UNIVERSITAT POLITECNICA DE CATALUNYA UNIVERSITAT POLITECNICA DE CATALUNYA
BARGCELONATECH BARCELONATECH
Escola d'Enginyeria de Telecomunicacio Escola d'Enginyeria de Telecomunicacio

i Aeroespacial de Castelldefels i Aeroespacial de Castelldefels

TREBALL DE FI DE GRAU

TiTOL DEL TFG: On-Board Computer software and FlatSat testing for the 3Cat-4
CubeSat mission

TITULACIO: Grau en Enginyeria de Sistemes Aeroespacials
AUTOR: Albert Morea Font

DIRECTORS: Hyuk Park, PhD.
Lara Fernandez

SUPERVISOR: Joan A. Ruiz-de-Azua, PhD.

DATA: September 2, 2021

Titol: Programari per I'ordenador de a bord i comprovacions en FlatSat per la missio
Cubesat 3Cat-4
Autor: Albert Morea Font

Directors: Hyuk Park, PhD.
Lara Fernandez

Supervisor: Joan A. Ruiz-de-Azua, PhD.
Data: 2 de setembre de 2021

Resum

Els avengos tecnologics dels ultims temps han permes la miniaturitzacié de components
aixi com I'aparicio de I'estandard CubeSat ha resultat en la creacié d’'instrumentacio sense
necessitat d’adaptacié a la plataforma. Una nova industria, anomenada NewSpace, ha
nascut d’aquestes dues premisses, on les barreres d’entrada tant en 'ambit econdmic com
tecnic s6n més baixes que en la industria espacial tradicional, coneguda com a OldSpace.

En el marc del Newspace, el centre de recerca de la UPC-BarcelonaTech, Nanosatellite
and Payload Laboratory, conegut com a NanoSat Lab, desenvolupa missions CubeSat
especialitzant-se en experiments per a observacio de la terra, tals com reflectometria i
radiometria.

Una d’aquestes missions és 'anomenada 3Cat-4, un nanosatellit que segueix I'estandard
CubeSat amb una estructura d’una unitat. 3Cat-4 es desenvolupa sota el paraigties del
projecte "Fly your satellite! [I"de '’Agencia Espacial Europea, qui proveix de suport técnic
durant tot el desenvolupament aixi com patrocina el llangament.

Aquesta tesi contribueix en el desenvolupament de la missié 3Cat-4, especificament en el
desenvolupament de programari. Per una banda, es contribueix en el programari de vol,
encastat en I'ordinador de a bord del nanosatéel-lit. Les aportacions més rellevants soén la
integracié dels diferents subsistemes a I'ordenador de a bord, la creacié d’'una capa per a
gestionar els possibles errors i la implementacié d’una logica d’estats que dota al sistema
de més autonomia per autogestionar-se. Per altra banda, es contribueix implementant un
sistema de visualitzacié de dades del que permeten el control durant les fases de testatge
i desenvolupament i durant la fase d’operacions, ja en orbita.

Finalment, les implementacions de programari realitzades es verifiquen realitzant tests en
configuracié FlatSat, on en aquesta tesi s’en destaquen els més rellevants. Aquest testat-
ge permet validar el sistema tant en 'ambit de programari com en I'ambit de la maquinaria.

Les conclusions d’aquesta tesi son la importancia de produir un programari robust que
permeti controlar el estat del sistema en tot moment i de forma autonoma, a causa de la
forta limitacié que suposa no poder accedir al nanosatel‘lit en qualsevol moment. També
es destaca la importancia de la realitzacié del testeig adient per cobrir tots els possibles
casos i caracteritzar el comportament del sistema.

Title : On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission
Author: Albert Morea Font

Advisors: Hyuk Park, PhD.
Lara Fernandez

Supervisor: Joan A. Ruiz-de-Azua, PhD.
Date: September 2, 2021

Overview

Last times technological breakthroughs allowed miniaturization of components and com-
bined with the introduction of the CubeSat standard resulted in the creations of compo-
nents without the need of platform customization. A new industry, known as NewSpace,
emerged from these two premises, where the entry barriers both from an economical and
technical point of view are lower than the traditional space industry, known as OldSpace.

In the frame of NewSpace, the research center from UPC-BarcelonaTech, Nanosatellite
and Payload Laboratory, known as NanoSat Lab, develops CubeSats missions specializing
in Earth Observation payloads, such as reflectometry and radiometry.

One of these missions is the one known as 3Cat-4, a nanosatellite that follows the standard
of 1 unit. 3Cat-4 develops under the scope of the project "Fly Your Satellite! 1I” from the
European Space Agency. The agency provides support during the development of the
mission as well as sponsors the launch.

This thesis contributes in the development of the 3Cat-4 mission, specifically in the devel-
opment of software. On one side, it contributes to flight software, which runs embedded
in the on-board computer of the nanosatellite. The most relevant contributions are the
integration of the different subsystems onto the on-board computer, the creation of an er-
ror management layer and the implementation of a state logic that provides the system
more autonomy for self-management. On the other side, it contributes implementing a
satellite data visualization system that allow to control the satellite during the testing and
developing phase as well as the operations phase, in orbit.

Finally, the software implementations done are verified performing test in FlatSat configu-
ration. The most relevant ones are included in this thesis. This testing allows to validate
the system both from a software and hardware point of view.

The conclusions of the thesis are the importance of developing robust software that allows
the control of the system’s state in every moment and autonomously from ground, due
to the important constraint of not being able to access the spacecraft anytime. Also, it is
important to perform the required testing in order to cover all the possible cases and to
characterize the system’s behavior.

Aim higher

CONTENTS

Listof Figures Xiii
Glossary XV
INTRODUCTION 1
CHAPTER 1. 3Cat-4 Satellite architecture 9
1.1 Satellitestack 9
1.2 Subsystems 10
1.2.1 Electrical and Power Subsystem (EPS 10
1.2.2 On-Board Computer (OBC) 10
1.2.3 Communications Subsystem (COMMS) 11
1.2.4 Attitude Determination and Control Subsystem (ADCS) 11
1.2.5 Flexible Microwave Payload 1 (FMPL) 11
1.2.6 Deployments Subsystems 12
1.2.7 Communicationbuses 13
1.3 Satellitemodes 13
1.3.1 Globaloverview 13
1.3.2 Launch and Early Orbit Phase (LEOP) modes 15
1.3.3 Operationalmodes 16
1.3.4 Decommissioningmode Lo 16
1.35 Groundmode 17
1.4 Software architecture Lo 17
1.4.1 Real Time Operating Systems and spacecrafts 17
142 FreeRTOS o 18
CHAPTER 2. Software Development 21
2.1 Spacesegment 21
211 Taskstructure 21
2.1.2 Errormanagement. Lo 23
213 EPStask. 24
214 TTCtask. e 26

215 ADCStask 28

21.6 Deploystask 30

217 Payloadtask 34
21.8 Managertask 36
22 GroundSegment 38
2.3 OperationalDisplay 38
CHAPTER 3. FlatSat Testing 41
3.1 Methodology 42
3.1.1 Facilities and equipmentused L. 42
3.2 EPSheatertest 45
3.21 Testobjectives 45
3.22 Testsetup 45
3.23 Testresults 46
3.24 Testconclusions 47
3.3 RFchaintest 48
3.3.1 Testobjectives 48
3.32 Testsetup 48
3.33 Testresults 49
3.34 Testconclusions Lo 49
3.4 ADCS high-sampling mode and functional chaintest 50
3.41 Testobjectiveso 50
342 Testsetup 50
343 Testresults 51
3.44 Testconclusions 52
3.5 NADS deploymenttest, 52
3.5.1 Testobjectives 52
352 Testsetup e e 52
353 Testresults 53
3.54 Testconclusions 55
CONCLUSIONS 57
Bibliography 59
APPENDIX A. Software related content 63

A1 EPStask 63

A.1.1 EPS configuration parameters 63

A.1.2 EPS housekeeping parameters L. 64
A1.3 EPSErrorstructure 65
A.1.4 Functions related to EPS configuration 66
A.1.5 Functions related to EPS housekeeping 66
A.1.6 Functions related to EPS self-management and watchdog timers . . 67
A.1.7 Functions related to EPS control of other subsystems 67
A2 TTCtask e 68
A.2.1 TTC configuration parameters 68
A.2.2 TTC housekeeping parameters 68
A23 TTCerrorstructure, 69
A.2.4 Functions related to TTC configuration 70
A.2.5 Functions related to TTC packet receiving and transmitting and house-
keeping 70
A.2.6 Functions related to TTC self-management and watchdog timers . . 70
A3 ADCStask e 71
A.3.1 ADCS configuration parameters 71
A3.2 ADCSTLEfile 72
A.3.3 ADCS housekeeping parameters 72
A3.4 ADCSerrorstructure 73
A.3.5 Functions related to ADCS configuration 74
A.3.6 Functions related to ADCS housekeeping 74
A.3.7 Functions related to ADCS missiontestmode 74
A4 OBDHtask e 74
A.4.1 OBDH configuration parameters 74
A.4.2 OBDH housekeeping parameters 75

A.4.3 OBDHerrorstructure 75

LIST OF FIGURES

1 Satellite classification in functionof mass[1]. 1
2 Mostcommon CubeSat envelopes[2] 2
3 Sample of a radiometry measure (left) and operational principle of GNSS-R (right) 4

1.1 Rendering of the exploded view of 3Cat-4 satellite. 9
1.2 Picture of the 3Cat-4 satellite integration process [3]. 10
1.3 Picture of a test deployment of the NADS antenna (NanoSat Lab). 12
1.4 Diagram of the communication buses available in the satellite and its connections. 13
1.5 State diagram implemented to control the behavior of the satellite. 14
1.6 LEOP modes. e 15
1.7 Nominal sequence. e 16
1.8 Decommissioningmode. 17
2.1 Tasks fixed structure flowchart.o o000 22
2.2 Errorlogic flowchart. 23
2.3 Raise error logic function flowchart.o oL 24
2.4 EPS process function flowchart.o oo 0oL oL 25
2.5 TTC process function flowchart. 27
2.6 ADCS process functionflowchart. 29
2.7 Deploys process function flowchart.o L. 32
2.8 Deploys burning sequence flowchart. 33
2.9 Payload process function flowchart. 35
2.10Manager process function flowchart. oo L. 37
2.11Picture of the Pluto SDR board used for the emulated ground station. 38
2.12First version of the ADCS dashboard using Grafana. 39
3.1 FlatSat configuration withtwo testbeds. 41
3.2 Process of debugging the FlatSat setup using a multimeter inside NanoSat Lab’s
cleanroom. L L 42
3.3 Picture of the TVAC opened with the 3Cat-4 MGSE inside. 43
3.4 Picture of the EGSE, with the umbilical connection at the top, power supply
connections at the bottom and flash and debug connections at theright. 44
3.5 Picture of the 3Cat-4 MGSE with the EPS component inside, getting prepared
foraTVACtest. 44
3.6 Diagram that represents the setup for the EPS Heatertest. 46
3.7 Snapshot from the EPS dashboard plotting the EPS temperature sensor values
overtime. L 46
3.8 Snapshot from the EPS dashboard plotting the EPS battery current consumption
sensorvalues overtime. L e 47
3.9 Snapshot from the EPS dashboard plotting the EPS battery voltage values over
time. e 47
3.10Antenna connected to the cleanroom’s coaxial feedthrough that represents the
satellite’santenna. 48

3.11Diagram that represents the setup forthe RFtest. 49

3.12Diagram that represents the setup forthe ADCStest. 50
3.13Snapshot from the ADCS dashboard plotting the gyroscopes acceleration, con-

trol values and EPS current consumption values overtime. 51
3.14Diagram that represents the setup for the NADS deploymenttest. 53
3.15Picture of the initial state of the NADS deploymenttest. 53
3.16Picture of the fingers deploy of the NADS deploymenttest. 54
3.17Picture of the half deployment of the NADS deploymenttest. 54

3.18Picture of the full deployment of the NADS deploymenttest. 55

GLOSSARY

ADCS Attitude Determination and Control Subsystem. xiii, xiv, 9, 11, 13, 18, 19, 28-30,
33, 39, 41, 50-52, 57, 58, 71-75

AIS Automatic Identification System. 3, 4, 12

ATC Ambient Test Campaign. 58

COMMS Communications Subsystem. 9, 11, 13, 41, 50, 57

COTS Commercial off-the-shelf. 2, 3, 10-13, 24, 33
DC-to-DC Direct Current to Direct Current. 30, 31

EGSE Electrical Ground Support Equipment. 43, 50
EO Earth Observation. 1-3, 12

EPS Electric Power Subsystem. xiii, xiv, 9-11, 13, 18, 19, 24-26, 30, 41, 42, 44-48,
50-52, 57

ESA European Space Agency. 2, 3, 18, 58
ESEC European Space Security and Education Centre. 58

ETC Environmental Test Campaign. 58

FFT Full Functional Test. 58
FMPL-1 Flexible Microwave Payload 1. 3, 9, 11-13, 34, 41

FSS Federated Satellite System. 3

GNSS Gilobal Navigation Satellite System. 4
GNSS-R Global Navigation Satellite System - Reflectometry. xiii, 3, 4, 12

GPIO General Purpose Input/Output. 31-34, 57

12C Inter-Integrated Circuit (Serial Communication Bus). 6, 7, 11, 13, 24, 26, 29, 30, 42
ICGC Institut Cartografic i Geologic de Catalunya. 3

IEEC Institut d’Estudis Espacials de Catalunya. 3

IGRF International Geomagnetic Reference Field. 28, 50

ISO International Organization for Standardization. 43

LEO Low Earth Orbit. 43

LEOP Launch and Early Orbit Phase. 15, 16

XV

LNA Low Noise Amplifier. 11

MGSE Mechanical Ground Support Equipment. xiii, 43—45

MT Mission Test. 58

NADS Nadir Antenna Deployment Subsystem. xiii, xiv, 9, 11-13, 15, 30-34, 41, 52-55,
57

NASA National Aeronautics and Space Administration. 2, 18
OBC On-Board Computer. 9—11, 13, 16, 21, 23, 24, 29-31, 33, 34, 41-43, 45, 47, 50, 52
OBDH On-Board Data Handling. 11, 18, 19

OISL Optical Inter-Satellite Link. 3

PA Power Amplifier. 11
PCB Printed Circuit Board. 31, 52

PID Proportional-Integral-Derivative. 11
SDR Software Defined Radio. xiii, 3, 12, 38

TLE Two Line Element Set. 28-30, 57
TTC Telemetry, Tracking & Command. xiii, 18, 19, 26-28, 30

TVAC Thermal and Vacuum Chamber. xiii, 6, 43—45, 55

UART Universal Asynchronous Receiver-Transmitter (Serial Communication Bus). 6, 7,
11,13, 34, 42

UHF Ultra High Frequency. 11, 12, 26, 38, 49
VHF Very High Frequency. 4, 12, 26, 38

ZADS Zenital Antenna Deployment Subsystem. 9, 12, 13, 15, 30, 33, 34, 41

INTRODUCTION

Nanosatellites and the CubeSat Standard

Since the early launch of Sputnik in 1957, the satellite industry has experienced consid-
erable changes and improvements. First, the predominant trend was to build and launch
bigger satellites year after year. This increase in size resulted in an increase of the power
and mass budgets, allowing to perform several experiments and functions in orbit. One
of the most memorable ones is the Hubble Space Telescope, launched in 1990 with a
total weight of 1110 kg. Nonetheless, one of the turning points in this evolution is the pro-
duction of miniaturized electronic components and systems thanks to technological break-
throughs. Moreover, another key aspect regarding satellites size is the relation between
payload mass and launch cost, which is direct and proportional. As a consequence, in the
last few years a huge step has been made on the development of smaller satellites (Figure

1).

Figure 1: Satellite classification in function of mass [1].

The satellites with a weight comprised between 1 to 10 kg, categorized as nanosatellites or
nanosats, have been a successful model of compromise solution for many use cases, like
Earth Observation (EO). Specifically, the CubeSat standard has been the most relevant
type of nanosat.

The CubeSat specifications [4] were defined in 1999 by two academia professors: Jordi
Puig-Suari, from California Polytechnic State University and Bob Twiggs, from Standford
University. The purpose of these specifications was to enable students to participate in
the design, build, test and operations of a space mission within a short time range. The
specifications were the result of a simplification and improvement of prior nanosatellites
designs from several initiatives. The CubeSat became a de-facto standard when their
specifications were adopted by other space missions after the launch of the first CubeSat
mission in June 2003.

