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ABSTRACT

In this study, the two-dimensional sloshing of water in a stepped based tank partially filled was analyzed using an arbitrary
Lagrangian—Eulerian adaptive fixed-mesh method and including the Smagorinsky turbulence model. The numerical model is verified by con-
trasting the predictions made by the model with experimental results. The tank was subjected to controlled one-directional motion imposed
using a shake table. The free surface evolution was followed using ultrasonic sensors, and a high-speed camera was used to record the experi-
ments. The experimental and numerical analyses include a comparison of the wave height at different control points and snapshots of the
free surface evolution for two imposed frequencies. Also, a detailed numerical study of the effects of the frequency of the imposed movement,
the step height, and the fluid volume on the wave dynamics was performed. Moreover, the effect of fluid viscosity on the dynamics of the
free surface was also studied. In brief, the numerical method proved to be accurate, experimental data were reported, and the effects on
the numerical results of different physical and numerical aspects were exhaustively analyzed. The proposed results help to understand the
sloshing of stepped geometries.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0044682

I. INTRODUCTION
Analysis of tanks partially filled with liquid and subjected to

motion was studied in Refs. 11-14 for 2D and 3D behaviors. Analyses
using tanks with other types of cross sections have also been per-

external loads, which is known as sloshing, focuses on determining the
behavior of the free surface and how internal hydrodynamic loads
affect system stability.' ° Several researchers have attempted to
develop analytical, experimental, and numerical methods for solving
this type of problem.”

The sloshing response mainly depends on the excitation forces,
the shape of the container, and the filling level. Evaluation of the vibra-
tion modes and natural frequencies is necessary for analyzing such
problems. Thus, many studies have developed analytical solutions
based on multi-modal non-linear potential theory, such as Ref. 10,
where planar and non-planar behaviors are described for the lower
natural frequencies. Moreover, experiments have been performed to
validate the proposed analytical and numerical models. Sloshing in
tanks with rectangular cross sections under controlled harmonic linear

formed."” "’ Modified tank geometries have been proposed to evaluate
the effect of baffles on wave height evolution and the associated
dynamic forces on the container.”” ** In this regard, a study on the
effect of an abrupt change in the height of the tank will facilitate future
comparisons of numerical methods.

The Navier-Stokes equations, including an appropriated descrip-
tion for the free surfaces and a discretized numerical method, are com-
monly applied to simulate sloshing problems. In this context, fixed- or
moving-mesh strategies have been proposed. Fixed-mesh techniques
solve the Navier-Stokes equations in the entire domain occupied by
two fluids (e.g., air and water), and the interface between them has to
be updated in a timely manner during analysis. To this end, the vol-

ume of fluid (VOF)™ ** and level set (LS)"*"" methods have been
widely employed. Alternative techniques have also been proposed
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(e.g., Refs. 28 and 29). Moving-mesh techniques are those in which the
varying domain is adjusted at each time step using a new spatial dis-
cretization. These techniques can be used to solve a one-fluid flow
problem. The arbitrary Lagrangian-Eulerian (ALE) technique™”' and
the deforming spatial-domain/space-time (DSD/ST) technique’*” are
effective methods to solve free-surface problems. A summary of
numerical techniques applied to free surfaces and moving interfaces
can be found in Ref. 34.

The mesh quality and refinement near the free surface are crucial
aspects for obtaining an accurate description of the free surface.””
These requirements for mesh quality and refinement are particularly
difficult to fulfill when standard ALE techniques are applied for highly
dynamic problems, because of the strong distortion of the meshes. The
mesh in these cases can deform to a non-applicable configuration, and
consistent remeshing techniques are required.” "* Therefore, mixed
methods that combine fixed-mesh capabilities with ALE techniques
have been developed more recenﬂy.'l'% In this type of formulation, the
fluid-dynamics equations are solved in a fixed based mesh for a two-
fluid flow problem. The free surface is updated over such a mesh using
ALE techniques. At each time step, after the updated interface is com-
puted, the free surface is projected onto the base mesh, and local
refinement of the base mesh is performed near the interface. This algo-
rithm has been successfully applied to free surface evolution""* and
fluid-solid interaction problems."*"” In this framework, an adaptive
mesh-refinement technique was developed.”**” In addition, a varia-
tional multiscale (VMS) principle was employed to build a weak form
of the Navier-Stokes equations.” The resulting algorithm was used to
analyze an oil-sloshing problem in a square cross section,'” and the
model was validated through experiments. The results demonstrated
that the main natural frequencies are practically independent of fluid
viscosity.

In this study, we present an exhaustive numerical analysis of an
original sloshing experiment. The simulation is based on a free-surface
strategy using a fixed-mesh ALE'”** " approach. The fluid-dynamics
equations were solved using a VMS finite-element technique previ-
ously evaluated on benchmark tests using Newtonian and non-
Newtonian fluids.”" *’ The experiment was performed using a stepped
based tank with a rectangular cross section having an aspect ratio of
1:8, which ensures planar wave behavior. The tank was mounted on a
shake table and was subjected to controlled one-dimensional motion.
The free-surface evolution was recorded using ultrasonic sensors and a
high-speed camera to ensure accurate experimental observations.
Owing to the tank geometry, the obtained wave pattern strongly varied
with the time and position. Therefore, the simulation of this experi-
ment was challenging. In this work, experimental data were compared
with the numerical predictions to validate the model. Moreover, the
effects of parameters such as the mesh size, refinement during remesh-
ing, time step size, time-integration schemes, turbulence effects, filling
level, step height, and fluid type on the numerical results were
evaluated.

The main contributions of this work are as follows:

* A sloshing experiment on stepped based tanks was conducted.

* The proposed numerical model was validated using experimental
data.

* The effect of different physical and numerical parameters on the
numerical results was exhaustively analyzed.

