
OpenMP taskloop dependences

Marcos Maroñas1,2, Xavier Teruel1, and Vicenç Beltran1

1 Barcelona Supercomputing Center (BSC), Spain
{mmaronas, xteruel, vbeltran}@bsc.es

http://www.bsc.es
2 Huawei Research, Edinburgh

marcos.maronas.bravo@huawei.com

Abstract. Exascale systems will contain multicore/manycore proces-
sors with high core count in each node. Therefore, using a model that
relaxes the synchronization, such as data-flow, is crucial to adequately
exploit the potential of the hardware. The flexibility of the data-flow ex-
ecution model relies on the dynamic management of data-dependences
among tasks.
The OpenMP standard already provides a construct, known as taskloop,
that distributes the loop iteration space into several tasks, but this con-
struct does not support the use of the depend clause yet. In this paper
we propose the use of the induction variable to define data dependences
in tasks created by the taskloop construct. By using the induction vari-
able, each task will contain its own dependences based on the partition
of work they received.
We also aim to demonstrate that using taskloop with dependences pro-
vides an enhancement in terms of programmability with respect to using
stand-alone tasks to parallelize a loop. Our implementation does not in-
troduce any significant overhead on the taskloop implementation and, in
certain cases, it outperforms the stand-alone task version.

Keywords: OpenMP · Tasking · Loops · Synchronization · taskloop
construct · depend clause.

1 Introduction

The introduction of the first multiprocessor architectures led to the development
of shared memory programming models. One of those is OpenMP, which became
a de facto standard for parallelization on shared memory environments.

OpenMP [12], with its highly optimized fork-join execution model, is a good
choice to exploit structured parallelism, especially when the number of cores
is small. Worksharing constructs, like the well-known omp for construct, are
good examples of how OpenMP can efficiently exploit structured parallelism.
However, when the number of cores increase and the work distribution is not
perfectly balanced, the rigid fork-join execution model can hinder performance.

The omp for construct accepts different scheduling policies that can mitigate
load-balancing issues; and the nowait clause avoids the implicit barrier at the

 The final authenticated version is available online at https://doi.org/10.1007/978-3-030-85262-7_4
© Springer Nature Switzerland AG 2021

2 Marcos Maroñas et al.

end of an omp for. Still, both techniques are only effective in a few specific situ-
ations. Moreover, the fork-join execution model is not well-suited for exploiting
irregular, dynamic, or nested parallelism.

Task-based programming models were developed to overcome some of the
above-mentioned limitations. The first tasking models were based solely on the
tasks and taskwaits primitives, which naturally support irregular, dynamic, and
nested parallelism. However, these tasking models are still based on the fork-
join execution model. The big step forward came with the introduction of data
dependences. Thus, replacing the rigid fork-join execution model by a more
flexible data-flow execution model that relies on fine-grained synchronizations
among tasks. Modern task-based programming models such as as Cilk, OmpSs
or OpenMP tasking model have evolved with advanced features to exploit nested
parallelism [13], hardware accelerators [2][6][1], and seamless integration with
message passing APIs such as MPI [15][14].

Exascale systems will contain multicore/manycore processors with high core
count in each node. Therefore, using a model that relaxes the synchronization,
such as data-flow, is crucial to adequately exploit the potential of the hardware.

Additionally, worksharing techniques are easier to apply compared to tasking.
A single worksharing construct is enough to parallelize a loop. In contrast, using
tasks, it requires more effort from the user. There must be at least a task per
core, to feed all the cores and prevent lack of parallelism. A frequent technique
applied to create enough tasks is blocking. This technique partitions a loop in
several blocks, and each block is processed by an independent task. Although
this is not a complex technique, it requires more effort than the worksharing
alternative.

The OpenMP standard contains a directive able to distribute the iteration
space of a loop into tasks, which, theoretically, enables users to parallelize a
whole loop with a single construct using tasks. This is the taskloop construct.
However, in practice, it is not useful for a single reason: it does not support data
dependences. Thus, a taskloop creates a set of tasks that cannot have data
dependences, and so, the synchronization must be done using coarse-grained
synchronization points (i.e., the implicit taskgroup, or explicit taskwaits). So,
basically, we end up in a fork-join model but with increased overhead compared
to worksharing constructs.

