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Improving cell-material interactions is a major goal in tissue engineering. In this

regard, functionalization of biomaterials with cell instructive molecules from the

extracellular matrix stands out as a powerful strategy to enhance their bioactivity and

achieve optimal tissue integration. However, current functionalization strategies, like

the use of native full-length proteins, are associated with drawbacks, thus urging the

need of developing new methodologies. In this regard, the use of synthetic peptides

encompassing specific bioactive regions of proteins represents a promising alterna-

tive. In particular, the combination of peptide sequences with complementary or syn-

ergistic effects makes it possible to address more than one biological target at the

biomaterial surface. In this review, an overview of the main strategies using peptides

to install multifunctionality on biomaterials is presented, mostly focusing on the com-

bination of the RGD motif with other peptides sequences. The evolution of these

approaches, starting from simple methods, like using peptide mixtures, to more

advanced systems of peptide presentation, with very well defined chemical proper-

ties, are explained. For each system of peptide's presentation, three main aspects of

multifunctionality—improving receptor selectivity, mimicking the extracellular matrix

and preventing bacterial colonization while improving cell adhesion—are highlighted.
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1 | INTRODUCTION

Tissues in the human body are characterized by their potential to self-

regenerate. However, when there is an injury, disease or due to aging,

the body's capacity to regenerate by itself may be compromised. In

such cases, the use of biomaterials that guide tissues to restore their

original function and structure is required. During this regeneration

process, the biomaterial should serve as a structural frame to favor

host cells attachment and ideally to promote the migration of stem

cells and their proper differentiation into tissue-specific cell types.1,2

The current gold standard to address tissue regeneration is still the

use of autografts, mainly due to their optimal support to the host cells

to colonize the graft and the absence of immunological reactions.

However, the drawbacks associated to autologous grafting, like the

limitation in the obtainable quantity, the patient morbidity and

the need of additional surgery, makes it necessary to find other

approaches. A feasible alternative is the use of allografts or xeno-

grafts, but although they solve most of the problems related to auto-

grafts, in both cases the risk of infection, disease and rejection of the

grafts by the immune system exists.3,4
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To overcome the drawbacks of natural grafts, synthetic biomate-

rials can be used. Synthetic biomaterials are largely available and may

be tailored to meet the desired properties for a specific application.

However, although most of current synthetic biomaterials fulfill the

requirements from a structural point of view, many of them are bio-

inert, meaning they lack regulatory signals as well as bioactivity, both

essential to control cell-material interactions. This may trigger low

promotion of cell adhesion and growth as well as limited vasculariza-

tion, causing eventually the failure of the biomaterial.5,6 Conse-

quently, it is of paramount importance to enhance bioactivity of

synthetic scaffolds by combining biomaterials with biological cues to

drive a particular tissue function.7 In this regard, functionalization with

biologically active peptides is a powerful strategy to engineer tailored

cell-material interactions and to mimic the signaling microenvironment

to enhance tissue regeneration.8–10

The aim of this review is thus to cover the existing possibilities to

increase bioactivity of biomaterials with peptides by mimicking the

healing microenvironment of body tissues. More in detail, the combi-

nation of peptides—mainly the RGD cell adhesive motif—together

with other sequences with different biological functions will be pres-

ented. This report will first focus on the use of mixtures of biologically

active cues to equip inert biomaterials with multifunctional bioactivity.

Next, we will further present how functionalization strategies have

been evolved to obtain more advanced systems of presentation of

peptides with very well defined properties, such as peptide orienta-

tion, distribution and spacing.

2 | SURFACE BIOFUNCTIONALIZATION
WITH PEPTIDES

Surface functionalization consists on incorporating specific biological

functions on the surface of a biomaterial, providing bioinert materials

with bioactive molecules without modifying their bulk properties. To

obtain a successful functionalization, mimicking the cellular microenvi-

ronment is of special importance. In this regard, it is possible to repro-

duce the biochemical signals involved in the regeneration of a tissue by

incorporating biological cues that recapitulate the extracellular matrix

(ECM) of the target tissue.8,11 Nonetheless, recreating cell-matrix inter-

actions is challenging due to the complex array of biochemical pro-

cesses taking place in native tissues. For instance, cells are sensitive to

the intrinsic mechanical properties of the matrix, which besides provid-

ing a three dimensional network for tissue growth, also influence cell

fate due to the capacity of cells to sense biomechanical forces.12,13 Fur-

thermore, ECM provides cells with soluble molecules, like growth fac-

tors (GFs) or cytokines, which are tissue-specific and orchestrate cell

functions. Similarly, ECM contains a great variety of proteins that

directly interact with cells through their receptors (e.g., integrins),

mainly driving cell adhesion. Cells also communicate with nearby cells,

driving tissue homeostasis and cell development.14,15

The incorporation of these processes into a biomaterial is a com-

plex task and depending on the target tissue, the approach followed

to engineer and functionalize the biomaterial will differ. For instance,

the use of ECM proteins, like fibronectin, vitronectin or collagen

type I, which are involved in cell adhesion, are paramount to fun-

ctionalize biomaterials that present low affinity for cells. On the other

hand, installing GFs on tissue grafts will provide crucial signals to stim-

ulate the differentiation of stem cells into a particular lineage. This is

the case of bone morphogenetic 2 (BMP-2) for osteogenesis or the

vascular endothelial growth factor (VEGF) for vasculogenesis.16–18

Due to the potential of proteins and GFs to regulate cell behavior,

they have been extensively used to functionalize biomaterials for tis-

sue regeneration.15,19 In this regard, fibronectin has been combined

with scaffolds, as it plays a key role not only in cell adhesion but also

in cell migration, differentiation and wound healing, enhancing the

scaffold bioactivity.20,21 The interaction of fibronectin with cells takes

places through integrins, transmembrane receptors that mediate cell-

matrix interactions. In detail, integrins recognize the tripeptide

sequence arginine-glycine-aspartic acid (RGD), which is present in the

tenth type III domain of fibronectin.10,22,23 Such interaction triggers

specific functions of the cells by activating particular signaling path-

ways, responsible of cell fate. In the field of bone regeneration,

BMP-2 also plays a crucial rule, as it orchestrates bone formation and

remodeling and fracture repair.24,25 Thus, BMP-2 has been also com-

bined with biomaterials to enhance their bioactivity.26–29

Despite the potential of using different ECM proteins as well as

GFs for tissue regeneration, the use of native, full-length proteins in

biomaterials entails some limitations. Due to their fast degradability,

proteins have a short-term biofunctionality. They also are very sensi-

tive to temperature and pH changes, compromising their stability. In

addition, although their synthesis has been significantly improved over

the last years, there are still problems related to the presence of con-

taminants or bacterial endotoxins after purification. Finally, their pro-

duction is generally expensive, and it is hard to obtain them pure in

large quantities due to their low solubility.8,30

To overcome these shortcomings, the use of synthetic peptides

that include specific regions of ECM proteins has been proposed. Pep-

tides are normally cheaper to produce, structurally simpler and more

stable than proteins. Moreover, they are easily modifiable for func-

tionalization of surfaces, reaching, in some cases, similar biological

activity than the entire protein for a specific target.31,32

However, no single peptide has yet come close to mimic the spec-

ificity and complexity of ECM proteins. This is mainly because linear

peptides are flexible and can adopt different conformations, decreas-

ing the specificity towards a particular receptor.33 Furthermore, pro-

teins are multifunctional by nature, meaning that they contain more

than one functional site, which may trigger synergistic or complemen-

tary biological effects. Single synthetic peptides, however, cannot pro-

mote such multiple interactions, and consequently, alternative

approaches have been developed.8,34,35

2.1 | Installing multifunctionality on biomaterials
with peptides

As previously mentioned, the main limitation of using peptides to

enhance the bioactivity of implantable materials is that they can only
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address one biological target. A possibility to improve the perfor-

