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A specialized interior-point algorithm for huge minimum
convex cost flows in bipartite networks
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Abstract The computation of the Newton direction is the most time consuming step
of interior-point methods. This direction was efficiently computed by a combina-
tion of Cholesky factorizations and conjugate gradients in a specialized interior-point
method for block-angular structured problems. In this work we apply this algorithmic
approach to solve very large instances of minimum cost flows problems in bipartite
networks, for convex objective functions with diagonal Hessians (i.e., either linear,
quadratic or separable nonlinear objectives). After analyzing the theoretical proper-
ties of the interior-point method for this kind of problems, we provide extensive com-
putational experiments with linear and quadratic instances of up to one billion arcs
and 200 and five million nodes in each subset of the node partition. For linear and
quadratic instances our approach is compared with the barriers algorithms of CPLEX
(both standard path-following and homogeneous-self-dual); for linear instances it is
also compared with the different algorithms of the state-of-the-art network flow solver
LEMON (namely: network simplex, capacity scaling, cost scaling and cycle can-
celing). The specialized interior-point approach significantly outperformed the other
approaches in most of the linear and quadratic transportation instances tested. In par-
ticular, it always provided a solution within the time limit and it never exhausted the
192 Gigabytes of memory of the server used for the runs. For assignment problems
the network algorithms in LEMON were the most efficient option.
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1 Introduction

Given a graph (or network) G = (V,E), where V is a set of nodes (or vertices) and
E ⊆ V×V is a set of edges (or arcs), the minimum cost flow problem is a widely
studied optimization problem, consisting in selecting a collection of edges in E which
satisfies the circulation of a certain amount of flow between specified vertices while
minimizing a cost function (defined on the circulating flow). These problems encom-
pass a broad class of applications, ranging from best delivery route [29], to statistical
clustering [21], and assignment [6], among others; an extensive list of applications
can be found in the reference book [1] and the survey [2]. The minimum cost flow
problem holds a central position among network optimization models, as it can be
solved extremely efficiently, based on specialized combinatorial algorithms, such as
the cycle canceling [19], cost scaling [16], capacity scaling [15] and the network
simplex [26].

An interesting subclass of minimum cost flow problems covers the special case of
bipartite graphs (or bipartite networks) [1]. A graph G is bipartite if we can partition
V into two subsets I and J, which we call layers (they might be thought as pairs of
origins–destinations, or agents–tasks), so that for each arc (i, j) ∈ E, either i ∈ I and
j ∈ J, or j ∈ I and i∈ J. A particular type of minimum cost flows in bipartite networks
is the assignment—or weighted matching—problem [6], where |I|= |J|, supplies and
demands are +1 and −1 for, respectively, nodes in I and J, and arc capacities are 1.

A natural way to enlarge the range of applicability of this class of problems is to
allow for more general cost structures, such as the case of concave or convex objective
functions. As noted by [29] more than half a century ago, “the literature is replete
with analyses of minimum cost flows in networks for which the cost of shipping from
node to node is a linear function. However, the linear cost assumption is often not
realistic. Situations in which there is a set-up charge, discounting, or efficiencies
of scale give rise to concave functions”. Contextually, strict convexity arises when
shipments or production respectively encounter congestion or inefficiencies of scale.

Although the problem of finding a minimum cost matching is as easy as matrix
inversion (see [22]), the minimum convex cost flows in bipartite networks is not (see
[23] for a comprehensive experimental study on testing large-scale minimum cost
network flow problems). From the algorithmic viewpoint, the presence of nonlin-
ear costs prevents the use of the aforementioned specialized algorithms for classical
minimum cost flow problems (see chapter 14 of [1]), opening the possibility of an
efficient application of specialized interior-point methods (IPMs from now on).

The main claim of this paper is that minimum convex cost flows problems in
bipartite networks (MCCFBN from now on) with diagonal Hessians (i.e., either lin-
ear, quadratic or separable nonlinear objectives) exhibit particularly favorable primal-
block angular structures, which facilitate the efficient application of the specialized
IPM for primal-block angular problems of [8, 9, 10]. The underlying idea of this algo-
rithmic approach consists in solving the normal equations (associated to the Newton
direction of the IPM) by a combination of Cholesky factorizations for the block con-



Specialized IPM for huge minimum convex cost flows in bipartite networks 3

straints and preconditioned conjugate gradient (PCG from now on) iterations for the
linking constraints.

From the theoretical and the empirical viewpoint, this work shows that minimum
cost flows problems in bipartite networks can be included within the successful appli-
cation of the specialized IPM for primal block-angular problems. After uncovering
a collection of theoretical properties on the asymptotic behavior of the inner PCG
procedure for MCCFBN problems, we provide extensive computational experiments
with linear and quadratic instances of up to one billion arcs and 200 and five million
nodes in each subset of the node partition. This is in line with the the growing effort
to address the design of scalable algorithmic solutions for large-scale optimization
[5, 9, 12, 13]. In fact, the presented results provide both a theoretical and compu-
tational support of the scalable property of the the specialized IPM for MCCFBN
problems.

For linear and quadratic instances our approach is compared with the barriers al-
gorithms of CPLEX (both standard path-following and homogeneous-self-dual); for
linear instances it is also compared with the different algorithms (namely: network
simplex, capacity scaling, cost scaling and cycle canceling) of the state-of-the-art net-
work flow solver LEMON [20]. The specialized IPM significantly outperformed the
other approaches in most of the linear and quadratic transportation instances tested.
In particular, it always provided a solution within the time limit and it never exhausted
the 192 Gigabytes of memory of the server used for the runs. However, for the (lin-
ear) assignment problems tested, one of the LEMON algorithms was always the most
efficient choice, as it will be discussed in the section of computational results.

