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Abstract. As a renewable energy source and an alternative to
fossil fuels, the wind power industry is growing rapidly. However,
due to harsh weather conditions, wind turbines (WT) still face many
failures that raise the price of energy produced and reduce the
reliability of wind energy. Hence, the use of reliable monitoring
and diagnostic systems of WTs is of great importance. Operation
and maintenance expenses represent 30% of the total cost of large
wind farms. The installation of offshore and remote wind farms
has increased the need for efficient fault detection and condition
monitoring systems. In this work, without using specific custom
devices for monitoring conditions, but only increasing the sampling
frequency in the sensors already available (in all commercial WT) of
the supervisory control and data acquisition system (SCADA), data-
driven multiple fault detection is performed, and a classification
strategy is developed. The data is processed, and subsequently,
using a convolutional neural network (CNN), six faults are classified
and evaluated with different metrics. Finally, it should be noted that
the classification speed allows the implementation of this strategy
to monitor conditions online in real under-production WTs.
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1. Introduction
The growing demand for energy worldwide and the emission of

polluting gases caused by conventional fossil fuel resources urges to
increase renewable energy sources in the global energy balance. In
recent years, the penetration of wind energy throughout the energy
market is continuously growing. In 2019, wind power met 15% of
the EU’s electricity demand [1], and was the primary source of new
capacity in the US, and Canada, and the second largest in China.
Furthermore, installed capacity worldwide annual increase rate of

more than 10% in the last ten years [2]. To generate large amounts
of electricity is necessary to meet the growing demand. Currently,
the largest WT produced by Siemens Gamesa generates 14 MW of
nominal power, it has a swept area diameter of 222 m and requires
an average annual wind speed of 10 m/s [3]. However, this trend
towards larger WTs has significantly increased the cost of repair
and replacement of its parts.

Condition monitoring is crucial for wind power to be profitable
and efficient, even more in offshore wind farms where working
conditions are even more extreme than onshore (e.g., oxidation by
saltwater, high tides, etc.). The early detection and classification of
faults in WTs have become essential to increase their competitive-
ness since the prevention of faults and timely maintenance reduces
the cost of repairs and the downtime of the affected turbine, which
can last up to several weeks. Experience from other industries
shows that condition monitoring can detects failures before they
reach permanent damage, extends service lifetime, operates at
initial capacity factors, and enables better planning and maintenance
logistics. Failure detection systems are used to provide alarms about
the deterioration of the state or failure of different components
of a WT based on different types of information (parameters or
signals) obtained by different types of sensors. Figure 1 shows that
the electrical system, control systems, and blades/pitch have high
failure rates.

In the literature, there are several work on WT flaw detection re-
search. In [5] a Concurrent Convolution Neural Network (CeCNN)
is proposed, the raw data is entered into the network without any
prior knowledge. The characteristics are learned directly and adap-
tively for the diagnosis of bearing failures in WTs. The results show
that the proposed method can extract discriminatory characteristics
and classify the bearing data accurately under the disturbance of
different rotational speeds, different loads, and random noise. In
[6], a drone is used to inspect the blades of the WT through ahttps://doi.org/10.24084/repqj19.316 447 RE&PQJ, Volume No.19, September 2021



Fig. 1: Average failure rates for WT components. [4]

CNN, obtaining great results in the diagnosis of blade failures.
A SCADA - based condition monitoring system uses data that is

already collected in the WT controller and is a cost-effective way to
monitor for early warning of faults and performance problems [7].
The SCADA system generally records variable data in 10-minute
averaged intervals. SCADA data shows a WT’s overall health and
can be leveraged to detect when turbine performance is degrading
and identify if a fault is developing. Although SCADA data has
not been specifically designed for health monitoring, extracting
relevant information from it would result in quick implementation
and modest setup costs [8]. Some previous studies have emphasized
the use of SCADA data for WT condition monitoring. For example,
in [9], an automated system based on an artificial neural network
(ANN) is proposed. Specialized techniques that can be used to
identify faults in the main components of a WT. In [10], a nonlinear
state estimation technique is proposed to diagnose faults in WTs’
gearbox using SCADA data.

In particular, this work aims to detect and classify six types of
WT failures (see table III). A CNN is used due to its excellent
ability to obtain in-depth features, [11]. This paper is organized
as follows: Section 2 shows the description of the data. Section 3
states the methodology used and data preprocessing. The results
obtained are presented and discussed in Section 4. In Section 5 the
conclusions and future work are drawn.