mance of peptidic molecules is to combine peptide sequences with

synergistic or complementary effects, enabling to address two or

more biological effects. In this way, multifunctionality may be installed

on biomaterials without the need of using proteins. This strategy thus

exploits the advantages of native ECM proteins while avoiding their

documented drawbacks. As a result, functionalization of biomaterials

combining peptides has gained increasing relevance in the field of tis-

sue engineering over the last years.36,37

Interestingly, by combining peptides from diverse nature, differ-

ent biological effects may be targeted. Besides mimicking the com-

plexity of the ECM, there are other issues that biofunctionalization

needs to address. For example, in the case of vascular implants,

preventing inflammation at the implanted site, as well as protein and

platelet adhesion, is important, as aggregation may lead to thrombosis

on vascular grafts. Such problem may be minimized by modifying the

grafts with peptides to reduce non-specific protein adsorption.38,39 In

bone regeneration, the use of BMP-2-derived peptides is also of cru-

cial importance to promote osteodifferentiation of mesenchymal stem

cells (MSCs) and guide bone formation.40,41 Another important aspect

when implanting a biomaterial is to avoid bacterial adhesion, which

ultimately may lead to implant infection. In this regard, antimicrobial

peptides (AMPs) can be incorporated too on the material surface.42–45

Alternatively, chimeric bifunctional peptides have been designed

combining sequences that have the potential to selectively adsorb on

a particular type of material with bioactive motifs, allowing the incor-

poration of signaling cues on biomaterials in a substrate-specific man-

ner.46–50 However, this dual-function peptides will not be covered in

this review, as we will only focus on peptides targeting biological enti-

ties, for example, cells or bacteria.

Thus, the combination of peptides to functionalize materials is a

powerful tool to improve their bioactivity. In particular, multi-

functionality aims at addressing three main aspects (Figure 1):

• Improving receptor selectivity: through this strategy, the use of

complementary peptides may increase affinity for a particular

receptor. A clear example is the combination of RGD with the

PHSRN sequence. When RGD is used alone, cell adhesion is

enhanced by allowing interaction of this sequence with integrins.

However, such interaction is unspecific, as the RGD motif interacts

with different types of integrins. To increase receptor selectivity,

the PHSRN peptide may be combined together with RGD, thereby

mimicking the 10th and 9th type III repeats of fibronectin (i.e., its

cell attachment site), respectively. The combination of both

sequences synergistically increases the selectivity of RGD towards

α5β1 integrin.51 Another example is the combination of RGD with

the REDV peptide, which selectively binds to α4β1 integrin,52

highly expressed in endothelial cells. Such combination may then

increase the specificity of a biomaterials towards endothelial cells

compared with other type cells, like fibroblasts.53

• Mimicking the ECM microenvironment: the aim of this strategy is

to combine peptides derived from different ECM proteins. In this

regard, GFs play a crucial role as signaling molecules, orchestrating

cell behavior in terms of migration, proliferation and differentia-

tion. Although GFs are soluble biomolecules involved in paracrine

signaling, they also exert their biological effects bound to the ECM,

which acts as a GF reservoir and regulates their functions. Also,

many GF receptors, like BMP-2 receptors, cooperate with integrins

to foster healing of tissue.54,55 Consequently, the combination of

integrin binding ligands, such as the RGD motif, with BMP-

2-derived peptides may be a powerful strategy to better recreate

the ECM microenvironment, simultaneously addressing cell adhe-

sion and osteogenic cell differentiation. Most interestingly,

integrins and BMP receptors have shown synergistic effects, open-

ing the way to engineer novel surface functionalization techniques

to enhance bioactivity of biomaterials.56–58

• Preventing bacterial adhesion without loosening cell adhesive

properties: in addition to mimicking ECM characteristics, bacterial

colonization is another challenge. This is especially important in

orthopedics and dental applications, in which metals, which are

prone to bacterial infection, are commonly used. In such cases,

bacterial adhesion and the further biofilm formation may

F IGURE 1 Installing multifunctionality on biomaterials by (A) enhancing receptor selectivity, (B) mimicking the ECM microenvironment, and
(C) preventing bacterial colonization while improving cell adhesion
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compromise the successful integration of the scaffold, and ulti-

mately lead to implant failure. To overcome this serious risk, com-

bining integrin binding ligands with antibacterial sequences holds

promise to suppress bacterial adhesion while simultaneously

enhancing cell adhesion.42 This may be achieved, for example, by

combining the RGD sequence with a lactoferrin-derived peptide

(LF1-11).59,60

These examples illustrate the potential of peptides to enhance

the bioactivity of materials and to provide them with multi-

functionality. Nonetheless, peptides can be incorporated on biomate-

rial surfaces following different approaches. Fine-tuning key

parameters, such as the orientation, spacing, conformation and distri-

bution of the surface-bound peptides is essential to optimally target a

particular biological effect. The following section describes represen-

tative systems of peptide presentation and how such strategies have

evolved from simplistic to more complex and engineered approaches,

in which tailor-made peptides have allowed significantly improving

the bioactivity of materials.

2.2 | Systems of presentation of peptides

The integration of multiple bioactive peptides on a biomaterial surface

has been achieved through different synthetic approaches. Reason-

ably, the most straightforward strategy to obtain a bifunctional coat-

ing is to use mixtures of peptides. This strategy relies on the

combination of two (or more) peptides in solution at a defined ratio

(normally equimolar) and subsequent coating of the desired surface.

Albeit simple, the major limitation of this approach is that binding of

the individual peptides to the surfaces strongly depends on the chem-

istry of each peptide (e.g., peptide charge, hydrophilicity/hydrophobic-

ity, size, and conformation) and hence ensuring a defined ratio of the

two peptides on the biomaterial is difficult. This is coupled to the fact

that the characterization at the surface level is not trivial, that is, dis-

criminating the efficiency of grafting per each individual sequence. To

address this, oligopeptides or fusion peptides, which contain the two

sequences within the same peptide backbone, have been developed.