The rest of this paper is organized as follows. In Section 2 the block-angular for-
mulation of the MCCFBN problem is introduced. The design of the specialized IPM
for the MCCFBN problem is presented in Section 3. Section 4 contains theoretical
properties on the asymptotic behavior of the specialized IPM for different parameter
configurations of the MCCFBN problem. An extensive computational analysis is car-
ried out in Section 5. The paper ends with Section 6 highlighting the main findings in
this work.

2 Problem description and formulation

The MCCFBN problem is defined in a network with a set of nodes J (associated to
customers or tasks), with m = |J|, whose demands (or requirements) are known and
are to be supplied from another set of nodes I (operating suppliers or machines), with
n = |I|. We consider costs reflecting the transportation (or assignment) between each
pair (i, j) ∈ I× J. The goal is to decide how to supply the customers (or how to carry
out the tasks) from the operating suppliers (or by the operating machines) in order
to minimize the aggregate transportation/assignment cost. Before presenting an opti-
mization model for this problem we introduce some notation that will be considered
hereafter:

– fi j : R→ R, convex cost function of flow from i ∈ I to j ∈ J;
– d j ∈ R+, demand of j ∈ J;
– si ∈ R+, supply (or supply capacity) of i ∈ I;
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– ui j ∈ R+, capacity of the arc (i, j) ∈ I× J;

where R and R+ are the sets of real and nonnegative real numbers respectively. The
decisions to be made are the flows from i ∈ I to j ∈ J, which we denote as xi j. The
MCCFBN problem can be formulated as follows:

min ∑
i∈I

∑
j∈J

fi j(xi j), (1)

subject to ∑
i∈I

xi j = d j, j ∈ J, (2)

∑
j∈J

xi j ≤ si i ∈ I, (3)

0≤ xi j ≤ ui j, i ∈ I, j ∈ J. (4)

When ui j (i ∈ I, j ∈ J) are sufficiently large, feasibility is guaranteed as long as
∑ j∈J d j ≤ ∑i∈I si. If ∑ j∈J d j = ∑i∈I si, then si are supplies (instead of supply capaci-
ties), and constraints (3) are active in a solution. Problem (1)-(4) can be rewritten in
a block-angular form:

min f(x),∑
j∈J

f j(x j) (5)

subject to


e>

e>
. . .

e>
I I . . . I I




x1
x2
...

xm
x0

=


d1
d2
...

dm
s

 (6)

0≤ x j ≤ u j, j = 0,1, . . . ,m, (7)

where x j = [x1 j, . . . ,xn j]
> ∈ Rn represents the flows sent from I to node j; f j(x j) =

∑i∈I fi j(xi j) is the cost of flows arriving in node j; x = [x>1 , . . . ,x
>
m ]
> ∈ Rmn is the

vector of flows; f(x) is the objective function; matrix I ∈ Rn×n is the identity matrix;
e ∈ Rn is a vector of ones; x0 ∈ Rn is the vector of slacks of the linking constraints,
which represents the unused supply capacity; and s = [s1, . . . ,sn]

> ∈ Rn is the right-
hand side vector for the linking constraints, containing all the supplies. Note that
the m block constraints e>x j = d j correspond to (2), whereas the linking constraints
∑ j∈J Ix j +x0 = s correspond to (3). Note that this reformulation and matrix structure
is also valid for generalized flows (see chapter 15 of [1]), just by replacing e> by
some vector and I by a diagonal matrix.

3 Outline of the specialized IPM for primal block-angular problems

Formulation (5)–(7) exhibits a primal block-angular structure, and thus it can solved
by the interior-point method of [8, 10, 11]. This method is a specialized primal-dual
path-following algorithm tailored for primal block-angular problems. A thorough de-
scription of primal-dual path-following algorithms can be found in [24] and [28].
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Let A ∈ R(m+n)×(nm+n) and b ∈ Rm+n denote respectively the coefficient matrix
and right-hand-side of (5)–(7); z ∈ Rmn and w ∈ Rmn the vector of Lagrange mul-
tipliers for the lower and upper bounds (7); ∇f(x) ∈ Rmn the gradient vector of the
objective function; and λ ∈ Rm+n the vector of Lagrange multipliers of the equality
constraints (6). For any µ ∈ R+ the central path can be derived as a solution of the
µ-perturbed Karush-Kuhn-Tucker optimality conditions of (5)–(7):

rb ≡ b−Ax = 0, (8)

r f ≡ ∇f(x)−A>λ − z+w= 0, (9)
rxz ≡ µe− X Z e = 0, (10)
rxw ≡ µe− (U−X)W = 0, (11)

(x, z, w) ≥ 0, (12)

where X , Z and W are diagonal matrices whose diagonal entries are those of x, z
and w respectively. Matrix U is a diagonal matrix whose diagonal entries are the
upper limits u1 . . .um. The primal-dual path-following method consists in solving the
nonlinear system (8)–(12) by a sequence of damped Newton’s directions (with step-
length reduction to preserve the nonnegativity of variables), decreasing the value of
µ at each iteration. On the left-hand side of (8)–(12) we have explicitly reported the
residuals of the current iterate rb, r f , rxz and rxw.

The Newton’s iterates are carried out by forming a linear system of variables ∆x,
∆λ , ∆z, and ∆w around the current iterate—i.e. a linear approximation of (8)–(12)
around the current point. By letting ∇2f(x) be the Hessian of f(x) at the current iterate,
with few algebraic operations (see, for instance, [28] for details) we can obtain the
Newton direction in the dual space ∆λ by solving the system of normal equations

(AΘA>)∆λ = g, (13)

where

g = rb +AΘ(r f +(U−X)−1rxw−X−1rxz) ∈ Rn+m,

Θ = (Z X−1 +W (U−X)−1 +∇
2f(x))−1 ∈ R(nm)×(nm). (14)

The values of ∆x, ∆w and ∆z can be easily computed once ∆λ is known. Note that
Θ is a diagonal matrix as long as f(x) is separable (i.e., Hessian is diagonal), which
is the case for the MCCFBN problem (1)-(4).