We propose adding support for data dependences to the taskloop construct.
Our proposal enables programmers to use the induction variable of the loop to
specify data dependences. Thus, each task created by the taskloop will register
the data dependences specified by the user. If the induction variable is used to
specify any dependence, each task will register the dependence using its own
value of the induction variable. As a result, apply blocking is possible using a
single construct, enhancing programmability.

OpenMP taskloop dependences 3

2 Tasking Programmability Challenges

Compared to using worksharing techniques, tasks are more complicated to use.
If we simply replace worksharing constructs by task constructs, there is very few
parallelism, and most of the cores are idle. This is because a worksharing con-
struct distributes the work among all the available cores, that run concurrently.
In contrast, an instantiated task is a piece of code that runs only in a single core
at a given instant of time. Figure 1 shows such a problem. The figure also shows
one possible solution, which is the use of blocking.

#pragma omp parallel for
for (i = 0; i < 20; i++)

{...}

CPU 0 CPU 1 CPU 2 CPU 3

It 0-4 It 5-9 It 10-14 It 15-19

// NO BLOCKING
#pragma omp task
for (i = 0; i < 20; i++)

{...}

CPU 0 CPU 1 CPU 2 CPU 3

It 0-19

for (i = 0; i < 20; i+=5)
#pragma omp task
for (ii = 0; ii < 5; ii++)

{...}

CPU 0 CPU 1 CPU 2 CPU 3

It 0-4 It 5-9 It 10-14 It 15-19

Fig. 1. Illustration of CPU occupation using different parallelism techniques.

Listings 1.1 and 1.2 shows a real code using worksharing constructs and task
with blocking respectively. It is possible to see that applying blocking techniques
is simple, but also that it requires more effort than using worksharing constructs.
For a single loop, worksharing constructs require only three lines of code, while
tasks with blockings require five lines of code.

The OpenMP standard already provides a construct known as taskloop

that distributes work into several tasks. This construct is the natural replace-
ment of worksharing constructs to use tasks. Listing 1.3 shows the very same
example using the taskloop construct. Notwithstanding, the tasks created us-
ing the taskloop construct cannot have data dependences, so they can only be
synchronized using synchronization points (i.e., keeping the implicit taskgroup
region or using explicit taskwaits). As a result, we have a fork-join pattern with
its rigid synchronization. So, we moved from worksharing constructs to tasks to
benefit from a more lightweight data-flow synchronization, but the impossibility
of using data dependences when using the taskloop construct prevents us from
obtaining all its benefits.

In summary, tasks require more effort from users than worksharing con-
structs. However, tasks provide key benefits that fit the requirements of Ex-
ascale systems better than worksharing constructs. For instance, programmers

4 Marcos Maroñas et al.

Listing 1.1. Simple code using the work-sharing construct

#pragma omp f o r
f o r (s i z e t j = 0 ; j < N; j++)

b [j] = s c a l a r ∗c [j] ;

Listing 1.2. Simple code using the task construct (and blocking)

f o r (s i z e t j = 0 ; j < N; j+=BS) {
s i z e t s i z e = j+BSIZE > N ? N−j : BSIZE ;

#pragma omp task depend (in : c [j : s i z e]) depend (out : b [j : s i z e])
f o r (s i z e t j 2=j ; j 2 < j+s i z e ; j 2++)

b [j 2] = s c a l a r ∗c [j 2] ;
}

Listing 1.3. Simple code using the taskloop construct

#pragma omp task loop chunks ize (BSIZE)
f o r (s i z e t j = 0 ; j < N; j++) {

b [j] = s c a l a r ∗c [j] ;
} // i m p l i c i t taskgroup reg i on

may parallelize different stages of the program by means of tasks, as long as
they guarantee a proper task depend annotation. Then, they can rely on the
OpenMP run-time library to compute the correct synchronization order among
these tasks. In other words, task parallelization improves composability.

In the other hand, the taskloop construct enables programmers to use tasks
with a similar effort than the effort required by worksharing constructs. Nev-
ertheless, it does not support data dependences, and this prevent users from
getting the key benefits of tasking.

3 Related work

We already mentioned in the previous section that OpenMP supports both loop-
based parallelism and task-based parallelism. The most common way of using
loop-based parallelism in OpenMP is by means of the worksharing constructs.
In terms of programmability, worksharing constructs enable users to parallelize
loops using a single construct. Thus, they are very simple to use. In terms of
performance, worksharing constructs deliver good performance in the general
case. Nevertheless, they contain an implicit barrier at the end of the worksharing
region, introducing very rigid synchronization.