The evident advantage of this method is that the two bioactive

peptides are integrated with the same chemical structure and thus the

ratio is chemically controlled and does not depend on the properties

of the individual peptides. Such strategy contemplates several

approaches. Although a clear distinction is not always possible, in this

review, we will differentiate between linear constructs and branched

architectures. In the first case, the peptide contains the two

sequences linked in a linear fashion (separated or not via a linker) and

are grafted on a surfaces by either nonspecific physical adsorption or

by surface specific anchoring units present at the N- or C-termini. In

the second case, the peptide is designed directly as a branched

molecule (e.g., using a lysine residue as branching point) or contains a

suitable anchoring unit in its central backbone, thereby allowing bind-

ing to the surface in a configuration that optimally exposes the two

motifs for interaction with biological entities (cell receptors and/or

bacteria). For this reason, branched conformations allow for a higher

accessibility of the peptides and often improved biological effects.

These different configurations are schematically summarized in

Figure 2.

The following section presents representative examples of each

strategy, focusing on the biological targets described in Section 2.2

and in Figure 1. A comprehensive list of reported peptide combina-

tions used to functionalize biomaterials is shown in Tables 1, 2, and 3.

2.2.1 | Peptide mixtures

As previously introduced, the use of peptide mixtures represents the

simplest approach to incorporate multiple biological functions onto

biomaterials. In particular, this strategy has been commonly pursued

to improve the lack of specificity of the RGD motif towards a particu-

lar integrin subtype (Table 1). A canonical example is the use of the

PHSRN sequence, which synergistically enhances the affinity of RGD

towards α5β1 integrin.51 In this regard, Chen et al. covalently bound

RGD and PHSRN motifs to titanium substrates. The combination of

both sequences significantly improved MC3T3 adhesion in compari-

son with the presentation of the peptides alone. However, no signifi-

cant enhancement was observed on cell proliferation and ALP

activity.64 Alternatively, the RGD peptide has also been co-

immobilized with either the α4β1-binding sequence REDV or with the

F IGURE 2 Main systems of presentation of peptides: (A) peptide mixtures, (B) linear oligopeptides, and (C) branched peptides
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TABLE 1 Combination of peptides to enhance receptor selectivity

Biofunctional motifs

System of

presentation Substrate/immobilization Main biological effect References

RGD + PHSRN or YIGSR Mixture of

peptides

PEG hydrogel/covalent " hMVEC migration (only YIGSR) Fittkau et al.61

RGD + PHSRN Mixture of

peptides

Langmuir–Blodgett films on mica/

physical adsorption

" HUVEC spreading Ochsenhirt et al.62

RGD + PHSRN Mixture of

peptides

Alginate hydrogel/covalent " NHOsts adhesion, ALP activity, OCN

production and mineralization

Nakaoka et al.63

RGD + PHSRN Mixture of

peptides

Ti/covalent " MC3T3-E1 adhesion, proliferation and ALP

activity

Chen et al.64

RGD + PHSRN

[G3PHSRNG6RGDG]

Linear fusion

peptide

TCPS/physical adsorption " MG63 adhesion, spreading and MAPK

activity

Il et al.65

RGD + PHSRN

[RGDG13PHSRN]

Linear fusion

peptide

PEG hydrogel/covalent " RCO adhesion, spreading, FA, proliferation,

metabolic activity, ALP activity

Benoit and

Anseth66

RGD + PHSRN Branched

peptide

Ti/physical adsorption " Saos-2 adhesion, spreading and proliferation Mas-Moruno

et al.67

RGD + PHSRN Branched

peptide

Ti/covalent " hMSCs adhesion, spreading, mineralization

and ITGA5 and Runx2 gene expression; "
bone formation in vivo

Fraioli et al.68

Cyclic RGD + PHSRN Mixture of

peptides

Gold nanodots on glass substrates/

covalent

" REF WT adhesion and spreading Schenk et al.69

RGD + FHRRIKA Mixture of

peptides

Quartz/covalent " RCO adhesion and mineralization Rezania and

Healy70

RGD + FHRRIKA Mixture of

peptides

P (NIPAAm-co-AAc) hydrogels/

covalent

" RCO adhesion, spreading and proliferation Stile and Healy71

Cyclic RGD + FHRRIKA Branched

peptide

Ti/chemisorption " Saos-2 adhesion, spreading and viability Pagel et al.72

Cyclic RGD + FHRRIKA Branched

peptide

PCLLC scaffolds/chemisorption " HUVEC adhesion, survival, migration and

differentiation

Clauder et al.73

RGD + FHRRIKA or

KRSR

Mixture of

peptides

Ti/physical adsorption " RCO migration Schuler et al.74

Cyclic RGD + FHRRIKA

or KRSR

Mixture of

peptides

HA/physical adsorption " hMSCs spreading Sawyer et al.75

RGD + KRSR Mixture of

peptides

Silk/covalent = NHOsts adhesion and proliferation Kim et al.76

RGD + KRSR Mixture of

peptides

Ti/physical adsorption = BIC, bone fill, interfacial shear strength in

vivo

Broggini et al.77

RGD + KRSR Mixture of

peptides

Ti/physical adsorption " MG63 adhesion; # ALP activity and OCN,

TGF-β1 and PGE2 expression of MG63

Bell et al.78

RGD + KRSR Mixture of

peptides

C2S
H
48C2/yeast production " MG63 survival and morphology Włodarczyk-

Biegun et al.79

RGD + KRSR Linear fusion

peptide

TCPS/physical adsorption = RCO adhesion Dettin et al.80

RGD + KRSR Branched

peptide

Ti/covalent " Saos-2 adhesion and mineralization Hoyos-Nogués

et al.81

RGD + REDV or YIGSR Mixture of

peptides

CoCr/covalent " HUVEC adhesion and proliferation (only

YIGSR)

Castellanos et al.82

RGD + REDV or YIGSR Mixture of

peptides

dPVCs in vitro; dAoGs in vivo/

physical adsorption

" HUVEC adhesion (only REDV) Aubin et al.53

RGD + YIGSR Mixture of

peptides

CoCr/covalent " Expression of adhesion, vascularization and

anti-thrombogenic genes on HUVEC

Castellanos et al.83

Abbreviations: ALP, alkaline phosphatase; BIC, bone-to-implant contact; CoCr, cobalt-chrome alloy; dAoGs, decellularized aortic grafts; dPVCs, decellularized ovine

pulmonary heart valve cusps; FA, focal adhesions; hMSCs, human mesenchymal stem cells; hMVEC, human microvascular endothelial cells; HUVEC, human umbilical

vein endothelial cells; ITGA5, integrin subunit alpha 5 integrin gene; MAPK, mitogen-activated protein kinase; MC3T3-E1, murine preosteoblast cell line; MG63,

hypotriploid human cell line; NHOsts, normal human osteoblasts; NIPAAm-co-AAc, N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc); OCN, osteocalcin; PCLLC,

polycaprolactone-co-lactide; PEG, poly(ethylene glycol); PGE2, prostaglandin E2; RCO, rat calvaria osteoblasts; REF WT, rat embryonic fibroblasts, wild type; Runx2,

