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Abstract: Poor sleep quality is a risk factor for multiple mental, cardiovascular, and cerebrovascular
diseases. Certain sleep positions or excessive position changes can be related to some diseases and
poor sleep quality. Nevertheless, sleep position is usually classified into four discrete values: supine,
prone, left and right. An increase in sleep position resolution is necessary to better assess sleep
position dynamics and to interpret more accurately intermediate sleep positions. This research aims
to study the feasibility of smartphones as sleep position monitors by (1) developing algorithms to
retrieve the sleep position angle from smartphone accelerometry; (2) monitoring the sleep position
angle in patients with obstructive sleep apnea (OSA); (3) comparing the discretized sleep angle versus
the four classic sleep positions obtained by the video-validated polysomnography (PSG); and (4)
analyzing the presence of positional OSA (pOSA) related to its sleep angle of occurrence. Results
from 19 OSA patients reveal that a higher resolution sleep position would help to better diagnose
and treat patients with position-dependent diseases such as pOSA. They also show that smartphones
are promising mHealth tools for enhanced position monitoring at hospitals and home, as they can
provide sleep position with higher resolution than the gold-standard video-validated PSG.

Keywords: accelerometry; biomedical signal processing; mHealth; monitoring; sleep apnea; sleep
position; smartphone

1. Introduction

Poor sleep quality or disturbed sleep is associated with multiple health complications,
including mental disorders [1–3] and cardiovascular and cerebrovascular diseases [4–6].
Obstructive sleep apnea (OSA) is one of the most common diseases affecting sleep quality. It
is a condition caused by repeated episodes of upper airway collapse and obstruction during
sleep, associated with arousals with or without oxygen desaturation [7–10]. These episodes
can be of total occlusion (apnea) or partial occlusion (hypopnea) of the air pathways,
leading to a total or partial reduction of the airflow [11].

Sleep position is an important factor to consider when analyzing sleep quality and
diagnosing OSA. Previous studies highlight the role of sleep position in the appearance of
apneas, a phenomenon known as positional OSA (pOSA) [12,13]. In addition, the effect of
sleep position on the ocular surface has also been assessed and related to the occurrence of
different diseases such as dry eye, ocular hypertension, or glaucoma [14–16].
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Multiple different techniques can be used to determine sleep quality. For instance,
questionnaires, such as the Pittsburgh sleep quality index (PSQI) [17], the Epworth sleepi-
ness scale [18], the STOP-Bang questionnaire [19] and the Berlin questionnaire [20], among
others [21], are commonly used tools for assessing sleep quality. Questionnaires and self-
reported information aim to predict the severity of multiple symptoms related to poor
sleep quality, including snoring associated with OSA [22,23], daytime sleepiness or fatigue,
which predict the risk of accidents [24]. Yet, questionnaires and self-reported information
fail to properly determine the different sleep positions [25].

Other techniques, such as polygraphy and polysomnography (PSG), aim to assess the
sleep quality in a more objective manner. These techniques determine the apnea-hypopnea
index (AHI), which is an indicator related to the severity of OSA. This indicator calculates
the number of apneas and hypopneas per hour of sleep. According to the American
Academy of Sleep Medicine (AASM) [11], the AHI classifies patients into four different
categories: healthy (AHI < 5); mild OSA (5 ≤ AHI < 15); moderate OSA (15 ≤ AHI < 30)
and severe OSA (AHI ≥ 30). Home respiratory polygraphy (HRP) uses less sensors than
PSG, which is the gold-standard method of assessing sleep quality and position. Since
PSG includes video-surveillance, it is used to validate the sleep position. However, it has
some limitations: the sleep position is classified into only four categories (supine, prone,
left and right); the level of sleep comfort is changed (different bed and pillow, and full of
PSG wires); and the prevalence of the supine sleep position in PSG studies [26,27], which
can affect the diagnosed severity of OSA. Therefore, many patients remain undiagnosed
and untreated [28,29], worsening their long-term consequences.

There exist multiple treatments for sleep apnea [30]. These treatments range from more
invasive options, such as surgical correction of the air pathways structures to prevent occlu-
sions, to less invasive treatments, such as continuous positive airway pressure (CPAP) [31]
or positional therapy [32], which aims to force the patient to sleep in non-supine sleep
positions to reduce the AHI index and increase the sleep quality. Yet, self-reported sleep
position is unreliable and objective measures are required [25].

In recent years, smartphones have been suggested as potential candidates with which
to monitor sleep apnea, due to their prevalence and the range of embedded sensors [33].
The appearance of sensing technologies related to sleep has also increased in the last 10
years [34]. Multiple approaches using different combinations of these smartphone sensors
to monitor sleep apnea have been documented, including previous work by our group.
Some studies have made use of the embedded microphone sensor to diagnose and monitor
sleep apnea [35–38], and others have used the embedded accelerometry sensor of the
smartphone to monitor sleep apnea and position [39–41]. The treatment of pOSA has
also been researched with smartphone applications which vibrated when the patient slept
in a supine position, to promote lateral sleep positions [42]. Besides smartphones, there
have also been multiple attempts to develop applications which could be used to monitor
sleep apnea with minimal sensors, which include accelerometry [43–45], audio [35,46],
pulse oximetry [47,48] and other sensors [49–51]. Finally, recent studies have shown the
importance of a higher-resolution sleep position for the diagnosis of pOSA [52], since
there could exist pOSA variability within the four clinically used sleep position categories
(supine, prone, left and right).