The task-based approach is a bit more complex in terms of programmabil-
ity. It usually requires blocking techniques to uncover parallelism, which require
some more code than a single construct. Regarding performance, tasks have a
natural ability to deal with load imbalance, but they have associated costs that
may introduce some overhead depending on task’s granularity. OpenMP pro-

OpenMP taskloop dependences 5

vides also the taskloop construct, that distributes the iteration space of a loop
into several tasks. There is the possibility of specifying a grainsize guarantee-
ing that each of the tasks created executes no less than grainsize iterations.
Thus, the taskloop construct simplifies the use of task-based parallelism, en-
abling users to parallelize loops with a single construct. Nevertheless, OpenMP
does not support dependences in the taskloop construct. As a result, users must
rely on fork-join-like synchronization with explicit synchronization points. Con-
sequently, dropping the data-flow execution model of task-based parallelism, and
its benefits. By enabling the use of data dependences in the taskloop construct,
we offer users the possibility of parallelizing loops in a single construct while
keeping the benefits of the data-flow execution model. Additionally, the use of
the taskloop construct, may reduce the tasking overhead because allocations
could be optimized to be done as a whole, instead of one by one. However, the
number of tasks that will be created and scheduled is still proportional to the
problem size.

On the other hand, OpenMP 4.5 [11] already included the doacross depen-
dences for work-sharing loops based on the source and sink dependence types
and the extension of the ordered construct to support the depend clause. This
feature allows to express general cross-iteration loop dependences and thereby
support doacross parallelization [16]. The loop dependencies that cross the iter-
ation space are enforced via point-to-point synchronization injected where the
compiler finds the ordered construct. The main advantage of this extension is
that only applying to a unique iteration space, it could be easily implemented
by a single 2D matrix of per chunk relationships, imposing a very low overhead
to the runtime. This advantage is also its main drawback, as it does not allow
to dynamically connect to other loop iteration spaces (neither combine it with
any other work-sharing or task generating constructs).

Intel Cilk presents the cilk for [7], which is used to parallelize loops. The
body of the loop is converted into a function that is called recursively using a
divide and conquer strategy for achieving better performance. However, there
is a cilk sync at the end of each iteration. Therefore, synchronization is quite
rigid, similarly to OpenMP worksharings. Moreover, Cilk tasks do not support
data dependencies between tasks.

The CUDA programming model [10, 8] allows expressing kernel dependencies
using proper streams and events. This approach will be similar to the stand-alone
task model implemented by the OpenMP standard and requires manually trans-
form the loop to its blocked version, to decompose the iteration space. Further-
more, the use of multiple streams and their synchronization via events could be
non-trivial in some cases. On the other hand, CUDA offers the option to capture
and reuse such task instantiation using the CUDA graph set of routines, offering
an extra optimization by reducing the overhead. The CUDA graph functionality
is out of the scope of this paper and should be considered as an extension that
can be widely used, not only in taskloop constructs but in any portion of code
parallelized with tasks.

6 Marcos Maroñas et al.

for (t = 0; t < 100; t++)
 #pragma omp taskloop grainsize(5) \\
 depend(inout: x[i])
 for (i = 0; i < 20; i++)
 {...}

It 0-4 It 5-9 It 10-14 It 15-19 T = 0

It 0-4 It 5-9 It 10-14 It 15-19 T = 1

...

It 0-4 It 5-9 It 10-14 It 15-19 T = 100

for (t = 0; t < 100; t++)
 for (i = 0; i < 20; i+=5)
 #pragma omp task depend(inout:x[i])

for (ii = i; ii < i+5; ii++)
 {...}

Fig. 2. Partition of work and dependences between tasks created using taskloop

4 Taskloop with Dependences

In this section, we detail the syntax of our proposal to support data dependences
in the taskloop construct. In short, we propose the use of the induction variable
to define data dependences in tasks created by the taskloop construct. By using
the induction variable, each task will contain its own dependences based on the
partition of work they received. Figure 2 shows an example. There is an outer
loop and an inner loop parallelized using the enhanced taskloop construct with
data dependences. As we can see, the data dependences contain the induction
variable. In this case, it means that each of the tasks register a dependence over
the i-th element of x. As each of the tasks receive a part of the iteration space,
each of the tasks will have different values for i, thereby allowing them to run
concurrently, but defining a dependence with tasks of the next and previous t

iteration that work over the same data. Figure 2 also includes the code to get
equivalent behavior using regular tasks.