Runt-related transcription factor 2; Saos-2, human osteosarcoma cell line; TCPS, tissue culture polystyrene; TGF-β1, transforming growth factor beta 1; Ti, titanium.
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TABLE 2 Combination of peptides to mimic ECM microenvironment

Biofunctional motifs

System of

presentation

Substrate/

immobilization Main biological effect References

RGD + BMP-2 (KIPKASSVPTELSAISTLYL)a Mixture of

peptides

PLEOF hydrogel/

covalent

" rBMSC growth, ALP

activity, mineralization

He et al.84

RGD + BMP-2 (KIPKASSVPTELSAISTLYL) Mixture of

peptides

Glass/covalent " hBMSC density and Runx2

and BSP gene expression

Moore et al.85

RGD + BMP-2 (KIPKASSVPTELSAISTLYL) Mixture of

peptides

TCPS/physical

adsorption

# hMSC ALP activity,

mineralization; = hMSC

Runx2, ALP and Coll-IA

gene expression

Kim et al.86

RGD ((K)16GRGDSPC) + BMP-2

(KIPKASSVPTELSAISTLYL)

Mixture of

peptides

PLGA-[Asp-PEG]n
scaffold + HA/

chemisorption

" rBMSC adhesion,

proliferation, ALP activity,

osteogenic expression

Pan et al.87

RGD (GRGDS) + BMP-2

(KIPKASSVPTELSAISTLYL)

Mixture of

peptides

Glass/covalent " hMSC proliferation and

Runx2 and BSP gene

expression

Ma et al.88

RGD + BMP-2 (KIPKASSVPTELSAISTLYL)

+ OPN (SVVYGLR)

Mixture of

peptides

PLEOF hydrogel/

covalent

" rBMSC growth, ALP

activity, mineralization and

OPN, OCN, ON gene

expression

He et al.89

RGD + BMP-2 (KIPKASSVPTELSAISMLYL) Mixture of

peptides

Glass/covalent " hBMSC Runx2 expression;

# hBMSC Stro1 expression

Bilem et al.90

RGD + BMP-2 (KIPKASSVPTELSAISMLYL) Mixture of

peptides

(micropatterning)

Glass/covalent " hMSC ALP activity and

Runx2 and OPN

expression; # hMSC Stro1

expression

Bilem et al.91

RGD + BMP-2 (KIPKASSVPTELSAISMLYL) or

OGP (YGFGG)

Mixture of

peptides

PET/covalent " hMSC Coll-IA and ALP

gene expression

Padiolleau

et al.92

RGD + BMP-2 (KIPKASSVPTELSAISMLYL) or

OGP (YGFGG)

Mixture of

peptides

(micropatterning)

PET/covalent " hMSC osteogenic gene

expression

Padiolleau

et al.93

RGD + OGP (YGFGG) Mixture of

peptides

Ti/chemisorption " hMSC ALP activity,

mineralization and

osteogenic gene

expression; " bone

formation in vivo

Pan et al.94

RGD (GGRGDSP) + FGF-2 (GGGKRTGQYKL) Mixture of

peptides

Gold/covalent " hMSC adhesion, ALP

activity and OPN gene

expression

Hudalla

et al.95

RGD (RGDSP) + FGF-2 (TYRSRKY) Mixture of

peptides

Gold/covalent " hMSC spreading Hudalla

et al.96

RGD (KGGPQVTRGDVFTMP) + BMP-7

(KGGQGFSYPYKAVFSTQ)

Mixture of

peptides

TCPS/chemisorption " ALP activity, protein

expression, osteogenic

gene expression,

mineralization of hESCs

and hiPSCs

Wang et al.97

and Deng

et al.98

Laminin (PPFLMLLKGSTRFC) + ameloblastin

(VPIMDFADPQFPT)

Mixture of

peptides

Ti/covalent " TERT-2/OKF-6

proliferation and

hemidesmosome formation

Koidou et al.99

BMP-2 + OCN

[KIPKASSVPTELSAISTLYLAAAAγEPRRγEVAγEL]
Linear fusion

peptide

HA/ionic " hMSC ALP activity,

mineralization and BMP-2

and OCN gene expression

Lee et al.100

RGD + Collagen [H2(POG)4PK(Byp) G

(POG)4GGRGDS]

Linear fusion

peptide

CMP scaffold/ionic " spheroid formation of

MCF10A

Hernandez-

Gordillo

et al.101
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laminin-derived YIGSR peptides (Table 1),53,82 aiming in both cases at

improving the adhesion and proliferation of endothelial cells over other

cell types (e.g., fibroblasts, platelets, or smoothmuscle cells), a prerequi-

site for ensuring re-endothelialization of stents and vascular grafts.

Similarly, heparin-binding peptides, such as KRSR and FHRRIKA, which

mimic the interactions between cells and heparan sulfate proteoglycans

(HSPGs), have been also used together with RGD to improve osteoblast

adhesion and osteogenic differentiation (Table 1).112,113 For example,

nanofibrillar hydrogel scaffolds presenting the combination of KRSR

and RGD sequences improved the spreading and proliferation of osteo-

blastic cells compared with the use of the individual peptides as

cotronls.79 Nonetheless, the co-presentation of RGD with either KRSR

or FHRRIKA has shown conflicting results in other studies. For

instance, this strategy proved inefficient to significantly enhance MSC

adhesion on hydroxyapatite surfaces relative to RGD alone.75 In addi-

tion, the functionalization of titanium with RGD and KRSR mixtures

inhibited osteoblast differentiation,78 and failed to improve bone

formation in vivo.77 The presence of these two peptides on silk

nanofibrous mats did not show either synergistic effects on the

adhesion and proliferation of osteoblasts.76

The discrepancies observed in the previous examples highlight

that the biomaterial's nature, and the ratio and spatial disposition of

the peptides play crucial roles in the biological performance of the

functionalized surfaces. In this regard, the non-homogeneous distribu-

tion of RGD and heparin binding peptides on the surfaces, as achieved

by using peptide mixtures, is likely responsible for the often varying

and even contradictory biological outcomes reported in the literature.

Recreating the ECM microenvironment has also been a major goal

to improve cell-material interactions. In particular, the combination of

integrin-binding ligands (mainly RGD) together with GF-derived

peptides is a promising approach to induce integrin/GF signaling,

orchestrating cell fate without the need of using GFs.85,90 For

instance, in the field of bone tissue engineering, the use of RGD in

combination with BMP-2-derived sequences has been widely investi-

gated (Table 2).90,114,115 BMP-2 comprises two binding epitopes,

namely, the knuckle epitope, which mainly interacts with BMP recep-

tor type II (BMPR-II), and the wrist epitope that binds to BMPR-I with

high affinity.116,117 Both epitopes have been used to functionalize

biomaterials.

