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An effective method to study the Hopf Galois module structure of certain
extensions of fields

by Daniel Gil-Muñoz

We develop a method to compute a basis of the associated order AH in a Hopf
Galois structure H of the ring of integers OL of an extension of number or p-adic
fields L/K. We state and prove a necessary and sufficient condition for a given el-
ement β ∈ OL to be a free generator of OL as AH-module. Whenever it exists, one
can use such a free generator and a basis of AH to build a basis which can be seen
as an analog of the normal integral basis in the Galois case. We use this method to
determine the associated order and the existence of normal integral basis generators
for different classes of extensions of fields, such as Galois extensions of degrees 2, 3
and 4, and separable degree p extensions of Qp with normal closure having Galois
group isomorphic to the dihedral group Dp of 2p elements. We shall use the theory
of induced Hopf Galois structures to study the same problem for the normal closure
itself, i.e. a dihedral degree 2p extension of Qp. We give complete answers for the
cases p = 3 and p = 5.
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1

Introduction

A normal basis of a Galois extension of fields is a basis of the top field of the exten-
sion whose elements correspond to a single orbit of the action of the Galois group.
Concretely, if L/K is a Galois extension with Galois group G, a normal basis is a
K-basis of L of the form

{σ(α) | σ ∈ G}, (1)

for some α ∈ L. The Galois action can be extended K-linearly to an action of the K-
group algebra K[G] on L, which endows L with K[G]-module structure. Condition
(1) is then equivalent to L being a free K[G]-module of rank one with generator α,
that is L ∼= K[G] as a left K[G]-module. This identifies L with the regular represen-
tation of G. In virtue of the normal basis theorem, every Galois extension of fields
possesses a normal basis, which solves the problem of the existence. The interest
of normal bases relies in the fact that elements written with respect to one of these
are more manageable and easier to operate with, which makes them attractive from
both theoretical and practical points of view.

If L/K is an extension of local or global fields, then we may ask whether a similar
description is available for the ring of integers OL of the top field L. If the extension
is Galois with Galois group G, then OL is certainly an OK[G]-module, commonly re-
ferred to as the Galois module structure ofOL. Thus, we may ask whether this module
is free (in which case, it is of rank one). If it is indeed free and α ∈ OL is a generator,
then the Galois conjugates of this α is an OK-basis of OL which is a normal basis,
i.e. an integral normal basis. The answer when L/K is an extension of local fields is
given by Noether’s theorem: OL is OK[G]-free if and only if L/K is tamely ramified.
Equivalently, in the global case, the tameness of L/K is a necessary and sufficient
condition of OL being a locally free OK[G]-module.

Galois extensions of local (resp. global) fields that are not tamely ramified (resp.
tamely ramified at a prime) are called wildly ramified (resp. wildly ramified at that
prime). Let L/K be some such extension. Since tameness is a necessary condition
in Noether’s theorem, OL is not OK[G]-free (resp. OK[G]-locally free). For studying
those extensions, Leopoldt noted that OL might still be free over

AK[G] = {h ∈ K[G] | h · x ∈ OL for all x ∈ OL},

where · : K[G]⊗K L −→ L is the classical Galois action of K[G] on L. This is called
the associated order of OL in K[G]. Leopoldt also proved that for abelian extensions
L/Q of number fields, the number ring OL of L is AK[G]-free of rank one. This result
is generally known as Leopoldt’s theorem. It generalizes Noether’s theorem since
OK[G] ⊂ AK[G] with equality if and only if L/K is tamely ramified.

Although the introduction of the associated order led to a considerably better
comprehension of the Galois module structure of the algebraic integers, it has visi-
ble limitations, for instance there are extensions that have no normal integral basis
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as defined above. In his paper [Chi87], Childs obtained results on the Galois module
structure of OL based in the Hopf algebra structure of K[G]. This led to the devel-
opment of Hopf Galois module theory, in which K[G] is replaced by another Hopf
Galois structure of L/K: a K-Hopf algebra acting on L satisfying similar properties
as K[G] with the Galois action.

The notion of Hopf Galois structure is the beginning of Hopf Galois theory, which
is a generalization of Galois theory by the use of Hopf algebras. Concretely, if L/K is
a finite extension of fields (not necessarily Galois) and G is a subgroup of AutK(L),
then L/K is a Galois extension with group G if and only if the map

j : L⊗K K[G] −→ EndK(L)
x⊗ h 7−→ j(x⊗ h)(y) = x(h · y)

is bijective. The Hopf Galois condition for the extension L/K then arises naturally by
replacing K[G] by an arbitrary K-Hopf algebra and the Galois action K[G]⊗K L −→ L
by any action · : H⊗K L −→ L that endows L with H-module algebra structure. The
pair formed by H and the module algebra action is what we call a Hopf Galois struc-
ture of the extension, and the extension is called Hopf Galois or H-Galois. Then, the
classical Galois theory is generalized in the sense that given a Galois extension L/K,
the K-group algebra of the Galois group and its action on L is a Hopf Galois structure
of L/K. This approach was introduced by Chase and Sweedler in their book [CS69].

If L/K is now an H-Galois extension of local or global fields, the associated order
of OL in H is defined as

AH = {h ∈ H | h · x ∈ OL for all x ∈ OL},

and this is easily proved to be the unique OK-order in AH over which OL could
be AH-free (see Proposition 1.29). Then, the question turns to the study of the AH-
module structure ofOL, which is naturally referred to as the Hopf Galois module struc-
ture of OL. The main advantages of the introduction of Hopf Galois theory are:

• The class of Hopf Galois extensions enlarges the class of Galois extensions, in
the sense that every Galois extension is Hopf Galois and there are Hopf Galois
extensions that are not Galois. The Hopf Galois module structure of particular
classes of Hopf Galois non-Galois extensions is studied for instance by Elder
in the local case (see [Eld18]) and by Truman in the global case (see [Tru20]).

• A single extension may have different Hopf Galois structures, each of which
gives rise to a different associated order of OL. Research has shown that there
is not a general rule for the behaviour of OL as AH-module as H runs through
the Hopf Galois structures of L/K (see for example the papers [Byo02] and
[Chi87] or the final comment of the book [Chi00]).

In this thesis, we enlarge what is known on the determination of the associated
order and the Hopf Galois module structure of an extension of local or global fields.
We establish a constructive method to compute a basis of the associated order in a
Hopf Galois structure and give a necessary and sufficient condition for the freeness
of the ring of integers as a module over that associated order. This method does not
depend inherently in the ramification of the extension L/K, even on the nature of the
fields: all we need is our fields to have rings of integers attached andOK to be a PID.
In that situation, OL is OK-free. But more importantly, the property that ensures the
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validity of the method is that OK is a Hermite ring in the sense of Kaplansky (see
[Kap49]), and consequently we will say that these are Hermite extensions.

The idea behind the method is the same as in representation theory: instead of
working with the elements of the Hopf algebra, whose structure is often tricky, we
use the matrices representing them, and in that setting we have at our disposal the
tools of linear algebra. More concretely, if L/K is H-Galois, the action of H on L
induces a linear representation of H

ρH : H −→ EndK(L)

that encodes full information about the action of H on L. Once we have fixed bases
of H and L, we consider the canonical basis of EndK(L) (in its identification with a
space of matrices) and we take the matrix of ρH as linear map (see Proposition 2.6).
The key step is a reduction of this matrix to an n × n invertible matrix using only
integral operations. Consequently, we call this method the reduction method. The
characterization of the freeness also is closely related with the matrix of the action
and depends on a single element of OL: for every β ∈ OL, we find a necessary and
sufficient condition for β being a free generator of OL as AH-module.

Content of the chapters

This thesis is organized as follows. The first chapter is a review of the main notions
that will be needed later on and most of the concepts mentioned in this introduc-
tion are studied in more detail. Chapter 2 is the most important one and is devoted
to the study of the reduction method in all its generality and the related concepts.
Throughout the chapter we develop the example of the Hopf Galois non-Galois ex-
tension Q( 3

√
2)/Q, taking the description of its unique Hopf Galois structure given

in the paper [GP87]. We present the particularities obtained when the extension has
an integral basis of eigenvectors of the action. Concretely, the associated order has a
basis of pairwise orthogonal idempotents and normal integral basis generators are
characterized. At the end of the chapter, we use the reduction method to study the
Hopf Galois module structure of absolute extensions of degree 2 and 3.

The rest of the chapters consist essentially in applying the reduction method to
different classes of extensions. In Chapter 3, we consider quartic Galois extensions.
We determine all the Hopf Galois structures and apply the reduction method suc-
cessively in the cases that the ground field is Q and Q2. In Chapter 4, we move on to
separable extensions of degree p whose Galois closure has Galois group the dihedral
group Dp of order 2p. We describe the unique Hopf Galois structure and determine
the matrix of the action. However, we are not able to perform the reduction in gen-
eral, which leads us to consider particular cases. We provide a complete answer
when the ground field is Q3 and Q5. We end the chapter by considering radical ex-
tensions of Q.

At this point, to understand dihedral degree 2p extensions themselves we must
make a parenthesis to study induced Hopf Galois structures of semidirect Galois
extensions (that is, Galois extensions whose Galois group is a semidirect product),
which is carried out in Chapter 5. Those are a special kind of Hopf Galois structures
that can be seen as a tensor product of Hopf Galois structures in the factor exten-
sions, whose Galois groups are those appearing in the semidirect product. Finally,
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in Chapter 6 we study dihedral degree 2p extensions with ground field Qp, by using
the different ideas and results presented in Chapters 2, 4 and 5. We give complete
answers for the cases p = 3 and p = 5.

Most of the contents in Chapters 2 and 5 (but not all of them) are based in pa-
pers [GR] of the author with Anna Rio. Namely, it contains the development of the
reduction method and its application to induced Hopf Galois structures.

The computations that are sophisticated enough have been carried out with Maple.
Most of the results are displayed in line with the development of this thesis. How-
ever, there are some that are considerably bulky and are shown in Appendix B.
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Chapter 1

Preliminaries

1.1 Hopf algebras

Since we want to study the action of Hopf algebras on extensions of fields, we begin
with a brief review of the main notions of Hopf algebras that are needed. A Hopf
algebra is, roughly speaking, a vector space with algebra and coalgebra structures
dual with each other (i.e a bialgebra), and a compatible coinverse operation. In this
thesis we will work with Hopf algebras over fields, but they can be defined without
difficulty over commutative rings with unity. The main reference for this part is
[Und15, Chapter 3].

Definition 1.1. Let R be a commutative ring with unity. An R-Hopf algebra is a 6-uple
(H, mR, λR, ∆R, εR, σR) where:

1. H is an R-module.

2. (H, mH, λH) is an R-algebra, that is, mH : H ⊗R H −→ H and λH : R −→ H are
R-linear maps that satisfy:

2.a. [Associative property] Given a, b, c ∈ H,

mH(mH ⊗ IdH)(a⊗ b⊗ c) = mH(IdH ⊗mH)(a⊗ b⊗ c).

Equivalently, the following diagram is commutative:

H ⊗ H ⊗ H

mH⊗IdH

��

IdH⊗mH // H ⊗ H

mH

��
H ⊗ H

mH // H

2.b. [Unit property] Given a ∈ H and r ∈ R,

mH(λH ⊗ IdH)(r⊗ a) = r a = mH(IdH ⊗ λH)(a⊗ r).

Equivalently, the following diagrams are commutative:

H ⊗ R

s2

��

IdH⊗λH // H ⊗ H

mH

{{
H R⊗ Hs1
oo

λH⊗IdH

OO
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where s1 : R ⊗ H −→ H and s2 : H ⊗ R −→ H are defined by s1(r ⊗ a) =
r a = s2(a⊗ r).

The map mH is called the multiplication map, and λH is called the unit map.

3. (H, ∆H, εH) is an R-coalgebra, that is, ∆H : H −→ H ⊗ H and εH : H −→ R are
R-linear maps that satisfy:

3.a. (Coassociative property) There is a commutative diagram:

H
∆H //

∆H

��

H ⊗ H

IdC⊗∆H

��
H ⊗ H

∆H⊗IdH // H ⊗ H ⊗ H

Equivalently, for all h ∈ H,

(IdH ⊗ ∆H)∆H(h) = (∆H ⊗ IdH)∆H(h).

3.b. (Counit properties) The following diagrams are commutative:

H 1⊗− //

−⊗1

��

∆H

##

R⊗ H

H ⊗ R H ⊗ H

εH⊗IdH

OO

IdH⊗εH

oo

Equivalently, for all h ∈ H,

(εH ⊗ IdH)∆H(h) = 1⊗ h,

(IdH ⊗ εH)∆H(h) = h⊗ 1.

The map ∆H is called the comultiplication map and εH is called the counit map.

4. (H, mH, λH, ∆H, εH) is an R-bialgebra, that is, ∆H and εH are homomorphisms of
R-algebras.

5. σH : H −→ H is an R-linear map satisfying the following property:

mH(IdH ⊗ σH)∆H(h) = εH(h) 1H = mH(σH ⊗ IdH)∆H(h), h ∈ H.

Remark 1.2. In the fourth point we ask ∆H : H −→ H ⊗ H to be an R-algebra homomor-
phism, that is, it may respect the R-algebra structures on H and H ⊗ H. The R-algebra
structure of H ⊗ H is given by

mH⊗H((a⊗ b)⊗ (c⊗ d)) = (a c)⊗ (b d),

λH⊗H(r) = λH⊗H(r)⊗ 1H.
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An R-Hopf algebra is a ring with unity with the usual sum and product

a b := mH(a⊗ b),

because of the associative and unit properties. However, this ring is not in general
commutative.

Let us define τ : H ⊗R H −→ H ⊗R H as τ(a⊗ b) = b⊗ a for every a⊗ b.

Definition 1.3. Let H be an R-Hopf algebra.

1. We say that H is commutative if mH ◦ τ = mH.

2. We say that H is cocommutative if ∆H = τ ◦ ∆H.

The easiest example of an R-Hopf algebra is the ring R itself. Another example
of R-Hopf algebra is the following:

Example 1.4. Let G be a finite group and let R be a commutative ring with unity. Then, the
group ring

R[G] = {∑
g∈G

ag g | ag ∈ R}

is clearly an R-module. It is finitely generated because the elements of G form a system of
generators, which is free by definition. Thus, R[G] is R-free with basis G. Actually, it is an
R-Hopf algebra with the maps

mR[G](g⊗ h) = g h, g, h ∈ G,

λR[G](r) = r eG, r ∈ R,

∆R[G](g) = g⊗ g, g ∈ G

εR[G](g) = 1, g ∈ G

σR[G](g) = g−1, g ∈ G.

It is clearly cocommutative but it is commutative only if so is G.

Now, we introduce a notation for the image of any element of H by the comul-
tiplication, called the Sweedler’s notation. Given h ∈ H, we know that ∆H(h) ∈
H ⊗R H, so it is a sum of elements of the form h(1) ⊗ h(2), where h(1), h(2) ∈ H. We
denote

∆H(h) = ∑
(h)

h(1) ⊗ h(2).

Keeping Sweedler’s notation in mind, we make the following definition.

Definition 1.5. Let H be an R-Hopf algebra and let A be an R-algebra which is also a
left H-module with action denoted by ·. We say that A is a left H-module algebra if the
following conditions are satisfied:

1. h · (a a′) = ∑
(h)

(h(1) · a) (h(2) · a′) for all h ∈ H and a, a′ ∈ A.

2. h · 1A = εH(h) 1A for all h ∈ H.
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1.2 Hopf Galois structures

Let L/K be a finite extension of fields and let G be a group of K-automorphisms of
L in a previously fixed algebraic closure K of K. The most usual definition of L/K
being Galois with group G is that every K-embedding of L into K restricts to an el-
ement of G. If so, G is the set of all K-embeddings of L in K, which coincides with
the group AutK(L) of automorphisms of L that fix K. A Hopf Galois structure is an
object that in some sense plays the role of the Galois group and when it exists the
extension is called Hopf Galois. More accurately, in the case of the Galois group,
this role depends on the K-group algebra K[G] and its K-linear action on L, which
endows L with left K[G]-module algebra structure (see [Und15, Proposition 4.5.1]).
The definition of Hopf Galois structure arises naturally from the following charac-
terization of Galois extensions:

Theorem 1.6. Let G be a subgroup of AutK(L). Then, L/K is Galois with Galois group
G if and only if the map j : L⊗K K[G] −→ EndK(L) defined as j(x⊗ σ)(y) = xσ(y) for
σ ∈ G and extended by K-linearity is an isomorphism of K-vector spaces.

A proof can be found in [Und15, Proposition 4.5.3]. Although in that statement
the ground field is an extension of Q, it is actually not used in the proof since it is
based on the Dedekind independence theorem, which does not need the field L to
be an extension of Q.

As aforementioned, since the group G is finite, K[G] is a finite dimensional co-
commutative K-Hopf algebra. By replacing it with another Hopf algebra with simi-
lar properties, the definition of Hopf Galois structure follows.

Definition 1.7. A Hopf Galois structure on L/K is a pair (H, ·) where H is a finite di-
mensional cocommutative K-Hopf algebra and · : H ⊗K L −→ L is a K-linear action that
endows L with H-module algebra structure, such that the map

j : L⊗K H −→ L
x⊗ h 7−→ j(x⊗ h)(y) = x(h · y)

is an isomorphism of K-vector spaces.

If (H, ·) is a Hopf Galois structure of L/K and the action · is implicit in the con-
text, we will also say that L/K is H-Galois. A Hopf Galois extension is an extension
that admits some Hopf Galois structure. With this definition, every Galois exten-
sion is Hopf Galois, as K[G] together with the classical Galois action extended by
K-linearity is a Hopf Galois structure. This is called the classical Galois structure,
denoted by Hc henceforth.

However, the converse does not hold in general: for instance, Q( 3
√

2)/Q is a
Hopf Galois extension that is not Galois. This is an example of extensions that will
be studied broadly later on in this thesis: the separable degree p extensions whose
normal closure has Galois group isomorphic to Dp, the dihedral group of 2p ele-
ments, with p an odd prime number. Actually, that example is a particular case of
Proposition 1.12 below.

There are also extensions that have several different Hopf Galois structures. For
example the Galois closure of the previous one admits in total 5 Hopf Galois struc-
tures.
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1.3 Greither-Pareigis theory

Finding and describing all Hopf Galois structures of a given extension may be an ex-
tremely difficult task, but if the extension is separable, Greither and Pareigis gave in
their paper [GP87] a one-to-one correspondence between the Hopf Galois structures
and a class of permutation subgroups, giving rise to the so called Greither-Pareigis
theory.

1.3.1 The Greither-Pareigis theorem

Let L/K be a finite separable extension of fields. We call L̃ the Galois closure of L/K,
G = Gal(L̃/K), G′ = Gal(L̃/L) and X = G/G′ the set of left cosets of G′ in G. The
coset of an element g ∈ G is denoted by g.

Definition 1.8. The left translation map of G is the map λ : G −→ Perm(X) defined as
λ(τ)(σ) = τσ.

Definition 1.9. A subgroup N of Perm(X) is regular if it satisfies two of the following
conditions (in which case, it also satisfies the third one):

1. |N| = |X|.

2. N acts transitively over X.

3. Given x ∈ X, the stabilizer of the action of N on x, StaN(x) = {η ∈ N | η(x) = x},
is trivial.

These are all the ingredients we need to give the full statement of the Greither-
Pareigis theorem:

Theorem 1.10 (Greither-Pareigis). Let L/K be a finite separable extension and consider
the previous notation. The Hopf Galois structures of L/K are in one-to-one correspondence
with the regular subgroups of Perm(X) normalized by λ(G).

If N is such a subgroup, the corresponding Hopf Galois structure is given by

H := L̃[N]G = {h ∈ L[N] | σ(h) = h ∀σ ∈ G},

where G acts on L̃ by means of the classical Galois action and on N as follows:

σ · η = λ(σ)ηλ(σ−1), σ ∈ G, η ∈ N.

Note that this is actually an action closed on N because it is normalized by λ(G).
Regarding the action of H on L, if h = ∑n

i=1 hiηi ∈ H, then for every x ∈ L,

h · x =
n

∑
i=1

hiη
−1
i (1G)(x).

For the proof and related information, see [Chi00, Theorem 6.8].

1.3.2 Consequences

The appearance of the Greither-Pareigis theorem led to a number of results classify-
ing Hopf Galois structures of many classes of extensions and in general allowed a
deeper comprehension of Hopf Galois extensions.
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The classical Galois structure and the canonical non-classical Galois structure

Let L/K be a Galois extension with Galois group G. In this case, the left translation
map becomes λ : G −→ Perm(G) defined by λ(τ)(σ) = τσ.

Definition 1.11. The right translation map of G into Perm(G) is the map ρ : G −→
Perm(G) defined as ρ(τ)(σ) = στ−1.

Note that the definition of ρ is not correct if the extension is not Galois.

The Greither-Pareigis theorem in this case says that Hopf Galois structures of
L/K are in one-to-one correspondence with regular subgroups of Perm(G) normal-
ized by λ(G). But λ(G) and ρ(G) are themselves some such subgroups, so they give
rise to Hopf Galois structures of L/K:

• The group ρ(G) gives the classical Galois structure Hc (see [Chi00, Proposition
6.10]).

• The Hopf Galois structure given by λ(G) is called the canonical non-classical
Hopf Galois structure, denoted by Hλ.

It holds that λ(G) = ρ(G) if and only if G is abelian (see [Chi00, Example 6.9]).
Hence, they actually define the same Hopf Galois structure of L/K if and only if L/K
is abelian.

A refinement of the Greither-Pareigis theorem: Byott’s translation

When the degree of the extension is very low, explicit computations may be carried
out so as to compute explicitly the Hopf Galois structures of the extension. For in-
stance, if L/K is a separable extension of degree at most 4, then L/K is Hopf Galois
(see [Chi00, Thoerem 6.13]).

The main disadvantage of the Greither-Pareigis theorem is that the complexity
of the computation grows quickly with the degree of the extension. A refinement
reversing the relationship between G and N was introduced by Byott, the so called
Byott translation. We will not state the corresponding theorem here, but the reader
can consult it for instance in [Chi00, Theorem 7.3]. Among its applications, it pro-
vides a formula for the number of Hopf Galois structures on a extensions in terms
of G, G′ and N (see [Byo96, Proposition 1]). Moreover, it can be used to prove easily
the following:

Proposition 1.12. Let L/K be a separable extension of fields with prime degree, let L̃ be
its normal closure and let G = Gal(L̃/K). Then, L/K is Hopf Galois if and only if G is
solvable.

The proof can be found in [Chi00, Proposition 7.5]. In particular, if G is isomor-
phic to Sp or Ap with p ≥ 5 prime, then L/K is not Hopf Galois. Hence, the first
example of separable extension that is not Hopf Galois can be found at degree 5.

Almost classically Galois extensions

Let L/K be a separable extension and let L̃, G, G′ and X as usual. By the Greither-
Pareigis theorem, Hopf Galois structures of L/K are in one-to-one correspondence
with regular subgroups N of Perm(X) normalized by λ(G). However, the theorem
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does not tell us whether N ⊂ λ(G) or not. Actually, in practice we can find both situ-
ations. This distinction leads us to an important subclass of Hopf Galois extensions:
the almost classically Galois extensions.

Theorem 1.13. Let L/K be a separable extension. Then, the following are equivalent:

1. There is some Galois extension E/K such that E⊗K L is a field that contains L̃.

2. There is some Galois extension E/K such that E⊗K L = L̃.

3. There is some normal complement J of G′ in G.

4. There is a regular subgroup N of Perm(X) normalized by λ(G) such that N ⊂ λ(G).

Proof. See [GP87, Proposition 4.1].