The aim of this study is to propose a higher resolution sleep position detector using
triaxial accelerometry from smartphones. To accomplish this, we divided our study into
three separate tasks: (1) study the feasibility of smartphones as sleep position monitors and
develop algorithms to retrieve the sleep position angle from smartphone accelerometry;
(2) monitor the sleep position angle in adult patients with obstructive sleep apnea (OSA);
and (3) discretize the sleep angle into the four sleep positions to compare it with the sleep
position from the video-validated polysomnography (PSG) and analyze the OSA event
distribution (pOSA).
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2. Materials and Methods
2.1. Hospital Database and Acquisition Protocol

The acquisition protocol used for all of the experiments in this study was approved
by the ethics committee from the Hospital Clínic of Barcelona and conducted with OSA
patients. Two different devices were used simultaneously to record the sleep position
during night-time acquisitions at the Sleep Lab in the Hospital Clínic of Barcelona. The
reference device, a ‘Grael PSG’ (Compumedics, Melbourne, Australia), recorded the sleep
position using the company’s proprietary algorithms at a sampling frequency of 32 Hz.
The equipment was positioned according to the standard procedure. The second device,
a Samsung S5 SM-G900F Android 6.0.1 smartphone (Samsung, Seoul, South Korea), was
used as the test device. It recorded triaxial accelerometer data with its embedded MPU-6500
sensor at a sampling frequency of 200 Hz using the Sensors Logger application [53]. This
application saves the data in the smartphone memory as a text file. The smartphone was
placed over the sternum and held in position with an elastic strap as seen in Figure 1a, based
on the configuration proposed by Nakano et al. [35], which has been tested successfully
in previous publications of our group [36–38,40,41]. This configuration resulted in the
smartphone triaxial accelerometry providing positive values when accelerations occurred
from right to left (X-axis), from toe to head (Y-axis), and from front to back (Z-axis), as seen
in Figure 1b. The smartphone was used in flight mode, and with the Wi-Fi and Bluetooth
options disabled.
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Figure 1. Picture of the smartphone and PSG device placement (a) and representation of the smartphone placement (b)
including the direction of the accelerometry X axis (red), Y axis (yellow) and Z axis (green) as well as the X-Z plane, where
the sleep angle is calculated, and the Y-Z plane, where the stand angle is calculated. Explanation of the rules used to
discretize the sleep angle (c) and stand angle (d). The sleep angle was classified into the four sleep positions: supine, prone,
left and right. The stand angle into two categories: standing (either stand or headstand) and lying. The stand category also
had a second constraint (3).

The acquisition protocol described above was used to register 20 different OSA pa-
tients. The inclusion criteria were based upon medical examination of the medical doctors
from the sleep lab in the Hospital Clínic of Barcelona. This medical examination aimed
to obtain a gender-age-balanced database with patients with different AHI severity in-
dexes. At random, 20 patients were included with mild to severe obstructive sleep apnea
diagnosed by a full PSG performed in the previous 2 months. The exclusion criteria were:
Patients with hypoventilation, central sleep apnea (Cheyne Stokes), uvulopalatopharyngo-
plasty, very severe nasal obstruction or in those who refused their consent. For technical
reasons, one of the patients had to be discarded. Therefore, the database used for analysis is
composed of 9 men and 10 women, with an average age of 60 (38–78) and an average AHI
of 34 (6–70). Automatic PSG sleep positions were video-validated by sleep technicians, and
automatic and validated positions were both saved separately. The patients were asked to
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rest in the supine position for some minutes at the beginning of the test. The minimum
final valid duration for each patient was five hours of sleep.

2.2. Signal Preprocessing

The automatic and video-validated sleep positions obtained from the PSG were
exported in .edf file format and the smartphone triaxial accelerometry was stored in .txt
files. The three position signals were processed and analyzed using custom developed
algorithms in MATLAB r2019b (Mathworks Inc., Natick, MA, USA).

The PSG signals were upsampled to 200 Hz and the signals from the two devices were
automatically synchronized with the beginning and end timestamps of each file. Initial and
final regions with no overlap between signals were discarded. The first and last 10 min were
also removed due to artifacts related to equipment placement and displacement, respectively.

2.3. Sleep Position Monitoring: Sleep and Stand Angles

The algorithm described in this subsection aims to retrieve the sleep position angle,
which allows us to obtain a more precise sleep position with better control of the position
shifts. To calculate the sleep angle from the triaxial accelerometry the following steps were
performed:

1. Each of the triaxial accelerometer signals (X, Y, and Z) was filtered with a median filter
with a window of 60 s to remove high-frequency noise and keep the signal baseline
containing the gravity acceleration.

2. For each sample of the triaxial accelerometry, two different angles were calculated
using (1): the sleep position angle and the stand angle.

Angle (o) =
180
Π
· acos

 →
a ·
→
b∣∣∣→a ∣∣∣ · ∣∣∣∣→b ∣∣∣∣
 · sign(c) (1)

2.1. The sleep position angle was used to determine the four sleep positions (supine,

prone, left and right). It was calculated by (1), where
→
a = (Xn, Zn), with Xn

and Zn being the values of the X and Z axis of the triaxial accelerometry at

each specific timestamp;
→
b = (1, 0), which is a static reference aligned with

the left sleep position; and c = Zn, to be able to differentiate supine and prone
positions. This angle explains the orientation of the accelerometry in the X-Z
plane as shown in Figure 1b.

2.2. The stand angle was used to determine whether the patient is in a standing

or lying position. It was calculated by (1), where
→
a = (Yn, Zn), with Yn and

Zn being the values of the Y and Z axis of the triaxial accelerometry at each

specific timestamp;
→
b = (1, 0), which is a static reference aligned with the

stand position; and c = Zn, to be able to differentiate stand and headstand
positions. This angle explains the orientation of the accelerometry in the Y-Z
plane, as shown in Figure 1b.

3. Two different corrections were made to ensure that the angles calculated provided
the real patient position:

3.1. Module correction: to avoid unreal position angle calculations, due to small
angle value variations in close-to-zero module vectors, both the sleep and
stand angle values were replaced with their last module-correct angle value if
the following criteria was found true:∣∣∣→a ∣∣∣∣∣∣→r ∣∣∣ < Thld1 (2)
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where Thld1 is a threshold with a value of 0.5;
→
a belongs to the

→
a vectors

declared for the sleep and stand angles in the steps 2.1 and 2.2 of this subsection;
and

→
r = (Xn, Yn, Zn), with Xn, Yn and Zn being the values of the X, Y and Z

axis of the triaxial accelerometry at each specific timestamp.
3.2. Initial position correction: the supine positions in the first 10 min of the triaxial

accelerometer signals were used to automatically self-correct the differences in
smartphone placement due to anatomical variations in patients. The correction
consisted of detecting the values of the angles associated with the supine
positions within these initial 10 min and subtracting these values to correct the
sleep and stand angles of the remaining data. Both the initial sleep and stand
angles of the corrected position were 90◦ after the correction for the supine
sleep position.