In this regard, Durrieu's group has extensively studied the biologi-

cal effects of combining RGD and a peptide derived from the knuckle

epitope of BMP-2 (RKIPKASSVPTELSAISMLYL). Both sequences

were covalently attached on glass substrates in 1:1 molar ratio. Bio-

logical results revealed a decrease in the expression of the stemness

marker STRO-1 on the substrates functionalized with RGD and the

BMP-2 mimetic peptide, together with a higher expression of

the osteogenic RUNX-2 marker, which indicated the differentiation of

human MSCs into the osteogenic lineage (Figure 3).90 Similarly, by

coating poly (ethylene terephthalate) (PET) surfaces with these pep-

tides, it was demonstrated the ability of the motifs to synergistically

enhance human MSCs differentiation, as highlighted by the over-

expression of ALP and Coll-IA genes.92

Based on the same rationale, Madl et al. compared the osteogenic

capacity of the knuckle- and wrist-BMP-2-derived peptides

(RKIPKASSVPTELSAISTLYL and DWIVA, respectively) in combination

with RGD on alginate hydrogels. When functionalizing hydrogels with

the knuckle-derived peptide and RGD, Smad signaling, upregulation of

ALP and osteopontin production as well as an enhancement of min-

eral deposition were observed. However, such improvements were

not observed when combining RGD with the wrist-derived peptide,

TABLE 2 (Continued)

Biofunctional motifs

System of

presentation

Substrate/

immobilization Main biological effect References

RGD (CGGGRGDS) + AG73

(CGGGRKRLQVQLSIRT)

Branched peptide MPP nanoclusters/

covalent

" HUVEC adhesion and

spreading, FA and

endothelialization

Karimi

et al.102

RGD + BMP-2 (DWIVA) Branched peptide Glass/chemisorption " C2C12 adhesion and

spreading, osteogenic

transdifferentiation and

p38 protein expression

Oliver-

Cervell�o

et al.58

Cyclic RGD + Laminin (SIKVAV) Branched peptide Ti/chemisorption " HUVEC adhesion,

proliferation and

angiogenesis

Clauder

et al.103

Abbreviations: ALP, alkaline phosphatase; BMP-2, bone morphogenetic protein 2; BSP, bone sialoprotein; C2C12, mouse myoblast cell line; CMP, collagen

mimetic peptide; Coll-IA, collagen type I alpha 1; FA, focal adhesions; HA, hydroxyapatite; hESCs, human embryonic stem cells; hiPSCs, human induced

pluripotent stem cells; hMSC, human mesenchymal stem cells; HUVEC, human umbilical vein endothelial cells; MCF10A, human non-tumorigenic epithelial

cells; MPP, terpolymer of methyl methacrylate/PEG-methacrylate/PEG-methacrylate-norbornene; OCN, osteocalcin; ON, osteonectin; OPN, osteopontin;

PET, poly(ethylene terephthalate); PLEOF, poly(lactide-co-ethylene oxide-co-fumarate); PLGA-[Asp-PEG]n, poly(lactide-co-glycolide)-aspartic acid-poly

(ethylene glycol); rBMSC, bone marrow stromal cells; Runx2, Runt-related transcription factor 2; Stro1, stem cell marker; TCPS, tissue culture polystyrene;

TERT-2/OKF-6, immortalized human oral keratinocyte cells; Ti, titanium.
aThe underlined amino acids represent mutations from the BMP-2 original sequence KIPKACCVPTELSAISMLYL.
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which led the authors to conclude the non-osteogenic capacity of the

DWIVA sequence.118

As discussed in Section 2.2, in addition to recreating the complex-

ity of the ECM, biomaterials face other challenges. For example, the

susceptibility of medical implants, especially metallic materials, for

bacterial attachment and subsequent biofilm progression represents a

major concern. In this regard, biomaterial-associated infections have

been described as one of the primary causes leading to implant fail-

ure.42 Hence, biomaterials capable of inhibiting bacterial colonization

warrant special attention. AMPs stand out as promising candidates for

such purpose.119,120 These peptides are normally cationic and amphi-

pathic in nature, and interact with bacterial membranes causing their

disruption. This mechanism neither affects eukaryotic cell membranes

nor promotes bacterial resistance, offering clear advantages compared

to other antibacterial approaches such as the use of inorganic com-

pounds or antibiotics.121–124

The combination of cell adhesive peptides with AMPs thus offers

excellent opportunities to develop multifunctional biomaterials

(Table 3). Such approach resulted in the inhibition of S. aureus and

E. coli attachment on titanium surfaces coated with a 1:1 mixture of

RGD and the AMP HHC36. Of note, in addition to remarkable

antibacterial effects, the presence of RGD supported the adhesion of

bone marrow stromal cells.104 In an alternative approach, the anti-

adhesive polymer Pluronic F127 (PF127) was modified with either

RGD (PF127-RGD) or a 13-mer AMP (PF127-AMP). Subsequently,

silicone rubber sheets were functionalized with different mixtures of

the polymer-peptide conjugates yielding antibacterial and cell adhe-

sive properties.105 AMPs have been also combined with laminin-

derived peptides to avoid peri-implant infections of dental implants.

For example, Fischer et al. engineered a multifunctional biomaterial by

co-immobilizing the antimicrobial peptide GL13K—derived from the

parotid secretory protein—and the laminin-derived peptide LamLG3

on titanium surfaces. Such functionalized surfaces decreased biofilm

activity of Streptococcus gordonii and improved proliferation and

hemidesmosome formation of keratinocytes, without affecting

gingival fibroblasts.110

TABLE 3 Combination of peptides to prevent bacterial adhesion without loosening cell adhesive properties

Biofunctional motifs

System of

presentation Substrate/immobilization Main biological effect References

RGD + HHC36 (KRWWKWWRR) Mixture of

peptides

Ti/covalent # S. aureus and E. coli adhesion; "
BMSC adhesion

Lin et al.104

RGD (GCGYGRGDSPG) + AMP

(ILPWRWPWWPWRR)

Mixture of

peptides

Silicon/physical adsorption # S. aureus, S. epidermidis and P.

aeruginosa adhesion; " FB

adhesion

Muszanska

et al.105

P15 (GTPGPQGIAGQRGVV)

+ CSP

(SGSLSTFFRLFNRSFTQALGK)

Linear fusion

peptide

Hydrophilic and hydrophobic model

substrates/physical adsorption

# S. mutans biofilm formation;

" MSC adhesion and mineralization

Li et al.106

RGD + Phe(4-F) Linear fusion

peptide

Ti/chemisorption # E. coli adhesion; " CHO-K1 and

Saos-2 adhesion

Yuran

et al.107

RGD + LF1-11

(GRRRRSVQWCA)

Branched

peptide

Ti/covalent # S. aureus and S. sanguinis adhesion;

" Saos-2 adhesion, proliferation

and mineralization

Hoyos-

Nogués

et al.60

Cyclic RGD + LF1-11

(GRRRRSVQWCA)