With this mechanism, expressivity is enhanced and the taskloop construct
becomes usable in many real-world examples while keeping the key benefits of
tasking.

We would like to point out that the mechanism to define the granularity of
a task created by the taskloop construct is the grainsize clause, as shown in
Figure 2. As the loop iteration distribution should be deterministic and visible
to the programmer (in order to allow him/her to combine tasks generated by
the taskloop with stand-alone generated tasks), the use of taskloop dependences
will assume the strict modifier within the grainsize clause. If no grainsize is
provided, default applies.

A second observation relates the task instantiation order and the dependence
computation. Currently, taskloop does not guarantee any task creation order,
while the proper dependence computation relies on it. Although the implemen-
tation does not need to actually create tasks in such order, it must compute de-
pendencies AS IF they were created in the logical iteration order. The OpenMP

OpenMP taskloop dependences 7

runtime can easily follow this behavior due to it can compute the number of
tasks and the corresponding task boundaries when encountering the taskloop
construct. In addition, the current specification says “Programs that rely on any
execution order of the logical iteration are non-conforming”; such part of the
specification must be relaxed to take into account synchronization arising from
dependences.

Although in our implementation the compiler is able to detect the use of the
loop control variable and modify the corresponding value for each task instance,
a more OpenMP-aligned approach would involve the use of a modifier within
the depend clause. We may have two different options:

– Leverage the existent iterator modifier by extending its syntax to accept a
new loop-based value generator. Then, the example in Figure 2 could be
rewritten by annotating the loop using:
#pragma omp taskloop depend(iterator(t=taskrange), inout: x[t])

grainsize(5).

– Define a new modifier based on the task loop boundaries. Again, the example
in Figure 2 could be rewritten using:
#pragma omp taskloop depend(taskrange(b=begin), inout: x[b:5])

grainsize(5).

While the first option relies in the multiple values generated by the itera-
tor modifer (by means of a new iterator range specifier: taskrange); the second
one uses the chunk-associated lower bound (by means of the new OpenMP key-
word begin and a new depend modifier: taskrange) combined with the grainsize
parameter in order to define an array section.

Finally, adding taskloop dependences on the OpenMP specification should
relax the implicit taskgroup region defined as part of the taskloop construct.
It will be recommended to implicitely consider the nogroup clause when the
programmer uses any dependence clause on the taskloop construct.

5 Implementation

Our proposal is done in the OmpSs-2 programming model, built on top of the
Mercurium compiler and the Nanos6 runtime library. Following, we detail the
extensions done in both components to support dependences in the taskloop

construct. We also conceptually explain our implementation.

Semantics The taskloop construct is a convenient “syntactic sugar” to ease
the use of tasks. It can be implemented just by applying an automatic blocking
technique in the compiler side, similar to a manual blocking done by the end-
user. But it also allows smarter implementations that can improve performance
by reducing the associated overhead.

8 Marcos Maroñas et al.

Mercurium compiler The Mercurium compiler has been extended to support
the use of data dependences in the taskloop construct. Mercurium is a source to
source compiler, meaning that it receives code as an input, and generates code as
an output. Mercurium creates a function to register dependences per each task
construct found in the user code. To support the use of the induction variable
in the taskloop dependences, Mercurium has to accept a new parameter in
the functions used to register dependences. Given that in our implementation
it is the runtime who partitions the work and assigns iterations to the tasks,
Mercurium must receive the information of the assigned iterations to replace the
induction variable by its real value.

Additionally, in the same line, Mercurium creates a function per task type
including the user code that the task has to run. In this case, it also has to
receive an additional parameter: the iterations that each task has to run.

Finally, when creating a taskloop entity, Mercurium has to enable some flags
to let the runtime system know that this is not a regular task, but a taskloop.