2.4. Discretization of Sleep and Stand Angles

The discretization of the sleep and stand position monitoring angles was performed
to compare the positions obtained from the smartphone with the video-validated positions
from the PSG system. To classify the angles into the four sleep positions, threshold values
of −140◦, −40◦, 60◦ and 120◦ were used to segment the 360◦ circle in the X-Z plane, as
described in Figure 1b,c. Threshold values of −135◦, −45◦, 45◦ and 135◦ (Figure 1d) were
used to segment the 360◦ circle in the Y-Z plane (Figure 1b) and classify the stand angles into
two categories: standing (either stand or headstand) and lying. The thresholds used for the
discretization of the X-Z and Y-Z planes were empirically set to mimic the criteria used by
the sleep technicians to score the sleep position from the PSG video. Since a sleep position
could not occur at the same time as a standing position, classification as standing overrides
a simultaneously classified sleep position. For this reason, an extra rule was applied to
determine the stand position to ensure that it was calculated with a non-close-to-zero vector
module in the Y-Z plane. This rule was based on the following equation:∣∣∣→a YZ

∣∣∣∣∣∣→r ∣∣∣ ≥ Thld2 &

∣∣∣→a XZ

∣∣∣∣∣∣→r ∣∣∣ < Thld3 (3)

where Thld2 and Thld3 equal 0.8;
→
a XZ is the vector

→
a described in step 2.1;

→
a YZ is the

vector
→
a described in step 2.2; and

→
r is the vector

→
r described in step 3.1, all of them in the

subsection “Sleep Position Monitoring: Sleep and Stand Angles”.

2.5. Sleep Position Validation: Agreement by Patient

To investigate the agreement between the PSG and the smartphone, and the effect
of the discretization (detailed in subsection “Discretization of Sleep and Stand Angles”),
the smartphone initial correction (detailed in step 3.2 of the subsection “Sleep Position
Monitoring: Sleep and Stand Angles” in this study) and the PSG video correction, we made
three different comparisons for each patient:

1. The automatic smartphone accelerometry position vs. the validated hospital position:
this analysis was made to compare the position obtained from the discretized smart-
phone angles, without the initial position correction, to the hospital video-validated
reference position.

2. The automatic smartphone accelerometry corrected position vs. the validated hospital
position: this analysis was made to compare the position obtained from the discretized
smartphone angles with the initial position correction to the hospital video-validated
reference position.

3. The automatic hospital position vs. the validated hospital position: this comparison
served to understand how the corrections introduced by sleep technicians can improve
the automatic sleep position from the PSG system.
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For each of these pairwise comparisons, the percentage agreement between the two
sleep positions was calculated for each patient. The sleep position vectors were compared
sample-by-sample with the following equation:

%Agree = 100 ·

N
∑

i=1
[Pos test

i ==Posref
i ]

N
(4)

where Postest
i is the vector with the position to be tested from the three comparisons; Posref

i
is the reference position vector, which is the hospital video-validated position; and N is the
total number of samples.

2.6. Sleep Position Validation: Agreement by Position

To validate how accurately each position was detected, we calculated the confusion
matrix comparing sample-by-sample the four sleep positions and the stand position be-
tween the automatic smartphone accelerometry corrected position (test) and the validated
hospital position (reference). The confusion matrix explains how many minutes were
correctly and incorrectly classified for each position.

To assess how well each position was detected, we calculated the sensitivity (Se),
specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), and
accuracy (Acc) from the information in the confusion matrix with the equations below:

Se =
TP

TP + FN
(5)

Sp =
TN

TN + FP
(6)

PPV =
TP

TP + FP
(7)

NPV =
TN

TN + FN
(8)

Acc =
TP + TN

TP + TN + FP + FN
(9)

where TP denotes the minutes in which the position is correctly detected in both the smart-
phone and PSG devices (e.g., RightPSG & RightSmartphone); TN the minutes in which the po-
sition is correctly not detected in both devices (e.g., not− RightPSG & not− RightSmartphone);
FN the minutes in which the position is incorrectly detected as another position in the
test device (e.g., RightPSG & not− RightSmartphone); and FP the minutes in which the po-
sition is incorrectly detected as the specific position in question in the test device (e.g.,
not− RightPSG & RightSmartphone).

2.7. Sleep Position Characterization: Angle Distribution

To understand the interaction between the sleep and stand angles and the discretiza-
tion limits described in the subsection “Discretization of Sleep and Stand Angles”, we used
the discretized automatic smartphone corrected position to group each sample of the sleep
angle into four categories (supine, prone, left, and right) and the samples of the stand angle,
which belonged to the stand position into one category (stand).

For each of these five categories, we calculated the mean angle, the standard deviation
(std), and the percentage of time spent by the patient around a window of ±5◦, ±10◦,
±15◦, ±20◦, and ±25◦ from the corresponding PSG reference angle. These PSG reference
angles were set according to the axis direction of the smartphone accelerometry used in
this study. The reference angles were 90◦ in the supine position, 0◦ in the left position,
±180◦ in the right position, and −90◦ in the prone position for the sleep angle (Figure 1c);
and 0◦ and ±180◦ for the stand angle (Figure 1d). The equation used to calculate the
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percentage of angles recorded around these windows centered at the reference angle
position is as follows:

%Angles = 100 ·

N
∑

i=1
[Winlow ≤ Anglei ≤Winhigh]

N
(10)

where Winlow and Winhigh are the limits of the reference threshold ± the window value
in degrees; N the number of angle samples; and Anglei each of the samples with an
angle value.

