

BACHELOR’S THESIS PROJECT

TITLE: Simulation of a TaxiBot Operation for First Person Training

DEGREE: Double Bachelor’s Degree in Aerospace Systems Engineering

and Telecommunications Systems Engineering

AUTHOR: Gabriel Sebastián Font Rojas

DIRECTOR: Jordi Pons Prats

CODIRECTOR: Francisco Javier Mora Serrano

DATE: September 2021

 2

Title: Simulation of a TaxiBot Operation for First Person Training

Author: Gabriel Sebastián Font Rojas

Director: Jordi Pons Prats

Codirector: Francisco Javier Mora Serrano

Date: September 2021

Overview

The TaxiBot is a semi-robotic electric vehicle capable of towing aircraft from
the boarding gate at the terminal to a runway holding position. The TaxiBot is
controlled by the pilot using the regular tiller for nose wheel steering, rudder
pedals and brakes within the cockpit. This is one of multiple solutions to reduce
fuel consumption on ground operations. This project focuses on the
development of a piece of software that simulates the use of a TaxiBot to
perform a taxi procedure on a recreated airport. The purpose of the experience
is to practice the operation in a risk-free virtual environment.

The TaxiBot is relatively new in aviation and it is not featured in any openly
available flight simulation software today. The design phase of the experience
entails several important decisions. The reasoning and criteria behind these
decisions and the requirements or optional tasks that are derived as a
consequence are all valuable information. Along this document, a description
of the process that was followed in order to develop the experience, from
creating or acquiring assets to scripting the forces that move the simulated
vehicles and creating the evaluation systems, is presented.

The same virtual environment could be expanded to provide different
experiences, test new vehicles or procedures (as is the case of the TaxiBot)
without needing to make another fresh start.

To validate the experience, several users with different expertise levels on the
subject tested the application and provided feedback to evaluate different key
points like their engagement, what knowledge was gained following the training
session and which aspects they would like to see improved.

The experience was well received in the validation session. However, a door
remains open to keep researching the subject as a more systematic validation
method could provide numerical data on the effectiveness of similar
experiences. Additionally, a few proposed functionalities that were not carried

Simulation of a TaxiBot Operation for First Person Training 3

out or newer suggestions could be implemented at a later stage to expand on
the ideas and developments accomplished in this project.

 4

Título: Simulación de Rodaje con el Taxibot para Entrenamiento en Primera

Persona.

Autor: Gabriel Sebastián Font Rojas

Director: Jordi Pons Prats

Codirector: Francisco Javier Mora Serrano

Fecha: Septiembre de 2021

Resumen

El TaxiBot es un vehículo eléctrico semirrobótico capaz de remolcar aviones
desde la puerta de embarque de la terminal hasta una posición de espera en
la pista. El TaxiBot en teoría es transparente al piloto ya que se controla con
el timón y los frenos habituales de la cabina. Es una de las múltiples soluciones
para reducir el consumo de combustible en las operaciones en tierra. Este
proyecto se centra en el desarrollo de un software que simula el uso de un
TaxiBot para realizar un procedimiento de taxi en un aeropuerto recreado. El
objetivo de la experiencia es practicar la operación en un entorno virtual sin
riesgos.

El TaxiBot fue desarrollado por Israel Aerospace Industries y consiguió una
primera certificación en 2014. Por ser relativamente nuevo en la aviación, no
aparece en ningún software de simulación de vuelo disponible en la actualidad.
La transparencia para el piloto de usar un TaxiBot es un argumento de venta
y las diferencias con respecto a un rodaje convencional ameritan
entrenamiento específico para pilotos y operadores. La fase de diseño de la
experiencia conlleva varias decisiones importantes. El razonamiento y los
criterios en los que se basan estas decisiones, así como los requisitos o las
tareas opcionales que se derivan como consecuencia, constituyen una
información valiosa. A lo largo de este documento se presenta una descripción
del proceso que se ha seguido para desarrollar la experiencia, desde la
creación o adquisición de activos hasta el scripting de las fuerzas que mueven
los vehículos simulados y la creación de los sistemas de evaluación. El mismo
entorno virtual podría ampliarse para ofrecer diferentes experiencias, probar
nuevos vehículos o procedimientos (como es el caso del TaxiBot) sin
necesidad de volver a empezar.

Para validar la experiencia, varios usuarios con diferentes niveles de
experiencia en el tema probaron la aplicación y proporcionaron comentarios
para evaluar diferentes puntos clave como su compromiso, los conocimientos
adquiridos tras la sesión de formación y los aspectos que les gustaría ver
mejorados.

Simulation of a TaxiBot Operation for First Person Training 5

La experiencia fue bien recibida en la sesión de validación. Sin embargo,
queda una puerta abierta para seguir investigando el tema, ya que un método
de validación más sistemático y con más participantes puede aportar datos
numéricos sobre la eficacia de esta experiencia u otras similares. Además,
algunas funcionalidades propuestas que no se llevaron a cabo o sugerencias
más novedosas podrían implementarse en una etapa posterior para ampliar
las ideas y desarrollos realizados en este proyecto.

 6

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION .. 8

1.1. Motivation.. 8

1.2. Objectives ... 9

1.3. Research Methodology .. 10

1.4. Document Structure ... 11

CHAPTER 2. STATE OF THE ART ... 13

2.1. Taxi Operations .. 13

2.2. The Use of Simulation in Aviation .. 13

2.3. Software Examples .. 14
2.3.1. Tecknotrove: Tecknosim Pushback Simulator 2017 ... 14
2.3.2 KLM VR Training .. 16
2.3.3. Microsoft Flight Simulator .. 17

CHAPTER 3. EXPERIENCE DESIGN ... 18

3.1. Requirements and Optional Systems .. 18

3.2. Target Audience ... 19

3.3. Specifications ... 20
3.3.1. TaxiBot Specifications ... 20
3.3.2. Specifications of the Featured Aircraft .. 20
3.3.3. Airport Specifications ... 21

3.4 Decisions and Criteria .. 23
3.4.1. Location Selection ... 23
3.4.2. Taxi Procedure .. 24
3.4.3. Challenging the User ... 26

CHAPTER 4. UNITY IMPLEMENTATION ... 28

4.1. Relevant Technological Tools... 28
4.1.1. Unity ... 28
4.1.2. Visual Studio .. 30
4.1.3. C# in Unity ... 30
4.1.4. SketchUp ... 31
4.1.4. Adobe Photoshop .. 32

4.2. Personal Background .. 32

4.3. Assets .. 33
4.3.1. Modeling and Adapting .. 33
4.3.2. Importing Models ... 35
4.3.3. Environment Recreation .. 36

Simulation of a TaxiBot Operation for First Person Training 7

4.4. Physics Simulation .. 40

4.5. Events .. 45
4.5.1. Emergency Vehicle .. 45
4.5.2. Leading Aircraft ... 47

4.6. Automatic Ground Movement Control ... 49

4.7. Networking .. 53
4.7.1. Additional Tools ... 53
4.7.2. Network Implementation .. 53
4.7.3. Network Profiles .. 55

4.8. Additional Functionalities ... 58
4.8.1. Main Menu ... 58
4.8.2. Steering Wheel and Pedals Support ... 59

CHAPTER 5. VALIDATION ... 61

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 64

 8

CHAPTER 1. INTRODUCTION

1.1. Motivation

Aviation has a high environmental impact [1] so new systems to reduce fuel
consumption and emissions are constantly being developed. As shown in
Figure1.1, around 30% of emissions in a large airport can be traced to taxi
operations [2]. Alternative ground propulsion systems that can mitigate ground
movement related consumption as well as provide other advantages are being
implemented in several airports [3, 4].

Figure 1.1. Xu et al. (2020). Aircraft Emissions in Shanghai Pudong International Airport [2].

The TaxiBot is one of these proposed solutions to the mentioned problem as it
is a vehicle that can tow medium to large aircraft at conditions comparable to
those of a regular taxi procedure. Instead of using jet engines and burning fuel,
the TaxiBot uses a hybrid electric engine, which reduces noise levels and total
fuel consumption considerably. The first TaxiBot model has been approved and
certified for some of the most used family of aircraft. The benefits and
drawbacks of TaxiBot utilization have been analyzed and each new deployment
on an existing airport is studied laboriously [5]. However, while the technology
has been tested, the TaxiBot has just been deployed in very few airports around
the world. Pilots must learn and accustom themselves to the differences when
performing the procedure with the presented change and airports need to make
studies of the effect it could have on capacity and safety.

In this project, a first person simulation of the TaxiBot experience is developed
in order to delve deeper into these aspects, attempting to solve some of the
questions and also discover unexpected issues or benefits that may arise.

Several flight simulation programs exist nowadays and they recreate all the
maneuvers in a regular flight extremely well. Most courses in pilot training
employ flight simulators as they can provide very similar environments without

Simulation of a TaxiBot Operation for First Person Training 9

any risk involved at a fraction of the cost. Some airlines are even implementing
Virtual Reality technologies to train pilots, cabin crew, and operators.

The experience we wish to accomplish could be used to train pilots in the use of
this new technology. The following research will focus on testing the
experience, to study its effectiveness as a learning tool.

Most of these technical aspects were present in the initial project proposal. It
was initially considered that the taxi procedure could performed entirely from the
point of view of the TaxiBot operator. The operator controls the vehicle during
pushback and after disconnecting at the holding position, so they could still
make use of a training experience in a virtual environment. There has been at
least one experiment to use tugs (driven by operators with reduced visibility and
ergonomics of regular tugs) to tow aircraft to the runway [6]. This practice was
later discontinued without an official statement behind the motives.

On a personal note, I have enjoyed game development as a hobby for a few
years, so this project seemed very appealing. I have experience working with
Unity (a popular Game Engine with free and paid options), programming
applications in C#, and 3D modeling with the help of a couple of programs. I
would like to test how technology has made the development of such a piece of
software accessible to a single developer in the current age. Shortcuts should
be taken when possible to facilitate the process (in programming, modeling,
animating and other tasks). Newer solutions will be implemented with the
intention of commenting on the feasibility of such an endeavor.

1.2. Objectives

The main objective of this project is to develop a simulator of TaxiBot (tractor
vehicle) Operations for First Person Training with the aim of evaluating and
improving the human factors in terms of ergonomics and required skills. This
objective can be broken down in the following sub-objectives:

1. Review of the background and state of the art, including precedent
simulators, current training material, procedures for conventional and
tractor vehicle operations, and design of interactive experiences with
educational purposes.

2. Modular design of the application to provide a suitable framework for
straightforward replication of the simulator for different airports and
vehicles. This design choice will also ease adding other functionalities at a
later phase.

3. Implementation of a specific use case, including:
3.1. First person vision of the TaxiBot driver and the aircraft pilots.
3.2. Visualization and execution of the nose landing gear locking

process, taxi procedure from boarding gate up to the holding
position, unlocking and return route.

 10

3.2. Potential inclusion different factors like different environments,
vehicle dynamics, visibility and weather conditions, different
plane sizes.

4. Evaluation of the best compromise between realism, model details,
fluidity, cost, and portability of the simulation.

1.3. Research Methodology

The main adapted methodology in this project is the Design Science Research
Methodology (DSRM) divided into 5 stages: (1) Identification of the observed
problem and motivations, (2) Definition of the objectives for a potential solution,
(3) Design and development, (4) Demonstration, and (5) Evaluation (Peffers et
al., 2006) [7], (Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007)
[8], (Walls, Widmeyer, & El Sawy, 1992) [9], (Hevner, March, Park, & Ram,
2004) [10]. Figure 1.2 shows the project stages, detailing the different tools
used in the corresponding established activities.