Definition 1.14. Let L/K be a separable extension. We say that L/K is almost classically
Galois if it satisfies some (any) of the equivalent conditions of Theorem 1.13. An extension
E/K satisfying statements 1 or 2 is said to be a Galois complement.

It is also possible to define what we understand by an almost classical Galois
structure.

Definition 1.15. Let (H, ·) be a Hopf Galois structure of a separable extension L/K and
let N be the regular subgroup of Perm(X) normalized by λ(G). We say that (H, ·) is an
almost classically Galois structure if Nopp ⊂ λ(G).

In this statement, Nopp is the centraliser of N in Perm(X), which is called the
opposite group of N (see [GP87, Lemma 2.4.2.]). It can be identified with the group
with the same underlying set as the group N and operation ab := b ·N a, where ·N is
the operation of N. The definition of almost classically Galois structure is correct be-
cause N is regular if and only if so is Nopp. The reason why we choose Nopp instead
of N is that the Hopf algebra it provides is somewhat similar to K[N] (see [GP87,
Theorem 2.5] and the preceding remark).

As one may expect, L/K is almost classically Galois if and only if it has some
almost classically Galois structure. Then, every almost classically Galois extension
is Hopf Galois. The converse does not hold in general, but it is not trivial at all
(see [GP87, Theorem 4.4] for a counterexample). Moreover, every Galois extension
is almost classically Galois.

Byott’s Uniqueness Theorem

Another important consequence is the Byott Uniqueness Theorem. A number g ∈ Z

is said to be Burnside if g is coprime with ϕ(g), where ϕ is the Euler function. The
statement of the theorem is as follows:

Theorem 1.16 (Byott). Let L/K be a Galois extension and let G be its Galois group. Then,
L/K has a unique Hopf Galois structure (the classical Galois structure) if and only if |G| is
a Burnside number.

For a proof, see [Byo96, Theorem 1] or [Chi00, Theorem 8.1]. Actually, there is
a version of the previous theorem for separable extensions that are not necessarily
normal (see [Byo96, Theorem 2]):
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Theorem 1.17. Let L/K be a separable Hopf Galois extension of degree a Burnside number.
Then, L/K admits a unique Hopf Galois structure. Moreover, this Hopf Galois structure is
almost classically Galois.

Examples of Burnside numbers are a prime number or pq for p and q primes
such that q < p and q does not divide p− 1. Hence, for extensions of those degrees,
there is a unique Hopf Galois structure, which is the classical one if the extension is
Galois.

1.4 Extensions of number fields

In this section we recall briefly the most basic lines of the theory of number fields.
The main reference is the book of Marcus [Mar77].

A number field is a finite extension of the field Q of rational numbers. Since Q

is a perfect field, such an extension is always monogenic. The most common exam-
ples of number fields are the quadratic fields, those of degree 2, and the cyclotomic
fields, generated by a primitive n-th root of unity, where n ≥ 1.

An algebraic integer is a complex number which is root of a monic polynomial
with integer coefficients (that is, a polynomial of Z[x]). The ring of integers OK of a
number field K is the set of its algebraic integers, that is, OK is the intersection of K
with the set of all algebraic integers. It is a subring of K which is an integral domain,
and K is its field of fractions. What is more, OK is a Dedekind domain: an integral
domain such that every ideal factorizes uniquely as a product of prime ideals.

In general, OK is not a principal ideal domain, it is so if and only if it is a unique
factorization domain. Let ∼ the relation on ideals of R such that I ∼ J if and only
if there are α, β ∈ R such that αI = βJ for every pair of ideals I and J of R. This is
an equivalence relation, and the quotient set has group structure with the operation
induced by the product of ideals. This is what we call the ideal class group of K.
The class of principal ideals is the identity element. One of the main results in clas-
sical algebraic number theory is that the ideal class group is finite (see for example
[Mar77, Chapter 5]). Its cardinal is called the class number of K. Hence, OK is a PID
if and only if it has class number 1.

An important notion concerning the arithmetic of a number field is its discrimi-
nant. Although it can be defined specifically for number fields, we give the general
definition in [Chi00, Chapter 6]. Let R be a commutative ring and let A be an R-
algebra which is finitely generated and free of rank n as an R-module. Given x ∈ A,
let us denote Tx : A −→ A the multiplication-by-a map and let tr(x) be its trace as
linear map. If {x1, ..., xn} is an R-basis of A, the discriminant of (x1, ..., xn) is defined
by

disc(x1, ..., xn) = det((tr(xixj))
n
i,j=1).

The ideal in R generated by disc(x1, ..., xn) is the discriminant ideal A. This defini-
tion is correct because such ideal is an invariant of R-bases of A (see [Chi00, Corol-
lary 22.3]).

We are interested in extensions of number fields L/K rather than number fields
themselves. Clearly, OL has OK-module structure with the operation of L. It is
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finitely generated because L/K is finite, and torsion-free because it is contained in
a field. Let us assume that in addition OK is a principal ideal domain. Then, OL is
OK-free, and a basis of this module is called an integral basis of L. Moreover, the
discriminant is an invariant of the integral bases of L, and then we can define the
discriminant of L/K, denoted by disc(L/K) as the discriminant ideal of any of its
integral bases. Another distinguished type of basis of L is a power basis: the one
formed by the powers up to [L : K] of a single element α ∈ L. This is actually a
K-basis of L whenever α is a primitive element of L/K.

Although there is a ramification theory for extensions of number fields, we will
not deal with it in this thesis. The interested reader can consult [Mar77, Chapter 3].

1.5 Extensions of p-adic fields

Let p be a prime number. In this thesis, we will refer to a p-adic field as a finite ex-
tension of the field Qp of p-adic numbers. While number fields form a class of global
fields (see [LL07, Chapter 25, Definition 2]), the class of p-adic fields is contained
in the one of local fields (see [LL07, Chapter 25, F2]). Roughly speaking, the p-adic
fields can be seen as a local analog of number fields.

If K is a p-adic field, the valuation ring or the ring of integers of K, denoted by
OK, is the set of elements of K that are roots of monic polynomials with coefficients
in Zp. In this case,OK is a discrete valuation ring, that is, it has a unique prime ideal
P, which subsequently is principal. In particular,OK is always a PID. Any generator
of P is called an uniformising parameter of K, denoted by πK.

Every non-zero element of OK is of the form x = πvK(x)u, where u ∈ O∗K and
vK(x) ∈ Z≥0. Then we have a map vK which can also be defined on the whole K by
using that K = Frac(OK): if a = x

y ∈ K, vK(a) = vK(x)− vK(y). Defining vK(0) = ∞,
the map vK : K −→ Z∪ {∞} is a discrete valuation of K, the πK-adic valuation of K.
By construction, an element a ∈ K belongs to OK (resp. O∗K) if and only if vK(a) ≥ 0
(resp. vK(a) = 0).

On the other hand, since P is the unique prime ideal, it is maximal, and so
k = OK/P is a finite field, called the residue field of K. If K = Qp, the ring of inte-
gers is Zp and the uniformising parameter (up to multiplication by units) is p. The
corresponding valuation vp is called the p-adic valuation, and on a ∈ Q is defined
as the power of p in the factorization of a (where we accept non-positive powers).

We review one of the most famous results concerning p-adic fields theory and
with many applications, which is commonly known as Hensel’s lemma.

Theorem 1.18 (Hensel’s lemma). Let K be a p-adic field and let f ∈ OK[x]. Let f ∈
k[x] be the reduction of f , that is, the polynomial whose coefficients are the classes of the
coefficients of f modulo P. If f has a simple root θ ∈ k, then there is a unique a ∈ OK such
that f (a) = 0 and a = θ.

The statement is actually a bit more general (see [Con, Theorem 9.1]).

Let L/K be an extension of p-adic fields. Then the corresponding rings of in-
tegers form an extension OL/OK of commutative rings, and in particular OL is an
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OK-module. It is again finitely generated and torsion-free, and now OK is always
a PID, so OL is OK-free and its rank is the degree [L : K] of the extension. Again,
an OK-basis of OL is called an integral basis of L, and the discriminant of L/K,
denoted by disc(L/K), is the discriminant of any of its integral bases. The number
c(L/K) = vK(disc(L/K)) will be called the discriminant exponent. A power basis
of an extension of p-adic fields has the analog definition as in the case of number
fields. If K = Qp, a Galois splitting model of L/Qp is an irreducible polynomial
f ∈ Q[x] such that L ∼= Qp[x]/〈 f 〉, and the Galois group of f over Qp is isomorphic
to that of f over Q. The Galois splitting models used in this thesis are taken from the
web page [LMFDB]. There are examples of local fields that have no Galois splitting
models (see the help page of [LMFDB]).

We now explore the ramification theory for extensions of local fields. For the
ideal πKOL of OL, there is an integer e(L/K) ∈ Z≥1 such that πKOL = π

e(L/K)
L OL.

This number e(L/K) is the ramification index of L/K. If l and k are the correspond-
ing residue fields, then l/k is a finite extension of fields, whose degree f (L/K) :=
[l : k] is called the residue class degree of L/K. By [LL07, Chapter 24, Theorem 1],
e(L/K) f (L/K) = n.

Definition 1.19. Let L/K be an extension of p-adic fields.

1. We say that L/K is unramified if e(L/K) = 1.

2. We say that L/K is totally ramified if e(L/K) = [L : K].

3. We say that L/K is tamely ramified if gcd(e(L/K), p) = 1. Otherwise, we will say
that L/K is wildly ramified.

For a p-adic field K, a monic polynomial g(x) = xn + ∑n−1
i=0 aixi ∈ OK[x] is called

πK-Eisenstein if vK(ai) ≥ 1 for all 0 ≤ i ≤ n− 1 and vK(a0) = 1. If L/K is a totally
ramified extension of p-adic fields, thenOL = OK[πL]. In order to find integral bases
of L we have the following result at our disposal (see [FT92, Theorem 24]):

Theorem 1.20. If α ∈ L is a primitive element of L/K which is also a root of some πK-
Eisenstein polynomial g ∈ OK[x], then L/K is totally ramified and α is a uniformising
parameter of L.

Next, we recall the theory of higher ramification groups. The main reference for
this part is [Ser, Chapter IV].

Definition 1.21. Let L/K be a Galois extension of p-adic fields with Galois group G. For
i ≥ −1, the i-th ramification group of L/K is defined as G−1 = G and

Gi = {σ ∈ G | σ(x) ≡ x (mod πi+1
L ) for all x ∈ OL}

for i ≥ 0.

It is immediate that Gi ⊇ Gi+1 for every i ≥ −1, and actually Gi+1 is a normal
subgroup of Gi. Moreover there exists i0 ≥ 0 such that Gi is trivial for all i ≥ i0
(see [Ser, Chapter IV, Proposition 1]). Then, the ramification groups of L/K form a
filtration

G = G−1 ⊃ G0 ⊃ G1 ⊃ · · · ⊃ {1},

which will be referred to as the chain of ramification groups of L/K in the sequel.
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Definition 1.22. A ramification number of L/K is an integer number t ≥ −1 such that
Gt 6= Gt+1. If the extension is cyclic of degree p, it is unique and denoted by t(L/K).

The group G0 is also called the inertia group of L/K. We have that L/K is un-
ramified (resp. totally ramified, resp. tamely ramified) if and only if G0 = {1} (resp.
G0 = G, resp. G1 = {1}). This last property is due to the fact that G1 is the p-Sylow
subgroup of G0 (see [Ser, Chapter IV, Corollaries 1 and 3]). It is a characterization of
tamely ramified extensions, and it motivates the introduction of the following class
of extensions, which will be very relevant later on:

Definition 1.23. An extension L/K of p-adic fields is said to be weakly ramified if G2 =
{1}.

To determine the chain of ramification groups of an extension in practice, what
we will do is to determine the discriminant exponent c(L/K) and then use the fol-
lowing result (see [Ser, Chapter IV, Proposition 4]):

Proposition 1.24. With the previous notation,

c(L/K) = f (L/K)
∞

∑
i=0

(|Gi| − 1)

1.6 Galois module structure of the algebraic integers

The starting point of Galois module theory is the normal basis theorem for Galois
extensions.

Theorem 1.25 (Normal basis theorem). If L/K is a finite Galois extension of fields with
Galois group G, then there is α ∈ L such that L has K-basis

{σ(α) | σ ∈ G}.

Proof. See, for example, [Coh07, Section 3.2].

A basis as in the previous statement is called a normal basis of L/K, and what
the normal basis theorem means is that it always exists for an arbitrary extension
of fields. If L/K is now a Galois extension of number or p-adic fields, Noether’s
theorem tells us whether OL has some such basis.

Theorem 1.26 (Noether). If L/K is an extension of p-adic fields, then there is some α ∈ OL
such that

{σ(α) | σ ∈ G}

is an integral basis of L if and only if L/K is tamely ramified.

In the literature, a basis as in the previous statement is called a normal integral
basis. But in this thesis we will reserve that name for a more general concept, in
the setting of Hopf Galois theory. As we know from the introduction, the idea is to
replace OK[G] with a more general object. These objects are OK-orders in K[G] or
a given Hopf Galois structure, and the general definition is as follows (see [Tru09,
Definition 2.1.3.]):

Definition 1.27. Let R be a Dedekind domain and let K = Frac(R) be the field of fractions
of R. Let A be a finite dimensional K-algebra. An R-order in A is a subring A in A such
that:
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1. The centre of A contains R.

2. A is finitely generated as an R-module.

3. A⊗R K = A.

Now, the object we consider as ground ring for OL is the following:

Definition 1.28. Let L/K be an H-Galois extension of number or p-adic fields. The asso-
ciated order of OL in H is defined as

AH = {h ∈ H | h · x ∈ OL for all x ∈ OL}.

The associated order is indeed an OK-order in H. The following proposition
shows that the associated order is actually the right object to choose (see [Chi00,
Proposition 12.5]):

Proposition 1.29. If L/K is an H-Galois extension of number or p-adic fields and A is an
OK-order in H such that OL is A-free, then A = AH.

If H is either the classical Galois structure of L/K or the unique Hopf Galois
structure of L/K, we will denote AL/K = AH. Whenever OK is a PID (which is the
case if K is a p-adic field or a number field of class number 1), AH is OK-free of rank
[L : K]. Hence, if OL is AH-free, it has rank one, as both of them are OK-free of the
same rank. Consequently, if α generatesOL as AH-module and {vi}n

i=1 is anOK-basis
of AH,

{v1 · α, . . . vn · α}

is an OK-basis of OL, which is what in this thesis will be called a normal integral
basis. A free generator of OL as AH-module like α will be called a normal integral
basis generator. Its existence implies, obviously, that OL is AH-free.

It does not hold in general thatOL is AH-free for a given Hopf Galois structure H.
Nevertheless, there are a number of results finding conditions to imply or implied
by the freeness. Concerning the classical Galois structure, one of the most celebrated
is the following:

Theorem 1.30 (Leopoldt). If L/Q is an abelian extension of number fields, then OL is
AL/Q-free and a normal integral basis generator can be constructed explicitly.

The local analog of Leopoldt’s theorem also holds: for any abelian extension
L/Qp of p-adic fields, OL is AL/Qp -free. Actually, Lettl proves in [Let98, Theorem
1] the analog result for the slightly more general class of extensions L/K of p-adic
fields with L/Qp abelian.

There are positive results due to Truman for the Hopf Galois module structure
of OL in the cases that L/K is an unramified or tamely ramified extension of p-adic
fields.

Theorem 1.31. Let L/K be a finite Hopf Galois unramified extension of p-adic fields, and let
H = L[N]G be a Hopf Galois structure of L/K. Then, AH = OL[N]G and OL is AH-free.

Proof. See [Tru09, Theorems 3.3.2 and 3.1.1].

Theorem 1.32. Let L/K be an H-Galois tamely ramified Galois extension of p-adic fields
and suppose that H is commutative. Then, OL is AH-free.
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Proof. See [Tru18, Theorem 4.6].

These and other results show that we have a better comprehension of tamely
ramified extensions. For this reason, in this thesis we will prioritise the study of the
wildly ramified ones.

Cyclic extensions of degree p

Let L/K be a cyclic extension of degree p of p-adic fields. By Byott Uniqueness
Theorem, the classical Galois structure Hc is the unique Hopf Galois structure of
L/K. A description of the associated order is given in the following (see [Fer74,
Section 2.1 and Proposition 3]):

Proposition 1.33. Let G = 〈σ〉 be the Galois group of L/K, let t be its ramification number
and let a = rem(t, p) be the remainder of the Euclidean division of t by p. If a = 0, AL/K is
the maximal OK-order in K[G]. Otherwise, a basis of AL/K is given by{

(σ− 1G)
i

πni
L

}p−1

i=0
,

where ni = min0≤j≤p−1−i(νi+j − νj) and νi =
[

it+a
p

]
for all 0 ≤ i ≤ p− 1.

The problem of the AL/K-freness ofOL was completely solved by M.J. Ferton (see
for example [Fer74] or [Tho10, Theorem 3.4]):

Theorem 1.34. Let L/K be a cyclic extension of degree p of p-adic fields, let e = e(K/Qp),
and let t be its ramification number. Call a = rem(t, p). Then:

1. If t < pe
p−1 − 1, OL is AL/K-free if and only if a|p− 1.

2. If pe
p−1 − 1 ≤ t ≤ pe

p−1 , OL is AL/K-free if and only if the length of the expansion of t
p

as continued fraction is at most 4.
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Chapter 2

The reduction method

The reduction method is the central tool of this thesis. For an H-Galois extension
L/K of number or p-adic fields (with K of class number 1 if the extension is of num-
ber fields), it provides an OK-basis of AH and gives a necessary and sufficient con-
dition to determine whether or not a given element of OL is a normal integral basis
generator. In this chapter we develop the theory required to state the method and
prove its validity.

We will work actually in a slightly more general situation. Let K be the field of
fractions of a principal ideal domain OK. Let L be a separable extension of K and
let OL be the integral closure of OK in L. Under these conditions, we will say that
L/K is a Hermite extension of fields with rings of integers OL/OK. The notions
concerning the associated order in Section 1.5 are valid in this case. Examples of
Hermite extensions include extensions of p-adic fields and extensions of number
fields where the ground field is of class number 1. The reason of this name is that in
this case OK is a Hermite ring in the sense of Kaplansky:

Definition 2.1. A commutative ring R is Hermite if for every pair of elements a, b ∈ R
there is an unimodular matrix Q ∈ M2(R) and an element d ∈ R such that

Q
(

a
b

)
=

(
d
0

)
.

This property is the key fact in order to establish the reduction method (see
[Kap49, Theorem 3.5]).

Indeed, the idea behind the reduction method is that of the theory of linear rep-
resentations: as the structure of a group (or more generally, an algebra) is in general
not easy to determine, we embed it in a space of matrices, where we have the power
of linear algebra at our disposal. Following this idea, for an H-Galois Hermite exten-
sion L/K of fields, we define the matrix of the action M(H, L) ∈ Mn2×n(K), which
encodes full information about the action (see Definition 2.4). But M(H, L) can be
used to test membership to AH for the elements of H (see Proposition 2.11). Then,
M(H, L) is reduced to a square n× n matrix and preserving its integrality, that is, by
multiplication with a unimodular matrix, which is possible since OK is a Hermite
ring, and the inverse of the resulting matrix gives a basis of the associated order (see
Theorem 2.25).

Using the matrix of the action, we are also able to give a characterization for the
freeness ofOL in terms of the matrix of the action. This is not constructive, however,
as it tells whether or not a given element β of OL is normal integral basis generator.
Then, in concrete examples we must find manually a concrete element that satisfies
the required property.
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2.1 Linear representation associated to a Hopf Galois struc-
ture

In this section we will see the action of a Hopf Galois structure as a linear represen-
tation of its Hopf algebra as endomorphisms of the top field fixing the ground field.
Its definition generalizes the one of the representation of the Galois group of a Galois
extension by automorphisms.

Namely, let L/K be a finite extension and let G be a group that acts on L by au-
tomorphisms. We look for an equivalent condition to L/K being Galois with Galois
group G in such a way that this condition involves Hopf algebras. There is a natural
group representation of G

ρG : G −→ AutK(L)
σ 7−→ y 7→ σ(y).

Now, we can extend this map by K-linearity, and since linear combinations of auto-
morphisms are in general endomorphisms, we obtain

ρK[G] : K[G] −→ EndK(L)
∑σ∈G aσσ 7−→ y 7→ ∑σ∈G aσσ(y),

which is a linear representation of the K-group algebra K[G].

Let us consider the regular representation of L as K-vector space

1 : L −→ EndK(L)
x 7−→ y 7→ xy.

Then, we can combine it with ρG to form a canonical map

(1, ρK[G]) : L⊗K K[G] −→ EndK(L)

defined by sending each x ⊗ σ to the endomorphism y 7−→ xσ(y) for σ ∈ G and
extended by K-linearity. But this map turns out to be the map j of Theorem 1.6, so
L/K is Galois with group G if and only if (1, ρK[G]) is bijective. In such case, this
representation involves also the classical Galois action in its definition.

Now, the K-group algebra K[G] and the Galois action is nothing but a Hopf Ga-
lois structure of the Galois extension L/K, and as usual in Hopf Galois theory, we
shall replace it by an arbitrary one. Let L/K be a finite extension and assume that H
is a K-Hopf algebra that endows L with left H-module algebra structure. Similarly
we have a linear representation

ρH : H −→ EndK(L)
h 7−→ x 7→ h · x

of the K-Hopf algebra H. Again, we can construct a canonical map

(1, ρH) : L⊗K H −→ EndK(L)

defined by sending each x⊗ h ∈ L⊗K H to the endomorphism y 7−→ x(h · y) which
is the map j of Definition 1.7. Then, L/K is H-Galois if and only if (1, ρH) is bijective.
In such case, ρH is an object that encodes both the K-Hopf algebra H and the Hopf
action of H on L.
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Example 2.2. We regard the introductory example of [GP87] with the perspective of
linear representations. We consider the extension Q(ω)/Q, where ω = 3

√
2. We call

L = Q(ω) By the reference above, this extension has a unique Hopf Galois structure,
which is the K-Hopf algebra

H = Q(c, s)/〈3s2 + c2 − 1H, (2c + 1H)s, (2c + 1H)(c− 1H)〉

whose comultiplication and coinverse maps are given by

∆(c) = c⊗ c− 3s⊗ s, ∆(s) = c⊗ s + s⊗ c,

ε(c) = 1H, ε(s) = 0,

together with the action of H over L defined as

1H · 1 = 1, 1H ·ω = ω, 1H ·ω2 = ω2,

c · 1 = 1, c ·ω = −1
2

ω, c ·ω2 = −1
2

ω2,

s · 1 = 0, s ·ω =
1
2

ω, s ·ω2 = −1
2

ω2.

(2.1)

This determines completely the action because a Q-basis of H is given by {1H, c, s}.
Then, the linear representation that defines the Hopf Galois structure (H, ·) is the
map ρH : H −→ EndQ(L) defined by ρH(h)(ωi) = h · ωi for every h ∈ H. Note
that with this approach c and s are symbols while ρH(c) and ρH(s) are endomor-
phisms of L, which in [GP87] are called c and s. Thus, in this example we can see
ρH as a representation of H as an algebra of endomorphisms. Since L/K is H-Galois,
(1, ρH) : L⊗Q H −→ EndQ(L) is an isomorphism and in particular ρH is a monomor-
phism, so the Hopf Galois condition for L/Q means that we can identify uniquely
the symbols with the endomorphisms by means of ρH.

2.2 From linear maps to matrices

Let L/K be a Hermite H-Galois extension. As the linear representation ρH : H −→
EndK(L) defines completely the Hopf Galois structure (H, ·), we can use it to de-
termine the associated order AH. To this end, we fix an integral basis of L and by
executing a change of bases of ρH as linear map, we transform a basis of H into a
basis of AH. This procedure is called the reduction method. In order to carry out this
transformation, we work with the matrix of ρH, and this is what we call the matrix
of the action.