ARTICLE scitation.org/journal/phf

* The evaluated numerical aspects assist in understanding the
physical aspects of the sloshing of stepped geometries.

The remainder of this paper is organized as follows: The govern-
ing equations and the adopted numerical strategy are described in Sec.
I1. The experimental settings and the details of the experiment are pre-
sented in Sec. I11. The model validation and numerical assessment of
different modeling aspects are reported in Sec. I'V. Finally, the conclu-
sions are presented in Sec. V.

Il. PROBLEM STATEMENT AND FINITE ELEMENT
DISCRETIZATION

A. Boundary value problem

The equations of conservation of momentum and mass in the
differential form for incompressible fluids may be expressed for a fixed
domain as follows:

p%wLpu‘Vu—V-(ZWSH)JrVP:fv inQ,t €0, (1)
Vou=0, inQeoy, )

where € represents the computational domain with boundaries 9Q
occupied by the fluid, t €]0, [ is the time interval in which the prob-
lem is solved, p and 1 denote the density and apparent viscosity of the
fluid, respectively, p :]0, t;[— IR is the pressure field, and u :]0, t;[—
R is the velocity vector, in which d =2, 3 is the number of spatial
dimensions. Regarding the right-hand side of Eq. (1), f = pg* repre-
sents a body force term that involves gravity and the acceleration of
the fluid domain. The total acceleration is represented by g*. V*u rep-
resents the symmetrical gradient of the velocity (Vu=1(Vu
+(Vu)T)). These equations need to be solved simultaneously with
appropriate initial and boundary conditions. For the Newtonian case,
the apparent viscosity corresponds to the dynamic viscosity p.

With regard to the rheological behavior of the fluid, the power-
law constitutive model is used, which is defined as

n=mp"", 3)

where 7 = /3 (7 :7) represents the magnitude of the rate of the

deformation tensor § = Vu + (Vu)T, m represents the consistency
index, and n is the power-law index of the fluid. If n > 1, the fluid is
called shear thickening or dilatant, and if n < 1, the fluid is called shear
thinning or pseudoplastic.

B. Fixed-mesh ALE formulation

In free-surface problems, the full domain represented by Q can
be split into two parts: the part of the domain effectively occupied by
the fluid, ©Q,(¢), and the remaining part, Q\Q;(f). The moving
boundary of Q,(t) is known as the free surface, and it can be repre-
sented as ['ge(f). Note that both Q;(¥) and I'ge(t) are time-
dependent and can change in time. The movement of the domain can
be represented using an ALE domain velocity uq(x, t) € RY, where
x € Q are the spatial coordinates. We can define the bijective mapping
4, so that for every point X € Q and time instant ¢, we obtain a point
x = A(X, t). With this definition, the domain velocity can be defined
as
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For an ALE approach, the domain velocity generally does not
coincide with the fluid velocity u in Q;(#). The effective conditions
between domain velocity and velocity are defined by

in [gee U OQ,

@

ug(x,t) =

n-ug=n-u

where n represents the outward normal of the point. With these defi-
nitions, the incompressible Navier-Stokes problem in the ALE frame
of reference can be written as follows:

+p(u—uq)-Vu—V-2nVu)+Vp=f, inQ,rE}O,tf[,

©)
inQ, t €0, t[. (6)

u
”atl
V-u=0,

More details regarding ALE methods can be found in Refs. 30,
43, and 54. A specific feature of the method used in this work is that
after each time step, the results are projected from the deformed mesh
to the initially underformed mesh, from which the simulation is con-
tinued. Thus, this method is a part of the fixed-mesh method family.

C. Variational and Galerkin form

We consider the finite element approximation of Egs. (1) and
(2). We define V = (H'(Q))? and Q = L?(Q)/R, which are the
interpolation spaces of velocity and pressure, respectively, where
H'(Q) is the space of functions whose distributional derivatives of
order equal to one belong to L?(Q) vanishing on 9Q. If we assume
that X :=V x Q, the weak form of the problem is U = [u,p] :
10, ty[— A& such that the initial conditions are satisfied and

p (j‘;t ) + (pa - Tu,v) 4+ 20(Vu, V) — (p, V- ¥) = (f,w),
i

)

(v ) q) = 01 (8)

for all V = [v,gq] € X, where fis such that (f,v) is well-defined and
a = u — ug is the advective velocity. Here, (-,-) denotes the L?(Q)
inner product, and (-, -) represents the integral of the product of two
functions, not necessarily in L2(€2).

In a compact form, problems (7) and (8) can be written as

@
P ot
where

B(a; U, V) = 2nV°u, V%) + (pa- Vu,v) — (p,V - v) + (V- u,q).

7V) + B(“; U, V) = (f: V), (9)
A

The Galerkin approximation for the variational problem can be
performed by considering a finite element partition 7', of the domain
Q and the conforming finite element spaces, V; C Vand @), C Q, in
a usual manner.

To discretize in time, we use the first, second, and third orders in
the time backward difference formula (BDF). This method allows us
to define the following time-derivative expressions:

ARTICLE scitation.org/journal/phf

AR VAR A
6;; = % + O(Ot), (10)
Al 3 —ad !
% 2&” 4 o®6R), (11)
W 11T 184 49 — 24
YT "1 10 P o), (2

where Jt represents the size of a uniform partition of the time interval
[0, #] and O(-) represents the approximation order of the scheme.
The superscript indicates the time step in which the variable is being
approximated; thus, # is an approximation to u at time # = jét. For
brevity, we refer to the first-, second-, and third-order methods as
BDF1, BDF2, and BDF3, respectively.