Figure 1.2. Research methodology project stages (own image).

Simulation of a TaxiBot Operation for First Person Training 11

In the first stage, an analysis of available resources was conducted in order to
check the use of simulated experiences like virtual reality applications as training
tools. As for background, the use of flight simulation software for training and
entertainment is an established subject. The identified problem is that use of the
TaxiBot is relatively new and there are few resources openly available about it.
For this stage, documents on the topics of simulation and serious games were
considered. Additionally, unsuccessful attempts to contact Smart Airport
Systems, one of the companies in charge of TaxiBot deployment were made.
Information about current training methods for operators and pilots will prove to
be rather useful for the rest of the project.

The main objectives were defined in the second stage. These objectives point to
the development of an application that can provide an engaging experience that
can be used as a training tool. Furthermore, a requirement that the application
should be expandable was considered, since many aspects of the design and
development phases are not specific to TaxiBot operation.

In the third stage, specifications about the procedure, vehicles, and environment
were gathered. Using this information, specific aspects can be defined in order to
design a competent experience. During development of the application,
specifications that were not foreseen became necessary so further literature
review was required.

In the fourth stage, the training experience was implemented and tested by a few
users with different levels of experience on the subject. In the fifth stage, a
standardized questionnaire was adapted and employed to evaluate the training
experience in terms of its technical features and usability. The results obtained
were discussed in order to determine positive aspects and possible improvement
opportunities.

1.4. Document Structure

This document is structured in the following way:

Chapter 1: Introduction

In this chapter, basic ideas that motivate the project and its objectives are
established.

Chapter 2: State of the Art

This chapter offers a dive into the state of the subject today. A study of the
available technologies that answer to a similar call is also carried out. This part
will work as a foundation for the following chapter.

Chapter 3: Experience Design

This chapter establishes the foreseen requirements of the experience and the
design of the systems that will be implemented in the application.

Chapter 4: Unity Implementation

 12

This chapter includes all the information related to the integration of features.
The steps taken to create the virtual environment, physics simulation and
supplementary systems are disclosed in detail. It includes integration of existing
solutions, development of new solutions and obstacles found along the process.

Chapter 5: Validation

The process through which relevant data is gathered in order to measure the
value of the experience.

Chapter 6: Conclusions and Future Lines of Research

This section contains the conclusions made throughout the development of the
project, based on the initial objectives and the process itself.

Simulation of a TaxiBot Operation for First Person Training 13

CHAPTER 2. STATE OF THE ART

2.1. Taxi Operations

Autonomy is a popular proposed approach to reduce taxi times, delays, and
human errors. Research and development is being done to improve these
factors. A concept of the future of taxi operations proposes modifying the
TaxiBot or a similar vehicle to implement trajectory-based surface operations
without modifying the aircraft [11]. This process led to design of a Human
Machine Interface to aid pilots in performing operations. With its use, one pilot
would taxi and another one would monitor tasks remotely.

The TaxiBot is an important milestone to tackle the subject of autonomy. A
remotely controlled or unmanned TaxiBot is achievable but a long development
and verification phase is expected [5]. Although testing of an unmanned vehicle
was estimated to start in 2020, no statement has been released yet.

The TaxiBot entered regular operation at Frankfurt Airport in 2015. The vehicle
has been deployed in Indira Gandhi International Airport (Delhi) and
Kempegowda International Airport Bengaluru (Bangalore) for a few years. Indira
Gandhi completed 1000 movements using the TaxiBot in May, 2021 [12].
Amsterdam Airport Schiphol has been studying and testing a deployment since
July 2020. A program to achieve sustainable taxiing by 2030 expects several
TaxiBots to join the fleet at the start of 2022. Developments on the subject of
autonomy or control from a remote location is also slowly being carried out.
However, no operation or test has been disclosed yet.

2.2. The Use of Simulation in Aviation

The use of flight simulation software in the aviation industry is extremely
common. The FS1 Flight Simulator was launched in 1979 for the Apple II. It
placed the user in the cockpit of a biplane fighter so the experience could be
considered to have a first person view. Throughout the following decades, more
advanced software was developed to aid in training, development or simply
user entertainment.

Many companies offer full flight simulator devices that can re-create aircraft
procedures and motion to achieve an experience incredibly similar to their real-
world counterpart. The training effectiveness of flight simulators has been
proven decades ago [13] and their use is well established in pilot training.

These devices are often very expensive and the software underneath is
proprietary, so implementation of new technology or control over different
experiences is limited.

In April 2021, the European Union Aviation Safety Agency (EASA) approved the
first Virtual Reality based Flight Simulation Training Device (FSTD) [14]. The
device was developed by VRM Switzerland and it is currently used to train

 14

rotorcraft pilots. The adoption of VR enables more cost-effective experiences
that can be used to complement full flight simulators and other training tools.

As opposed to approved FSTDs, amateur flight simulation is very popular and
several options are readily available for ordinary users and not just pilots in
training.

2.3. Software Examples

Examples of relevant tools that make use of simulation and that can be used with
training purposes are provided in this section.

2.3.1. Tecknotrove: Tecknosim Pushback Simulator 2017

Figure 2.1. Tecknotrove System (I) Pvt Ltd. (2017). Pushback operator first person view.
https://www.youtube.com/watch?v=-TzDYp65zo4 [15]

This simulator was designed specifically to train pushback operators. The user
controls the vehicle through the use of a recreated dashboard of a pushback
tractor. The operator seat is mounted on an electric motion platform to transfer
movement to the user and therefore, increase simulation fidelity.

Simulation of a TaxiBot Operation for First Person Training 15

Figure 2.2. Tecknotrove System (I) Pvt Ltd. (2017). Electric motion platform and curved
projection display. https://www.youtube.com/watch?v=-TzDYp65zo4 [15]

Certain aspects of the experience scenario can be configured such as the
direction to push the aircraft, whether the maneuver includes towing, time of day
and weather. An instructor can be present to supervise the experience on a
connected workstation. The software can provide performance evaluation
reports that can disclose specific infractions that might have been committed by
the user.

Figure 2.3. Tecknotrove System (I) Pvt Ltd. (2017). Supervisor workstation.
https://www.youtube.com/watch?v=-TzDYp65zo4 [15]

 16

2.3.2 KLM VR Training

Figure 2.4. AIRFRANCE KLM-XR Center of Excellence. (2021). Pushback training.
https://www.youtube.com/watch?v=C6EiRQjvZjo [16]

KLM Royal Dutch Airlines has been using Virtual Reality to train cabin and
ground crews using different applications. The company has been striving
towards obtaining EASA certification in order to replace some components of
the current training processes [17].

Figure 2.5. AIRFRANCE KLM-XR Center of Excellence. (2021). Pilot training.
https://www.youtube.com/watch?v=C6EiRQjvZjo [16]

In the demo reels that have been posted online, KLM presents experiences for
pushback training, pilot training, and emergency trainings for cabin crew.

The main purpose of the VR experiences for pilots is to familiarize the trainee
with the cockpit and controls so that their use of the simulator time is more
effective.

Simulation of a TaxiBot Operation for First Person Training 17

2.3.3. Microsoft Flight Simulator

Microsoft has been releasing entries in the Flight Simulator series since 1982.
The latest was released in August 2020 and it is the most advanced amateur
flight simulator today considering all technological features. The game applies
cloud computing (Microsoft Azure) to generate the topography of the entire Earth
using data from Bing Maps.

Microsoft Flight Simulator offers extremely detailed recreations of airports and
aircraft. It has several hand-crafted airports where flight procedures have been
scripted. In these airports, the user piloting the aircraft can interact with a virtual
air traffic controller to receive instructions on common procedures like approach,
landing, taxiing and takeoff.

Figure 2.6. 320 Sim Pilot. (2020). Communications display in Microsoft Flight Simulator.
https://www.youtube.com/watch?v=fLQgAN79YqE [18]

This feature was particularly relevant to this project because understanding and
following instructions is essential for any procedure at any commercial airport.

Microsoft Flight Simulator also offers VR support, dynamic time of day, weather
systems and it can be synchronized with real-world air traffic. All in all, it is one of
the most technically advanced games currently available.

 18

CHAPTER 3. EXPERIENCE DESIGN

In this chapter, the requirements that should be kept in mind when developing
the tool are established. Based on the objectives, requirements and aspects of
an actual taxi procedure using the TaxiBot, several decisions must be taken to
attain a polished experience while trying to keep the development process
convenient as well.

3.1. Requirements and Optional Systems

The series of functional requirements that have been foreseen for the simulator
are the following.

• Immersive environment recreation. To increase immersion, the main
elements of the experience, like the plane or planes and the TaxiBot will
need high quality assets. The airport will need correct markings on the
taxiways and runways throughout the procedure.

• The physics of the simulated vehicles should resemble the behavior of

the real vehicles they represent.

• The experience must be able to track the steps and route taken by the
user in order to evaluate possible errors they might have committed.
Depending on the severity of the infraction, the simulation could come to
an unsuccessful end. Performance analysis should be simple and
automatic.

• An integrated solution to allow the user to check the relevant aerodrome
charts. Since just the taxi phase is contemplated, at least the Ground
Movement Chart must be included.

• A networking solution that allows another user to evaluate the pilot in real
time should be implemented.

A few optional systems that can be implemented to enhance the experience are
listed below.

• Control over the time of day and weather conditions during the
experience.

• Support for different peripherals to enable more accurate control. For
example, a joystick or a steering wheel provide analog controls that are
not possible simply using a keyboard.

Simulation of a TaxiBot Operation for First Person Training 19

3.2. Target Audience

The amount of previous knowledge required to take part in the experience and
find it useful will determine the overall level of difficulty. In order to carry out a taxi
procedure, the pilot and co-pilot need to follow a very long sequence of steps.
During the pushback phase, the aircraft will probably be pushed away from the
airport gate by a pushback tractor from the parking position to a taxi position. On
completion of pushback, the crew must ensure that all the systems are working
correctly. Starting the APU, starting the engine or engines, turning the taxi lights
on and disabling parking brakes are all things that take place right before taxiing
and they require the pilot to use the intricate control panels within the cockpit. The
pilot also needs to be able to communicate with the ground crew, first officer, and
air traffic controller. An exceedingly important aspect is that the pilot needs to be
able to move in an airport environment using the regular provided charts and
instructions to understand the required path.

The assistance that the experience can provide to a beginner will determine the
entry level of knowledge of the user. The objectives, setting, and mission should
be explained in a short tutorial prior to the procedure. The experience will be a
piece of interactive audiovisual media, so a written document explaining the use
of signs and markings in an airport, specifications or separation criteria could be
overwhelming. In order to help maintain user engagement, a different solution
should be studied to aid beginners to find their route and undergo the experience.

Figure 3.1. Kiili, K (2004). Three channel model of flow [19].

The proposed three channel model of flow (Kiili, 2004, p. 16) [19] in Figure 3.1
asserts that if a challenge is lower than the skill level of the user, the player
might feel bored. The player might grow confused or anxious if the challenge is
greater than expected, on the other hand. The author proposes a zone of
proximal development, which is the ideal flow state where skill level increases
with the presented challenge. This zone of proximal development might be
extended if guidance or help from other players is provided. This statement
served to define one of the main features of the designed application.

 20

3.3. Specifications

It is important to distinguish what is already established from what is still
undetermined because a decision needs to be made with the purpose of
approaching the initial objectives of the project. In this section, a review of the
existing information is presented.

3.3.1. TaxiBot Specifications

In order to simulate the dynamics of the involved vehicles, a good deal of data
about them is essential. The very first specifications that are required to re-
create the TaxiBot are measurements, weight, and power. Frankfurt Airport has
arranged a project to reduce ground traffic emissions. As one of the measures,
the TaxiBot was integrated as part of the deployed fleet. Some key points of
information can be found on the site of the E-PORT AN project, which manages
Electromobility at Frankfurt Airport [20].