2.8. OSA Events Related to Sleep Position Angle

To address the relevance of the sleep position to the occurrence of OSA events, we
used the OSA events from the simultaneous PSG study and assessed their distribution
across the different sleep positions in the database.

For each patient, we calculated the percentage of time spent in a specific sleep position
angle with the following formula:

%Positionθ= 100 ·

N
∑

i=1
Positioni[Anglelow

θ ≤ Positioni ≤ Anglehigh
θ ]

N
(11)

where %Positionθ provides the percentage of time spent in a specific sleep angle θ; N is the
number of sleep position samples available; Positioni represents each sleep position sample
matching the criteria between brackets; and the Anglelow

θ and Anglehigh
θ are the thresholds

used around each sleep angle θ, forming a window of 15◦ (θ ± 7.5◦). The evaluated sleep
angles θ ranged from −180◦ to 180◦ with 1◦ increase.

We also calculated the percentage of OSA events in a specific sleep position angle for
each patient. To do this, we took each PSG event in the database and assigned to the event
the median angle value from all sleep position angle samples which occurred during the
event. We then determined the percentage of events occurring at a particular angle with
the following formula:

%Eventθ= 100 ·

N
∑

i=1
Eventi[Anglelow

θ ≤ Eventi ≤ Anglehigh
θ ]

N
(12)

where %Eventθ is the percentage of events in a specific sleep angle θ; N is the number
of events available; Eventi represents the median angle linked to an event matching the
criteria between brackets; and the Anglelow

θ and Anglehigh
θ are the thresholds used around

each sleep angle θ with the same window and resolution as (11).
Finally, to determine the relationship between the occurrence of the events and the

sleep position, two variables were calculated linked to their angle of occurrence: the local
AHI and the ratio between the percentage of events and the percentage of position. These
variables allowed us to estimate the severity of the OSA and to determine the sleep position
angles with a greater incidence of events in comparison to the amount of time spent in that
sleep position. The formulas used to calculate these two variables were as follows:

Local AHIθ =

N
∑

i=1
Eventi[Anglelow

θ ≤ Eventi ≤ Anglehigh
θ ]

1
720,000 ·

M
∑

j=1
Positionj[Anglelow

θ ≤ Positionj ≤ Anglehigh
θ ]

(13)

Ratio-%Event/%Positionθ =
%Eventθ

%Positionθ
(14)
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where the Local AHIθ provides an estimation of the AHI in a specific sleep angle θ; N is
the number of events available; Eventi represents the median angle linked to an event
matching the criteria between brackets; Anglelow

θ and Anglehigh
θ are the thresholds used

around this angle with the same window and resolution as (11); the coefficient 1
720,000 is

used to normalize the position to hours, taking into account the sampling frequency of
the smartphone (200 Hz) and the conversion from seconds to hours (1 h = 3600 s); M is
the number of sleep position samples available; Positioni represents each sleep position
sample matching the criteria between brackets; the Ratio-%Event/%Positionθ provides
information about the occurrence of events at a specific sleep angle θ; and %Eventθ and
%Positionθ are the results from Equations (11) and (12) for each specific angle θ.

To avoid high-value artifacts due to denominators being close to 0 in both the Local AHIθ

and Ratio-%Event/%Positionθ variables, a minimum denominator value is used in both
equations, which is 10 min for the Local AHIθ and 1% for the Ratio-%Event/%Positionθ.
Moreover, the Local AHIθ is smoothed with the mean value calculated from the window
containing the previous and following two values.

3. Results
3.1. Sleep Position: Angles and Discretization

Two examples of the sleep angle calculated from the smartphone are shown in the
polar plots for patients 3 and 14 in Figure 2 and overlaid onto the video-validated hospital
position for patient 14 in Figure 3. The smartphone discretized angle from patient 3
(Figure 2a) shows perfect alignment with the manually video-validated position from the
hospital PSG. Moreover, the sleep angle showed multiple subtle position changes which
were not observable from the discrete validated hospital position data. Similar alignment
is observed in patient 14 (Figure 2b), a complex case with multiple position shifts that were
all properly detected.

Figure 3a plots the sleep angle and the hospital video-validated position, with close
agreement observed between the two. However, the changes detected by the smartphone
accelerometry are of greater resolution than those recorded as the video-validated position.
The agreement between the automatic discretized smartphone corrected position and the
hospital video-validated position can be seen in Figure 3b. Again, the smartphone detected
some small stand and supine positions which were not defined in the validated hospital
position. Nevertheless, most of the sleep positions were well identified by both devices.

3.2. Sleep Position Performance: Patient Overlap

Table 1 shows the amount of time, in minutes and as a percentage, that patients
spent in each position for the discretized automatic smartphone corrected position and
the manually video-validated hospital position. The prone position occurs infrequently,
whereas the supine position is the most common (1.9% vs. 53.8% total prevalence). The
same pattern is seen in the smartphone corrected position, with a prevalence of 0.8% and
55% for prone and supine positions, respectively. All patients slept for between 5 and 9 h,
which is enough time to extract conclusions from the recorded data.
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Table 1. Time spent in each position in minutes and as a percentage for both the video-validated PSG and the corrected
smartphone positions, for each patient.

Validated Hospital Position Automatic Smartphone Accelerometry Corrected Position

Right Supine Left Prone Stand Right Supine Left Prone Stand

Patient Min. % Min. % Min. % Min. % Min. % Min. % Min. % Min. % Min. % Min. %

1 122.8 26.8 327.1 71.4 8.2 1.8 - - - - 121.3 26.5 328.1 71.6 8.5 1.9 - - 0.1 0.0
2 96.4 24.6 276.7 70.5 19.3 4.9 - - - - 95.3 24.3 277.7 70.8 19.3 4.9 - - - -
3 150.7 30.2 346.4 69.3 - - - - 2.8 0.6 163.9 32.8 333.7 66.7 - - - - 2.3 0.5
4 86.4 17.0 188.0 37.0 72.7 14.3 156.2 30.8 4.2 0.8 22.9 4.5 250.9 49.4 167.1 32.9 61.4 12.1 5.3 1.1
5 51.0 12.7 277.5 69.1 72.9 18.2 - - - - 35.6 8.9 290.1 72.3 75.6 18.8 - - - -
6 - - 355.3 100.0 - - - - - - - - 355.3 100.0 - - - - - -
7 44.8 10.4 232.7 53.9 154.3 35.7 - - - - - - 277.5 64.3 154.4 35.7 - - - -
8 - - 504.5 98.7 - - - - 6.8 1.3 - - 505.8 98.9 - - - - 5.5 1.1
9 2.6 0.7 367.1 99.3 - - - - - - 2.6 0.7 367.1 99.3 - - - - - -

