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Abstract Driven by the improvements in a variety of domains, autonomous
driving is becoming a reality and today, industry aims at moving toward
fully autonomous vehicles. High-tech chip manufacturers are designing high-
performance and energy-efficient platforms in accordance with safety standard
requirements. However, the software used to implement advanced functionali-
ties in autonomous vehicles challenges real-time constraints on those platforms.
Hence, there is a clear need for industry-level autonomous driving benchmarks
to evaluate platforms and systems. In this paper, we propose ADBench, a
benchmarking approach and benchmark suite for state-of-the-art autonomous
driving platforms, in accordance with the key modules, structural design and
functions of AD systems, building on several industry-level autonomous driv-
ing systems. The use of standard benchmarks facilitates the design, verification
and validation process of autonomous systems.

Keywords Benchmarking · Autonomous Driving Systems · Safety-Critical
Systems

1 Introduction

Self-driving vehicles are poised to dramatically change and revolutionize the
automotive industry. Depending on the level of autonomy, autonomous driv-
ing is categorized into six levels, where “Level 0” which means no autonomy
and “Level 5” is full autonomy, according to SAE International [1]. For more
than a decade, we have seen cars featuring level one (driver assistance) and
recently, cars with level two (partial automation). Even level three (condi-
tional automation) are already in mass-production. However, moving toward
higher levels of autonomy (e.g., levels 4 and 5 [1]) is challenging and requires
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to address several key aspects such as the demand for massive computation
capacity, security and certification.

Critical real-time domains, as in the case of AD systems, are not only about
the pursuit of absolute high-performance, but also about achieving sufficiently
high performance levels subject to meeting specific requirements related to
the certainty and predictability of the tasks’ execution time (sometimes even
at the expense of some performance loss). This occurs because in autonomous
vehicles, once the vehicle is unable to respond within the specified time, it may
cause a catastrophic event with fatalities. Therefore, AD systems, including
their software stack, need to be designed in such a way that these requirements
are fully satisfied [2,3,4,5].

Having a representative and comprehensive set of benchmarks can sig-
nificantly improve the development process by easing the assessment of the
system, as well as allow comparing fairly different design choices. This paper
presents ADBench, the first set of automotive benchmarks representative of
industry-level and modern AD systems whose main features are as follows.

Representative and reproducible benchmarks. We consider and in-
clude most of the common modules and functions including key functional
safety and comfort features to provide a comprehensive set of benchmarks.
These include the main modules of AD systems as well as driver-system in-
teraction functions such as speech recognition command and controls, driver-
assistance systems, and driver monitoring systems.

Realistic and industry-level modules. Many of the algorithms and
modules used in AD systems already exist in a variety of domains. However,
the complexity and dimensions of many of them widely changes across do-
mains. ADBench provides realistic benchmarks in terms of functionality and
complexity with respect to industry-level AD systems. Also ADBench targets
realistic hardware platforms for its execution and provides benchmarks com-
patible with the latest heterogeneous hardware platforms for AD systems such
as NVIDIA Drive Xavier [6] and NVIDIA Drive Pegasus [7].

Flexibility to configure the benchmarks according to the hard-
ware and software capabilities. Most of the ADBench benchmarks are
designed in a flexible manner to be configured easily according to the needs
of the user. In most cases, the problem size can be decreased in two main
dimensions. To change the problem size, we can change the input size – for
example, the resolution of the input image in the Camera Object Detection –
which will affect directly the computation time. On the other hand, for deep
learning-based benchmarks, the deep learning model architecture, such as the
type and number of layers, can be modified. This helps to diminish the problem
size for hardware prototyping (e.g., RTL models). Also, it allows to configure
the benchmarks for more powerful hardware to support a higher number of
sensors and higher resolutions.

The rest of the paper is organized as follows: In Section 2, we present back-
ground on the state-of-the-art AD systems and their main modules. Section 3
presents our study and comprehensive analysis of various AD systems. Sec-
tion 4 introduces the benchmarks in detail, and Section 5 provide some early
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analysis of some of the benchmarks. Finally, Section 6 reviews the related work
and Section 7 concludes the paper.

2 Background on Autonomous Driving

In the past few years, various AD systems have started their development and
most of them are still on-going projects aiming at reaching full autonomy (i.e.
level 5). Although several of them are not accessible to the community, their
main architecture and features are publicly available (e.g. Tesla autopilot [8]).

Among those AD systems, which are under development in top-tier tech
companies and car manufacturers, we have access to NVIDIA drive program [9],
Baidu’s Apollo program [10] and Autoware [11], which are open-source and
available for in-detail study. We have observed that key modules and the over-
all structure of the system, the use of heterogeneous sensors to perceive the
objects, and many more details are quite similar across these systems. For
the sake of simplicity and without lack of generality, in the rest of the paper,
we focus on Baidu’s Apollo AD framework and we describe its modules and
functions in more detail.