Branched

peptide

Ti/chemisorption # S. aureus adhesion; " MSC adhesion Martin-

G�omez

et al.108

QK (IGKYKLQYLEQWTLK)

+ AMP (KRWWKWWRR)

Branched

peptide

Ti/covalent # S. aureus, E. coli, P. aeruginosa and

MRSA adhesion; " proliferation

and gene expression of HUVEC

and BMSC; In vivo: #S. aureus and
" vascularization and

osseointegration

Chen

et al.109

GL13K (GKIIKLKASLKLL)

+ LamLG3

(KKGGGPPFLMLLKGSTRFC)

Mixture of

peptides

Ti/covalent # Streptococcus grodonii biofilm

activity; " proliferation and

hemidesmosome formation of

TERT-2/OKF-6

Fischer

et al.110

GL13K + ELR

[GKIIKLKASLKLLVLG10LVG

(VPGVGVPGKG

(VGPVG)4)8VCC]

Linear fusion

peptide

Gold/covalent # S. epidermidis and S. aureus biofilm

formation

Acosta

et al.111

Abbreviations: BMSC, bone marrow stromal cells; CHO-K1, Chinese hamster ovary cells; E. coli, Escherichia coli; FB, fibroblast; HUVEC, human umbilical

vein endothelial cells; MRSA, methicillin-resistant Staphylococcus aureus; MSC, mesenchymal stem cell; P., Pseudomonas; S., Staphylococcus; Saos-2, human

osteosarcoma cell line; TERT-2/OKF-6, immortalized human oral keratinocyte cells; Ti, titanium.

8 of 21 OLIVER-CERVELLÓ ET AL.



2.2.2 | Linear and fusion peptides

Although the use of peptide mixtures to functionalize biomaterials is a

straightforward and simple approach, the aforementioned limitations

associated to this procedure make it necessary to find alternatives. A

possible solution is the use of oligopeptides, in which two or more

peptide sequences are found in the same peptidic backbone, allowing

to chemically control the presentation of the peptides in well-defined

ratios. This strategy thus ensures a homogenous distribution of the

bioactive peptides on a biomaterial surface. Such degree of geometri-

cal control is normally not attainable if mixtures of individual peptides

are used instead.

This strategy has been widely employed to improve the selectivity

of peptides for cell expressed receptors at the surface level (Table 1).

For example, Kim et al. developed oligopeptides containing RGD and

PHSRN sequences separated with different glycine residues to pro-

mote synergistic α5β1-signaling. By physically adsorbing the active

sequences on tissue culture polystyrene (TCPS) substrates, an

enhancement in cell adhesion, spreading and MAPK signaling was

observed. Of note, these effects were highly dependent on both the

concentration of the coatings and the spacing between the two pep-

tides, being the 6-glycine linker the one that performed the best.65

Following a similar approach, Benoit et al. engineered PEG hydrogels

incorporating oligopeptides made of RGD and PHSRN with a

13-glycine spacer aiming at mimicking the 30–40 Å distance at which

the two peptides are separated in fibronectin (Figure 4A). Such config-

uration enhanced osteoblast adhesion, spreading and focal adhesion

in comparison with RGD alone, as well as proliferation and ALP

F IGURE 3 Example of peptide mixture to mimic ECM. (A) Immunostaining of STRO-1 and Runx-2 markers on human MSCs (scale
bars = 50 μm). (B) STRO-1 gene expression. (C) Runx-2 gene expression. Adapted from Bilem et al.90
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production.66 Nonetheless, these results are in disagreement with the

previous study, in which a 12-glycine spacing did not promote syner-

gistic effects. These differences may arise from the distinct substrates

used and also suggest that besides the relative distance between the

bioactive sequences, their spatial disposition (i.e., their presentation

and accessibility) are important to achieve synergistic signaling. Similar

behaviors are observed when two different receptors are targeted,

such as integrins and HSPGs. In this case, for instance, using linear

peptides of RGD and KRSR separated by two glycine units did not

induce any improvement of cellular behavior in comparison with con-

trol RGD.80

Mimicking the ECM has also been addressed by using linear

fusion peptides (Table 2). To this end, different regions of proteins

from the ECM are incorporated into a linear peptide to target more

than one biological function. For example, the combination of the

knuckle BMP-2-derived peptide with an osteocalcin-inspired peptide

has been use to functionalize hydroxyapatite substrates.100 In this

way, the osteocalcin peptide was able to mimic the native

hydroxyapatite-binding affinity of the full protein, while the BMP-2

peptide provided the biomaterial with higher osteodifferentiation

potential, as demonstrated by an increase in ALP activity, mineraliza-

tion and overexpression of BMP-2 and osteocalcin genes, both osteo-

genic markers. Following a different approach, Hernandez-Gordillo

et al. engineered three collagen mimetic peptides containing the RGD

cell adhesive motif covalently bond to the collagen sequences

(Figure 5A). Such peptides assembled into 3D scaffolds under the

influence of metal ions and had the ability to be easily modified with

GFs. Indeed, the addition of epidermal growth factor (EGF) in the

presence of the RGD sequence triggered the formation of spheroids

of epithelial cells, thereby indicating the potential of these peptidic

scaffolds to support growth of tissues for regenerative medicine as

well as to build in vitro models to study tissue development

(Figure 6).101

Oligomeric peptides combining cell instructive sequences and

AMPs have also been explored (Table 3). In this regard, Li et al.

described a fusion peptide combining P15, an osteogenic peptide

derived from collagen type I, and the AMP competence-stimulating

peptide (CSP), a quorum sensing peptide produced by S. mutans. This

F IGURE 4 Representative multifunctional peptides to improve receptor selectivity. (A) Linear oligopeptide combining the RGD and PHSRN
sequences.66 (B) Branched peptide combining the RGD and PHSRN sequences.67 Active sequences represented in red and green colors, spacers
in yellow and anchorage units in blue
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F IGURE 5 Representative multifunctional peptides to mimic the ECM. (A) Linear oligopeptide combining a type I collagen mimetic with the
RGD sequence.101 (B) Branched peptide incorporating the cyclic RGD with the FHRRIKA motifs.72 (C) Branched peptide combining the RGD and
DWIVA sequences.58 Active sequences represented in red and green colors, spacers in yellow and anchorage units in blue
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peptide showed positive effects in reducing S. mutans biofilm forma-

tion and promoting MSC adhesion and mineralization.106 However,

the peptide was coated on the surfaces by simple physisorption and

the biological effects were highly dependent on the chemistry of the

surface used. An alternative strategy has been recently reported by

the group of Meital Reches. She designed a modular multifunctional

peptide containing the cell adhesive RGD peptide, two self-

assembling and bacterial resistant units of fluorinated phenylalanine

(Phe(4-F)), and L-3,4-dihydroxyphenylalanine (DOPA) to assist anchor-

ing of the peptide to titanium125 (Figure 7A).107 This minimalistic

approach proved useful to reduce the attachment of E. coli and to

enhance the adhesion of CHO and Saos-2 cells. This peptide has been

used in further studies to functionalize other types of materials.126,127

Following a different approach, Acosta et al. designed a

multifunctional fusion peptide by combining the GL13K peptide, with

high antibiofilm activity, together with an elastin-like recombinamer

(ELR), with low-fouling activity. The capacity of the GL13K peptide to

reduce biofilm formation was synergistically enhanced when com-

bined with the antifouling potential of the ELR.111

2.2.3 | Branched peptides

As we have discussed in the previous sections, controlling the spatial

distancing between different bioactive sequences is paramount to

achieve enhanced biological profiles. Such spacing may be controlled,

to a certain extent, by using linkers of different length; however, using

linear peptides it is often difficult to present the active sequences

with an optimal conformation that is fully accessible for the cells.