The CubeSat specifications are a set of key points that define high-level design goals.
1

2 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

The most relevant aspects are the standardization of size, weight and envelope of the
spacecraft. The CubeSat envelope is organized by units, being a unit (named 1U CubeSat)
a cube with a 10 cm edge. Linked to these dimension constraints, there is a second
constraint of total weight up to 1.33 kg per unit. From this point, several combinations could
be made in function of mission requirements, ranging from 0.5U up to 27U. Nonetheless,
the most common envelopes are from 1 to 12 units, depicted in Figure 2.

Figure 2: Most common CubeSat envelopes [2]

The standardization of size, weight and envelope of CubeSats has many benefits. One of
them is the facilitation of the deployment system, allowing it to be generalist for any kind
of mission that meet the specifications. Furthermore, the standard allows space compa-
nies providers to mass-produce components and offer them as a commercial off-the-shelf
(COTS) component. This relates directly to time and cost of the mission, which are re-
duced as a consequence of the absence of highly customized interfaces and platforms in
order to test, transport, launch and deploy the satellites.

The success of the CubeSat standard can be justified with its adoption by several space
institutions. Until 2013, only academia was experimenting and using CubeSats platforms
as experiment platform and technology demonstrators, but in the last few years several
private initiatives adopted the standard. One of the best examples is Planet Labs, who
operates an EO CubeSats constellation formed by more than 200 satellites. Planet Labs
2020 annual revenue was $113 million and is expected to keep growing year by year [5].
Also, governmental institutions such as National Aeronautics and Space Administration
(NASA) [6] and European Space Agency (ESA)[7] started to launch CubeSat missions
with several purposes this last decade. One of this missions is from the NanoSat Lab,
named FSSCat [8], a two 6U satellite constellation that provides support in EO capabilities
to the ESA’s Sentinel mission.

UPC - NanoSat Lab Missions

This final degree thesis is being pursued in the Nano-Satellite and Payload Laboratory
of the Technical University of Catalonia, known as UPC-NanoSat Lab [9] . This cross-
departmental initiative aims at designing and developing nanosatellites missions and pay-
loads. The lab is focused on the research of innovative small spacecraft systems and
specifically in EO subsystems and payloads.

The 3Cat (pronounced cube-cat) family are CubeSat missions developed in the NanoSat

BIBLIOGRAPHY 3

Lab. All the missions follow the same structured nomenclature system of 3Cat-X, being X
the mission number.

1. 3Cat-1[10]: This 1U CubeSat was the first ever entirely designed in Catalonia. Its
main purpose was to be a technology demonstrator using mainly components off the
shelf and up to seven different payloads. Although it was finished by 2014, the launch
was in November 29th, 2018 due to several issues during the launch campaign.

2. 3Cat-3[11]: This 6U CubeSat is a study conducted under the demand of the Insti-
tut Cartografic i Geologic de Catalunya (ICGC). lts main purpose s to analyze the
feasibility of a small-satellite philosophy. For now, the project is in stand-by.

3. 3Cat-4[12]: This 1U CubeSat is the fourth mission from the NanoSat Lab. Awarded
by ESA Fly Your Satellite! program, mounts three different payloads and an innova-
tive deployable antenna system. This thesis is based on the 3Cat-4 mission so on
the following pages the mission and its objectives will be explained in-depth.

4. 3Cat-5A/B[8]: The fifth NanoSat Lab mission and also known as FSSCat, consist in
an innovative concept of two federated 6U CubeSat. This program is the winner of
the Copernicus Masters call to complement the Sentinel constellation for EO. Each
satellite carries a payload, being one of them a GNSS-R and a L-band radiometer
and the other a multi-spectral orbital payload. The main objectives are to measure
soil moisture, ice extent, ice thickness and to detect melting ponds over ice. It is also
a technology demonstrator for an Optical Inter-Satellite Link (OISL) and a Federated
Satellite System (FSS).

3Cat-4 Mission

3Cat-4 is a 1 unit (1U) educational CubeSat mission. It is under the development of the
UPC-NanoSat Lab in collaboration with Institut d’Estudis Espacials de Catalunya IEEC
and member of the ESA’s program "Fly your satellite! 11”.

This thesis is part of the development of 3Cat-4 mission. As a consequence, the whole
mission is explained in detail in contrast to the others. All the aspects covered in this work
are strictly related to the development and testing of this specific mission.

Scientific objectives

The main objective is to demonstrate the capabilities of using nanosatellites for challenging
EO applications. The satellite is equipped with the in-house developed payload named as
Flexible Microwave Payload 1 (FMPL-1). FMPL-1 combines three different instruments in
a single board: an Automatic Identification System (AIS) receiver; a L-band radiometer;
a Global Navigation System - Reflectometer (GNSS-R). All of them are executed in the
same Software Defined Radio (SDR) COTS component, powered by a Linux computer.

4 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

The three different experiments are explained hereunder:

* Automatic Identification System (AIS) receiver

The Automatic Identification System (AIS) operates in the maritime Very High Fre-
quency (VHF) band (between 30-300 MHz) and enables the wireless exchange of
navigation status between vessels. The broadcast messages include the vessel’s
name, course, speed and current navigation status. Having this receiver as a pay-
load for the mission allows to receive AIS messages from vessels that are far from
land, where there is a fixed structure of AlS receivers.

* L-band radiometer

An L-band radiometer is an antenna that receives Earth power radiation at L band
[38] (1.5 - 2.7 GHz). This measurements can be processed to obtain several envi-
ronmental parameters such as soil moisture, sea surface salinity, snow density and
vegetation optical depth.

* GNSS-Reflectometer (GNSS-R)

The GNSS-R technique consists of measuring an original GNSS signal in its way to
Earth and also its reflection on Earth surface [3]. Comparing the variations between
both signals, which theoretically are the same, it is possible to infer properties of
the reflection surface. Using this technique it is possible to obtain environmental
parameters relevant for research in altimetry, oceanographic wave height and wind
speed, cryosphere monitoring and soil moisture monitoring.

Figure 3: Sample of a radiometry measure (left) and operational principle of GNSS-R
(right)

Some of the places targeted for data recollection by this mission are the dry lands of Nile
river and the forest zones of Congo river, both in Africa. Furthermore, the ocean winds are
also targeted as this payload allows the monitoring of calm and agitated ocean regions,
such as the coast of South Africa. Moreover, it is planned also to obtain data over the
Himalayas region, as a contribution on cryosphere studies.

BIBLIOGRAPHY 5

Educational objectives

The 3Cat-4 mission is conducted entirely at UPC-NanoSat Lab. The whole team is com-
posed by students from different engineering backgrounds, such as telecommunications,
electronics and aerospace engineers, ranging from different educational levels from de-
grees to doctoral students. The main educational objective is to provide a significant ex-
perience and knowledge to promote qualified future professionals in these fields.

Document’s structure

This document is structured in three chapters. In these, the first one covers the satellite ar-
chitecture, then chapter two covers software development and finally chapter three covers
relevant tests performed. These three chapters represents the body of the work.

Motivations

One of the most important aspect of a space mission is the software running behind the
system. This software is the one responsible of running all the processes and tasks, having
the entire mission dependence and even human lives in its bits. For this reason, how this
software is designed and implemented is a crucial point.

During the last twenty years of XX century, several space missions have failed due to tiny
and apparently insignificant software bugs, such as a variable overflow. The implemen-
tation of real time operating systems and highly revised code conventions decreased the
number of fatal flaws in space missions for these last years, implementing code with lots
of flight heritage and robustness.

Nonetheless, there is always room to improve. For instance, a few days before writing this
lines, in July 29th, the Nauka module safely reached the ISS and proceed to the docking
procedure. About three hours later, the thrusters of the Russian module were powered
on, unexpectedly. This caused a loss of attitude control of the complete International
Space Station spacecraft for about 45 minutes. Roscosmos concluded that the fault was a
software glitch that almost put in serious danger the twenty years old space laboratory.

This project aims at designing and implementing a reliable and autonomous flight software
solution for the 3Cat-4 mission. In this mission, although most of the subsystems software
was already implemented, it lacked a software implementation that safely manages all
these subsystems and: (1) ensures a proper communication between them and the on
board computer; (2) correctly processes and crafts its data in packets ready to be send to
ground; (3) safely manages the errors and potential contingency scenarios and (4) have
a certain autonomy to perform in nominal condition without the constant monitoring from
ground.

Incidents like the before mentioned evidence that there is still much way left to work on
reliable flight software. As an aerospace systems engineer who is working in a thesis
related to flight software development, this encourages me to keep working.

6 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

Objectives

In order to achieve the last section premises, the main specific objectives of the project are
stated below:

* Contribution to the flight software development of the 3Cat-4 mission.

— Implement an error management layer to the system.

— Implement new specific subsystem functionalities for a better management of
the system.

— Implement or integrate a visual solution to improve the operation of the mission.

* Conduction of tests using the FlatSat configuration, in parallel with the software
development.

— Test the error management layer implemented.
— Test all the previous and new functions of the system.

— Test the new visual solution for operations.

Nonetheless, as an engineering student and a near-future professional, | would like to
express my personal objectives and skills that | expect to acquire while working on this
thesis.

First, there are skills derived from working in the different aspects of the project. The most
important ones are stated hereunder:

* Learn how to code in C/C++ languages.

* Learn how embedded systems and real time operative systems work, main features
and main constraints.

* Learn serial communications protocols such as 12C and Universal Asynchronous
Receiver-Transmitter (UART), used in the avionics of the satellite.

* Learn how to work with flight hardware: precautions, handling and storage.

* Learn how to operate the testing facilities, such as the Thermal and Vacuum Cham-
ber (TVAC) and the shaker.

* Learn how to work in a cleanroom environment facility.

Furthermore, there is a set of soft skills that | would like to train during the development of
this thesis, which are the following:

* Work in a real, long-term and ambitious project with a multidisciplinary team of en-
gineers.

* Work in a space-industry project subject to several requirements and restrictions
from all the parts involved.

BIBLIOGRAPHY 7

* Learn how the schedule is affected by several parameters and events, internals and
externals.

* Learn from other engineering disciplines such as telecommunications, electronics
and mechanics as a consequence of collaborating with team members tangentially.

* Develop the ability to work in teams, relying on each member into pursuing a shared
achievement.

Methodology

The methodology followed in the development of this thesis is formed by a first period
of documentation and comprehension of the already implemented code for the mission as
well as the mission as a whole. Once the work to be done was clear and | was more familiar
with most of the concepts, a sequential set of steps were iterated over every software task
developed and linked to a subsystem of the spacecraft.

The steps followed can be checked below:
1. Definition of the expected inputs and outputs of the subsystem.
2. Integration of the subsystem to the controlled testing configuration.

3. Implement communications interface between the subsystem and the on-board com-
puter using 12C or UART protocols.

4. Retrieve status data from each subsystem that compose the satellite.
5. Code the specific subsystem to on-board computer based functions.
6. Add a layer of error managing to ensure non-blocking scenarios between tasks.

7. Test and validate the new implemented functions and the global functioning of the
system.

8. Display in the ground segment infrastructure the status of the satellite.

8 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

Gantt diagram

This thesis has been developed during 29 weeks, from the 2nd week of 2021 until the 30rd
week. In the following Gantt diagram, the evolution of the work done can be observed:

CHAPTER 1. 3CAT-4 SATELLITE
ARCHITECTURE

1.1 Satellite stack

This section aims at explaining which components and modules form the stack of the
spacecraft, with an in-depth explanation about which are its role in the system.

The spacecraft is formed by seven subsystems/modules. In Figure 1.1, an exploded view
of the 3Cat-4 satellite can be observed. Each part is labelled with a number and identified
below.

Figure 1.1: Rendering of the exploded view of 3Cat-4 satellite.

Starting from the left, there is the top face. The components are stacked as seen in the 3D
model, detailing hereunder each number to the component:

1. Zenith Antenna Deployment System (ZADS).

2. Communications and Attitude Determination and Control System board (COMMS&ADCS).
3. Electrical and Power Subsystem (EPS).

4. On-Board Computer (OBC).

5. Flexible Microwave Payload 1 (FMPL-1).

6. Nadir Antenna Deployment System (NADS).

7. 1U CubeSat structure.

Figure 1.2 shows how the final stack of the spacecraft looks like, without including the solar
panels.

10 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

Figure 1.2: Picture of the 3Cat-4 satellite integration process [3].

1.2 Subsystems

This section covers an in-depth vision of each subsystems modules. Also, how they are
stacked and communicate to each other.

1.2.1 Electrical and Power Subsystem (EPS

The EPS is the one in charge of supplying power to the satellite. It has two batteries that
store the energy for running the spacecraft while in eclipse. The batteries are charged
when the satellite receives sunlight, through ten solar panels mounted in the CubeSat. Its
switchable outputs are controlled by the OBC, which toggle each output according to the
state of the spacecraft.

Also, the EPS of this mission is a purchased COTS component from GomSpace. Specifi-
cally, it is the model P31u, which is interfaced with ten photo-voltaic cells, two per each of
the five faces available. This module provides two voltage channels: 3.3 V and 5 V. These
channels are available both from a permanent connection (cannot be switched off) and
three switchable outputs for each line. The battery technology is lithium-ion and a heater
is installed, which ensures a tolerable temperature range in all the scenarios that prevents
cold damage in them.

1.2.2 On-Board Computer (OBC)

The processing capacity is delivered by the OBC, which is connected to all the subsystems
and is in charge of the EPS control (toggling each subsystem power as required) as well

CHAPTER 1. 3CAT-4 SATELLITE ARCHITECTURE 11

as controlling the operational state of the satellite. The On Board Data Handling (OBDH)
subsystem is integrated in the OBC and together the whole satellite is managed.

The OBC, like the EPS, is a purchased COTS component from GomSpace. Specifically, it
is the model NanoMind A3200. This OBC is equipped with an AVR32 microcontroller as
well as with two 12C and other two UART bus lines for communications. Nevertheless, all
the software executed in the OBC is implemented in the NanoSat Lab, remarking the one
from this dissertation.

The OBC is mounted on a in-house designed and manufactured motherboard that provides
the required connections and housings in order to access all the OBC pins.

1.2.3 Communications Subsystem (COMMS)

The COMMS subsystem is designed and manufactured by NanoSat Lab’s students. It
provides direct downlink and uplink communications between the CubeSat and the ground
station. It is thus used to send telecommands to the satellite and receive telemetry and
data. The radio frequency link is in the amateur band of 437 MHz, which is labelled as
Ultra High Frequency (UHF). Reception and transmission chains are composed of a Low
Noise Amplifier (LNA) module and a Power Amplifier (PA) respectively. This results in a
reception gain of 15 dB and a transmitted power of 30 dBm.

This subsystem is integrated in the same board as the ADCS, resulting in the COMMS&ADCS
module.

1.2.4 Attitude Determination and Control Subsystem (ADCS)

The ADCS is an in-house designed and built module. The ADCS is in charge of two func-
tions: first, when the spacecraft is launched, it performs a B-dot detumbling algorithm that
stabilizes and slows rotation speed of the satellite below 2 %s . Then, when the satellite
is detumbled and the NADS successfully deployed, it executes a nadir-pointing algorithm
that ensures that the NADS antenna is pointing to the Earth. In order to perform these two
functions, three different sensors are mounted: magnetometers, sun sensors and gyro-
scopes. From these sources, the algorithm obtains the state of the satellite, is processed
by a proportional-integral-derivative (PID) controller and then performs the corrections us-
ing the actuators, consisting in three independent magnetorquers that acts in each body
axis. The magnetorquers create a magnetic field that interferes with the Earth magnetic
field, resulting in a net torque that rotates the spacecraft.

Nonetheless, at the end of the NADS there is a Teflon piece that actuates as a gravity
boom, creating a non-negligible gravity gradient towards the Earth and passively pointing
the satellite. The gravity boom, which will be explained later, can be observed in Figure
1.3, at the end of the deployed antenna, the white piece.

1.2.5 Flexible Microwave Payload 1 (FMPL)

The FMPL-1 is an in-house designed and built module. It combines three experiments in
a single board thanks to a SDR module with lots of flexibility for adapting the algorithm

12 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

that processes the incoming signals. These experiments are an AlS receiver, a L-band
radiometer and a GNSS-R.

The FMPL-1 is the component that gives meaning and value to the whole mission. The
experiments that this component executes provide meaningful data for EO and its imple-
mentation using a SDR shows a novel approach for embedding multiple passive microwave
payloads in a single platform. A more in-depth vision of this payload can be found in its
corresponding journal publication [13].