2.1 Apollo AD Framework

Apollo [10] is an open-source autonomous driving platform developed and re-
leased by Baidu. It offers its users the opportunity to develop their own AD
systems through on-vehicle and hardware platforms. Regarding its software
implementation, Apollo, similarly to most state-of-the-art AD systems, con-
sists of a set of main modules [12,13] (see Figure 1). Each of the modules
implements a crucial functionality of autonomous vehicles. The main modules
of Apollo are:

– Perception: identifies the area surrounding the autonomous vehicle by
detecting objects, obstacles, and traffic signs,. It is considered the most
critical and complex module of an AD system. Perception module fuses
the output of several types of sensors such as LiDAR, radar, and camera
to improve its accuracy.

– Localization: estimates where the autonomous vehicle is located, using
various information sources such as GPS, LiDAR and IMU. State-of-the-
art localization algorithms, including the one in Apollo, are capable of
localizing the position of the vehicle at centimeter-level accuracy.

– Prediction: anticipates the future motion trajectories of the perceived
obstacles.

– Navigator: tells the autonomous vehicle how to reach its destination via
a series of lanes or roads.

– Planning: plans the spatiotemporal trajectory for the autonomous vehicle
to take.
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Fig. 1: Interaction between Apollo’s modules [10].

– Control: executes the planned spatiotemporal trajectory by generating
control commands such as accelerate, brake, and steering.

– CanBus: is the interface that passes control commands to the vehicle
hardware. It also passes chassis information to the software system.

– HD-Map: is similar to a library. Instead of publishing and subscribing
messages, it works as a query engine support, which provides ad-hoc struc-
tured information regarding the roads.

– HMI (Human Machine Interface): is a module for viewing the status of
the vehicle, testing other modules and controlling the functioning of the
vehicle in real-time.

– Monitor: is the surveillance system of all the modules in the vehicle,
including hardware.

– Guardian: is a safety module that performs the function of an Action
Center and intervenes should Monitor detect a failure.

For the sake of facilitating the installation and managing dependencies
across numerous libraries, Apollo, similarly to other AD systems, is provided
inside several Docker container images [14]. A container is a standard software
unit that packages up code and all its dependencies so the entire application
can run in a quick and reliable way in many different computing environments.
A Docker container image is a lightweight, standalone, executable package of
software that includes everything needed to run an application: code, runtime,
system tools, system libraries and settings.

Each module is initialized by the Robot Operating System (ROS) [15],
loading its parameters. These parameters are given to the module through
configuration files or as flags in the command line. After that, the module calls
the Spin function, which initializes one or more ROS Spinners before finishing
the module initialization step. Then, the Spinners call their Spin functions,
which execute all the callback functions that are triggered during runtime,
until the client shuts down the module. A callback function is connected to
a specific event, and it is triggered when this event occurs. In terms of ROS,
a function can subscribe to an event (topic) and publish an event as well.
Therefore, during normal operation, modules spin constantly awaiting for the
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Fig. 3: DAG of the camera configuration.

events that trigger them (e.g. a new camera frame becomes available), and
execute upon the occurrence of those events, further producing new events
(e.g. an object list that will trigger other modules). Next, we illustrate the
operation of a module with the perception module [16], which is, indeed, the
most complex module.

Perception Module. It is in charge of the detection of the obstacles that
surround the car. Its main functionality is to transform data from sensors (e.g.,
images from cameras, point clouds from LiDAR) into obstacles, thus, acquiring
relevant information about them such as their position, size, orientation, etc.

Some of the large modules such as Perception are composed of several sub-
modules. Submodules are very similar to modules. Their members share the
same structure although each of them has a specific and totally different func-
tionality. They also register callbacks to be triggered by messages or timers,
and publish messages, thus communicating with other members or other com-
ponents of Apollo.

The global configuration of input sensors for the Perception module can be
represented as a direct acyclic graph (DAG). With this, Apollo offers the pos-
sibility of building customized configurations, according to the requirements
and the available hardware. These DAGs, along with other parameters of the
input sensors, are defined in a configuration file. Two different configurations
are shown in Figures 2 and 3. In these DAGs, nodes correspond to different
processes and each of them is responsible for completing a specific task. Ar-
rows indicate data dependencies between nodes of each DAG. For instance,
in Figure 3, Fusion requires the output data of Lane post-processing, Camera
process, and Radar process. Although submodules mainly perform indepen-
dent tasks, however, they communicate and exchange data. In fact, in most
cases the system behaves in a pipeline fashion where the output of one module
(submodule) is an input to the successor module (submodule).
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Fig. 4: Communication between ROS and modules using the Adapter Manager
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All modules use adapters to communicate with I/O and with other mod-
ules, and each adapter is attached to a certain topic, as Figure 4 shows. More
precisely, it shows how ROS and modules communicate using the Adapter-
Manager to subscribe and publish messages. As the blue arrows show, during
the initialization phase of a module, such module adds its callbacks to the
adapters of the topics that it is subscribed, through the AdapterManager.
From the adapter’s point of view, this phase finalizes when all callbacks re-
lated to the topic are stored in its receive callbacks vector. In this vector, the
adapter saves the callback functions to trigger when an incoming message ar-
rives. Then, when the module is running, if a message of that topic enters the
system, via ROS (e.g. I/O) or other modules (red arrows), the adapter (with
the RosCallback function) will trigger all functions inside the vector, as green
arrows show. Note that the spinner created by the module is the one detecting
the message, and the one running the function.