2. Data
The data is generated from a 5 MW WT conventional three-

bladed simulation model with variable pitch control and variable
speed upwind, whose characteristics are shown in table I. The
aeroelastic simulation software FAST [12] is used to model the WT.
In the simulation, noise blocks represent the measurement noise
caused by the electrical noise of the WTs. A sampling period of
0.0125 s is used in the simulations (a characteristic value of the
FAST simulation software ). However, the data used for WT failure
diagnosis is sampled in a sampling period of 1 s. SCADA data
traditionally has a 10-minute sampling rate. Here, it is proposed to
use conventional SCADA data with a high-frequency sampling of
the sensors of 1 Hz.

To produce more realistic simulations of the WT, wind modeling
data generated from the wind flow and stochastic turbulence soft-
ware of NREL, TurbSim [13], is implemented. For this research,
TurbSim simulations are performed under the following wind
parameters: Kaimal turbulence model with 10 % intensity, at the
height of the hub, with the wind moving logarithmically at an
average speed of 18.2 m/s and with a stiffness factor of 0.01
m. Finally, using the given inputs and implementing a SCADA
system, which contains several sensors shown in table II, in the
FAST software, 260 simulations of 60 seconds each are performed.
Each simulation creates a data set, for which a total of 260 data
sets are generated. From the 260 simulations, 69 correspond to

TABLE I: Principal features of the WT.

Reference WT Data

Rated power 5 MW
Number of blades 3

Rotor/ Hub diameter 126 m, 3 m
Hub height 90 m

Cut-in wind speed 3 m/s
Cut-out wind speed 25 m/s
Rated wind speed 11.4 m/s

Rated generator speed 1173.7 rpm
Gearbox ratio 97

healthy simulations and 160 to failure simulations, where each
type of failure has 20 associated simulations, as shown in table
III. Likewise, each simulation lasts 600 s. However, not all this
time is used but only the 400 s to avoid the transient behavior
present at the beginning of the simulation.

TABLE II: Description of the available sensors in the WT.
Number Sensor Type Symbol Unit Noise Power

S1 Generated electrical power Pe,m W 1.0×10+1

S2 Rotor speed ωr,m rad/s 1.0× 10−4

S3 Generator speed ωg,m rad/s 2.0× 10−4

S4 Generator torque τc,m Nm 9.0× 10−1

S5 Pitch angle of first blade β1,m deg 1.5× 10−3

S6 Pitch angle of second blade β2,m deg 1.5× 10−3

S7 Pitch angle of third blade β3,m deg 1.5× 10−3

S8 Tower top fore-aft acceleration αfa,m m/s2 5.0× 10−4

S9 Tower top side-to-side acceleration αss,m m/s2 5.0× 10−4

TABLE III: Experimented WT faults during the simulation.

Number Fault Type

F1 Pitch actuator - Hydraulic leakage Change in system dynamics
F2 Generator speed sensor Gain factor (1.2)
F3 Pitch sensor Stuck value (β3,m = 5deg)
F4 Pitch sensor Stuck value (β3,m = 10deg)
F5 Pitch sensor Gain factor (1.2)
F6 Torque actuator Offset value (2000 Nm)

3. Methodology
The proposed methodology is carried out as follows: i) the data

is previously processed (collected, scaled, reshaped, and converted
into a matrix with many channels as sensors); ii) data is divided into
training, and validation data sets; iii) the fault classification model
is built by designing a deep CNN. The selected SCADA variables
that are used to develop the classification model are described in
table II. These variables are the input to the CNN to predict the
failures shown in table III. Note that six failures will be classified
in addition to healthy data.

A. Data Preprocess
Data is stored in an array X ∈ M90744×9(R) such that the

number of timestamps is given by the number of rows in the data,
which is I = 90744, and the number of columns is equal to the
number of sensors (variables), J = 9.

X =


x1,1 x1,2 · · · x1,9
x2,1 x2,2 · · · x2,9

...
...

. . .
...

x90746,1 x90746,2 · · · x90746,9

 , (1)
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B. Data Split
The available data is divided into training and validation sets

to develop the classification model. This data has been divided as
follows: 75 % for training and 25 % for validation. This corresponds
to 69253 data for training in the array Xtraining and 21493 data
for validation in the array Xvalidation.

Xtraining =


x1,1 x1,2 · · · x1,9
x2,1 x2,2 · · · x2,9

...
...

