusiveness. SafeDE needs cores to export few
signals for its integration, thus being much less intrusive
than hardware-based tight lockstepping. In particular,
SafeDE needs cores to expose their instruction count
register for monitoring purposes, an appropriate stall
signal to stall the trail core whenever needed, and the
reset signal for the instruction count register. Differently,
the software-only solution does not require any hardware
change, although it may require modifications into the
operating system to allow reading the instruction count
register from remote cores. SafeDE, instead, does not
need any such operating system change.

2) SafeDE limitations:

• Non-null intrusiveness. Hardware changes required by
SafeDE are minor, but they are not null, so differently to
the software-only solution, SafeDE cannot be deployed
on COTS ASIC multicores.

• Limited applicability. SafeDE, as well as the software-
only solution, needs that redundant processes execute
exactly the same instructions so that software does not
diverge. Otherwise, SafeDE (and the software solution)
would become ineffective. For instance, this implies that
SafeDE should not be used for functions whose execution
path depends on random choices or physical address
bits, which could follow different paths across redundant
processes. For the former case, SafeDE can be used if
identical random values are enforced across processes
(e.g. providing the same random number stream with
a software-implemented pseudo-random number gener-
ator initialized identically for both processes). Similarly,
SafeDE cannot be used for parallel applications if the
execution path and the instruction count may vary across
redundant threads due to synchronization (e.g. different
order to access sequential code regions). In any case,
such limitation is analogous to that of the software-only
solution. Also, SafeDE (and software solutions) cannot
be applied for processes with some form of I/O accesses,
since those accesses need to be performed only once
generally, but redundant processes would perform those
accesses twice.

• Limited diversity. Physical diversity is achieved by run-
ning redundant processes in different cores. SafeDE, as
well as the software only solution, provides also time di-
versity. However, other sources of common cause failures
(i.e. identical failures in both cores due to a single fault),
such as for instance those related to physical degradation
of specific gates of the processor need other types of
diversity (e.g. layout diversity) that cannot be achieved
by any external monitor, either hardware (SafeDE) or
software.

Fig. 3. High-level representation of SafeDE integrated into the system.

• SafeDE hardening. Since faults could also affect
SafeDE, it must be hardened to meet sufficiently low
failure rates or, simply, deployed with physical diverse
redundancy, as for tight lockstepped cores (e.g. using
the scheme in Figure 1(a) but for SafeDE instead of the
cores).

3) Scope of applicability: Due to the limited applicability
of SafeDE, as in the case of software-only solutions, SafeDE
cannot be applied to all software but to code regions. For
instance, if data is read from a sensor, processed and sent to
an actuator, SafeDE and software only solutions can be applied
to the processing part only. If full (end-to-end) diverse redun-
dancy is needed, native (hardware-based) tight lockstepping
support is needed, as explained in [3]. In particular, at least two
cores need to be paired with hardware-based tight lockstepping
to execute sensor and actuator interactions. However, the most
performance hungry part of the execution (i.e. data processing)
can be managed with SafeDE. Thus, deployments where only
two cores provide hardware-based tight lockstepping, and the
rest support light lockstepping with SafeDE would be highly
efficient. For instance, an 8-core multicore could be deployed
with (a) 4 pairs of hardware-based tight lockstepped cores, thus
offering only 4 user-visible cores; (b) 1 pair of hardware-based
tight lockstepped cores and 6 non-lockstepped cores, thus
offering 7 user-visible cores, but only up to 1 concurrent task
running with diverse redundancy; or (c) 1 pair of hardware-
based tight lockstepped cores and 6 cores paired with SafeDE,
thus offering 7 user-visible cores, and supporting up to 4
concurrent tasks running with diverse redundancy.

C. Implementation and Integration

To prove its feasibility, SafeDE has been integrated and
evaluated in an industrial space product, namely the RISC-
V based Cobham Gaisler NOEL-V MultiProcessor System on
Chip (MPSoC). In this platform, Cobham Gaisler provides
an integrated set of reusable VHDL IP cores centered around
common on-chip buses. The buses of the selected MPSoC
are based on the standard AMBA 2.0. SafeDE is designed in
VHDL as one of the reusable Gaisler IP cores.

1) System on Chip: The SoC where SafeDE is tested
comprises 2 RISC-V based 64-bit dual-issue 7-stages pipeline
NOEL-V cores. Apart from the main 128 bits Advanced High-
performance Bus (AHB), another AHB is used for debugging



purposes. For low bandwidth peripherals as SafeDE, an Ad-
vanced Peripheral Bus (APB) is employed.

Each core includes private L1 Data and Instruction caches.
Data L1 caches are write-through with a write-no-allocate
policy. A shared L2 cache is connected to the main shared
AMBA AHB, and to the memory controller.

2) Integration: SafeDE is integrated as an APB slave
connected to the system through a standard APB interface.
Thus, SafeDE is highly portable and can be easily embedded
into any system implementing an APB interface.