These specifications apply to the Narrow Body model:

• Net weight: 27 t
• Tractive power: 8 t
• 2 generators (260 kW), 2 Scania DC9 diesel (2 x 294 kW / 2 x 394 PS).
• Driving speed (max. load): 42 km/h
• Taxiing at 23 knots, same as current airplane taxi speed.
• Protection of the nose landing gear (NLG) from exceeding maximum

allowed fatigue load at all times.
• No change in Nose Landing Gear life time.

Following unsuccessful attempts to contact Israel Aerospace Industries, the
main company responsible for TaxiBot manufacturing, some further information
will most likely be required. When a new parameter is needed, the
specifications of a similar pushback/tow tug (in size and power) will be
considered [21].

Another source of data would be videos that can be found online featuring a
TaxiBot operation partially or completely. These videos of the real vehicle in
motion can provide some validation since a comparison between the
represented dynamics and the real dynamics is more empirical in nature and
valid nevertheless.

3.3.2. Specifications of the Featured Aircraft

The model of aircraft that is selected for the experience in development is not
very important, as long as its size and weight are within the upper and lower limits
for the TaxiBot Narrow Body.

In any case, some important aspects about the aircraft are measurements,
weight, turning radius on ground, and if the airplane is able to operate on the
designated airport according to its category. The interior of the aircraft will have
to be recreated faithfully since the user will play the role of pilot in the experience.

Simulation of a TaxiBot Operation for First Person Training 21

3.3.3. Airport Specifications

Being aware of the position of your aircraft and understanding the route you must
follow is a crucial aspect of ground movements. The environment recreation must
therefore include the relevant surface markings and signs.

Principles of surface markings and signs placed beside the taxiways and runways
of a licensed aerodrome can be found in the ICAO International Standards and
Recommended Practices (SARPS) [22] or the FAA Standards for Airport
Markings documents [23]. A quick reference guide of the latter document is
presented below.

Figure 3.2. FAA. (2009). Airport Sign and Marking Quick Reference Guide Part 1.
https://www.faa.gov/airports/runway_safety/publications/media/QuickReferenceGuideProof8.pdf

[23]

 22

Figure 3.3. FAA. (2009). Airport Sign and Marking Quick Reference Guide Part 2.
https://www.faa.gov/airports/runway_safety/publications/media/QuickReferenceGuideProof8.pdf

[23]

Airport charts can be procured from the corresponding AIP (Aeronautical
Information Publication) in order to understand where the indicated markings
and signs should go according to the pertaining documentation.

Fortunately, consumer satellite imagery has reached a sufficient resolution that
many airports in the world can have their surface markings recreated exactly.
As an example, the image below showing a section of Barcelona–El Prat Airport
was captured using Google Earth.

Figure 3.4. Example of taxiway markings in Barcelona-El Prat Airport. (Image captured using
Google Earth).

Simulation of a TaxiBot Operation for First Person Training 23

The required markings will be traced to create textures that can be placed on
the virtual environment with their actual scale and position. The real airports
might not follow the documentation exactly as most of it is recommended and
not enforced. In addition, marks can be deleted or obscured by tire tracks, or
sections of pavement can be replaced. In my opinion, the environment should
be closer to the actual airport to increase the training value of the experience. In
any case, the intention will be to include the markings that are most relevant to
the featured procedure if time does not allow every marking to be reproduced.

To reproduce other signs, lights, and their accurate positions, pictures, charts or
other available resources could be used.

3.4 Decisions and Criteria

3.4.1. Location Selection

To increase its value as a learning tool, the experience should not be a perfectly
straightforward example of a taxi procedure. To add some difficulty, the airport
where the experience will take place should enable obstacles or events that can
come into play and disturb the operation. Based solely on this assessment, an
airport with a higher complexity is preferable. However, unless a 3D model of
such an airport can be acquired easily, a higher complexity airport will require a
longer period of time spent modeling.

Initially, Barcelona-El Prat Airport was considered because its size, runways
and taxiways can serve as a remarkable environment for an intricate taxi
procedure. However, a 3D model of this airport could not be procured for free or
within pricing expectations, so the environment would have to be created from
the start.

Therefore, Valencia Airport (also known as Manises Airport) was selected
because it is a smaller, single runway airport and the estimated time to create
the 3D model and textures is much shorter. Valencia Airport was the eighth
busiest Spanish airport in 2019 and the third considering only single runway
aerodromes. The final traffic number came to 8.539.403 passengers in 2019
[24] (this year was chosen because air travel was heavily affected by the
COVID-19 pandemic from 2020 onwards).

The taxiways and gates could be considered to be more complex than those of
an average single runway airport since it used to also serve the shorter runway
04/22. Only runway 12/30 is currently in use so the experience will feature a
flight departing from this runway. The runway is 3215 meters long and 45
meters wide. The taxiway N (parallel to the runway) is 23 meters wide and the
paved area is 44 meters wide (measurements taken from Google Earth). Both
measurements for the runway and taxiway correspond to code letter E. The
taxiway to runway distance is 200 meters. The airport can then operate with
heavy aircraft like the Boeing 747, B777, B787, Airbus A340 and others.

 24

Figure 3.5. Layout of Valencia Airport. Captured using Google Earth.

3.4.2. Taxi Procedure

The taxi procedure that the pilot performs in the experience will preferably be
complex and feature unlikely but possible events. The educational value of the
experience will depend on several design decisions and an effort to identify
them is contained in this chapter.

The airport has already been selected because of its size and complexity.
Between the two possible directions of runway 12/30, 12 was selected because
the number of possible conflicts is larger when compared to the other
configuration. A section of the Aerodrome Ground Movement Chart shown
below illustrates one of the possible hurdles of the experience. Following
taxiway H4 instead of turning right on N2, a pilot might accidentally cause a
dangerous runway incursion. This is called a hot spot, a location with a history
or potential risk of collision or incursion.

Figure 3.6. AIP España. Detail of a possible conflict zone in the Ground Movement Chart.
https://aip.enaire.es/AIP/contenido_AIP/AD/AD2/LEVC/LE_AD_2_LEVC_GMC_1_en.pdf [25]

Simulation of a TaxiBot Operation for First Person Training 25

An indicative duration of 5 to 10 minutes was selected in order to keep the user
engaged throughout the experience. There are no specific limitations on the
subject of taxi speeds. Instead, the aircraft manufacturer will recommend
speeds that allow for safe stopping distances, turns, and avoiding brake
degradation. For example, the Boeing 737 Flight Crew Training Manual [26]
states that a normal taxi speed is approximately 20 knots, with a maximum of
30 knots in straight sections and around 10 knots in high angle turns.

The TaxiBot specifications are quite clear in this regard. The maximum speed of
the vehicle under load is set to 23 knots. The distance from the terminal to the
holding position H8 is approximately 2500 meters. Considering a speed of 20
knots in straight areas of the route and 10 knots on turns, the time an aircraft
would take in an uninterrupted taxi procedure to move this distance is almost
exactly 5 minutes.

Different events that a pilot might experience and add difficulty to the procedure
could be implemented to add learning potential. These include low visibility, the
presence of obstacles on the taxiway or runway, coming across other aircraft or
vehicles and getting instructions to change the initial planned route for the
procedure.

The instructions to perform the procedure will use correct aviation English
terminology and vocabulary when possible. While this aspect makes the
experience more realistic, it brings the problem of reducing the target audience
since some previous knowledge on aviation communication is expected of the
user. If the airport zones, taxiways, runway and obstacles are all modeled
correctly and the program can place the TaxiBot and aircraft that the user is
controlling within those zones, the entire route from starting position to the
holding position can be changed rather quickly. For this implementation, the
base selected taxi procedure is the following:

“[Callsign], taxi to and hold short of RWY 12 via Gate C N H8. Contact
tower on 118.55 when ready.”

The user would then need to understand the instructed route from the terminal
gate to the holding position. The pushback procedure is performed by the
TaxiBot operator with help of the ground crew since the pilot cannot see behind
the aircraft. To be able to simulate this part of the procedure correctly, the same
user or another would need to play the role of TaxiBot operator initially and they
should have a more complete view instead of the view from the cockpit. The
pilot would take over from then on and follow the appropriate centerlines to
piece together the route as is shown below.

 26

Figure 3.7. Route of the designed operation.

A problem that presents itself as a result of the use of the TaxiBot is the fact
that taxiways in most airports are not prepared to have a vehicle that needs to
return to the apron. A pushback tractor disconnects from the aircraft while still
on the apron and it can move safely back to a hangar or another aircraft that
requires pushback. A TaxiBot however, should be able to disconnect from the
plane on the holding position and return safely to the apron. The taxiway will
most likely be in use already for a different operation, so an alternative needs to
be in place. An aeronautical study to find an optimal solution needs to be made
in any airport that is considering a TaxiBot implementation. But, as it escapes
the scope of this project, I will simply add a service road parallel to the taxiway.
According to ICAO SARPs Table 3-1 [22], the correct minimum distance from
the existing taxiway centerline for object separation is 43.5 meters to maintain
the code letter E.

3.4.3. Challenging the User

As mentioned in Section 3.2, the challenge of the experience should be
proportional to the skill level of the user, otherwise they would get uninterested
(not enough challenge) or lost (too much challenge). Additionally, including
unlikely, but possible events only rises the number of opportunities where the
user can learn a new aspect of taxi procedures. Different aircraft or ground
vehicles can be encountered throughout the apron and taxiway. In order to
maintain separation, a flight controller will need to issue new instructions and
the pilots should be able to comply. Additionally, visibility could be reduced or
strong winds could affect control of the aircraft. Many scenarios that are
described in documents by the ICAO could be recreated. For example, Annex 2
to the Convention on International Civil Aviation (Rules of the Air) [27] contains
several rules and information that a pilot should have internalized, like right-of-
way and overtaking, even in the absence of traffic controller instructions.

Threats are events that can increase operational complexity. Anticipated
threats, like weather conditions or regular traffic can be expected. Unexpected
threats cannot be foreseen by the crew, such as a sudden mechanical failure,
unauthorized traffic or obstacles, or poor runway conditions. The crew must

Simulation of a TaxiBot Operation for First Person Training 27

apply their skills obtained in training in all of these cases and avoid committing
an error.

These conditions all make for interesting extensions of the experience, but
whether or not they are implemented will be determined by the development
schedule. The most important aspects will be the ones that are essential to fulfill
the main objectives.

 28

CHAPTER 4. UNITY IMPLEMENTATION

4.1. Relevant Technological Tools

Development of an experience in any engine can be a laborious project and it
depends on how much work can be saved. There are several software available
that can provide the services that were required to create this specific
implementation. In this case, I used the ones I was most comfortable with to be
more efficient.

4.1.1. Unity

Unity is one of the most popular game engines in the market. It can be used to
develop applications in 2D or 3D for a large number of platforms. It is often
considered to be flexible and easy to get started. Due to its versatility and
because it counts with a free version, countless video games, serious games,
and applications have been released.

Figure 4.1. View of the Editor in Unity.

The Editor provides an environment to make use of all the tools offered by
Unity. The project that contains the required pieces of a game or experience is
created within this Editor.

An extremely useful feature of Unity is its Asset Store. Users can share for free
or sell their assets and packages. Because Unity is exceedingly popular, it is
very common to find convenient elements on the asset store, documentation, or
relevant tutorials online.

A very short description of how Unity works is provided below.