Smagorinsky’s turbulence model was employed for the numerical
simulations. This is a standard method for numerical modeling of
water-—air sloshing analyses.”* The turbulent dynamic viscosity associ-
ated with this model is as follows:

My = Csh (Vo : Vo)’ (13)

where Cg is an algorithmic constant of the model (the Smagorinsky
coefficient) and h; corresponds to a characteristic element length cal-
culated as the square root of the element area in a two-dimensional
case and the cubic root of the element volume in 3D. To simplify the
nomenclature in the exposition of the method, the turbulent viscosity
is included in the apparent viscosity of the fluid (5 = 1 + #,,;,).

D. Stabilized formulation

To use equal order interpolation and to solve convective-
dominant cases, a stabilized formulation is needed. The stabilized
method used in this study is based on the VMS approach introduced
in Ref. 55. A detailed derivation of the method used can be found in
Ref. 56 for the Navier-Stokes problem. Herein, we simply state the
method for the problem defined by (7) and (8). After some approxi-
mations, this method involves finding Uy, :]0, tr[— &, such that

du
P((,)_:;Vh) +B(an; Up, Vi) + 51 (an; Up, Vi) + 82 (Up, Vi) = (f, va),

(14)
for all vV}, € X}, where

Ju,
Sl(ah; Uy, Vh) = E Otl(f — ,07: — pay - Vuy, +11Au;, — Vp;,,
K

—pay - Vv, — 1Av, — Vap) g,
$(Un, Vi) = > (V- un, V - ).
K

In the above equations, & represents a matrix computed within
each element, called the matrix of stabilization parameters, which pro-
vides dimensional consistency to the stabilized terms. These parame-
ters are defined as follows:

o = diag(only, 02), (15)

with I being the identity on vectors of RY. The parameter o;, with
i= 1,2, can be computed as follows:
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) = A (16)
C300)

In these expressions, h; corresponds to a characteristic element
length calculated in the same manner as in the Smagorinsky case, and
h; corresponds to another characteristic length calculated as the ele-
ment length in the streamline direction. The constants ¢, i =1, ..., 3,
are algorithmic parameters in the formulation. The values used in this
work are ¢, = 12, ¢; = 2, and ¢3 = 4, which can be derived from
numerical analysis of the one-dimensional convection-diffusion-
reaction problem.”” These values have been proven to be robust for
different problems, including those involving Newtonian and non-
Newtonian fluids and for different applications.”””*

The aforementioned stabilized formulation ensures global stabil-
ity. To overcome the local instabilities caused by the cut elements, a
method known as ghost penalty stabilization is employed. This
method ensures control of a given field in the cut elements without
affecting the convergence rate of the numerical formulation.”” In sum-
mary, the terms added to (14) are

Sghust(ah;Uh’ V’I) :Z(qhifxl—l) (vvhvpi(vuh))K(er(f))
K
+D_(52)(Vau Py (Vor =) iaueys (A7)
K

where Q. (t) represents the domain of the K element cut by the free
surface ['gee(t); ¢4 and ¢5 are algorithmic constants, both assumed to
be 0.1 in this study; and P* represents the orthogonal projections in
the cut elements, which are defined as follows:
PL(Vuy) = Vuy, — Py(Vuy),
Py (Vpr—f) = (Vou —f) — Po(Von — f),

where P, represents the L*(Q) projection onto VY, and P, the L*(€)
projection onto Qy,.

E. Tracking of the interface

For tracking the interface, the LS method is employed, which is
based on the pure advection of a smooth function, commonly defined

FIG. 1. Experimental setup. Tank mounted on the shake table (A), ulfrasonic sen-
sors (B), high-speed camera (C), shake table controller [(D) and (E)], and PC (F).

scitation.org/journal/phf

(@)

200

(b)

400

800 |

FIG. 2. Layout of the tank used with (a) elevation and (b) isometric views with inter-
nal dimensions in mm.

as ¢(x, t), over the entire domain €. This function allows for defining
the position of the front of the interface using the isovalue
d(x,t) = o

The conservation of ¢ in any control volume V; C © moving
with a divergence-free velocity field u can be defined in an ALE frame
using the following equation:

N S N ~
\ e \ e \ \ N
\ N ] 9 . NN
\ B ™ ™ \\\ NN \'\..
N\ \:. ™ N ) X N \ N R
\ N \ . Y N\ A
Ny | N 9 \ % % \\\ \ \\
e T Y \\ TR RYRYAY
N N N . \
N N \ i NN NN \ \
¥ /| /] 7 | ’
me Free Surface il 4 / /

(b)

FIG. 3. Finite element mesh employed: (a) initial mesh (without adaptivity) and (b)
with adaptive refinement (see the element sizes in Table |).
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TABLE I. Nodes, elements, and elementary lengths (Ax and Ay) in mm of the elements in zones Z;, Z,, and Z; in an adapted mesh.

7 L Zs
Mesh Nodes Elements -
Ax Ay Ax Ay Ax Ay
M, 5835 10592 100 83.33 12.5 10.4163 1.562 5 1.302
M, 11440 20768 50 50 6.25 6.25 0.7825 0.7825
M; 16567 30480 40 31.25 5 3.9062 0.625 0.488
2 ; , . :
5 — 6 Ex
20 |\/|1 N
2
) Mj
15
— 4
10 E
— E
E 5 g 3
= =
0| £
< 2
-5
-10 | 1 K o
A ‘
-15 0 /\ A i J*\_J:\LN.A A
0 1 2 3 4 5
Frequency [Hz]
(b)
6
Exp —
25 51? _
ot, —
20 5 5t
15 |
T 4
— 10l 1 E
E A VI Y @
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0 E
< 2
=5 | \ Iy |
- / | | /L
=15 | v . Ut A AL A
0 1 2 3 4 5 0 1 2 3 4 5
Time [s] Frequency [Hz]
(c) (d)