Apart from the APB standard signals, SafeDE needs a few
interconnections with the cores. The instruction counter of
each core has to be mapped as an input. Instruction counters
are employed to calculate the total number of instructions
commited by each core and compute its difference. SafeDE
has one output to stall the trail core. That SafeDE output is
ORed with an internal pipeline signal in charge of holding the
pipeline (i.e. keeping constant the pipeline registers values).
Therefore, when SafeDE needs to stall the trail core, SafeDE
can stall that core just asserting the respective output. There-
fore, the only modifications needed in the cores correspond
to exporting the instruction counter2 value to make it visible
to SafeDE, and placing the OR gate needed let SafeDE set
the pipeline stall signal whenever needed. Figure 3 shows a
high-level representation of SafeDE integrated into the system.

3) Configuration and operation: SafeDE is controlled and
configured by means of four internal registers. Each register
is mapped to a specific SoC memory position. The first one,
THstag , is used to configure the minimum staggering. The
second one, active, is used to enable/disable SafeDE. Each
of the two remaining registers, CritSec1 and CritSec2, is
coupled with one core and set to 1 when the respective core
starts the critical section (i.e. with a store instruction to this
register in the application), and set to 0 when it finishes its
execution. This procedure allows SafeDE to synchronize both
cores at the beginning of the critical section, even if they do
not start simultaneously, as explained before. Neither of the
cores assumes the role of trail or head core until its critical
section starts.

In addition to these four registers, SafeDE has also several
registers to gather some statistics such as maximum staggering,
minimum staggering, times that the trail core has been stalled,
how many cycles the trail core has been stalled, committed
instructions by each core, etc. The connection of SafeDE to
the MPSoC allows SafeDE registers to be written and read
through usual load and store operations.

IV. EVALUATION

We evaluate SafeDE by synthesizing the RISC-V multicore
SoC into a Xilinx Kintex UltraScale KCU105 evaluation kit.

A. Validation

In order to validate the correct functioning of SafeDE once
implemented in the FPGA, we have added a register recording
the lowest staggering observed between the head and tail cores.
We have used the TACLeBench benchmark suite [8], which
is a set of open-source self-contained benchmarks intended to
evaluate basic functionalities in real-time systems. They have
been chosen because, since their source files already include

2Note that virtually any processor implements instruction and cycle perfor-
mance monitoring counters.

inputs hardcoded, they can be easily compiled and run on a
baremetal setup without any support to read data from files.
Moreover, since some of the benchmarks are quite simple
(i.e. execution times range between some hundreds and some
millions of cycles), they ease debugging and validation on a
simulated environment. Therefore, we have set the staggering
to 10 cycles, THstag = 20, and recorded the lowest staggering
observed across all benchmarks. Our experiments confirm
that the actual staggering has never been below this number
of cycles, hence providing evidence that SafeDE works as
expected.

B. Execution time overhead

To elucidate the impact of SafeDE in terms of computational
overhead, we have run the TACLeBench benchmarks in three
different scenarios:
• Isolation: only one core executes the benchmark and the

other core remains idle.
• Redundancy without diversity: two different cores execute

the same benchmark without any control mechanism.
• Redundancy with diversity enforced by SafeDE: SafeDE

guarantees that the minimum staggering, THstag , is never
exceeded.

In our evaluation, we have set THstag = 20 for illustration
purposes. Note that the lowest value that must be used for
the staggering relates to the pipeline depth of the core (7
stages in the specific platform used) given that the instructions
difference is obtained using committed instructions. Hence,
using a pipelined core, it could occur that, by the time
staggering is about to fall below the threshold and the trail
core stalled (i.e. its commit stage is stalled), the pipeline of
the trail core could be executing some common instructions to
those of the head core in some of the stages if the staggering
is too low. Thus, we have set the threshold to be high enough
so that this cannot happen in a pipeline with 7 stages and a
pipeline width of 2 instructions.

Note that, by using a light-lockstep approach, redundant
processes are generated loading binaries twice (one for each
core) in different memory segments. We execute each bench-
mark 1,000 times and use the average cycle count for each one
for our evaluation to discount the effect of small variations
due to, for instance, delays caused by DRAM refreshes. In
any case, absolute variations observed are always in the order
of few tens of cycles.

Results are shown in Figure 4. As shown, in all the cases,
the execution time overhead with SafeDE w.r.t. the execution
time in isolation and in two cores without SafeDE is negligible.
In particular, SafeDE causes an execution time degradation in
most of the cases below 0.5%, and up to 1.3% in one case
(BITONIC benchmark) w.r.t. the execution time in isolation.
If we compare it against the redundant execution without
enforcing diversity, execution time degradation is generally
below 0.1% (in some cases performance even marginally
improves), and up to 0.6% for IIR benchmark.