. . .
...

x69253,1 x69253,2 · · · x69253,9

 , (2)

Xvalidation =


x1,1 x1,2 · · · x1,9
x2,1 x2,2 · · · x2,9

...
...

. . .
...

x21493,1 x21493,2 · · · x21493,9

 , (3)

C. Data Standardization
The main reason for data standarization is to make the CNN

training more efficient, significantly decreasing the number of
epochs required for the CNN to learn, and thus leading to a better
predictor. In particular, here the data is scaled column-wise for the
matrix X to be within the specific range [0, 1], based with the
maximum and minimum values of the training data. Assuming there
are I samples and J SCADA variables for training, it is computed
as follows,

Mj = max (xij), i = 1, . . . , I (4)
mj = min (xij), i = 1, . . . , I (5)

where Mj and mj are the maximum and the minimum values
taking from training data set Xtraining . From here, the scaling
is implemented with Mj and mj to create a new matrix Y as

Y =


y1,1 y1,2 · · · y1,9
y2,1 y2,2 · · · y2,9

...
...

. . .
...

y90744,1 y90744,2 · · · y90744,9

 , (6)

D. Data Reshape
The main goal is to detect the failure in a reduced time [14],

using the available SCADA data. Note that once the pre-trained
classification model needs a sample as input to the model, the
smaller the sample, the smaller it will be the time detection due
to the data acquisition time in the sensors. Assuming that Td is the
detection time, the fault detection requirements given in model [15]
for the corresponding faults are described in terms of the sampling
time Ts; which in this case is 1 second.

It has been chosen to comply with Td < 3Ts because it is the
most restrictive detection time related to the torque actuator. For the
other faults, the detection time is higher (Td < 8Ts, Td < 10Ts,
and Td < 100Ts). It is proposed to organize the available data from
the simulations in 3-time steps (this will lead to a detection time of
approximately 3 Ts). The transformation is carried out individually
for each of the nine variables used as CNN inputs; the matrices
are obtained with three samples (3-time steps). Table IV shows the
implementation of this single, unified view approach.

E. Convolutional Neural Network
The proposed CNN architecture is shown in figure 2, and the

most relevant characteristics are given in Table V. Initially, the input
matrix has a dimension of 1 × 3 × 9. This data passes through
the first convolution module; This module is made up of 14 filters
(2 × 2 kernel) with padding and stride equal to 1, resulting in an
output size of 2 × 4 × 14. The second convolution has 21 filters

and the same kernel configuration, padding, and stride as the first
convolution, with an output size of 3× 5× 21. the third convolution
has 26 filters and the same configuration of kernel, padding, and
stride of the first and second convolutions, with an output size of 4
× 6 × 26. Finally, four fully connected layers with sizes 350, 175,
50, and 7. Note that all convolutional layers and connected layers
have a ReLu trigger function.

The final layer of the network is a softmax block, which is used
to squash the 7-dimensional output into a categorical probability
distribution: (0) Healthy; (1) Failure F1, hydraulic leak at the pitch
sensor; (2) Failure F2, Gain factor in the generator speed sensor;
(3) Failure F3, Stuck value (5 deg) at the pitch sensor; (4) Failure
F4, Stuck value (10 deg) at the pitch sensor; (5) Failure F5, Gain
factor at the pitch sensor; (6) Failure F6, Offset value on torque
actuator.

Fig. 2: CNN architecture.

The parameters have been optimized with the Adam optimization
algorithm, the values of the selected hyper-parameters are an initial
learning rate of α0 = 0.001, a gradient decay factor of β1 = 0.9,
a squared gradient decay factor of β2 = 0.999, and a ε = 1−8.

4. Results
Multiple metrics can be calculated from a confusion matrix;

typically, these metrics evaluate binary classification problems. In
a multiclass classification problem, such as the one considered in
this paper, these metrics are also applicable using a one-versus-all
approach to calculate each metric for each class. This is essential
to calculate the different metrics for each label.

Figure 3 illustrates the confusion matrix for the validation data
set. The rows represent the true class, while the columns represent
the predicted class. The precision and false discovery rate are given
in the far right columns. Finally, the recall and false negatives rates
are shown in the lower rows. An examination of the confusion
matrix reveals that some misclassifications come from the pitch
sensor failures and healthy data (labels 3,4,5 and 0).