FIG. 4. Comparison between experimental and numerical data for f= 0.45Hz. [(a) and (b)] mesh (M;) convergence at CP1 and [(c) and (d)] time step (dt;) convergence in
CP3 of the free surface time-dependent behavior (left) and its FFT (right).
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TABLE Il. Five principal active frequencies in order of amplitude, obtained using the FFT of experimental and numerical responses at CP1. fx is in Hz, and A is in mm.

scitation.org/journal/phf

Experimental M,—6t, M,—0t M;—6t, M,—dt, M,—6t3

Se Ay Jr Ay fr A fr Ay fr Ak fr Ay
h 0.45 5.81 0.45 4,62 0.45 5.08 0.45 494 0.45 481 0.45 5.03
f;_ 1.8 2.44 1.8 2.18 1.8 271 1.8 2.54 1.8 2.55 1.8 2.6
f 2.25 1.25 0.9 0.73 2.25 0.97 2.7 1.11 2.7 1.2 2.25 0.9
fa 2.7 0.87 1.35 0.72 2.7 0.93 2.25 0.97 2.25 091 0.9 0.83
fs 0.9 0.75 2.25 0.68 0.9 0.85 3.6 0.96 0.9 0.8 2.7 0.83
ad - i imizi -

_(15 Ya-Vh—0, inQ o, tf[, (18) enables the use of non-conforming elements, thus optimizing the tran

ot

with the corresponding initial and boundary conditions. The advec-
tion velocity is defined as @ = u — ug.

In this study, the level set equation (18) was solved using the clas-
sical streamline upwind Petrov-Galerkin method® to stabilize the
convective nature of the equation. The time derivative was discretized
in the same manner as the velocity in the momentum equation.
Additionally, to integrate the physical properties appropriately in the
computational domain, a modified integration rule was used in the
elements cut by the interface.”

The advection of the LS function does not guarantee global mass
conservation. In the present work, we used a very simple method to
ensure global mass conservation. The method involves measuring the
total mass at the end of each time step and computing the amount of
mass lost; then, the LS function is displaced accordingly in a uniform
global manner in the direction orthogonal to the free surface to recover
the lost mass (see Ref. 49 for more details).

F. Adaptive-mesh approach

A key aspect of the numerical simulations presented herein is an
adaptive mesh-refinement strategy that tracks the position of the free
surface and allows us to obtain accurate solutions using a reasonably
small number of elements. For this purpose, the fixed-mesh ALE
method is coupled with the parallel adaptive mesh-refinement library
RefficientLib."® When adaptive refinement approaches are used for
free-surface problems, in many cases, the precision of the numerical
simulation depends primarily on the accuracy with which the interface
between the two materials is tracked.'” Thus, an adaptive mesh-
refinement criterion based on layers of elements around the fluid
interface is used. An important characteristic of the method is that it

sitions between large and small elements.”’

lll. EXPERIMENTAL WORK

A stepped based tank with a rectangular cross section having an
aspect ratio of 1 : 8 and a step height of A =50 mm, fabricated using
acrylic, was filled with water up to a height of H=100mm and
mounted on the shake table (see Figs. 1 and 2). The shake table is
driven by an engine that produces a screw-controlled, time-varying
motion with micrometers of precision and up to 2.5 g accelerations,
depending on the weight loaded [see Quanser (2013) ST Manual in
http://www.quanser.com]. A controlled sinusoidal motion with an
amplitude of A=7.5mm and frequencies f=0.45Hz and f=0.5Hz
was imposed on the tank. The free-surface evolution #(f) mm was
recorded using ultrasonic sensors located at three control points (CP1,
CP2, and CP3), as shown in Fig. 2. The positions of the sensors were
chosen to avoid interference between the tank walls and the ultrasonic
signal. In addition, the step-control points were located at strategic
positions: the first one (CP1) was at the center of the shallow region,
the second (CP2) was immediately above the step, and the third one
(CP3) was in the middle of the deepest zone.

The sensors used in this work are the BANNER ultrasonic sensor
model SISUUA with analog output (see the U-GAGE S18U series
datasheet in www.bannerengineering.com). Its operating principle is
based on sending a pulse of 300 kHz to a surface, reporting an output
voltage between 0 V and 10 V, corresponding to a position range
between 30 mm and 300 mm with an accuracy of =0, 5 mm for a time
response of 5 ms. The experiments were also recorded using a high-
speed camera at a resolution of 1969 x 800 px* and 120 fps. The field
of view covers the tank size geometry depicted in Fig. 2 and its
imposed displacement, i.e., 810 x 300 mm? approximately. The cam-
era is positioned in a fixed location from the tank, and a lens of 35 mm

TABLE I Five principal active frequencies in order of amplitude, obtained using the FFT of experimental and numerical responses at CP3. fy is in Hz, and Ay is in mm.

Experimental M,—t, M,—dt, M;—6t, M,—dh M,—61;

Je Ay Je Ay S Ag i Ay S Ay Ji A
hi 0.45 5.15 0.45 4.23 0.45 4.57 0.45 4.45 0.45 4.43 0.45 4.55
f 1.8 1.62 1.8 191 1.8 2.33 2.7 2.52 2.7 2.88 1.8 2.23
f 2.25 1.63 2.25 1.07 2.7 2.11 1.8 2.35 1.8 2.72 2.7 1.78
fa 2.7 1.45 2.7 0.99 2.25 1.53 2.25 1.32 2.25 1.33 2.25 1.44
fs 3.15 1.04 0.9 0.58 3.15 0.83 3.15 1.09 3.15 1.45 0.9 0.67
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is used; this lay-out was also tested in Refs. 19, 22, and 61. The mea-
surements are previously verified by contrasting rules and objects used
as patterns to avoid optical errors. The camera is aligned considering
the water level at rest. The free-surface position obtained from the
ultrasonic sensors was confirmed against the position obtained from
the post-processed video using a motion-capturing technique previ-
ously used in Ref. 19. Alternatives and additional explanation on
motion capturing techniques can be found in Refs. 22 and 61. As ultra-
sonic records can be affected by highly distorted free-surface patterns,
this check helps to confirm that the free-surface distortion is within
the required range to produce correct ultrasonic records. These experi-
mental procedures and laboratory facilities were also used in Refs. 11,
13, 14, and 19. Observations along the thickness of the tank are made