Simulation of a TaxiBot Operation for First Person Training 29

4.1.1.1. Assets

Assets are resources that can be imported into Unity in order to be used in
the experience. External files like 3D models, images for textures or User
Interface (UI), audio files, and scripts can be imported if they are in
supported formats.

4.1.1.2. GameObjects

GameObject is the fundamental class of all entities that are used in Unity.
Any instance can contain several components, which add specific
functionalities to that object. For example, if a developer intends to
implement a ball object, it could use these components and more:

- A transform component is always attached to an object. It contains
information about the position, rotation and scale of said object.

- A spherical 3D model in the Mesh Renderer. This component
determines the geometry that is rendered and is therefore visible.

- A sphere collider to check for collision with other objects. This could
be necessary if gravity affects the ball and the developer does not
want the ball falling through the floor object (which would also
require a collider).

- Rigidbody is a component that puts the motion of the object under
the physics engine used by Unity. Its mass, friction and other
parameters can be changed using this component. The behavior of
the ball can be controlled through the application of forces

- A script is a piece of code (current versions of Unity support C#
natively) that can control objects, trigger events, read user input. If
the developer would like to kick the ball when the space key is
pressed, it would be through a script. If the key is pressed, set the
velocity of the ball at that initial moment to a given three-
dimensional vector. Conveniently, one object can have more than
one script attached to it.

4.1.1.2. Scenes

Scenes are assets that can define a virtual environment. A project could
have multiple scenes and each scene could contain a map, an object
controlled by the user, obstacles, lights, cameras, UI panels and more.
The normal approach to develop an experience is to create a new scene,
make and import the required assets, create the GameObjects within that
scene and configure their components.

Afterwards, those GameObjects or groups of GameObjects (with their
components and properties) can be saved as prefabs in order to save
them and make the job of implementing or instancing them on other
scenes much easier.

 30

4.1.1.3. Runtime

The Unity editor can compile the application in order to test it almost
instantly (depending on hardware). The behavior of all objects when they
are loaded, when they are enabled, on every time step of the physics
simulation and on every frame of the running application can be
determined by scripts. Several built-in functions and parameters of the
Unity libraries are indispensable to know for any application. In the normal
approach, scripts contain classes that inherit from MonoBehaviour. This
allows the scripts to be placed in GameObjects, change variables from
the inspector and access Unity events like Start(), Awake(),
FixedUpdate(), Update() and other functions. These functions are called
when the object that contains them is loaded, when it is initialized, every
20ms (by default) or every frame of the engine (as fast as possible)
respectively.

4.1.2. Visual Studio

Figure 4.2. Empty MonoBehaviour script in Visual Studio 2017.

An Integrated Development Environment is an application software that
provides tools and services that assist in software development. Unity currently
supports Visual Studio, VSCode, JetBrains Rider, and a few other IDEs. By
default, a Unity installation will also install Visual Studio. These IDEs enable
script edition, access to Unity libraries documentation, and debugging tools.
Due to the nature of GameObjects with countless possibilities of components,
the autocomplete feature and access to documentation on the use of built-in
parameters is nearly indispensable.

4.1.3. C# in Unity

Unity uses C#. It is usually implemented as an Object-oriented scripting
language although Unity has also released a different architecture that allows

Simulation of a TaxiBot Operation for First Person Training 31

for different functionalities and increased parallelization called DOTS. Some
principles of Object Oriented Programming (OOP) should be kept in mind but
the usual Unity approach is more straight-forward and it revolves around
GameObjects and components. Both GameObjects and components are
objects, but the implementation and ease with which a developer can build an
application is simpler and achieves better performance when compared to an
application built using “pure” OOP. In any case, basic proficiency in coding is
required as almost all scripts will require:

• Variables, which contain values like integers, strings of characters,
Booleans, and references to other objects.

• Functions, which are pieces of code that can read and manipulate
variables.

• Classes that create the structure and contain definitions of
variables and functions.

Unity currently supports C# 8.0 and it uses Roslyn, an open-source C# compiler
to test or build applications that run in almost any platform like Windows, Linux,
OS X or Android.

4.1.4. SketchUp

SketchUp is a 3D modeling computer program that is based on drawing two-
dimensional faces that can be manipulated to create 3D geometry. It is one of
the most user friendly options available at the moment and it includes good
tutorials to help newcomers. It offers a free version as well as a paid version
and it is available as a web-based application on any browser.

Figure 4.3. SketchUp – free web based version.

Similar to Unity, an advantage of SketchUp is its community. The program
makes use of the 3D Warehouse, a place where users can sell their models or
offer them completely for free. Thanks to its popularity, countless assets like
real buildings, vehicles, sections of world terrain can be found for free. There
are other alternatives online to buy 3D models or get them for free, but there are
usually far fewer free models.

 32

The professional version of SketchUp lets the user export the model to .fbx,
which is the preferred format for Unity. Otherwise, there are free online
converters that can provide this service. Models found in the 3D Warehouse will
always be in the same .skp format, so they can be modified in SketchUp to
solve issues, add or remove elements.

Because of its simplicity, SketchUp itself is not very powerful and it does not
support several features that other experiences might require. For example, it
cannot create animations (or rigging or posing) and it does not perform any
physics simulation.

4.1.4. Adobe Photoshop

Adobe Photoshop is the most recognized image editor available. Since 2013, it
changed its licensing scheme to software as a service. A user can subscribe to
the Adobe Creative Cloud for a monthly fee instead of a large single payment
purchase.

Numerous images will be created for the experience and they will be placed as
textures or UI elements. Most image editing software will likely be able to serve
this purpose.

Figure 4.4. Use of Photoshop to create User Interface elements.

4.2. Personal Background

This section is more personal as it delves into the reasoning behind these
choices and it relates to my previous knowledge of all the development aspects.
If a different developer decides to create a similar experience, the software
selection, time investment, and several other factors will most likely be different.

I started making videogames as a hobby at a young age but I have never taken
part in any professional project. While I have used other engines before, most of

Simulation of a TaxiBot Operation for First Person Training 33

my time was spent learning Unity. I consider myself to be competent in its use
but far from an expert.

I have experience creating architectural renderings as it was my first job. As a
result, I am also proficient in 3D modeling and texture work. I have selected
SketchUp because it will be the fastest alternative when it comes to recreate a
floor plan without small details (such as an airport). The countless models found
on the 3D Warehouse will save a lot of time. All required models will be static,
so there is no need to use another program that supports animation, cloth
physics or soft-body dynamics.

There are many roles involved in the creation of simulation software, games, or
other experiences. The number of skills that are required and the time it takes to
learn them and keep them up to date is the main limiting factor on solo
development. In the process that follows, I will try to document the effort each
major task takes and how different systems could be implemented at a different
stage, if I had more time or teammates.

4.3. Assets

4.3.1. Modeling and Adapting

A 3D model of the TaxiBot could not be procured. Fortunately, the Narrow Body
model is very similar to other towbar-less tractors, so a model of the Komatsu
WZ4000 was used instead. Its size and proportions were modified to better
resemble the TaxiBot.

Figure 4.5. Komatsu WZ4000 model to be used as the TaxiBot [28]. Found on the SketchUp 3D
Warehouse.

In most modeling software, a face is defined by its vertices and a normal
direction. Using the directions, an “inside” face and an “outside” face can be
defined. This allows any rendering program to save performance as it only
needs to draw the face facing outwards. Models in the .fbx format present this
behavior in Unity. In SketchUp however, faces are often generated incorrectly
and it is not problematic within the program itself as it can display both sides
correctly textured.

 34

Figure 4.6. Normal direction issues in the downloaded TaxiBot model.

A look at the model without the applied materials can reveal the issue. The blue
faces will not render in Unity and the object will not be complete. Many models
available in the 3D warehouse need to be corrected in order to import them into
Unity. In this TaxiBot substitute, the interior was also added since the original
model was missing faces and a camera could not be placed inside the cabin.
The wheels were removed because they need to move. The easier solution will
be to keep them as separate GameObjects in Unity, so it is simpler to keep the
models separate as well.

As for the aircraft, there are countless options available on the Warehouse. For
example, there are over one thousand free results from the query “Airbus
A320”. The Boeing 787-9 Dreamliner was selected simply because a good
model was available and it can operate on Valencia Airport. On retrospect, one
of the aircraft models that have been certified for TaxiBot use would have been
a better choice. These include the Airbus A320 family and the Boeing 737.

Figure 4.7. Air France Boeing 787-9 3d model [29].

Since the experience will undoubtedly place a camera that simulates the point
of view of the pilot, the interior of the cockpit will also be needed. A model of the

Simulation of a TaxiBot Operation for First Person Training 35

cockpit that includes the flight display and other instruments was fortunately
also available from the 3D Warehouse [30].

The model had to be modified slightly because its scale was not entirely
precise. The inner walls, windows, floor and seats were modeled to fit both the
plane and instruments 3D models. A reference 360º panoramic image of the
cockpit was used when reference was required [31].

Figure 4.8. View of the cockpit in the merged 3D model.

Another modification that was implemented was separating the model in
groups. The polygons that make up the wings, engines, fuselage, cockpit, and
different landing gears all belong to separate groups. This could allow Unity to
move them independently. A regular technique in simulation software or
videogames is to replace a “healthy” piece of a vehicle with a damaged version
of that piece when it detects a collision. The main cockpit controls are also
separate groups, so if desired, an animation that relates the user input to the
virtual yoke, tiller or pedals can be implemented.

Many small elements in the models were removed because they would not be
visible and they were only increasing the file size and rendering load. The
original plane model was 16MB and the cockpit model was 7MB. The final
model that merges them together where I added interior details is 11MB in size.
In total, this 53% size reduction was achieved removing unnecessary textures,
details on the fuselage like pitot tubes, and remaking the seats and smaller
objects to reduce polygon count.

4.3.2. Importing Models

Textures are images that are added to a 3D surface to define color and details.
Several maps like the diffuse map, the normal map, reflection map and others
determine how the surface looks under a certain light and at a certain angle. Many
texture examples can be found in the Unity Asset Store or other free sources
online (e.g., https://textures.com).

 36

Figure 4.9. Parameters of a Universal Render Pipeline Material.

When importing a model, the unit conversion should be set appropriately or the
scale of the object might be ridiculously wrong. After the 3D models are imported
into Unity, materials that use these texture maps need to be created and assigned
accordingly.

4.3.3. Environment Recreation

Initially, the option to procure the model of an airport with correct markings in
place was considered. Unfortunately, none that meet the criteria was found. A
simple runway and taxiway system that was found on the 3D Warehouse was
modified to include a small apron.
This model served as a testing ground during the first stages of development.

Figure 4.10. Initial test environment model found on the 3D Warehouse [32].

Simulation of a TaxiBot Operation for First Person Training 37

Figure 4.11. Initial test environment modified and imported into a Unity scene.

The resolution of Google Earth images is sufficiently high to be used directly as
textures on most areas of the recreated environment. However, thin lines like
centerlines and smaller text seem blurry, especially when viewed at an angle.

Figure 4.12. Taxiway markings at Valencia Airport. Captured using Google Earth.

Several markings were therefore recreated in a higher resolution using Adobe
Photoshop. These images are simple shapes and text, overlaid with a concrete
texture. A normal map aligned to the concrete can be added to the Unity
material to increase its realism.

 38

Figure 4.13. Examples of textures for markings created by me.

The airport model was created from scratch and it took around 60 hours to
complete. A larger airport would have certainly taken longer.

In SketchUp, a two dimensional plane was textured with a composite image
comprised of several Google Earth captures. The most important lines were
simply traced over, making sure to keep correct alignments.

Figure 4.14. Composed Google Earth image imported into SketchUp to model the airport layout.