Nanos6 runtime library In the runtime system, the first step is to extend
the work descriptor of a task to include the iteration space of the loop, and
the grainsize specified by the user, if any. This single task will represent the
whole taskloop and it will register the whole set of dependencies, which are
generated based on the iteration space and the grainsize value. When the task
instance that represents the taskloop is executed it will instantiate one sub-task
for each partition of the iteration space with its corresponding dependencies.
This approach works because we are leveraging the weak dependencies and early
release features of OmpSs-2 [13] that enables the parent task to become ready
even if the dependencies are still not fulfilled. In this way, the sub-tasks created
behave as if they were created on the dependency domain of the parent taskloop.
A side effect of this implementation is that the creation and execution of the
taskloop is not blocking, so many of them can be executed in parallel. Each
sub-task created inside a task-loop will behave as a regular task, waiting for its
data-dependencies before it can become ready.

We would like to point out that our current implementation focuses on pro-
grammability. Therefore, we are trying to provide a simpler way of using tasks
that introduces no significant overhead compared to using other techniques such
as manual blocking. Nevertheless, the taskloop construct provides the opportu-
nity to apply further optimizations that cannot be applied in the case of manual
blocking. Such optimizations could include a single allocation for all the loop
tasks, instead of allocating space for each of them individually; or the applica-
tion of smarter throttle policies to mitigate memory overuse when there are too
many tasks in flight. In this way, throttle policies may take into account the to-
tal number of tasks needed to instantiate the whole loop iteration space, rather
than consider each of the tasks as an independent entity (i.e., making decisions
based on each individual item).

OpenMP taskloop dependences 9

6 Experiment results

In this section, we wish to demonstrate that the taskloop with dependences pro-
vides an enhancement in programmability when using tasks, while introducing no
significant overhead compared to a manual equivalent implementation. For that
purpose, our evaluation will focus in both programmability and performance.

Regarding programmability, we used several different metrics to compare
the different implementations: Source Lines of Code (SLOC) [9], Development
Estimate Effort (DEE) [5], and Cyclomatic Complexity (CC) [17]. It is important
to highlight that for the SLOC metric we only consider the code related to
the parallelization. And it is also important to notice that this metric is an
approximation to measure code complexity based only on the number of lines
but it ignores that some individual lines can be more complex than others.

In terms of performance, we compare the different implementations to demon-
strate that using the taskloop construct do not add any significant overhead.

Environment The experiments were carried out on the Marenostrum 4 su-
percomputer. It is composed of nodes with 2 sockets Intel Xeon Platinum 8160
2.1GHz 24-core and 96GB of main memory.

Regarding the software, we used the Mercurium [3] compiler (v2.3.0) and the
Nanos6 runtime library [4] as the baseline components to implement our proposal
(described in Section 5); the gcc and gfortran compilers (v7.2.0), in order to
compile Mercurium and Nanos6 (included here for reproducibility purposes);
and the Intel compilers (v17.0.4), as the native compiler used by Mercurium to
generate binary code.

Methodology As previously introduced, we focus our evaluation in two dif-
ferent aspects: performance and programmability. Our experiments will use two
different versions of each application/benchmark:

– T. Version using regular tasks. It requires manual blocking.
– TL. Version using the taskloop construct with dependences.

Regarding performance, for each of the benchmarks/applications, we select
two different problem sizes, one small-medium size, and one big size. For each of
the problem sizes, we try several block sizes to show that the differences between
the T and the TL are small or even non-existent in several different scenarios.

All the experiments ran using the interleaving policy offered by the numactl
command, spreading the data evenly across all the available NUMA nodes, in
order to minimize the NUMA effect.

The results shown in the figures are averages of five different executions.
We decided to use only five executions because the variability across different
executions was very small.

Related to programmability, we count the SLOC required to parallelize the
baseline code for each of the versions, and use the SLOCCount [18] tool and the
Lizard [19] tool to retrieve the DEE and CC respectively.

10 Marcos Maroñas et al.

512 1024 2048 4096 8192 16384 32768 65536
Task size (KElems)

10

15
FO

M
 (K

Up
da

te
s/

s)

DOTPROD

T_128M
TL_128M

T_1024M
TL_1024M

Fig. 3. Evaluation of taskloop using DOTPROD benchmark

Performance Evaluation In this section, we evaluate several application-
s/benchmarks to demonstrate that the use of the taskloop construct does not
introduce overhead compared to a manual alternative. All the figures show the
Figure of Merit (FOM) of the application on the y-axis, and different task gran-
ularities in the x-axis. All of them have four series: one using the T version with
a small-medium problem size, one using the TL version with a small-medium
problem size, one using the T version with a big problem size, and one using
the TL version with a big problem size. We would like to highlight that the T

versions use the usual approach where a single core creates all the tasks.