AD systems are usually structured similarly to the aforementioned ap-
proach. We have designed the ADBench benchmarks to process events from
ROS bag files1, thus decoupling them from other modules and the whole
AdapterManager scheme. This infrastructure will help developers to focus on
the modules themselves rather than on the complex communication system.

3 Analysis and Design Space Exploration

This section presents a structural analysis of AD frameworks, in contrast with
previous section, which provided a functional description. We build our anal-

1 A bag is a file format in ROS for storing ROS message data. They are typically created
by a tool like rosbag, which subscribes to one or more ROS topics, and stores the serialized
message data in a file as it is received. These bag files can also be played back in ROS to
the same topics they were recorded from, or even remapped to new topics.
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Fig. 5: Hierarchical structure of AD systems [17].

ysis studying several state-of-the-art AD systems for the sake of representa-
tiveness. We present a top-down hierarchical structure of the AD systems and
then, we discuss each of the levels of this hierarchy in more detail by high-
lighting the key points of relevance for ADBench.

3.1 General Architecture of AD Systems

To build ADBench, we have done a thorough analysis on three different AD
system which provide end-to-end software stack for autonomous vehicles, Au-
toware [11], Apollo [10], and NVIDIA Drive [9]. Our analysis confirms that
the key functions and architecture of AD systems are very similar although
implementation approaches and detailed algorithms may vary across different
AD systems. Based on these analyses, we draw a hierarchical overview of AD
systems, as shown in Figure 5, considering the following features:

– Input sensors which are needed to sense the surrounding of the vehicle.
– Driver libraries to use third-party sensors and units.
– Modular structure of the system.
– Use of a middleware in some AD systems with different purposes.
– The target hardware platform on which the overall system or specific mod-

ules run.
– Implementation of low-level and platform-dependent libraries.
– Use of graphical user-interface for user-system interaction.

As Figure 5 shows, we decompose the architecture of AD systems into
several levels. Often these systems fuse the outcome of various types of sensors
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to increase the accuracy of the system. For instance, in the three AD systems
that we study, the perception module uses laser sensors (LiDAR), ultra-sonic
sensors (radar) and various types of cameras as shown in level 2 of Figure 5. An
AD system is composed of several modules that are responsible to implement
specific functions of the system. Level 3 shows some of these modules, which
are common in AD systems. Modules may use specific drivers to communicate
with various sensors in the system.

As discussed in Section 4, the interaction across modules is high, and it
is managed through a middleware such as ROS [15] or CyberRT [10] (see
level 4). Level 5 shows the target hardware platforms on which the modules
run. In general, we have multicore processors that host the main functions
and the middleware. AD systems also use high-end and powerful GPUs as
well as specific accelerators to run some compute- and energy-intensive mod-
ules. Lastly, depending on the target hardware platform, the system may use
platform-specific, low-level, and optimized libraries, which include very specific
functions organized hierarchically, as shown from level 6 to 8 respectively.

ADBench has been made comprehensive in nature, and not only includes
key modules and their variants, but also considers various implementations
targeting different platforms and low-level libraries.

3.2 AD Systems Hierarchical Structure Breakdown

3.2.1 Sensors

Vision Sensors. Building reliable vision capabilities is key for AD systems.
By combining a variety of sensors, however, developers have been able to
create a detection system that can see a vehicle’s environment even better
than human eyesight. The keys to this system are diversity, by using different
types of sensors, redundancy and overlapping sensors, to ensure that object
detection is accurate enough.

The three primary autonomous vision sensors are camera, radar and Li-
DAR. Together, they provide the car visuals of its surroundings and help
detecting the speed and distance of nearby objects, as well as their three-
dimensional shape. State-of-the-art AD systems use all the three types of vi-
sion sensors for the sake of reliability and accuracy.

Localization Sensors. Current localization approaches for AD systems
involve satellite navigation systems, vehicle motion sensors, range sensors, and
also include the vision sensors. For instance, the Inertial Measurement Unit
(IMU) is a sensor capable of defining the movement of the vehicle along differ-
ent axes. It calculates acceleration along the X, Y, Z axes, orientation, inclina-
tion, and altitude. A Global Navigation Satellite System (GNSS) is often used
for positioning, whose information can be leveraged by several modules. For
instance, Global Positioning System (GPS) or NAVSTAR are the US system
for positioning.
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Both Perception and Localization modules in AD systems use the latest
sensors to provide high accuracy. This is taken into account in the benchmarks
provided by ADBench.