Solving (13) is the most expensive computational step of the interior-point method
[24, 28]. General interior-point solvers usually compute (13) by a Cholesky factor-
ization, while the specialized method of [8, 10, 11] combines Cholesky with PCG.
Exploiting the structure of A in (6), and appropriately partitioning Θ and ∆λ accord-
ing to the m+1 blocks of variables and constraints, we have
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AΘA>∆λ =


e>Θ1e e>Θ1

. . .
...

e>Θme e>Θm
Θ1e . . . Θme Θ0 +∑

m
j=1 Θ j

∆λ

=


Tr(Θ1) ϕ>1

. . .
...

Tr(Θm) ϕ>m
ϕ1 . . . ϕm D




∆λ11
...

∆λ1m

∆λ2

=

[
B C

C> D

][
∆λ1
∆λ2

]
=

[
g1
g2

]
,

(15)
where Tr(.) denotes the trace of a matrix, ϕ j = [Θ j11 , . . . ,Θ jnn ]

>, for j = 1, . . . ,m, and
D = Θ0 +∑

m
j=1 Θ j is a diagonal matrix. By eliminating ∆λ1 from the first group of

equations, the system (15) reduces to(
D−C>B−1C

)
∆λ2 = (g2−C>B−1g1) (16)

B∆λ1 = (g1−C∆λ2). (17)

Since B is diagonal, system (17) is directly solved as ∆λ1, j = (g1−C∆λ2) j/Tr(Θ j),
for j = 1 . . .m. The only computational effort is thus the solution of system (16)—
the Schur complement of (15)—whose dimension is n, the number of nodes in I.
This might be computationally expensive if solved by Cholesky factorization, as it
requires the computation of a potentially dense matrix D−C>B−1C. By contrast,
the use of PCG was suggested in [8], using a preconditioner based on the following
power series expansion of the inverse of the Schur complement (see [8, Prop. 4] for
a proof):

(D−C>B−1C)−1 =

(
∞

∑
i=0

(
D−1(C>B−1C)

)i
)

D−1. (18)

The preconditioner is obtained by taking a finite number of terms of the infinite power
series (18). In this paper we consider the truncation at the first term, which implies
the definition of D−1 as a preconditioner. In such case, the solution of (16) by the
conjugate gradient only requires matrix-vector products with matrix (D−C>B−1C)
—which is computationally cheap because of the structure of D, C and B— and the
solution of systems with matrix D —which are straightforward since D is diagonal. It
is worth mentioning that the computation of approximate Newton directions by PCG
does not preclude the convergence of IPMs, as shown in [17]. There is an extensive
literature on the use of PCG within IPMs for different types of problems (see for
instance, [3, 4, 7, 14, 25, 27]). An alternative preconditioner to the power series one
was suggested in [11].

The quality of the preconditioner depends on the spectral radius (i.e., the max-
imum absolute eigenvalue) of matrix D−1(C>B−1C), which is real and always in
[0,1), as shown in [10] (the closest to zero, the better is the preconditioner). How-
ever, in the last interior-point iterations matrix Θ becomes very ill-conditioned (i.e.
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some of its elements go to zero whereas others tend to infinity), so that the spectral
radius of matrix D−1(C>B−1C) approaches the one, degrading the performance of
the conjugate gradient and hindering the efficient solution of (13) (see [10] for more
details).

For a general problem, the spectral radius can not be (efficiently) computed, but
it can be upper bounded using Theorem 1 in [10]. For the particular case of mini-
mum convex cost flow in bipartite networks, this upper bound can be replaced by the
equality provided by next lemma:

Lemma 1 (From Theorem 1 in [10]) Let ρ be the spectral radius of matrix D−1(C>B−1C)
and v the eigenvector (or one of the eigenvectors) of D−1(C>B−1C) for ρ . Then we
have that

ρ =
κ

v>
(

Θ0 +
m

∑
i=1

Θi

)
v

where κ = v>
(

m

∑
i=1

Θie
(

e>Θie
)−1

e>Θi

)
v. (19)

In the next section, asymptotic cases for the computation of ∆λ2 are studied,
along with the behaviour of ρ under different parameterizations of (16) (i.e. dimen-
sions of the network layers and relationship between the total demand and the total
supply).

4 Asymptotic behavior of the specialized IPM for MCCFBN problems

To make a compelling case of the scalable properties of the specialized IPM for MC-
CFBN problems, as announced in Section 1, asymptotic behaviors boosting the com-
putation of (16) at each IPM iteration are studied hereafter.

From (1)-(4) we see that the number of constraints and variables grows as m+n
and nm+n, respectively, and that the system (16) of dimension n has to be solved at
each IPM iteration. Thus, we expect the number of nodes in I (the suppliers) to have a
strong negative impact on the computational efficiency of the proposed approach (as
well as for other network flow algorithms, whose computational performances rely
on the problem size).

To counterbalance this size effect, the next proposition shows that, asymptotically,
the power series preconditioner D−1 provides the inverse of the matrix in the Schur
complement system (16) when n grows larger.

Proposition 1 Let us assume that there is an ε > 0 such that the current interior-
point (x,z,w) satisfies u− ε > x > ε , z > ε , w > ε (which is known to be the case
in all IPM iterations [28]). Then, the entries of C>B−1C are O(n−1), and then when
n→ ∞ we have C>B−1C→ 0.