scitation.org/journal/phf

to confirm differences in the water level along it, i.e., to determine the
occurrence of 3D effects. No differences between the water level in the
front and back of the tank were found at least within the error bound.
Sloshing at the frequency of f= 0.45 Hz was considered as a reference
case in this study. The experimental results are presented in Sec. IV,
together with the numerical results.

IV. NUMERICAL RESULTS

In this study, a numerical analysis was performed using the
fixed-mesh ALE finite element formulation presented in Sec. I1D. In
this section, we verify the accuracy of the method for modeling an
experimental set of results for sloshing of a planar-step geometry par-
tially filled with water. The experiment was performed specifically for

(8)

FIG. 5. Experimental (left) and numerical (right) snapshots of the free-surface evolution. [(a) and (b)] 3/8T, [(c) and (d)] 3/5T, [(e) and (f)] 3/4T, and [(g) and (h)] T, with

f=045Hz (T period, T = 1/f 5).
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this study. Additionally, this section presents a sensitivity study of
some parameters of the mathematical model used, including spatial
and temporal discretization and the effect of the Smagorinsky coeffi-
cient on the numerical approximation (Subsection IV B). The effects
of the imposed frequency and the step height of the tank are also
described in Secs. IV C and IV D. Finally, a study of the effect of
viscosity on wave dynamics is included for Newtonian and non-
Newtonian fluids in Sec. I'V E.

A. Numerical validation

In this subsection, the experimental results of the case with
f=10.45Hz defined in Sec. 11l are numerically obtained and compared.
Because the experiment presents well-defined plane (2D) behavior, the

(2)

scitation.org/journal/phf

simulations were performed using a bidimensional geometry. The fluid
properties used for water were p = 998.2 kg/m’ and g = 0.001 Pass.
The first set of results is related to a mesh-convergence analysis.
Three non-conforming meshes (M;, i = 1,...,3) with different ele-
ment sizes were used. Because adaptive meshes were used, Fig. 3(a)
shows the details of the original mesh (without adaptivity) and
Fig. 3(b) shows an arbitrarily adapted mesh. This figure depicts the M,
mesh. The details of each mesh are provided in Table I. Note that the
meshes have different element sizes depending on their locations. We
can distinguish three zones, denoted as Z, i =1, ...,3. Zone 1 (Z;)
represents the region occupied by air from the physical viewpoint.
Because the problem is solved without considering air-water interac-
tion, it can be discretized with large elements. Zone 2 (Z,) corresponds
to the fluid region (water in the base case) that is far from the interface.

FIG. 6. Experimental (left) and numerical (right) snapshots of the free-surface evolution. [(a) and (b)] 1/4T, [(c) and (d)] 1/2T, [(e) and (f)] 3/4T, and [(g) and (h)] 9/10T, with

f=05Hz.
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Finally, Zone 3 (Z;) represents the region of space that contains the
interface and, therefore, must have the smallest discretization. Note
that the use of non-conforming meshes allows for large transitions
between large and small elements without increasing the number of
total elements.

Table 1 shows that the number of nodes and elements is small
because of the adaptivity and considering the small size of the elements
over the interface. For example, using a structured and isotropic mesh
with the size of its elements equal to zone Z3 of the M; mesh, the num-
ber of nodes and elements needed is 360 128 and 717 444, respectively.

ARTICLE scitation.org/journal/phf

To study the convergence in time, three time step values were
used: ot; = 0.002 s, 6t = 0.001 s, and 6t3 = 0.0005 s. To ensure
that the convergence in time analysis is independent with the spatial/
temporal discretization, the second order in the time scheme and a
Smagorinsky coefficient Cg = 0.1 were used. The effect of the wave
dynamics of these two numerical parameters is discussed in Sec. I'V B.

In Fig. 4, the results obtained with the three meshes [I'ig. 4 (top)]
and the three time steps [Fig. 4 (bottom)] mentioned above are
compared. For mesh convergence, a fixed value of 6t = 6, = 0.001 s
was used, whereas for time convergence, mesh M, was used. The
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FIG. 7. Influence of the time integrator scheme (BDF) on wave evolution at CP2 for (a) the initial fransient and [(b) and (c)] steady-state flow regimes; case with f=0.45Hz

(left) and its FFT (right).
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TABLE V. Five principal active frequencies in order of amplitude obtained using
FFT of experimental and numerical time integration scheme responses at CP2. fi is
inHz, and A is in mm.
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TABLE V. Five principal active frequencies in order of amplitude obtained using FFT
of experimental and numerical Smagorinsky-coefficient responses at CP3. f, is inHz,
and Ay is in mm.