1.2.6 Deployments Subsystems

This mission has two deployment systems: Zenith Antenna Deployment System (ZADS)
and Nadir Antenna Deployment System (NADS).

The ZADS is a COTS component from ISISPACE and is equipped with two deployable
UHF and VHF monopole antennas. Allocated in the top face, the VHF antenna is used
for one of the payloads, specifically the AIS receiver. Then, the UHF antenna is used for
ground station communication.

Then, the NADS is an in-house built subsystem. Placed in the opposite face, this sub-
system includes an L-band helix antenna, deployable to 50.6 cm equally divided by 11
coil turns. This antenna ensures high directivity with a gain of up to 13.5 dB operating
at 1575.42 MHz. This high directivity allows the FMPL-1 to perform payload executions
and obtain a high resolution output. In Figure 1.3 a full deployment of the NADS can be
observed.

Figure 1.3: Picture of a test deployment of the NADS antenna (NanoSat Lab).

Due to its complexity, the deployment system is a relevant mechanical challenge. Further
information can be found on this development on Marco Sobrino publication [14].

CHAPTER 1. 3CAT-4 SATELLITE ARCHITECTURE 13

1.2.7 Communication buses

In order to enable communications between the subsystems and the OBC, a PC/104 stan-
dard connection bus is implemented in EPS, OBC, COMMS&ADCS andFMPL-1. The
PC/104 standard counts with two lines of 52 connections each, summing up a total of
104 available connections. The two deployments components, NADS and ZADS, are con-
nected through two picoblades connectors to the OBC.

The OBC has two 12C ports available. In one of them, Port 0, the EPS and the ADCS
subsystems are connected. In the other one, Port 2, NADS and ZADS are connected.
Both four are configured as slaves, obtaining the clock signal from the OBC, which is
configured as the master.

Then, there are two UART buses available, one for the communications subsystem and
the other one for the flexible microwave payload subsystem.

The reason why a subsystem is connected to one protocol or the other is due to priori-
tizing critical communication between OBC and communications board. Allocating to this
communication link a UART, which is more reliable than 12C protocol, ensures a less risk
of critical failure between both subsystems.

Also, manufacturer constraints in COTS components influence the final communication
buses configuration. On the one hand, EPS and ZADS, as a COTS component, only
have 12C hardware mounted, thus these will be connected to an 12C bus. On the other
hand, both COMMS and FMPL-1 which are in-house manufactured, have UART hardware
installed, preferred by team members in charge of this part. One of the reasons why COTS
use 12C hardware is because it is significantly cheaper than the UART one.

A diagram expliciting the available communication buses and the subsystems connected
to them can be checked in Figure 1.4.

r) EPS ADCS
COMMS @— UART COMMS 12C PORT 0 @ o
OBC
FMPL1 @—] UARTFMPL 12C PORT 2 @ o
N g ZADS NADS

Figure 1.4: Diagram of the communication buses available in the satellite and its connec-
tions.

1.3 Satellite modes

1.3.1 Global overview

The 3Cat-4 states or modes follows the principle of a state machine. A state machine is
a mathematical model of a system composed by states, transitions and actions. Then,
the device where the state machine is implemented can be in exactly one of the states
at any given time. Transitions between states occur when defined conditions are met.
Applied to our spacecraft, the satellite is determined by modes of operations. Each mode
represents defined conditions that force the system to have a deterministic behavior. Using

14 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

this methodology, the spacecraft behaviour remains stable over time. For example, the
deployment of the antennas cannot be performed if the satellite mode is not the payload
deploy mode. This means that, even sending the deploy telecommands from ground, the
satellite would not process them.

In the state diagram of the following Figure 1.5, the whole state machine can be observed
as well as the transition conditions imposed. This subsection will explain each mode briefly
and then specific parts of the diagram will be more in-depth analyzed.

POWER ON
[]

GROUND

LEOP MODES

STANDBY

DeCo = true

deploy = true

first = false DECOMMISSIONING

FIRST GS
CONTACT

TC = true

PAYLOAD :
DEPLOY : RXTC

deploy = true

Figure 1.5: State diagram implemented to control the behavior of the satellite.

The different modes are listed as follows:

* Boot Mode: Initial mode after powering up the spacecraft. This mode function
evaluates the conditions saved in the persistent storage memory to decide in which
state should be the satellite. These conditions are first time boot (first), deployed
antennas (deploy) and decommission (DeCo). Depending of its state is True or
False, the state machine will transition to a state or another. Moreover, it initializes
the memory library, the communication buses, etc.

» StandBy Mode: Mode after the orbit injection when the satellite has to wait 45
minutes without transmitting in order to prevent interference with other satellites.
This behaviour is fixed by the launch regulations.

* Ground Mode: Mode designed for ground testing but also accessible in orbit. No
limitation in terms of function execution, designed for contingency scenarios. It gives
to the operator a total control of the spacecraft

* First Ground Station Contact Mode: Mode reached after expired wait time of 45
minutes in StandBy mode. Looks for first communication to Ground Station, which
is detected when a command reception occurs.

CHAPTER 1. 3CAT-4 SATELLITE ARCHITECTURE 15

* Payload Deploy Mode: Mode reached after receiving the first command. In this
mode, the NADS is deployed sequentially command-by-command.

* Sun Safe Mode (SSM): Mode entered automatically when battery voltage drops
below the setted voltage threshold. In this mode, several high-consuming energy
functions cannot be performed, such as payload execution. It is used to protect the
satellite and extend it operating life.

* Nominal Mode (NM): Mode entered after the Launch and Early Orbit Phase (LEOP)
modes and when battery voltage is over the nominal threshold value. It is the desired
mode to be during the operations of the satellite because payload executions can be
performed.

* Survival Mode (SM): Contingency mode, entered when an error is raised in any
of the subsystem and waits for the operator to solve it or override it uploading a
reference error mask.

* Decommissioning Mode (DeCo): Mode entered when the operations of the satel-
lite are concluded. Nonetheless, the operations period will be evaluated when in
orbit in order to extent it at its maximum.

1.3.2 Launch and Early Orbit Phase (LEOP) modes

The LEOP phase is the most critical phase of the mission as it comprises the launch of the
satellite, the first ground station contact, antennas deployments and verification that the
correct satellite status is reached. In terms of the state diagram, the LEOP modes can be
observed in Figure 1.6.

RX TC = true

first = false

POWERON @——> ULLLN ANDBY FIRST GS MEMLACEIN PAYLOAD

CONTACT DEPLOY

POWER
OFF

Figure 1.6: LEOP modes.

First, the satellite enters in boot and evaluates the state. When launching, it transits to
standby when awaits for the 45 minutes regulation of no transmitting. Then, transits to first
ground station contact and deploys the ZADS automatically, waiting for a telecommand
reception. Finally, when the first ground station communication is received the spacecraft
transits to payload deploy where the operator is able to deploy the NADS command-by-
command.

16 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

1.3.3 Operational modes

After the LEOP modes, the satellite enters its operation phase, in which it follows the
nominal sequence represented in the state diagram of Figure 1.7 hereunder:

V <Vth

deploy = tru POWER

POWER ON OFF

U BOOT

LEOP _J

MODES

—V >V th—p|

POWER
OFF

Figure 1.7: Nominal sequence.

When booting, the satellite first checks the deploy bool. If True, this means that all the
LEOP modes have been concluded successfully and jumps straight into Sun Safe Mode
(SSM). If the deploy bool is False, it must first finish the LEOP sequence.

From both origins, the first state of the nominal sequence is Sun Safe Mode. In Sun Safe,
the system runs as usual but without performing any experiment, just ground communi-
cation and attitude control. If there is no error and the battery voltage is higher than the
nominal threshold voltage, the system jumps to Nominal Mode (NM). There the spacecraft
is able to schedule an experiment execution.

If an error is raised in both Sun Safe or Nominal Mode, the system jumps directly to Survival
Mode (SM). In Survival Mode, the satellite behaves very similar to Sun Safe Mode (No
payload execution) but informs the operator that an error has been raised, indicating from
which subsystem and which error has raised. Then, the operator can solve this error by
sending telecommands (for example, executing a controlled reboot of the OBC) or can
choose to override this error uploading the error’s subsystem reference error mask with
the specific error bit position set to zero.

The implementation of this reference error mask gives the operator full control regarding
error management on board the satellite.

1.3.4 Decommissioning mode
The decommission mode (DECO) is the state reached when the mission has been accom-

plished and the satellite is no longer required. Decommissioning can be reached through
telecommand from any state of the satellite.

CHAPTER 1. 3CAT-4 SATELLITE ARCHITECTURE 17

POWER ON

DeCo = true

POWER
OFF

OPERATIONAL TC

MODES

Figure 1.8: Decommissioning mode.

The main intention of the 3Cat-4 team is to nominally operate the satellite until any of the
subsystem components fails, extending its operative life. So, decommissioning time will be
evaluated when the satellite reaches orbit and depending on its overall functioning.

1.3.5 Ground mode

The ground mode is a state designed for ground testing purposes, with the special condi-
tion that it does not have any function execution limitation. This means that all the com-
mands can be executed, without considering the satellite state. Although, it can be entered
in orbit or a contingency plan/mode.

The ground mode is the wild card of the state machine. Can be accessed from any state
by telecommand and allows to execute any telecommand without conditions. By design,
there is no plan to use ground mode in orbit, but the option exists if there is a contingency
that needs its powers.

1.4 Software architecture

This section covers the software architecture of the whole satellite. First, an explanation
about Real Time Operating Systems (RTOS) and why are important in space applications.
Then, a more in-depth explanation of FreeRTOS, the option implemented in this develop-
ment. Hereafter, the architecture implemented between the subsystems will be explained.

1.4.1 Real Time Operating Systems and spacecrafts

A real time operating systems (RTOS)[15][16] is a timebounded operating system which
has well-defined, fixed time constraints. This means that all the processes executed have
a maximum time to finish or the process is killed and considered as a failure. This ap-
proach enables to work with an operative system that does not get blocked by any specific
failed process, allowing the computer as a whole to keep operating and thus having a
deterministic behavior.

Inside RTOS, there are two different architectures regarding tasks execution: (1) event-
driven RTOS switch between tasks depending on their priorities, creating a hierarchy of
tasks relevance; (2) time-sharing systems allocate execution times to each task based

18 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

on clock interrupts. The main time unit in RTOS are ticks, which value is customized but
usually in the order of magnitude of milliseconds.

One of the most important applications of RTOS is as operating system of spacecrafts.
The main reason is thanks to its deterministic condition, which enables flight software en-
gineers to design deterministic processes with predictable outputs, managing both nominal
and contingency scenarios. Space-grade software has to be completely predictable and
perform within specific time bounds.

Both NASA and ESA missions have run with RTOS since its beginnings. Although in the
first missions, the operative systems was specifically build according to mission require-
ments and constraints, two major RTOS names became popular in space missions in both
sides of the Atlantic. On the one hand, NASA used to implement a proprietary RTOS
called VxWorks, which became famous for being the first relevant commercial licensed
software for space operating systems. On the other hand, ESA, although starting also with
VxWorks, quickly switched to RTEMS. RTEMS standed for Real Time Executive for Mis-
sile Systems, as it was first created for managing flight control of missiles. Nonetheless,
ESA invested heavily in developing RTEMS software thanks to its open source philoso-
phy, which allows access to the source code (unlike VxWorks). Then, the software was
renamed as Real Time Executive for Multiprocessor Systems.

Nowadays, there is a wide variety of RTOS for space applications. Despite the two more
influent and used ones are still VxWorks and RTEMS, there are other options such as
Linux or FreeRTOS. On the one hand, Linux is the widely known open source operating
system, which can have its kernel modified to lighten its weight and boost real time behav-
ior. It is also increasing in popularity among those missions with power, weight and space
constraints not limited that can allow to use a powerful microprocessor. On the other hand,
the FreeRTOS kernel is a lightweight and open source operating system which needs a
small amount of resources to successfully work. Nonetheless, it lacks some of the most
powerful and advanced functions found on larger operative systems. It is popular for Cube-
Sat missions, where the budget in terms of power and memory available is limited, where
FreeRTOS fits well.

1.4.2 FreeRTOS

In the 3Cat-4 mission, the chosen real time operating system is FreeRTOS, due to its flight
heritage on this kind of CubeSat missions. Although having a total weight of between 4KB
to 9KB, the main functionalities of RTOS are available: unlimited tasks, memory manage-
ment, queues, semaphores and mutex. The main code language used is C.

1.4.2.1 Tasks

FreeRTOS is organized in tasks. A task is a block of code that is executed independently
of the others in the core of the processor. Then, the scheduler is the one that manages
the start/stop of task’s executions based on fixed task priorities and the ticks assigned to
each task. In the 3Cat-4 mission, there is the manager task, which is the main one that
controls and manages the other tasks and satellite modes transitions. Then, there are six
tasks that depend directly from the manager. These are EPS task, Tracking, Telemetry
and Command (TTC) task, ADCS task, OBDH task, Deploys task and Payload task.

CHAPTER 1. 3CAT-4 SATELLITE ARCHITECTURE 19

Then the Scheduler of the operating system assigns a decimal value to each task. The
higher this value, the more priority has the task to be executed. This means that if when
executing a task and a notification from another task with higher priority is received, the
system stops the first task to execute to process and execute the required functions in the
higher priority task. For our mission, this is defined in the system.h file and the tasks are
listed in a priority descending order: (1) Manager task, (2) EPS task, (3) TTC task, (4)
ADCS task, (5) OBDH task, (6) Payload task and (7) Deploys task.

This priority order is based in setting the Manager task as the one with highest priority,
which is reasonable as is the one that manages the other tasks and thus the most critical
one. Then the EPS task, which supplies power to the satellite and is also a critic subsys-
tem. Following, the TTC task as is the one that processes the telecommands received from
ground station. Then, the remaining tasks that are relatively low critical in terms of instant
execution which are ADCS task, both OBDH and Payload task and finally the Deploys task,
which is only relevant in a short period in the satellite operating lifetime.

CHAPTER 2. SOFTWARE DEVELOPMENT

Previous chapters present the context and the motivations on how real time operating
systems works. This chapter contains the core work of this thesis, which is the software
development implemented, divided in two groups: space segment and ground segment.
It is important to differentiate between the software development involved in any space
mission, as both space and ground segment software have particularities. These two
groups are explained and described in the following sections of this chapter.

2.1 Space segment

Space segment software is the one that runs entirely on the spacecraft. This corresponds
to the main software executed in the OBC, but also the ones executed in each subsystem.
Space segment software must be reliable, specially in this mission due to the inability of
performing patching in orbit as a consequence of the software architecture. To achieve
this reliability level, some aspects must be satisfied: (1) its behavior should be determin-
istic (the reason why RTOS are used); and (2) most of the actions must be executed
autonomously, due to the inability to directly control and maneuver the spacecraft in real-
time during the mission. In our mission, for example, the communication between space
segment and ground segment is only available during the time visibility window, which is
a small percentage of time (around 10 minutes each pass) over the total duration of the
mission.

Below, the nominal task structure is explained and then the different tasks running on the
OBC are explained, remarking its main and important functionalities. Also, flowcharts are
provided in order to enhance the comprehension of each task functions.

2.1.1 Task structure

Each subsystem task share a common execution structure because all the tasks have
common functions, such as initialization and process. Therefore, a standard and common
procedure is determined for each task. This structure has three steps: (1) the task loads
the init function, which is in charge of initializing several parameters used in the task; (2)
the flow checks if the configuration is uploaded in the subsystem correctly; (3) the process
function is executed, which runs in an infinite loop and is in charge of managing the sub-
system software itself. Most of the general and specific functions are inside process global
function. This is characteristic of RTOS and specifically FreeRTOS, where the computer it-
erates over the process function of each running task, listening to queues and notifications
between them and performing the required functions.

The fixed structure can be observed in the flowchart of Figure 2.1, hereunder.

21

22 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

@ skt

Init function

Is configuration
checked?

Is configuration
different?

YES
Reload -
configuration w| Reload default
"1 configuration
NO Raise error to
Is the reload manager

YES successful? I

Transit to Survival
Mode

YES g

TRANSIT TO
SURVIVAL MODE

y
Execute process
function

y

© TASK END

]

Figure 2.1: Tasks fixed structure flowchart.

As seen, once the init function and the first check of configuration of the subsystem is
done, the software loops infinitely in the process function.

Moreover, each subsystem and, in consequence, each task has its own configuration
file with general and specific parameters of the subsystem. Also, each subsystem has
a housekeeping structure and an error structure.