Proof From the definition of C and B in (15), since B is diagonal, we have that entry
(h, l) of C>B−1C is

(C>B−1C)hl =
m

∑
j=1

Θ j,hhΘ j,ll
n

∑
i=1

Θ j,ii

≤ 1
n

m

∑
j=1

Θ j,hhΘ j,ll

min
i

Θ j,ii
. (20)
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Since Θ = (Z X−1 +W (U −X)−1 +∇2f(x))−1 and (x,z,w) > ε and u− x > ε we
have from (20) that (C>B−1C)hl = O(n−1), and

lim
n→∞

1
n

m

∑
j=1

Θ j,hhΘ j,ll

min
i

Θ j,ii
= 0.

�

Proposition 1 guarantees that D−C>B−1C→ D when n→ ∞, and then D−1 is the
best preconditioner. Under this asymptotic case the entire dual direction can also be
analytically computed.

∆λ2,i =
(g2−C>B−1g1)i

Θ0,ii +∑
m
j=1 Θ j,ii

, for i = 1, . . . ,n,

∆λ1, j =
(g1−C∆λ2) j

Tr(Θ j)
for j = 1, . . . ,m.

As a result of Lemma 1 and Proposition 1, and noting that the total slack in the
defined MCCFBN is fixed by construction at the excess capacity (i.e. ∑

n
i=1 x0,i =

∑
n
i=1 si−∑

m
j=1 d j), we obtain a direct relationship between the spectral radius ρ , the

number of suppliers n, the total excess capacity, and the duality gap µ at the current
IPM iteration:

Proposition 2 (Dependency of the spectral radius) Let ŝ = ∑
n
i=1 si, d̂ = ∑

m
j=1 d j.

Under the hypotheses of Lemma 1 and Proposition 1, at each point of the central
path (i.e., a point solving the µ-perturbed Karush-Kuhn-Tucker conditions), we have

ρ =
O
(
n−1
)

1
µ

O
(
(ŝ− d̂)2

)
+ γ

where γ = v>
(

m

∑
j=1

Θ j

)
v≥ 0. (21)

Proof Since v is one of the orthonormal eigenvectors of D−1(C>B−1C), we have that
‖v‖= 1. From Proposition 1, all the entries of (C>B−1C) are O(n−1). It follows that
the term κ = v>(C>B−1C)v of (19) is O(n−1).

Since u0,i = ∞ (MCCFBN problems have no upper bound on the excess capacity)
and f0(x0) = 0 (the excess capacity has no cost), from (14) Θ0,ii = x0,i/z0,i = x2

0,i/µ ,
using for the last equality that the point is on the central path (that is, x0iz0,i = µ).

Then v>Θ0v> = 1
µ ∑

n
i=1 v2

i x2
0,i =

1
µ

O
(

maxi∈I x2
0,i

)
, and from (19)

ρ =
O
(
n−1
)

1
µ

O
(

max
i∈I

x2
0,i

)
+v>

(
m

∑
i=1

Θi

)
v

=
O
(
n−1
)

1
µ

O
(
(ŝ− d̂)2)+v>

(
m

∑
i=1

Θi

)
v

,

where the second equality has been obtained by noting that maxi∈I x0,i ≤ ∑
n
i=1 x0,i =

∑
n
i=1 s j−∑

m
j=1 d j, and x0,i ≥ 0 for every i ∈ I.

�
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On the one hand, as a consequence of Proposition 2, the efficiency of the PCG is
enhanced by the excess capacity and the number of suppliers n. (These relationships
are numerically supported in Section 5). On the other hand, Proposition 2 implies that
the impact of the excess capacity on the performance of the PCG becomes more and
more relevant when the optimal solution is approached (i.e. when µ goes to zero).
This may explain the good behaviour of the preconditioner for MCCFBN near the
optimal solution of MCCFBN, unlike it was observed for other problems [8, 10, 9].
It is not surprising that the excess capacity improves the performance of the method,
since it reduces the number of active linking constraints in the optimal point, thus
increasing the block-separability of the problem.

5 Computational experiments

The specialized interior-point algorithm for MCCFBN described in previous sec-
tions was developed using the BlockIP solver [9], an efficient C++ implementation of
the specialized IPM for general block-angular problems. This code will be denoted
MCCFBN-BlockIP or simply BlockIP hereafter, and a copy of it (in binary format)
can be obtained from http://www-eio.upc.es/~jcastro/MCCFBN-BlockIP.html.
This section describes the computational experiments designed to numerically assess
the performance of MCCFBN-BlockIP and its competitive advantage with respect to
cutting edge solvers for this class of problems. Specifically, we considered CPLEX
12.5—a state-of-the-art general optimization package—and LEMON—a highly ef-
ficient network optimization code. LEMON was selected because according to [20]
(and to some preliminary tests we carried out) it outperformed the best current net-
work optimization packages (some of them implementing algorithms already avail-
able in LEMON, and others implementing different approaches, such as alternative
specialized interior-point methods based on tree preconditioners [27]). Therefore,
through LEMON and the results in [20], our algorithm can also be indirectly com-
pared with these other network optimization packages. For the computational exe-
cutions we considered the following algorithms implemented in CPLEX 12.5 and
LEMON (which are the most efficient ones for MCCFBN problems):

– CPLEX (release 12.5) implementation of the barrier algorithm;
– CPLEX (release 12.5) implementation of the dual simplex algorithm;
– LEMON (release 1.3.1) implementation of the capacity scaling algorithm;
– LEMON (release 1.3.1) implementation of the cost scaling algorithm;
– LEMON (release 1.3.1) implementation of the cycle canceling algorithm;
– LEMON (release 1.3.1) implementation of the network simplex algorithm.