In some cases, minor performance variations between the
isolation and redundant versions of the programs are observed,
being those differences neither caused by interference between
redundant threads, nor by SafeDE operation itself. Instead,
those variations are caused by the initial core state (e.g. branch
predictor state), or changes in instruction cache behavior due
to changes in the memory alignment of the binaries with and



Fig. 4. Execution time of different TACLeBench benchmakrs normalized
w.r.t. their execution time in isolation. Each benchmark is executed 1,000
times.

TABLE I
CLASSIFICATION OF REDUNDANT EXECUTION TECHNIQUES.

Strategy Target Diversity Approaches

HW
CPU

Yes (tight) [18], [23], [35]
Yes (light) Our approach (low staggering)

No [9], [10], [21], [24], [27], [30]

GPU Partially [1]
No [20], [22], [26], [36]

SW-Only CPU
Yes (light) [3] (high staggering)

No [12], [28], [31], [32],
[4], [25], [33], [34]

GPU Partially [2]
No [7], [19], [38], [39]

without thread redundancy. In the case of FAC benchmark,
since it is a small benchmark (around 700 instructions only),
these tiny effects have a visible impact in relative terms
(e.g. 1% execution time increase without SafeDE and 0.1%
decrease with SafeDE).

Overall, as expected, execution time increase can be re-
garded as negligible since the staggering threshold can be
set very low (20 cycles in our evaluation), thus far below
the 100µs, which correspond to many thousands of cycles,
imposed by the software-only solution [3].

C. Hardware costs

We synthesized our RISC-V design using the Vivado 2018
Toolchain and target the FPGA present in the Xilinx Ultra-
Scale KCU105. The overall cost of SafeDE implementation
is 261 LUTs and 417 registers, whereas the entire SoC uses
approximately 114,000 LUTs and 74,000 registers. Each core
uses around 38,000 LUTs and 17,000 registers. Hence, SafeDE
is a low-cost component representing just 0.23% of the entire
SoC LUTs and 0.56% of entire SoC registers. SafeDE uses just
0.35% of the LUTs of the pair of cores it manages, and 1.23%
of their registers. These numbers can be further improved by
removing all the logic devoted to gather statistics.

V. RELATED WORK

Some solutions to implement redundancy relate to Redun-
dant Multi-Threading in a multi-threaded core [27], [30],
as well as across different cores [10], [21], [24], and even
building on partial redundancy [9], [23]. Unfortunately, none
of those solutions guarantees diversity, either by reusing the
same hardware inside the core, or by failing to impose any

staggering at all. Some software-only solutions for CPUs en-
force redundancy by compiler means, building on transactional
memory, or creating monitoring threads [12], [25], [28], [32]–
[34]. However, none of those solutions is effective to capture
single faults affecting all redundant units (a.k.a. Common
Cause Faults, CCFs).

The particular case of GPUs has been addressed to provide
redundancy with hardware support [20], [26], [36], [39] or
relying only on software solutions [7], [19], [39], but not
providing diversity. Both redundancy and diversity have been
achieved in GPUs with [1] and without hardware support [2].
Unfortunately, those solutions are GPU specific and cannot be
extrapolated to CPUs.

Some designs provide native tight lockstep, such as ST
Microelectronics SPC56XL70 [35] and Infineon AURIX pro-
cessor family [15], which provide DCLS. Analogously, some
Arm Cortex-R5 designs extend lockstep to triple-core imple-
mentations [17], [18]. Since errors are only detected when
erroneous data is exposed beyond the core sphere, some
authors have proposed extensions to shorten error detection
time [14], and to enhance recovery [13]. In any case, as
explained before, tight lockstep makes half of the cores non-
visible to the user, thus diminishing flexibility drastically.

Reviriego et al. [29] show that, for some dual diverse
redundant designs, it is possible perform recovery if the
erroneous output can be identified without needing to compare
it against a fault-free reference, which allows to tell what of
the two diverse redundant designs delivers the correct output.

Flexible diverse redundancy on CPUs has been implemented
so far with software-only solutions [3] but, as explained before,
staggering imposed is large, which leads to non-negligible per-
formance degradation if tasks duration is short (e.g. between
100µs and 1ms). Our work aims at leveraging very limited
hardware cost to mitigate such limitation of software-only
solutions, thus complementing existing solutions (see Table I).

VI. CONCLUSIONS

Diverse redundancy is a mandatory safety measure for
safety-related systems to avoid that a single fault leads the
system to a failure. Diverse redundancy is generally imple-
mented by means of tight lockstep computing cores. However,
the cost of such an approach is huge due to making half
of the cores non-visible for the user, so that they cannot be
used for other purposes different to redundancy. Some recent
work advocates for the use of light-lockstep approaches to
complement tight-lockstep ones, therefore gaining flexibility.
However, those solutions impose a large staggering between
redundant threads, which may have a very large impact in
performance for tasks with low duration.

In this paper we present SafeDE, a tiny module supporting
light-lockstep in a much more effective manner than software
only solutions. Our design has been shown to cause very low
performance degradation (typically below 0.5%) w.r.t. non-
redundant execution, and increase hardware costs by far less
than 1% for a commercial space SoC.
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