These key points are analyzed and explained for each subsystem in the annex |, due
to its extension: (1) Configuration parameters; (2) Housekeeping parameters, (3) Error
structure, (4) Functions.

Instead, in the following section | will write about the most relevant contributions to each
subsystem task as well as a high-level logic flowchart of the process function of each.
This contribution is about the design of logics and algorithms, implement them and finally

CHAPTER 2. SOFTWARE DEVELOPMENT 23

test that the behavior is as expected. All the software developed is being executed in the
OBC, this project does not cover the work done implementing the software inside each
subsystem.

2.1.2 Error management

All the tasks follow the same error management strategy. This management is an important
concept to take into account when designing flight software. It increases the autonomy of
the system, managing unexpected errors and malfunctions and raising the corresponding
errors to warn the satellite operator, according to Figure 2.2.

Function
execution

s the execution Nominal
YES .
successful? operations

NO

v

| Raise error ’

Figure 2.2: Error logic flowchart.

The 3Cat-4 error management consists in the implementation of the specific function that
detects this error and processes it. Nominally, the error warning is sent to the manager and
this changes the mode of the satellite to Survival Mode (Section 1.3.1). Nonetheless, the
function first reads the state of the spacecraft and the reference error mask, and depending
on them it finally sends the error to the manager or not. For example, if the spacecraft mode
is already in Survival, it makes no sense to send the error to the manager, so the error is
queued.

Each task, appart of the error notification capability, has an error mask to represent the
type of error. The reference error mask is an 8-bit bitwise mask where each bit represents
each subsystem errors (up to 8). Normally, this mask is set to the decimal value of 255,
which equals to eight one’s (1111 1111). With this value, the error mask has no effect
over the overall functioning of the system. Nonetheless, if the operator changes one of this
bits to 0, the corresponding error, if raised, would be overridden. This gives the operator
the power to manage the errors on board the spacecraft and the tool to override them if a
dead-end situation happens in the software logic. The logic of the raise error function can
be checked in Figure 2.3.

24 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

nT @) raise_error (error_queue_handle, reference_error_mask, error, notification)

Yy Does the

reference error
mask
pverride it?

Is the error
different from the
one queued?,

Peeks error from
the queue

Y

Notify error to

Error discarded
manager

.

END

Figure 2.3: Raise error logic function flowchart.

2.1.3 EPS task

The main functionality of the EPS task is to manage the EPS subsystem [Section 1.2.1].
The EPS is a COTS component, manufactured by GomSpace, and has its own communi-
cations interface created. For this reason, when developing the EPS task we had to follow
the GomSpace datasheet for controlling the EPS from the OBC. This is done by transmit-
ting and receiving a series of fixed 12C packets, in which the content field is the command
that we want to perform in the EPS and is specified by EPS datasheet.

The EPS subsystem includes several layers of safety and self-management, being the
most relevant the watchdog timers and the battery modes.

On the one hand, the watchdog timers are a resource used in RTOS that consist in a timer
that counts backwards to zero from a given positive natural number (normally in seconds)
and when the zero is reached, an action is triggered, normally a reboot of the subsystem
or the task. In this case, the EPS counts with two watchdog timers, being the first one
regarding 12C communications. When a 12C packet is received, the watchdog timer is
reset back to its initial value. In our mission, this value is set to 120 seconds. Also, the
second one is the ground watchdog timer. This timer is designed as to be executed when
a signal from ground station is received, as a health check system of the communications
between the spacecraft and ground station.

On the other hand, the EPS has three battery modes in function of its current voltage. This
modes are critical, safe and normal and the threshold values can be configured through
the configuration file. The OBC adopts this system and only considers two different modes,
safe and normal and are the ones that are directly related to the satellite state modes of
Sun Safe mode (EPS battery in safe mode) and Nominal mode (EPS battery in normal
mode).

CHAPTER 2. SOFTWARE DEVELOPMENT 25

2.1.3.1 EPS process function

The process of the EPS task consists of two separates steps. First, it checks if there is
any new notification queued and which kind are they. It accepts two types of notifications
which are the one that requests to load a new configuration and the one that requests to
change the value of one of the point of loads.

Second, after this notifications are processed, it enters to the function to process the
housekeeping that consists on first requesting the new housekeeping and then parsing
the values in order to update the manager task about key parameters such as the battery
mode and the battery voltage. Also, it checks during three iterations if the batteries tem-
perature is lower than the low hysteresis temperature value. If it's below, automatically an
error is raised to the manager and the satellite transits to survival mode.

This logic can be better observed in the flowchart hereunder, in Figure 2.4.

@ NTOFPROCESS

Y

A_rg any s the notification » ~1s the notification
notifications YES»_\ : P "
reload config"?, 'toggle PoL"?
queued?
YES YES
Raise config error and Execute point of

reload default config load action
Is the config
verification
successful?

TRANSIT TO
SURVIVAL MODE
Is the toggling
NO YES successful?
Raise PolL access
error
Upload new config
YES
A 4
Process

Get housekeeping

housekeeping

:

Check battery mode
and update manager

1

Check battery voltage
and update manager

Notify manager Raise cold batteries Check battery
EPS watchdog error temperature

Overwrite old
housekeeping

Below low

NO< steresis value

H

Overwrite old
status

H

Y
TRANSIT TO
© END OF PROCESS O SURVIVAL MODE

Figure 2.4: EPS process function flowchart.

26 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

2.1.3.2 Contributions to the EPS software

The contributions from this thesis to the EPS task software are the implementation of
the error management layer and up to four new functions have been added to the EPS
subsystem task:

* eps_reset_wdt(): This function aims to reset the ground watchdog timer of the EPS
back to its original value of 48 hours (172800 seconds). Its logic is to send an 12C
packet with the reset ground watchdog timer command in its content field. This func-
tion is executed every time that there is ground contact with a base station, indicating
that everything is fine and that there is no need to reboot the EPS subsystem.

* eps_set_heater(): This function aims to set the EPS heater to manual or automatic
mode. Although it is set to automatic by default and nominal operations don’t require
a change, the software team considered that it would be important to be able to
manage this parameter in case of a contingency related. Its logic is to send an 12C
packet with the set heater plus a one or zero, depending on the requested mode.

* eps_hard_reset(): This function aims to execute a hard reset of the EPS subsystem.
Its logic is to send an 12C packet with the hard reset command in its content field.
This function is available to be used in a contingency case if a hard reset of the
EPS is needed instantly and it is no possible to wait until the ground watchdog timer
reboots itself.

* eps_counter_reset(): This function aims to reset the EPS boot counter parameter.
Its logic is to send an 12C packet with the reset boot count command in its content
field. This function is no planned to be executed nominally but can be useful in a
scenario in which the EPS behavior needs to be monitored.

Also, EPS subsystem tests have been performed at system level, ensuring that the overall
functioning is correct and the error management performs accordingly.

2.1.4 TTC task

The main objective of the TTC task is to manage all the communications between the
spacecraft and the ground station. This task receives the data that has to be sent to
ground, normally the instantaneous and historic telemetries and also the experiments re-
sults, packs it and sends through the UHF/VHF antennas.

2.1.4.1 TTC process function

The process function of the TTC task first checks if the transmission of packets is en-
abled or disabled, in function of the spacecraft mode (remember than in first boot time the
satellite cannot transmit). If the mode allows to transmit, checks for notifications of reload
configuration, new scientific data and new telemetry. If one of these natifications is found,
it follows to perform the required action.

CHAPTER 2. SOFTWARE DEVELOPMENT 27

Then, it checks the internal watchdog timer of the task with the manager task. If the
watchdog timer is still alive, it proceeds to update the command file tracker, parse the new
telemetry and forward it to manager as well as doing the same with the task state.

This logic can be better observed in the flowchart hereunder, in Figure 2.5.

@ NITOF PROCESS

Is transmission
stem enabled?

Its time to push
a beacon?

Are there any

- »
NO ’w YES
——NO

YES

YES

Check and reload

For reloading
configuration?

NO

Pushing
scientific data?

Transmit science

YES

s the watchdog

timer alive? Raise UART error

YES

Update command
counter file
Parse telemetry and
send it to manager

Parse state and
send it to manager

Transmit HT
e

SURVIVAL
MODE

Y

© END OF PROCESS

Figure 2.5: TTC process function flowchart.

2.1.4.2 Contributions to the TTC software

The contributions from this thesis to the TTC task software are the implementation of the
error management layer and one new function has been added to the TTC subsystem
task:

* reset_cmd file(): This function aims to reset the file that stores the command counter
of the TTC task. Its logic is to open the TTC reference file and overwrite any existing
content with the same structure but set to zero. This function is executed every time

28 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

that there is a problem derived of the command sequence not following a natural
order due to a lost command.

Also, TTC subsystem tests have been performed at system level, ensuring that the overall
functioning is correct and the error management performs accordingly.

2.1.5 ADCS task

This subsection covers the key aspects of the ADCS task. The main objective of this task is
to properly set the uploaded configuration values and retrieve correctly the housekeeping
parameters to and from the ADCS board. Also, there is a mission test mode implemented
with the intention to perform a short high-sampling data set that allows the operator to
perform an ellipsoid fitting test on ground as well as a complete ADCS health check in
orbit.

2.1.5.1 ADCS Two Line Element set (TLE) file

Along with the configuration file, the ADCS subsystem requires another input which is the
Two Line Element set (TLE) [17]. The TLE is provided by the US Army and is a two line
element set that describes the orbit of the body around the Earth and its position for a given
time. This TLE is fed to an orbit propagation algorithm inside the ADCS board that obtains
high precision coordinates of the spacecraft for the next few days. This allows the system
to obtain, for example, the International Geomagnetic Reference Field (IGRF) values for
each Earth zone and calibrate the magnetometers accordingly.

The TLE is uploaded as a text file, not as a JSON file like the normal configuration and has
its own specific commands for uploading it. A sample of a previous NanoSat Lab’s mission
TLE is stated below:

1 462920 20061w 21124.16166338 .00000590 00000-0 39655-4 0 9992
2 46292 97.4889 198.4490 0003399 173.0253 187.1024 15.10457944 36642

2.1.5.2 ADCS process function

The ADCS process function is more structured than previously seen process. First, it
checks for the mode of the board. If nominal, retrieves its housekeeping and sends it to
the manager. If in mission test mode, perform the specific functions of the mission test
process, which are a shorter period for recollecting more data and the creation of the test
data packets and forwarding them directly to TTC task.

Then, it checks the notifications queue and processes three different notifications, if any.
First, checks for a mission test request, then for a configuration reload and finally for a TLE
reload.

Finally, it notifies the consequent internal watchdog timer to the manager task in order to
keep the task running.

This logic can be better observed in the flowchart hereunder, in Figure 2.6.

CHAPTER 2. SOFTWARE DEVELOPMENT 29

@ NTOFPROCESS

Is the ADCS
mode mission
test?

Is the ADCS
ode nominal?,

Run mission test

YES process

|

YI%S NO

Retrieve ADCS
telemetry

Y
Forward telemetry
to manager

Y

Execute
mission test?

NO

Reload
configuration?

NO
YES

YES
Is there any
notification?
Reload TLE? 6

Y NO tpansiT
Notify ADCS watchdog TO

to manager A SURVIVAL
9 NO MODE

Y

© END OF PROCESS

Figure 2.6: ADCS process function flowchart.

2.1.5.3 Contributions to the ADCS software

The contributions from this thesis to the ADCS task software are the implementation of the
error management layer and most of the used functions. ADCS task is the first one where
| had to port and rewrite most of the code from the Raspberry Pi that was performing
the OBC role when used for the subsystem development. As a consequence, | spend
more hours in development than the two previous tasks combined. All the functions are
implemented by transmitting or receiving 12C packets from the ADCS subsystem board.

* adcs_set_conf(): After having the configuration file values, this function sets to the
ADCS board the provided configuration parameters.

* adcs_set_tle(): This function sets the TLE to the ADCS board. In the board, the TLE
is feed directly to the orbit propagator to obtain the required values of position and
others.

30 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

* adcs_get_hk(): This function retrieves the housekeeping from the subsystem, parses
it into an ADCS housekeeping structure and sends it to the dedicated queue. Outline
that this function encompass specific parameters get functions.

* init_process_test(): This is the specific init function of the mission test process. As
a difference with the normal init function, this sets a higher tick frequency in order
to increase the sampling resolution and obtaining more data in the same amount of
time.

* process_test(): This is the specific process function of the mission test process. It
performs the same actions as the usual process but adds in the telemetry the EPS
data about total and ADCS point of load current consumption as well as structuring
and sending the test data packages directly to TTC task.

Furthermore, this thesis work comprises the design of the logic for uploading a TLE in a
TXT file and set it to ADCS, previously parsing it into a structure and ensuring that the
values were sounding and there was no error in the string.

Moreover, with the other software team members we agreed to implement an ADCS mis-
sion test mode. This test consists in storing data at a higher frequency than usual in order
to have more resolution of the readings. A test of this mode can be found in chapter 5,
where some interesting FlatSat tests are covered.

Also, ADCS subsystem tests have been performed at system level, ensuring that the over-
all functioning is correct and the error management performs accordingly.

2.1.6 Deploys task

This subsection covers the key aspects of the deploys task. The main objective of this
task is to manage the deployment of the two subsystems involved: NADS and ZADS. Both
subsystems have deployable antennas and the functions to get its telemetry or send the
command to arm, disarm and deploy them are explained.

Regarding communications, both NADS and ZADS are slaves in the same 12C port, so the
communication protocol between OBC and them is 12C. Thus, the functions of this task
create 12C packets with the correct format and use the content field to send the commands
required.

2.1.6.1 Deploys burn safety addition

When the deploys task was almost practically closed, we encountered a problem with a
new implementation in the satellite. Due to a EPS constraint, the NADS burning had to be
done from the permanent 3V3 port instead than from the ZADS/NADS point of load. The
main problem was that the permanent 3V3 line wasn’t switchable so we rewired the NADS
board in order to use the switchable output as a reference for the built-in Direct Current to
Direct CurrentDC-to-DC converter to follow. This way, only when the ZADS/NADS point of
load was up, the 3V3 permanent line would be available to burn.

Nonetheless, after some testing we noticed that when rebooting the EPS, for a short period
of time of about one and a half second, the switchable output had an undetermined value

CHAPTER 2. SOFTWARE DEVELOPMENT 31

that the NADS DC-to-DC converter understood as 1. Also, the microprocessor of the
NADS board was booting and not cutting the 3V3 line. In consequence, there as an actual
burning of all the connected wires at the same time. This behavior with all the resistors and
khantal wires mounted would mean a curren peak of almost 5 A, enough to burn several
components.

In order to solve it, | teamed up with the hardware teammates and proceed to manufacture
a small PCB that obtains an available GPIO from the OBC. From the OBC we have the
complete control of this GPIO, without undetermined time periods. Then, we proceed to
rewire it to make this GPIO the reference when opening the 3V3 permanent line for burning
purposes in NADS.

In the figure it can be observed how the functions to set high and low this GPIO are
executed inside the burning sequence.

2.1.6.2 Deploys process function

The deploys process function has a similar structure like other task’s process. First, it
checks for new notifications. If this notification is for reloading the configuration, it is exe-
cuted. If not, first checks if the spacecraft is in nominal mode. If yes, proceeds to check if
the notification is to arm, disarm, deploy or reboot the NADS. This is because the NADS
deployment is only possible if the batteries of the satellite are fully loaded, due to the high
battery drain that the burning sequence represents. The required action is performed and
after receiving the acknowledgment, goes directly to execute the retrieve housekeeping
function. This function is formed by two different functions, one for each subsystem. If the
housekeeping retrieval is correct, the function sends the internal watchdog timer notifica-
tion to manager and starts again.

This logic can be better observed in the flowchart hereunder, in Figure 2.7.

32 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

@ NITOF PROCESS

Y

Are any % the notification s the notification
notifications YES "reload config"? arm/disarm/
queued? 9 deploy/reboot?
|
Raise config error and
reload default config
Is the config NO
verification
successful?
TRANSIT TO
SURVIVAL MODE
Ack received?
NO YES

. - NO
Raise communication
error

Upload new config

YES

Y

- |
Retrieve
housekﬂ]{-

Retrieve NADS Retrieve ZADS

housekeeping

housekeeping

YES— YES—
Y
Notify manager
Deploys watchdog '\io NIO
3 TRANSIT TO
© END OF PROCESS SURVIVAL MODE

Figure 2.7: Deploys process function flowchart.