While the barrier algorithm can be applied both to linear and (quadratic) convex
instances, the remaining solvers are only applied to linear instances. Thus, the barrier
algorithm can be regarded as the current benchmark for general MCCFBN problems.
For running the CPLEX barrier we considered one thread, and no crossover (oth-
erwise the CPU time would significantly increase). Similarly, for LEMON and for
MCCFBN-BlockIP a single thread was used.

The collection of computational experiments of the following subsections are
grouped in three categories:

http://www-eio.upc.es/~jcastro/MCCFBN-BlockIP.html


10 Jordi Castro, Stefano Nasini

– Tests to assess the effect of demand slack on the computational performance of
MCCFBN-BlockIP;

– Tests to assess the competitive advantage of MCCFBN-BlockIP when solving
transportation instances: (i) with linear integer costs (since some of the LEMON
algorithms only work with integer values); (ii) with linear fractional costs; (iii)
with quadratic—and fractional—costs.

– Tests to assess the competitive advantage of MCCFBN-BlockIP when solving
assignment instances: (i) with small costs; (ii) with large costs

Assignment instances were obtained with the DIMACS generator by McGeoch [18].
Transportation instances were obtained with a new generator which considers a spa-
tial two-dimensional distribution of the graph, and writes the problem in DIMACS
format. For convenience, the source code of both generators is also available from
http://www-eio.upc.es/~jcastro/MCCFBN-BlockIP.html.

For the large-scale instances tested in this work the optimality tolerance for CPLEX
and MCCFBN-BlockIP was set to 10−4; this tolerance cannot be adjusted in LEMON,
so default values were used (however, CPLEX, LEMON and MCCFBN-BlockIP pro-
vided solutions with the same objective function). All the runs were carried out on
a Fujitsu Primergy RX2540 M1 4X server with two 2.6 GHz Intel Xeon E5-2690v3
CPUs (48 cores) and 192 Gigabytes of RAM, under a GNU/Linux operating system
(openSuse 13.2), without exploitation of multithreading capabilities (i.e., as noted
above, a single thread was used—runs were carried out sequentially). The GCC ver-
sion 4.8.3 suite of compilers (C, C++, and Fortran) was used for the implementations.
A time limit of 18000 CPU seconds (5 CPU hours) was considered in all the execu-
tions.

5.1 The effect of demand slack

Noting that the slack in the defined MCCFBN is fixed by construction at the
excess capacity (i.e. ∑

n
i=1 x0, j = ∑

n
i=1 si−∑

m
j=1 d j), Proposition 2 suggests a direct

relationship between the spectral radius ρ and the total excess capacity.
The impact of the relative slack on the computational performance of the spe-

cialized IPM for MCCFBN problems is studied in this section, based on compu-
tational experiments involving 12 problem instances solved by the aforementioned
MCCFBN-BlockIP, CPLEX and LEMON solvers. We considered two values of n (25
and 200), two values of m (10000 and 2000000) and three values of 1−(ŝ− d̂)/ŝ (0.1,
0.5, 1.0) to build 12 transportation instances with linear costs. Note that 1− (ŝ− d̂)/ŝ
is 1 when ŝ = d̂ —no slack—, and it approaches 0 when ŝ� d̂.

The contour curves in Figure 1 illustrate the impact of the term 1− (ŝ− d̂)/ŝ
on the average number of PCG iterations within each IPM iteration, for different
instance sizes n and m. The different values of PCG iterations are marked in different
colors, as shown by the bar at the right of the plots. It is clear from Figure 1 that the
complementary of the relative demand slack 1− (ŝ− d̂)/ŝ has a clear impact on the
average number of PCG iterations, that is, the less the demand slack, the more PCG
iterations are required by MCCFBN-BlockIP.

http://www-eio.upc.es/~jcastro/MCCFBN-BlockIP.html
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(a) Excess capacity × n (b) Excess capacity × m

Fig. 1: The average number of PCG iterations within the IPM iterations (using different colors) is plotted
for different combination of parameters. On the left panel, the axis of the contour curves report the number
of nodes in the first layer n and the complementary of the relative demand slack 1− (ŝ− d̂)/ŝ. On the
right panel, the axis of the contour curves report the number of nodes in the second layer m and the
complementary of the relative demand slack 1− (ŝ− d̂)/ŝ.

5.2 Transportation instances with integer costs

We generated 20 instances with linear integer costs using the spatial generator, which
takes as some of the input parameters the number of nodes in I (n) and J (m), and
it builds the transportation problems by randomizing the demand points on a two-
dimensional surface. These 20 instances were obtained by considering all the com-
binations of n ∈ {25,100,200} and m ∈ {1e4,5e4,1e5,5e5,1e6}. In all the cases
(ŝ− d̂)/ŝ = 0 (that is, we consider no relative demand slack), which, according to the
discussion of previous section, is the worst scenario for MCCFBN-BlockIP. These
instances, being linear with integer costs, could be solved with all the available al-
gorithms of the three solvers: the Newton and predictor-corrector interior-point algo-
rithms of MCCFBN-BlockIP; the dual simplex and the two interior-point algorithms
(that is, the standard barrier and the homogeneous-self-dual (HSD)) of CPLEX; and
the capacity scaling, cost scaling, cycle canceling and network simplex of LEMON.
The primal simplex of CPLEX was not considered since it was outperformed by the
dual simplex.