Figure 3 shows the results of the dot product benchmark. In this case, we
repeat the dotprod kernel a given number of iterations to make the execution
longer. For both problem sizes, the TL version performs better than the T ver-
sion in the small task sizes. The T version has only a single core creating tasks.
When the granularity is small, a single creator cannot create rapidly enough to
feed all the cores. As explained in section 5, the TL version may have several
cores creating tasks, speeding up the creation, and increasing the overall per-
formance. The TL version may have several cores producing tasks because each
iteration of the kernel is a taskloop instance, that can be running in different
cores concurrently, while the T version has a single core creating all the iterations
sequentially. Finally, from TS=8192, all the versions perform very similarly.

Figure 4 shows the results of the N-body benchmark. For this benchmark, we
see again a difference in the smallest granularity, where the TL version outperform
the T version for both problem sizes. Like previously, this is because there are
several taskloops that can be creating tasks concurrently in the TL version, while
there is a single core creating tasks sequentially in the T version, and it is not
quick enough to feed all the cores.

Finally, Figure 5 shows the results of the Stream benchmark. The results
presented are an average of the four different kernels of the Stream benchmark. In
this benchmark, there are some differences between the T and TL versions. Firstly,
in the smallest granularity, the TL version outperforms the T version in both
problem sizes. Like in some previous benchmarks, this is because the TL version
has multiple taskloops that can create concurrently rather than a single one, and
speeding up the creation improves the overall performance. Then, when TS=64,

OpenMP taskloop dependences 11

128 256 512 1024 2048 4096
Task size (particles)

20

40
FO

M
 (K

Up
da

te
s/

s)

NBODY

T_32K
TL_32K

T_128K
TL_128K

Fig. 4. Evaluation of taskloop using NBODY benchmark

32 64 128 256
Task size (KElems)

gb

FO
M

 (G
B/

s)

STREAM
T_128M
T_128M
TL_128M

T_1024M
T_1024M
TL_1024M

Fig. 5. Evaluation of taskloop using STREAM benchmark

for the small problem size the T version outperforms the TL version, and the other
way around for the big problem size. Our runtime system has an immediate
successor mechanism to exploit data locality between successor tasks. In this
case, this mechanism is making the difference. We repeated the experiment with
no immediate successor, and the results for both versions were very similar. For
the big problem size, the TL version is able to find more immediate successor
tasks than the T version, and the other way around for the small problem size.

Overall, we see that there are few differences between the T and TL versions,
with the TL versions generally outperforming the T versions in fine granularities,
thanks to the use of multiple creators. Thus, we can conclude that the TL is not
only introducing very few overhead, but it is able to enhance performance in
some specific scenarios.

Programmability Evaluation Table 1 shows the different programmability
metrics evaluated in this analysis for different benchmarks. The DEE is a metric
that tries to estimate the effort that a developer must spend to write a given
code. In this case, it is measured in person-months. The size of the code affects
the DEE. The CC metric is higher when a code can take more different paths.
For instance, adding an if increases the CC.

In Table 1, some benchmarks show no difference between the T version and
the TL version. As previously explained, a frequent way of parallelize an applica-

12 Marcos Maroñas et al.

Listing 1.4. Stream code using tasks with blocking

f o r (i n t k=0; k<nTimes ; k++) {
f o r (s i z e t b lock = 0 ; b lock < NUM BLOCKS; block++) {

s i z e t aux = block ∗BSIZE ;
s i z e t s i z e = aux+BSIZE > N ? N−aux : BSIZE ;

#pragma oss task in (a [aux ; s i z e]) out (c [aux ; s i z e])
f o r (s i z e t j 2=aux ; j 2 < aux+s i z e ; j 2++)

c [j 2] = a [j 2] ;
}
f o r (s i z e t b lock = 0 ; b lock < NUM BLOCKS; block++) {

s i z e t aux = block ∗BSIZE ;
s i z e t s i z e = aux+BSIZE > N ? N−aux : BSIZE ;