In this task it is worth mentioning also the burning sequence of the NADS antenna. In this
sequence, three commands take part, which are arm, deploy and disarm. Although being
a relatively easy logic, it is worth to notice the moments in which the GPIO pin is set high
and low, as explained in the previous subsection of this section.

This logic can be better observed in the flowchart hereunder, in Figure 2.8.

CHAPTER 2. SOFTWARE DEVELOPMENT 33

@ NIT OF BURNING SEQUENCE

> Send 12C NO-
command
L 4
ARM NADS
<« Set GPIO pin high[€«—YES
- Send 12C
’ ~ command

y

A
‘ TRANSIT TO
DEPLOY NADS | Buming ime |- NO'_>© SURVIVAL MODE

DISARM NADS

4 —YES
Set GPIO pin low
Y T

Send I2C NO-
command

A

YES

END OF BURNING SEQUENCE

Figure 2.8: Deploys burning sequence flowchart.

2.1.6.3 Contributions to the Deploys software

The contributions from this thesis to the Deploys task software are the implementation
of the error management layer and the NADS functions. Similarly to ADCS task, for the
NADS | had to port and rewrite most of the code from the Raspberry Pi that was performing
the OBC role when used for the subsystem development. Although, the ZADS software
was already done by the manufacturer of the COTS component, ISISpace. My contribution
in ZADS was to add the error management layer.

retrieve_NADS hk(): This function retrieves and parses the NADS housekeeping
from the NADS deployment board.

deploy NADS(): This function sends the deploy command to the NADS board with a
structure as content. In this structure, the type (resistor or khantal wire) is indiciated,
as long as the id (1 to 5) and the burning duration in seconds (normally 5 seconds).

arm_NADS(): This function sends the arm command to the NADS board. This com-
mand allows the burning sequence inside the subsystem board and it is completely
necessary to send it before sending the deploy command. If the NADS board return
an ack, then the OBC GPIO that allows the power from the 3V3 permanent voltage
is setto 1.

disarm_NADS(): This function sends the disarm command to the NADS board.
This command disallows the burning sequence inside the subsystem board. Before

34 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

sending the disarm command, the GPIO pin is set to 0 to minimize the timespan of
the GPIO being at 1 and thus able to drain the batteries if there’s a short-circuit or
malfunction in the circuit.

* reboot_NADS(): This function sends the reboot command to the NADS board.

Also, Deploys subsystem tests have been performed at system level. Apart from testing all
the implemented commands, a full burning sequence and deployment operations of both
NADS and ZADS antennas has been tested. This tests are further explained in chapter 5
FlatSat testing.

2.1.7 Payload task

This subsection covers the key aspects of the Payload task. The main objective of this task
is to manage the execution of the three different experiments that can perform the payload
module.

Regarding communications, the FMPL-1 module has an UART connection with the OBC.

2.1.7.1 Payload process function

The Payload process function has a similar structure like other task’s process. First, it
checks for new notifications. If this notification is for reloading the configuration, it is exe-
cuted. If not, first checks if the spacecraft is in nominal mode. If yes, proceeds to check
if the notification is to stop or execute any of the available experiments. This is because
the experiment execution is only possible if the batteries of the satellite are within a health
voltage range, due to the high battery drain that the payload execution represents. If there
is any payload event, it is executed and if not the algorithm executes the function to find
closer experiments from the experiments file. Then, housekeeping is retrieved and, if cor-
rect, the housekeeping and status queue are overwritten with the new data. Finally, the
internal watchdog timer is notified to the manager task.

This logic can be better observed in the flowchart hereunder, in Figure 2.9.

CHAPTER 2. SOFTWARE DEVELOPMENT

35

@ NTOFPROCESS
Y
noji\ilts;:tri]gns YES s the notification
queued? ‘reload config"?,
|
YES
Raise config error and
NO reload default config
Is the config NO
verification

successful?
TRANSIT TO
SURVIVAL MODE

YES

Upload new config

the notification o
stop or execute an
experiment?

YES

Payload event

queued

Payload event
queued?

Get closest experiment
from the file

YES

Run payload

event YES

NO

Y

Retrieve
housekeeping

«YES

Overwrite new
status and HK

v

Notify manager
Scheduler watchdog

Y

© END OF PROCESS

TRANSIT TO
SURVIVAL MODE

Figure 2.9: Payload process function flowchart

2.1.7.2 Contributions to the Payload software

Any close
experiment?

YES

Payload event
queued

The contributions from this thesis to the Payload task software are the implementation of

the error management layer and implement small modifications in th

e already coded func-

36 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

tions and logic. Although | haven’t created new functions like in the previous tasks, | have
spent many hours in this task understanding how its internal logic works. Nonetheless,
| did implement the parsing of the experiment files, where the experiments are uploaded
providing the experiment ID, start time and end time.

2.1.8 Manager task

This subsection covers the main role of the manager task. Its main objective is to manage
the rest of the tasks and to transit the satellite between the modes of the state diagram
(Section 1.3) .

In the manager’s init function, all the tasks are initialized and the queues used in the
system are created. Is the function that generates all the tools used to properly manage
the spacecraft.

2.1.8.1 Manager process function

The manager process functions follows a similar structure regarding previously seen pro-
cess functions. First, it checks for notifications, but only for the reload configuration one. If
it is the case, the new configuration upload is performed.

Then, it executes three different functions: First, it processes all the notifications coming
from the different tasks to update its watchdog timer. When received, the manager iden-
tifies from which subsystem the notification comes from and updates the corresponding
value to prevent the rebooting. It is the health check of the system.

Then, it analyzes the error queue looking for a new notification. If there is any, it is pro-
cessed and the spacecraft state is transited to Survival Mode. In nominal operations, this
functions should not raise unless a exception is raised in any of the subsystems.

Finally, the manager task processes if there is any notification that request a transit of
state. If it is the case, the manager checks which is its actual state and then evaluates if
the transition requested is valid according to the logic implemented in the state diagram
(Section 1.5).

CHAPTER 2. SOFTWARE DEVELOPMENT 37

@ NTOFPROCESS

Are any
notifications
queued?

Is the config
verification
successful?

s the notification
'reload config"?,

YES YES

NOj

Raise config error and
reload default config

NO NO YES
| Upload new config
TRANSIT TO
I SURVIVAL MODE
Y
Process tasks Receives each watchdog timer notification from the tasks
watchdog timer and resets its watchdog timer to prevent a rebooting.
Y
Process error Receives each tasks error notifications. If there are any, it
notification s, if any is raised and the spacecraft status changed to Survival Mode.
Y
Evaluate This function implements the logic from the state diagram. It
receives a notification that request to switch state and
spacecraft mode evaluates if the transition is possible with the actual state.
Y

© END OF PROCESS

Figure 2.10: Manager process function flowchart.

As a conclusion, the manager process function is in charge of controlling and processing
the notifications sent by the rest of the tasks.

2.1.8.2 Contributions to the Manager software

The contributions of this thesis to the Manager software are the modification of these two
functions:

* critical_event_handle(): This function is the one in charge of processing the error
notifications from the tasks. When received, identifies the origin task and requests a
transit to Survival Mode.

» evaluate_mode(): This function is the one in charge of processing the state transit
requests, where the state diagram logic is implemented.

38 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

2.2 Ground Segment

Ground segment software is considered all the software not running in space, onboard the
spacecraft. Mainly, it is the software that manages the ground station but also the one that
prepares and process the data that is sent to and received from the satellite.

In this thesis, the main contribution regarding the ground segment software is the imple-
mentation of dashboards for each subsystem in order to display all the data incoming from
the satellite. This work will be explained in the following sections.

The NanoSat Lab operates a ground station located at Parc Astronomic del Montsec
(PAM), which has installed antennas to operate at UHF, VHF and S-band (2 to 4 GHz)
frequencies.

Nonetheless, in order to contribute in the development and testing of the different missions,
including 3Cat-4, an emulated ground station is installed in the NanoSat Lab’s space in
Barcelona. This station, normally referred as emulated ground station, is based on a
computer that manages a SDR board (Figure 2.11), which is used as the radio module
needed to communicate.

Figure 2.11: Picture of the Pluto SDR board used for the emulated ground station.

The emulated ground station is coded in C++, implements a (include type of RF encoding,
etc.). For this thesis, | almost haven’t contributed in the Ground Station software.

2.3 Operational Display

Once the telemetry data is received and processed in the ground station, this data must
be displayed in a proper way in order to enable and facilitate the operation of the satellite
when in orbit. For this reason, NanoSat Lab’s team agreed to implement an open-source
software called Grafana. Grafana is a complete software that manages analytics and
interactive visualization of data stored in a time series database. It is widely used for the
operations of amateur CubeSat missions like 3cat-4.

My contribution to the ground segment software is the creation and design of the Opera-
tional Display for the 3cat-4 mission. This has been separated in two parts. First, send

CHAPTER 2. SOFTWARE DEVELOPMENT 39

all the selected telemetry data from each subsystem to a local InfluxDB database using a
socket connection. This is implemented in the ground link software. Second, create and
design a dashboard that properly displays the required and relevant data of each subsys-
tem in order to facilitate the operations of the satellite.

For example, in Figure 2.12 below it can be seen the first version of the ADCS operations
dashboard. The most relevant parameters of the ADCS housekeeping data are repre-
sented in a structured and clear way.

Figure 2.12: First version of the ADCS dashboard using Grafana.

Although the dashboards for all the versions are started, future work needs to be done in
order to improve them.

In the following chapter, some more screenshots of other versions of the display can be
seen while evaulating some of the FlatSat tests.

CHAPTER 3. FLATSAT TESTING

FlatSat tests are a kind of tests performed in the moment before the integration and after
subsystem test. When all the subsystems are developed and tested, they must be con-
nected to the OBC to test the spacecraft as a complete system. Nonetheless, as things
can go wrong during testing and unexpected modifications must be performed in the com-
ponents, the team cannot integrate the satellite to perform these system tests. This is
when FlatSat testing is performed.

FlatSat means that all the components and modules of the satellite are connected but not
stacked (or integrated), normally using a FlatSat testbed or using jumper cables to inter-
connect the systems. FlatSat configuration enables to quick modification of connections
while testing and easiness for reworking components.

Figure 3.1: FlatSat configuration with two testbeds.

It is important to analyze the previous Figure 3.1. In the testbeds, we can find up to four
modules: on the top left bed, there are the OBC stacked over the EPS; on the top right,
there is the COMMS&ADCS board floating and connected using jumper wires. On the
bottom bed, there is the FMPL-1 board.

Then, on the left part of the picture, we have the two deployment boards: first, at the top
we can find the NADS deployment board and at the bottom the ZADS Engineering Model
board.

Furthermore, we can spot the logic analyzer named Saleae in red, at the bottom-left of the
image. It is used to debug the communications problems in the power lines and communi-

41

42 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

cation buses.

3.1 Methodology

In FlatSat testing is when all the work previously explained in chapter 4 is tested and
verified. The methodology used to test each subsystem is explained hereunder:

1. Physical connection of the subsystem, mainly power lines and communication buses.
2. Ensure that the subsystem is correctly powered, checking EPS consumption.

3. Ensure proper communications between OBC and the subsystem, through UART or
I12C buses.

4. Perform specific functionality tests.

Although it may seem easy, one of the key aspects in where | have spent lots of time
resources is in communications between the OBC and the subsystem. Specifically, the
I2C bus is the one that gives most of the problems, mainly because it is used by more than
one subsystem, unlike UART.

| have spent several hours (Figure 3.2) understanding how 12C protocol works and debug-
ging the communication buses. As a conclusion, most of the problems are caused by a
wrong pull-up resistors configuration.

Figure 3.2: Process of debugging the FlatSat setup using a multimeter inside NanoSat
Lab’s cleanroom.

3.1.1 Facilities and equipment used

In order to properly perform some of the FlatSat tests, special equipment and facilities of
the NanoSat Lab are used. They are explained briefly hereunder:

CHAPTER 3. FLATSAT TESTING 43

* Cleanroom: A cleanroom is an isolated room that has HEPA filtration to remove
particles from the air. This type of facility are used for manufacturing where high
levels of cleanliness and sterility are required. One of these applications is the man-
ufacture and assembly of satellites. Dust can seriously interfere in the electronics
and payloads. As a consequence, most of them are manipulated inside cleanrooms.
NanoSat Lab’s cleanroom is an International Organization for Standarization (ISO)
8 cleanroom, sufficient for the production of satellite platforms in most cases.

* Thermal Vacuum Chamber (TVAC): This facility is used to simulate space condi-
tions. Two major space conditions are simulated: first, a compressor suck out the
air to create vacuum. Then, a charge of liquid nitrogen cool down the chamber and
with the help of infrared lamps, a temperature cycle is created. This cycle ranges
between —35° C and 50° C, which are similar values that the satellite will experiment
in a Low Earth Orbit (LEO). The TVAC is placed inside the cleanroom. In Figure 3.3
we can observe a picture of the TVAC opened, with the Mechanical Ground Support
EquipmentMGSE inside and the structure that surrounds it, which are the infrared
lamps:

Figure 3.3: Picture of the TVAC opened with the 3Cat-4 MGSE inside.

* Electric Ground Support Equipment (EGSE): This equipment is the one used
to work with the satellite while its developing. Its inputs are up to three different
voltages from an electric supply and a JTAG picoblade to flash the satellite. As an
output, it has an umbilical cable that goes through the cleanroom feed-through and
to the satellite. It is used to provide external power, charge the batteries, flash the
OBC and bypass the satellite kill switches. This equipment is designed by NanoSat
Lab students. A picture of the EGSE can be checked at Figure 3.4 .

44 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

Figure 3.4: Picture of the EGSE, with the umbilical connection at the top, power supply
connections at the bottom and flash and debug connections at the right.

* Mechanic Ground Support Equipment (MGSE): This equipment is an aluminium
7075 structure. Is the one used to place the satellite inside and acts as an inter-
face for the shaker table. Furthermore, it provides thermal stability due to the mass
increase and protection against strong infrared rays when performing TVAC tests.
The MGSE is placed inside the cleanroom. This equipment is designed by NanoSat
Lab students. A picture of the MGSE can be checked at Figure 3.5 .

Figure 3.5: Picture of the 3Cat-4 MGSE with the EPS component inside, getting prepared
for a TVAC test.

Although my main work as a software engineer of the mission is to ensure the points
stated above, | also contributed providing support in more complex tests performed in the
subsystems. These tests needed also the assistance of a hardware engineer in order

CHAPTER 3. FLATSAT TESTING 45

to prepare the assembly of the TVAC or the refurbishment of specific parts. Find stated
hereunder this specific FlatSat tests explained in detail.

3.2 EPS heater test

This section covers the test performed in order to verify the EPS heater automatic system.
This is a system test, so the EPS is behaving as slave in respect to the OBC, which is
master.

3.2.1 Test objectives

The objective of this test is to ensure that the subsystem built-in heater is turned on au-
tomatically when the temperature reading from the sensor placed in the batteries drops
below the low hysteresis temperature. Furthermore, when the same temperature reading
reaches the high hysteresis temperature, the heater should turn off. The hysteresis tem-
perature values should be set to the EPS by uploading a configuration file to the OBC,
which has to upload this configuration to the EPS.

The pass/fail criteria of the test is if the system is able to behavior as expected or not.

3.2.2 Test setup

In order to simulate the temperature cycles that the satellite will experience in orbit, the
TVAC of the NanoSat Lab must be used. Thus, the EPS subsystem is mounted inside the
MGSE (Figure 3.5) and then mounted inside the TVAC (Figure 3.3).

The OBC will not be mounted inside the TVAC because the umbilical cable between the
OBC and the Electric Ground Support Equipment is needed. The umbilical cable cannot
be entered the TVAC due to the high number of pins needed, as the number of pins that
can be passed through the TVAC feedthrough is strictly limited. Also, it is not feasible to
try to communicate by an RF link because the TVAC acts as a closed echo chamber.

In consequence, a special cable that connects OBC to EPS is manufactured in order to
perform this test. This cable is split in two parts, outside and inside the TVAC. The external
one does not have any specific requirement and the internal part must be made of Teflon-
recovered wires, in order to withstand the wide temperature range inside the chamber.

Once everything is mounted and secured inside the TVAC, a communications test is per-
formed. This means that from the coding computer outside the cleanroom we must be able
to properly communicate with OBC and EPS, ensuring that all the connections are correct
and working.