Although the computation of the associated order only makes sense with Her-
mite extensions, the definition of matrix of the action is valid for extensions of arbi-
trary fields. Thus, we take L/K an H-Galois extension of fields. Let us fix a K-basis
W = {wi}n

i=1 of H and a K-basis B = {γj}n
j=1 of L. The matrix of the action is often

deduced from a more tractable matrix, which we call the Gram matrix.

Definition 2.3. The Gram matrix of the Hopf Galois structure H is defined as the matrix

G(HW , LB) =


w1 · γ1 w1 · γ2 · · · w1 · γn
w2 · γ1 w2 · γ2 · · · w2 · γn

...
...

...
...

wn · γ1 wn · γ2 · · · wn · γn

 ∈ Mn(L).
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We have chosen this name in an analogy to the case of the Gram matrix of a scalar
product. Of course, in this case the action of H on L is not a scalar product, but we
extend the terminology to this situation. When the bases of H and L are implicit in
the context, we will write G(H, L) instead of G(HW , LB).

The matrix of the action arises from replacing the entries of G(HW , LB) by row
vectors of coordinates and taking the transpose. Namely:

Definition 2.4. Given 1 ≤ j ≤ n, we denote

Mj(H, L) =

 | | . . . |
w1 · γj w2 · γj . . . wn · γj
| | . . . |

 ∈ Mn×n(K),

that is, Mj(H, L) is the matrix whose i-th column is the column vector of the coordinates of
wi · γj with respect to the basis B. Then, the matrix of the action is defined as:

M(H, L) =


M1(H, L)

· · ·

Mn(H, L)


∈ Mn2×n(K).

As in the case of the Gram matrix, we will normally omit the explicit mention
to the bases W and B. Let us fix a notation for the entries of M(H, L). For each
1 ≤ j ≤ n, the element wi · γj belongs to L, so it has an expression as vector of
coordinates with respect to the basis B

wi · γj =
n

∑
k=1

m(k)
ij (H, L)γk, (2.2)

where m(k)
ij (H, L) ∈ K for every 1 ≤ k ≤ n. Then, the j-th block of M(H, L) is the

matrix
Mj(H, L) = (m(k)

ij (H, L))n
k,i=1,

where k increases from top to bottom and i does from left to right. Hence, M(H, L)
can be expressed as

M(H, L) =



m(1)
11 (H, L) · · · m(1)

n1 (H, L)
...

. . .
...

m(n)
11 (H, L) · · · m(n)

n1 (H, L)
...

...
...

m(1)
1n (H, L) · · · m(1)

nn (H, L)
...

. . .
...

m(n)
1n (H, L) · · · m(n)

nn (H, L)


.

Let us analyze what the definition of M(H, L) means. The definition above fo-
cuses on the blocks of the matrix, but we can also look at its columns. Let us fix the
canonical basis {Eij}n

i,j=1 ofMn(K), given by Eij = (δikδjl)
n
k,l=1 for every 1 ≤ i, j ≤ n,
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where δab is the Kronecker delta. That is, Eij is the matrix with 1 in its (i, j)-th entry
and 0 in the other ones. We also fix the canonical basis {ei}n2

i=1 of Kn2
. Let us define

ϕ : Mn(K) −→ Kn2

Eij 7−→ ei+(j−1)n
.

Since ϕ sends a basis to a basis, it is an isomorphism of K-vector spaces.

Proposition 2.5. If we identify endomorphisms with their matrices, the matrix of the action
may be described as

M(H, L) =

 | | . . . |
ϕ(ρH(w1)) ϕ(ρH(w2)) . . . ϕ(ρH(wn))

| | . . . |

 ∈ Mn2×n(K).

Proof. It is enough to check that for every 1 ≤ i ≤ n the matrix of ρH(wi) as endo-
morphism is (m(k)

ij (H, L))n
j,k=1, where j increases from top to bottom and k does from

left to right. Indeed,

ρH(wi)(γj) = wi · γj =
n

∑
k=1

m(k)
ij (H, L)γk,

so for every 1 ≤ k ≤ n, the k-th column of the matrix ρH(wi) is

(m(k)
i1 (H, L) · · · m(k)

in (H, L))t.

This suggests the interpretation of the matrix of the action as the matrix of the
linear map ρH. Let Φ = {ϕi}n2

i=1 defined as follows: For every 1 ≤ i ≤ n2, there
are 1 ≤ k, j ≤ n such that i = k + (j − 1)n. Then, let ϕi be the map that sends γj
to γk and the other γl to 0. For simplicity, we call ϕi = ϕkj. Under this notation,
ϕkj(γl) = δjlγk, where δjl is the Kronecker delta. The matrix of ϕkj as linear map is
the n× n matrix whose (k, j)-th element is 1 and the other ones are 0, that is, Ekj.

Proposition 2.6. The matrix of the action M(HW , LB) is the matrix of the linear map
ρH : H −→ EndK(L) when we consider the basis W in H and the basis Φ in EndK(L).

Proof. By definition, the i-th column of the matrix of ρH is the column vector of
coordinates of ρH(wi) with respect to the basis Φ. Let us compute this vector. For
every 1 ≤ l ≤ n, we have(

n

∑
k,j=1

m(k)
ij (H, L)ϕkj

)
(γl) =

n

∑
k=1

m(k)
il (H, L)γk = wi · γl = ρH(wi)(γl).

Thus, we have the equality of endomorphisms

ρH(wi) =
n

∑
k,j=1

m(k)
ij (H, L)ϕkj

for every 1 ≤ i ≤ n.

Hence, the i-th column of the matrix of ρH is(
m(1)

i1 (H, L) · · · m(n)
i1 (H, L) · · · m(1)

in (H, L) · · · m(n)
in (H, L)

)t
,

which coincides with the i-th column of M(H, L).
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Example 2.7. We consider the extension of Example 2.2. We fix the K-basis {1H, c, s}
of H and the K-basis {1, ω, ω2} of L. With these choices, we can use the expressions
in (2.1) to find that the Gram matrix of the Hopf Galois structure is

G(H, L) =

1 ω ω2

1 − 1
2 ω − 1

2 ω2

0 1
2 ω − 1

2 ω2


and the matrix of the action of H on L is given by

M(H, L) =



1 1 0
0 0 0
0 0 0
0 0 0
1 − 1

2
1
2

0 0 0
0 0 0
0 0 0
1 − 1

2 − 1
2


.

Identifying endomorphisms with their matrices,

ρH(1H) =

1 0 0
0 1 0
0 0 1

 , ρH(c) =

1 0 0
0 − 1

2 0
0 0 − 1

2

 , ρH(s) =

1 0 0
0 1

2 0
0 0 − 1

2

 ,

and when we apply ϕ : M3(Q) −→ Q9, we obtain indeed the columns of the matrix
of the action.

The definition of M(H, L) does not use the property that L/K is H-Galois. Actu-
ally, to define the matrix of the action it is enough to assume that L has left H-module
structure. However, the H-Galois condition is used in the following:

Corollary 2.8. The matrix M(H, L) has rank n.

Proof. Since L/K is H-Galois, by definition the map (1, ρH) : L⊗K H −→ EndK(L) is
bijective. Moreover, the restriction of this map to H coincides with ρH. Hence, ρH
is injective, and then its matrix as linear map, which is M(H, L), has maximal rank
n.

2.2.1 Change of bases

Next, we consider the dependence of M(HW , LB) on the K-bases of W and B of H
and L. We will study successively the changes of the basis of H and the basis of L.
There is also a formula for the simultaneous change of the two bases, but we will not
make it explicit because it is obtained by composing the other two changes.

Change of the basis of H

It is the most simple to express and, for this reason, the first we work with. We
consider K-bases W = {wi}n

i=1, W ′ = {w′i}n
i=1 of H and a K-basis B = {γj}n

j=1 of L.
We want to study the relation between the entries of the matrices M(HW , LB) and
M(HW ′ , LB).
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Proposition 2.9. Let PW ′
W be the matrix of change of bases from the basis W to the basis W ′.

Given 1 ≤ j ≤ n,
Mj(HW ′ , LB) = Mj(HW , LB)PW ′

W .

Proof. Let us fix 1 ≤ i ≤ n. By definition of matrix of the action, we have

w′i · γj =
n

∑
k=1

m(k)
ij (HW ′ , LB)γk.

Now, call PW ′
W = (aij)

n
i,j=1. Then,

w′i =
n

∑
l=1

aliwl ,

so we compute

w′i · γj =
n

∑
l=1

aliwl · γj

=
n

∑
l=1

ali

n

∑
k=1

m(k)
l j (HW , LB)γk

=
n

∑
k=1

(
n

∑
l=1

alim
(k)
l j (HW , LB)

)
γk.

The uniqueness of coordinates yields

m(k)
ij (HW ′ , LB) =

n

∑
l=1

m(k)
l j (HW , LB)ali.

Since i and k are arbitrary, we obtain the desired expression.

Change of the basis of L

When we change the basis of L, the situation is a bit trickier, since it affects not
only the entries of the matrix but also the basis from which we write the vectors.
However, we can still represent the relation with a matrix expression, in this case
involving the columns of the matrices rather than the blocks. We consider a K-basis
W = {wi}n

i=1 of H and K-bases B = {γj}n
j=1 and B′ = {γ′j}n

j=1 of L. Call wi(B)
(resp. wi(B′)) the representing matrix of wi by ρH when we consider matrices with
coordinates with respect to B (resp. B′). Note that wi(B) (resp. wi(B′)) is the matrix
of the linear map ρH(wi) : L −→ L where we fix the basis B (resp. B′) in both domain
and codomain. By the general change basis formula for linear maps, we have

wi(B′) = P−1wi(B)P,

where P = PB′
B is the matrix of change of bases from the basis B to the basis B′.

There is a more simple formula for the change of basis of L in which we use the
Gram matrix instead of the matrix of the action, and this is the one that actually will
be useful in practice.
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Proposition 2.10. With the previous notation,

G(H, LB′) = G(H, LB)PB′
B ,

where in the product of the right side member we consider PB′
B as a matrix with coefficients

in L.

Proof. Let us write PB′
B = (dij)

n
i,j=1 and fix 1 ≤ i, j ≤ n. Then, γ′j = ∑n

k=1 dkjγk, so the
(i, j)-th entry of G(HW , LB′) can be described as

wi · γ′j =
n

∑
k=1

dkjwi · γk.

For each k, wi · γk is the (i, k)-th entry of G(HW , LB) and dkj is the (k, j)-th entry of
PB′

B . Therefore, the expression above is also the (i, j)-entry of G(H, LB)PB′
B , proving

the statement.

Although theoretically the problem is solved, in practice there is an extra step. If
one knows G(H, LB) and applies the formula above, then one obtains the entries of
G(H, LB′) in terms of the basis B. However, in order to construct the matrix of the
action M(H, LB′), we need to write the entries of G(H, LB′) in terms of the basis B′.
Hence, we need to change each entry from B to B′, for instance applying the matrix
PB

B′ to its vector of coordinates with respect to B.

2.3 Reducing the matrix of the action

Let L/K be an H-Galois Hermite extension. We can interpret the definition of AH in
terms of ρH. Concretely, given h ∈ H, we know that h ∈ AH if and only if h · x ∈ OL
for every x ∈ OL. This means that h ∈ AH if and only if the K-endomorphism
ρH(h) : L −→ L restricts well to OL, that is, ρH(h) ∈ EndOK(OL). Now, since
M(H, L) is the matrix of ρH, we can rewrite this condition in terms of coordinates.
Let us fix again bases W = {wi}n

i=1 of H and B = {γj}n
j=1 of L.

Proposition 2.11. Assume that B is an integral basis of L. Given h = ∑n
i=1 hiwi ∈ H,

h ∈ AH if and only if

M(H, L)

h1
...

hn

 ∈ On2

K , (2.3)

that is, M(H, L) takes the column vector of the coordinates of h with respect to B to a vector
of n2 integer coordinates in K.

Remark 2.12. Since L/K is a Hermite extension, OK is a PID and then OL is OK-free (see
Section 1.5), so an integral basis exists.

What Proposition 2.11 means is that M(H, L) filters the elements of the associated
order among the ones in H. Now, we regard condition (2.3) as a family of systems of
n2 linear equations, where the matrix of coefficients is M(H, L), the indeterminates
are the coordinates h1, ..., hn, and the independent terms run throughOn2

K . Under this
interpretation, the elements of AH are the vectors h ∈ H whose vector of coordinates
(h1, ..., hn) with respect to W is a solution of a system of equations as before with
independent term a vector of integers in K.
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2.3.1 Reduced matrices

To solve a system of equations as in (2.3), we can apply linear transformations in
M(H, L) to reduce it to an n× n matrix, which will be invertible since M(H, L) has
rank n. However, the independent term of the new system of equations should have
integer components in K so that the reduced matrix also filters the elements of the
associated order. Hence, we must use only elementary transformations f such that
both f and f−1 preserve OK. Such transformations will be called integral linear
transformations.

Even though we need transformations that preserve integrality, the matrix M(H, L)
does not have in general coefficients in OK. Both in theory and practice it will be
more convenient to work with a matrix which plays the role of M(H, L) but with
integral coefficients. To this end, we introduce the notions of content and primitive
part classically used for polynomials.

Definition 2.13. Let OK be a PID with fraction field K. Let A ∈ Mn(K).

1. The content of A is defined as cont(A) = d
a , where a ∈ OK is any element that

satisfies aA ∈ Mn(OK) and d is the greatest common divisor of the coefficients of
aA.

2. The primitive part of A is pp(A) := A
cont(A)

.

3. We say that A is primitive if A = pp(A), that is, cont(A) = 1.

Remark 2.14. The definition of content does not depend on the choice of a. Indeed,
since OK is an UFD, fractions in K have a unique irreducible expression, up to units.
Then, if l is the least common multiple of the denominators of the entries of A in
irreducible form, d

a = l independently on the choice of a.

In similarity with the case of polynomials, every matrix with coefficients in the
fraction field of a unique factorization domain may be written as the product of its
content and its primitive part. Moreover, the primitive part of a matrix in K has co-
efficients in OK. If K = Q (which is the fraction field of the principal ideal domain
Z), decomposing M(H, L) as the product of its content and primitive part is to drop
the common denominators of its entries out of M(H, L).

Let us go back to the problem of reducing M(H, L). The matrix associated to
an integral linear transformation is an invertible element in Mn(OK) (i.e, an ele-
ment of GLn(OK)). Such matrices are called unimodular. Hence, the concatenation
of integral linear transformations may be represented by a product of elementary
unimodular matrices, which is a unimodular matrix. Thus, we would like to find
a unimodular matrix U such that UM(H, L) is essentially a n× n matrix, meaning
that all its n× n blocks are the 0 matrix except the first one. Actually, this is always
possible.

Theorem 2.15. Let OK be a PID with fraction field K. Let m ≥ n and let A ∈ Mm×n(K)
be a matrix of rank n. Then there is a matrix D ∈ Mn(K) and a unimodular matrix
U ∈ GLm(OK) with the property that

UA =

(
D
O

)
,

where O is the zero matrix ofM(m−n)×n(K).
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Proof. Since OK is a PID, it is a Hermite ring, so we can apply [Kap49, Theorem
3.5] to pp(A) ∈ Mm×n(OK), giving the existence of a matrix Γ ∈ Mn(OK) and a
unimodular matrix U ∈ GLn(OK) such that

UA =

(
Γ

O

)
.

Then, U and D = dΓ satisfy the equality of the statement.

Remark 2.16. The matrix given by [Kap49, Theorem 3.5] is triangular, but this fact is
ignored in our exposition because it is completely useless for our purposes. Besides, changing
conveniently the unimodular matrix U can give any type of square matrix D.

Definition 2.17. A matrix D as in the previous statement is called a reduced matrix of A.

Clearly, a reduced matrix is not unique: left multiplication of a reduced matrix
by any unimodular matrix gives another reduced matrix.

The utility of the reduced matrix to compute associated orders falls on the fact
that it also tests membership of the associated order for elements in H. The key fact
is that the linear transformations involved preserve OK, that is, the reducing matrix
U is unimodular.

Corollary 2.18. Assume that B is an integral basis and let D be a reduced matrix of
M(H, L). Given h = ∑n

i=1 hiwi ∈ H, h ∈ AH if and only if

D

h1
...

hn

 ∈ On
K.

Proof. We know that h ∈ AH if and only if

M(H, L)

h1
...

hn

 ∈ On2

K . (2.4)

By the definition of reduced matrix, there is a unimodular matrix U such that

UM(H, L) =

(
D

O

)
.

Since U is unimodular, it sends On2

K to itself. Thus, applying U to (2.4) yields that
h ∈ AH if and only if (

D

O

)h1
...

hn

 ∈ On2

K .

This is clearly equivalent to the condition in the statement.
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2.3.2 The Hermite normal form

The definition of the Hermite normal form of a matrix is well known for matrices
with coefficients in Z. As we work with matrices with coefficients in an arbitrary
PID, we must use a more general definition, given in [AW92, Chapter 5, Definition
2.8]. First we review a couple of notions.

Definition 2.19. Let R be a PID.

1. A complete set of non-associates in R is a subset P ⊂ R such that for every non-zero
a ∈ R there is a unique b ∈ P and a unit u ∈ R∗ such that b = au (that is, every
element of R has a unique associate in P).

2. A complete set of residues modulo an element a ∈ R is a subset of R that contains a
unique element in each coset modulo a.

Now, the Hermite normal form of a matrix with coefficients in a PID is defined
as follows.

Definition 2.20. Let R be a PID, P a complete set of non-associates in R, and for every
a ∈ R, let P(a) be a complete set of residues modulo a. Let A = (aij) ∈ Mm×n(R) be a
non-zero matrix. We will say that M is in Hermite normal form if there exists an integer
1 ≤ r ≤ m such that:

1. Given 1 ≤ i ≤ r, the i-th row of M is non-zero, and given r + 1 ≤ i ≤ m, the i-th
row of M is zero.

2. There is a sequence of integer numbers 1 ≤ n1 < · · · < nr ≤ m such that for every
1 ≤ i ≤ r:

– Given j < ni, aij = 0.

– ai,ni ∈ P− {0}.
– Given 1 ≤ j < i, aj,ni ∈ P(ai,ni)

Example 2.21. 1. If R = Z, a complete set of non-associates is P = Z≥0 and for
every positive integer a, a complete set of residues modulo a is {x ∈ Z | d− |a|2 e <
x ≤ b |a|2 c}.

2. If R = Zp for a prime number p, a complete set of non-associates is P =
{pn}∞

n=0. If m ≥ n is of rank n and A ∈ Mm×n(OK), the elements of the diag-
onal in the Hermite normal form are non-negative powers of p. If an element
above the diagonal also belongs to Q, we will choose the element in its coset
whose usual absolute value is strictly less than p

2 .

The following result assures the existence and the uniqueness of the Hermite
normal form of a matrix.

Theorem 2.22 (Hermite normal form). Let R be a PID, let P be a complete set of non-
associates in R, and for every a ∈ R, let P(a) be a complete set of residues modulo a. Let
A ∈ Mm×n(R) a matrix of rank n. Then:

1. There exists an m× m unimodular matrix U ∈ GLm(R), such that UA is a matrix
in Hermite normal form. If in addition R is euclidean, U can be written as a product
of elementary matrices with coefficients in R.

2. The Hermite normal form of A is unique.
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Proof. See [AW92, Chapter 5, Theorems 2.9 and 2.13].

Note that the Hermite normal form of a matrix is unique because of the choice of
a complete set of residues modulo every element of the diagonal. If we do not take
any such system, then there exist still echelon matrices that satisfy Definition 2.20 ex-
cept the last point in 2. For simplicity, we shall admit all of them as Hermite normal
forms of the original matrix. Consequently, we will usually think of a Hermite normal
form of a given matrix. Another convention we will follow is that we will consider
the Hermite normal form as the matrix resulting from deleting the zero rows from
the original Hermite normal form.

We have defined the Hermite normal form of a matrix A when the coefficients in
A belong to a PID. However, the matrix M(H, L) has coefficients in K and they need
not to lie in OK. To be able to talk about the Hermite normal form of M(H, L), we
use the content and the primitive part.

Definition 2.23. Let d = cont(M(H, L)) and M = pp(M(H, L)). The Hermite normal
form of M(H, L) is defined as the matrix dΓ, where Γ is the Hermite normal form of M.

Example 2.24. Consider again Example 2.2. Since Z is a PID, L/Q is a Hermite extension.
We computed M(H, L) in Example 2.7. In this case, cont(M(H, L)) = 1

2 and

pp(M(H, L)) =



2 2 0
0 0 0
0 0 0
0 0 0
2 −1 1
0 0 0
0 0 0
0 0 0
2 −1 −1


.

Now, Upp(M(H, L)) =

(
Γ

O

)
, where

U =



0 0 0 0 1 0 0 0 0

1 0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0 −1

0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0



, Γ =

2 −1 1
0 3 −1
0 0 2

 .

Then Γ is the Hermite normal form of the principal part of M(H, L), and consequently, the
Hermite normal form of M(H, L) is

D =
1
2

2 −1 1
0 3 −1
0 0 2

 .
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This is a reduced matrix of M(H, L). Another reduced matrix arises simply by deleting the
zero rows of M(H, L), that is,

D′ =
1
2

2 2 0
2 −1 1
2 −1 −1

 .

2.4 Determination of a basis

Recall that an element h = ∑n
i=1 hiwi ∈ H belongs to AH if and only if its vector of

coordinates (h1, ..., hn) with respect to W is a solution of any system of equations with
matrix of coefficients M(H, L) and independent term any vector with components
in OK. If U ∈ GLn2(OK) is a unimodular matrix that reduces M(H, L) to a reduced
matrix D, then multiplication by U yields a system with only n equations and the
same solutions. Moreover, the matrix of coefficients of this new system is D, which
is invertible, and its inverse gives the solutions. Explicitly:

Theorem 2.25. Let L/K be a degree n Hermite H-Galois extension of fields, W = {wi}n
i=1

a K-basis of H and B = {γj}n
j=1 an OK-basis of OL. Let D be a reduced matrix of M(H, L)

and call D−1 = (dij)
n
i,j=1. The elements

vi =
n

∑
l=1

dliwl , 1 ≤ i ≤ n

form an OK-basis of AH. Moreover, if we identify each vi with the column vector of its
coordinates with respect to W, the action of this basis on OL can be expressed as

vi · γj = Mj(H, L)vi,

with coordinates with respect to B.

Proof. Let h = ∑n
l=1 hlwl ∈ H, with hi ∈ K. By Corollary 2.18, h ∈ AH if and only if

there exist elements c1, ..., cn ∈ OK such that

D

h1
...

hn

 =

c1
...

cn


Multiplying by D−1 at both sides, this is equivalent toh1

...
hn

 =

d11 · · · d1n
...

. . .
...

dn1 · · · dnn


c1

...
cn

 ,

that is,

hl =
n

∑
i=1

dlici, 1 ≤ l ≤ n.

Hence, h ∈ AH if and only if there exist c1, ..., cn ∈ OK such that

h =
n

∑
l=1

n

∑
i=1

dliciwl =
n

∑
i=1

ci

(
n

∑
l=1

dliwl

)
= ∑

i=1
civi.
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The last member clearly belongs to 〈v1, ..., vn〉OK . Hence, {vi}n
i=1 is an OK-system of

generators of AH. Now, it is K-linearly independent because {wi}n
i=1 is a K-basis and

D−1 is invertible, so it is alsoOK-linearly independent and hence anOK-basis of AH.

The action of this OK-basis on OL is given by

vi · γj =
n

∑
l=1

dliwl · γj =
n

∑
k=1

(
n

∑
l=1

dlim
(k)
l j (H, L)

)
γk.