Experimental BDF1 BDFE2 BDF3 Experimental Cs0.05 C50.10 Cs 0.15 Cs0.20

fr Ay fr Ay Ay Ay fe Ay fi A fi A ik A fi A
fl 0.45 1.6 0.9 194 1.8 208 1.8 2.07 fl 0.45 5.15 0.45 457 045 457 045 456 (045 454
f2 0.9 157 1.8 1.9 0.9 1.98 0.9 1.98 fz 2:25 163 18 236 18 233 18 23 18 229
f3 1.8 1.43 0.45 1.64 045 1.67 045 1.67 fg, 1.8 162 27 22 27 211 27 204 2.7 197
f4 2.7 1.32 2.7 0.82 2.7 083 27 0.83 j:; 2.7 145 225 149 225 153 225 153 225 1.52

fs 1.35 1.09 315 066 315 071 315 0.71

fs 315 1.04 3.15 0.84 3.15 0.83 3.15 0.81 3.15 0.78

results are related to the evolution of the height of the free surface at
CP1 and CP3 for the fully developed in time flow behavior, in addition
to the respective fast Fourier transform (FFT) diagrams. In the evolu-
tion graph, positive values (7 > 0 mm) correspond to heights over
the fluid height in the rest state, whereas negative values (1 < 0 mm)
represent heights below the aforementioned reference value. The fig-
ure includes the experimental and numerical results.

Figure 4 confirms that the spatial and temporal discretizations
used are sufficiently fine to represent wave dynamics. The mesh with
the best correlation with the experimental results was M,. For the time
step, 0ty resulted in a better fit of the height-evolution curve with the
experimental results than Jt; does; the smallest time step, dt3, was
discarded because it did not present significant improvements with
respect to ot,. The differences between M,;, M,, and M5 were small,
and thus, M, was used for the remaining analyses. The convergence
analysis was reinforced with the frequency spectra, and it can be seen
that the experimental and numerical results had a stronger correlation.

Tables I1 and I1I present the values (f) of the active frequencies f;
i=1,...,5 and their corresponding amplitude (Ay). These values

& Exp  Cg0.10 ~ Cg020
Cs 0.05 — Cg0.15

M [mm]

Time [s]

(a)

include the numerical and experimental results obtained for each
mesh and time step value. The FFT shows that the numerical simula-
tions can replicate the experimental problem. The active frequencies in
both cases include the imposed frequency and its exact multiples.
With respect to the FFT results for the CP1 and CP3 signals, the active
frequencies are the same, which was not evident in the height-
evolution curves. Regarding the amplitude of the frequencies, for all
cases, the one with the highest value is the one that matches the fre-
quency imposed, and the amplitudes of its multiples decrease from f;
tofs.

In Fig. 5 some instantaneous snapshots obtained using the
image-tracking technique are compared with the numerical solutions
for the base case with f = 0.45 Hz.

Finally, Fig. 6 presents a second comparison between the experi-
mental and numerical results obtained using an imposed frequency of
f = 0.5 Hz. This figure shows the sensitivity of the problem to changes
in the excitation frequency. The results of the simulation are, in gen-
eral, in good agreement with those of the experiments except for
certain cases where the surge of the breaking waves is close [Fig. 6(a)];
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FIG. 8. Influence of the Smagorinsky coefficient (Cs) on wave evolution at CP3 for (a) the steady-state case with f=0.45Hz and (b) its FFT.
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however, the capability of the numerical method to reproduce the real
physical behavior of the problem is verified.

B. Effect of the time-integration scheme and the
Smagorinsky coefficient

After determining the appropriate mesh and time step (M, and
dt,), we performed numerical tests by evaluating the effect of the tem-
poral integrator and the Smagorinsky coefficient on the numerical

n [mm]

0 1 2 3 4 5
Time [s]

(a)

scitation.org/journal/phf

approximation. The analyzed problem corresponds to the base case,
with f=0.45Hz.

As described in Subsection IV A, convergence in the time analy-
sis was performed using the second-order scheme. The effect of the
time marching scheme was evaluated using the first-, second-, and
third-order BDF methods. The analysis was performed using a fixed
time step value (0f;). As shown in Fig. 7, the height evolution at
CP2 was tracked using the three time-integration schemes. The graph
in Fig. 7(a) shows the first 20 s of simulation (from the rest state).
Figure 7(b) shows 5 s of simulation of the fully developed flow. Finally,

20 | £0.50 f0.60 —
f0.55 —

15 1 l“

n [mm]

Time [s]

(b)

n [mm]

FIG. 9. Effect of imposed frequency (f) on free-surface time-dependent behaviors at (a) CP1, (b) CP2, and (c) CP3.
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the graph in Fig. 7(c) shows the active frequencies obtained using each
time-integration scheme, including the experimental solution. The
exact values of each frequency and its amplitudes are listed in
Table IV.

Figure 7 and Table TV show that the order of the time-
integration scheme, at least for 6t = dt,, does not influence the result.
Regarding the capability of the integration schemes to solve the slosh-
ing problem, all three schemes, including the conditionally stable
third-order scheme, could accurately reproduce the problem. With
respect to the frequency spectrum, it can be seen that all methods
reproduced the same active frequencies, and in particular, BDF2 and
BDF3 had practically the same Ay values.

Figure 8 depicts the effect of the Smagorinsky coefficient on the
solution of the problem. The coefficient value Cs was varied from 0.05
to 0.2. As in the time integration analysis, the height evolution at CP3
was evaluated. Figure 8(a) shows 5 s of simulation of the fully devel-
oped flow. Figure 8(b) shows the active frequencies obtained using
each Smagorinsky coefficient, including the experimental solution.
The exact values of each active frequency and their amplitudes are
listed in Table V. The results show that the solution is practically
invariant with changing values of the Smagorinsky coefficient and that
the active frequencies obtained from the FFT are practically the same
for all cases. From the numerical viewpoint, this result is interesting
because in the modeling, the value of the Smagorinsky coefficient can
be changed without affecting the solution in terms of the nonlinear
convergence of the method. In general, the higher the value of the
coefficient, the better the non-linear convergence of the system of
equations.