Alternatively, branched peptides might offer a better geometrical con-

trol and orientation of the bioactive motifs, consequently improving

the biological performance of the biomaterial.

Fraioli et al. functionalized titanium disks by covalently grafting a

branched peptide containing the two synergistic sequences RGD and

PHSRN. Each motif was incorporated on a different arm of a peptidic

platform, which also contained aminohexanoic acid residues as

spacers, and a lysine as a branching unit. A cysteine at the C-terminus

served as anchoring point (Figure 4B).67 Peptide-modified titanium

surfaces supported human MSCs adhesion with formation of focal

contacts. Furthermore, the branched molecule was able to trigger

overexpression of integrin α5β1 and Runx2, which was not achieved

when both sequences were randomly distributed on the surface

(Figure 8). An increase of calcium deposits was also observed and

in vivo results revealed new bone formation in a rat calvarial defect

(Table 1).68

Heparin-binding peptides have been also combined with RGD

using a branched strategy (Table 1). For instance, Beck-Sickinger's

group studied the synergistic effects exerted on osteoblasts by com-

bining cyclic RGD and the FHRRIKA sequence. To this end, the two

sequences were incorporated on a mussel derived peptide, containing

DOPA, which binds with high affinity to metallic oxides125

(Figure 5B). The conjugation of both peptides in one branched mole-

cule enhanced the adhesion, spreading and proliferation of

osteoblast-like cells, as well as the formation of focal adhesions.72

More recently, they installed the same kind of branched peptides on

polycaprolactone-co-lactide (PCLLC) scaffolds. The heparin binding

peptide induced the immobilization of heparin, which in turn recruited

the wound-healing C-X-C motif chemokine ligand 12 (CXCL12),

F IGURE 6 Example of oligopeptides to mimic ECM. (A) Number of human non-tumorigenic epithelial MCF10A cells on different scaffolds
composed of collagen mimetic peptides in combination with RGD and/or EGF. (B) MCF10A cells encapsulated in three different scaffolds.
(C) Organization of MCF10A cells in spheroids in HBN:HGRGDS hydrogels. Adapted from Hernandez-Gordillo and Chmielewski101
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F IGURE 7 Representative multifunctional peptides combining cell adhesive and antibacterial properties. (A) Linear peptide incorporating the
RGD sequence, two units of Phe(4-F) and 1 DOPA residue.107 (B) Branched peptide combining the cyclic RGD and LF1–11 sequences.108

(C) Branched peptide incorporating the HHC36 and QK motifs.109 Active sequences represented in red and green colors, spacers in yellow and

anchorage units in blue

F IGURE 8 Example of branched peptide to improve receptor selectivity. (A) Schematic representation of the different peptide conditions.
(B) F-actin immunostaining (scale bar = 500 μm, scale bar = 50 μm in the insets). (C) ITGA5 gene expression. Adapted from68
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fibroblast growth factor (FGF-2) and VEGF. Such loaded systems with

cytokines improved human umbilical vein endothelial cell (HUVEC)

adhesion and stimulated cell survival and differentiation, which was

boosted by the delivery of CXCL12 and VEGF. These results led the

authors to suggest a cooperative effect between integrins and cyto-

kines, highlighting the crosstalk between adhesion ligands, proteogly-

cans and signaling molecules of the ECM (Figure 9).73 In addition,

integrin and proteoglycan binding has also been mimicked by combin-

ing the RGD and KRSR sequences within a branched platform, which

was covalently bound to titanium substrates. Although such system

did not show a synergistic effect on osteoblast-like cell adhesion or

proliferation, it improved mineralization, an important late marker of

osteodifferentiation.81

The ECM microenvironment has also been recreated with

branched peptides to improve surface endothelialization (Table 2). In

this regard, Karimi et al. developed polymeric nanoclusters containing

RGD and a syndecan-4-binding peptide (AG73), which synergistically

promoted HUVEC adhesion and spreading. In addition, both ligands

were required to further improve focal adhesion formation,

endothelialization and to drive cell morphological changes under lami-

nar shear flow, which demonstrated the importance of controlling the

distance between integrin and syndecan receptors to optimally tune

cell-material interactions as well as mechanotrasduction.102 In another

study, Clauder et al. co-installed the laminin-derived peptide SIKVAV

and cyclic RGD on a branched structure to functionalize titanium

plates through DOPA interactions. The geometrically defined presen-

tation of both peptides, synergistically enhanced adhesion, prolifera-

tion and angiogenesis of endothelial cells. Importantly, the peptidic

coatings were hemocompatible and neither induced hemolysis nor

platelet adhesion.103

In bone tissue engineering, the replacement of BMP-2 by peptidic

analogues has been a focus of intensive research. Recently, we have

engineered a biomimetic multifunctional peptide containing the RGD

and the DWIVA motifs in a spatially defined geometry and two DOPA

molecules to anchor the molecule to model glass substrates

(Figure 5C).58 The biomimetic interface significantly increased C2C12

adhesion and spreading, and inhibited myotube formation, a well-

known indicator of BMP-2 activity.128 Moreover, activation of BMP-

dependent signaling via p38 was observed. Interestingly, these effects

were not observed on surfaces displaying only one bioactive motif, a

mixture of both peptides or soluble DWIVA, demonstrating the

potential of the branched molecule to transdifferentiate the C2C12

cells towards the osteogenic lineage (Table 2, Figure 10). Although

this strategy was validated on glass substrates, it could be easily

applied to more relevant biomaterials, like titanium, due to the well-

defined affinity of DOPA to metallic oxides.125

Branched peptides have also been successfully used to combine

cell adhesive and antibacterial effects (Table 3). Hoyos-Nogués et al.