#pragma oss task in (c [aux ; s i z e]) out (b [aux ; s i z e])
f o r (s i z e t j 2=aux ; j 2 < aux+s i z e ; j 2++)

b [j 2] = s c a l a r ∗c [j 2] ;
}
f o r (s i z e t b lock = 0 ; b lock < NUM BLOCKS; block++) {

s i z e t aux = block ∗BSIZE ;
s i z e t s i z e = aux+BSIZE > N ? N−aux : BSIZE ;

#pragma oss task in (a [aux ; s i z e] , b [aux ; s i z e]) out (c [aux ; s i z e])
f o r (s i z e t j 2=aux ; j 2 < aux+s i z e ; j 2++)

c [j 2] = a [j 2]+b [j 2] ;
}
f o r (s i z e t b lock = 0 ; b lock < NUM BLOCKS; block++) {

s i z e t aux = block ∗BSIZE ;
s i z e t s i z e = aux+BSIZE > N ? N−aux : BSIZE ;

#pragma oss task in (b [aux ; s i z e] , c [aux ; s i z e]) out (a [aux ; s i z e])
f o r (s i z e t j 2=aux ; j 2 < aux+s i z e ; j 2++)

a [j 2] = b [j 2]+ s c a l a r ∗c [j 2] ;
}

}
#pragma oss taskwai t

tion with tasks is using blocking, thereby converting a single loop into two loops,
one to iterate over blocks, and one to iterate over the elements of each block. The

Table 1. Programmability metrics to compare the use of the taskloop construct with
the manual use of tasks

T TL

SLOC DEE CC SLOC DEE CC

DOTPROD 7 0.07 4 3 0.05 2.5
NBODY 10 0.29 2.6 10 0.29 2.6
STREAM 25 0.37 13.5 7 0.3 9.5

OpenMP taskloop dependences 13

Listing 1.5. Stream code using taskloop

f o r (i n t k=0; k<nTimes ; k++) {
#pragma oss ta sk loop g r a i n s i z e (BSIZE) in (a [j]) out (c [j])
f o r (j = 0 ; j < N; j++) {

c [j] = a [j] ;
}

#pragma oss ta sk loop g r a i n s i z e (BSIZE) in (c [j]) out (b [j])
f o r (j = 0 ; j < N; j++) {

b [j] = s c a l a r ∗c [j] ;
}

#pragma oss ta sk loop g r a i n s i z e (BSIZE) in (a [j] , b [j]) out (c [j])
f o r (j = 0 ; j < N; j++) {

c [j] = a [j]+b [j] ;
}

#pragma oss ta sk loop g r a i n s i z e (BSIZE) in (b [j] , c [j]) out (a [j])
f o r (j = 0 ; j < N; j++) {

a [j] = b [j]+ s c a l a r ∗c [j] ;
}

}
#pragma oss taskwai t

taskloop construct prevents users from requiring this twofold loop structure in
some cases, saving some lines of code. In the case of the Nbody benchmark,
the data layout in our implementation is blocked, so we cannot eliminate the
twofold loop. Thus, there is no real improvement in programmability for this
benchmarks. In contrast, the Stream benchmark shows improvements in all the
different metrics, reaching up to a 3.57x reduction of SLOC. Regarding the CC,
using taskloop reduces it from 13.5 to 9.5 because we are able to remove four
different for loops, as you can see comparing the code snippets in Listings 1.4
and 1.5. Similarly, in the dotprod benchmark we can remove two for loops,
reducing the CC.

7 Conclusions and future work

The taskloop construct is a directive that distributes the iteration space of
a loop into several tasks. This gives a boost to productivity when using the
tasking model. However, the current implementation of this construct does not
cover the vast majority of cases, because it is missing data dependences support.
Therefore, users are forced to use explicit synchronization points, like in the
fork-join model. As a result, users get a fork-join like structure, with increased
overhead compared to worksharing constructs.

14 Marcos Maroñas et al.

By providing support for data dependences to the taskloop construct, we
enable users to utilize this directive in the majority of cases. Thus, they are able
to fully convert their loops into tasks with a single directive, maximizing pro-
ductivity, while keeping the main benefit of tasks, a lightweight synchronization
based on data dependences.