3.2.2 Modules

Modular design has plenty of well-known advantages for the development and
maintenance of complex systems, as it is the case for AD systems. Modu-
lar design allows reducing the complexity of the development process with
a divide-and-conquer strategy, eases the update and replacement of parts of
the system, and simplifies debugging, organization and documentation, among
other advantages.

For these reasons, AD systems, which are complex systems, are designed
in a modular way. The benchmarks that are provided by ADBench reflect this
modularity focusing on particular functionalities of AD systems.

3.2.3 Middleware

Middleware is a core component of many customized and automated platforms.
The middleware in AD systems is used to rapidly build applications, from
advanced driver-assistance systems (ADAS) functions and complex Human-
Machine Interfaces (HMIs) to full autonomy suites. The use of modular design
can help the applications to be independent of the middleware, sensors and
computing hardware. Apollo and Autoware use ROS [18] as middleware. ROS
is responsible for the implementation of message passing and communications
system across modules and sensors. The representative benchmarks in AD-
Bench use ROS as middleware to communicates with the sensors’ data and
other modules of the system.

3.2.4 Hardware Platforms

Hardware platforms are as important as software ones for AD systems. How-
ever, while software platforms in cars may experience upgrades during their
lifetime, this is not generally the case for hardware platforms. For instance,
software updates may occur to improve object detection with cameras or radars
to increase accuracy and fix corner cases. However, such software, which may
become more performance-hungry, needs to run efficiently and timely on the
hardware platforms onboard as they are. Therefore, cars must be equipped
with powerful and flexible hardware platforms.

In fact, the radical growth in performance required by AD systems has al-
ready propelled the developers and industry to use accelerators and specialized
hardware platforms. Powerful and high-end GPUs are now part of most AD
systems. Also, some vendors, such as Tesla, are designing their own specialized
hardware to maximize the performance/energy ratio.

The use of GPUs or other hardware requires to adapt the software by modi-
fying its implementation, or reimplementing some functions. To this end, some
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modules, such as Perception, which can highly benefit from parallelization,
are implemented to run on GPUs or accelerators. Thus, several AD systems
provide CUDA implementations for NVIDIA GPUs. Some of the ADBench
benchmarks with high performance demands include CUDA and OpenMP
implementations for NVIDIA GPUs and multicore CPUs respectively.

3.2.5 Low-level Platform-dependent Libraries

Depending on the target hardware platform, a platform-dependent optimized
library is used, which includes the majority of the required low-level func-
tions implemented and optimized for that specific platform. For instance, AT-
LAS [19] and openBLAS [20] are two well-known libraries for CPUs, as well
as cuBLAS [21] and cuDNN [22] for NVIDIA GPUs.

At this low level, different operations are performed by calling the cor-
responding functions of a library providing their required parameters. Such
compute-intensive operations are linear algebra operations (mostly matrix op-
erations) whose platform-dependent implementations are provided by the cor-
responding libraries. Normally, these implementations have been optimized
with average performance in mind.

The result of our thorough analysis on different AD systems shows that the
deep learning-based modules and submodules are the ones with heaviest com-
putation loads. We have observed that their computations are translated into
operations such as vector addition, scalar multiplication, dot product, linear
combinations, and matrix operations with different dimensions. Deep learn-
ing frameworks do not implement those operations directly but, instead, they
are built upon low-level libraries providing efficient implementations (mostly
targeting optimized average performance) for different CPU and GPU tar-
get platforms. In particular, the frameworks considered in our analysis build
upon one or several of the following low-level libraries (e.g., TensorFlow uses
cuBLAS, TensorRT and cuDNN libraries):

– BLAS [23] (Basic Linear Algebra Subprograms) is a specification that
prescribes a set of low-level routines for performing common linear algebra
operations such as vector addition, scalar multiplication, dot products,
linear combinations, and matrix multiplication.

– OpenBLAS [20] is an open source implementation of the BLAS API with
many hand-crafted optimizations for specific processor types.

– ATLAS [19] (Automatically Tuned Linear Algebra Software) is a library
for algebra targeting high-performance computing platforms.

– Intel MKL [24] (Intel Math Kernel) is a library of optimized math rou-
tines for science, engineering, and financial applications. Core math func-
tions include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast Fourier
transforms, and vector math.

– NVIDIA’s cuBLAS [21] library is a fast GPU-accelerated implementation
of the standard basic linear algebra subroutines (BLAS).

– cuDNN [22] (NVIDIA CUDA Deep Neural Network) library is a GPU-
accelerated library of primitives for deep neural networks. cuDNN provides
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highly tuned implementations for standard routines such as forward and
backward convolution, pooling, normalization, and activation layers, which
ultimately build upon matrix operations.

– TensorRT [25] is a library for high-performance deep learning inference
which includes a deep learning inference optimizer and runtime that de-
livers low-latency and high-throughput for deep learning inference appli-
cations, also building mostly on matrix operations.