described a peptidic branched platform containing the RGD

sequence and the AMP derived from lactoferrin LF1-11.60

F IGURE 9 Example of branched peptide to mimic the ECM. (A) Schematic representation of the multifunctional peptide. (B) Schematic
representation of the chemical synthesis of the peptide. (C) F-actin immunostaining of HUVECs in fluidic conditions (scale bar = 50 μm). (D) Cell
number and (E) growth area of HUVECs in fluidic conditions. Adapted from Clauder et al.73
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Functionalization of titanium with this peptide enhanced the adhe-

sion, proliferation, and differentiation of osteoblasts and efficiently

reduced bacterial attachment and biofilm formation. Of note, this

strategy was validated in co-culture studies in which titanium sur-

faces were pre-infected with bacteria. Indeed, infected surfaces

abolished the adhesion of osteoblasts; in contrast, peptide-coated

surfaces proved capable of killing bacteria and supported notable

levels of cell adhesion and proliferation. In a subsequent study, the

same peptide was grafted into polyethylene glycol (PEG), which is

known for its anti-fouling potential. Such trifunctional coating (cell

adhesive, bacterial repellent, and bactericidal) was applied to

titanium and rendered surfaces highly antibacterial but with the

capacity to support osteoblast adhesion.59 To further optimize the

biological potential of this peptide, a chemical peptide library of

RGD-LF1-11 analogues was recently described.108 In detail, the

peptides were customized with two catechol groups (i.e., two DOPA

units) to ensure their direct binding to titanium. Moreover, PEG

linkers of different length were introduced to study the effect of

peptide accessibility on the cell adhesive and antibacterial activity

(Figure 11). All designed analogues improved MSC adhesion and

inhibited S. aureus adhesion, but, interestingly, the peptides dis-

playing too long spacers showed reduced potency, thereby indicat-

ing the importance of properly exposing the peptide motifs and the

fact that increased spacer length and/or flexibility above a certain

threshold may be detrimental. In addition, replacing linear RGD by

its cyclic counterpart (Figure 7B) further enhanced MSC adhesion

while preserving excellent antimicrobial potential.108

Very recently, Chen et al. also engineered a multifunctional pep-

tide to functionalize titanium, simultaneously achieving strong

antibacterial effects and promoting vascularization and

osseointegration in vivo.109 In detail, the peptide contained the anti-

microbial sequence HHC36 and the QK angiogenic peptide, derived

from VEGF. The peptide incorporated an azide group in its backbone,

which was used to assist the functionalization of titanium via sodium

borohydride reduction promoted Cu(I)-catalyzed azide-alkyne cyclo-

addition (CuAAC-SB) (Figure 7C).

F IGURE 10 Example of a branched peptide to mimic the ECM. (A) BMP-2-BMPR-IA complex. The DWIVA sequence is highlighted.
(B) Interaction of RGD-DWIVA with integrin and BMP-2 receptors. (C) Number of C2C12 cells adhered to the different substrates. (D) p38
protein expression obtained by western blot. Adapted from Oliver-Cervell�o et al.58
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2.3 | Conclusions and future perspectives

The use of peptides to increase the biological activity of biomaterials

has gained increasing relevance over the last years. One important

advantage of this strategy is that it overcomes the majority of draw-

backs associated with the use of native proteins of the ECM. None-

theless, no single peptide is known to be able to mimic the complex

microenvironment and signaling of the ECM and the reported

biological effects in vitro and in vivo are often reduced compared with

full-length ECM proteins and GFs. Consequently, the combination of

peptides of different nature is required to address more than one bio-

logical target, thus achieving multifunctional potential. In this regard,

the functionalization of biomaterials with peptide mixtures has been

studied. However, although such approach is simple and easy to

apply, controlling the exact molar ratio and spatial distribution of the

different bioactive molecules on the biomaterial surface may be com-

plicated. These limitations may decrease the biological response at

the surface level and compromise the feasibility of this strategy. Alter-

natively, linear oligopeptides or fusion peptides have allowed installing

multiple peptides within the same peptidic backbone, thereby control-

ling the presence of the bioactive peptides at well-defined ratios and

addressing the problems detected with peptide mixtures. However, in

this case, the accessibility of the active sequences for interacting with

cellular receptors may be not optimal due to the linear conformation

of the scaffolds. This, in turn, may be translated into reduced

biological outcomes. In recent years, the development of branched

peptides with more sophisticated chemical structures represented an

important step forward towards achieving multifunctional biomate-

rials. Branched configurations have demonstrated the necessity of

co-presenting the bioactive sequences in a geometrically controlled

manner in order to elicit favorable receptor signaling.

Besides the importance of regulating the spatial distribution and

orientation of the peptides, the properties of the biomaterial surface,

the peptide density and the method of immobilization used to fun-

ctionalize the biomaterial are crucial factors that may also strongly

influence the biological performance of peptide-material systems.

Thus, the same peptidic sequences may elicit different (or even con-

tradictory) biological results depending on the method of immobiliza-

tion chosen. This has been highlighted throughout this review in

several cases. For example, the combination of RGD and DWIVA

sequences as a mixture failed to show a significant impact on osteo-

differentiation, while the same peptides integrated in a branched sys-

tem, effectively promoted synergistic biological effects. Such results

stress the importance of controlling the spatial geometry and distance

between bioactive peptides. Indeed, it is well reported that the co-

localization of BMP-2 receptors and integrins is crucial to elicit an

optimal integrin-GF signaling.

Another important aspect, which is often overlooked in the litera-

ture, is the nature and role of the linker units, which greatly influence

the efficiency of the functionalization as well as the biological

F IGURE 11 Example of branched peptide. (A) RGD-LF peptide analogues displaying PEG linkers of different length. (B) Catechol units are
introduced to bind the molecules to titanium. Number (C) and spreading (D) of MSCs on the functionalized titanium surfaces. (E) Adhesion of
S. aureus on the functionalized surfaces. Adapted from Martin-G�omez et al.108
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performance of the anchored peptides. Thus, the chemical features of

the linker, including its length, rigidity, conformation and hydrophilic-

ity, may ultimately determine the biological outcome of the coatings.

For instance, the linker length is known to be crucial for ensuring an

adequate presentation and accessibility of the peptides for an optimal

interaction with integrins, with too short or too long linkers failing to

provide adequate values of cell adhesion.10,23 The same principle has

been shown to affect the antibacterial potential of AMPs.108 In this

regard, in a study by Liu et al. the use of a rigid linker, compared to a

flexible one, significantly increased the adsorption of an AMP on tita-

nium surfaces and improved its antibacterial activity.129 Conversely,

other studies have shown that more hydrophilic linker sequences

enhanced the peptide solubility and their accessibility for cell recep-

tors recognition.94,130 Thus, the selection of an appropriate linker

needs to be carefully considered when designing peptides to fun-

ctionalize biomaterials.

Consequently, installing multifunctionality on biomaterials by

using peptides in a chemically and geometrically well-defined manner

holds promise to overcome the drawbacks associated with the use of

full-length ECM proteins. Nonetheless, in many cases, such in

integrin-GF signaling, it remains to be clearly elucidated the mecha-

nisms underlying crosstalk between different receptors, and therefore

more insight is required to better understand synergistic signaling,

which finally will influence cell fate. In this way, it would be possible

to engineer biomimetic peptides with even more potential to signifi-

cantly improve the bioactivity of materials.
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