Then, the next step is to close TVAC’s hatch and turn on the vacuum mechanism. It is
necessary to reach down to 107> bars of pressure. When reached, the TVAC’s shroud
can be loaded with the needed liquid nitrogen.

After 2 to 3 hours, the inner temperature of EPS subsystem will approach the target low
hysteresis temperature, when the test will be performed.

46 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

The setup diagram is stated in Figure 3.6 below:

CLEANROOM
[1
1 L)
! TVAC .. ' POWER SUPPLY
' ' H '
' ' '
' : "
E ! MGSE + EPS _ UMBILICAL CABLE
) o

Do OBC (FLATSAT) R N EGSE
[/ v >
e A v x

/ 1
; DB FEED- ' OBC
' TEFLON WIRES THROUGH : R
: +4 SINGLE FEED- ' CABLE
. THROUGH : v
) 1
1 L)
i ' | CODING PC I
1
e e e e e e e e e e e ; ‘ :

CLEANROOM
UMBILICAL
FEEDTHROUGH

Figure 3.6: Diagram that represents the setup for the EPS Heater test.

3.2.3 Test results

After reaching the low hysteresis temperature, the heater turned on at the configured
low hysteresis temperature of 2° C and remained powered until the same sensor reading
reached 5° C, as this is the configured high hysteresis temperature. The cycling between
this range lasted for some hours, while liquid nitrogen was slowly evaporating.

We were able to obtain several valuable data from the telemetry of the EPS subsystem.
This telemetry was displayed using a first version of the operational dashboard for the
EPS, where three parameters were the most relevant to ensure the correct behavior of the
EPS heaters. Please mind that the following plots are directly obtained from the real time
display, thus the x-axis does not start at 0.

The first and most important one, temperature readings of the temperature sensor placed
in the EPS batteries, in Figure 3.7 below.

EPS Temp 4 (Heater)

15110 15115 5:25 5:35 15:40 15:45

Figure 3.7: Snapshot from the EPS dashboard plotting the EPS temperature sensor values
over time.

As observed, the rise time is much quicker than the fall time. Rise lasts up to 4 minutes

CHAPTER 3. FLATSAT TESTING 47

while fall lasts up to 10 minutes, approximately both. Nonetheless, the fall time tends to
last longer each cycle due to the loss of thermal inertia of the liquid nitrogen.

Also, we can verify that the voltage range of the batteries is nominal (Figure 3.8) and that
the current consumption of the heater peaks to almost 400 mA (Figure 3.9).

Current Consumption

100 mA

15:10

Figure 3.8: Snapshot from the EPS dashboard plotting the EPS battery current consump-
tion sensor values over time.

EPS Battery Voltage

Ol g ol i By i o D il g atalaf whie Po Pt s tyind ol g la] e e = e L F] atdddgggarantigtan

15:10

socket_listener.mean

Figure 3.9: Snapshot from the EPS dashboard plotting the EPS battery voltage values
over time.

Moreover, during the experiment the hysteresis values were changed several times to en-
sure that the OBC was able to properly parse the new values and set to the EPS subsystem
software during the experiment timespan.

3.2.4 Test conclusions

The EPS heater works nominally. The behavior is as expected, maintaining the temper-
ature of the batteries inside the hysteresis range to prevent damage due to low tempera-
tures. Also, the consumption is nominal and there is no risk to drain the batteries. Fur-
thermore, it is possible to correctly modify the hysteresis temperature values through the
configuration uploaded to the OBC.

48 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

Concluding, the EPS heater will contribute on the thermal stability of the 3Cat-4 spacecraft.
A more detailed study of the EPS subsystem and specifically the heater test is held by my
colleague Albert Rodriguez in his final degree thesis [18].

3.3 RF chain test

This section covers the test performed in order to verify the RF communication chain be-
tween the satellite and the emulated ground station.

3.3.1 Test objectives

The objective of this test is to verify the capacity of the system to receive telecommands
and transmit beacons to the emulated ground station.

The pass/fail criteria of the test is if the system is able to properly communicate with the
emulated ground station.

3.3.2 Test setup

The setup of this test requires an extra equipment of the NanoSat Lab: The emulated
ground station. This is a computer with a Software Defined Radio module, model Adalm-
Pluto, that replicates the RF chain of the Montsec Ground Station. This way, we can
mock-up the functional behavior of the ground station from the lab using an easy setup.

For simulating the satellite part, a coaxial cable brings the antenna outside the cleanroom
for more ease-of-use (Figure 3.10). Also, a 30 dB attenuator is added to the coaxial cable
in order to reduce the power of both transmitted and received signals as, due to short
distance between transmitter and receiver, it would damage components of the RF chain.
Also, the multipath caused due to transmitting inside a room would also heavily saturate
the channel.

Figure 3.10: Antenna connected to the cleanroom’s coaxial feedthrough that represents
the satellite’s antenna.

CHAPTER 3. FLATSAT TESTING 49

At a software level, we must execute some scripts to start the emulated ground station.
First, we must connect using ssh to the ground station computer. There, we must execute
the following two command:

./nanosat_uhf.py -d 437.35M -u 437.35M
./cubecat4_block_test.py

This executes two Python scripts that simulate the ground segment chain using GNUradio
software and the Pluto board. The specified frequency values are the ones for downlink
(-d option) and uplink (-u option).

Also, in order to verify all the steps, a UHF visualizer is initiated in order to observe if there
is a communication between the two blocks. The software is executed with the command:

./UHF_visualizer_3catd.py

The setup diagram is stated in Figure 3.11 below:

COAXIAL
CLEANROOM
FEEDTHROUGH

(9)< > (1)

POWER SUPPLY

CLEANROOM

PLUTO SDR

COMMS -8

[D
% UMBILICAL CABLE v
OBC (FLATSAT) [| "\ N EGSE
] T g DUMMY GS PC

il

B R S

A
OBC
DEBUG
CABLE

(\ 4
| | CODING PC I
l----.-----.-----------------------.----------------‘I l‘ -

CLEANROOM
UMBILICAL
FEEDTHROUGH

B L T T,

30 dB ATTENUATOR

Figure 3.11: Diagram that represents the setup for the RF test.

3.3.3 Test results

The system behaves correctly. It is able to send telecommands from ground station and
receive them at communications board. Also, the beacon and thus, telemetry is received
and processed accordingly, displaying it to the operational display.

Nonetheless, sometimes a telecommand is lost.

3.3.4 Test conclusions

As a conclusion, the RF chain is validated and works as expected. Nonetheless, we must
take in consideration the loss of some of the packets sent from emulated ground station.
A probable explanation is that the attenuator is maybe too strong. Also, multipath signals
probably interfere and in some occasion may contribute to this packet loss.

When the satellite will be integrated and when validating again the RF communications,

50 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

further checks must be performed in order to characterize this packet loss.

3.4 ADCS high-sampling mode and functional chain test

This section covers the test performed in order to verify the mission test mode of the ADCS
subsystem. Also, the correct functioning of the ADCS logic is tested, as a movement is
induced in the FlatSat to observe the reaction of the detumbling system.

3.4.1 Test objectives

This test has two objectives: First, the validation of the new implemented mission test
mode, which performs a high-speed sampling of the ADCS parameters and sends them
directly to the ground station.

Then, the validation of the ADCS chain that takes as an input the magnetometers reads,
compares them to the IGRF model and powers the magnetorquers in order to perform the
needed torque. Nonetheless, in this test the B-Dot detumbling algorithm will not be tested
as the setup does not allow it.

3.4.2 Test setup

The setup of this test consist in having the FlatSat modules connected as usual. At least,
it is required to have OBC, EPS and COMMS&ADCS board. The three components are in
the same FlatSat testbed.

Then, the OBC must be connected to the EGSE with the umbilical cable and the EGSE
correctly connected to the coding computer. The testbed must have freedom of movement,
in order to perform the required moves for the test.

A diagram of the setup can be find in Figure 3.12 below.

CLEANROOM

POWER SUPPLY

OBC (FLATSAT) | EGSE

-
>

A
0BC
DEBUG
CABLE

Y

| CODING PC I
e e e e e e e e e e —————————m oo \ .

CLEANROOM
UMBILICAL
PLACED IN THE FEEDTHROUGH
SAME TESTBED

B]

Figure 3.12: Diagram that represents the setup for the ADCS test.

CHAPTER 3. FLATSAT TESTING 51

For the execution of this test, | entered the cleanroom and picked up the FlatSat testbed.
Then, | started moving it slowly along the three axis. Finally, | performed quicker moves in
order to spot the difference.

3.4.3 Test results

The test is evaluated observing the behavior of the different parameters plotted in the
ADCS dashboard of the operational display. In this test, there are three parameters to
control:

1. Gyroscopes: This parameter represents the acceleration measured by the gyro-
scopes of the ADCS board. The units are °/s.

2. Control values: This parameter represents the percentage of saturation sent to the
actuators of the system, in this case the magnetorquers. The unit is a percentage,
being 0 % no actuation and 100% maximum actuation.

3. EPS Consumption: This parameter represents the current consumption of the
satellite’s batteries.

In Figure 3.13, it can be appreciated how these three parameters value during the test
timespan, which is between 16:49:40 and 16:51:48, around the two minutes:

Figure 3.13: Snapshot from the ADCS dashboard plotting the gyroscopes acceleration,
control values and EPS current consumption values over time.

52 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

Analyzing the results, we can identify two different parts: first, between the beginning of
the test until 16:50:30, the movements of the FlatSat testbed are slow, derived from the
readings of the gyroscopes. In consequence, the values of the control values are low most
of the time, as it is the EPS current consumption.

Then the second part, starting from 16:50:30 until the end of the test, more agressive
movements have been exerted on the testbed, resulting in higher accelerations and thus,
higher control values in all the three axis. As a consequence, the EPS current consumption
peaked four times up to 250 mA of total consumption. This current peak is caused by
the magnetorquers, which require more power to create a stronger magnetic field that
detumbles the satellite.

3.4.4 Test conclusions

The test results are coherent with the expectations, correctly actuating the ADCS magne-
torquers in function of the acceleration read by the gyroscopes.

When the satellite is integrated, another test will be performed to ensure that the ADCS B-
Dot algorithm is capable of correctly detumbling and control the attitude of the spacecraft.

Also, the test mode has worked as expected, increasing the sampling rate to obtain a more
accurate read of the ADCS sensors.

3.5 NADS deployment test

This section covers the test performed in order to verify the NADS deployment as part of
the FlatSat.

3.5.1 Test objectives

The main objectives are to successfully deploy the NADS using the nominal command
sequence. Although a NADS deployment has been tested before, it was at subsystem
level, which means that it was only testing the subsystem software. In this test, the NADS
is connected to the OBC as part of the system. Furthermore, there are no tests executed
that included the NADS burning PCB, required for the correct implementation of the NADS
subsystem into the FlatSat.

3.5.2 Test setup

The setup of this test consisted in having the NADS refurbished ready to deploy and
mounted on the auxiliary structure that simulates the zero gravity condition by hanging
the NADS against gravity to force a straight deployment. Then, the NADS is connected
to the OBC and this last one connected to the computer used for development. All the
equipment is placed in the cleanroom.

The NADS antenna is stowed thanks to five dyneema wires that subjects different parts
of the mechanism. To deploy the antenna, a resistor or a khantal cable (there is a re-

CHAPTER 3. FLATSAT TESTING 53

dundancy) that is placed touching the dyneema wire is short-circuited and, due its low
resistance, warms up to more than 150° C. This cuts the dyneema wire and releases the
compressed part of the antenna.

The burning of the resistor/khantal wire is performed individually, in order to totally control
the operation when in orbit. Having the full deployment divided in five steps allows the
operator to control more specifically the situation and solving of a possible problem, such
as battery drain.

The setup diagram is stated in Figure 3.14 below:

CLEANROOM

POWER SUPPLY

EGSE

A
0BC
DEBUG
CABLE

B et

b

& b
v >
R

i

i

i

i

1

i

1

i

i

i

i

1

i

Y
CLEANROCM

| CODING PC I
NADS TéSTING UMBILICAL

STRUCTURE FEEDTHROUGH

Figure 3.14: Diagram that represents the setup for the NADS deployment test.

3.5.3 Test results

The result of the test is the correct deployment of the NADS antenna. As it can be seen in
the following figures, the sequence has been followed and performed as expected.

The initial state of the NADS stowed is the one pictured in Figure 3.15.

Figure 3.15: Picture of the initial state of the NADS deployment test.

Then, the first two dyneema wires are cutted, sending the command to burn the first khan-
tal wire and then the second. The consequence is the release of the fingers that holds the

54 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

gravity boom (white piece), as it can be seen in Figure 3.16. Notice that in the NADS, the
arms are now released. Also notice that at the right part of the picture, there is a small
round white piece. This is the piece that the two dyneema wires hold on tight to the satellite
and when these are cutted, the piece is ejected.

Figure 3.16: Picture of the fingers deploy of the NADS deployment test.

Hereafter, the dyneema wires three and four are burned, using its respective telecom-
mands. When the last one is burned, the antenna deploys to half of its total length, around
25 cm. In Figure 3.17 this deployment can be observed.

Figure 3.17: Picture of the half deployment of the NADS deployment test.

Finally, there is one last dyneema wire holding the last section of the antenna, which is
linked to resistor five. When the command is sent to burn this resistor or khantal, the
antenna fully deploys, as seen in Figure 3.18.

CHAPTER 3. FLATSAT TESTING 55

Figure 3.18: Picture of the full deployment of the NADS deployment test.

3.5.4 Test conclusions

As a conclusion, the test has been a success. All the steps were nominal and the behavior
of the system has been the expected one.

Now, another test should be executed but not in ambient conditions as this one. The NADS
should be deployed in the TVAC to verify that the deployment system also works in other
thermal conditions.

CONCLUSIONS

Conclusions and objectives evaluations

As a conclusion, this thesis has greatly contributed to the development of the 3Cat-4 mis-
sion. The software implementations resulting of this work deliver a more robust system
and an increased autonomy. Thanks to the error management layer added, the odds of
a critical failure that could ruin the mission are reduced. Also, the operations efficiency
has increased with the addition of the dashboard to control each subsystem from ground.
Moreover, the implementation of the state diagrams logic provides the plus of autonomy
required for the project. Finally, the FlatSat tests performed served to verify that all the
implementations done were correct and to ensure the proper functioning of the system.

The objectives of this work were set formerly in Objectives section in the Introduction part
. Now, the defined objectives are evaluated:

» Contribution to the flight software development of the 3Cat-4 mission.

— Implement an error management layer to the system.

Achieved. The error management layer has been successfully implemented
thanks to the implementation of a general function to raise the errors of the
subsystems to the manager. Also, the implementation of the reference error
mask in each subsystem allows the operator to fully control the error flow.

— Implement new specific subsystem functionalities for a better manage-
ment of the system.

Achieved. Several new functions have been added to the subsystems in order
to improve its functioning. Some examples are the watchdog timer manage-
ment functions of the EPS, the reset command files in COMMS, the test mode
and TLE configuration in ADCS and the GPIO safety feature in the NADS de-
ployment.

— Implement a visual solution to improve the operation of the mission.

Achieved. The implementation of the Grafana software to create dashboards
for each subsystems has been successfully integrated on the ground software
of the mission. Nonetheless, the created dashboards need iterations to im-
prove the experience of the satellite operations.

* Conduction of tests using the FlatSat configuration, in parallel with the soft-
ware development.

— Test the error management layer implemented.

Achieved. The error management layer has been tested in each subsystem,
forcing all the errors to verify that the behavior is the expected one.

— Test all the previous and new functions of the system.

Achieved. All the functions of each subsystem has been tested as part of the
FlatSat testing, which requires to validate each function.

57

58 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

— Test the new implemented visual solution for operations.

Achieved. The implementation of the dashboards for the operations has been
tested during the FlatSat testing and has resulted in a very useful tool for some
tests such as the ADCS test mode and detumbling algorithm (Section 3.4).

At a personal level, this thesis has awarded me invaluable hands-on experience in a real
space project. From software to hardware, the lessons learned are many and in several
levels. Also, the possibility to work with a multidisciplinary team of engineers provided
priceless teamwork skills, which | highly cherish. Finally, although this thesis has come to
an end, | will continue my collaboration with the 3cat-4 mission and the future endeavours
of the NanoSat Lab.

Future work

Although much work has been done to the 3Cat-4 mission, there are still a few steps left
until its culmination.