This method ensures that all measurements will be accurate and so will the
position and scale of the different markings on the apron, taxiways and runway.
These markings make use of the textures that were created previously. Although
not all of them were implemented due to time constraints, the markings that seem
most important to complete the procedure described in chapter 2 were included.
The service road that was mentioned in the design chapter was placed 55 meters
away from the taxiway centerline to add a generous safety margin.

Simulation of a TaxiBot Operation for First Person Training 39

Figure 4.15. Airport 3D model in progress.

The model was imported into Unity and textures for the different surfaces were
assigned. A terrain object was created to add some elevation and it was painted
with grass, dirt and sand textures. These assets are included in the Terrain Tools
Sample Package, created by Unity and available for free.

Figure 4.16. Building Unity terrain after importing layout.

A model of the terminal building could be found on the 3D Warehouse. It is the
same model that is currently visible in Google Earth. A few materials were created
and assigned to achieve a surprisingly good result for a model with such a low
polygon count [33].

 40

Figure 4.17. Imported terminal 3D model [33].

A few weeks after this airport model was completed, a user of an X-Plane
community forum posted a free scenery package that features high resolution
textures and night lighting. I could not find any way to convert these files to any
format that could be imported into Unity so this option was unfortunately
discarded.

4.4. Physics Simulation

Unity has built-in tools to make the development of the physics simulation quite
straight-forward.

Both the Boeing 787 and the TaxiBot objects require colliders to detect when
they come into contact with other colliders and Rigidbodies to define mass,
center of gravity, and allow them to receive forces. In object-oriented projects
such as this, the Nvidia PhysX is used.

For the TaxiBot, the Rigidbody component was configured with a mass of
27.000 kg. The mesh collider component uses the same imported 3D model but
the convex option is enabled. This option simplifies the mesh to its bounding
convex shape as it saves on performance. The four wheel objects themselves
use a different 3D model and they only serve visual purposes.

Simulation of a TaxiBot Operation for First Person Training 41

Figure 4.18. TaxiBot prefab showing object hierarchy.

Objects with the Wheel Collider component are used to define physical
characteristics of the wheels. This collider component is included in the Unity
libraries and it suffers from a few shortcomings. Other, more complete wheel
components and scripts can be found on the Asset Store but at this moment,
none of them are free. Parameters like the wheel mass, suspension distance
and spring constant, forward and sideways friction all need to be playtested
thoroughly. These values in Figure 4.19 make the vehicle closely replicate the
behavior of the TaxiBot that is displayed in videos.

Figure 4.19. Selected parameters for the Wheel Collider objects.

The script that controls the TaxiBot will need to read the user inputs and apply
forces to the wheels to simulate the behavior of the vehicle. A function reads
whether the user is pressing the keys to go forward or backward (W and S
respectively in this implementation) and normalizes it, positive meaning forward
and negative meaning reverse. A similar operation is performed to read steering
input, encoding right as the positive and left as the negative direction (D and A).
Braking can be a single value from 0 to 1 (Space key). If a keyboard is used, all
of these parameters could be flags because a key is either pressed or it is not.
However, if a different control device is in place, the experience could make use
of analog input methods. The values mentioned are all floating point numbers to
enable this possible feature.

 42

Different functions that handle the engine, steering and brakes are in place.
They change the torque and steering angle (built-in parameters of the Wheel
Collider class) according to the previously explained input variables. The
TaxiBot specifications mention that the vehicle can operate using traction in two
wheels or all four wheels. A flag to change this parameter was included.

Figure 4.20. Torque assignment using built-in Wheel Collider objects.

The initial engine parameters were obtained translating the power specifications
to torque considering a wheel of around 1.4 meters in diameter. Afterwards,
tuning was required to achieve the dynamics shown in reference videos. The
maximum speed of 12 meters per second derive from the maximum speed of
23 knots under load. The maximum steering angle was a value that could not
be procured form the specifications. The value that was obtained is one that
ensures that the maximum steering radius is approximately that of the
unassisted Boeing 789. This value is closely related to the clamping mechanism
of the aircraft nose wheel and how the joint behaves.

Figure 4.21. Parameters of the TaxiBot controller script.

Public variables or those with a specified SerializeField attribute can be loaded
from the inspector window in the editor. To manage the forces that affect the

Simulation of a TaxiBot Operation for First Person Training 43

wheels, the script must have access to the Wheel Collider objects. The script
also references the wheel objects that only have a renderer. A function can
change the position and rotation of the wheels using the transforms of these
objects.

Up until this moment, the TaxiBot has just been implemented as a very simple
car. The interaction with the plane is one of the most important aspects as the
accuracy of the simulation is one the main attributes to validate the experience.

Each of the different groups that make up the model has its own mesh collider.
This allows the functionality of moving each object independently, separating
them from the plane object or collapsing the entire model. The plane object has
an assigned mass of 180.000 kg, which is a perfectly normal takeoff weight.
The plane object also makes use of Wheel Collider components on the landing
gear.

Figure 4.22. The imported Boeing 787. Each part major part of the aircraft is a different collider.

A Hinge Joint component is in place to connect it to the TaxiBot Rigidbody. The
position and axis need to be configured, as well as some limits. Lufthansa
asserts that the TaxiBot wheels are steered according to the detected nose
landing gear steering angle [34]. The maximum angles that the joint can take
are defined by the aircraft specifications. The fact that steering is no longer
directly driven by the nose wheel makes the maximum angle not exactly 70
degrees, so the turning radii were emulated instead. The minimum nose turning
radius of 32 meters [35] was employed to define the TaxiBot wheel steering and
Hinge Joint limits.

 44

Figure 4.23. Different turning radii for the Boeing 787 [35].

One of the shortcomings of using the built in Wheel Controller objects emanates
from the fact that wheels can “go to sleep” if they are resting for a few seconds.
This is a feature of all physics objects in Unity and it is used to save on
resources. When the simulation detects that it should move again, it starts
calculating the net force, velocity and rotation again. The translation of forces
that allow the TaxiBot to push or pull the airplane works sufficiently well in
movement. However, at the start of the simulation, the landing gear wheels are
resting and the forces applied by the TaxiBot can never move them. This bug
has been known for a few years and it requires a workaround. In this case, a
similar script that reads the power input was used and assigned to the Boeing
787 GameObject. If the TaxiBot is accelerating, then a very minor torque is also
applied to the airplane wheels that contact the ground.

Figure 4.24. TaxiBot and Boeing 787 models connected through a hinge component.

Simulation of a TaxiBot Operation for First Person Training 45

While the development of these scripts was straightforward, a meaningful
amount of time was spent tuning every parameter. In total, approximately 30
hours of work were spent writing the described scripts, tuning and testing.

4.5. Events

Besides following the initial instructions to complete the taxi route, elements that
disrupt the procedure were designed and implemented. It is preferable to
implement events that might happen in a real environment in order to add
learning potential to the experience.

4.5.1. Emergency Vehicle

Both a pilot and a ground vehicle operator have a responsibility to avoid
collisions. However, controllers exercise their best judgment to avoid conflicts
and their instructions are mandatory. In this situation, an emergency scenario is
depicted. As the Boeing 787 approaches Gate-D, the ground traffic controller
will issue an instruction to stop and give way to a ground vehicle using exit H6.

Figure 4.25. Design of the first obstacle.

As for the implementation, the 3D model of an aircraft rescue and fire fighting
vehicle was downloaded from the 3D Warehouse, imported into Unity, and
simple materials (solid colors and reflectivity) were added.

 46

Figure 4.26. Airport Fire Engine found on the 3D Warehouse [36].

Like before, Rigidbody and collider components were added to the object. A
different GameObject was created to contain several children objects that hold
coordinates of the points that define the desired path.

Figure 4.27. Visualization of the intersecting route.

The script that controls the vehicle is quite simple. On proximity, the object is
activated and the velocity parameter is set to the speed variable (in this case,
20 m/s) aiming towards the next point. The object rotates at a predetermined
angular velocity to align itself with its trajectory so it does not switch directions
suddenly. This behavior is very far from an adequate vehicle simulation, but at a
distance, it is acceptable for the purpose it serves.

Static or dynamic objects can detect collisions in Unity using the built-in collider
components. Instead of using it to define the boundaries of a physical body, a
developer can set a collider object as a trigger. The component then calls a
different function on the script attached to the GameObject depending on the
event that occurs, like entering, staying, and leaving the trigger volume. In this
case, triggers are used to enable the movement of the vehicle in its trajectory,
detect if the user does not stop promptly, and if the aircraft comes into conflict
with the emergency vehicle.

Simulation of a TaxiBot Operation for First Person Training 47

In a real airport environment, the specific distances are determined by the
controller, who should take into account the course of both vehicles and the
required distance to brake safely. In this scenario, the event is completely
scripted and the user will always be instructed to stop around 150 meters away
from H6. The implementation of the traffic controller system will be disclosed
later on.

4.5.2. Leading Aircraft

The second event that was implemented is a leading aircraft on taxiway N3. In
this case, the traffic controller needs to consider several factors to determine
the minimum separation, like braking distance, relative velocities, reaction times
and safety margins.

Figure 4.28. Factors to consider in longitudinal spacing [37].

According to ICAO regulation, spacing between two taxiing aircraft should never
be under 50 meters. In most airports however, distances are just determined
based on the types of leading and trailing aircraft. In this case, the Embraer 190
was selected. Its maximum takeoff weight is 51.800 kg, making it a medium
aircraft according to the ICAO wake turbulence category. The trailing aircraft is
the Boeing 787, a heavy aircraft. A common minimum separation distance in
these cases is 200 meters [38]. In any case, the traffic controller should issue
instructions with sufficient anticipation.

The Embraer 190 3D model was easily procured from the 3D Warehouse and
imported into Unity. Its Rigidbody mass is set to 50.000 kg and it uses a script
very similar to the one on the fire truck.

 48

Figure 4.29. Embraer 190 3D model downloaded from the SketchUp 3D Warehouse [39].

In this case, the trajectory defined by the list of points follows the taxiway N,
turns on H8 and takes off from RWY 12. In addition to the list of coordinates,
there is also a list of speeds the aircraft reaches in each stretch. The aircraft
starts taxiing at a slower velocity than the maximum speed of the TaxiBot under
load, forcing the user to slow down. Afterward, it rolls at 30 knots, slows down
for the curves, holds for a moment and accelerates until it takes off at 140 kts.

Figure 4.30. Taxi and take-off trajectory of the aircraft.

In the experience, the traffic controller issues an instruction to the user (AFR
421) to stop, instructs the smaller plane (KLM 190) to continue taxiing, waits a
few seconds, and finally instructs AFR 421 to continue taxiing.

Simulation of a TaxiBot Operation for First Person Training 49

Figure 4.31. Trigger zones to check if separation is above 200 meters.

Triggers to activate the aircraft and detect if separation minima is not
maintained are in place. A circular zone that detects if separation is under 200
meters follows the plane object through its trajectory, and it is important to
understand the reasoning behind this distance. Nonetheless, if the controller
issues an instruction to stop, a trigger should detect if the user stops
appropriately, considering reaction time and braking distance.

4.6. Automatic Ground Movement Control

In order to guide the pilot to perform the taxi procedure correctly, the experience
should include a system that tracks the position of the user controlled vehicles.
In an airport environment, the pilot interacts with the traffic controller that is in
charge of ground movements via radio. The simulated traffic controller will send
similar messages that can help the user and use proper aviation vocabulary.

Figure 4.32. Different airport zones modeled in SketchUp.