10 68.9 16.4 3.5 0.8 345.8 82.1 - - 2.8 0.7 69.7 16.6 1.9 0.5 346.7 82.3 - - 2.8 0.7
11 105.7 24.0 68.4 15.5 256.2 58.2 - - 10.0 2.3 102.7 23.3 74.2 16.8 256.6 58.3 - - 6.9 1.6
12 239.5 56.3 161.8 38.0 19.8 4.7 - - 4.7 1.1 237.8 55.9 165.3 38.8 19.2 4.5 - - 3.4 0.8
13 105.0 29.5 242.1 68.0 - - 0.8 0.2 8.1 2.3 104.9 29.5 244.5 68.7 - - - - 6.6 1.8
14 34.7 8.1 65.1 15.1 257.2 59.8 0.7 0.2 72.5 16.8 34.4 8.0 66.4 15.4 260.3 60.5 - - 68.9 16.0
15 112.3 22.3 152.6 30.3 233.3 46.4 - - 4.8 1.0 112.2 22.3 157.4 31.3 230.2 45.8 - - 3.3 0.7
16 - - 126.6 27.0 338.0 72.1 - - 4.2 0.9 - - 123.7 26.4 341.3 72.8 - - 3.6 0.8
17 76.7 21.0 221.6 60.6 67.3 18.4 - - - - 77.0 21.1 201.7 55.2 86.8 23.8 - - - -
18 106.3 28.5 207.9 55.8 58.4 15.7 - - - - 105.8 28.4 208.4 55.9 58.3 15.7 - - - -
19 6.8 1.5 262.7 59.0 172.1 38.7 - - 3.5 0.8 4.5 1.0 259.3 58.3 177.4 39.9 - - 3.9 0.9

Total 1410.6 17.3 4387.4 53.8 2075.4 25.4 157.7 1.9 124.2 1.5 1290.5 15.8 4489.0 55.0 2201.8 27.0 61.4 0.8 112.6 1.4

Table 2 shows the percentage of agreement between the three different comparisons
made with the validated hospital position (reference) data. The automatic smartphone
corrected position presents an average agreement of 95.9% with the reference data, ranging
from 67.4% to 100%. Table 2 also shows the effect of the self-correction of the initial
position, which increases the average agreement with the reference data by 1.5%. This
is of relevance in patient 14, whose agreement varies from 81.6% to 96%. We can also
see that the automatic hospital position agrees, on average, only 83.1% of the time with
the video-validated hospital position, ranging from 52.5% to 100%, indicating that video
validation was needed to properly detect the patients’ sleep position.

Table 2. Percentage of position agreement between PSG and smartphone.

Patient
Automatic Smartphone

Accelerometry Position vs.
Validated Hospital Position

Automatic Smartphone
Accelerometry Corrected Position vs.

Validated Hospital Position

Automatic Hospital Position vs.
Validated Hospital Position

1 99.4 99.5 94.5
2 99.7 99.7 91.6
3 90.0 96.8 89.6
4 61.1 67.4 58.0
5 95.0 95.3 75.6
6 100.0 100.0 100.0
7 89.4 89.4 58.8
8 99.4 99.8 98.7
9 100.0 100.0 100.0

10 99.2 99.2 75.1
11 96.5 96.5 86.1
12 98.4 98.6 95.1
13 98.2 99.2 97.5
14 81.6 96.0 68.8
15 99.1 98.4 52.5
16 94.7 95.8 78.4
17 93.4 93.3 97.6
18 99.4 99.4 99.4
19 99.0 98.0 61.2

Average 94.4 95.9 83.1
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3.3. Sleep Position Performance: Position Overlap

To evaluate the detection of each position and the differences that appeared between
them, a confusion matrix was built (Table 3) to compare the automatic smartphone corrected
position and the video-validated hospital position. This confusion matrix shows the
minutes spent at each position by all patients. Table 3 allows us to determine the interactions
within the positions. For instance, it is possible to see that 8155.3 min (almost 136 h) of
sleep were used to validate the performance of smartphones as sleep position monitors. It
is of note that the diagonal of the table contains the larger values, representing 95.6% of the
total minutes. This indicates that the correlation between the smartphone and the PSG is
very high.

Table 3. Confusion matrix in minutes of the comparison between automatic smartphone corrected position and validated
PSG position.

Automatic Smartphone Accelerometry Corrected Position Row Total

Position Right Supine Left Prone Stand Min. %

Validated Hospital Position

Right 1268.8 139.6 1.6 0.0 0.6 1410.6 17.3
Supine 19.9 4308.1 55.6 0.0 3.9 4387.4 53.8

Left 1.9 23.4 2049.9 0.0 0.3 2075.4 25.4
Prone 0.0 0.4 94.6 61.4 1.3 157.7 1.9
Stand 0.0 17.6 0.1 0.0 106.5 124.2 1.5

Column Total
Min. 1290.5 4489.0 2201.8 61.4 112.6 8155.3

% 15.8 55.0 27.0 0.8 1.4

To determine the agreement between positions in greater detail, the Se, Sp, PPV, NPV,
and Acc were calculated and are shown as percentages in Table 4. This table illustrates
the high level of accuracy achieved by the smartphone in determining all sleep positions.
The sensitivity values are very good in all cases except for the prone position, which was
negatively affected by the low number of minutes spent in that position. The specificity
values, the positive predictive values, and the negative predictive values for all the sleep
positions are very good. On average, the overall system accuracy was 98.2%.