Once the satellite integration is finished, the test campaign starts with the Ambient Test
Campaign (ATC), which is about performing two different tests: (1) Full Functional Test
(FFT), which requires a test of all the functionalities of the satellite but where the umbilical
tether is allowed; (2) Mission Test (MT), which is a test similar to the FFT but the satellite
has to be completely managed as if it was in orbit. This means that the team is not able
even to see the satellite, only monitor it through the telemetry received.

Then, the satellite is required to pass an Environmental Test Campaign (ETC), which will
be held at ESA’s European Space Security and Education Centre (ESEC) facilities in Bel-
gium, where special facilities and support from technical staff will be received.

In parallel, the operations manual would be required to prepare for the operations of the
satellite once launched.

Finally, the predicted launch of the satellite is projected towards the middle of the next year,
2022. Nonetheless, there is no yet a confirmed ride by ESA, the agency in charge of the
launch.

BIBLIOGRAPHY

[1] Carles Araguz Lépez. In pursuit of autonomous distributed satellite systems, 2019.

Doctoral Thesis, available at http://hdl.handle.net/2117/175253.

[2] National Aeronautics and Space Administration. What are SmallSats and CubeSats?,

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

2015. www.nasa.gov/content/what-are-smallsats—and-cubesats.

Guillem Anglada. Photographies from the integration of 3Cat-4 mission. Only availabe
under request to NanoSat Lab.

Alicia Johnstone. Cubesat Design Specifications Rev. 14, 2020. https://www.
cubesat.org/cds-announcement.

Planet Labs. Investor Presentation, July, 2021. https://www.planet.com/
investors/presentations/2021/investor-presentation-20210707.pdf.

National Aeronautics and Space Administration. NASA Cubesat Launch Initiative.
https://www.nasa.gov/content/about-cubesat-launch-initiative.

European Space Agency. ESA CubeSats. https://www.esa.int/Enabling_
Support/Preparing_for_the_Future/Discovery_and_Preparation/
CubeSats.

A. Camps, A. Golkar, A. Gutierrez, J.A. Ruiz de Azua, J.F. Munoz-Martin, L. Fernan-
dez, C. Diez, A. Aguilella, S. Briatore, R. Akhtyamov, and N. Garzaniti. FSSCAT, the
2017 Copernicus Masters’ “ESA Sentinel Small Satellite Challenge” Winner: A Fed-
erated Polar and Soil Moisture Tandem Mission Based on 6U Cubesats. In IGARSS
2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, pages
8285-8287, 2018.

UPC-NanoSat Lab. UPC-NanoSat Lab webpage. nanosatlab.upc.edu.

Roger Jove-Casurellas, Carles Araguz, Pol Via, Arnau Solanellas, Adria Amézaga,
David Vidal, Joan Francesc Mufoz, Marc Mari, Roger Olivé, Alberto Saez, et al. 3cat-
1 project: A multi-payload cubesat for scientific experiments and technology demon-
strators. European Journal of Remote Sensing, 50(1):125-136, 2017.

Jordi Castellvi, Adriano Camps, Jordi Corbera, and Ramon Alamus. 3Cat-3/MOTS
nanosatellite mission for optical multispectral and GNSS-R earth observation: Con-
cept and analysis. Sensors, 18(1):140, 2018.

J.A. Ruiz-de Azua, J.F Munoz, L. Ferndndez, M. Badia, D. Llaveria, C. Diez,
A. Aguilella, A. Pérez, O. Milian, M. Sobrino, A. Navarro, H. Lled, M. Sureda, M. Soria,
A. Calveras, and A. Camps. 3Cat-4 Mission: A 1-Unit CubeSat for Earth Observa-
tion with a L-band Radiometer and a GNSS-Reflectometer Using Software Defined
Radio. In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing
Symposium, pages 8867—-8870, 2019.

59

http://hdl.handle.net/2117/175253
www.nasa.gov/content/what-are-smallsats-and-cubesats
https://www.cubesat.org/cds-announcement
https://www.cubesat.org/cds-announcement
https://www.planet.com/investors/presentations/2021/investor-presentation-20210707.pdf
https://www.planet.com/investors/presentations/2021/investor-presentation-20210707.pdf
https://www.nasa.gov/content/about-cubesat-launch-initiative
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/CubeSats
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/CubeSats
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/CubeSats
nanosatlab.upc.edu

60 On-Board Computer software and FlatSat testing for the 3Cat-4 CubeSat mission

[13] J. FE Munoz-Martin, N. Miguelez, R. Castella, L. Fernandez, A. Solanellas, P. Via,
and A. Camps. 3Cat-4: Combined GNSS-R, L-Band Radiometer with RFI Mitigation,
and AIS Receiver for a I-Unit Cubesat Based on Software Defined Radio. In IGARSS
2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, pages
1063-1066, 2018.

[14] Miquel Sureda, Marco Sobrino, Oriol Millan, Andrea Aguilella, Arnau Solanellas, Marc
Badia, Joan Francesc Munoz-Martin, Lara Fernandez, Joan A. Ruiz-De-Azua, and
Adriano Camps. Design and Testing of a Helix Antenna Deployment System for a 1U
CubeSat. IEEE Access, 9:66103—-66114, 2021.

[15] Ars Technica. What operating systems keep things running in space?,
February, 2020. https://arstechnica.com/features/2020/10/

the-space-operating-systems-booting-up-where-no-one-has-gone-before/.

[16] NASA. NASA’s manual of flight software for small sats. https://www.nasa.gov/
smallsat-institute/sst-so0a-2020/flight-software.

[17] Al Solutions. Norad Two-Line Orbital Element Set File. https://ai-solutions.
com/_help_Files/two-line_element_set_file.htm.

[18] Albert Rodriguez Casellas. Thermal analysis and testing for CubeSat based mis-
sions. UPC-BarcelonaTech, 2021.

https://arstechnica.com/features/2020/10/the-space-operating-systems-booting-up-where-no-one-has-gone-before/
https://arstechnica.com/features/2020/10/the-space-operating-systems-booting-up-where-no-one-has-gone-before/
https://www.nasa.gov/smallsat-institute/sst-soa-2020/flight-software
https://www.nasa.gov/smallsat-institute/sst-soa-2020/flight-software
https://ai-solutions.com/_help_Files/two-line_element_set_file.htm
https://ai-solutions.com/_help_Files/two-line_element_set_file.htm

APPENDICES

APPENDIX A. SOFTWARE RELATED CONTENT

In this appendix some context will be given regarding the chapter 1 of the memory, Soft-
ware Development.

A.1

A.1.1

EPS task

EPS configuration parameters

The EPS has up to 16 configurable parameters, explained below. Find first the full name
and in parenthesis the variable name as used in code.

. Sunsafe to nominal threshold (ss_to_nominal_th): Threshold in miliVolts that de-

limitates the Sunsafe and Nominal modes. If the battery voltage is higher, the mode
will be Nominal. Normally this value is set to 8000 mV.

Nominal to sunsafe threshold (nominal_to_ss_th): Threshold in miliVolts that de-
limitates the Sunsafe and Nominal modes. If the battery voltage is lower, the mode
will be Sunsafe. Normally this value is set to 7300 mV.

Power-Point Tracking (PPT) mode (ppt_.mode): Mode of the power-point track-
ing, which can be 1 (Maximum Power-Point Tracking) and 2 (SW Fixed Power Point
Tracking). In our mission, it is set to 1, which is automatic.

Battery’s heater mode (battheater_mode): Mode for activating the battery’s heater.
If manual operations are intended, it is set to 0, if automatic operations are planned,
it is set to 1. In our mission, this value is set to 1 as its activation is managed by
software.

Low hysteresis temperature (low_hyst temperature): Lower bound of the tem-
perature range that the EPS is set to oscillate when the ambient temperature drops
below zero degrees. The units are celsius degrees and the usual value is set to 2.

High hysteresis temperature (high_hyst_temperature): Higher bound of the tem-
perature range that the EPS is set to oscillate when the ambient temperature drops
below zero degrees. The units are celsius degrees and the usual value is set to 5.

EPS normal point of load values (eps_normal_pol_values): 8bit bitmask that in-
dicates which points of load must be up when the subsystem is operating in normal
regime. There are no units, it is a decimal value that ranges from 0 to 255 that when
converted to binary each position correspond to a point of load of the EPS. In our
case, it is set to decimal value of 61.

EPS safe point of load values (eps_safe_pol_values): 8-bit bitmask that indicates
which points of load must be up when the subsystem is operating in safe regime.
There are no units, it is a decimal value that ranges from 0 to 255 that when con-
verted to binary each position correspond to a point of load of the EPS. In our case,
it is set to decimal value of 13.

63

10.

11.

12.

13.

14.

15.

16.

. On delay (on_delay): Delay in seconds in between the EPS power on moment and

the switchable outputs power on. In our case, it is set to 0 seconds.

Off delay (off_delay): Delay in seconds in between the EPS power of command
and the switchable outputs power off. In our case, it is set to 0 seconds.

Voltage boost (v_boost): Fixed PPT point for boost converters, in mV. In our case,
it is set to 3700 mV.

Battery maximum voltage (batt_maxvoltage): Upper bound of battery voltage for
a normal operation. Units in miliVolts, usually set at 8300 mV.

Battery normal voltage (batt_normalvoltage): Minimum value of battery voltage
for operating in normal regime. Below this threshold value, regime changes to safe.
Units in miliVolts, usually set at 7800 mV.

Battery safe voltage (batt_safevoltage): Minimum value of battery voltage for op-
erating at safe regime. Below this threshold value, regime changes to critical. Units
in miliVolts, usually set to 7000 mV.

Battery critical voltage (batt_criticalvoltage): Minimum value of battery voltage
for operating at critical regime. Below this threshold value, regime changes to de-
commission. Units in miliVolts, usually set to 6500 mV.

EPS reference error mask (eps_reference_error_mask): 8-bit bitmask that indi-
cates which errors must be ignored and which not. Each position is linked to a
specific error and if the mask value is 0, the error is bypassed and not sent to the
manager task. In our case, it is set to decimal value of 255, which means that there
are no bypassed errors.

A.1.2 EPS housekeeping parameters

The EPS instantaneous telemetry is formed by the parameters explicited below. The total
size of the telemetry is of 87 bytes. Find first the full name and in parenthesis the variable
name as used in code.

Voltage boost (vboost[3]): Vector of three positions that encapsulates the values
of voltage of the boost converters PV1, PV2 and PV3.

Battery voltage (vbat): Current voltage of the battery, in mV.
Current in (currin[3]): Input current, in mA.

Current boost (currboost): Current from boost converters, in mA.
Battery current (currbatt): Current out of battery, in mA.

Current out (currout[6]) Current out from the six switchable outputs (points of load)
in mA.

Output (output): Bitmask status of the output. Each bit is linked to a point of load,
if the bit is 1 it means that is up, otherwise is down.

* Latch count (latch_count): Number of latch-up protections, linked to each point of
load.

* 12C watchdog time left (wdt_i2c_time_left): 12C watchdog time in seconds that is
left until zero is reached and the watchdog is triggered and thus, the EPS is rebooted.

* Ground watchdog time left (wdt_gnd_time_left): Ground watchdog time in sec-
onds that is left until zero is reached and the watchdog is triggered and thus, the
EPS is rebooted.

* CSP watchdog pings left (wdt_csp_pings_left[2]): CSP watchdog pings left. Not
used in our case because we do not implement CSP communication protocol.

* 12C watchdog reboot count (wdt_i2c_reboot_count): Counts the number of times
that the I12C watchdog has been executed.

* Ground watchdog reboot count (wdt_gnd_reboot_count): Counts the number of
times that the ground watchdog has been executed.

* Watchdog CSP reboot count (wdt_csp_reboot_count): Counts the number of
times that the 12C watchdog has been executed.

* Boot count (boot_count): Counts the global boot count of the EPS.

* Temperature sensor values (temperatures[6]): Vector of six temperature values
in Celsius degrees (formatted in a uint16 variable). Each position of the vector is
linked to a temperature sensor in a specific position inside the EPS component.

* Battery mode (battery_mode): Value that indicates in which regime is the EPS
working. Can vary from 0 (initial), 1 (undervoltage), 2 (safemode), 3 (nominal) and 4
(full).

* Mode of Power-Point Tracking tracker (ppt_tracker): Mode of the power-point
tracking, which can be 1 (Maximum Power-Point Tracking) and 2 (SW Fixed Power
Point Tracking).

* Configuration checksum (config_checksum): The checksum obtained from the
configuration uploaded in the EPS. Used for checking with new configurations check-
sums.

A.1.3 EPS Error structure

The EPS error structure is formed by 8 different errors that can be raised in specific points
of the EPS algorithm. These errors are stated below:

1. 12C error: Raised when it is not possible to contact the EPS through 12C protocol.

2. Read memory error: Raised when it is not possible to read the memory region
where the configuration file is stored.

3. Configuration format error: Raised when the configuration format of the parsed
configuration file is different than a JSON object.

4. Configuration incoherent error: Raised when, once the new uploaded configura-
tion is parsed, one or more of the values are not coherent with the rules imposed
(for example, no voltage can be negative).

5. Configuration upload error: Raised when it is not possible to set the new configu-
ration to EPS.

6. Point of Load access error: Raised when it is not possible to toggle the requested
point of load.

7. Watchdog reset error: Raised when it is not possible to reset the ground watchdog
reset of the EPS.

8. Cold batteries error: Raised when the temperature sensor of the batteries drops
below the low hysteresis temperature value. This means that the heater hasn’t
turned on due to an anomaly.

Now, the functions implemented in the OBC in order to control the EPS are grouped by
target actions:

A.1.4 Functions related to EPS configuration

These functions control the EPS configuration values, ensures that the version uploaded
to the subsystem is coherent and sends a hardcoded version in case that an error is raised
during the process.

* eps_get_conf(): Sends a command to receive the configuration uploaded to the
EPS.

* is_eps_conf_different(): Receives as an input the configuration uploaded to the
EPS and the one uploaded to the OBC and compares them.

* eps_set_conf(): Sends a command to set the configuration from the OBC to EPS.

* verify_config(): Parses the configuration uploaded to the OBC to ensure that there
is no incoherent values. Compares the uploaded values to ones fixed by the team.

* reload_default_config(): In case that an uploaded configuration is not valid, a de-
fault hardcoded configuration is sent.

* eps_set_heater(): Sends a command to modify the EPS heater modes between
manual or automatic.

A.1.5 Functions related to EPS housekeeping

These functions are related to manage the EPS housekeeping data, specifically the re-
trieve of this telemetry from the subsystem itself into the OBC and then the parsing and
processing of it.

* eps_get_hk(): Sends a command requesting the latest set of housekeeping values.

* process_housekeeping(): Includes the previous function eps_get_hk() and, after
receiving the housekeeping, analyzes it and modifies the current status of the satel-
lite accordingly. For example, the battery mode indicates in which power state is
the satellite. Also, the temperature is analyzed and if it drops under a threshold, the
heaters are turned on.

A.1.6 Functions related to EPS self-management and watchdog timers

These functions actuate over the subsystem mechanism of self-management. As the EPS
is one of the key subsystems of the spacecraft, it has an extra layer of safety. The internal
EPS software is structured with two watchdog timers. Watchdog timers are reverse timers
that when arrives to zero an action is taken, normally a reboot of the system. This is the
case for the i2c watchdog, which is set at 120 seconds and reset back to this value every
time the subsystem receives an i2c communication. Also, the ground watchdog, which
is set to 48 hours (172800 seconds), can be reset by a command sent by one of these
functions.

* eps_reset_wdt(): Sends a command to reset the ground watchdog timer to its initial
value of 72 hours. This command is sent at each ground contact in order to prevent
EPS reboot if it's not necessary.

* eps_hard_reset(): Sends a command that completely reboots the subsystem, with-
out the need of reaching any of the watchdog timers.

* eps_reset_counter(): Sends a command to reset to 0 the boot count in order to
monitorize a specific behaviour from ground if needed.

A.1.7 Functions related to EPS control of other subsystems

These functions are the ones used by the OBC to order the EPS to control the points of
load where the other subsystems are connected.

» shutdown_subsystem(): Sends a notification to toggle to 0 the point of load of the
subsystem channel given as an input to the function.

* poweron_subsystem(): Sends a notification to toggle to 1 the point of load of the
subsystem channel given as an input to the function.

* reboot_subsystem(): Sends a natification to toggle to 0 and then 1 the point of load
of the subsystem channel given as an input to the function.

* eps_change_pol(): Receives the notification from the three previous functions and
acts accordingly sending the command to the EPS subsystem through 12C.