C. Effect of the imposed frequency on free-surface
problems

The results presented in Figs. 5 and 6 show the sensitivity of the
dynamic behavior of the waves when the frequency is varied from
f =0.45Hz to f = 0.5Hz. In this subsection, the same problem is
solved numerically for f=0.4Hz, f=0.45Hz, f=0.5Hz, f=0.55Hz,
and f= 0.6 Hz. The height evolution for the three control points is pre-
sented in Fig. 9 for each frequency, and the active frequencies obtained
through an FFT analysis are presented in Table VI for CP2.

The results presented in Fig. 9 show that the amplitude of the
wave is low for f = 0.4 Hz and drastically increases for f = 0.45Hz
and f = 0.5Hz. However, it decreases for f = 0.55Hz and
f = 0.6Hz. As observed through the numerical simulation, the natu-
ral frequency of the system should be close to f=0.5Hz. Table VI
shows that for all cases, harmonic frequencies appear. For some cases,
for example, f=0.5Hz, the active frequency with the highest ampli-
tude does not coincide with f.

D. Effect of the step height on free-surface problems

Sloshing is generally analyzed for geometries with constant
heights. The inclusion of a step is novel, especially when the experi-
mental and numerical results are included. In this subsection, the effect
of the step height is analyzed numerically. The study was conducted in
two parts: in the first part, the step height was changed for a fixed level
of fluid, measured from the deepest branch (referred to as the H con-
stant), and in the second part, the step height was changed, while the
volume of the fluid remained constant (referred to as the v constant).

ARTICLE scitation.org/journal/phf

TABLE V. Five principal active frequencies in order of amplitude obtained using the
FFT of the numerical imposed frequency responses at CP2. f is inHz, and A, is in
mm.

£0.40 (Hz) f045(Hz) f0.50 (Hz) f0.55(Hz) f0.60 (Hz)

i A i A ik A ki A o A
fl 04 032 045 1.6 1 396 1.1 229 1.8 235
f2 0.8 014 09 1.57 2 212 055 137 0.6 1.11
fg, 1.8 144 3 154 275 053 12 05
j:; 2.7 1.32 05 133 22 048 24 0.12
fg, 1.35 1.09 15 126 1.65 0.34

The numerical study was performed using the base-case frequency of
f=045Hz.

In summary, the step heights analyzed for the H constant case
(using H=100mm) are hy,; =10 mm, hy, =20 mm, hy;
= 30mm, hy4 =40 mm, and hys =50 mm. For this analysis,
because the fluid height remains constant and the step height varies,
the volume of the fluid decreases as the step size increases. In the sec-
ond analysis, the fluid volume is unchanged and the effect of the step
size on the wave dynamics is evaluated. For this case, the constant vol-
ume is associated with a step height of & =30 mm and a depth of the
right branch of H= 100 mm, which results in a volume of v=0.006 8
m>. When this value is used and the step height is modified, the fluid

i
[l \“

‘H,‘*\
%'.‘ i“ |

n [mm]

Time [s]

)

FIG. 10. Effect of the step height in the initial transient regimen at CP1 for the
cases of (a) constant H and (b) constant v.
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heights must be modified accordingly, which results in five different
values: Hy; = 90 mm, H,, = 95 mm, H, 3 = 100 mm, H,, = 105
mm, and H, 5 = 110 mm, referring to the step heights h, ; = 10 mm,
hys =20 mm, h,3; = 30 mm, h,4 =40 mm, and h, 5 = 50 mm,
respectively. With respect to the mesh, a configuration similar to that
of mesh M, is used for each case.

Regarding the analysis of the step height, Fig. 10(a) shows the
initial transients for the cases of constant height and Fig. 10(b) for

n [mm]

n [mm]

Time [s]

()

ARTICLE scitation.org/journal/phf

the cases of constant volume. For the first case, the maximum
amplitudes are greater for hy 5, whereas for the second case, there
are no significant differences in the amplitudes once the flow has
developed.

In Fig. 11, the evolution of the fluid height is plotted for CP1 for
the two cases analyzed in this subsection. It can be seen that to achieve
the flow developed, the numerical approximations require a longer cal-
culation time as the step size decreases; the calculation time increases
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FIG. 11. Effect of the step height () in the steady-state time periodic regime at CP1 for [(a) and (b)] constant H and [(c) and (d)] constant v. Free-surface behavior and its FFT

(left to right).
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from approximately 40 s for both cases with h =50 mm to 420 s for
both cases with h =10 mm.

To visualize the effect of the change in the step height in greater
detail, for the two cases studied, Fig. 11 shows a time interval in which
the problem has already developed in time. In this figure, we can
clearly observe a direct relationship between the wave height and the
step height when the fluid height is kept constant [Fig. 11 (top)]. In
contrast, in the case of constant volume [Fig. 11 (bottom)], the behav-
ior is different: the wave height increases with the decreasing step size.
The active frequencies for each case are listed in Tables VII and VIIL.
Based on this analysis, we observe that the imposed frequency is pre-
sent in all signals, regardless of the height of the step; nevertheless, dif-
ferent harmonic and sub-harmonic frequencies appear depending on
the case analyzed. These trends are practically invariant even if the fill-
ing level varies, regardless of whether the total volume of the fluid is
unchanged. However, when the total mass of the systems is preserved,
it seems to play a damping role mainly for the smaller steps.

E. Effect of viscosity on free-surface problems

It is well-known that sloshing problems are dominated by inertial
effects. In this section, the effect of fluid viscosity on the wave dynam-
ics is described. Two numerical tests were performed. For the first one,
three Newtonian fluids of different viscosities, water, vegetable oil
(p = 912.4 kg/m’ and p = 0.071 Pa s), and SAE 10W-60 engine oil
(p = 850.4 kg/m3 and u = 0.381 Pa s), were used. The second test
involved the use of non-Newtonian fluids of the power-law type.
Specifically, we used carboxymethylcellulose (CMC) diluted with dis-
tilled water. For this test, the properties of the fluid were obtained
from a previous experimental study,”” where a rotational viscometer at
five temperatures was used. The constitutive parameters were fitted to
the experimental data using the power-law model by nonlinear regres-
sion analysis. The consistency and power-law indexes used for the
numerical tests and the nomenclature used to refer to each fluid are
presented in Table [X.