Table 1 reports the dimension of the problems (in millions of variables and con-
straints), as well as the CPU time needed by the different algorithms of the three
solvers. Executions marked with “—” exhausted the 18000 seconds CPU time limit.
The fastest executions are marked in boldface. Note that the number of variables
is nm + n while the number of constraints is n + m; the largest instance has one
billion variables and five millions constraints. From Table 1 we have that in gen-
eral MCCFBN-BlockIP outperformed the other two solvers, mainly when the size of
the problem is very large. To confirm that all the solvers reach points of equivalent
quality, Table 2 reports the optimal objective functions associated to the problem in-
stances in Table 1: it is seen that MCCFBN-BlockIP provides points as good as those
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n.var n.cons BlockIP CPLEX LEMON
(M) (M) Newton PreCorr HSD Barrier Dual S. CapS CosS CycC NetS
0.25 0.01 1.4 1.2 1.4 1.4 4.8 48.9 3.8 2.1 3.0

2.5 0.10 31.5 4.0 24.0 13.6 262.2 8817.0 330.9 104.5 1118.2
12.5 0.50 146.6 71.4 137.4 79.1 5265.2 — — 2265.4 —

25 1.00 253.8 37.4 260.3 153.7 18071.8 — — 10284.8 —
125 5.00 998.4 987.9 2267.6 1019.0 41188.5 — — — —
0.5 0.01 2.0 2.9 3.4 2.4 11.5 82.9 6.5 3.5 2.4

5 0.10 90.9 37.1 76.9 34.2 1630.5 17494.0 618.1 183.5 639.3
25 0.50 518.3 237.7 478.4 221.0 18098.2 — 15195.3 4127.1 —
50 1.00 966.3 519.0 1295.2 435.9 18947.1 — — — —

250 5.00 1578.2 1497.3 6245.7 1980.5 18043.7 — — — —
1 0.01 8.4 7.4 6.6 6.5 35.8 209.2 13.1 12.7 4.0

10 0.10 131.3 86.1 157.2 82.9 6814.0 — — 586.9 803.1
50 0.50 930.5 519.6 2424.4 536.5 5468.9 — 462.0 6024.3 —

100 1.00 2631.4 771.9 4285.4 851.2 18017.8 — — — —
500 5.00 3924.5 5979.6 — — — — — — —

2 0.01 31.2 28.2 26.4 16.0 309.2 560.9 25.6 29.6 4.2
20 0.10 389.4 693.2 1402.0 268.1 18114.9 — — 774.0 1737.3

100 0.50 2194.7 1116.1 7209.0 1138.7 14018.4 — — 3510.9 —
200 1.00 3629.8 1411.6 15573.3 2300.9 22516.3 — — 8260.8 —

1000 5.00 2340.4 2706.9 — — — — 4599.1 4181.2 —
— No solution found within the time limit

Table 1: Computational performance for transportation instances with integer costs; fastest execution in
boldface. The first two columns describe the problem size in terms of the number of variables (nm+ n)
and constraints (m+ n), while the remaining columns report the CPU time of the different algorithms of
MCCFBN-BlockIP, CPLEX and LEMON solvers.

computed by CPLEX and LEMON. Finally, Table 3 casts a closer look at the in-
ternal dynamics of the interior-point algorithms of MCCFBN-BlockIP (Newton and
predictor-corrector) and CPLEX (standard barrier and HSD). For the four algorithms
the table provides the CPU time, objective function and number of IPM iterations; for
the two MCCFBN-BlockIP variants it also reports the overall number of PCG itera-
tions. The best CPU times and objective functions are marked in boldface. Due to the
use of a PCG iterative solver, the systems solved by MCCFBN-BlockIP are inexact,
and thus it takes a larger amount of IPM iterations than CPLEX; however it remains
globally more efficient. It is worth noting that the predictor-corrector direction is, in
general, the most efficient alternative, despite it means two solutions by a PCG. We
also remark that the largest instances (of 500M and 1000M variables) could not be
solved by CPLEX within the five hours time limit, while MCCFBN-BlockIP solved
them in less than one hour.

5.3 Transportation instances with fractional costs

The set of computational tests presented in this section mirrors the one already pre-
sented in Subsection 5.2, with the only difference given by the use of linear fractional
costs. For LEMON, only network simplex is used, as according to LEMON man-
ual, this is the only LEMON algorithm that may work with fractional costs. In many
instances, however, it failed, as shown in Tables 4 and 5.

From Table 4, the use of fractional costs enhances the competitive advantage
of MCCFBN-BlockIP over CPLEX and LEMON: for all the instances MCCFBN-
BlockIP reported the fastest execution; and, unlike for the case of integer costs, the
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n.var n.cons BlockIP CPLEX LEMON
(M) (M) Newton PreCorr HSD Barrier Dual S. NetS
0.25 0.01 0.9 1.3 1.1 5.2 5.0 3.0

2.5 0.10 8.8 15.0 17.5 18.0 267.4 —
12.5 0.50 46.5 60.8 119.1 232.6 6742.8 —

25 1.00 91.3 118.4 228.6 695.4 18155.1 —
125 5.00 485.7 726.0 1609.3 3557.8 18027.7 —
0.5 0.01 3.8 2.2 2.3 6.7 10.2 2.4

5 0.10 44.6 41.7 33.2 48.8 1823.3 650.3
25 0.50 101.4 226.3 388.6 712.3 18431.2 —
50 1.00 388.8 489.6 913.8 675.2 18010.3 —

250 5.00 1577.9 1697.8 5500.0 5306.2 18029.4 —
1 0.01 6.1 8.1 6.8 16.3 29.4 —

10 0.10 69.9 87.5 152.0 221.3 5751.2 843.7
50 0.50 349.7 394.0 814.6 2665.9 18843.8 —

100 1.00 804.9 807.5 1947.7 2885.7 18189.8 —
500 5.00 3993.9 4006.9 — — 24610.2 —

2 0.01 17.7 31.0 19.1 30.5 232.0 —
20 0.10 162.3 298.1 588.8 417.9 18029.0 839.2

100 0.50 2103.6 1497.4 3354.7 5825.6 18027.4 —
200 1.00 3979.8 3072.5 7023.6 11197.7 20801.6 —