A.2

A.2.1

There

TTC task

TTC configuration parameters

are three configurable parameters of the TTC task:

Beacon peek period (beacon_peek_period): Period of time between beacon trans-
mission. In milliseconds, our default value is 30000 ms. This means that every 30
seconds a telemetry beacon is transmitted.

Transceiver frequency (transceiver_frequency): This is the frequency at which
the onboard transceiver operates. The used unit is Hertz (Hz). In our case, the
frequency is inside the amateur radio bands with the specific value of 437.35e6 Hz.

TTC Reference error mask (ttc_error_reference_mask): 8-bit bitmask that indi-
cates which errors must be ignored and which not. Each position is linked to a
specific error and if the mask value is 0, the error is bypassed and not sent to the
manager task. In our case, it is set to decimal value of 255, which means that there
are no bypassed errors.

A.2.2 TTC housekeeping parameters

There

are up to 23 housekeeping parameters from the TTC task, listed below:

Boot count (boot_count): Counts the number of boots of the subsystem.

Actual RSSI (actual _rssi): Measurement of the power from the received radio sig-
nal, known as Received Signal Strength Indicator, in dBm.

Last RSSI (last_rssi): Measurement of the previous signal RSSI, in dBm.
Last LQI (Isat_lqi): Measurement of the signal LQI.

Transmitted power (transmitted_power): Measurement of the transmitted power,
in dBW.

Physical transmission packets (phy_tx_packets): Counts the amount of physical
layer transmitted packets.

Physical received packets (phy_rx_packets): Counts the amount of physical layer
received packets.

Link layer transmitted packets (ll_tx_packets): Counts the amount of link layer
transmitted packets.

Link layer received packets(ll_rx_packets): Counts the amount of link layer re-
ceived packets.

Physical transmission error packets (phy_tx_err): Counts the amount of physical
layer transmitted error packets.

* Physical received error packets (phy_rx_err): Counts the amount of physical layer
received error packets.

* External temperature (ext_temp: Measurement of the external temperature from
the COMMS&ADCS board.

* Internal temperature (int_temp: Measurement of the internal temperature from the
COMMS&ADCS board.

* Operating frequency (freq): Frequency of operation of the communications sub-
system. Should match the frequency inputted in the configuration file.

* Application layer received packets (app_layer_received): Counts the amount of
application layer received packets.

* Application layer transmitted packets (app_layer_sent): Counts the amount of
application layer transmitted packets.

* Command received (cmd_received:) Counts the amount of commands received.
Useful for controlling if any command has been sent but not delivered.

* Last command id (last. command._id: ID of the last command sent from the ground
station to the satellite.

* Bad authenticated commands (bad_auth_commands): Counts the amount of bad
authenticated commands received. A bad authenticated command happens when
the command sequence is not followed.

* Configuration checksum (config_checksum): The checksum obtained from the
configuration uploaded in the TTC task. Used for checking with new configurations
check-sums.

A.2.3 TTC error structure

In the TTC task, there are up to 7 error defined, stated below:

1. UART error: Raised when it is not possible to contact the communication board
through UART protocol.

2. Read memory error: Raised when it is not possible to read the memory region
where the configuration file is stored.

3. Write memory error: Raised when it is not possible to write the memory region
where the configuration file is stored.

4. Configuration format error: Raised when the configuration format of the parsed
configuration file is different than a JSON object.

5. Configuration incoherent error: Raised when, once the new uploaded configura-
tion is parsed, one or more of the values are not coherent with the rules imposed
(for example, transceiver frequency not in the 420 to 450 MHz range).

6. Configuration upload error: Raised when it is not possible to set the new configu-
ration to communications board.

7. Transmission packet error: Raised when it is not possible to transmit a packet
from the satellite due to a flow error.

Now, the functions implemented in the OBC in order to control the communications are
grouped by target actions:

A.2.4 Functions related to TTC configuration

* verify_config(): Parses the configuration uploaded to the OBC to ensure that there
is no incoherent values. Compares the uploaded values to ones fixed by the team.

* reload_default_config(): In case that an uploaded configuration is not valid, a de-
fault hardcoded configuration is sent.

A.2.5 Functions related to TTC packet receiving and transmitting and
housekeeping

* handle_packet_reception(): This function processes the received packet and ob-
tains its content, the telecommand from ground.

* handle_beacon_transmission(): This function prepares and sends the historic teleme-
try beacon if there are any historic telemetry to be sent.

* transmit_app_packet(): This function prepares and sends the application layer packet.
It is used by most of the others functions in the task.

* evaluate_beacon_mode_it_ht(): This function evaluates the state of the spacecraft
and prevents of transmitting any beacon if the spacecraft mode is boot or ejection
standby, as required.

* parse_.comms_telemetry(): This function receives and copies the ttc telemetry to
its structured queue in order to be processed.

A.2.6 Functions related to TTC self-management and watchdog timers

» comms_wdt_get(): This function obtains the comms watchdog token value.

* comms_wdt_set(): This function inputs a token value and sets it as the comms
watchdog token value.

* parse_.comms _state(): This function inputs the state of the ttc task and raises an
error to the manager if needed.

* reset_cmd _file(): This function resets the command counter value to 0, in case that
any command is lost and to align again both transmitted and received command
counts.

» set_ttc_state(): This functions modifies the state of the tic task, used to enable or
disable the transmission procedure under specific commands from ground.

A.3 ADCS task

A.3.1 ADCS configuration parameters

ADCS counts with up to 17 configuration parameters. All of them except the reference error
mask serve as a calibration of the algorithms running inside the ADCS subsystem software
in order to perform a correct attitude and determination control. These parameters are all
listed below:

* Bdot proportional gain (bdot_kp:) Proportional gain of the bdot algorithm, used
for detumbling purposes.

* Nadir proportional gain (nadir_kp_w[3]): Proportional gain of the nadir part of the
Bdot algorithm.

* Nadir derivative gain (hadir_kd_w[3]): Derivative gain of the nadir part of the Bdot
algorithm.

* Nadir proportional gain angle (hadir_kp_angle[2]): Proportional gain angle of the
nadir part of the Bdot algorithm.

* Nadir derivative gain angle (nadir_kd_angle[2]): Derivative gain angle of the nadir
part of the Bdot algorithm.

* Gyroscope variation (gyro_var): Gyroscope variation.

* Magnetic variation (gyro_var): Magnetic variation.

* Sun sensor variation (gyro_var): Sun sensor variation.

* Magnetometer 1 offset (mag1_offset[9]): Magnetometer 1 offset.

* Magnetometer 1 matrix (mag1_matrix[9]): Magnetometer 1 calibration matrix.
* Magnetometer 2 offset (mag1_offset[9]): Magnetometer 2 offset.

* Magnetometer 2 matrix (mag1_matrix[9]): Magnetometer 2 calibration matrix.
* Gyroscope offset (mag1_offset[9]): Gyroscope offset.

* Gyroscope matrix (mag1_matrix[9]): Gyroscope calibration matrix.

* Sun sensor offset (mag1_offset[9]): Sun sensor offset.

* Sun sensor matrix (mag1_matrix[9]): Sun sensor calibration matrix.

* ADCS reference error mask (adcs_reference_error_mask): 8-bit bitmask that in-
dicates which errors must be ignored and which not. Each position is linked to a
specific error and if the mask value is 0, the error is bypassed and not sent to the
manager task. In our case, it is set to decimal value of 255, which means that there
are no bypassed errors.

A.3.2 ADCS TLE file

Along with the configuration file, the ADCS subsystem requires another input which is the
TLE. The TLE is provided by the US Army and is a two line element set that describes the
orbit of the body around the Earth and its position for a given time. This TLE is feeded to an
orbit propagation algorithm inside the ADCS board that obtains high precision coordinates
of the spacecraft for the next few days. This allows the system to obtain, for example, the
IGRF values for each Earth zone and calibrate the magnetometers accordingly.

The TLE is uploaded as a TXT file, not as a JSON file like the normal configuration and
has its own specific commands for uploading it. A sample of a previous NanoSat Lab’s
mission TLE is stated below:

1 462920 20061wWw 21124.16166338 .00000590 00000-0 39655-4 0 9992
2 46292 97.4889 198.4490 0003399 173.0253 187.1024 15.10457944 36642

A.3.3 ADCS housekeeping parameters

Now the ADCS housekeeping parameters are listed and explained:

* ADCS mode (mode): Indicates the mode of the ADCS board. There are three
possibilities: Detumbling mode (1), Nominal mode (2) and Mission Test mode (3).

* Boot count (boot_count): Counts the amount of board boots.

* IGRF ECI coordinates value (igrf_eci[3]): Provides the IGRF values for a given
Earth-centered inertial coordinates. These values are obtained from the IGRF model
uploaded to the ADCS subsystem.

* LLH coordinates (pos_llh[3]): Longitude, latitude and height coordinates of the
satellite following the orbit propagator.

* Sun ECI coordinates (sun_pos_eci[3]): Position of the Sun in Earth-centered iner-
tial coordinates.

* Magnetometer 1 calibrated (mag_cali1[3]): Calibrated values from the magne-
tometer 1 for each axis.

* Magnetometer 2 calibrated (mag_cal2[3]): Calibrated values from the magne-
tometer 2 for each axis.

* Gyroscope calibrated (gyr[3]): Calibrated values from the gyroscope for each axis.

* Sun vector calculation (sun_vec_cal[3]): Vector that represents the sun position
in the satellite reference. Obtained from the sun sensor values.

* Quaternion estimated values (quat_est[4]): Estimation of the quaternion values,
in a four-position vector.

* Control values (control[3]): Control values from each axis. Ranges from 0 to 1
and represent the percentage of activation of the magnetorquers.

* External temperature (ext_temp): External temperature value from the ADCS board
sensor.

* Internal temperature (int_temp): Internal temperature value from the ADCS board
sensor.

* Solar panel temperature sensors (pd_temp[5]): Readings of temperature from
each solar panels temperature sensors.

* Configuration checksum (config_chksm): The checksum obtained from the con-
figuration uploaded in the ADCS. Used for checking with new configurations check-
sums.

A.3.4 ADCS error structure

In the ADCS task, there are up to 8 error defined, stated below:

1. 12C error: Raised when it is not possible to contact the ADCS board through 12C
protocol.

2. Read memory error: Raised when it is not possible to read the memory region
where the configuration file is stored.

3. Configuration format error: Raised when the configuration format of the parsed
configuration file is different than a JSON object.

4. Configuration incoherent error: Raised when, once the new uploaded configura-
tion is parsed, one or more of the values are not coherent with the rules imposed
(for example, transceiver frequency not in the 420 to 450 MHz range).

5. Configuration upload error: Raised when it is not possible to set the new configu-
ration to communications board.

6. Transmission packet error: Raised when it is not possible to transmit a packet
from the satellite due to a flow error.

7. Set configuration error: Raised when it is not possible to set a new configuration
to the ADCS board.

8. TLE format error: Raised when the TLE format of the parsed TLE file has more
than 144 characters.

9. TLE incoherent error: Raised when, once the new uploaded TLE is parsed, one or
more of the values are not coherent with the rules imposed (for example, negative
ascend node or inclination).

Now, the functions implemented in the OBC in order to control the ADCS are grouped by
target actions:

A.3.5 Functions related to ADCS configuration

* verify_config(): Parses the configuration uploaded to the OBC to ensure that there
is no incoherent values. Compares the uploaded values to ones fixed by the team.

* reload_default_config(): In case that an uploaded configuration is not valid, a de-
fault hardcoded configuration is sent.

* adcs_set_conf(): After having the configuration file values, this function sets to the
ADCS board the provided configuration parameters.

* adcs_set_tle(): This function sets the TLE to the ADCS board. In the board, the TLE
is feed directly to the orbit propagator to obtain the required values.

A.3.6 Functions related to ADCS housekeeping

* adcs_get_hk(): This functions retrieves the housekeeping from the subsystem, parses
it into an ADCS housekeeping structure and sends it to the dedicated queue. Outline
that this function encompass specific parameters get functions.

A.3.7 Functions related to ADCS mission test mode

* init_process_test(): This is the specific init function of the mission test process. As
a difference with the normal init function, this sets a higher tick frequency in order
to increase the sampling resolution and obtaining more data in the same amount of
time.

* process_test(): This is the specific process function of the mission test process. It
performs the same actions as the usual process but adds in the telemetry the EPS
data about total and ADCS point of load current consumption as well as structuring
and sending the test data packages directly to TTC task.

A.4 OBDH task

A.4.1 OBDH configuration parameters

OBDH task has up to three different configuration parameters, stated below:

* Beacon refill period (beacon _refill_period): This parameter defines the period of
beacon refilling, in milliseconds.

* HT generation period (ht_generation_period): This parameter defines the period
of historic telemetry generation, in milliseconds.

* OBDH reference error mask (obdh_reference_error_mask): 8-bit bitmask that in-
dicates which errors must be ignored and which not. Each position is linked to a
specific error and if the mask value is 0, the error is bypassed and not sent to the

manager task. In our case, it is set to decimal value of 255, which means that there
are no bypassed errors.

A.4.2 OBDH housekeeping parameters

The OBDH housekeeping is inside the global OBC housekeeping, as this subsystem runs
entirely on the OBC. Its parameters are stated below:

* FreeRTOS stack usage (freertos_stack_usage[8]): FreeRTOS stack usage of each
subtask initiated by the manager task.

* RAM usage (ram_usage): Current RAM usage of the system.
* Flash memory usage (flash_usage): Current Flash memory usage of the system.

* Configuration checksum (config_chksm): The checksum obtained from the con-
figuration uploaded in the ADCS. Used for checking with new configurations check-
sums.

A.4.3 OBDH error structure

In the OBDH task, there are up to 8 error defined, stated below:

1. 12C error: Raised when it is not possible to contact the ADCS board through 12C
protocol.

2. Read memory error: Raised when it is not possible to read the memory region
where the configuration file is stored.

3. Write memory error: Raised when it is not possible to write the memory region
where the configuration file is stored.

4. Configuration format error: Raised when the configuration format of the parsed
configuration file is different than a JSON object.

5. Configuration incoherent error: Raised when, once the new uploaded configura-
tion is parsed, one or more of the values are not coherent with the rules imposed
(for example, beacon refill period under 5 seconds).

6. Configuration upload error: Raised when it is not possible to set the new configu-
ration to communications board.

7. Folder tree error: Raised when there is an incorrect folder tree provided.

8. Mount SD error: Raised when it is impossible to mount the SD card.

	List of Figures
	Glossary
	INTRODUCTION
	3Cat-4 Satellite architecture
	Satellite stack
	Subsystems
	Electrical and Power Subsystem (EPS
	On-Board Computer (OBC)
	Communications Subsystem (COMMS)
	Attitude Determination and Control Subsystem (ADCS)
	Flexible Microwave Payload 1 (FMPL)
	Deployments Subsystems
	Communication buses

	Satellite modes
	Global overview
	Launch and Early Orbit Phase (LEOP) modes
	Operational modes
	Decommissioning mode
	Ground mode

	Software architecture
	Real Time Operating Systems and spacecrafts
	FreeRTOS

	Software Development
	Space segment
	Task structure
	Error management
	EPS task
	TTC task
	ADCS task
	Deploys task
	Payload task
	Manager task

	Ground Segment
	Operational Display

	FlatSat Testing
	Methodology
	Facilities and equipment used

	EPS heater test
	Test objectives
	Test setup
	Test results
	Test conclusions

	RF chain test
	Test objectives
	Test setup
	Test results
	Test conclusions

	ADCS high-sampling mode and functional chain test
	Test objectives
	Test setup
	Test results
	Test conclusions

	NADS deployment test
	Test objectives
	Test setup
	Test results
	Test conclusions

	CONCLUSIONS
	Bibliography
	Bibliografia
	Software related content
	EPS task
	EPS configuration parameters
	EPS housekeeping parameters
	EPS Error structure
	Functions related to EPS configuration
	Functions related to EPS housekeeping
	Functions related to EPS self-management and watchdog timers
	Functions related to EPS control of other subsystems

	TTC task
	TTC configuration parameters
	TTC housekeeping parameters
	TTC error structure
	Functions related to TTC configuration
	Functions related to TTC packet receiving and transmitting and housekeeping
	Functions related to TTC self-management and watchdog timers

	ADCS task
	ADCS configuration parameters
	ADCS TLE file
	ADCS housekeeping parameters
	ADCS error structure
	Functions related to ADCS configuration
	Functions related to ADCS housekeeping
	Functions related to ADCS mission test mode

	OBDH task
	OBDH configuration parameters
	OBDH housekeeping parameters
	OBDH error structure