The set V = {vi}n
i=1 determined in the previous theorem is in particular a K-basis

of H, and the matrix D−1 is the matrix of the change of K-basis from W to V (in the
notation of Proposition 2.9, D−1 = PV

W). This is why its columns give the coordinates
of the new basis with respect to W. So the reduction method finds a matrix of change
of basis that carries W to a K-basis of H which in addition is an OK-basis of AH.

Example 2.26. In the situation of Example 2.2, we can apply Theorem 2.25 because
{1, ω, ω2} is a Z-basis of OL, as OL = Z[ω].

The Hermite normal form of M(H, L), computed in Example 2.24, has inverse

D−1 =
1
3

3 1 −1
0 2 1
0 0 3

 .

Then, by the theorem,

V =

{
Id,

Id + 2c
3

,
−Id + c + 3s

3

}
is a Z-basis of AH. Let us compute the action of this basis onOL. Obviously, Id ·ωi =
ωi for i ∈ {1, 2, 3}. Regarding the other two elements,1 1 0

0 0 0
0 0 0

 1
3
2
3
0

 =

1
0
0

 =⇒ Id+2c
3 · 1 = 1,

0 0 0
1 − 1

2
1
2

0 0 0

 1
3
2
3
0

 =

0
0
0

 =⇒ Id+2c
3 ·ω = 0,

0 0 0
0 0 0
1 − 1

2 − 1
2

 1
3
2
3
0

 =

0
0
0

 =⇒ Id+2c
3 ·ω2 = 0,

1 1 0
0 0 0
0 0 0

− 1
3

1
3
1

 =

0
0
0

 =⇒ Id+2c
3 · 1 = 0,

0 0 0
1 − 1

2
1
2

0 0 0

− 1
3

1
3
1

 =

0
0
0

 =⇒ Id+2c
3 ·ω = 0,
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0 0 0
1 − 1

2 − 1
2

− 1
3

1
3
1

 =

 0
0
−1

 =⇒ Id+2c
3 ·ω2 = −ω2.

Hence, the Gram matrix for this new basis is

G(HV , LB) =

1 ω ω2

1 0 0
0 0 −ω2

 .

On the other hand, the other reduced matrix in Example 2.24 gives rise to the
basis

V ′ =
{

Id + 2c
3

,
Id− c + 3s

3
,

Id− c− 3s
3

}
.

The first element in this basis is the second element in V, and the third one is the
negative of the third element in V, so we know how they act on OL. Let us compute
the action of the remaining element:1 1 0

0 0 0
0 0 0

 1
3
− 1

3
1

 =

0
0
0

 =⇒ Id−c+3s
3 · 1 = 0,

0 0 0
1 − 1

2
1
2

0 0 0

 1
3
− 1

3
1

 =

0
1
0

 =⇒ Id−c+3s
3 ·ω = ω,

0 0 0
0 0 0
1 − 1

2 − 1
2

 1
3
− 1

3
1

 =

0
0
0

 =⇒ Id−c+3s
3 ·ω2 = 0.

Hence, the Gram matrix for this case is

G(HV′ , LB) =

1 0 0
0 ω 0
0 0 ω2

 .

That is, the Gram matrix is diagonal with diagonal filled by the elements of the basis
V ′. In short, we say that the action of V ′ on L is diagonal. This implies that the
elements of V ′ are pairwise orthogonal idempotents, as we prove below in a more
general situation.

Proposition 2.27. Let L/K be an H-Galois extension, W = {wi}n
i=1 a K-basis of H and

B = {γj}n
j=1 a K-basis of L. Assume that the action of W on L is diagonal. Then, the

elements of W are pairwise orthogonal idempotents.

Proof. Note that the action of W on L being diagonal means that wa · γb = δabγb for
every a and b. Let 1 ≤ i, j ≤ n. Then, for every 1 ≤ k ≤ n,

(wiwj) · γk = wi · (wj · γk) = wi · (δjkγk) = δjkwi · γk = δikδjkγk.

If i = j, this says that w2
i · γk = δikγk = wi · γk for every k, and since ρH is injective

(because L/K is H-Galois), w2
i = wi. Otherwise, if i 6= j, (wiwj) · γk = 0 for every k,

so again the injectivity of ρH gives that wiwj = 0.

In the situation of Proposition 2.27, B is a basis of eigenvectors of the action of H
on L (see Section 2.6).
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2.5 Freeness over the associated order

Let L/K be an H-Galois Hermite extension of fields. Let W = {wi}n
i=1 be a K-basis

of H and B = {γj}n
j=1 an OK-basis of OL. In this section we discuss the problem of

determining whether or not OL is AH-free. For each element β ∈ OL, we will give a
necessary and sufficient condition that tests if β is a normal integral basis generator
of OL. The tool will be again the matrix of the action, or more precisely, the linear
combination of its blocks with the coordinates of β with respect to B. This is what
we will call the matrix associated to β.

2.5.1 Matrix associated to an element

Call V = {vi}n
i=1 an OK-basis of AH computed by the reduction method. That is, if

D is a reduced matrix of M(HW , LB) and we call D−1 = (dij)
n
i,j=1, then

vi =
n

∑
l=1

dliwl

for every 1 ≤ i ≤ n.

Let β ∈ OL be a potential AH-generator of OL. Since ρH is injective, {β} is lin-
early independent over AH. Then, β is an AH-free generator of OL if and only if
OL = AH · β. Thus, we want to determine a necessary and sufficient condition for
the equality OL = AH · β to hold. In general, AH · β ⊂ OL, and {vi · β}n

i=1 is an OK-
basis of AH · β. Then, the equality holds if and only if {vi · β}n

i=1 is anOK-basis ofOL.

Determining conditions under which the vectors vi · β form a basis are closely
related with the study of the matrix Mβ(HV , LB) whose columns are the coordinates
of the elements vi · β with respect to the basis B. Let us find its explicit form. We
have

vi · β = vi ·
(

n

∑
j=1

β jγj

)
=

n

∑
j=1

β jvi · γj.

Recall that, by Theorem 2.25, the action of the basis V onOL is given by the equalities
vi · γj = Mj(HW , LB)vi. Hence,

vi · β =
n

∑
j=1

β j Mj(HW , LB)vi, 1 ≤ i ≤ n.

These n vectors are the columns of the matrix Mβ(HV , LB). Now, recall that the
vectors vi are the columns of the matrix D−1. We obtain

Mβ(HV , LB) =
n

∑
j=1

β j Mj(HW , LB)D−1.

Finally, by Proposition 2.9, Mj(HV , LB) = Mj(HW , LB)D−1 for every 1 ≤ j ≤ n.
Thus,

Mβ(HV , LB) =
n

∑
j=1

β j Mj(HV , LB).

This leads us to introduce the following general notion.
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Definition 2.28. Let L/K be a degree n H-Galois extension of fields, W = {wi}n
i=1 a

K-basis of H and B = {γj}n
j=1 a K-basis of L. The associated matrix of an element β =

∑n
j=1 β jγj ∈ L with respect to the K-bases W and B is defined as the matrix whose columns

are the coordinates of the elements wi · β with respect to B, that is,

Mβ(HW , LB) :=
n

∑
j=1

β j Mj(HW , LB).

There is a formula of change of basis for the matrix associated to an element
which is a trivial consequence of the one in Proposition 2.9.

Proposition 2.29. If W ′ is another K-basis of H, then

Mβ(HW ′ , LB) = Mβ(HW , LB)PW ′
W .

2.5.2 Criteria for freeness

Next, we use the matrix Mβ(HV , LB) to characterize whether or not OL is AH-free.
We know that {vi · β}n

i=1 is an OK-basis of OL if and only if it is OK-linearly inde-
pendent and an OK-system of generators. As AH acts on OL, it is immediate that
Mβ(HV , LB) ∈ Mn(OK). Standard linear algebra yields that the OK-linear inde-
pendence of {vi · β}n

i=1 is equivalent to the invertibility of the matrix Mβ(HV , LB) in
Mn(K) (with the remark that in this case OK-linear independence is equivalent to
K-linear independence), that is, Mβ(HV , LB) ∈ GLn(K). This condition means that
the associated matrix has an inverse with entries in K, but not necessarily inOK. The
condition of having integral entries turns out to be equivalent to the freeness of OL.

Corollary 2.30. Let L/K be a degree n Hermite H-Galois extension. Let V be an OK-basis
of AH and B an OK-basis of OL. An element β ∈ OL generates OL as AH-module if and
only if Mβ(HV , LB) ∈ GLn(OK).

Proof. Suppose that OL is AH-free. Then, B′ := {vi · β}n
i=1 is an OK-basis of OL. As

the matrix Mβ(HV , LB) is the matrix whose columns are the coordinates of vi · β with
respect to B, it is the change-basis matrix PB′

B , and hence unimodular. Conversely,
assume that Mβ(HV , LB) ∈ GLn(OK). Since B is an OK-basis of OL and vi · β =
Mβ(HV , LB) · γi for every 1 ≤ i ≤ n, {vi · β}n

i=1 is an OK-basis of OL.

Remark 2.31. The matrix Mβ(HV , LB) being unimodular means that its determinant
is a unit of OK. This determinant is actually the generalized index [OL : AH · β]
(see [FT92, Section II.4] for a definition), and it is invertible if and only if the ideal it
generates is trivial, that is,OL = AH · β, which is consistent with the previous result.

Example 2.32. Let us consider the extension L/Q of Example 2.2 and let β = β1 +
β2ω + β3ω2 ∈ OL. In Example 2.26 we computed two bases V and V ′ of AH and
the action of these bases on OL. Looking at the results obtained, we may write the
matrices associated to β with respect to these bases:

Mβ(HV , LB) =

β1 β1 0
β2 0 0
β3 0 −β3

 , Mβ(HV′ , LB) =

β1 0 0
0 β2 0
0 0 β3

 .

The determinant of both matrices is β1β2β3, which is an invertible element of Z if
and only if all the βi are 1 or −1. Then, OL is AH-free and all possible generators are
β = β1 + β2ω + β3ω2 with βi ∈ {−1, 1} for all i ∈ {1, 2, 3}.
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A reformulation. The index of a Hopf Galois structure

Taking into account Proposition 2.29,

Mβ(HV , LB) = Mβ(HW , LB)PV
W .

For an element β ∈ OK, let us denote Dβ(HW , LB) = det(Mβ(HW , LB)). Then, the
criterion of Corollary 2.30 is satisfied if and only if

Dβ(HW , LB) ∈ det(D)O∗K. (2.5)

Now, assume that OK is a Euclidean domain with Euclidean norm NK. We also
assume that NK is either additive (i.e. NK(ab) = NK(a) + NK(b) for every non zero
a, b ∈ OL) or multiplicative (i.e. NK(ab) = NK(a)NK(b) for every a, b ∈ OL). Given
u ∈ O∗K, NK(u) = 0 if NK is additive and NK(u) = 1 if NK is multiplicative.

Example 2.33. The ring Z is an Euclidean domain with multiplicative Euclidean
norm the usual absolute value NQ = | · |. If p is a prime number, for a p-adic field K,
OK is an Euclidean domain with additive Euclidean norm the πK-adic valuation vK
for an uniformising parameter πK.

Under these considerations, (2.5) is equivalent to

NK(Dβ(HW , LB)) = NK(det(D)).

Proposition 2.34. The number NK(det(D)) does not depend on the reduced matrix chosen.

Proof. Let us call M(H, L) = M(HW , LB) for convenience.

Since M(H, L) has rank n, its Hermite normal form is

(
M

O

)
for a certain matrix

M ∈ GLn(K) in echelon form. Let D be a reduced matrix of M(H, L). By definition

of reduced matrix, the matrices M(H, L) and

(
D

O

)
are equal up to left multiplication

by a unimodular matrix (left equivalent according to [AW92, Definition 2.1]) and the
Hermite normal form is unique (see [AW92, Theorem 2.13]), so they have the same

Hermite normal form

(
M

O

)
.

We claim that M is the Hermite normal form of D. Indeed, if M′ is the Her-
mite normal form of D, then there is a unimodular matrix U ∈ GLn(OK) such that

UD = M′. Then
(

U 0
0 In2−n

)
∈ Mn2(OK) is a unimodular matrix because its

determinant is det(U) ∈ O∗K, and satisfies(
U O′

O In2−n

)(D

O

)
=

(
M′

O

)
,

where O′ is the zero matrix inMn×(n2−n)(K). By the uniqueness of the Hermite nor-

mal form,

(
M

O

)
=

(
M′

O

)
, that is, M = M′. Moreover, we deduce that UD = M.
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This proves that for every reduced matrix D there is a unimodular matrix car-

rying

(
D

O

)
to

(
M

O

)
that has its first n × n block U unimodular, and the equality

UD = M holds for this block. Then NK(det(D)) = NK(det(M)) for every reduced
matrix D.

This leads to the following definition:

Definition 2.35. Let W be a K-basis of H. The index of the Hopf Galois structure (H, ·) is
defined as

IW(H, L) = NK(det(D)),

where D is a reduced matrix of M(H, L).

Let us assume that NK is additive (if it is multiplicative, we replace the additions
by products). If W ′ is another K-basis of H, then

IW ′(H, L) = IW(H, L) + NK(det(PW ′
W )).

With this notation, we can rewrite Corollary 2.30 in a more convenient way, without
requiring the basis V:

Proposition 2.36. An element β ∈ OL is an AH-free generator of OL if and only if

NK(Dβ(HW , LB)) = IW(H, L).

Note that this new condition is independent on the basis of H. Indeed, if W ′ is
another K-basis of H, then Mβ(HW ′ , LB) = Mβ(HW , LB)PW ′

W , so

vK(Dβ(HW ′ , LB)) = NK(Dβ(HW , LB)) + NK(det(PW ′
W )),

and joining this with the equality of indexes above, we obtain that NK(Dβ(HW , LB)) =
IW(H, L) if and only if NK(Dβ(HW ′ , LB)) = IW ′(H, L).

Example 2.37. We consider once again the extension L/Q in 2.2. The determinant
of the reduced matrix D in Example 2.24 is 3

2 , which has absolute value 3
2 . Then, the

index of the Hopf Galois structure of L/Q is I(H, L) = 3
2 . The matrix associated to β

considering the basis W is

Mβ(HW , LB) =

β1 β1 0
β2 − β2

2
β2
2

β3 − β3
2 − β3

2

 ,

with determinant 3β1β2β3
2 . This coincides with IW(H, L) if and only if β1β2β3 has

absolute value 1, which recovers the conclusion that these are all the elements that
can generate OL as AH-module.

2.6 Bases of eigenvectors

Although the reduction method works with every Hermite H-Galois extension L/K,
reducing the matrix M(H, L) may be a very difficult task, especially when the degree
of the extension is big enough. However, for the extension in Example 2.2 we ob-
tained a reduced matrix of M(H, L) by only removing the zero rows. This happens
because the action on the chosen basis of L gives a scalar multiple of the original
element. In this section we study that property.
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Definition 2.38. Let L/K be an H-Galois extension and let us fix a K-basis W = {wi}n
i=1

of H and a K-basis B = {γj}n
j=1 of L. We say that B is a basis of eigenvectors if for every

1 ≤ i, j ≤ n there exist elements λij ∈ K such that

wi · γj = λijγj.

The matrix

Λ =


λ11 λ21 · · · λn1
λ12 λ22 · · · λn2

...
...

. . .
...

λ1n λ2n · · · λnn


is called the matrix of eigenvalues with respect to W. We will also say that L/K has the
eigenvectors property with respect to the Hopf Galois structure H.

If B is a basis of eigenvectors, then the Gram matrix can be written as

G(HW , LB) =


λ11γ1 λ12γ2 · · · λ1nγn
λ21γ1 λ22γ2 · · · λ2nγn

...
...

. . .
...

λn1γ1 λn2γ2 · · · λnnγn

 .

Moreover, the j-th block of the matrix of the action is the n× n matrix whose rows
are all 0 except the j-th one, which is (λij)

n
i=1. Taking into account the expression

(2.2), we deduce that
m(k)

ij (HW , LB) = δjkλij

for every 1 ≤ i, j, k ≤ n.

As the definition of the eigenvectors property for the basis B is written in terms
of the basis of H, we need to prove that it actually does not depend on this choice.

Corollary 2.39. Assume that there exist elements λij ∈ K such that wi · γj = λijγj for
every 1 ≤ i, j ≤ n and let W ′ = {w′i}n

i=1 be another K-basis of H. Then, there exist λ′ij ∈ K
such that w′i · γj = λ′ijγj.

Proof. Let us call PW ′
W = (aij)

n
i,j=1. We know by Proposition 2.9 that Mj(HW ′ , LB) =

Mj(HW , LB)PW ′
W for all 1 ≤ j ≤ n. Then, following the description of Mj(HW , LB)

above, we deduce that w′i · γj =
(
∑n

l=1 aliλl j
)

γj. Then, it is enough to take λ′ij =

∑n
l=1 aliλl j ∈ K.

Note that the matrix of eigenvalues does depend on the basis of H (this is why
in the definition we referred to it as the eigenvalues matrix with respect to the basis
W). However, the previous proof yields easily that if Λ′ is the eigenvalues matrix
with respect to another basis W ′, then Λ′ = ΛPW ′

W .

The most common situation is to work with a K-basis of L formed by the powers
of a primitive element.

Definition 2.40. Let L/K be a degree n H-Galois extension. Assume that L/K satisfies
the eigenvector property with respect to H. A basis of eigenvectors of L/K is said to be
primitive provided that it has the form {αj}n−1

j=0 for some primitive element α of L/K.

Example 2.41. Let L/Q be the extension of Example 2.2. Then, {1, ω, ω2} is a primitive
basis of eigenvectors of L, as can be observed from (2.1). The matrix of eigenvalues with the
fixed bases is the matrix D′ in Example 2.24.
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2.6.1 Associated order and freeness

Let us assume that L/K is Hermite and B is an integral basis of eigenvectors of L.
Reducing the matrix M(H, L) is trivial in this case, as we can permute its rows so as
to place the zero ones at the bottom of the matrix. This shows that the eigenvalues
matrix Λ is a reduced matrix of M(H, L). Let us call Ω = (ωij)

n
i,j=1 its inverse. Then

AH has an OK-basis V given by the elements vi = ∑n
l=1 ωliwl , 1 ≤ i ≤ n.

Now, we focus on the action of this basis on OL. In the case of Example 2.26 we
proved that the action diagonalizes and by only using the definition of the action, we
proved that the basis of the associated order is of pairwise orthogonal idempotents.
This inspires the general result:

Proposition 2.42. Let L/K be an H-Galois Hermite extension of fields and assume that
B = {γj}n

j=1 is an integral basis of eigenvectors of L. Let V = {vi}n
i=1 be the basis of AH

obtained from the matrix of eigenvalues Λ. Then, the action of V on OL is diagonal, so the
elements of V are pairwise orthogonal idempotents.

Proof. By Theorem 2.25, the coordinates of vi · γj with respect to the basis B are given
by the column vector obtained from the multiplication Mj(HW , LB)Ω. Now, the
unique non-zero row of Mj(HW , LB) is the j-th one, which is by definition the j-
th row of Λ. But Ω is the inverse of Λ, so the matrix-vector product above is actually
the j-th vector of the canonical basis. This means that vi ·γj = δijγj for all 1 ≤ i, j ≤ n,
proving that the action is diagonal.

Let us move on to the question of the AH-freeness of OL. Given β = ∑n
j=1 β jγj,

the matrix associated to β with respect to the bases V and B is

Mβ(HV , LB) =


β1 0 · · · 0
0 β2 · · · 0
...

...
. . .

...
0 0 · · · βn

 .

The determinant of this matrix is Dβ(HV , LB) = β1β2 · · · βn, and there are of course
choices of β for which this product is in O∗K; for instance β = ∑n

j=1 γj. This proves:

Proposition 2.43. Let L/K be a Hermite H-Galois extension and assume that B = {γj}n
j=1

is an integral basis of eigenvectors of L. Then, OL is AH-free and the elements that (individ-
ually) may generate OL as AH-module are the elements β ∈ OL such that β1 · · · βn ∈ O∗K.

We summarize the results obtained in this part:

Theorem 2.44. Let L/K be an H-Galois Hermite extension of fields. Assume that L/K
admits some integral basis of eigenvectors B = {γj}n

j=1 with respect to H. Then:

1. If Ω = (ωij)
n
i,j=1 is the inverse of the eigenvalues matrix of B, then the elements

vi =
n

∑
l=1

ωliwl 1 ≤ i ≤ n

form an OK-basis of AH.

2. The elements of the basis above are pairwise orthogonal idempotents.
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3. OL is AH-free and the normal integral basis generators are the elements β ∈ OL such
that β1 · · · βn ∈ O∗K.

Example 2.45. Let L/K be a cyclic degree p extension of p-adic fields with Galois
group G = 〈σ〉 and assume that K contains a primitive p-th root of unity ξ. Assume
that there is a primitive element α of L/K such that vK(α

p) = 1, that is, L/K is of
the first type among the three possible listed in [Chi00, Proposition 24.2]. By [Chi00,
Proposition 24.3], AL/K is the maximalOK-order in K[G] andOL is AL/K-free. We can
reach the same conclusions by using the results established in this section. Indeed,
we may assume without loss of generality that σ(α) = ξα, so σ(αj) = ξ jαj for all j.
Then, B = {αj}p−1

j=0 is a basis of eigenvectors of the classical Galois structure, and it
is integral because α is a root of a πK-Eisenstein polynomial. The eigenvalues matrix
is the Vandermonde matrix 

1 1 · · · 1
1 ξ · · · ξ p−1

...
...

. . .
...

1 ξ p−1 · · · ξ(p−1)2

 ,

with inverse

1
p


1 1 · · · 1
1 ξ−1 · · · ξ−(p−1)

...
...

. . .
...

1 ξ−(p−1) · · · ξ−(p−1)2

 .

By the second statement of Theorem 2.44, the elements ej =
1
p ∑

p−1
k=0 ξ−jkσk form

an OK-basis of AH. Since this is a basis of primitive pairwise orthogonal idempo-
tents, it gives the maximal OK-order in K[G]. On the other hand, Proposition 2.43
gives that OL is AL/K-free.

Remark 2.46. If we assume that L/K is of one of the other two types in [Chi00,
Proposition 24.2], then for a primitive element α of L/K, the basis of its powers
{αj}n

j=1 is still a primitive basis of eigenvectors, but it is not integral, and then we
cannot apply the results in this section. In fact, Theorem 2.44 does not hold because
OL is not in general AL/K-free.

2.6.2 The eigenvectors property in the Galois case

By definition, the eigenvectors property is satisfied for a Hopf Galois extension L/K
whenever we can find a K-basis of L formed by eigenvectors of the action of the Hopf
Galois structure that we are considering. In this section, we will see the meaning
of this property with the point of view of Galois theory. That is, we characterize
the eigenvectors property for a Galois extension with respect to the classical Galois
structure, what we call the classical eigenvectors property. Accordingly, a basis of
eigenvectors with respect to the classical Galois structure will be called a classical
eigenvectors basis. In Example 2.45 we showed that for a cyclic degree p extension
the key property for the existence of such a basis was the fact that the primitive root
ξ was in the ground field, that is, the extension was Kummer. Actually, this property
characterizes the cyclic extensions with a classical basis of eigenvectors.

Proposition 2.47. Let L/K be a Galois extension of degree n. Then, L/K has some classical
primitive basis of eigenvectors if and only if L/K is cyclic and Kummer.
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Proof. Let us call G = Gal(L/K). Assume that there exists some primitive element α
of L/K such that

σ(αi) = λσ,iα
i, σ ∈ G, 0 ≤ i ≤ n− 1,

where λσ,i ∈ K. Let f = irr(α, X, K) be the minimal polynomial of α. Then,

f (X) = ∏
σ∈G

(X− σ(α)) = ∏
σ∈G

(X− λσ,1α).