ADBench employs some of these libraries for the implementation of the
benchmarks depending on the target architecture. For instance, the Camera-
based Object Detection benchmark employs cuDNN and OpenBLAS.

4 ADBench Benchmark Suite

4.1 Benchmarks

This section presents the 8 benchmarks in the proposed ADBench suite. We
have designed all the benchmarks based on modules of the Apollo AD frame-
work, presented in section 2.1. However, all of them are able to fully function
without being in a full AD system. In other words, the benchmarks are de-
signed by feeding all the data required from input files rather than co-runner
modules and real sensors. This data is included in ADBench to run the tests,
and was recorded from actual sensors and processes running in Apollo. Since
we are testing performance and not correctness, some benchmarks can auto-
generate random input data whenever data has no impact in performance (e.g.
the sequence of operations in a matrix multiplication depends on the dimen-
sions of the matrices but is independent of the actual values multiplied).

As discussed earlier, AD systems rely on a variety of sensors, such as cam-
eras and LiDARs, which require deep learning algorithms to process their data.
For this reason, some of the benchmarks utilize this kind of algorithms. The
deep neural network models employed in such modules are similar to those in
AD systems such as Apollo.

4.1.1 Camera-based Object Detection

This benchmark is in charge of obstacle and lane detection from the camera
images. The object and lane detection process begins by cropping the image
to the region of interest (ROI), if necessary, and resizing it to the required
resolution to be the main Convolutional Neural Network (CNN) input. Then,
the CNN’s forward propagation process occurs, computing information about
both object and lane detections. With the results of the forward propagation,
it generates the 2-D bounding box (BB), the class probabilities of each of
the objects, and the lane map (a matrix containing the probability that each
pixel is part of a lane at its position in the image). If the user indicates it
(by activating a flag), another similar process starts, however, with a different
CNN which provides more details on the lanes and different lane maps, one
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per each possible lane. After that, the following processes are carried out in
this order:

– 2-D BBs are used to generate 3-D BBs.
– The coordinates of the objects are transformed from camera to car space

coordinates.
– Each detected object is associated with another detected object in the

previous frame, if they match (tracking process).
– A Kalaman filter is applied to all matched objects.

As a result of the obstacle detection, it outputs a 3D rectangular cuboid
of each obstacle, together with its relative velocity and direction, and its clas-
sification type (vehicle, truck, cyclist or pedestrian). For the lane detection, it
outputs the lane map.

To sum up, the Camera-based Object Detector uses two CNNs, one for
obstacle and lane detection (main CNN), and the other for detailed lane de-
tection (secondary CNN). Both CNNs are based on YOLO [26]. The lane lines
are detected by segmentation using the main CNN with some modifications.
The secondary CNN can be activated, and it is used to provide longer lane
lines in cases of either whole or broken lines. The difference between both lines
is its final usage. While a lane mark segment is used for visual localization, a
whole lane line is used for lane keeping.

4.1.2 LiDAR-based Object Detection

This benchmark is responsible for obstacle detection from 3D point cloud data
from the LiDAR sensor. This process begins by filtering the LiDAR points
that are outside the ROI, removing background objects. The ROI specifies the
drivable area that includes road surfaces and junctions, which are retrieved
from the High Definition (HD) Map.

These filtered point clouds are the input of the CNN segmentation process,
which detects and segments out foreground obstacles, e.g. cars, trucks, bicycles,
and pedestrians. Then, the obstacle segments (or clusters) are used to define
a bounding box for each obstacle. Finally, once the detected obstacles are
defined, they are compared with previously-detected obstacles for tracking
purposes [27]. The output of this process is similar to the camera-based object
detection without the lane information.

4.1.3 Traffic Light Detection

This benchmark is designed to provide accurate and comprehensive traffic
light status using cameras. Typically, the traffic light has three states (colors):
red, yellow and green. However, if the traffic light is not working, it might
display the black color or show a flashing red or yellow light. Sometimes the
traffic light cannot be found in the camera’s field of vision and the module
fails to recognize its status, so it is unknown. This benchmark covers all the
five scenarios.
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The detection starts with the camera selection. Using a single camera that
has a constant field of vision is not enough to cover all the possible scenarios.
This limitation is due to the fact that the height of the traffic lights or the
width of crossing varies widely, and the perception range must be above 100
meters in order to take proper actions. Therefore, the selection is done building
on the data about localization, calibration of camera results, and the HD-Map.
The image of this camera is processed following these steps [28]:

1. Rectify. The projected position of the car, which is affected by the cal-
ibration, localization, and the HD-Map label, is not completely reliable.
Therefore, a larger ROI, calculated using the projected light’s position, is
used to find the accurate BB for the traffic light. The goal of this step is
to detect a traffic light BB in a ROI of the input image. The traffic light
detection is implemented as a regular CNN detection task.

2. Recognize. In this step, the BB’s color of the detected traffic lights are
classified. This recognition is implemented as a CNN classification task.
The class with maximum probability will be regarded as the light’s status,
if and only if the probability is large enough. Otherwise, the light’s status
will be set to black, which means that the status is not certain.