 50

Different areas of the airport were modeled using SketchUp and the original
composite satellite image obtained from Google Earth. These simple models are
imported into Unity and labeled using a simple script that defines a zone name
and calls a function when a collision with either the TaxiBot or the Boeing 787 is
detected. The solution in place uses a parent object that contains all static zones
of the airport. When the function is called, the parent object uses a long
conditional statement that can send messages to the pilot according to the zone
that calls it.

For this purpose, a messaging system was added and placed in the Head-Up
Display (HUD). The user can receive and send messages using a panel on the
left. The simulated traffic controller cannot read the messages, but the feature
could be more useful in a different version of the experience.

Figure 4.33. Examples of controller and user messages.

The implementation of the messages panel was simple and many resources
can be found online as a chat box is very common in games. The script adds
strings to an array and it creates text objects as children of a Content Box,
which is another built-in Unity component. When the user clicks on the input
field, the input to control the TaxiBot is disabled until the user writes and sends
the message, or clicks away from the panel.

19 written messages for the traffic controller were drafted. A few examples of
these messages are displayed below.

• AFR 421, stop at once. You are about to collide with the terminal.

• AFR 421, exit the APRON through Gate C.

• AFR 421, you have caused an excursion. Return to the taxiway if you do
not need assistance.

• AFR 421 stop immediately. You have not been cleared to enter the
runway.

These messages were later recorded and the audio files are played at the same
moment the respective message is sent. An Audio Source component was
added to the parent airport zones object and a function swaps and plays the
requested Audio Clip on command.

Simulation of a TaxiBot Operation for First Person Training 51

It is important to note that many mistakes that can be committed in the
experience are more dangerous than the traffic controller suggests. A taxiway
excursion can damage the landing gear very seriously and the flight would likely
need to be evacuated. Failing the experience would require the user to start a
new attempt entirely. Instead, a scoring system was designed to aid the pilot in
recognizing if a mistake has been made.

Points that reward users who accomplish a task correctly is one of the basic
gamification strategies. A scoring system that makes use of the detection and
instructions scripts was implemented. The points themselves are arbitrary, but
the consequences of their inclusion will be discussed in the validation stage.

Apart from route mistakes, disregarding separation criteria and leaving the
taxiway unexpectedly, other aspects like centerline accuracy and time to finish
the procedure also influence score to a smaller degree.

Figure 4.34. Observing airport signs in first person perspective.

If the pilot is off the centerline by 3 meters or more, a warning sign appears on
the HUD to alert of the potential danger. The Boeing 787 is a class E aircraft
because its main landing gear is 9.80 meters wide. Considering the taxiway is
23 meters wide, the remaining margin to each side is 6.5 meters. On top of that,
the shoulders are paved a further 10 meters in both sides for safety. While
keeping the plane centered on the straight sections is easy enough, getting
used to the position of the nose wheel while turning is certainly challenging.

A toggle to display the mapped airport zones to the user was added in a pause
menu. Being able to see the zones to avoid and the requested route simplifies
the experience to users with little knowledge of airport maneuvering and
situational awareness.

 52

Figure 4.35. Functionality to toggle visibility of the infraction zones.

Once the user stops at the position where the TaxiBot will disconnect (checking
the presence of the TaxiBot in the specified zone and that its velocity is
approximately zero), the score and all the factors behind it are displayed.

Figure 4.36. Results panel with the score obtained throughout the experience.

If all areas of an airport are modeled, imported and labeled, different ground
operations could be implemented. To create a new trajectory, the changes to
make are the starting and final positions, creating links between the erroneous
zones and the script in charge of scoring, and setting the appropriate
messages. In the end, this evaluation approach is very limited. Each new
mission needs to be developed attentively, and they constitute a significant time
investment, especially if there are many messages in text or audio form. The
fact that the user cannot communicate with the traffic controller removes a very
important aspect of airside operations.

Simulation of a TaxiBot Operation for First Person Training 53

4.7. Networking

During development and initial tests, I noticed that people with low qualification
in airport procedures were lost and they could not find the described route. In
these cases, I would explain the use of centerlines and indicate their position on
the ground movement chart. With minimal indications, the experience was much
more manageable by a larger audience. Pilots or vehicle operators can ask the
traffic controller for assistance if they are lost or confused in an airport. The
automatic controller system cannot provide dynamic indications, so a different
solution was explored.

While it was not one of the requirements initially, networking was implemented to
connect two or more users to the same virtual environment. The networking
functionality creates several opportunities that were not possible before.

4.7.1. Additional Tools

The official Unity multiplayer solution is under development at the moment. Many
functionalities have not been implemented yet, so it is not recommended and an
alternative is required.

Mirror is an API (Application Programming Interface) built for Unity, by third-party
developers. It is open source and it can be imported as a package for free. Its
use in Unity is based on pre-built components that can be added to GameObjects
to add functionalities like synchronizing variables, sending commands to execute
functions on the server or a client, enabling and flagging sections of code as
“server only” or “client only”.

ParrelSync is an editor extension for Unity that allows a developer to create
clones of a project and synchronizing changes between them almost instantly.
With it, a user can open two instances of the same project, and test the
networking solution between them. It is not necessary but it saves several
minutes of testing time. The alternative would be building a copy of the project
and running it for every test. ParrelSync is free to use and available under MIT
License as well.

4.7.2. Network Implementation

Mirror provides a few components that are required to create the network and
define its parameters. A copy of the same Valencia Airport scene was created, a
Network Manager object was added, and some prefabs were updated to contain
the following components.

• Transport Component:
The script that configures the protocol in use to send and receive data
through the network. Mirror supports several transports that are based on
different protocols. UDP and TCP are the most popular data transmission
protocols. In this case, the default transport kc2k, a C# implementation of
KCP, was used. KCP is a reliable protocol based on TCP (Transmission

 54

Control Protocol) except it prioritizes network latency at the cost of higher
bandwidth usage. Depending on requirements of the experience, a
different transport based on UDP would fare better as it can send update
date at a higher rate. Such a solution would improve the synchronization
of position and velocity.

• Network Identity:
This component is required to spawn and track instances of the object
across the network with separate identifier codes.

• Network Manager:
The component that handles the application state, prefab spawning,
scene management and network debugging. Some parameters to
configure it are server update rate, network address, maximum number
of simultaneous connections, and a list of “spawnable” objects.

Figure 4.37. Parameters of the Network Manager component.

• Network Transform:
This component synchronizes position, rotation, and scale of the
GameObject over the network using the required components mentioned
earlier. Update rate and interpolation factors can be set. However, the
component is very limited in options, and a more advanced system could
be employed.

• Network Manager HUD:

The default component to provide a simple display that allows users to
input a network address and choose to play the roles of host, client or
server. Integrating this elements into the main menu is simple but as
many other aspects in this project, it takes time. The default configuration
is used.

Simulation of a TaxiBot Operation for First Person Training 55

Figure 4.38. Network Manager HUD panel as it appears during runtime.
These components and their use is very similar to the now deprecated Unity
multiplayer tool package UNet. The topology used in the implementation was
client hosted, in which one of the clients will also run the server tasks.

4.7.3. Network Profiles

The acting Network Manager for the scene needs to contain references to all
the objects with network functionalities it needs to spawn. These objects are
new prefabs that contain Network Identities and Transforms. A very quick
solution to implement object authority was created.

When the client sends an order to the server to instance a prefab, the Network
Manager can identify the client as the object owner. If the Network Transform
component has the ‘Client Authority’ option enabled, execution of different
blocks of code can be specific to the owner and to every other client connected
to the network.

Figure 4.39. Network Initializer script for the TaxiBot. Every object with network functionality
makes use of a similar script.

 56

Figure 4.40. Network topology and authority over objects (own image).

The implemented solution consists of a short additional script assigned to the
network prefabs. Its only functionality is to enable certain objects or components
on the owner client. With this solution, the TaxiBot network prefabs and its
corresponding basic prefab share the same script for movement and
references. A similar script is in place for the air traffic controller profile. The
profile is simply a toggle between a bird’s eye view and a free camera.

Right after connecting, a UI panel for the user to select a profile is in place. This
object can send the command to spawn a selected prefab. The functions
required to display the enable the panel upon connection, select a profile and
send the command to instance the prefab to the current host make use of
classes and functions only available through Mirror.

Figure 4.41. Left: Profile selection panel. Right: Functions required to select and send
instancing message to the host.

Simulation of a TaxiBot Operation for First Person Training 57

Figure 4.42. Testing two profiles, pilot and controller connected to the same virtual environment.

This system was designed keeping in mind that it should be easy to implement
a new profile in the same environment. To test this, I added a new vehicle
monitoring the time it takes me. I decided it would be a small aircraft, so a free
model of a Cessna 172 was downloaded from the 3D Warehouse.

Figure 4.43. Cessna 172 3D model downloaded from the SketchUp 3D Warehouse [40].

The new model was swiftly imported into Unity and its materials were assigned.
A script using mouse and keyboard controls to fly the aircraft was procured
online. The code is copyrighted under MIT License [41], so it can be used for
the purposes of this project. Some parameters like forces and mass needed to
be configured but it was an overall simple process.

An initializer script was created and similarly to the TaxiBot and traffic controller
network profile, all it does is enable user inputs, camera, and cursor element.
The prefab also needs to have a Network Identity and a Network Transform with
the Client Authority option enabled.

 58

Afterward, references and its profile name were added to the Player Select
panel arrays. Finally, the prefab needs to be registered in the current scene
Network Manager

Figure 4.44. Left: Add prefab and name to the profile select panel. Right: Add prefab to the
Network Manager registered list.

From the moment the 3D model and the script were found online to the moment
the Cessna 172 was flying in the virtual environment, the process only took 35
minutes.

Figure 4.45. Cessna 172 flying over the virtual environment.

4.8. Additional Functionalities

While I do not consider them to relate directly to the objectives, several more
functionalities were implemented to improve usability and user experience.

4.8.1. Main Menu

The menu was created rather fast. It consists of a simple canvas with buttons that
perform functions like move to a specific scene (in this case, simple environment

Simulation of a TaxiBot Operation for First Person Training 59

and multiplayer environment). The Tutorial button enables a new panel and hides
the previous one. Each of the four buttons only changes the active image and
text instructions.

Figure 4.46. Left: main menu view. Right: First tutorial slide. (Original photo by IAI).
https://www.ainonline.com/aviation-news/air-transport/2016-10-10/taxibot-ready-cut-cost-and-

carbon-footprint-taxiing

4.8.2. Steering Wheel and Pedals Support

Figure 4.47. Logitech Software Developer Kit available in the Unity Asset Store.
https://assetstore.unity.com/packages/tools/integration/logitech-gaming-sdk-6630

I could get hold of a Logitech Driving Force Pro steering wheel and pedals [42]
for free, so I decided to investigate how to approach its implementation. A free
Software Developer Kit package to integrate Logitech devices was available from
the Unity Asset Store. I simply followed the installation instructions to see working
examples. After studying an implementation example, all that was required was
to assign the variables defined in Section 4.4 to the correct axes and buttons, as
well as create a flag to determine if the inputs should be read from the mouse
and keyboard or from a connected steering wheel.

 60

Figure 4.48. Code snippet to map user control variables to encoded values in any Logitech
steering wheel.

Simulation of a TaxiBot Operation for First Person Training 61

CHAPTER 5. VALIDATION
During development of the experience, many aspects were being tested
continuously to ensure that the features, quality, and performance of the
application were appropriate. This aspect drove some decisions beyond the initial
design in more than one situation (steering wheel and pedals and networking).

The purpose of the validation section is to analyze the extent to which the
objectives have been met. To do so, the experience was tested and evaluated by
users of different levels of knowledge on the subject. A survey was designed to
obtain mostly qualitative data on the experiences of each user.