Since α is a primitive element, all the σ(α) are distinct as σ runs through G, so the
independent term of this polynomial is (−1)n ∏σ∈G λσ,1αn, which obviously belongs
to K. Since the λσ,1 also do, we obtain that αn ∈ K. This says that f (X) = Xn − αn.
Hence, if ξ is a primitive n-th root of unity, the roots of f are α, ξα, ..., ξn−1α. By stan-
dard Galois theory, G permutes the roots of f , so for every σ ∈ G there is a unique
0 ≤ iσ ≤ n− 1 such that σ(α) = ξ iσ α. But by the hypothesis, σ(α) = λσ,1α. Hence,
ξ iσ = λσ,1 ∈ K for every σ ∈ G. In particular, ξ ∈ K, so L/K is Kummer. Then,
since the primitive element α of L/K is a root of f and this polynomial is of the form
f (X) = Xn − αn, L/K is cyclic.

Conversely, assume that L/K is cyclic and Kummer. Then, L is the splitting field
over K of a polynomial of the form f (X) = Xn − αn for some primitive element α
of L/K, whose roots are α, ξα, ..., ξn−1α. Since G permutes the roots of f , for every
σ ∈ G there is a unique 0 ≤ iσ ≤ n− 1 such that σ(α) = ξ iσ α. Since L/K is Kummer,
ξ iσ ∈ K for all σ ∈ G. Then the basis of the powers of α is a classical primitive basis
of eigenvectors.

This result does not characterize completely the Galois extensions that satisfy the
classical eigenvectors property, because there may be Galois extensions L/K with a
basis of eigenvectors in which no element is primitive. However, we can consider
the extensions generated by the elements of a basis, apply the previous result, and
compare with the whole extension. In order to lift the eigenvectors property, we use
the following lemma.

Lemma 2.48. Let E/K and F/K be Galois extensions such that E∩ F = K and let L = EF.
If E/K and F/K satisfy the classical eigenvectors property , then so does L/K.

Proof. Let {αi}r
i=1 be a classical basis of eigenvectors of E and {zj}u

j=1 a classical basis
of eigenvectors of F. Then {αizj}n

i,j=1 is a K-basis of L. Since E ∩ F = K, we have

G = Gal(L/K) = Gal(E/K)×Gal(F/K).

Hence, for every στ ∈ G and 1 ≤ i ≤ r and 1 ≤ j ≤ u,

στ(αizj) = λ
(E)
σi λ

(F)
τ,j αizj.

Then, {αizj} is a classical eigenvectors basis of L/K.

The following result proves the characterization that we wanted.

Theorem 2.49. Let L/K be a Galois extension. Then, L/K satisfies the eigenvectors prop-
erty with respect to the classical Galois structure if and only if L/K is a compositum of cyclic
Kummer extensions.
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Proof. Assume that L/K satisfies the eigenvectors property with respect to the clas-
sical Galois structure. Let {αj}n

j=1 be a K-basis of L such that

σ(αj) = λσ,jαj, 1 ≤ j ≤ n, σ ∈ G,

where λσ,j ∈ K. Thus, for every 1 ≤ j ≤ n, the conjugates of αj are scalar multiplies
of αj. Then, K(αj)/K is a Galois extension that satisfies the eigenvectors property
with respect to the classical Galois structure with a primitive eigenvector basis, the
one generated by αj. Therefore, by Proposition 2.47, K(αj)/K is cyclic and Kummer
for every 1 ≤ j ≤ n.

Now, it is quite clear that L = ∏n
j=1 K(αj). Indeed, the product is contained in L

because K(αj) ⊂ L for every 1 ≤ j ≤ n, and for the other inclusion it is enough to
notice that the product contains the K-basis {α1, ..., αn} of L, and hence all elements
of L. This proves that L/K is the compositum of cyclic Kummer extensions.

Conversely, assume that L/K is a composition of cyclic Kummer extensions. By
Proposition 2.47, all of them satisfy the eigenvectors property with respect to the
classical Galois structure and a primitive element. By the previous lemma, L/K
satisfies the eigenvectors property with respect to the classical Galois structure.

2.7 Absolute extensions of fields with low degree

The reduction method provides a way to determine effectively the associated order
of a Hopf Galois structure and a necessary and sufficient condition for the existence
of a normal basis generator. However, since it requires to know how the Hopf Galois
structure acts on the ring of integers, it is difficult to carry out the explicit compu-
tations unless the degree of the extension is very low. In this section we study the
most simple cases: extensions L/K of degree 2 and 3. Except for a particular case of
quadratic extensions, we will take the ground field K to be Q or Qp for some prime
number p. We already know the answer for the question of the freeness: By Theo-
rem 1.16, these extensions have the classical Galois structure as their unique Hopf
Galois structure, and by Leopoldt’s theorem in its local version, OL is free over its
associated order. We will reach the same conclusion using the criterion in Section 2.5
and compute a generator for each case.

2.7.1 Quadratic extensions

Let L/K be a separable Hermite quadratic extension of fields. Then, L/K is Galois
with Galois group of the form G = 〈σ〉 and σ2 = 1. For simplicity, let us assume
that char(K) 6= 2. Hence, we can write L = K(z) where z ∈ L − K, z2 ∈ K and
σ(z) = −z. The unique Hopf Galois structure of L/K is the classical Galois structure
Hc. To apply the reduction method, we need a basis of Hc, an integral basis of L, and
how Hc acts on this basis. The first one is immediate: the elements {Id, σ} of G form
a K-basis of Hc. Since the extension is Hermite, there is an element z ∈ OL such that
m := z2 ∈ OK. Then {1, z} is a K-basis of L. Let us assume that it is also an integral
basis.

Theorem 2.50. Let L/K be a Hermite quadratic extension of fields with char(K) 6= 2 such
that z =

√
m, with m ∈ K, generates an integral basis of L. Then, AL/K has a basis of



2.7. Absolute extensions of fields with low degree 43

idempotents {
Id + σ

2
,

Id− σ

2

}
andOL is AL/K-free with generator any element β = β1 + β2z ∈ OL such that β1β2 ∈ O∗K.
In particular, 1 + z is a generator.

Proof. The hypothesis means that {1, z} is an integral basis of eigenvectors, and since
σ(z) = −z, the eigenvalues matrix is

Λ =

(
1 1
1 −1

)
.

The columns of its inverse give the OK-basis of AL/K{
Id + σ

2
,

Id− σ

2

}
,

which by Proposition 2.42 is a basis of pairwise orthogonal idempotents. Regarding
the freeness, Proposition 2.43 gives that OL is AL/K-free with generator any element
β1 + β2z such that β1β2 ∈ O∗K.

Remark 2.51. If in addition 2 is an invertible element in OK, the same basis {Id, σ} of Hc
is an OK-basis of AL/K. That is, AL/K = OK[G]. Note that this is the case if the ground
field is Qp with p an odd prime number, which is coherent with what we obtain if we apply
Noether theorem, as such an extension is tamely ramified.

If {1, z} is not an integral basis, then a general description of OL is not available
and the behaviour depends on the nature of the fields.

With ground field Q

If L/Q is a quadratic extension and L = Q(z) with z2 = m ∈ Z square-free, it is a
classical exercise in number theory to prove that an integral basis of L is given by
{1, z} if m ≡ 2 or 3 (mod 4) and {1, 1+z

2 } if m ≡ 1 (mod 4).

In the first case, {1, z} is an integral basis and Theorem 2.50 gives the solution.
Otherwise we have the Gram matrix

G(Hc, L) =
(

1 1+z
2

1 1− 1+z
2

)
,

and hence

M(Hc, L) =


1 1
0 0
0 1
1 −1

 .

Then, the reduced matrix D is the identity, so AL/Q = Z[G]. Let β = β1 + β2z ∈ OL.
Then,

Mβ(Hc, L) =
(

β1 β1 + β2
β2 −β2

)
,

which has determinant
Dβ(Hc, L) = −(2β1 + β2)β2.

In this case [Hc : L/Q] = |det(D)| = 1. If β = −1 + z, then Dβ(Hc, L) = 1 as well,
so OL is AL/Q-free with generator β.
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With ground field Q2

Let L/Q2 be a quadratic extension. According to [Rio95, Section 2.4], L is the split-
ting field over Q2 of one of the polynomials

x2 + 1, x2 ± 5, x2 ± 2, x2 ± 10.

Let us call f the polynomial of that list that indeed defines L/Q2.

The unique case in which the extension is unramified is when the defining poly-
nomial is f (x) = x2 − 5. In such case, AL/Q2 = Z2[G] and OL is AL/K-free.

We study the rest of the cases. Let us assume that f (x) = x2 + 2a with a ∈
{1,−1, 5,−5}. The roots of f are z =

√
2a and w = −

√
2a = −z. Since f is 2-

Eisenstein, {1, z} is an integral basis of L, so it is enough to apply Theorem 2.50.

Otherwise, we suppose f (x) = x2 + a, a ∈ {1, 5}. Then f is not 2-Eisenstein, but
we can try to build a polynomial with such property defining the same extension.
Indeed, we define

g(x) = f (x + 1) = x2 + 2x + a + 1,

and v2(a + 1) = 1, so g is 2-Eisenstein. The roots of this polynomial are

z = −1 +
√
−a, w = −1−

√
−a = −2− z.

Now, {1, z} is an integral basis of OL and

G(Hc, L) =
(

1 z
1 −2− z

)
.

Then, the matrix of the action is

M(Hc, L) =


1 1
0 0
0 −2
1 −1

 ,

which has Hermite normal form D =

(
1 1
0 2

)
. Then, AL/Q2 has basis

{
Id,
−Id + σ

2

}
.

Let β = β1 + β2z ∈ OL. Then,

Dβ(Hc, L) =
(

β1 β1 − 2β2
β2 −β2

)
,

which has determinant
Dβ(Hc, L) = 2(−β1 + β2)β2.

Then, we have that OL is AL/Q2-free and β = z is a generator.
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2.7.2 Cubic cyclic extensions

If L/K is a degree 3 extension of fields, then it is not necessarily Galois: its Galois
closure L̃ may have Galois group C3 or D3 over K. In this chapter we explore the first
of these cases (the other one being treated in Chapter 4).

Thus, let us assume that L/K is a cyclic degree 3 extension of fields and let G =
Gal(L/K). The classical Galois structure is the unique Hopf Galois structure and a
basis of the Hopf algebra is given by the Galois group G = 〈σ〉, σ3 = Id. As in the
quadratic case, the form of an integral basis of L depends strongly on the nature of
the fields.

With ground field Q

If L/Q is a cyclic cubic extension, then we have at our disposal a complete descrip-
tion of L and an integral basis.

Theorem 2.52. 1. There exists a unique pair of integers (e, u) ∈ Z2 such that e =
u2+3v2

4 is for a certain v ∈ Z a product of distinct primes congruent to 1 modulo 3,
u ≡ 2 (mod 3) and L = Q(α) where α is a root of the polynomial

f (x) = x3 − 3ex− eu.

2. The other two roots of f are

σ(α) = −2e
v
− u + v

2v
α +

1
v

α2,

σ2(α) =
2e
v
+

u− v
2v

α− 1
v

α2.

3. If 3 - v, then {1, α, σ(α)} is an integral basis of L and disc(L/K) = (9e)2. Otherwise,
for α′ = α+1

3 , {1, α′, σ(α′)} is an integral basis of L and disc(L/K) = e2.

Proof. The statement above is a summary of the results in [Coh93, Section 6.4.2].

Let us assume that 3 - v. Fixing in L the integral basis {1, α, σ(α)}, we have

G(Hc, L) =

1 α σ(α)
1 σ(α) σ2(α)
1 σ2(α) α

 .

We need the coordinates of σ2(α) with respect to the integral basis. Of the two
equalities in the second part of the previous theorem, the first one is equivalent to
α2 = 2e + u+v

2 α + vσ(α), and replacing this in the left side member of the second, we
obtain

σ2(α) =
2e
v
+

u− v
2v

α− 2e
v
− u + v

2v
α− σ(α)

= −α− σ(α).

Then,

G(Hc, L) =

1 α σ(α)
1 σ(α) −α− σ(α)
1 −α− σ(α) α

 .
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The Hermite normal form of M(Hc, L) is

D =

1 0 −1
0 1 −1
0 0 3

 ,

whence {
Id, σ,

Id + σ + σ2

3

}
is a Z-basis of AL/Q. On the other hand, given β = β1 + β2α + β3σ(α) ∈ OL, we
have

Dβ(Hc, L) = 3β1(β2
2 − β2β3 + β2

3).

If β = 1 + α, the determinant is 3, which coincides with the absolute value of the
determinant of D. Then, OL is AL/K-free with generator β.

Assume that 3|v. In this case, the integral basis is {1, α′, σ(α′)} where α′ = 1+α
3 ,

and the Gram matrix is

G(Hc, L) =

1 α′ σ(α′)
1 σ(α′) σ2(α′)
1 σ2(α′) α′

 ,

so now we have to determine the coordinates of σ2(α′) in terms of the aforemen-
tioned basis. We have:

σ2(α′) = σ2
(

1 + α

3

)
=

1− α− σ(α)

3

=
1
3
− 1

3
α− 1

3
σ(α).

To obtain the coordinates with respect to {1, α′, σ(α′)}, we replace α = 3α′ − 1 in the
expression above:

σ2(α′) =
1
3
− 1

3
(3α′ − 1)− 1

3
σ(3α′ − 1) = 1− α′ − σ(α′).

Then,

G(Hc, L) =

1 α′ σ(α′)
1 σ(α′) 1− α′ − σ(α′)
1 1− α′ − σ(α′) α′

 .

In this case we obtain the 3 × 3 identity matrix as the Hermite normal form D of
M(Hc, L). Thus, AL/Q = Z[G]. On the other hand, for β = β1 + β2α′+ β3σ(α′) ∈ OL,
we have

Dβ(Hc, L) = (β2
2 − β2β3 + β2

3)(3β1 + β2 + β3),

and for β = α′ the determinant is 1, which coincides with the absolute value of
det(D). Hence, OL is AL/Q-free with generator β.
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With ground field Q3

Let us study the cyclic degree 3 extensions of Q3. Although this case is actually
solved with the result of Bertrandias and Ferton, we will also apply the reduction
method in order to compare the results obtained.

First, if L/Q3 is a cyclic degree 3 extension, then L is defined by one of the poly-
nomials

x3 − x + 1, x3 − 3x2 + 3, x3 − 3x2 + 12, x3 − 3x2 + 21.

These polynomials have been taken from [LMFDB, p-adic field 3.3.0.1, p-adic field
3.3.4.2, p-adic field 3.3.4.3, p-adic field 3.3.4.1], respectively. For the first polynomial,
L/Q3 is unramified. Then, for this case, AL/Q3 = Z[G] and OL is AL/Q3-free.

For the other polynomials, L/Q3 is totally ramified. All of these are 3-Eisenstein,
so a root of the aforementioned polynomials generates an integral power basis of L.
Let f be one of those polynomials. Then, disc(L/Q3) = disc( f ). For a ∈ {1, 4, 7},

disc(x3 − 3x2 + 3a) = 34(4a− 3a2),

so v3(disc(L/Q3)) = 4. From 4 = ∑∞
i=0(|Gi| − 1) it follows that |G0| = |G1| = 3

and |Gi| = 1 for all i > 1, so t = 1. We apply Theorem 1.34 with K = Q3: we have
that 3

2 − 1 = 1
2 < t and the expansion of 1

3 as continued fraction is trivial, so OL is
AL/Q3-free for all cases. Moreover, by Proposition 1.33, AL/Q3 has Z3-basis{

Id,−Id + σ,
Id− 2σ + σ2

3

}
. (2.6)

Let us check that we obtain the same conclusions by applying the reduction
method. First we determine the Gram matrix with respect to an integral basis of
L.

Let f be one of the polynomials above and fix a root α of f , which gives rise
to a power integral basis. In order to determine the action of the Galois group on
this basis, we have to deal with the conjugates of α and their powers. Let α1, α2, α3
be the roots of f , where, for instance, α1 = α. By reordering these roots or replac-
ing σ by σ2, we can assume that σ induces the permutation (α1, α2, α3). There is a
quadratic polynomial f1 ∈ L[x] such that f (x) = (x − α) f1(x), and in practice f1
can be determined by using for instance Ruffini algorithm. Then, α2 and α3 are roots
of a quadratic polynomial and consequently can be expressed explicitly in terms of α.

There are two possible obstacles:

• The appearance of the square root of an element of L, i.e. a linear combination
of the powers of α. But since the degree of the extension is very low, it can be
solved easily with some mathematical computation software.

• There is no factorization of f as the one above with coefficients in Q(α), that
is, the coefficients of the corresponding linear combinations of the powers of
α could be 3-adic numbers that are not rational. In that case, we replace f

https://www.lmfdb.org/LocalNumberField/3.3.0.1
https://www.lmfdb.org/LocalNumberField/3.3.4.2
https://www.lmfdb.org/LocalNumberField/3.3.4.2
https://www.lmfdb.org/LocalNumberField/3.3.4.3
https://www.lmfdb.org/LocalNumberField/3.3.4.1
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by a polynomial that generates the same extension and factorizes with coeffi-
cients in Q, for example its Galois splitting model. If that polynomial is not
3-Eisenstein, we cannot use Theorem 1.20 to assure whether or not some of its
roots give rise to an integral basis. Then, what we do is either to prove it in
some other way or to carry out a change of variables so that the factorization
property is preserved and obtain a 3-Eisenstein polynomial.

First, we consider the unramified case, i.e. f (x) = x3 − x + 1. In this case, if
f1(x) = f (x)

x−α , then this polynomial does not have coefficients in Q(α). Then, we re-
place f by its Galois splitting model g(x) = x3 + x2 − 2x − 1 (see [LMFDB, p-adic
field 3.3.0.1]).

We claim that a root α of g generates a power integral basis of L, that is, that
the Z3-algebras OL and Z3[α] coincide. We have trivially that Z3[α] ⊂ OL. We
will prove that their discriminant ideals (in the sense of the definition given in Sec-
tion 1.4) coincide. By [Chi00, Corollary 22.4], this will imply that the equality fol-
lows. Again by [LMFDB, p-adic field 3.3.0.1], the discriminant exponent of L is 0, so
disc(OL) = Z3. On the other hand, disc(g) = 49 ∈ Z∗3 , so the ideal it generates is
disc(Z3[α]) = Z3, so we have the equality.

By Ruffini algorithm, we find that

g(x) = (x− α)(x2 + (α + 1)x + α2 + α− 2),

so the two conjugates of α are roots of the quadratic polynomial. Its discriminant is
−3α2 − 2α + 9. Solving a system of three equations with three indeterminates, one
finds that √

−3α2 − 2α + 9 = 2α2 + α− 3,

with the sign chosen by convenience. Hence, the conjugates of α are

α2 =
−(α + 1) + 2α2 + α− 3

2
=

2α2 − 4
2

= α2 − 2,

α3 =
−(α + 1)− 2α2 − α + 3

2
=
−2α2 − 2α + 2

2
= −α2 − α + 1.

Thus, the Gram matrix of the action is

G(Hc, L) =

1 α α2

1 α2 α2
2

1 α3 α2
3

 =

1 α α2

1 −2 + α2 3− α− α2

1 1− α− α2 2 + α

 .

Then, the matrix of the action is

M(H, L) =



1 1 1
0 0 0
0 0 0
0 −2 1
1 0 −1
0 1 −1
0 3 2
0 −1 1
1 −1 0


.

https://www.lmfdb.org/LocalNumberField/3.3.0.1
https://www.lmfdb.org/LocalNumberField/3.3.0.1
https://www.lmfdb.org/LocalNumberField/3.3.0.1
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The Hermite normal form of this matrix is the identity matrix of order 3, proving that
{1, σ, σ2} is an Z3-basis of AL/Q3 , that is, AH = Z3[G]. With respect to the freeness,
given β = β1 + β2α + β3α2, the matrix associated to β is

Mβ(Hc, L) =

β1 β1 − 2β2 + 3β3 β1 + β2 + 2β3
β2 −β3 −β2 + β3
β3 β2 − β3 −β2

 ,

with determinant

Dβ(Hc, L) = (β2
2 − β2β3 + β2

3)(3β1 − β2 + 5β3).

In particular, if β = −1 + α2, then Dβ(Hc, L) = 2 ∈ Z∗3 , so v3(Dβ(Hc, L)) = 0 for
this specific β. On the other hand, since the Hermite normal form is the identity, the
index of the classical Galois structure is I(Hc, L) = 0. Then, by Proposition 2.36, OL
is AL/Q3-free with generator −1 + α2.

Next, we move on to the totally ramified cases. Let us assume that f (x) = x3 −
3x2 + 3. In this case

f (x) = (x− α)(x2 + (α− 3)x + α2 − 3α).

Solving the corresponding quadratic equation:

α2 = 3 + α− α2, α3 = −2α + α2.

Now, the action of G on the power basis generated by α gives the Gram matrix

G(Hc, L) =

1 α α2

1 3 + α− α2 6 + 3α− 2α2

1 −2α + α2 3− 3α + α2

 .

Now, suppose that f (x) = x3 − 3x2 + 12. As in the unramified case, the poly-
nomial f1(x) = f (x)

x−α does not have coefficients in Q(α). Then, we first replace f by
its Galois splitting model x3 − 21x + 35 (see [LMFDB, p-adic field 3.3.4.3]), and then
make the change of variable x 7→ x + 1, obtaining the polynomial

g(x) = x3 + 3x2 − 18x + 15.

This is 3-Eisenstein and also factors with coefficients in Q. Thus, let us take α to be a
root of g. The other two roots of g are

α2 = −12 + 4α + α2, α3 = 9− 5α− α2.

Then, the Gram matrix in this case is

G(Hc, L) =

1 α α2

1 −12 + 4α + α2 69− 21α− 5α2

1 9− 5α− α2 −24 + 21α + 4α2

 .

Finally, let us take f (x) = x3 − 3x2 + 21. For this polynomial, we again replace
f by its Galois splitting model x3 − 21x− 28 (see [LMFDB, p-adic field 3.3.4.1]), and
after that we make the change x 7→ x + 1, obtaining

g(x) = x3 + 3x2 − 18x− 48.

https://www.lmfdb.org/LocalNumberField/3.3.4.3
https://www.lmfdb.org/LocalNumberField/3.3.4.1
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If α is a root of g, the other two roots are

α2 =
−18− α + α2

2
, α3 =

12− α− α2

2
.

The Gram matrix in this case is

G(Hc, L) =

1 α α2

1 −18−α+α2

2
42−3α−α2

2
1 12−α−α2

2
48+3α−α2

2

 .

Now, we proceed to study the Hopf Galois module structure ofOL. The Hermite
normal form of M(Hc, L) in the three cases is

D =

1 0 −1
0 1 −1
0 0 3

 .

The inverse of this matrix gives the basis of AL/Q3{
Id, σ,

Id + σ + σ2

3

}
.

Note that this is coherent with the basis in (2.6) as the corresponding change of basis
has determinant in Z∗3 .

Let us study the existence of a normal integral basis generator. In this case, the
index of the Hopf Galois structure is I(Hc, L) = 1. We proceed as usual: we try to
find some β = ∑3

i=1 βiα
i−1 ∈ OL for which v3(Dβ(Hc, L)) = 1.

For the polynomial f (x) = x3 − 3x2 + 3,

Mβ(Hc, L) =


β1 6 β3 + 3 β2 + β1 3 β3 + β1

β2 3 β3 + β2 −3 β3 − 2 β2

β3 −2 β3 − β2 β3 + β2

 .

which has determinant

Dβ(Hc, L) = −3
(

β2
2 + 3 β3 β2 + 3 β3

2
)
(β1 + β2 + 3 β3) .

