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1 Methods

1.1 Algorithm implementation

mWISE is an annotation algorithm with a modular design that provides a biological or

biochemical context-based prioritized list of KEGG compounds for LC-MS peaks. It consists

of three main stages. First, the LC-MS peaks are matched to KEGG database. Then, the

features that are likely to come from the same metabolite are grouped and a filter based on

the built clusters is applied. Finally, diffusion in biochemical or biological networks is used

to provide a prioritized list based on diffusion scores.

In Figure S1, a detailed scheme of mWISE R package is provided.
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Figure S1: mWISE package scheme

The matchingStage command uses the GenomicRanges R package1 to rapidly match all the

LC-MS peaks to KEGG database considering a set of adducts and fragments. The adducts

and fragments available for annotation in mWISE are collected from different sources and

in mWISE default mode, all of them are used for annotation. However, the users can use

their expertise to select the combination of adducts and fragments more appropriate for their
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specific LC-MS experimental setup.

The featuresClustering function applies spectral clustering in order to group those fea-

tures more likely to come from the same metabolite. It uses DBSCAN algorithm and applies

a set of functions to optimize the number of principal components and the epsilon parameter.

In order to automatically optimize the mentioned parameters, the process of building Scomb

is repeated setting Scomb
ij = 0 when i = j. Again, the laplacian matrix and its principal

components are computed. Then, the k means algorithm is applied varying the parameter

k that defines the number of clusters and also varying the number of principal components

accordingly. Equations 1 and 2 are computed for each case.

f1 =
k∑

c=1

SI
c (1)

Where SI
c represents the mean of the intensity similarity values of cluster c, and k represents

the number of clusters in the corresponding configuration.

The next equation consists of the same computation but using the retention time similarity

matrix.

f2 =
k∑

c=1

SRT
c (2)

Finally, a last equation is used (f3), where the number of putative compound units that are

positively correlated are determined. To do so, the mean of the features intensities in each

cluster is computed and it must be determined which of these compound units are positively

correlated. The configuration that gives a minimum value of f3 − (f2 + f1) is chosen, and

the same procedure is repeated for ε parameter.

Then, based on the grouping of peaks performed, the clusterBased.filter command filters
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the data, thus reducing the number of false positive values.

Finally, the diffusion.input command computes the initial diffusion labels vector and the

function set.diffusion uses DiffuStats2 R package to diffuse the label vector in a given

network.

1.2 Benchmark datasets preparation

The input peak lists were filtered. To do so, the LC-MS features without signal were removed

and the 80% rule was applied in the cases where the intensity was equal to 0. The 80% rule

is a widely used criterion applied when processing LC-MS data. It consists of removing those

peaks that contain missing values in more than 20% of the samples.3

2 Results

2.1 mWISE performance and benchmark - detailed metrics

In Tables S1-S11, the NA column refers to the number of not annotated peaks, meaning

a peak that has zero proposed candidates and the Ref.N column indicates the number of

reference peak-to-compound assignations.

In Table S1, the entities metrics obtained in the matching stage of mWISE are shown.
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Table S1: mWISE matching entities metrics

Assay TP FP TN FN NA Ref.N Sens Spec Prec Acc F1

Assay 1 144 11605 0 13 0 157 0.92 0.00 0.01 0.01 0.02
Assay 2 150 17598 0 25 0 175 0.86 0.00 0.01 0.01 0.02
Assay 3 145 11037 0 16 0 161 0.90 0.00 0.01 0.01 0.03
Assay 4 91 10133 0 11 0 102 0.89 0.00 0.01 0.01 0.02
Assay 5 38 4226 0 4 0 42 0.90 0.00 0.01 0.01 0.02
Assay 6 59 7942 0 15 0 74 0.80 0.00 0.01 0.01 0.01

In Table S2, the performance of the cluster-based filter for each dataset is shown. This

filter allows to reduce the number of false positives introduced in the diffusion process, thus

improving the performance of the final prioritization.

Table S2: mWISE filtering entities metrics

Assay TP FP TN FN NA Ref.N Sens Spec Prec Acc F1
Assay 1 128 1373 10232 29 0 157 0.82 0.88 0.09 0.88 0.15
Assay 2 126 1671 15927 49 0 175 0.72 0.91 0.07 0.90 0.13
Assay 3 131 1669 9368 30 0 161 0.81 0.85 0.07 0.85 0.13
Assay 4 87 832 9301 15 0 102 0.85 0.92 0.09 0.92 0.17
Assay 5 37 446 3780 5 0 42 0.88 0.89 0.08 0.89 0.14
Assay 6 57 739 7203 17 0 74 0.77 0.91 0.07 0.91 0.13

The diffusion-based scores are computed using the probability input type and the z normal-

ized score and a ranked list is built. The top three candidates for each peak, if available, are

selected as the final prioritized proposal. The entities metrics are shown in Tables S3 and

S4 when using FELLA and RClass networks, respectively.