The setup consisted of a computer using a steering wheel and pedals for the test
user performing the operation playing the role of pilot. Meanwhile, a different
computer was connected using the network functionality to play the role of
controller monitoring the user. This arrangement allowed me to solve doubts in
case the automatic controller messages and chart were insufficient.

Figure 5.1. Validation session with the roles of test pilot and traffic controller.

The results of the questionnaire are shown below. The percentages are
calculated over a total of 16 users who tested the experience and answered the
questionnaire minutes later.

• The average time to finish the experience was approximately 8 minutes
and 35 seconds. The fastest time was just under 5 minutes, performed
by a user on a second attempt.

• 12.5% of users did not complete the experience (two users). One of them
explained that the most difficult aspect was relating the position and
direction of the aircraft to the provided chart. The other test user
explained that it would take too long to attempt the procedure from the
start a second time.

• Most of the test users considered they did not have much knowledge on
the subject of airport ground movement.

 62

Figure 5.2. Knowledge about the subject prior to the experience. 1 means very

unfamiliar, 5 means very knowledgeable.

However, the majority of users stated that they were familiar with
videogames or other software that makes use of mouse and keyboard
control schemes.

Figure 5.3. Use of mouse and keyboard in videogames or experiences. 1 means very

unfamiliar, 5 means they use them often.

• A qualitative assessment of the perceived value of the experience as a
learning tool was gathered through the question “After the experience,
do you consider yourself more aware of the aspects that a pilot
should keep in mind when undertaking a taxi procedure using the
TaxiBot?”

Figure 5.4. Awareness following the experience. 1 means the experience was not very

useful, 5 means they are highly aware now.

• As positive feedback, 93.8% of test users stated that they were engaged
throughout the experience. The most popular enjoyable aspects were
graphical fidelity, physics simulation, and the sense of controlling the
TaxiBot and aircraft using the steering wheel and pedals.

• As for constructive feedback, the questionnaire included the question of
“How do you think the experience could be improved or
expanded?”

Simulation of a TaxiBot Operation for First Person Training 63

Figure 5.5. Suggestions to expand or enhance the experience.

The most common recommended feature was implementing a different
and maybe larger environment. The “More vehicles” suggestion can be
grouped together with the “Adding take-off and flight” prompt. It is
important to indicate the evaluation session took place before the
implementation of the Cessna 172. Better guidance on what to do is a
difficult topic because the level of knowledge of the users was widely
different.

One of the test users was a pilot who obtained his license (Commercial Pilot
License) in 2021. I was very interested in any further insight he could provide
and this is an attempt to summarize it.

• He indicated that the dynamics feel well recreated. While he had never
used or seen a TaxiBot operation, the acceleration of the aircraft feels
very similar to that of a similar weight class aircraft.

• Turning the aircraft is different as the tiller movement is not directly
translated to the nose wheel. Instead, the wheels on the TaxiBot turn first
and the axle on the docking mechanism follows, which adds some lag
when changing directions.

• No additional indications or information were required. Following the
automatic controller instructions and making use of the provided chart
were sufficient to complete the procedure.

• Night taxi or reduced visibility conditions would be useful additions to the
experience.

A thorough evaluation methodology could compare results in two groups of users,
one being the experimental group and the other being the control group. The
experimental group would test the experience and the control group would
receive a theory session with a similar duration covering the same subject.
Testing awareness before and after the test would also provide a useful metric to
show in the comparison. Such a methodology was not feasible as there were few
participants on a single simulator setup. The validation aspect could certainly be
expanded upon at a later stage.

 64

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

• A simulator of a TaxiBot and aircraft in a recreated airport has been created
and it can be replicated in less than one month time (150 work hours) by a
single developer. This estimate considers that most assets like 3D models
and textures are pre-made and development is focused on the core
simulated experience. The process can be summarized as: (a) identifying
the requirements of the simulator (see Sections 3.1 and 3.3); (b) defining the
procedures and operations to simulate (see Section 3.4); (c) creating (or
importing an existing) the 3D models of the airport, aircraft, TaxiBot, and
obstacles (see Section 4.3) considering that they often need to be optimized
or corrected; (d) creating a physics system using the tools facilitated by the
chosen engine, in this case Unity (see Section 4.4); (e) creating obstacles
and dynamic events to complement the experience (see Section 4.5); (f)
applying a gamification layer to the training contents (see Section 4.6); (g)
data analysis; (h) networking and multiuser support.

• The validation sessions and processes were limited in scope, so it is hard to
assess to what extent the experience can be utilized as a training tool. With
that said, most test users relayed that the experience made them more
aware of the processes involved in a TaxiBot procedure and that the
experience was engaging, especially with more than one user.

• Compared to other simulator examples like the KLM VR trainings or
Microsoft Flight Simulator, the TaxiBot Experience is lacking in terms of
scale and features. However, it is currently the only available software that
features the TaxiBot. Similarly, other examples of new technology are
straightforward to implement as a new profile (see Section 4.7.3).

• While I had worked with Unity previously, this is the largest project I have
done so far. In the Operating Systems subject, along with two other
teammates, I made a videogame in Unity with networking using a custom
messages solution to resolve position changes. In the TaxiBot experience,
Mirror was implemented to resolve the networking services instead. While
this made development faster, it is not very complete. The current state of
Unity networking is not ideal.

• I was satisfied with the visual fidelity of the recreated environment. During
my time at university, I have designed runways, taxiways, and aprons in
different subjects. Although they might not have been the most exhaustive
projects, they drove me to consult the correct sources for requirements,
recommended practices. The airport environment was not complete. While
the most relevant signs and markings were present, some were not
reproduced. An important judgment I can provide is that generating assets
takes the largest part of the development process. Even though most 3D
models were downloaded for free, they needed to be modified. If I were to
start development on this project again, I would attempt to find alternative
sources to get a complete pre-made model of an airport.

Simulation of a TaxiBot Operation for First Person Training 65

• The implementation of steering wheel and pedals to approximate the control
scheme of using the tiller to control the nose landing gear and pedals to
brake was not given much importance during the definition of requirements
and design. However, the use of these peripherals resulted in an immediate
increase in control over the vehicles when compared to using mouse and
keyboard controls. This aspect me encouraged me to follow a more organic
approach to development in which requirements and priorities might by
influenced by the continuous validation of the application.

On the subject of future lines of research, there are several options to expand
the project:

• Porting the experience to different devices, such as smartphones or virtual
reality (VR) headsets. Heavy optimizations would need to be made to allow
the application to run on smartphone hardware but it is most likely possible.
Implementing VR requires a new input reading system to be developed but it
could be ported in a short amount of time.

• Having more options and control over training content. For example,
operations at night, during a thunderstorm, or with low visibility would not be
hard to implement in terms of the systems that need to be developed. There
are surely free or paid packages and learning material about simulating
night, rain and fog. However, the airport lights would need to be created and
positioned correctly, which is a time consuming endeavor.

• Unexpected threats like malfunctions, unauthorized vehicles on the runway
or ATC errors offer more training content. Each of these events would not be
very hard to implement in Unity. The system that would take the most effort
would likely be a control panel from which the user or a supervisor would
configure the events (or a system of random incidents).

• At the moment, there are three roles a user can take, pilot controlling a
Boeing 787 through a TaxiBot for taxiing, air or ground traffic controller
(although it is not physical character and the control tower is not present),
and a Cessna 172. These roles can be used to test different scenarios. For
example: training a traffic controller to manage a crowded airspace where
every aircraft is controlled by a different user; testing methods to increase
capacity, reduce delays and other airport optimizations. The networking
might need to be optimized for experiments of this style as it was not stress-
tested during development. Additionally, more user profiles for other vehicles
or crew members can be implemented very easily.

• Improve the data gathering system that runs during the operation to evaluate
how the users are learning and whether the contents or assistance needs to
be adapted for each user. Other factors of gamification can also be
implemented to test their effect on the value of the experience.

 66

REFERENCES

[1] Jardine C. (2005). Calculating the Environmental Impact of Aviation
Emissions. http://www.hwa.uk.com/site/wp-content/uploads/2020/10/CD-16.6-
Calculating-the-Environmental-Impact-of-Aviation-Emissions-June-2005-
SSE04.pdf

[2] Xu et al. (2020). Quantifying aircraft emissions of Shanghai Pudong
International Airport with aircraft ground operational data.
https://www.researchgate.net/publication/339047513_Quantifying_aircraft_emis
sions_of_Shanghai_Pudong_International_Airport_with_aircraft_ground_operati
onal_data

[3] Re, F. (2012). Viability and state of the art of environmentally friendly aircraft
taxiing systems. https://ieeexplore.ieee.org/abstract/document/6387462

[4] Giangrande P., Klumner C., Nuzzo S. (2018). State of the Art of Electric
Taxiing Systems.
https://www.researchgate.net/publication/328837869_State_of_the_Art_of_Elec
tric_Taxiing_Systems

[5] Jakub, H. (2014). Electric taxiing – Taxibot system.
https://pdfs.semanticscholar.org/9960/6a86de6b3eed1e88a4f6e105bd6534e78
b6c.pdf?_ga=2.136422576.1805683604.1630362241-1365292299.1630362241

[6] Virgin Atlantic. (April 2007). Virgin Atlantic Makes Europe's Largest Single
Order For Fuel-Efficient Boeing 787 Dreamliner (Press release). Retrieved 13
August 2011.

[7] Peffers et al. (2006). The design science research process: A model for
producing and presenting information systems research.
https://www.researchgate.net/publication/228650671_The_design_science_res
earch_process_A_model_for_producing_and_presenting_information_systems
_research

[8] Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee S. (2007). A Design
Science Research Methodology for Information Systems Research.
https://www.researchgate.net/publication/228650671_The_design_science_res
earch_process_A_model_for_producing_and_presenting_information_systems
_research

[9] Walls, J., Widmeyer, G, El Sawy, O. (1992). Building an Information System
Design Theory for Vigilant EIS.
https://pubsonline.informs.org/doi/abs/10.1287/isre.3.1.36

[10] Hevner, A., March, S., Park, J., Ram, S. (2004). Design Science in
Information Systems Research. Vol. 28, No. 1.
https://www.jstor.org/stable/25148625

Simulation of a TaxiBot Operation for First Person Training 67

[11] Bernatzky, T., Baumann, S., Klingauf, U. (2016). An Interface Concept to
Support the Cockpit Crew during Trajectory-Based Dispatch Towing.
https://www.icas.org/ICAS_ARCHIVE/ICAS2016/data/papers/2016_0080_paper
.pdf

[12] Sinha S. (May 2021). Going green: Delhi Airport becomes first globally to
have 1000 TaxiBot movements.
https://timesofindia.indiatimes.com/business/india-business/going-green-delhi-
airport-becomes-first-globally-to-have-1000-taxibot-
movements/articleshow/82430183.cms

[13] Rolfe, J., Caro, P. (1982). Determining the training effectiveness of flight
simulators: Some basic issues and practical developments.
https://www.sciencedirect.com/science/article/abs/pii/0003687082900631

[14] EASA approves the first Virtual Reality (VR) based Flight Simulation
Training Device https://www.easa.europa.eu/newsroom-and-events/press-
releases/easa-approves-first-virtual-reality-vr-based-flight-simulation. Accessed
on May 2021.