Our evaluation shows that taskloop with dependences delivers as much per-
formance as its manual counterpart, but with a reduced number of lines of code.
The number of lines of source code required to parallelize a code using taskloop

with dependences is up to 3.57x times smaller than its manual counterpart.
As future work, we plan to further investigate the interactions of taskloop

dependences with other OpenMP features. The big challenge will imply combin-
ing dependences with the collapse clause. As this clause specifies the number
of loops that are collapsed into a logical iteration space that then is divided
according to the grainsize and num tasks clauses; the implementation should
take into account partial innermost level loop partition that will hinder the array
section definition.

Another opportunity for future research include the study of the interaction
with the loop transformation constructs (i.e., the tile and the unroll con-
structs). Although it seems the programmer should apply the semantics of the
taskloop dependences on top of the already transformed loops, such use cases
should be considered to discard potential corner cases.

Acknowledgements

This research has received funding from the European Union’s Horizon 2020/Eu-
roHPC research and innovation programme under grant agreement No 955606
(DEEP-SEA); and the support of the Spanish Ministry of Science and Innovation
(Computacion de Altas Prestaciones VIII: PID2019-107255GB).

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience 23(2), 187–198 (2011)

2. Ayguade, E., Badia, R.M., Cabrera, D., Duran, A., Gonzalez, M., Igual, F.,
Jimenez, D., Labarta, J., Martorell, X., Mayo, R., et al.: A proposal to extend the
OpenMP tasking model for heterogeneous architectures. In: International Work-
shop on OpenMP. pp. 154–167. Springer (2009)

3. Barcelona Supercomputing Center: Mercurium Compiler, https://github.com/bsc-
pm/mcxx, accessed: 2019-03-24

4. Barcelona Supercomputing Center: Nanos6 Runtime, https://github.com/bsc-
pm/nanos6, accessed: 2019-03-24

5. David A. Wheeler: SLOCCount: More about COCOMO,
https://dwheeler.com/sloccount/sloccount.html#cocomo, accessed: 2021-07-
05

OpenMP taskloop dependences 15

6. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: OmpSs: A proposal for programming heterogeneous multi-core archi-
tectures. Parallel Processing Letters 21(2), 173–193 (2011)

7. Intel: Intel C++ Compiler 19.0 Developer Guide and Reference,
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-
cilk-for, accessed: 2019-03-24

8. Luebke, D.: Cuda: Scalable parallel programming for high-performance scientific
computing. In: 2008 5th IEEE international symposium on biomedical imaging:
from nano to macro. pp. 836–838. IEEE (2008)

9. Nguyen, V., Deeds-rubin, S., Tan, T., Boehm, B.: A sloc counting standard. In:
COCOMO II Forum 2007 (2007)

10. Nvidia: CUDA C++ Programming Guide 11.4 (06 2021),
https://docs.nvidia.com/cuda/archive, accessed: 2021-07-05

11. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face 4.5 (11 2015), accessed: 2021-02-18

12. OpenMP Architecture Review Board: OpenMP Application Programming In-
terface (11 2018), https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf, accessed: 2019-03-24

13. Perez, J.M., Beltran, V., Labarta, J., Ayguadé, E.: Improving the integration of
task nesting and dependencies in OpenMP. In: 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). pp. 809–818. IEEE (2017)

14. Sala, K., Bellón, J., Farré, P., Teruel, X., Perez, J.M., Peña, A.J., Holmes, D.,
Beltran, V., Labarta, J.: Improving the interoperability between MPI and task-
based programming models. In: Proceedings of the 25th European MPI Users’
Group Meeting. pp. 1–11 (2018)

15. Sala, K., Teruel, X., Perez, J.M., Peña, A.J., Beltran, V., Labarta, J.: Integrating
blocking and non-blocking MPI primitives with task-based programming models.
Parallel Computing 85, 153–166 (2019)

16. Shirako, J., Unnikrishnan, P., Chatterjee, S., Li, K., Sarkar, V.: Expressing
doacross loop dependences in openmp. In: 9th International Workshop on OpenMP,
IWOMP 2013. vol. 8122, pp. 30–44 (09 2013). https://doi.org/10.1007/978-3-642-
40698-0

17. Watson, A.H., McCabe, T.J.: Structured testing: A testing methodology using the
cyclomatic complexity metric. Tech. rep., NIST Special Publication 500-235 (1996)

18. Wheeler, David A.: SLOCCount, https://dwheeler.com/sloccount, accessed: 2019-
03-24

19. Yin, Terry: Lizard, https://github.com/terryyin/lizard, accessed: 2019-03-24