Table S3: Fella entities metrics using the z normalization score and the probability input

Assay TP FP TN FN NA Ref.N Sens Spec Prec Acc F1

Assay 1 91 269 11336 66 2 157 0.58 0.98 0.25 0.97 0.35
Assay 2 93 281 17317 82 4 175 0.53 0.98 0.25 0.98 0.34
Assay 3 84 266 10771 77 8 161 0.52 0.98 0.24 0.97 0.33
Assay 4 57 181 9952 45 2 102 0.56 0.98 0.24 0.98 0.34
Assay 5 24 73 4153 18 1 42 0.57 0.98 0.25 0.98 0.35
Assay 6 48 95 7847 26 1 74 0.65 0.99 0.34 0.98 0.44
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Table S4: RClass entities metrics using the z normalization score and the probability input

Assay TP FP TN FN NA Ref.N Sens Spec Prec Acc F1

Assay 1 87 283 11322 70 2 157 0.55 0.98 0.24 0.97 0.33
Assay 2 85 316 17282 90 2 175 0.49 0.98 0.21 0.98 0.30
Assay 3 84 286 10751 77 8 161 0.52 0.97 0.23 0.97 0.32
Assay 4 56 192 9941 46 2 102 0.55 0.98 0.23 0.98 0.32
Assay 5 23 76 4150 19 1 42 0.55 0.98 0.23 0.98 0.33
Assay 6 46 115 7827 28 0 74 0.62 0.99 0.29 0.98 0.39

The same results are shown in Tables S5 and S6 but using the binary input type, the raw

diffusion score and the unique annotation option for the diffusion input.

Table S5: FELLA entities metrics using the raw score, the binary input and the unique
annotation option

Assay TP FP TN FN NA Ref.N Sens Spec Prec Acc F1

Assay 1 103 257 11348 54 2 157 0.66 0.98 0.29 0.97 0.40
Assay 2 92 282 17316 83 4 175 0.53 0.98 0.25 0.98 0.34
Assay 3 90 260 10777 71 8 161 0.56 0.98 0.26 0.97 0.35
Assay 4 62 176 9957 40 2 102 0.61 0.98 0.26 0.98 0.36
Assay 5 29 68 4158 13 1 42 0.69 0.98 0.30 0.98 0.42
Assay 6 53 90 7852 21 1 74 0.72 0.99 0.37 0.99 0.49

Table S6: RCLASS entities metrics using the raw score, the binary input and the unique
annotation option

Assay TP FP TN FN NA Ref.N Sens Spec Prec Acc F1

Assay 1 85 289 11316 72 2 157 0.54 0.98 0.23 0.97 0.32
Assay 2 81 319 17279 94 2 175 0.46 0.98 0.20 0.98 0.28
Assay 3 76 295 10742 85 8 161 0.47 0.97 0.20 0.97 0.29
Assay 4 52 197 9936 50 2 102 0.51 0.98 0.21 0.98 0.30
Assay 5 27 72 4154 15 1 42 0.64 0.98 0.27 0.98 0.38
Assay 6 44 116 7826 30 0 74 0.59 0.99 0.28 0.98 0.38

In Tables S7-S11, the specific entities metrics obtained using xMSannotator4 R package,

mummichog5 server, MI-Pack6 algorithm, and ProbMetab7 and CAMERA8 R packages are

shown, respectively.
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Table S7: xMSannotator entities metrics

Assay TP FP TN FN NA Sens Spec Prec Acc F1

Assay 1 71 759 10264 76 10 0.45 0.93 0.09 0.93 0.15
Assay 2 63 924 15174 101 11 0.36 0.94 0.06 0.94 0.11
Assay 3 62 1002 9815 97 2 0.39 0.91 0.06 0.90 0.10
Assay 4 59 509 9124 42 1 0.58 0.95 0.10 0.94 0.18
Assay 5 34 305 3842 7 1 0.81 0.93 0.10 0.93 0.18
Assay 6 54 369 7138 19 1 0.73 0.95 0.13 0.95 0.22