1000 5.00 19401.8 18803.4 — — — —
— No solution found within the time limit

Table 4: Computational performance for transportation instances with fractional costs; fastest execution
in boldface. The first two columns describe the problem size in terms of the number of variables (nm+n)
and constraints (m+n), while the remaining columns report the CPU time of MCCFBN-BlockIP, CPLEX
and LEMON solvers.

n.var n.cons BlockIP CPLEX LEMON
(M) (M) Newton PreCorr HSD Barrier Dual S. NetS
0.25 0.01 6253 6253 6254 6253 6253 6253
2.5 0.10 6267 6268 6275 6281 6267 —

12.5 0.50 6268 6269 6277 6288 6268 —
25 1.00 6268 6269 6279 6331 — —

125 5.00 6269 6269 6278 6659 — —
0.5 0.01 4.351e+04 4.358e+04 4.359e+04 4.358e+04 4.358e+04 4.358e+04

5 0.10 4.371e+04 4.371e+04 4.379e+04 4.393e+04 4.378e+04 4.378e+04
25 0.50 4.325e+04 4.374e+04 4.385e+04 4.564e+04 — —
50 1.00 4.373e+04 4.373e+04 4.385e+04 4.395e+04 — —

250 5.00 4.373e+04 4.375e+04 4.386e+04 4.51e+04 — —
1 0.01 3.571e+05 3.541e+05 3.572e+05 3.593e+05 3.571e+05 —

10 0.10 3.603e+05 3.585e+05 3.608e+05 3.618e+05 3.603e+05 3.603e+05
50 0.50 3.606e+05 3.606e+05 3.612e+05 3.693e+05 — —

100 1.00 3.607e+05 3.607e+05 3.613e+05 3.675e+05 — —
500 5.00 3.607e+05 3.607e+05 — — — —

2 0.01 2.764e+06 2.787e+06 2.788e+06 2.792e+06 2.787e+06 —
20 0.10 2.795e+06 2.824e+06 2.842e+06 2.844e+06 — 2.837e+06

100 0.50 2.818e+06 2.842e+06 2.847e+06 3.05e+06 — —
200 1.00 2.819e+06 2.842e+06 2.847e+06 2.895e+06 — —

1000 5.00 2.819e+06 2.841e+06 — — — —
— No solution found within the time limit

Table 5: Objective function for the same transportation instances with fractional costs reported in Table
4; lowest in boldface.

Newton direction provided slightly faster executions, except for the largest instances,
where predictor-corrector was superior. Table 5 supports the fact that all solvers pro-
vide points of similar objective function. Finally, Table 6 provides a closer look at the
comparison between interior-point algorithms for the instances of Table 4, focusing
on both CPU and objective function. It can be observed that, in average, the num-
ber of PCG iterations by IPM iteration was always below 20 for Newton and 50-60
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for predictor-corrector. As for the integer cost instances, CPLEX could not solve the
largest instances within the time limit.

5.4 Transportation instances with quadratic and fractional costs

To enlarge the level of generalization of the analyzed MCCFBN instances, quadratic
costs can be included to model congestion (in urban transportation settings), line
resistance (in power grids and electricity distribution) or inefficiency of scale (in
labor-machine assignments). Thus, we consider again the battery of computational
tests presented Subsection 5.2, with the only difference given by the inclusion of a
quadratic convex term in the objective functions. As a results of this modeling de-
sign, only interior-point algorithms (MCCFBN-BlockIP and CPLEX) are applicable.
Table 7 provides the instances dimensions, CPU time, objective function and IPM it-
erations of MCCFBN-BlockIP and CPLEX quadratic solvers; for MCCFBN-BlockIP
the overall number of PCG iterations is also reported.

For this class of instances MCCFBN-BlockIP outperformed the two interior-point
variants of CPLEX in all the cases. Table 7 shows again a larger number of IPM
iterations by MCCFBN-BlockIP, while remaining globally more efficient than the
CPLEX barrier across the entire collection of MCCFBN problem instances. We also
observe that the number of IPM and PCG iterations needed by MCCFBN-BlockIP
is much less than for linear instances; this is consistent with Proposition 2 and the
computational results of [10].

5.5 Assignment instances

As discussed in Section 1, assignment instances are a particular class of MCCFBN
problems, which compute a minimum cost matching between two groups of objects,
where nodes in one layer are associated to demands for a commodity or task to be
performed (negative flow injection), whereas nodes in the other layer represent the
corresponding suppliers or agents (positive flow injection). Thus, in the case of as-
signment problems variables are bounded between zero and one, while the right-
hand-term is composed by unitary elements. Due to the total unimodularity structure,
the optimal solution is binary with simplex algorithms. Using an IPM this is not guar-
anteed, unless a crossover postprocess is applied; however, we observed that only a
small fraction of flows resulted fractional in the optimal point. In the computational
results of this section no crossover was considered. All MCCFBN-BlockIP, CPLEX
and LEMON solvers were used to solve the set of assignment instances obtained
with the previously mentioned DIMACS generator [18]. We generated two groups of
assignment instances, with two different maximum costs, 5000 and 5000000, in an
attempt to avoid favoring the cost scaling algorithm of LEMON (which is pseudo-
polynomial in the maximum cost). And for each group we generated six instances
considering n,m ∈ {250,500,2500,5000,12500,25000,}, which amounts to assign-
ment problems of up to 625M variables and 50000 constraints.
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n.var n.cons BlockIP CPLEX LEMON
(M) Newton PreCorr HSD Barrier Dual S. CapS CosS CycC NetS

0.0625 500 0.1 0.1 0.3 0.2 0.1 0.0 0.0 0.3 0.0
0.25 1000 0.5 0.4 1.2 1.1 0.6 0.1 0.1 1.2 0.0
6.25 5000 34.3 38.1 92.4 78.4 90.3 1.6 5.6 77.4 1.7