[15] Tecknotrove System (I) Pvt Ltd. (2017). Pushback operator first person
view. https://www.youtube.com/watch?v=-TzDYp65zo4

[16] AIRFRANCE KLM-XR Center of Excellence. (2021). Pushback training.
https://www.youtube.com/watch?v=C6EiRQjvZjo

[17] KLM News. (2020). KLM Cityhopper introduces Virtual Reality training for
pilots. https://news.klm.com/klm-cityhopper-introduces-virtual-reality-training-for-
pilots/

[18] 320 Sim Pilot. (2020). Real Airbus Pilot Taxi Tutorial.
https://www.youtube.com/watch?v=fLQgAN79YqE

[19] Kiili, K. (2004). Digital game-based learning: Towards an experiential
gaming model. http://www.savie.ca/SAGE/Articles/940_300027-KIILI-2005.pdf

[20] Electromobility at Frankfurt Airport. (2015). Hybrid motor silences jets: the
TaxiBot. http://www.e-port-an.com/project/our-electric-vehicles/taxibot.html

[21] The Little Big Tug Company. (2007). T80 General Specifications.
http://www.littlebigtugcompany.co.uk/specs.htm

[22] International Civil Aviation Organization (ICAO). (2014). Annex 14 to the
Convention on International Civil Aviation. https://www.pilot18.com/wp-
content/uploads/2017/10/Pilot18.com-ICAO-Annex-14-Volume-1-7th-Edition-
2016.pdf

[23] Federal Aviation Administration. (2020). Standards for Airport Markings
Advisory Circular.
https://www.faa.gov/documentLibrary/media/Advisory_Circular/150-5340-1M-
Chg-1-Airport-Markings.pdf

https://www.faa.gov/documentLibrary/media/Advisory_Circular/150-5340-1M-Chg-1-Airport-Markings.pdf
https://www.faa.gov/documentLibrary/media/Advisory_Circular/150-5340-1M-Chg-1-Airport-Markings.pdf

 68

[24] Mazareanu E. (2021). Volume of passenger traffic at the Valencia airport
from 2005 to 2019. https://www.statista.com/statistics/775775/traffic-from-
passengers-in-he-airport-from-valencia/

[25] AIP España. Plano de Aeródromo para Movimientos en Tierra-OACI.
https://aip.enaire.es/AIP/contenido_AIP/AD/AD2/LEVC/LE_AD_2_LEVC_GMC_
1_en.pdf

[26] The Boeing Company. (2005). Boeing 737 Flight Crew Training Manual.
https://aviation-is.better-than.tv/B737NG_FCTM_(31-10-05).pdf

[27] International Civil Aviation Organization (ICAO). (2005). Annex 2 to the
Convention on International Civil Aviation. Rules of the Air.
https://www.icao.int/Meetings/anconf12/Document%20Archive/an02_cons%5B1
%5D.pdf

[28] Milo1002 (2017). Komatsu WZ4000 TL206.
https://3dwarehouse.sketchup.com/model/59580aea-835f-458b-bd1f-
f0334c9ab538/The-bales-
tractor%E3%83%88%E3%83%BC%E3%83%90%E3%83%BC%E3%83%AC%
E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%BF%E3%83%
BC%EF%BC%89

[29] Rocha, M. (2016). Air France Boeing 787-9 DreamLiner [F-HRBA].
https://3dwarehouse.sketchup.com/model/4cb927d5-d250-422c-aa2f-
26aca255db2a/Air-France-Boeing-787-9-DreamLiner-F-HRBA-ver-2016

[30] Comugi. (2019). BOEING787 Cockpit 787.
https://3dwarehouse.sketchup.com/model/66993df7-3703-4095-aebb-
21ff9d472bab/BOEING787-Cockpit-
%EF%BD%9E%E3%83%9C%E3%83%BC%E3%82%A4%E3%83%B3%E3%8
2%B0787%E3%81%AE%E3%82%B3%E3%82%AF%E3%83%94%E3%83%83
%E3%83%88%EF%BD%9E

[31] Photo by Grid9. (2016). Boeing 787 Dreamliner-Cab.
https://www.360cities.net/image/boeing-787-dreamliner-cab

[32] R. Greg. (2017). 3D Airport with marking and signs.
https://3dwarehouse.sketchup.com/model/a7240881-6a5b-4d30-abfb-
1f4437d9e2f2/3D-Airport-with-marking-and-signs

[33] Gegge. (2015). Aeropuerto Manises.
https://3dwarehouse.sketchup.com/model/u63d05123-54c1-4f05-b759-
984a410b6e76/Aerpuerto-Manises

[34] Lufthansa LEOS. Taxiing without engines running. http://www.lufthansa-
leos.com/documents/438370/444077/2013_10_TaxiBot.pdf/40fc4f7e-c10a-
4ca6-aa0a-9337d2f922f8

[35] The Boeing Company. 787 Airplane Characteristics for Airport Planning.
https://www.boeing.com/assets/pdf/commercial/airports/acaps/787.pdf

https://www.statista.com/statistics/775775/traffic-from-passengers-in-he-airport-from-valencia/
https://www.statista.com/statistics/775775/traffic-from-passengers-in-he-airport-from-valencia/
https://3dwarehouse.sketchup.com/model/4cb927d5-d250-422c-aa2f-26aca255db2a/Air-France-Boeing-787-9-DreamLiner-F-HRBA-ver-2016
https://3dwarehouse.sketchup.com/model/4cb927d5-d250-422c-aa2f-26aca255db2a/Air-France-Boeing-787-9-DreamLiner-F-HRBA-ver-2016
https://3dwarehouse.sketchup.com/model/66993df7-3703-4095-aebb-21ff9d472bab/BOEING787-Cockpit-%EF%BD%9E%E3%83%9C%E3%83%BC%E3%82%A4%E3%83%B3%E3%82%B0787%E3%81%AE%E3%82%B3%E3%82%AF%E3%83%94%E3%83%83%E3%83%88%EF%BD%9E
https://3dwarehouse.sketchup.com/model/66993df7-3703-4095-aebb-21ff9d472bab/BOEING787-Cockpit-%EF%BD%9E%E3%83%9C%E3%83%BC%E3%82%A4%E3%83%B3%E3%82%B0787%E3%81%AE%E3%82%B3%E3%82%AF%E3%83%94%E3%83%83%E3%83%88%EF%BD%9E
https://3dwarehouse.sketchup.com/model/66993df7-3703-4095-aebb-21ff9d472bab/BOEING787-Cockpit-%EF%BD%9E%E3%83%9C%E3%83%BC%E3%82%A4%E3%83%B3%E3%82%B0787%E3%81%AE%E3%82%B3%E3%82%AF%E3%83%94%E3%83%83%E3%83%88%EF%BD%9E
https://3dwarehouse.sketchup.com/model/66993df7-3703-4095-aebb-21ff9d472bab/BOEING787-Cockpit-%EF%BD%9E%E3%83%9C%E3%83%BC%E3%82%A4%E3%83%B3%E3%82%B0787%E3%81%AE%E3%82%B3%E3%82%AF%E3%83%94%E3%83%83%E3%83%88%EF%BD%9E
https://3dwarehouse.sketchup.com/model/66993df7-3703-4095-aebb-21ff9d472bab/BOEING787-Cockpit-%EF%BD%9E%E3%83%9C%E3%83%BC%E3%82%A4%E3%83%B3%E3%82%B0787%E3%81%AE%E3%82%B3%E3%82%AF%E3%83%94%E3%83%83%E3%83%88%EF%BD%9E

Simulation of a TaxiBot Operation for First Person Training 69

[36] Budriz, (2014). Airport Fire Engine.
https://3dwarehouse.sketchup.com/model/bf6cce269070af48ba929c0372e7692
1/Airport-Fire-Engine

[37] International Civil Aviation Organization (ICAO). (2004). Advanced Surface
Movement Guidance and Control Systems.
https://www.icao.int/Meetings/anconf12/Document%20Archive/9830_cons_en%
5B1%5D.pdf

[38] Yang, L., Yin, S., Han, H., Haddad, J., Hu, M. (2017). Fundamental
Diagrams of Airport Surface Traffic: Models and Applications.
https://www.researchgate.net/publication/320939098_Fundamental_diagrams_
of_airport_surface_traffic_Models_and_applications

[39] H. (2014). KLM Cityhopper Embraer 190.
https://3dwarehouse.sketchup.com/model/bae04b58d06edd55324c65994a923d
3f/KLM-Cityhopper-Embraer-190

[40] Szilárd, K. (2014). Cessna 172.
https://3dwarehouse.sketchup.com/model/bb0795effdb85b13e87d121b5fbf21f0/
cessna-172

[41] Hernandez, B. (2019). Mouse Flight v1.3.
https://github.com/brihernandez/MouseFlight

[42] Logitech 963293-0403 - Driving Force Pro Wheel Installation Manual.
(2004). https://www.manualslib.com/manual/442879/Logitech-963293-0403-
Driving-Force-Pro-Wheel.html#manual

 70

APPENDIX

Title: Simulation of a TaxiBot Operation for First Person Training

Author: Gabriel Sebastián Font Rojas

Director: Jordi Pons Prats

Codirector: Francisco Javier Mora Serrano

Date: July 2021

Simulation of a TaxiBot Operation for First Person Training 71

A. TaxiBot Experience Survey

1- What was the time you required to finish the experience? (Please answer
"not finished" if that is the case).

1a- (Optional) If you could not complete the procedure, what was the main
difficult aspect?

a) Understanding ATC instructions.
b) Relating aircraft position and direction to the provided chart.
c) Not knowing signs and markings.
d) Other (short answer)

2- After the experience, do you consider yourself more aware of the aspects
that a pilot should keep in mind when undertaking a taxi procedure using the
TaxiBot? (1 to 5)

3- Were you engaged throughout the experience? Any particular enjoyable
aspect?

4- How do you think the experience could be improved or expanded?

a) Larger map, different airport or procedure.
b) Virtual Reality.
c) Adding take-off and flight.
d) Better guidance on what to do and why.
e) Other (short answer)

5- How would you rate your knowledge on the subject of airport ground
movement prior to the experience? (1 to 5)

6- Are you familiar with videogames or other software that make use of mouse
and keyboard control schemes to control a vehicle or character? (1 to 5)

	CHAPTER 1. INTRODUCTION
	1.1. Motivation
	1.2. Objectives
	1.3. Research Methodology
	1.4. Document Structure

	CHAPTER 2. STATE OF THE ART
	2.1. Taxi Operations
	2.2. The Use of Simulation in Aviation
	2.3. Software Examples
	2.3.1. Tecknotrove: Tecknosim Pushback Simulator 2017
	2.3.2 KLM VR Training
	2.3.3. Microsoft Flight Simulator

	CHAPTER 3. EXPERIENCE DESIGN
	3.1. Requirements and Optional Systems
	3.2. Target Audience
	3.3. Specifications
	3.3.1. TaxiBot Specifications
	3.3.2. Specifications of the Featured Aircraft
	3.3.3. Airport Specifications

	3.4 Decisions and Criteria
	3.4.1. Location Selection
	3.4.2. Taxi Procedure
	3.4.3. Challenging the User

	CHAPTER 4. UNITY IMPLEMENTATION
	4.1. Relevant Technological Tools
	4.1.1. Unity
	4.1.2. Visual Studio
	4.1.3. C# in Unity
	4.1.4. SketchUp
	4.1.4. Adobe Photoshop

	4.2. Personal Background
	4.3. Assets
	4.3.1. Modeling and Adapting
	4.3.2. Importing Models
	4.3.3. Environment Recreation

	4.4. Physics Simulation
	4.5. Events
	4.5.1. Emergency Vehicle
	4.5.2. Leading Aircraft

	4.6. Automatic Ground Movement Control
	4.7. Networking
	4.7.1. Additional Tools
	4.7.2. Network Implementation
	4.7.3. Network Profiles

	4.8. Additional Functionalities
	4.8.1. Main Menu
	4.8.2. Steering Wheel and Pedals Support

	CHAPTER 5. VALIDATION
	CHAPTER 6. CONCLUSIONS AND FUTURE WORK