Table 4. Sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and accuracy
(ACC) of the comparison between automatic smartphone corrected position and validated PSG position.

Automatic Smartphone Accelerometry Corrected Position

Position Se (%) Sp (%) PPV (%) NPV (%) Acc (%)

Validated Hospital Position

Right 89.9 99.7 98.3 97.9 98.0
Supine 98.2 95.2 96.0 97.8 96.8

Left 98.8 97.5 93.1 99.6 97.8
Prone 38.9 100.0 100.0 98.8 98.8
Stand 85.7 99.9 94.6 99.8 99.7

Average 82.3 98.5 96.4 98.8 98.2

3.4. Sleep Position Characterization: Angle Distribution

Figure 4 illustrates how the angles calculated for the sleep position are distributed
within a 360◦ circle. The 5◦ regions used show how the supine position has a centered
distribution, whereas both the left and right, and prone, positions are more dispersed. This
pattern is also apparent in Table 5, with the supine position being the only position having
the mean value centered at its reference discrete angle. The mean value is 90.6◦, while
the reference supine value is 90◦. The supine position also presents the lowest dispersion
(smallest standard deviation). All other sleep positions have mean values that differ from
the reference and higher standard deviations. This explains the wider range of different
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orientations observed for those positions. The stand position has a closer mean value
(166.9◦) to its reference value (180◦), and its standard deviation is low enough for the
positions to be not much dispersed.
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Table 5. Sleep angle and stand angle characterization from the automatic smartphone corrected position. The reference
angles are 90◦ for supine, ±180◦ for right, 0◦ for left and −90◦ for prone.

Automatic Smartphone Accelerometry Classified by the Discretized Positions

Right Supine Left Prone Stand

Angle: Mean 143.9 90.6 27.0 −71.7 166.9
Angle: Standard deviation 14.0 8.7 21.2 26.6 12.1

% Angles: Reference angle ± 5◦ window 0.7 52.6 3.6 0 9.7
% Angles: Reference angle ± 10◦ window 5.9 80.2 7.0 0 24.8
% Angles: Reference angle ± 15◦ window 10.9 90.8 15.8 0 31.3
% Angles: Reference angle ± 20◦ window 17.4 95.9 27.1 0 76.8
% Angles: Reference angle ± 25◦ window 27.9 97.8 35.4 2.6 94.4

The mean values and their high variability can also be seen in the percentage of angles
found around the different windows for the reference angles each position should have.
These values in Table 5 demonstrate how only 27.9% of the right positions, 35.4% of the
left positions, and 2.6% of the prone positions were found in a ±25◦ window around their
reference value, whereas 97.8% of the supine angles and 94.4% of the stand angles were
found in the same window.

3.5. OSA Events Related to Sleep Position Angle

A total of 4047 events were recorded in the database. The lowest number of events, 47,
occurred in subject 4, and the highest number of events, 633, occurred in subject 7. Of the
4047 events, 2439 (60%) occurred in the discrete supine position, 1039 (26%) in the discrete
left position and 564 (14%) in the right position. Only five events occurred in the prone
position, all in subject 4. Figure 5 shows the distribution of events in the whole database
and the sleep position time distribution. In Figure 5a, it can be observed that most of the
events occurred in the supine position, even though a lower percentage of the sleep time
was spent in that position. Overall, most events and sleep time were spent in the discrete
supine and left sleep positions. Of note is the fact that most events occurring in the left
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discrete position were very close to the threshold value used to differentiate between left
and supine discrete positions, whereas the percentage of sleep time is more distributed
within the left discrete position. In addition, three examples of different subjects from the
database are shown (Figure 5b–d). Subject 1 is a clear case of non-pOSA, since the local
AHI does not vary depending on the sleep position. In this case, we can see that the local
AHI from the whole night is almost the same as the local AHI for both the supine and right
sleep positions, and the local AHI for the left position could be neglected, since less than 2%
of the time was spent at that position. Subject 17 is a clear case of pOSA, since the local AHI
for the supine sleep position is much higher than the local AHI for the left sleep position.
Finally, subject 4 is a non-clear case of pOSA, with differences between the supine position,
with a local AHI of 20, and non-supine positions with a local AHI between 5 and 10.
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Figure 6 shows the distribution of OSA events and sleep position time as percentages,
as well as the two variables used to detect pOSA and OSA severity: the ratio between the
percentage of events and the percentage of sleep position time, and the local AHI, both as a
function of specific sleep angle. In Figure 6a, showing the percentage of events, we can see
that many subjects have most events in the supine position, with the examples of subjects
6, 8, 9, 13, 17, and 18 having almost 100% of events in this position. Conversely, there are
subjects, such as 11 and 14, that have approximately 60% of events in the left position.

Figure 6c shows that there is a higher dispersion of sleep position time compared to
the percentage of events. There are subjects, such as 8 and 9, who favor a supine sleep
position, but more lateral sleep positions are also apparent. Figure 6d shows the local AHI,
allowing us to distinguish the severity variability in the database. There are subjects with
very severe OSA, such as 7, 14, and 15, and healthy subjects, such as 11. To complement
this, Figure 6b shows the ratio between the percentage of events and the percentage of
sleep position time spent as a function of angle. This variable allows us to determine the
sleep position angles where the occurrence of events is higher than the percentage of time
spent in that sleep position. For some subjects, this ratio is over 2, meaning that the number
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of events for that sleep position angle is, at least, doubled. Moreover, most of the high
values of this ratio appear in the supine position, which agrees with the information in
Figure 5a, where we can see more events in the supine position for the whole database
than time spent in this position.
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4. Discussion
4.1. Sleep Position: Discrete PSG vs. Discrete Sleep Angle

The aim of our study was to understand and quantify the reliability of retrieving sleep
position using a smartphone and compare our results to those achieved with the gold-
standard, video-validated PSG. We obtained a high average sleep position classification
agreement of 95.9%, shown in Table 2. Although this agreement is true for most patients,
two exceptions were patients 4 and 7, with agreement values of 67.4% and 89.4%, respec-
tively. From Table 1, we can see that the difference in position designation for patient 4 was
a result of an underestimation of the prone position in favor of the left position, and an
underestimation of the supine position in favor of the right position. This mixed scoring
happened because the angles associated with these left-prone misclassified positions and
to the right-supine misclassified positions were very close to the position decision edge of
the PSG. This resulted in the sleep technicians making a binary decision opposite to that
of the smartphone. This situation suggests that more precise sleep position technology is
desirable, since it would provide additional information to sleep technicians and would
allow a more accurate detection of the sleep position. The same reasoning applies to the
lower-than-average level of agreement observed in patient 7, whose case also belongs to
the right-supine misclassification.