From the confusion matrix, the different metrics to evaluate the
classification model, are computed and presented in Table VII. Table
VI shows the average of the results obtained. After 230 epochs of
training on a laptop running Windows 10 with an Intel Core i7-
9750H, 16GB of RAM, and a 6GB GPU graphics card (GeForce
RTX 2060), the overall accuracy performance obtained is 88%.
A precision of 100% is reached for fault F2 and fault F6, and
to a lesser extent for fault F4 with 85.5%, the lowest precision
corresponds to the healthy data. Regarding Recall, the highest result
is obtained in failure F2 with 100% and the lowest with failure F5
with 51.5%. For the F1 score metric, 100% is obtained for failures
F2 and F6, and the lowest result corresponds to failure F5 with
65.5%. Finally, for specificity, 100% is obtained for the F2 and F6
failure, and to a lesser extent with the healthy data. Thus, the results
confirm the viability of the proposed methodology.https://doi.org/10.24084/repqj19.316 449 RE&PQJ, Volume No.19, September 2021



TABLE IV: Data reshaped

SCADA variable 1 . . . SCADA variable 9

V =


x1,1 x2,1 x3,1
x2,1 x3,1 x4,1

...
. . .

...
x90744,1 x90744,1 x90744,1

· · ·

x1,9 x2,9 x3,9
x2,9 x3,9 x4,9

...
. . .

...
x90744,9 x90744,9 x90744,9



Fig. 3: Validation confusion matrix

TABLE V: Characteristics of the designed CNN.

Layer Output size Parameters # of Parameters
Input 1 × 3 × 9 - 01 × 3 × 9
Convolution#1

2 × 4 × 14
Weights 2 × 2 × 9 × 14

518kernel size (2, 2), stride (1, 1), padding(1, 1) Bias 1 × 1 × 14
ReLu#1
Convolution#2

3 × 5 × 21
Weights 2 × 2 × 14 × 21

1197kernel size (2, 2), stride (1, 1), padding(1, 1) Bias 1 × 1 × 21
ReLu#2
Convolution#3

4 × 6 × 26
Weights 2 × 2 × 21 × 26

2210kernel size (2, 2), stride (1, 1), padding(1, 1) Bias 1 × 1 × 26
ReLu#2

Fully connected layer#1 1 x 350 Weights 624 × 350 218750Bias 350 × 1

Fully connected layer#2 1 × 175 Weights 350 × 175 61425Bias 175 × 1

Fully connected layer#3 1 × 50 Weights 175 × 50 8800Bias 50 × 1

Fully connected layer#4 1 × 7 Weights 50 × 7 357Bias 7 × 1

Softmax - - 0

Classoutput - - 0

TABLE VI: Average of metrics

Precision Recall F1 score Specificity

92.1 85.6 87.8 97.6

5. Conclusions
Due to its low standard sampling frequency, there is a lack

of knowledge about the potential of SCADA data for condition
monitoring. In this work, a promising strategy to detect and classify

multiples WT faults is presented using only conventional SCADA
data with additional, but feasible, high-frequency sampling of the
sensors (1 Hz). In other words, the strategy does not involve
complementary installation of expensive data detection equipment
specially designed for WT condition monitoring.

The contribution of this work is the design of a deep CNN,
whose architecture and hyperparameters play a key role in the
specific application of fault classification. Furthermore, the pro-
posed method does not require hand-designed functions in advance
because CNN learns the representative features automatically. In
particular, a remarkable overall precision of 92.1% is obtained.
These results show that large (deep) CNNs are promising to develop
WT fault diagnosis strategies. Future work will focus on two main
areas. First, an investigation will be conducted to gain the ability to
separate the unknown faults from the known and specific studied
fault types. Finally, to face the validation of the proposed strategy in
a more realistic environment, a down-scaled real WT in a laboratory
will be used.
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TABLE VII: Metrics for each label of the multiclassification problem.

label Precision Recall F1 score Specificity

0: Healthy data 78.2 98.2 87.1 86.7
1: Failure F1, hydraulic leak at the pitch sensor 98.3 92.2 95.1 99.8
2: Failure F2, Gain factor in generator speed sensor 100.0 100.0 100.0 100.0
3: Failure F3, Stuck value (5deg) at the pitch sensor 91.9 76.7 83.6 99.0
4: Failure F4, Stuck value (10deg) at the pitch sensor 85.5 80.7 83.0 98.1
5: Failure F5, Gain factor at the pitch sensor 90.4 51.5 65.5 99.2
6: Failure F6, Offset value on torque actuator 100.0 99.9 100.0 100.0
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