3. Revise. Since a traffic light can be flashing or shaded, and the previous step
does not give a perfect result, the current status may fail to represent the
real status. This step aims to correct the recognized color using sequential
information across multiple frames.

4.1.4 Localization

Two of the existing approaches for localization of autonomous vehicles are
regarded as the most accurate, and thus are the most used ones. The first
approach is Real Time Kinematic (RTK) based method, which incorporates
GNSS and IMU information. The other approach, which provides centimeter-
level accuracy and is implemented in this benchmark, builds on the Multi-
Sensor Fusion (MSF) method, which incorporates GNSS, IMU, and LiDAR
information [29,30].

The localization benchmark adaptively uses information from complemen-
tary sensors (GNSS, LiDAR, and IMU) to achieve high localization accuracy
and resilience in challenging scenes, such as urban downtown, highways, and
tunnels. The MSF method makes an innovative use of LiDAR intensity and
altitude cues to significantly improve localization system accuracy and ro-
bustness. A GNSS RTK module utilizes the help of the MSF framework and
achieves a better ambiguity resolution success rate. Reported results show
that the approach can provide 5-10cm root mean square (RMS) accuracy and
outperforms previous state-of-the-art systems. Therefore, this benchmark has
been included in ADBench.
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4.1.5 Planning

The planning benchmark mimics the behavior of the planning module, which
is in charge of generating a trajectory for the autonomous car that is safe,
collision-free and comfortable to execute. To do so, it needs different kinds of
information: data from the outside (e.g., perceived obstacles and traffic lights),
the actual route of the car, and its localization and status such as position,
velocity, acceleration, to name a few. Since during the ride the vehicle has
to deal with different road conditions and driving scenarios, this method uses
scenario-specific and holistic approaches for planning its trajectory. Apollo, for
instance, focuses on three driving scenarios: following the lane, side passing a
static obstacle, and retaking the ride after a stop signal. During the ride, this
method detects the current scenario and selects the correct approach to deal
with it from the vehicle status and other relevant information. First, a raw
trajectory is generated and applies vehicle kinemetic model in the algorithm
to create the raw trajectory with a series of distance equidistant points. The
received raw trajectory is taken as an initial guess for optimization steps to
iterate on. The generated result is a set of points that are not distributed evenly
but are closer to each other near the turning while those on a linear path are
more spread-out. This not only ensures better turns, but as time/space is fixed,
the nearer the points, the slower the speed of the vehicle [31,32]. The planning
benchmark is implemented using thread-level parallelism due to the nature of
its design to improve the performance and efficiency.

4.1.6 Prediction

Prediction is also one of the key functions of AD systems, which is in charge
of anticipating the future motion trajectories of the perceived obstacles. Given
the obstacles, their status (positions, headings, velocities, accelerations, etc.)
and the vehicle localization, it generates the predicted trajectories with prob-
abilities for each of the obstacles. It first predicts the path and the speed
separately for any given obstacle, which is done using a Multi-Layer Percep-
tron (MLP) model. Then, using these predictions, the method generates the
predicted trajectories of each of the obstacles. To this end, it offers six possible
predictors to use depending on the type (e.g., bicycle, pedestrian, vehicle, etc.)
and status (e.g., on the same lane) of the obstacle under analysis, which are
as follows [33]:

– Empty: obstacles have no predicted trajectories.
– Single lane: obstacles move along a single lane in highway navigation

mode. Obstacles that are not on lane will be ignored.
– Lane sequence: obstacle moves along the lanes.
– Move sequence: obstacle moves along the lanes by following its kinetic

pattern.
– Free movement: obstacle moves freely.
– Regional movement: obstacle moves in a possible region.
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4.1.7 Navigator

Navigation module in AD systems generates high level navigation information
based on requests from other modules. It uses map data, the routing start
point, and the routing end point, to compute the passage lanes and roads.
Usually, the routing start point is the autonomous vehicle current location.
The Navigator benchmark mimics this behavior. Basically, it searches for an
optimized path (i.e. shortest path or fastest depending on the configuration)
between the start and end points and if successful, it provide the details of the
path to the system. This process is very similar to graph search algorithms
which are aiming at finding an optimal path.

4.1.8 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is the process of deriving the transcrip-
tion of an utterance, given the speech waveform in form of word sequences.
Understanding the speech, however, goes one step further, and gleans the
meaning of the utterance in order to carry out the speaker’s command. Speech
recognition systems are one of the lately-introduced ways of human-machine
interaction. ASR systems inside cars aim at increasing safety by allowing the
driver to control a number of features of the car without using his/her hands
or distracting his/her eyes from the road. ASR systems are considered as com-
plex algorithms due to the challenging nature of the problem. Fortunately,
deep learning significantly boosts the accuracy in ASR systems to human-level
precision.