This binary-decision difference between the technicians and the smartphone system
described for patients 4 and 7 also contributes to the lower sensitivity calculated for the
right and prone positions observed in Tables 3 and 4. Since the total number of minutes
for the right position is higher, the impact of this misclassification is attenuated, but the
impact on the prone position is very relevant, resulting in a Se value of 38.9%. Since the
PSG promotes the supine sleep position [26,27] due to the multiple wires and equipment
used for the test, it is likely that pure prone sleep positions do not occur. For this reason,
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the prone positions assessed in this study were close to the decision edge angle for the
lateral positions. This situation produced a situation in which the sleep technicians made
an opposite decision to the one that our smartphone system did. Yet, if more pure prone
positions had occurred, the sensitivity of the prone position would have been increased and
better numbers would have been achieved. This situation reveals the need to monitor sleep
position with a higher resolution, as we propose in our study, in order to avoid possible
misclassification and to provide the sleep technicians with more objective measures to
assess sleep position.

In addition, the results shown in Tables 2 and 4 confirm the excellent results seen
in Table 1, where the average agreement value is high. The diagonal of the confusion
matrix represents 95.6% of the total minutes assessed, indicating that the detection of the
sleep position was reliable. This statement is reinforced by the values from Table 4, where
the values of Se, Sp, PPV, NPV, and Acc are very high. Moreover, considering that the
prevalence of the prone sleep position is very low in the population [54], the high accuracy
found in this study is representative of the general population.

Finally, the small percentage and time differences observed in Tables 2 and 3 for
each patient and position can be explained by the sleep position transition differences
between the automatic smartphone algorithm and the manual video-validated corrections
on the PSG. Since the precision for manual correction is limited to the resolution which the
proprietary software of the PSG system allowed, there exists an accumulated error at the
exact moment of the position shift. This error accounts for there not being 100% agreement
between each of the different comparisons in Table 2, and why some small time values
between different positions appear in the confusion matrix (Table 3).

These results indicate that the position obtained from the smartphone accelerometry
could be reliably used to monitor sleep position, since the agreement with the video-
validated PSG was excellent.

4.2. Enhanced Sleep Position Monitoring

Although sleep position has been shown to be an important factor in sleep quality,
few studies aim to evaluate the position distribution beyond the four-position classification
used in the PSG [52,55].

The concept of enhanced sleep position monitoring refers to the increase of position
resolution provided by the calculation of the sleep and stand angles. It is enhanced
because the PSG only gives four discrete position values, and the angles allow us to assess
all possible intermediate positions. In this study, we demonstrated how the discretized
positions conceal small position shifts, such as those seen in Figure 2, which can be observed
with the sleep angle.

The higher resolution of our smartphone data allowed us to illustrate the variability
of the values in both lateral positions (Figure 4 and Table 5). Therefore, there could be
right and left positions close to the supine position, where the risk of apneas occurring is
increased in patients with pOSA. Additionally, most of the right and left positions detected
in this study were not recorded within a ±25◦ window around the reference value for
those positions. This pattern is easily seen in Figure 4, where the mean values for the left,
right, and prone positions are outside the boundaries of the ±25◦ window. This indicates
that the four-position classification system used in the PSG might not have a high enough
resolution to properly characterize the different sleep positions, which is very important
for determining the effect of position in sleep diseases such as OSA [52].

This idea is reinforced when analyzing the distribution of OSA events along the
different sleep angles. In Figure 5a, we can observe that approximately 30% of events
which happened in the database occurred in the discrete left sleep position, but most of
them were very close to the threshold value between left and supine sleep positions. This
indicates that the assessment of pOSA could be misleading when only four discrete sleep
positions are used, since OSA events occurring at 60◦ and at 0◦ in the left position are
classified as the same. The use of the sleep position angle would be a more robust and
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powerful measure, allowing the occurrence of events to be linked to a more accurate sleep
orientation. The three images in Figure 5 corresponding to subjects 1, 4 and 17 are good
examples of how powerful the sleep angle can be to assess pOSA. Images such as these
would allow a clinician to directly compare the local AHI to the sleep position angle of
occurrence. For instance, subject 1 is a clear case of a non-pOSA patient, since the local
AHI does not vary depending on the sleep position, and the patient slept at least 30% of
the time in a non-supine position (around 130 min from Table 1). Subject 17 is a clear case
of a pOSA patient, since the variation of the local AHI is significant when comparing the
supine position to the lateral positions. This subject would be classified as severe OSA
(AHI > 30) if he slept only in supine position, whereas he would be classified as healthy
(AHI < 5) if he slept only in the left or right positions. According to Table 1, this subject
slept for approximately 140 min in non-supine positions, which is sufficient time to assess
this differential behavior to determine pOSA. Finally, subject 4 is an example of a patient
in whom the assessment of pOSA would be challenging. The subject exhibits different
behavior in the supine position compared to the lateral and prone positions. Nevertheless,
there are sleep orientations at approximately −40◦ in which no events occurred, and other
orientations, such as −70◦ or 30◦, in which many events occurred. Although the overall
AHI for this patient was 5.62, we can see that the local AHI in the supine position would be
approximately 15. In this case, the increased sleep position resolution provided by the sleep
angle would allow a clinician to perform a better assessment of the severity of the patient.