25 10000 216.1 194.1 741.9 686.5 331.1 8.5 23.8 435.0 8.7
156.25 25000 1507.8 1222.6 7853.5 8586.4 2079.9 129.4 167.4 3827.5 70.8

625 50000 4031.8 4165.5 — — 18182.1 4191.2 436.2 11104.2 240.7
0.0625 500 8209 8209 8209 8209 8209 8209 8209 8209 8209

0.25 1000 8323 8323 8323 8324 8323 8323 8323 8323 8323
6.25 5000 9415 9415 9415 9415 9415 9415 9415 9415 9415

25 10000 1.09e+04 1.09e+04 1.09e+04 1.09e+04 1.09e+04 1.09e+04 1.09e+04 1.09e+04 1.09e+04
156.25 25000 1.521e+04 1.521e+04 1.521e+04 1.521e+04 1.521e+04 1.521e+04 1.521e+04 1.521e+04 1.521e+04

625 50000 2.54e+04 2.54e+04 — — — 2.54e+04 2.54e+04 2.54e+04 2.54e+04
— No solution found within the time limit

Table 8: CPU time (six first rows) and objective function (last six rows) for assignment instances with
maximum cost of 5000; fastest execution and lowest objective in boldface.

n.var n.conss BlockIP CPLEX LEMON
(M) Newton PreCorr HSD Barrier Dual S. CapS CosS CycC NetS

0.0625 500 0.2 0.1 0.3 0.2 0.1 0.0 0.0 0.2 0.0
0.25 1000 0.6 0.4 1.4 1.3 0.6 0.1 0.2 1.0 0.0
6.25 5000 33.3 24.9 98.1 90.1 27.0 2.0 4.9 83.1 1.9

25 10000 146.5 130.1 739.8 832.6 166.0 11.9 25.7 540.2 9.5
156.25 25000 1499.3 1017.0 8805.4 12959.6 1380.7 111.3 327.5 5339.7 83.4

625 50000 8047.6 7525.8 — — 18141.8 609.2 935.4 — 492.7
0.0625 500 8.088e+06 8.088e+06 8.088e+06 8.088e+06 8.088e+06 8.088e+06 8.088e+06 8.088e+06 8.088e+06

0.25 1000 8.089e+06 8.089e+06 8.09e+06 8.089e+06 8.089e+06 8.089e+06 8.089e+06 8.089e+06 8.089e+06
6.25 5000 8.133e+06 8.133e+06 8.133e+06 8.133e+06 8.133e+06 8.133e+06 8.133e+06 8.133e+06 8.133e+06

25 10000 8.28e+06 8.28e+06 8.28e+06 8.28e+06 8.28e+06 8.28e+06 8.28e+06 8.28e+06 8.28e+06
156.25 25000 8.208e+06 8.208e+06 8.208e+06 8.208e+06 8.208e+06 8.208e+06 8.208e+06 8.208e+06 8.208e+06

625 50000 8.206e+06 8.206e+06 — — — 8.205e+06 8.205e+06 — 8.205e+06
— No solution found within the time limit

Table 9: CPU time (six first rows) and objective functions (last six rows) for assignment instances with
maximum cost of 5000000; fastest execution and lowest objective in boldface.

Tables 8 and 9 compare MCCFBN-BlockIP, CPLEX and LEMON solvers with
respect to CPU time (first six rows of each table) and objective function (last six
rows), for the two groups of assignment instances, respectively.

In both cases, and unlike for transportation problems, the specialized LEMON al-
gorithms outperformed both CPLEX and MCCFBN-BlockIP. And the network sim-
plex implementation of LEMON (instead of the cycle canceling, capacity or cost
scaling pseudo-polynomial algorithms) was the most efficient option for the largest
problems; this is consistent with the results provided in [20]. All solvers achieved the
same optimal values. Finally, Table 10 reports a comparison between the IPM solvers.
Clearly, MCCFBN-BlockIP was more efficient than CPLEX for all the instances. If
we had solved assignment instances with quadratic terms (should they were useful
to model some particular problem), the only available algorithms would be those in
MCCFBN-BlockIP and CPLEX; and since MCCFBN-BlockIP is more efficient for
quadratic than for linear problems, we would expect it to outperform CPLEX even
by a larger margin.
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6 Conclusions

In this work we exploited the scalable properties of a specialized interior-point method
for solving huge instances of minimum convex cost flow problems in bipartite net-
works. This was accomplished by taking advantage of a particularly suitable primal
block-angular structure of the underlying constraints matrix, which allows for an ex-
tremely efficient computation of the Newton direction at each IPM iteration.

This scalable properties have been theoretically studied, building on the asymp-
totic behavior of the inner PCG procedure for MCCFBN problems. This allows the
minimum convex cost flows problems in bipartite networks to be included within the
successful applications of the specialized IPM for primal block-angular problems.

The tests performed and reported in the paper involve an extensive set of com-
putational experiments with linear and quadratic instances of up to 1 billion arcs and
200 and 5 million nodes in each subset of the node partition. The results support
the competitive advantage of the specialized IPM for MCCFBN problems, which is
particularly true for the case of quadratic objective costs.

Overall, the specialized IPM significantly outperformed the other approaches in
most of the linear and quadratic transportation instances tested. In particular, it always
provided a solution within the five hours time limit and it never exhausted the 192
Gigabytes of memory of the server used for the runs. Given the massive amount of
data being collected in the current digital society, in the near future we may need to
solve extremely huge network optimization problems (even larger than those tried in
this work). This specialized IPM for MCCFBN may be considered a good candidate
for those problems, if not one of the few methods able to tackle them.

Acknowledgements The first author has been supported by the MINECO/FEDER grant MTM2015-
65362-R.
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