This benchmark provides an end-to-end ASR pipeline with medium-size
vocabulary for AD systems based on deep learning. It is designed based on
state-of-the-art ASR systems to be employed in AD systems with the possi-
bility of modifying the algorithm and employing other models.

4.2 Measuring Metrics

One of the main use cases of the ADBench suite consists of assessing the per-
formance of hardware platforms running AD algorithms. For this purpose, we
measure the performance through the benchmarks’ execution times mimicking
the same function as in real AD systems. The hardware must be able to run
each of the benchmarks within specified deadlines to be appropriate for real
systems. Failing to perform the specified tasks and computations in time can
cause catastrophic risks. The deadline for each benchmark varies depending
on a number of parameters, which generally relate to system requirements.
For instance, the object detection module needs to process the input frames
produced by the cameras. A camera working at 30 frames per second (FPS)
requires the object detection module to process each frame within 33 ms,
whereas if the camera works at 60 FPS, then the limit would be 16 ms.
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4.3 Implementation Details

Table 1: Implementation details of ADBench benchmarks for different hard-
ware platforms.

Benchmarks x86 ARM CUDA OpenMP CUDA + Tensor Core
Camera-based OD X X X X X
LiDAR-based OD X X X X X

TL Detection X X X X X
Localization X X

Planning X X
Prediction X X
Navigator X X

ASR X X X X X

As discussed in Section 3.2.4, we designed the ADBench benchmarks to
run on various hardware platforms, which in most cases require modified im-
plementation rather than just using different compilers. Table 1 summarizes
the implementation details of each of the benchmarks for x86 and ARM ar-
chitectures, NVIDIA GPUs using CUDA and tensor cores for deep learning in
the latest NVIDIA architectures, and OpenMP for multicore CPUs or GPUs.

4.4 Summary of Features

Overall, the ADBench benchmark suite has the following features:

– ADBench consists of 8 benchmarks that have been developed for x86 and
ARM architectures. Among them, 4 benchmarks have been highly paral-
lelized using OpenMP for multicore CPUs and also CUDA implementa-
tion for NVIDIA GPUs. In the development process of the ADBench suite,
several optimization steps have been performed and the latest features
of state-of-the-art architectures, such as vector units and tensor cores in
GPUs are considered.

– The benchmarks cover a variety of domains in AD systems, from various
forms of object detection to advanced localization algorithms and path
planning.

– Some workloads with similar algorithm and logic, can be designed and em-
ployed in different ways. For instance, the Camera-based Object Detection
benchmark can employ different DNN models for detecting object from
camera data. Consequently, dimensions of the DNN layers, number of lay-
ers, performance and other requirements can be tuned as needed. ADBench
benchmarks are designed in such a way that this diversity is considered and
it is up to the user to configure the benchmark based on his/her needs.
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Fig. 6: Execution time breakdown of each benchmark.
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5 Analysis Results

In this section, we first present the execution time breakdown of each bench-
mark to highlight the most time-consuming functions (submodules) of each
benchmark. Then, as an illustrative example, we focus on more details of one
of the most complex benchmarks, the camera-based object detection.

5.1 Experimental Platform

We test the ADBench suite on an x86 platform using an AMD Ryzen 7 1800X
processor with 8 dual-threaded cores, 64 GB of DDR4 RAM at 2133 MHz, and
a Pascal-based high-end GPU (the NVIDIA GeForce 1080 Ti with 3584 CUDA
cores). The experimental platform resembles state-of-the-art automotive Sys-
tems on Chip (SoCs) targeting the automotive AD market. For example, the
two variants of the NVIDIA Drive PX2 platform, AutoCruise and AutoChauf-
feur, have similar CPU and GPU configurations. The former comprises a single
Tegra X2 SoC, which contains 4 ARM Cortex-A57 and 2 Denver cores, com-
bined with an integrated Pascal GPU. The latter contains two Tegra X2 SoCs
and 2 discrete Pascal-based GPUs. Moreover, the ARM A57 CPUs used in
these platforms exhibit similar hardware complexity as that of the x86 cores
in our platform, since both are superscalar, out-of-order CPUs, with several
levels of cache.

5.2 Execution Time Breakdown

One of the first steps to understand and analyze the behavior of an appli-
cation is to perform a profiling and obtain the execution time breakdown of
its components. Profiling helps to understand where the time and resources
are spent when running the application. This is a key step to understand the
behavior of the application for further analysis and optimization. In this line,
we perform a profiling analysis on the ADBench benchmarks and plot the ex-
ecution time breakdown for each of the benchmarks, as shown in Figure 6.
We used an x86 platform for illustration purposes, although the main trends
hold for other platforms equipped with a high-performance GPU. As Figures 6
(a) and 6 (b) show, the CNN evaluation accounts for a significant fraction
of the execution time despite it is highly parallelized and runs on the GPU.
In the LiDAR-based object detection benchmark, the ROI selection process
takes more than 65% of the total execution time.