Table S8: Mummichog entities metrics

Assay TP FP TN FN NA Sens Spec Prec Acc F1

Assay 1 52 451 11814 105 44 0.33 0.96 0.10 0.96 0.16
Assay 2 35 174 17923 140 90 0.20 0.99 0.17 0.98 0.18
Assay 3 19 314 11357 142 70 0.12 0.97 0.06 0.96 0.08
Assay 4 25 84 10364 77 58 0.25 0.99 0.23 0.98 0.24
Assay 5 22 154 4270 20 8 0.52 0.97 0.12 0.96 0.20
Assay 6 27 84 8160 47 34 0.36 0.99 0.24 0.98 0.29

Table S9: MI-Pack entities metrics

Assay TP FP TN FN NA Sens Spec Prec Acc F1

Assay 1 0 20 11764 157 151 0.00 1.00 0.00 0.99 0.00
Assay 2 14 84 13663 161 144 0.08 0.99 0.14 0.98 0.10
Assay 3 16 284 8402 145 128 0.10 0.97 0.05 0.95 0.07
Assay 4 10 30 9118 92 90 0.10 1.00 0.25 0.99 0.14
Assay 5 12 70 2723 30 26 0.29 0.97 0.15 0.96 0.19
Assay 6 20 72 5278 54 46 0.27 0.99 0.22 0.98 0.24

Table S10: ProbMetab entities metrics

Assay TP FP TN FN NA Sens Spec Prec Acc F1

Assay 5 33 85 4298 9 0 0.79 0.98 0.28 0.98 0.41
Assay 6 62 125 8139 12 0 0.84 0.98 0.33 0.98 0.48

Table S11: CAMERA metrics

Assay TP FP FN N.A Ref.N Sens. Prec. F1 time (min)

Assay 5 10 8 32 27 42 0.24 0.56 0.33 4.86
Assay 6 8 10 66 60 74 0.11 0.44 0.17 10.74
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The computation time of each algorithm is shown in Table S12 for each assay.

Table S12: Computation time for each algorithm and dataset in minutes.

Algorithm Assay 1 Assay 2 Assay 3 Assay 4 Assay 5 Assay 6

mWISE - Fella-z score 15.70 54.20 45.20 26.35 18.10 35.41
mWISE - Fella-raw score 15.70 53.38 43.40 26.45 17.84 35.07
mWISE - RClass-z score 15.66 54.68 43.86 26.30 18.16 34.84
mWISE - RClass-raw score 15.52 53.06 42.74 26.06 17.77 34.96
xMSannotator 106.34 318.04 192.81 201.52 127.20 245.25
Mummichog 1.55 1.45 1.30 1.05 1.20 1.13
MI-Pack 1892.27 1971.13 5547.60 3376.95 2130.65 4243.38
CAMERA - - - - 10.74 4.86

Table S13 shows the characteristics of each algorithm. mWISE, mummichog, ProbMetab,

MI-Pack and xMSannotator provide biological knowledge to the annotation process, as well

as the proposal of specific metabolites, while CAMERA process ends with the adducts and

fragments annotation. An important limitation of mWISE is the databases offered, since

mWISE only offers the data to annotate in KEGG database. This is an important limitation

with respect to xMSannotator that should be addressed in future versions of mWISE.

Table S13: Algorithms’ characteristics
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CAMERA Yes Yes No No None
mWISE Yes Yes Yes Yes KEGG
mummichog Yes Yes Yes Yes KEGG
ProbMetab Yes Yes Yes Yes KEGG
MI-Pack Yes Yes Yes Yes KEGG
xMSannotator Yes Yes Yes Yes KEGG, HMDB, LipidMaps, T3DB

In Table S14, the input objects required by each algorithm are shown. mWISE, mummichog,
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MI-Pack and xMSannotator are more flexible than ProbMetab and CAMERA, since a peak-

list data frame is required as input. This input can be obtained using any LC-MS pre-

processing software.

Table S14: Input objects type

Algorithm Input

mWISE Peak-intensity matrix
mummichog LC-MS features (m/z and rt)
CAMERA xcms object
xMSannotator Peak-intensity matrix
ProbMetab CAMERA/mzMatch object
MI-Pack Peak-intensity matrix

2.2 Tanimoto similarity - detailed metrics

In Tables S15-S18, the number of peaks in which mWISE proposes at least a compound with

a chemical structure identical to the correct compound are shown in the column named Tan-

imoto Hits. In order to determine which compounds are identical, the Tanimoto similarity

coefficient is computed between the proposed compounds and the correct ones, and those

cases with a Tanimoto measure equal to 1 are considered as equal. The ratio of these peaks

(Tanimoto ratio) with respect to the number of reference peak-to-compound assignations is

also shown. These results show that in a considerable proportion of peaks considered as false

positives in the entities metrics, mWISE proposes a compound that probably shares several

properties and biological reactions with the correct one.