Figure 12 shows that the temporal evolutions of the waves from
the rest state to the developed flow are very similar in both the
Newtonian [Fig. 12(a)] and non-Newtonian [Fig. 12(b)] cases. This
fact confirms that sloshing problems are dominated by inertia, at least
in the wave dynamics, and that the fluid viscosity is not a determinant
physical parameter.

Finally, Fig. 13, presents the developed flow for each fluid. This
figure shows that for the Newtonian fluids [Fig. 13 (top)], a higher

TABLE VII. Five principal active frequencies in order of amplitude obtained using
FFT of numerical height step responses in the constant H case at CP1. fi is inHz,
and A is in mm.

scitation.org/journal/phf

TABLE VIII. Five principal active frequencies in order of amplitude obtained using
FFT of numerical height step responses in the constant v case at CP1. f is inHz,
and Ay is in mm.

hv,l hv,2 hv,3 hv,ﬂt h-v,S
K A i A i Ar fi A ik Ak
fl 1.85 248 045 2.04 045 22 045 224 045 2.83
f2 045 197 1.5 0.19 1.8 0.16 1.8 1 1.8 0.92
fg, 14 055 195 0.12 145 0.15 225 05 225 0.26
j:; 23 048 1.8 0.1 135 0.08 135 036 135 0.25
fg, 275 0.22 09 0.27 145 0.18

hi hp 2 hus hia hus
i A K A K A ke A it A
fl 1.85 336 045 181 045 22 045 3.07 045 5.81
f 045 166 15 036 18 016 18 092 18 244
f3 215 045 195 0.15 145 015 225 028 225 1.25
fi 14 036 135 008 135 0.18 2.7 0.87
fs 23 028 09 019 09 075

TABLE IX. Properties of different concentrations C of CMC diluted with distilled
water using the power-law constitutive model at a temperature of 20°C.

Concentration ~ Density
Nomenclature (m®/kg) (kg/m®)  m (Pas") n
CMC C10 10 998.2 0.057 4 0.5716
CMC C20 20 998.2 0.0848 0.494 5
CMC C30 30 998.2 0.1293 0.4649
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FIG. 12. Effect of rheological properties of fluids in the initial transient regime at
CP3 for (a) Newtonian and (b) non-Newtonian cases.
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FIG. 13. Effect of rheological properties of fluids in the steady-state time-dependent regime at CP3 for [(a) and (b)] Newtonian fluids and [(c) and (d)] non-Newtonian fluids:

time-dependent behavior (left) of the free surface and its FFT (right).

viscosity increases wave damping. For non-Newtonian cases [Fig. 13
(bottom)], even when the fluids had well-defined pseudoplastic behav-
ior, no considerable differences were observed. With respect to the
active frequencies listed in Table X, the idea that viscosity is not a
determinant parameter is reinforced. Although Fig. 13 shows different
behaviors for the free-surface evolution with different fluid models,
FFT analysis revealed that the signals practically coincide in time and
that only the amplitudes exhibit consistent differences when the fluid

properties are varied. These differences can be attributed to differences
in viscosity.
V. CONCLUSIONS

In this study, the sloshing in a stepped-based tank was exhaus-
tively analyzed using numerical and experimental techniques. The

numerical method was built on a VMS finite element framework,
where the free surface was updated using a two-fluid fixed-mesh
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TABLE X. Five principal active frequencies in order of amplitude, obtained using FFT of numerical Newtonian and non-Newtonian viscosity responses at CP3. f; is inHz, and Ak
is in mm.

Water Vegetable oil SAE 10W-60 CMC C10 CMC C20 CMC C30

fe Ay fe Ay fe Ay fe Ag fe Ay fe Ay
fi 0.45 4.57 0.45 4.47 0.45 4.03 0.45 4.55 0.45 4.54 0.45 4.53
f2 1.8 2.33 1.8 2.14 1.8 1.45 1.8 2.24 1.8 2.22 1.8 2.17
f 2.7 2.11 2.7 1.53 2.25 0.82 2.7 1.93 2.7 1.82 2.7 1.63
f4 2.25 1.53 2.25 1.39 2.7 0.55 2.25 1.53 2.25 1.51 2.25 1.45
fs 3.15 0.83 0.9 0.62 0.9 0.52 3.15 0.79 3.15 0.74 3.15 0.66
method improved with an ALE algorithm, including a remeshing tech- REFERENCES

nique. The model was validated using experimental data obtained in
this study. In addition, several physical and numerical aspects were
evaluated in detail. The main findings can be summarized as follows:

The layered adaptive-mesh strategy enables the approximation of
accurate results for sloshing problems without increasing the
number of elements.

For the analyzed sloshing problems, the use of high orders in time
schemes does not improve the numerical results significantly.

The turbulence model used does not considerably affect the free-
surface behavior even if it is needed to improve the nonlinear
convergence of the problem.

The variation of the imposed frequency, e.g., from f =04 to
f =045Hz, implies that the maximum wave amplitudes
increases from 3 mm to 20 mm for CP3, which also happens for
CP1 and CP2. This behavior means that a small variation in the
imposed frequency motion strongly affects the free-surface evolu-
tion in the present experiment.

The step height has notable effects on flow behavior.

The viscosity of the fluid, including non-Newtonian effects,
does not affect the free-surface predictions on time, as
revealed by FFT analyses; however, the wave amplitudes are
modified. This could be attributed to the fact that the problem
is strongly convective dominant.
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