In Figure 6 (c) camera selection and light validation processes are the ones
that consume most of the time. In Localization, Figure 6 (d), the compose sta-
tus, pre- and post-process are the functions where most of the time is spent on.
As we see also in the Prediction benchmark, Figure 6 (e), the preprocess again
takes a large fraction of the execution time (45%), which shows how impor-
tant are these steps, so they are good candidates for any form of optimization.
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Fig. 7: Execution time breakdown for camera-based object detection CNN
kernel.

Lastly, it is not surprising to see that in the ASR benchmark, Figure 6 (f),
acoustic scoring takes 75% of the total execution time. Acoustic scoring in
one of the steps that has the most significant effects on the accuracy of the
ASR system. Therefore, usually sophisticated machine learning and compute-
intensive models are employed to improve the accuracy of the ASR system.
Note that we do not plot the breakdown of the execution time for the navi-
gator and planning benchmarks due to the fact that they are not composed
of several functions and, in fact, there are very few functions in charge of the
entire process.

5.3 Camera-based Object Detection: GPU Kernels Breakdown

As shown in Figure 6, in object detection benchmarks, the convolutional neural
network (CNN) evaluation is one of the key functions accounting for most of
the execution time. For this reason, this function is executed on GPUs or
specialized accelerators to exploit its huge parallelism. ADBench provides a
CUDA kernel implementation using NVIDIA’s highly optimized libraries (e.g.,
cuBLAS and cuDNN). Figure 7 shows the execution time breakdown of this
function in the GPU. Due to the nature of CNNs, most of the computations
are performed as general matrix multiply (GEMM) operations, as shown in
the Figure. After the GEMM function, which consumes more than 67% of the
execution time, the image-to-column transformation (im2col kernel), used in
convolution to do matrix multiplication by laying out all patches into a matrix,
is the most time-consuming kernel.

6 Related Work

There are multiple benchmark suites for different domains. However, to our
knowledge, we lack a benchmark suite considering state-of-the-art AD systems
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and their various modules. ADBench aims at providing a comprehensive set
of benchmarks for AD systems.

Deep Learning-based Benchmark Suites. With the dramatic suc-
cess of deep learning-based approaches in the past years, various benchmark
suites have been developed for different purposes. MLPerf [34] is a comprehen-
sive framework designed focusing on inference accuracy/performance tradeoffs,
performance metrics and evaluation, and also on the accelerators design for in-
ference of machine learning workloads. Although some modules, such as object
detection, are common in computer vision and AD systems, we focus on fea-
tures that are more of the interest of AD systems rather than generic computer
vision domain.

The EEMBC MLMark [35] is a machine learning benchmark designed to
measure the performance and accuracy of embedded inference. The motivation
for developing this benchmark grew from the lack of standardization of the
environment required for analyzing ML performance. MLMark is targeted at
embedded developers, and attempts to clarify the environment in order to fa-
cilitate, not just performance analysis of today’s offerings, but tracking trends
over time to improve new ML architectures.

Automotive Suites. EEMBC provides some benchmarks for some control
functions of today’s cars, but does not support AD systems functionalities.
ADASMark [36] focuses on benchmarking a typical vision pipeline that may
be used in ADAS platforms. Built on OpenCL, the pipeline may be distributed
among CPUs, GPUs and DSPs. However, the main modules and key functions
of AD systems are totally different and more complex than those of ADAS.

Other Benchmarks and Datasets. The work done in [37] proposes au-
tonomous vehicle benchmarking with unbiased metrics such as fuel consump-
tion, maintenance cost, or trip’s time and distance. Its goal is to assess the
vehicle’s performance in terms of its capabilities to operate without manual
driver intervention and its dependability on human input, taking into account
the type of road conditions where it operates and the quality of the data.
KITTI [38] and nuScenes [39], are benchmarks to test algorithms oriented to
AD, such as Object detection algorithms. They contain data from a great
variety of sensors in real vehicles. LG SVL [40] is an Autonomous Vehicle Sim-
ulator to test the response of an AD system. This is very useful to train and
test AD frameworks in all possible cases. In contrast with these Benchmarks/-
Datasets, the ADBench suite goal is to test the hardware’s performance when
running AD Software; therefore, they are used for different purposes.

To our knowledge, ADBench is the first benchmark suite specifically tar-
geting advanced AD systems and can be a reference for future research and
development in the community.

7 Conclusion

This paper introduces ADBench, the first benchmark suite for AD systems.
ADBench focuses on industry-level and state-of-the-art AD systems and pro-
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vides representative benchmarks targeting the main functions of AD systems.
ADBench provides reproducible, realistic, and industry-level benchmarks, which
are implemented according to latest automotive hardware platforms. The bench-
marks are designed to be flexibly configured accordingly to the user’s software
and hardware requirements. Standard and representative benchmarks allow
developers and designers to perform the analysis, verification and validation
process of their solutions easier. Furthermore, ADBench facilitates the quanti-
tative assessment and comparison of various hardware and software solutions.
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