In particular, for β = α, the previous determinant has 3-adic valuation 1. Then, OL
is AL/Q3-free and that β = α is a generator.

If f (x) = x3 − 3x2 + 12,

Mβ(Hc, L) =


β1 69 β3 − 12 β2 + β1 −24 β3 + 9 β2 + β1

β2 −21 β3 + 4 β2 21 β3 − 5 β2

β3 −5 β3 + β2 4 β3 − β2

 ,

which has determinant

Dβ(Hc, L) = 3
(

β2
2 − 9 β3 β2 + 21 β3

2
)
(β1 − β2 + 15 β3) .
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We obtain again that OL is AL/K-free and β = α is a generator.

Finally, for f (x) = x3 − 3x2 + 21, we have

Mβ(Hc, L) =


β1 21 β3 − 9 β2 + β1 24 β3 + 6 β2 + β1

β2 − 3
2 β3 − β2/2 3

2 β3 − β2/2

β3 −β 3
2
+ β2/2 −β 3

2
− β2/2

 ,

and the determinant is

Dβ(Hc, L) =
3
2

(
β2

2 + 3 β3
2
)
(β1 − β2 + 15 β3) .

From this we deduce once again that OL is AH-free with generator β = α.
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Chapter 3

Quartic Galois extensions

We have just seen how the reduction method is well suited for absolute extensions
of degree 2 and 3 of number or p-adic fields, in the sense that it provides a basis of
the associated order as well as an answer to the question of the freeness of the ring
of integers and, if it exists, the construction of a normal integral basis. In this chapter
we move forward in this classification and consider extensions of degree 4.

Now, the situation is far more complicated. To start, there are two possibilities
for the Galois group: it may be the cyclic group C4 of order 4 or the Klein group
C2 × C2 (in this last case, it is also said that the extension is elementary abelian).
Consequently, according to the terminology of Greither-Pareigis theory, Hopf Galois
structures of L/K can be of type C4 (cyclic Hopf Galois structures) or of type C2×C2
(elementary abelian Hopf Galois structures). In the first section of this chapter we
will use Greither-Pareigis theorem to check that there are indeed Hopf Galois struc-
tures of both types, and we will determine a basis of the corresponding Hopf algebra
for each case.

Once all Hopf Galois structures are determined, we will move to the context
of absolute extensions of number or p-adic fields in order to study the Hopf Ga-
lois module structure of the ring of integers. In the global setting, we will consider
successively cyclic and elementary abelian extensions of Q. In the local case, we
are done for tamely ramified extensions. Indeed, since order 4 groups are always
abelian, Hopf algebras in Hopf Galois structures are commutative and then we can
apply Theorem 1.32, which gives that the ring of integers is indeed free over the as-
sociated order at each Hopf Galois structure. For this reason, we will focus on the
wild case, i.e, we choose the ground field to be Q2.

By Leopoldt’s theorem, there is always freeness over the associated order in the
classical Galois structure. Our computations will show that this result is not valid
in non-classical Hopf Galois structures of biquadratic extensions of Q. Actually, this
had been shown by Truman for the tame case (see [Tru12]). We will see that our
criteria match with his result and obtain similar conditions for the wild cases.

3.1 Determination of the Hopf Galois structures

The description of the Hopf Galois structures of L/K was carried out by Byott in
[Byo02, Theorem 2.5] in the more general context of Galois extensions of degree p2.
We follow his approach for p = 2. Namely, let T = 〈τ〉 be an order 2 subgroup of G
and let σ ∈ G− T such that σ2 = 1G if G ∼= C2 × C2 and σ2 = τ otherwise. Then, we
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have a presentation of G as follows:

G = 〈σ, τ | τ2 = 1G, στ = τσ, σ2 = γ〉, (3.1)

where γ = 1G if G ∼= C2 × C2 and γ = τ otherwise.

Theorem 3.1. The regular subgroups of Perm(G) normalized by λ(G) are those of the form

NT,d = 〈µ, ηd〉,

where d ∈ {0, 1}, T = 〈τ〉 runs through the order 2 subgroups of G and, fixing a presenta-
tion of G as in 3.1,

µ(σkτl) = σkτl−1,

ηd(σ
kτl) = σk−1τl+(k−1)d.

The action of G on the previous automorphisms is given by

g(µ) = µ for all g ∈ G, σ(ηd) = µdηd, τ(ηd) = ηd.

It follows immediately from the theorem that µ = λ(τ) = (1G, τ)(σ, στ). As for
the other generator, we have at each case:

ηT,0 =

{
(1G, στ, τ, σ) if G ∼= C4

(1G, σ)(τ, στ) if G ∼= C2 × C2
,

ηT,1 =

{
(1G, σ)(τ, στ) if G ∼= C4

(1G, στ, τ, σ) if G ∼= C2 × C2
.

Note that ηT,0 = λ(σ−1) regardless of the structure of G. We also deduce

η2
T,0 =

{
µ if G ∼= C4

Id if G ∼= C2 × C2
,

η2
T,1 =

{
Id if G ∼= C4

µ if G ∼= C2 × C2
.

That is, if G ∼= C4, NT,0
∼= C4 and NT,1

∼= C2×C2, and otherwise, NT,0
∼= C2×C2 and

NT,1
∼= C4.

Let us fix a presentation of the Galois group

G = 〈σ, τ | τ2 = 1G, στ = τσ, σ2 = γ〉

with γ as before, and define T = 〈τ〉, so that by choosing σ we have a presentation
as in (3.1). If G ∼= C4, L/K has two Hopf Galois structures: the classical one, which
is given by NT,0, and a non-classical Hopf Galois structure given by NT,1.

Otherwise, if G ∼= C2×C2, there are two Hopf Galois structures apart from those,
which arise from replacing T1 := T by T2 := 〈σ〉 and σ by τ for one of them, and T1
by T3 := 〈στ〉 for the other one. Let us determine the corresponding permutation
subgroups NTi ,1 for i ∈ {2, 3}. For i = 2, NT2,1 = 〈µ2, ηT2,1〉. Following the definition,

µ2(σ
kτl) = σk−1τl ,
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whence µ2 = λ(σ). On the other hand,

ηT2,1(σ
kτl) = σk+l−1τl−1,

so ηT2,1 = (1G, στ, σ, τ). Finally, for i = 3, we have NT3,1 = 〈µ3, ηT3,1〉. We compute
the generators:

µ3(σ
kτl) = µ3(σ

k−l(στ)l)

= σk−l(στ)l−1

= σk−1τl−1,

ηT3,1(σ
kτl) = ηT3,1(σ

k−l(στ)l)

= σk−l−1(στ)l+k−l−1

= σ−l+2(k−1)τk−1 = σlτk−1.

We deduce that µ3 = λ(στ) = (1, στ)(σ, τ) and ηT3,1 = (1G, τ, στ, σ).

Once the permutation subgroups are computed, we determine the correspond-
ing Hopf algebras of those Hopf Galois structures by using Greither-Pareigis theo-
rem. We know that the Hopf algebra of the classical Galois structure is the K-group
algebra Hc = K[G]. Regarding the non-classical Hopf Galois structures (the unique
one if G is cyclic), we must determine the action of G on the previous automor-
phisms. Following the last part of the statement of Theorem 3.1, we have

g(µ) = µ, g(ηT,0) = ηT,0

for every g ∈ G, and also σ(ηT,1) = µηT,1. At this point, we must separate cases.

3.1.1 Case 1: G is cyclic

The Hopf Galois structure given by N := NT,1 is the unique non-classical one. Let
x ∈ H = L[N]G, so there are xi ∈ L such that

x = x1Id + x2µ + x3ηT,1 + x4µηT,1.

From the equality
σ(x) = x

it follows that σ(xi) = xi for i ∈ {1, 2}, so x1, x2 ∈ K, and also σ(x3) = x4 and
σ(x4) = x3. This implies that σ2(x3) = x3, so x3 ∈ E := L〈σ

2〉, the unique quadratic
subextension of L/K. Let z ∈ L such that z /∈ K and z2 ∈ K. Then x3 = x(1)3 + x(2)3 z
and x4 = x(1)3 − x(2)3 z for some x(j)

3 ∈ K. Thus,

x = x1Id + x2µ + x(1)3 (ηT,1 + µηT,1) + x(2)3 z(ηT,1 − µηT,1).

Then, x belongs to the space generated by

{Id, µ, ηT,1 + µηT,1, z(ηT,1 − µηT,1)} .

Since this space is contained in H and with the same dimension, they coincide.
Hence, we have:

Proposition 3.2. A cyclic quartic extension L/K has two Hopf Galois structures: the clas-
sical Galois structure Hc of type C4 and a non-classical Hopf Galois structure H of type
C2 × C2 with K-basis

{Id, µ, ηT,1 + µηT,1, z(ηT,1 − µηT,1)} ,

where z is the square root of a non-square element in K.
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3.1.2 Case 2: G is elementary abelian

In this case we have three non-classical Hopf Galois structures, given by Ni =
〈µi, ηTi ,1〉 for i ∈ {1, 2, 3}, where we call µ1 = µ. Let us determine the corresponding
Hopf algebras.

For i = 1, we know that ηT1,1 = (1G, στ, τ, σ), σ(ηT1,1) = µ1ηT1,1 and τ(ηT1,1) =
ηT1,1. We proceed as in the previous case: Let x = x1Id+ x2µ1 + x3ηT1,1 + x4µ1ηT1,1 ∈
H1 = L[N1]

G, and from σ(x) = x we deduce that x1, x2 ∈ K and the equalities
σ(x3) = x4 and σ(x4) = x3. Now, we have also that τ(x) = x with τ fixing ηT1,1,
whence x3, x4 ∈ E1 := L〈τ〉. Let z ∈ E1 such that z2 ∈ K and E1 = K(z), and let
x(1)3 , x(2)3 ∈ K such that x3 = x(1)3 + x(2)3 z. Then x4 = x(1)3 − x(2)3 z, and we deduce as
in the previous case that a basis of H1 is

{Id, µ1, ηT,1 + µ1ηT1,1, z(ηT,1 − µ1ηT1,1)} .

We move on to the case when i = 2. Then σ(ηT2,1) = ηT2,1 and τ(ηT2,1) = µ2ηT2,1.
Then, for H2 = L[N2]G we obtain the same basis

{Id, µ2, ηT2,1 + µ2ηT2,1, z(ηT2,1 − µ2ηT2,1)} ,

with the difference that now z ∈ E2 := L〈σ〉.

Finally, let us assume that i = 3, in which case σ(ηT3,1) = τ(ηT3,1) = µ3ηT3,1, so
στ(ηT3,1) = ηT3,1. Then a basis of H3 = L[N3]G is

{Id, µ3, ηT3,1 + µ3ηT3,1, z(ηT3,1 − µ3ηT3,1)} ,

with z ∈ E3 := L〈στ〉.

The preceding paragraphs prove the following:

Proposition 3.3. Let L/K be a quartic elementary abelian extension with Galois group G
and let E1/K, E2/K and E3/K be its quadratic subextensions. The Hopf Galois structures of
L/K are the classical one Hc, of type C2×C2, and three non-classical Hopf Galois structures
{Hi}3

i=1 of type C4 such that for every 1 ≤ i ≤ 3, the K-basis of Hi is

{Id, µi, ηTi ,1 + µiηTi ,1, zi(ηTi ,1 − µiηTi ,1)} ,

where zi ∈ Ei − K and z2
i ∈ K.

3.2 Cyclic quartic extensions of Q

Let L/Q be a Galois quartic extension of number fields.

By [Har+87, Theorem 1], L/Q is a cyclic quartic extension if and only if

L = Q(

√
a(d + b

√
d)),

where:

• a ∈ Z is odd square-free and b ∈ Z>0.

• d = b2 + c2 for some c ∈ Z>0 and d is square-free.
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• gcd(a, d) = 1.

There is a result that gives explicitly an integral basis of L (see [HW90]):

Theorem 3.4. Let L/Q be a cyclic quartic extension and let a, b, c, d ∈ Z as above. Define

z =
√

a(d + b
√

d) and w =
√

a(d− b
√

d). Then, an integral basis of K is given as
follows:

1. If d ≡ 0 (mod 2),
B = {1,

√
d, z, w}.

2. If d ≡ 1 (mod 2) and b ≡ 1 (mod 2),

B =

{
1,

1 +
√

d
2

, z, w

}
.

3. If d ≡ 1 (mod 2), b ≡ 0(mod 2) and a + b ≡ 3 (mod 4),

B =

{
1,

1 +
√

d
2

,
z + w

2
,

z− w
2

}
.

4. If d ≡ 1 (mod 2), b ≡ 0(mod 2), a + b ≡ 1 (mod 4) and a ≡ c (mod 4),

B =

{
1,

1 +
√

d
2

,
1 +
√

d + z + w
4

,
1−
√

d + z− w
4

}
.

5. If d ≡ 1 (mod 2), b ≡ 0(mod 2), a + b ≡ 1 (mod 4) and a ≡ −c (mod 4),

B =

{
1,

1 +
√

d
2

,
1 +
√

d + z− w
4

,
1−
√

d + z + w
4

}
.

We know that in this case L/Q has two Hopf Galois structures. In the classical
one, we fix the basis {1G, σ, σ2, σ3}, where we choose σ = (z, w,−z,−w). With re-
gard to the non-classical one, we need to choose an element δ in the unique quadratic
subextension of L/Q, which is Q(

√
d). Let us choose δ =

√
d. Hence, the non-

classical Hopf Galois structure HT,1 has Q-basis{
Id, µ, ηT,1 + µηT,1,

√
d(ηT,1 − µηT,1)

}
,

where µ = λ(σ2) and ηT,1 = λ(σ). We call these elements w1, w2, w3 and w4, respec-
tively.

For both Hopf Galois structures, in order to compute the Gram matrix in each
case we proceed as follows: we compute the matrix G(H, LBc) where

Bc = {1,
√

d, z, w},

and then we carry out the computation G(H, LB) = G(H, LBc)PB
Bc

, where B is the
integral basis in Theorem 3.4. From now on, we call Bc = {e1, e2, e3, e4} and B =
{γ1, γ2, γ3, γ4}.
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3.2.1 The classical Galois structure

Let us consider first the classical Galois structure Hc, whose action is easier to deter-
mine. The aforementioned Gram matrix is

G(Hc, LBc) =


e1 e2 e3 e4
e1 −e2 e4 −e3
e1 e2 −e3 −e4
e1 −e2 −e4 e3

 .

Case 1: d ≡ 0 (mod 2)

The integral basis B in L is the basis Bc, meaning that γi = ei for all i, and so

G(Hc, LB) =


γ1 γ2 γ3 γ4
γ1 −γ2 γ4 −γ3
γ1 γ2 −γ3 −γ4
γ1 −γ2 −γ4 γ3

 .

The Hermite normal form of M(H, L) is

D(H, L) =


1 0 1 2
0 1 0 −1
0 0 2 2
0 0 0 4

 ,

so AL/Q has Z-basis {
1G, σ,

−1G + τ

2
,
−1G + σ− τ + στ

4

}
.

On the other hand, we have that

Dβ(Hc, L) = −8β1β2(β2
3 + β2

4),

so OL is AL/Q-free with generator β = γ1 + γ2 + γ3.

Case 2: d ≡ 1 (mod 2) and b ≡ 1 (mod 2)

The integral basis is formed by

γ1 = e1, γ2 =
e1 + e2

2
, γ3 = e3, γ4 = e4,

and then the matrix of the change of basis is

PB
Bc

=


1 1

2 0 0
0 1

2 0 0
0 0 1 0
0 0 0 1

 .

Then, we compute

G(Hc, LB) = G(Hc, LBc)PB
Bc

=


e1

e1+e2
2 e3 e4

e1
e1−e2

2 e4 −e3
e1

e1+e2
2 −e3 −e4

e1
e1−e2

2 −e4 e3

 .
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Now we must find the coordinates of the entries with respect to the basis B. To this
end, for each entry we apply the matrix PBc

B on the column vector of its coordinates
with respect to Bc. On this way, we obtain

G(Hc, LB) =


γ1 γ2 γ3 γ4
γ1 γ1 − γ2 γ4 −γ3
γ1 γ2 −γ3 −γ4
γ1 γ1 − γ2 −γ4 γ3

 .

The Hermite normal form of M(Hc, LB) is

D =


1 0 1 0
0 1 0 1
0 0 2 0
0 0 0 2

 ,

which gives the basis of AL/Q{
1G, σ,

−1G + σ2

2
,
−σ + σ3

2

}
.

Regarding the freeness, the matrix of the action is

Mβ(Hc, L) =


β1 β1 + β2 β1 β1 + β2
β2 −β2 β2 −β2
β3 −β4 −β3 β4
β4 β3 −β4 −β3

 ,

with determinant Dβ(Hc, L) = −4β2(β2
3 + β2

4)(2β1 + β2). For instance, β = γ1 −
γ2 + γ3 is a normal integral basis generator. We proceed in the same way for the rest
of the cases.

Case 3: d ≡ 1 (mod 2), b ≡ 0 (mod 2) and a + b ≡ 3 (mod 4)

We have the integral basis B formed by

γ1 = e1, γ2 =
e1 + e2

2
, γ3 =

e3 + e4

2
, γ4 =

e3 − e4

2
,

giving the change basis matrix

PB
Bc

=


1 1

2 0 0
0 1

2 0 0
0 0 1

2
1
2

0 0 1
2 − 1

2

 .

Then, the Gram matrix is

G(Hc, L) =


γ1 γ2 γ3 γ4
γ1 γ1 − γ2 −γ4 γ3
γ1 γ2 −γ3 −γ4
γ1 γ1 − γ2 γ4 −γ3

 .

The Hermite normal form of M(Hc, L) is exactly the same as the one in the previous
case, so we obtain again the basis of AL/Q{

1G, σ,
−1G + σ

2
,
−σ + σ3

2

}
.
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On the other hand, for β ∈ OL, we have again Dβ(Hc, L) = −4β2(β2
3 + β2

4)(2β1 + β2),
so again OL is AL/Q-free and β = γ1 − γ2 + γ3 is a normal integral basis generator
of OL.

Case 4: d ≡ 1 (mod 2), b ≡ 0 (mod 2), a + b ≡ 1 (mod 4) and a ≡ c (mod 4)

The elements of B are

γ1 = e1, γ2 =
e1 + e2

2
, γ3 =

e1 + e2 + e3 + e4

4
, γ =

e1 − e2 + e3 − e4

4
,

and

G(Hc, L) =


γ1 γ2 γ3 γ4
γ1 γ1 − γ2 γ1 − γ2 − γ4 γ3
γ1 γ2 γ2 − γ3 γ1 − γ2 − γ4
γ1 γ1 − γ2 γ4 γ2 − γ3

 .

The Hermite normal form of M(Hc, L) in this case is the identity matrix, meaning
that AL/Q = Z[G]. Given β ∈ OL,

Dβ(Hc, L) = (β2
3 + β2

4)(2β2 + β3 − β4)(4β1 + 2β2 + β3 + β4),

and for β = γ2− γ3 it equals 1, proving thatOL is AL/Q-free with that β as generator.

Case 5: d ≡ 1 (mod 2), b ≡ 0 (mod 2), a + b ≡ 1 (mod 4) and a ≡ −c (mod 4)

The elements

γ1 = e1, γ2 =
e1 + e2

2
, γ3 =

e1 + e2 + e3 − e4

4
, γ =

e1 − e2 + e3 + e4

4

form the integral basis B and

G(Hc, L) =


γ1 γ2 γ3 γ4
γ1 γ1 − γ2 γ4 γ2 − γ3
γ1 γ2 γ2 − γ3 γ1 − γ2 − γ4
γ1 γ1 − γ2 γ1 − γ2 − γ4 γ3

 .

As in the previous case, the Hermite normal form of M(Hc, L) is the identity matrix,
so AL/Q = Z[G]. On the other hand, given β ∈ OL,

Dβ(Hc, L) = −
(

β3
2 + β4

2
)
(2 β2 + β3 − β4) (4 β1 + 2 β2 + β3 + β4) .

For β1 = β4 = 0, β2 = 1 and β3 = −1, this is −1. We deduce that OL is AL/Q-free
with generator β = γ2 − γ3.

3.2.2 Non-classical Hopf Galois structure

Let us move on to the non-classical Hopf Galois structure H := HT,1. The Gram
matrix where in L we fix the basis Bc is

G(H, LBc) =


e1 e2 e3 e4
e1 e2 −e3 −e4

2e1 −2e2 0 0
0 0 2w

√
d −2z

√
d

 .
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Now, a difficulty arises: at this point, we are not able to write some of the entries in
terms of Bc because products of the basic elements have appeared in the previous
expressions. To solve it, we find the coordinates of those elements with respect to
the basis Bz = {1, z, z2, z3}, and then we change to Bc.

We first determine the matrix of the change of basis from Bz to Bc. It can be easily
seen that the irreducible polynomial of z is

f (x) = x4 − 2adx2 + a2c2d.

We have that zw = ac
√

d (note that if a < 0 we choose
√
−n = i

√
n in the positive

imaginary axis). Operating, one determines

1
z
= − 1

a2c2d
z3 +

2
ac2 z,

√
d =

1
ab

z2 − d
b

,

w =
1

abc
z3 − b2 + d

bc
z.

Then,

PBc
Bz

=


1 − d

b 0 0
0 0 1 − b2+d

bc
0 1

ab 0 0
0 0 0 1

abc

 .

Then, we compute

z
√

d =
1
ab

z3 − d
b

z,

w
√

d = − 1
ac

z3 +
2d
c

z.

Applying PBz
Bc

, we change back the coordinates to the basis Bc, obtaining

2w
√

d = 2ce3 − 2be4,

−2z
√

d = 2be3 + 2ce4

Then, the Gram matrix we had set at the beginning of this part becomes

G(H, LBc) =


e1 e2 e3 e4
e1 e2 −e3 −e4

2e1 −2e2 0 0
0 0 2ce3 − 2be4 2be3 + 2ce4

 .

Case 1: d ≡ 0 (mod 2)

Since γi = ei for all i, the Gram matrix is

G(H, LB) =


γ1 γ2 γ3 γ4
γ1 γ2 −γ3 −γ4

2γ1 −2γ2 0 0
0 0 2cγ3 − 2bγ4 2bγ3 + 2cγ4

 .



62 Chapter 3. Quartic Galois extensions

Using the matrix (B.1), we can reduce the matrix M(H, L) to
1 1 2 0
0 2 2 −2c
0 0 4 0
0 0 0 2b

 .

This is almost the Hermite normal form of M(H, L), with the exception that−c does
not need to be in the fixed complete set of residues modulo b. Concretely, the Her-
mite normal form is

D(H, L) =


1 1 2 0
0 2 2 2r
0 0 4 0
0 0 0 2b

 ,

where r ≡ −c (mod b) and d− |b|2 e < r ≤ b |b|2 c. We deduce that AH has a Z-basis
given by the elements{

w1,
−w1 + w2

2
,
−w1 − w2 + w3

4
,

rw1 − rw2 + w4

2b

}
.

Moreover, I(H, L) = 16b.

For an element β ∈ OL, we have that

Dβ(H, L) = 16bβ1β2(β2
3 + β2

4).

Then, we have that OL is AH-free with generator β = γ1 + γ2 + γ3.

Example 3.5. Let L = Q(
√

10 +
√

10), which gives a = b = 1, c = 3 and d = 10.
Since d is even, the integral basis is formed by

γ1 = 1, γ2 =
√

10, γ3 = z, γ4 = w,

where z =
√

10 +
√

10 and w =
√

10−
√

10. The Hermite normal form is in this
case

D(H, L) =


1 1 2 0
0 2 2 0
0 0 4 0
0 0 0 2

 .