In Figure 6, we complemented the local AHI information for each patient (Figure 6c)
with the ratio between the percentage of events (Figure 6a) and percentage of sleep position
time (Figure 6c). This ratio (Figure 6b) provides the information of the occurrence of events
related to a specific sleep angle. This variable does not consider the severity of the illness,
as the AHI does, but helps to better understand the increased or decreased occurrence of
events related to a specific sleep angle. Ratio values below 1 indicate that fewer events
occur compared to the time spent at that specific sleep position angle, whereas ratio values
over 1 indicate the opposite. In Figure 6b it is possible to see that many subjects have ratio
values over 2, indicating that the occurrence of events in this position is more than doubled.
We can observe in subject 3, for example, that the ratio increases when going closer to the
supine position. This behavior can only be seen with the increase of resolution provided by
the sleep angle. The more detailed information allows us to observe that subject 3 would
not have the same amount of events when sleeping in the right position with an angle of
180◦, scoring a ratio value between 0 and 1, or close to 120◦, which is the threshold between
supine and right position, which scores a ratio value between 1.5 and 2. The increase of
resolution proposed in this article, with the use of the sleep angle, would help clinicians to
decide which treatment strategies would be most suitable for each patient, since it would
allow more accurate determination of the severity of the OSA, as well as deeper insights
into the effect of sleep position.

4.3. Smartphone Sleep Monitors: Portable mHealth Tools

In recent years, there have been multiple attempts to develop mHealth tools to monitor
sleep-related breathing disorders. These attempts aim to reduce the number of sensors
used in the PSG to provide similar information related to sleep quality. Some authors
have proposed determining sleep quality by analyzing only the pulse oximetry [47,48].
These approaches obtained very good results, but lacked the ability to determine the
breathing pattern, which is an important factor for differentiating between apneas and
hypopneas [11]. To improve this situation, other studies tried to use only audio, or audio
combined with a pulse oximeter to determine the breathing pattern [35,38,46]. In parallel,
accelerometry has also played an important role in the mHealth field. Actigraphy has been
used to monitor sleep stages and sleep quality [39,44,45], but other authors have used it to
monitor respiration [41,56–59]. In our study, to determine the sleep position and calculate
the sleep and stand angles we decided to use a smartphone, placed over the sternum with
an elastic band, to acquire triaxial accelerometry.
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The use of smartphones attached to the chest may discourage subjects from adopting
a prone sleep position, due to their physical presence. Nevertheless, population studies
show that the prone position has a small prevalence (7.3%) within the different sleep
positions [54], so we would not expect the smartphone to have a large effect on the sleep
position choice. Despite this, in previous studies with the same smartphone system we
observed patients who slept a considerable amount of time in the prone position [41], and
it is very likely that the reason for not sleeping in prone-like positions is the use of the
PSG system [26,27], which has a lot of wires and promotes supine-like sleep positions. The
size and weight of today’s smartphones are, at worst, similar to those of several pieces
of commercial OSA monitoring equipment, and they are the same size and weight as the
PSG equipment. As can be seen from Figure 1a, the smartphone used in our system, which
measures 142 × 72.5 × 8.1 mm, is of similar size and characteristics to the PSG system
used, and is smaller and lighter than multiple home sleep apnea monitors. We chose
smartphones as they are available worldwide and contain many embedded sensors that
are useful for this kind of analysis. Moreover, they already have multiple tools which
make it possible to easily develop applications, which is very favorable for designing
and implementing new technologies and algorithms. We are aware that there are some
potential risks to using smartphones placed over the chest, including emissions and the
heat which can be generated. For this reason, we used the smartphone in airplane mode
and with Wi-Fi and Bluetooth deactivated, to reduce the emissions and heat generated, and
to avoid any harm to the patient. None of the patients reported any issues related to these
risks and reported a better comfort than when using the PSG. The elastic band used for this
study allowed good sleep comfort and was tight enough to prevent any smartphone shift
during the night, ensuring that the sleep position detection was not biased. Additionally,
with the configuration used in this study, we consider that there would be no further risk
beyond that entailed by the PSG system or any portable sleep apnea device.

In this study, we proposed an approach for using smartphones to reliably monitor
sleep position. The results we obtained demonstrate that the performance of smartphones
in detecting sleep position is, at a minimum, equivalent to the current gold-standard PSG.
Moreover, we establish that smartphones are able to provide the sleep position with a
higher resolution than the current PSG position evaluation.

Also of note is the fact that the algorithms proposed in this study incorporate the
ability to self-calibrate the initial position. This is important because of the variation in
patient anatomies.

In the future, smartphones could have the potential to precisely monitor sleep position
while, at the same time, providing diagnosis for OSA [38,41,52]. Furthermore, they could
even incorporate the ability to verify or apply positional therapy for several days, similar
to what other devices already do [60,61]. Monitoring a patient’s sleep position for multiple
days would allow the effect of any treatment to be assessed, and modified if necessary, in a
timely manner.

5. Conclusions

Assessment of sleep position is an important step in polysomnographic (PSG) studies,
since there is evidence that certain sleep positions or excessive position changes influence
sleep quality. Nevertheless, sleep position is usually classified as one of only four different
values: supine, prone, left, and right. In this study, we demonstrated how smartphones
could be used as sleep monitoring devices. We calculated two different angles, which
allowed us to determine the four sleep positions and the stand position with a higher
resolution when compared to the PSG test. To validate the positions found with the
smartphone, we performed simultaneous PSG-smartphone acquisitions in 19 patients. We
then discretized the information from the smartphone angles into the four sleep positions
to compare them with the manually video-validated positions from the PSG. We obtained a
high average agreement (95.6%) in the detection of the positions and showed the dispersion
of positions adopted by subjects for the non-supine sleep positions. In addition, we
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observed that the occurrence of OSA events in the lateral sleep positions varied depending
on the distance of the sleep position from the supine position threshold. This highlights
the fact that a higher resolution of sleep position is required to better assess pOSA.

The novel results presented in this study suggest that smartphones are promising
mHealth tools for enhanced position monitoring at hospitals and at home.

6. Patents

The algorithms explained in this manuscript are under a process to recognize the
industrial property.
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