Table S15: Tanimoto metrics for Fella graph and z score

Dataset TP Tanimoto hits Ref N Tanimoto ratio

Assay 1 91 97 157 0.62
Assay 2 93 116 175 0.66
Assay 3 84 95 161 0.59
Assay 4 57 69 102 0.68
Assay 5 24 30 42 0.71
Assay 6 48 50 74 0.68
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Table S16: Tanimoto metrics for Fella graph and raw score

Dataset TP Tanimoto hits Ref N Tanimoto proportion

Assay 1 103 109 157 0.69
Assay 2 92 115 175 0.66
Assay 3 90 98 161 0.61
Assay 3 62 77 102 0.75
Assay 4 29 32 42 0.76
Assay 5 53 53 74 0.72

Table S17: Tanimoto metrics for RClass graph and z score

Dataset TP Tanimoto hits Ref N Tanimoto proportion

Assay 1 87 96 157 0.61
Assay 2 85 107 175 0.61
Assay 3 84 89 161 0.55
Assay 4 56 64 102 0.63
Assay 5 23 26 42 0.62
Assay 6 46 48 74 0.65

Table S18: Tanimoto metrics for RClass graph and raw score

Dataset TP Tanimoto hits Ref N Tanimoto proportion

Assay 1 85 92 157 0.59
Assay 2 81 103 175 0.59
Assay 3 76 90 161 0.56
Assay 4 52 64 102 0.63
Assay 5 27 30 42 0.71
Assay 6 44 48 74 0.65

Hereafter, the Tanimoto coefficients computed between the correct peak-to-compound assig-

nations and the compounds proposed by mWISE and xMSannotator are plotted against

peak’s degree. Peak’s degree is defined as the number of proposed compounds for each peak.

Only the non-correct assignations are considered. The p-values obtained when comparing

the Tanimoto coefficients between mWISE and xMSannotator using a Brunner-Munzel test

are seen in Figure S2.

S12



Figure S2: Comparison of xMSannotator and mWISE Tanimoto coefficients between the
proposed compounds and the correct ones. The compounds correctly proposed, and therefore
considered as true positives have been discarded. A Brunner-Munzel test has been applied in
each comparison and the mean value is plotted with a central point. The six panels indicate
the number of proposed compounds for each peak (degree of each peak).

2.3 Diffusion prioritization analysis - detailed metrics

As explained in the paper, the diffusion prioritization of randomly arranged graphs has

been compared to the results obtained when using the real networks. To do so, the diffusion-

based ranking of both real and surrogate cases (results obtained when permuting the graphs)

have been plotted against the degree of each peak, defining degree as the number of possible

candidates for a peak. In here, four different plots for each diffusion configuration are shown.
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Figure S3: Diffusion-based ranking of both real and surrogate results divided in ranges of
degrees, defining degree as the number of possible compounds proposed for a peak. The p-
values of a Brunner-munzel test are shown on the top of the plot. The alternative hypothesis
of the tests are that the ranking of the real cases is lower than the surrogate cases. The
results are obtained using the Fella graph and the z score.
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Figure S4: Diffusion-based ranking of both real and surrogate results divided in ranges of
degrees, defining degree as the number of possible compounds proposed for a peak. The p-
values of a Brunner-munzel test are shown on the top of the plot. The alternative hypothesis
of the tests are that the ranking of the real cases is lower than the surrogate cases. The
results are obtained using the Fella graph and the raw score.
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Figure S5: Diffusion-based ranking of both real and surrogate results divided in ranges of
degrees, defining degree as the number of possible compounds proposed for a peak. The p-
values of a Brunner-munzel test are shown on the top of the plot. The alternative hypothesis
of the tests are that the ranking of the real cases is lower than the surrogate cases. The
results are obtained using the RClass graph and the z score.
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Figure S6: Diffusion-based ranking of both real and surrogate results divided in ranges of
degrees, defining degree as the number of possible compounds proposed for a peak. The p-
values of a Brunner-munzel test are shown on the top of the plot. The alternative hypothesis
of the tests are that the ranking of the real cases is lower than the surrogate cases. The
results are obtained using the RClass graph and the raw score.
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2.4 TPs comparison between algorithms

Figure S7: Upset plot showing the comparison of true positives (TPs) between different
algorithms across all datasets. The bars in the left show the total number of true positives
for each algorithm. The top bars show the number of coincident TPs of the intersections
indicated in the matrix below. The first column indicates that 88 peaks are correctly anno-
tated by all the algorithms. Similarly, 113 peaks are correctly annotated by all algorithms
except mummichog.
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