Hence, AH has Z-basis{
w1,
−w1 + w2

2
,
−w1 − w2 + w3

4
,

w4

2

}
.

Example 3.6. Let L = Q(
√

58 + 3
√

58), which gives a = 1, b = 3, c = 7 and d = 58.
Then d is even and square-free, and d = b2 + c2. In this case, the Hermite normal
form is

D(H, L) =


1 1 2 0
0 2 2 −2
0 0 4 0
0 0 0 6

 .

Therefore, AH has Z-basis{
w1,
−w1 + w2

2
,
−w1 − w2 + w3

4
,
−w1 + w2 + w4

6

}
.
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Case 2: d ≡ 1 (mod 2) and b ≡ 1 (mod 2)

We obtain

G(H, L) =


γ1 γ2 γ3 γ4
γ1 γ2 −γ3 −γ4

2γ1 2γ1 − 2γ2 0 0
0 0 cγ3 − bγ4 bγ3 + cγ4

 .

In this case, the Hermite normal form is

D(H, L) =


1 1 0 0
0 2 0 −2c
0 0 2 0
0 0 0 2b

 ,

with the exception that −c does not need to be in the fixed complete set of residues
modulo b. The unimodular matrix we have used is (B.2). Then, AH has Z-basis{

w1,
−w1 + w2

2
,

w3

2
,

rw1 − rw2 + w4

2b

}
,

where r is the corresponding class of −c modulo b. Moreover, we see that I(H, L) =
8b.

Let us study the freeness of OL. For β ∈ OL,

Dβ(H, L) = 8bβ2(β2
3 + β2

4)(2β1 + β2).

Let β = γ2 + γ3. Then, for this β, Dβ(H, L) = 8b, proving that OL is AH-free with
generator β.

Example 3.7. Let L = Q(
√

5 +
√

5), which gives a = b = 1, c = 2 and d = 5. Then b
and d are both odd, so the integral basis is formed by

γ1 = 1, γ2 =
1 +
√

5
2

, γ3 = z, γ4 = w,

where z =
√

5 +
√

5 and w =
√

5−
√

5. In this case, the Hermite normal form is

D(H, L) =


1 1 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 ,

so AH has Z-basis {
w1,
−w1 + w2

2
,

w3

2
,

w4

2

}
.

Example 3.8. Let L = Q(
√

109 + 3
√

109), which gives a = 1, b = 3, c = 10 and
d = 109. In this case the Hermite normal form is

D(H, L) =


1 1 0 0
0 2 0 −2
0 0 2 0
0 0 0 6

 ,

which gives the Z-basis of AH{
w1,
−w1 + w2

2
,

w3

2
,
−w1 + w2 + w4

6

}
.
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Case 3: d ≡ 1 (mod 2), b ≡ 0 (mod 2) and a + b ≡ 3 (mod 4)

The Gram matrix is

G(H, L) =


γ1 γ2 γ3 γ4
γ1 γ2 −γ3 −γ4

2γ1 2γ1 − 2γ2 0 0
0 0 2cγ3 + 2bγ4 −2bγ3 + 2cγ4

 .

In this case, we have used the unimodular matrix (B.3) and obtained exactly the
same Hermite normal form as in the previous case, so the basis is also the same and
I(H, L) = 8b.

Moving on to the freeness, for β ∈ OL we have

Dβ(H, L) = −8bβ2(β2
3 + β2

4)(2β1 + β2).

This is just the negative of the value of Dβ(H, L) obtained in the previous case, and
since I(H, L) is the same, we have that again OL is AH-free with generator β =
γ2 + γ3.

Example 3.9. Let L = Q(
√

5 + 2
√

5). In this case, a = c = 1, b = 2 and d = 5, and
the integral basis is as above. The Hermite normal form of M(H, L) is

D(H, L) =


1 1 0 0
0 2 0 2
0 0 2 0
0 0 0 4

 ,

so AH has Z-basis {
w1,
−w1 + w2

2
,

w3

2
,

w1 − w2 + w4

4

}
.

Example 3.10. Let L = Q(
√

109 + 10
√

109). Then L/Q is on this case for a = 1,
b = 10, c = 3 and d = 109. In this case, the Hermite normal form is

D(H, L) =


1 1 0 0
0 2 0 −6
0 0 2 0
0 0 0 20

 ,

giving the Z-basis of AH{
w1,
−w1 + w2

2
,

w3

2
,
−3w1 + 3w2 + w4

20

}
.

Case 4: d ≡ 1 (mod 2), b ≡ 0 (mod 2), a + b ≡ 1 (mod 4) and a ≡ c (mod 4)

The Gram matrix is

G(H, L) =


γ1 γ2 γ3 γ4
γ1 γ2 γ2 − γ3 γ1 − γ2 − γ4

2γ1 2γ1 − 2γ2 γ1 − γ2 γ2
0 0 h h′

 ,

where
h = −bγ1 + (b− c)γ2 + 2cγ3 + 2bγ4,
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h′ = −cγ1 + (b + c)γ2 − 2bγ3 + 2cγ4.

In this case, by using the matrix (B.4) we obtain as Hermite normal form of M(H, L)

D(H, L) =


1 0 0 c
0 1 0 −c
0 0 1 b
0 0 0 2b

 .

We see that I(H, L) = 2b.

Regarding the freeness, for β ∈ OL,

−2b(β2
3 + β2

4)(2β2 + β3 − β4)(4β1 + 2β2 + β3 + β4).

Let β = γ2 − γ3. Then, Dβ(H, L) = −2b, so OL is AH-free with generator β.

Example 3.11. Let L = Q(
√

39 + 6
√

13). This is of the usual form with a = c = 3,
b = 2 and d = 13. The Hermite normal form is in this case

D(H, L) =


1 0 0 −1
0 1 0 1
0 0 1 2
0 0 0 4

 .

Then, the Z-basis of AH is{
w1, w2, w3,

w1 − w2 − 2w3 + w4

4

}
Case 5: d ≡ 1 (mod 2), b ≡ 0 (mod 2), a + b ≡ 1 (mod 4) and a ≡ −c (mod 4)

The Gram matrix is

G(H, L) =


γ1 γ2 γ3 γ4
γ1 γ2 γ2 − γ3 γ1 − γ2 − γ4

2γ1 2γ1 − 2γ2 γ1 − γ2 γ2
0 0 h h′

 ,

where
h = bγ1 − (b + c)γ2 + 2cγ3 − 2bγ4,

h′ = −cγ1 + (−b + c)γ2 + 2bγ3 + 2cγ4.

Using the matrix (B.5), we find that the Hermite normal form is the same as in Case
4, so again I(H, L) = 2b.

For β ∈ OL,

Dβ(H, L) = 2b(β2
3 + β2

4)(2β2 + β3 − β4)(4β1 + 2β2 + β3 + β4).

This is just the same as in the previous case up to sign. Then, once again OL is
AH-free with generator β = γ2 − γ3.
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Example 3.12. Let L = Q(
√

15 + 6
√

5), which has a = 3, b = 2, c = 1 and d = 5. For
these values, a, b, c and d satisfy the congruences of the last case. Then, the Hermite
normal form of M(H, L) is

D(H, L) =


1 0 0 1
0 1 0 −1
0 0 1 2
0 0 0 4

 .

Then, AH has Z-basis {
w1, w2, w3,

−w1 + w2 − 2w3 + w4

4

}
.

3.2.3 Summary of results

Theorem 3.13. Let L/Q be a cyclic quartic extension and adopt the notation of Theorem
3.4.

1. (Case 1) If d ≡ 0 (mod 2):

(i) In the classical Galois structure, AL/Q has Z-basis{
1G, σ,

−1G + τ

2
,
−1G + σ− τ + στ

4

}
.

(ii) The associated order AH has Z-basis{
w1,
−w1 + w2

2
,
−w1 − w2 + w3

4
,

rw1 − rw2 + w4

2b

}
,

where r is the class of −c mod b.
(iii) The element β = γ1 + γ2 + γ3 is a free generator of OL as both AL/Q-module

and AH-module.

2. (Cases 2 and 3) If d ≡ 1 (mod 2) and a + b ≡ 3 (mod 4):

(i) In the classical Galois structure, AL/Q has Z-basis{
1G, σ,

−1G + τ

2
,
−σ + στ

2

}
.

(ii) The associated order AH has Z-basis{
w1,
−w1 + w2

2
,

w3

2
,

rw1 − rw2 + w4

2b

}
,

where r is the class of −c mod b.
(iii) The element β = γ2 + γ3 is a free generator of OL as both AL/Q-module and

AH-module.

3. (Cases 4 and 5) If d ≡ 1 (mod 2), b ≡ 0 (mod 2), a + b ≡ 1 (mod 4):

(i) In the classical Galois structure, AL/Q = Z[G].
(ii) The associated order AH has Z-basis{

w1, w2, w3,
−sw1 + sw2 − w3 + w4

2b

}
,

where s is the class of c mod 2b.
(iii) The element β = γ2 − γ3 is a free generator of OL as both AL/Q-module and

AH-module.
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3.3 Biquadratic extensions of Q

If G is elementary abelian, L/Q is a biquadratic extension, so there exist different
square-free integers m, n ∈ Z such that L = Q(

√
m,
√

n). Let k = mn
d2 , where d =

gcd(m, n). The following result gives an integral basis of L/Q in terms of m, n and k
(see [Mar77, Exercise 2.43]).

Proposition 3.14. An integral basis B of L/Q is given as follows:

1. If m ≡ 3 (mod 4) and n, k ≡ 2(mod 4),

B =

{
1,
√

m,
√

n,
√

n +
√

k
2

}
.

2. If m ≡ 1 (mod 4) and n, k ≡ 2 or 3 (mod 4),

B =

{
1,

1 +
√

m
2

,
√

n,
√

n +
√

k
2

}
.

3. If m, n, k ≡ 1 (mod 4),

B =

{
1,

1 +
√

m
2

,
1 +
√

n
2

,
(

1 +
√

m
2

)(
1 +
√

k
2

)}
.

Remark 3.15. In [Tru12, Proposition 2.1], Truman shows that a biquadratic exten-
sion Q(

√
m,
√

n)/Q is tamely ramified if and only if m, n ≡ 1 (mod 4), which corre-
sponds to our case 3. Thus, cases 1 and 2 correspond to wildly ramified biquadratic
extensions.

Note that the previous cases cover all possible situations because m, n and k can
be exchanged conveniently. Keeping the notation of Section 3.1, let E1, E2 and E3
the quadratic subextensions of L/Q. We can assume without loss of generality that
E1 = Q(

√
m) and E2 = Q(

√
n), otherwise we would exchange m and n. Then,

E3 = Q(
√

k).

We translate the strategy and the notation of the case G ∼= C4 to this one: for each
Hopf Galois structure H of L/Q we first compute the Gram matrix G(H, LBc) where
in L we fix the basis Bc = {1,

√
m,
√

n,
√

k}, and then change to an integral basis B
of Proposition 3.14. We call Bc = {e1, e2, e3, e4} and B = {γ1, γ2, γ3, γ4}. When we
multiply the square roots with each other, we can replace them with their respective
conjugates if necessary, so that the following relations always hold:

√
m
√

k =
m
d
√

n,
√

n
√

k =
n
d
√

m,
√

m
√

n = d
√

k.

3.3.1 Classical Galois structure

As in the case G ∼= C4, let us begin with the classical Galois structure Hc. We fix the
basis {1G, σ, τ, στ}. Since

σ(
√

m) = −
√

m, σ(
√

n) =
√

n, σ(
√

k) = −
√

k,

τ(
√

m) =
√

m, τ(
√

n) = −
√

n, τ(
√

k) = −
√

k,

στ(
√

m) = −
√

m, στ(
√

n) = −
√

n, στ(
√

k) =
√

k,
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we have

G(Hc, LBc) =


e1 e2 e3 e4
e1 −e2 e3 −e4
e1 e2 −e3 −e4
e1 −e2 −e3 e4

 .

Case 1: m ≡ 3 (mod 4) and n, k ≡ 2(mod 4)

The integral basis B has elements

γ1 = e1, γ2 = e2, γ3 = e3, γ4 =
e3 + e4

2
,

and the Gram matrix is

G(Hc, LB) =


γ1 γ2 γ3 γ4
γ1 −γ2 γ3 γ3 − γ4
γ1 γ2 −γ3 −γ4
γ1 −γ2 −γ3 −γ3 + γ4

 .

The Hermite normal form of M(Hc, LB) is

D =


1 0 1 2
0 1 0 −1
0 0 2 2
0 0 0 4

 .

This gives the basis of AL/Q{
1G, σ,

−1G + σ

2
,
−1G + σ− τ + στ

4

}
.

Given β ∈ OL, Dβ(Hc, LB) = 8β1β2β4(2β3 + β4). If we choose β1 = β2 = β4 = 1
and β3 = 0, then Dβ(Hc, LB) = 8, giving that OL is AL/Q-free with generator

β = γ1 + γ2 + γ4.

Case 2: m ≡ 1 (mod 4) and n, k ≡ 2 or 3 (mod 4)

We have
γ1 = e1, γ2 =

e1 + e2

2
, γ3 = e3, γ4 =

e3 + e4

2
,

and then

G(Hc, LB) =


γ1 γ2 γ3 γ4
γ1 γ1 − γ2 γ3 γ3 − γ4
γ1 γ2 −γ3 −γ4
γ1 γ1 − γ2 −γ3 −γ3 + γ4

 .

The Hermite normal form of M(Hc, LB) is

D =


1 0 1 0
0 1 0 1
0 0 2 0
0 0 0 2

 .
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We deduce that AL/Q has Z-basis{
1G, σ,

−1G + τ

2
,
−σ + στ

2

}
.

Given β ∈ OL,
Dβ(Hc, LB) = 4β2β4(2β3 + β4)(2β1 + β2).

In particular, if β = γ2 + γ4, then |Dβ(Hc, LB)| = 4 = |det(D)|, so OL is AL/Q-free
with generator β.

Case 3: m, n, k ≡ 1 (mod 4)

The integral basis B is formed by

γ1 = e1, γ2 =
e1 + e2

2
, γ3 =

e1 + e3

2
, γ4 =

1
4

e1 +
1
4

e2 +
m
4d

e3 +
1
4

e4,

and then

G(Hc, LB) =


γ1 γ2 γ3 γ4

γ1 γ1 − γ2 γ3
d−m

2d γ1 +
m
d γ3 − γ4

γ1 γ2 γ1 − γ3 γ2 − γ4

γ1 γ1 − γ2 γ1 − γ3
d+m

2d γ1 − γ2 − m
d γ3 + γ4

 .

By applying the unimodular matrix (B.12), we can reduce the matrix of the action
M(Hc, LB) to the matrix 

1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 2
0 d+m

2d 0 d−m
2d

 .

Since m ≡ 1 (mod 4), m is odd, and since it is divisible by d, d is also odd. Hence
d + m is even. On the other hand, it is clearly divisible by d. Since d and 2 are
coprime, 2d divides d + m; in other words, d+m

2d ∈ Z. Subtracting d+m
2d ∈ Z times the

second row to the fifth row and changing sign of the fifth row gives the matrix
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 2
0 0 0 m

d

 .

Now, m
d is odd because it divides m, so we easily arrive to the identity matrix

D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


as Hermite normal form. Then, I(Hc, L) = 1 and AL/Q = Z[G]. On the other hand,
for β ∈ OL,

Dβ(Hc, L) = β4(2β2 + β4)(4β1 + 2β2 + 2β3 + β4)
(

2β3 +
m
d

β4

)
.
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If m
d ≡ 1 (mod 4), we choose

β1 =
1
4

(
−1 +

m
d

)
, β2 = 0, β3 = −1

2

(
1 +

m
d

)
, β4 = 1

and then Dβ(Hc, L) = 1. Otherwise, if m
d ≡ 3 (mod 4), the choice

β1 =
1
4

(
1 +

m
d

)
, β2 = 0, β3 = −1

2

(
1 +

m
d

)
, β4 = 1

gives Dβ(Hc, L) = −1. Then, a normal integral basis generator is generated by

β =

{
1
4

(
−1 + m

d

)
γ1 − 1

2

(
1 + m

d

)
γ3 + γ4 if m

d ≡ 1 (mod 4),
1
4

(
1 + m

d

)
γ1 − 1

2

(
1 + m

d

)
γ3 + γ4 if m

d ≡ 3 (mod 4).

3.3.2 Non-classical Hopf Galois structures

Now, we study the non-classical Hopf Galois structures Hi := HTi ,1. We have seen
that they have bases{

Id, µ1, ηT1,1 + µ1ηT1,1,
√

m(ηT1,1 − µ1ηT1,1)
}

,{
Id, µ2, ηT2,1 + µ2ηT2,1,

√
n(ηT2,1 − µ2ηT2,1)

}
,{

Id, µ3, ηT3,1 + µ3ηT3,1,
√

k(ηT3,1 − µ3ηT3,1)
}

,

respectively. We call them {ui}4
i=1, {vi}4

i=1 and {wi}4
i=1, respectively.

Case 1: m ≡ 3 (mod 4) and n, k ≡ 2(mod 4)

The Gram matrices are

G(H1, L) =


γ1 γ2 γ3 γ4
γ1 γ2 −γ3 −γ4

2γ1 −2γ2 0 0
0 0 −2dγ3 + 4dγ4 (−m

d − d)γ3 + 2dγ4

 ,

G(H2, L) =


γ1 γ2 γ3 γ4
γ1 −γ2 γ3 γ3 − γ4

2γ1 0 −2γ3 −γ3
0 −2dγ3 + 4dγ4 0 − n

d γ2

 ,

G(H3, L) =


γ1 γ2 γ3 γ4
γ1 −γ2 −γ3 −γ3 + γ4

2γ1 0 0 γ3 − 2γ4
0 − 2m

d γ3
2n
d γ2

n
d γ2

 .

Let us find the Hermite normal form of the corresponding matrices of the action.

We start with H1. By means of the unimodular matrix (B.6), M(H1, L) can be
reduced to 

1 1 2 0
0 2 2 2d
0 0 4 0
0 0 0 d + m

d
0 0 0 4d

 .
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In the last two rows of the matrix above, we can carry out Euclid’s algorithm with
d + m

d and 4d, until leaving g = gcd(d + m
d , 4d) in one row and 0 in the other. We

claim that g = 4. Indeed, since m ≡ 3 (mod 4) and m = d m
d , one of d and m

d is 3 mod
4 and the other one is 1 mod 4. Then, 4 divides d + m

d . Now, assume that p is an
odd prime dividing both d + m

d and 4d. The latter condition implies that p divides d,
and then the former gives that p divides m

d . But since m is square-free, d and m
d are

coprime, so m
d cannot be divisible by p. This proves that g = 4 as claimed. Finally,

we reduce the non-zero entry above this one. Since d is odd, 2d ≡ 2 (mod 4), so we
subtract 2d−2

4 times the fourth row from the second one and obtain a 2 in the last
entry of the second row. Thus, M(H1, L) has Hermite normal form

D(H1, L) =


1 1 2 0
0 2 2 2
0 0 4 0
0 0 0 4

 .

This leads to the index I(H1, L) = 32. Moreover, AH1 has Z-basis{
u1,
−u1 + u2

2
,
−u1 − u2 + u3

4
,

u1 − u2 + u4

4

}
.

For H2, we can use the unimodular matrix (B.7) to reduce M(H2, L) to
1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 n

d
0 0 0 −2d

 .

To simplify the last two rows, we compute the greatest common divisor of n
d and 2d.

Since n ≡ 2 (mod 4), n
d ≡ 2 (mod 4). Then, gcd(2d, n

d ) = 2 gcd(d, n
d ). Now, since n is

square-free and d is a divisor of n, the primes of the factorization of d are among the
primes of the factorization of n and appear only once, so d and n

d are coprime. Thus,
gcd(2d, n

d ) = 2. Then, the Hermite normal form is

D(H2, L) =


1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 2

 .

Then, the index of H2 is I(H2, L) = 8 and OL has Z-basis{
v1,
−v1 + v2

2
,
−v1 − v2 + v3

4
,

v4

2

}
.

For the third non-classical Hopf Galois structure, we may reduce M(H3, L) to the
matrix 

1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 n

d
0 0 0 2 m

d

 ,

in this case using the matrix (B.8). Let us compute the greatest common divisor g of
n
d and 2 m

d . Since m ≡ 3 (mod 4), m
d is odd, so 2 m

d ≡ 2 (mod 4). On the other hand,
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we know yet that n
d ≡ 2 (mod 4). Then, g = 2 gcd(m

d , n
d ) = 2, since d is the greatest

common divisor of m and n. Therefore, the Hermite normal form is

D(H3, L) =


1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 2

 ,

whence I(H3, L) = 8 and AH2 has Z-basis{
w1,
−w1 + w2

2
,
−w1 − w2 + w3

4
,

w4

2

}
.

Now, we study the freeness of OL over its associated orders in H1, H2 and H3.
Given β ∈ OL,

Dβ(H1, L) = −32β1β2

(
dβ2

3 + dβ3β4 +
1
4

(
d +

m
d

)
β2

4

)
,

Dβ(H2, L) = 8β1(2β3 + β4)
(

2dβ2
2 +

n
2d

β2
4

)
,

Dβ(H3, L) = 8β1β4

(
2

m
d

β2
2 + 2

n
d

β2
3 + 2

n
d

β3β4 +
n
2d

β2
4

)
.

Proposition 3.16. For i ∈ {1, 2, 3}, OL is AHi -free if and only if there exist integers a, b ∈
Z such that:

1. a2 + mb2 = ±4d, if i = 1.

2. a2 + nb2 = ±2d, if i = 2.

3. a2 + kb2 = ±2 n
d , if i = 3.

If that is the case, then a free generator of OL as AHi -module is

β =


γ1 + γ2 +

a−db
2d γ3 + bγ4 if i = 1

γ1 +
a

2d γ2 +
1−b

2 γ3 + bγ4 if i = 2
γ1 +

b
2 γ2 +

ad−n
2n γ3 + γ4 if i = 3

Proof. 1. We know that OL is AH-free if and only if there is some β ∈ OL such
that |Dβ(H1, L)| = 32, that is,

β1β2

(
dβ2

3 + dβ3β4 +
1
4

(
d +

m
d

)
β2

4

)
= ±1,

which at the same time is equivalent to each factor being either 1 or −1. We
can always choose β1, β2 ∈ {−1, 1}, so the AH-freeness of OL is equivalent to
the existence of β3, β4 ∈ Z such that

dβ2
3 + dβ3β4 +

1
4

(
d +

m
d

)
β2

4 = s,

where s ∈ {−1, 1} (we will alternatively use this notation for ±1). Now, we
regard this equality as a quadratic equation in β3 with parameter β4, whose
solutions are

β3 =
−dβ4 ±

√
∆

2d
,
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where ∆ is the discriminant of the equation. Now, it has an integral solution if
and only if ∆ is a square and 2d divides at least one of −dβ4 ±

√
∆. Now, it is

easy to check that ∆ = 4(−mβ2
4 + 4ds).

Assume that there are integers a and b as in the statement. Choosing β4 = b,
it turns out that ∆ = 4a2, which is a square, and −db +

√
∆ = −db + 2a.

Note that since a2 + mb2 = 4ds and d divides mb2, it also divides a2, whence d
divides a because it is square-free. Thus, −db + 2a is divisible by both 2 and d,
hence by 2d. Conversely, if OL is AH-free, this means that there are β3, β4 ∈ Z

such that
dβ2

3 + dβ3β4 +
1
4

(
d +

m
d

)
β2

4 = s,

and then β3 =
−dβ4±

√
−mβ2

4+4ds
2d ∈ Z, so a =

√
−mβ2

4 + 4ds and b = β4 satisfy
the condition of the statement.

2. The argument is essentially the same as in 1. In this case, the equation we must
consider is

2dβ2
2 +

n
2d

β2
4 = s,

with unknown β2 and parameter β4. Then, the discriminant is ∆ = 4(−nβ2
4 +

2ds), and the solutions are β2 = ±
√

∆
4d . Thus, the existence of a and b satisfying

a2 + nb2 = 2ds is equivalent to ∆ being a square with β4 = ±b. Namely
∆ = 4(−nb2 + 2ds) = 4a2, whence it must be β2 = a

2d . This is an integer
number: since a2 + nb2 = 2ds and 2d divides n, 2d divides a2, so 2d being
square-free implies that 2d divides a. Moreover, β4 = ±b must accomplish
2β3 + β4 = ±1 for β3 ∈ Z. This is always possible because b is odd. Indeed,
since a2 + nb2 = 2ds and a is even, taking mod 4 gives 2b2 ≡ 2 (mod 4), whence
b is odd.

3. Here the situation is slightly different. Now, the equation involved is

2
n
d

β2
3 + 2

n
d

β3β4 + 2
m
d

β2
2 +

n
2d

β2
4 = s,

with unknown β3 and parameter β2. Since β4 is a factor of Dβ(H3, L), it must
be β4 ∈ {−1, 1}, and we may assume that β4 = 1. Then, the quadratic equation
has solutions

β3 =
−2 n

d ±
√

∆
4 n

d
,

where
∆ = 4

(
−4kβ2

2 + 2
n
d

s
)

.

Then, there are a and b as in the statement if and only if ∆ is a square with
β2 = ± b

2 . This value of β2 actually corresponds to an integer number. Indeed,
the equality a2 + kb2 = 2 n

d s implies that a is even because so are k and 2 n
d s, and

then taking classes mod 4 gives that 2b2 ≡ 0 (mod 4), whence b is even. On the
other hand, we then have

β3 =
−2 n

d ± 2a
4 n

d
=
−n± ad

2n
,

which belongs to Z if and only if n
d divides a. But this is ensured by the equality

a2 + kb2 = 2 n
d s, as n

d divides k, hence a2, and hence a because n
d is square-free.
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The factors of Dβ(H3, L) other than the quadratic equation do not add any
restriction.

Remark 3.17. The conditions obtained in Proposition 3.16 refer to the solvability
in Z of equations of the form x2 − Dy2 = N, which is known as the generalized
Pell equation or the Pell-Fermat equation. The equations of this type have been
widely studied and algorithms of resolution have been developed (see for example
[Coh07, Section 6.3.5]). This problem could also be approached by applying the
general theory for the equation ax2 + bxy + cy2 = N (see [Mat02]) to the quadratic
factor of each Dβ(Hi, L).

Remark 3.18. Note that the quadratic factor of Dβ(H3, L) is actually 2 m
d β2

2 +
n
2d (2β3 +

β4)
2. Since n ≡ k ≡ 2 (mod 4), we can exchange them in Proposition 3.16, which

amounts to exchange H2 and H3. By the original result, we have that OL is AH2-free
if and only if the last factor 2dβ2

2 +
n
2d β2

4 of Dβ(H2, L) has some root as polynomial
in β2 with β4 odd. Once we have exchanged m and n, the freeness of OL as AH2-
module is given by the third statement. Now, if we exchange m and n in the last
factor of Dβ(H3, L), this also exchanges d and m

d . We then obtain 2dβ2
2 +

n
2d (2β3 +

β4)
2, recovering the last factor of Dβ(H2, L) (or more precisely, we obtain the same

equation in β2), and our result is coherent. Moreover, if we exchange m and n in the
Pell equations themselves, we deduce that the equation x2 + ny2 = ±2d has some
solution if and only if so has the equation x2 + ny2 = ±2 n

d .

The equations in Proposition 3.16 may have infinitely many solutions if m, n or k
are negative. In the following result we explore the situation when they are positive.

Proposition 3.19. Let L = Q(
√

m,
√

n) be a biquadratic extension of Q with m ≡ 3 (mod 4)
and n ≡ 2 (mod 4). Call d = gcd(m, n), k = mn

d2 .

1. If m > 0, OL is not AH1-free unless m and n are coprime, (in which case β = γ1 +
γ2 + γ3 is a generator) or m = 3 and n is divisible by 3 (in which case a generator is
β = γ1 + γ2 − γ3 + 2γ4).

2. If n > 0 (resp. k > 0), then OL is not AH2-free (resp. not AH3-free) unless n = 2d.

Proof. 1. Let us suppose that there are a, b ∈ Z such that a2 +mb2 = 4d (the minus
sign cannot occur under these hypotheses). Since a and b are raised to the
square, their signs do not matter, so we can assume without loss of generality
that a, b ≥ 0. From the equation we have that 4d − mb2 is a square, and in
particular it is non-negative, that is mb2 ≤ 4d. Now, since d is square-free,
4d is not a square unless m and n are coprime, in which case a2 + mb2 = 4.
Then, (a, b) = (2, 0) or (a, b) = (1, 1) and m = 3. Assume that m and n are
not coprime, i.e. d > 1. Then b 6= 0, and the previous inequality mb2 ≤ 4d
gives m ≤ 4d. Since d is a divisor of m and m is odd, it must be m = qd
with q ∈ {1, 3}. Then, 4d−mb2 = (4− qb2)d must be a square. In particular,
4− qb2 ≥ 0, whence b = 1. Therefore, (4− q)d must be a square. For q = 3,
this is d, which is not a square. Otherwise, for q = 1, 3d is a square if and
only if d = 3. Then m = 3, and the equation a2 + 3b2 = 12 only has solutions
(a, b) = (0, 2) and (a, b) = (3, 1). Finally, since d = m = 3 and d is the greatest
common divisor of m and n, n must be divisible by 3.

2. If n > 0 and there are a, b ∈ Z such that a2 + nb2 = 2d, then 2d − nb2 is a
square, and since 2d is square-free, n ≤ 2d. Since d is odd and divisor of n
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and n ≡ 2 (mod 4), it must be n = 2d. Thus, a2 + 2db2 = 2d is only satisfied
for (a, b) = (0, 1). As for k, if there are a, b ∈ Z such that a2 + kb2 = 2 n

d and
2 n

d is not a square, then we argue as before to obtain that k = n
d or k = 2 n

d .
Both of them are impossible, the former because a2 + n

d b2 = 2 n
d has no integral

solutions, and the latter because 2 n
d ≡ 0 (mod 4). Hence 2 n

d is a square, which
implies n

d = 2, that is, n = 2d, and it must be (a, b) = (2, 0).

Corollary 3.20. The unique totally real biquadratic extension L = Q(
√

m,
√

n) of Q with
m ≡ 3 (mod 4) and n ≡ 2 (mod 4) for which OL is AHi -free for all i ∈ {1, 2, 3} is L =

Q(
√

3,
√

2).

Proof. Since L/Q is totally real, m, n, k > 0. By Proposition 3.19, OL is AH1-free only
for m and n coprime or m = 3 and n divisible by 3. Now,OL is AH2-free and AH3-free
only for n = 2d, which in the first case gives (m, n) = (3, 2), and in the second one,
(m, n) = (3, 6). But in this last case k = 2, so both refer to the same extension.

Case 2: m ≡ 1 (mod 4) and n, k ≡ 2 or 3 (mod 4)

We have the Gram matrices:

G(H1, L) =


γ1 γ2 γ3 γ4
γ1 γ2 −γ3 −γ4

2γ1 2γ1 − 2γ2 0 0
0 0 −2dγ3 + 4dγ4 (−m

d − d)γ3 + 2dγ4

 ,

G(H2, L) =


γ1 γ2 γ3 γ4
γ1 γ1 − γ2 γ3 γ3 − γ4

2γ1 γ1 −2γ3 −γ3
0 −dγ3 + 2dγ4 0 n

d γ1 − 2n
d γ2

 ,

G(H3, L) =


γ1 γ2 γ3 γ4
γ1 γ1 − γ2 −γ3 −γ3 + γ4

2γ1 γ1 0 γ3 − 2γ4
0 −m

d γ3 − 2m
d γ1 +

4m
d γ2 −m

d γ1 +
2m
d γ2

 .

Let us find the Hermite normal forms. For H1, we may reduce the matrix of the
action to 

1 1 0 0
0 2 0 2d
0 0 2 0
0 0 0 m

d + d
0 0 0 4d

 ,

using the matrix (B.9). Again, we carry out Euclid’s algorithm in the last two rows
so as to leave 0 in one and the greatest common divisor of m

d + d and 4d in the
other. In this case, we have that m = d m

d ≡ 1 (mod 4), so d ≡ m
d (mod 4), and then

d + m
d ≡ 2 (mod 4). Thus, 2 is the greatest power of 2 dividing both m

d + d and 4d.
Reasoning as in the previous case, the aforementioned greatest common divisor is 2.
Therefore, the Hermite normal form in this case is

D(H1, L) =


1 1 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 ,
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so I(H1, L) = 8 and AH has Z-basis{
u1,
−u1 + u2

2
,

u3

2
,

u4

2

}
.

For H2, we can use (B.10) to reduce M(H2, L) to
1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 n

d
0 0 0 d

 .

Since n is square-free and d is a divisor of n, d and n
d are coprime, so the Hermite

normal form is

D(H2, L) =


1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 1

 ,

whence I(H3, L) = 2. Moreover, OL has AH2-basis{
v1, v2,

−v1 − v2 + v3

2
, v4

}
.

Finally, for H3, we reduce M(H3, L) by means of (B.11) to the matrix
1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 m

d
0 0 0 n

d

 .

Clearly, gcd(m
d , n

d ) = 1, so the Hermite normal form of M(H3, L) is

D(H3, L) =


1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 1

 .

Then, I(H3, L) = 2 and OL has AH3-basis{
w1, w2,

−w1 − w2 + w3

2
, w4

}
.

Let us study the freeness. Given β ∈ OL,

Dβ(H1, L) = −8β2(2β1 + β2)

(
2dβ2

3 + 2dβ3β4 +
1
2

(
d +

m
d

)
β2

4

)
,

Dβ(H2, L) = 4(2β1 + β2)(2β3 + β4)
(

dβ2
2 +

n
d

β2
4

)
,

Dβ(H3, L) = 4β4(2β1 + β2)
(m

d
β2

2 + 4
n
d

β2
3 + 4

n
d

β3β4 +
n
d

β2
4

)
.

We see that 4 divides Dβ(Hi, L) for i ∈ {2, 3}while I(Hi, L) = 2 for i ∈ {1, 2}. Hence,
OL is neither AH2-free nor AH3-free. As for H1, we have:
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Proposition 3.21. OL is AH1-free if and only if there exist integers a, b ∈ Z such that
a2 + mb2 = ±2d. If it is so, a free generator of OL as AH1-module is

β = γ1 − γ2 +
a− db

2d
γ3 + bγ4.

Proof. The proof follows the same procedure as in Proposition 3.16. In this case, the
equation we consider is

2dβ2
3 + 2dβ3β4 +

1
2

(
d +

m
d

)
β2

4 = s, s ∈ {−1, 1},

with unknown β3 and parameter β4. The discriminant of the equation is ∆ =
4(−β2

4m + 2ds), so this being a square is equivalent to the existence of a and b as
in the statement with β4 = b. Then, the solutions of the equation are β3 = −db±a

2d . We
can choose without loss of generality the plus sign. Let us check that this is actually
an integer number. Indeed, from the equation a2 + mb2 = 2ds we deduce that d di-
vides a, and on the other hand taking classes mod 4 gives a2 + b2 ≡ 2 (mod 4) (since
d must be odd because so is m), whence a2 ≡ b2 ≡ 1 (mod 4), so a and b are odd.
Hence, −db + a is even, which proves that it is divisible by 2d. Finally, we are free to
choose β1, β2 ∈ Z such that β2 = ±1 and 2β1 + β2 = ±1.

Corollary 3.22. If m > 0, OL is not AH1-free.

Proof. We follow the same strategy as in Proposition 3.19. Assume that there are
integers a, b ∈ Z such that a2 + mb2 = 2d. Then it must be m ≤ 2d, and since m
is odd, necessarily m = d. But then we have a2 + db2 = 2d, which has no integral
solutions.

Case 3: m, n, k ≡ 1 (mod 4)

In this case, the Gram matrices are

G(H1, L) =


γ1 γ2 γ3 γ4
γ1 γ2 γ1 − γ3 γ2 − γ4

2γ1 2γ1 − 2γ2 γ1 γ1 − γ2
0 0 x y

 ,

G(H2, L) =


γ1 γ2 γ3 γ4
γ1 γ1 − γ2 γ3

( 1
2 −

m
2d

)
γ1 +

m
d γ3 − γ4

2γ1 γ1 2γ1 − 2γ3
(m+d)γ1−2mγ3

2d
0 z 0 t

 ,

G(H3, L) =


γ1 γ2 γ3 γ4

γ1 γ1 − γ2 γ1 − γ3
d+m

2d γ1 − γ2 − m
d γ3 + γ4

2γ1 γ1 γ1
d−m

2d γ1 + γ2 +
m
d γ3 − 2γ4

0 m
d γ1 − 2 m

d γ3 − n
d γ1 +

2n
d γ2

(
− m

2d2 +
m
2d

)
γ1 +

m
d2 γ2 − m

d γ3

 ,

where
x = mγ1 − 2dγ2 − 2mγ3 + 4dγ4,

y =
m(m + 1)

2d
γ1 −mγ2 −

m(m + 1)
d

γ3 + 2mγ4,

z = mγ1 − 2dγ2 − 2mγ3 + 4dγ4,
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t =
( n

2d
+

m
2

)
γ1 −

(
d +

n
d

)
γ2 −mγ3 + 2dγ4.

Let us find the Hermite normal form of each matrix of the action. Using the
matrix (B.13), we can reduce the matrix of the action M(H1, L) to

1 0 0 m
(m+1

2d − 1
)

0 1 0 −m
(m+1

2d − 1
)

0 0 1 −m(m+1)
2d

0 0 0 m
d (m + 1)

0 0 0 2d

 .

Now, we are interested in the greatest common divisor of 2d and m
d (m + 1). Since m

d
and m+ 1 are coprime, this is the product of gcd(m

d , 2d) and gcd(m+ 1, 2d). The first
of these is 1 because m

d , 2 and d are pairwise coprime. As for the other one, m + 1
and 2d are both 2 mod 4, and m + 1 is coprime with d, hence the greatest common
divisor is 2. Then, the matrix above is equivalent to

1 0 0 m
(m+1

2d − 1
)

0 1 0 −m
(m+1

2d − 1
)

0 0 1 −m(m+1)
2d

0 0 0 2

 .

The entries above 2 in the fourth column reduce to 0 or 1 depending on their parity.
Therefore, the Hermite normal form of M(H1, L) is:

D(H1, L) =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 2

 .

Then, I(H1, L) = 2 and AH1 has Z-basis{
u1, u2, u3,

−u3 + u4

2

}
.

For the second one, we first use (B.14) to reduce the matrix of the action to

1 0 0 3m2+n
2d

0 1 0 −9m2+n
2d

0 0 1 −2md−3m2−n
2d

0 0 0 d + n
d

0 0 0 m + d
0 0 0 2n

d
0 0 0 2d


.

Since the greatest common divisor of 2d and 2n
d is 2, arguing as in previous cases, we

obtain that the Hermite normal form is

D(H2, L) =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 2

 .
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We then see that I(H2, L) = 2 and AH2 has Z-basis{
v1, v2, v3,

−v1 + v2

2

}
.

Finally, for H3, we reduce M(H3, L) to

1 0 0 nd2+m(m−n)d−m2n
2d3

0 1 0 nd2+m(m−n)d−m2n
2d3

0 0 1 nd2−m(m−n)d+m2n
2d3

0 0 0 m2

d2 (d− n)
0 0 0 m+d

d
m
d

0 0 0 m+n
d

0 0 0 2n
d


by means of (B.15). Let us focus in the last two entries. Since m and n are 1 mod 4,
m + n is 2 mod 4, just as 2n. Then, gcd(m + n, 2n) = 2gcd(m + n, n) = 2d. Thus,
gcd(m+n

d , 2n
d ) = 2. Therefore, the Hermite normal form of the matrix of the action is

D(H3, L) =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 2

 .

We deduce that I(H3, L) = 2 and AH has Z-basis{
w1, w2, w3,

−w3 + w4

2

}
.

Regarding the freeness, for β ∈ OL, we have

Dβ(H1, L) = −2(2β2 + β4)(4β1 + 2β2 + 2β3 + β4)

(
2dβ2

3 + 2mβ3β4 +
m
d

m + 1
2

β2
4

)
,

Dβ(H2, L) = 2
(

2β3 +
m
d

β4

)
(4β1 + 2β2 + 2β3 + β4)

(
2dβ2

2 + 2dβ2β4 +
1
2

(
d +

n
d

)
β2

4

)
,

Dβ(H3, L) = 2β4(4β1 + 2β2 + 2β3 + β4)q3(β1, β2, β3, β4),

where

q3(β1, β2, β3, β4) =2
m
d

β2
2 + 2

m
d

β2β4 + 2
n
d

β2
3 + 2kβ3β4 +

m
d

k + 1
2

β2
4.

Proposition 3.23. For i ∈ {1, 2, 3}, OL is AHi -free if and only if there exist integers a, b ∈
Z such that:

1. a2 + mb2 = ±2d, if i = 1.

2. a2 + nb2 = ±2d, if i = 2.

3. a2 + kb2 = ±2 n
d , if i = 3.
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In that case, a generator of OL as AHi -module is

β =



mb−a
4d γ1 +

1−b
2 γ2 +

−mb+a
2 γ3 + bγ4 if i = 1 and a ≡ b (mod 4)

mb−a−2d
4d γ1 +

1−b
2 γ2 +

−mb+a
2 γ3 + bγ4 if i = 1 and a 6≡ b (mod 4)

mb−a
4d γ1 +

−bd+a
2d γ2 +

1
2

(
1− m

d b
)

γ3 + bγ4 if i = 2 and a ≡ b (mod 4)
mb−a−2d

4d γ1 +
−bd+a

2d γ2 +
1
2

(
1− m

d b
)

γ3 + bγ4 if i = 2 and a 6≡ b (mod 4)
1
2

(
1−b

2 −
−k+a

2 n
d

)
γ1 +

b−1
2 γ2 +

−k+a
2 n

d
γ3 + γ4 if i = 3 and 1−b

2 ≡
−k+a

2 n
d

(mod 2)
1
2

(
−1−b

2 − −k+a
2 n

d

)
γ1 +

b−1
2 γ2 +

−k+a
2 n

d
γ3 + γ4 if i = 3 and 1−b

2 6≡
−k+a

2 n
d

(mod 2)

Proof. First, note that if a and b are integers that satisfy any of the equalities above,
then a and b are necessarily odd. Indeed, Since m, n, k ≡ 1 (mod 4), then taking
classes mod 4 gives a2 + b2 ≡ 2 (mod 4), whence it must be a2 ≡ b2 ≡ 1 (mod 4).
This is only possible when a and b are odd.

1. We proceed as in the previous cases. In this case, the equation to consider is

2dβ2
3 + 2mβ3β4 +

m
d

m + 1
2

β2
4 = s1, s1 ∈ {−1, 1},

with unknown β3 and parameter β4. It has discriminant ∆ = 4(−mβ2
4 + 2ds)

and the solutions are −2mβ4±
√

∆
4d . Let us choose the plus sign. Now, there are

integers a and b as in the statement if and only if ∆ is a square with β4 = b,
and the solution becomes β3 = −mb+a

2d . This is an integer number because d
divides both a and m, and −mb + a is even. On the other hand, β4 = b must
fulfill the equality 2β2 + β4 = s2, s2 ∈ {−1, 1}, which is the case since b is odd.
Replacing this into the equality 4β1 + 2β2 + 2β3 + β4 = s3, s3 ∈ {−1, 1}, gives
4β1 + 2β3 = s3 − s2. Since s3 − s2 ∈ {−2, 0, 2}, we need 2β1 + β3 ∈ {−1, 0, 1}.
Since there are both even and odd possibilities for this quantity, we can always
find β1 ∈ Z satisfying the equality, regardless of the parity of β3 = −mb+a

2d .

2. In this case, the quadratic equation is

2dβ2
2 + 2dβ2β4 +

1
2

(
d +

n
d

)
β2

4 = s,

with unknown β2 and parameter β4. The discriminant is ∆ = 4(−nβ2
4 + 2ds),

and the solutions are −2dβ4±
√

∆
4d . We see that there are integers a and b such

that a2 + nb2 = 2ds if and only if ∆ is a square with β4 = b. In that case, the
solution becomes β2 = −bd+a

2d . On the other hand, since b and m
d are odd, any of

the equality 2β3 +
m
d β4 = ±1 do not impose any restriction on β3 ∈ Z. Finally,

neither do any of the equalities 4β1 + 2β2 + 2β3 + β4 = ±1 on β1 ∈ Z. Indeed,
this is equivalent to 2β1 = ±1−b

2 − β3 − β4, and we can choose conveniently
the sign of the independent term in order to obtain an even number.

3. We must consider the equation

2
m
d

β2
2 + 2

m
d

β2β4 + 2
n
d

β2
3 + 2kβ3β4 +

m
d

k + 1
2

β2
4 = s,

and we choose unknown β3 and parameters β2 and β4. The discriminant for

this equation is ∆ = 4((2β2 + β4)
2k + 2 n

d s), and the solutions are −2kβ4±
√

∆
4 n

d
.

There are integers a and b such that a2 + kb2 = 2 n
d s if and only if ∆ is a square
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with 2β2 + β4 = b. Since β4 is one of the factors of Dβ(H3, L), it must be β4 =
±1, and since b is odd, there is β2 ∈ Z satisfying that equality. The solution
then becomes β3 = −k+a

2 n
d

, which is an integer number because −k + a is even
and divisible by n

d . Finally, we need the equality 4β1 + 2β2 + 2β3 + β4 = ±1
to hold. This is equivalent to 4β1 + 2β2 + 2β3 + β4 = 4β1 + 2β3 = ±1− b, that
is, 2β1 = ±1−b

2 − β3, and it does not impose any restriction on β1 ∈ Z because
we can choose suitably the sign in the independent term so that it becomes an
even number.

Remark 3.24. The criteria obtained in Proposition 3.23 were proved by Truman in
[Tru12, Proposition 6.1] using the theory of idèles. In his case, he works indis-
tinctly with a non-classical Hopf Galois structure of a tame biquadratic extension
Q(
√

m,
√

n)/Q and obtains the same condition for m. This fits with our result be-
cause m, n, k being 1 mod 4 allows to exchange them indistinctly. Our Propositions
3.16 and 3.21 show that OL presents a similar behaviour as AHi -module for a wildly
ramified biquadratic extension.

3.3.3 Summary of results

Let L = Q(
√

m,
√

n) be a biquadratic extension of Q with m and n square-free and
let k = mn

d2 , where d = gcd(m, n).

Theorem 3.25 (Associated orders). 1. If m ≡ 3 (mod 4) and n, k ≡ 2 (mod 4), then:

(i) The associated order AL/Q in the classical Galois structure has Z-basis{
1G, σ,

−1G + σ

2
,
−1G + σ− τ + στ

4

}
.

(ii) The associated orders AH1 , AH2 and AH3 in the non classical Hopf Galois struc-
tures have Z-basis{

u1,
−u1 + u2

2
,
−u1 − u2 + u3

4
,

u1 − u2 + u4

4

}
,{

v1,
−v1 + v2

2
,
−v1 − v2 + v3

4
,

v4

2

}
,{

w1,
−w1 + w2

2
,
−w1 − w2 + w3

4
,

w4

2

}
,

respectively.

2. If m ≡ 1 (mod 4) and n, k 6≡ 1 (mod 4), then:

(i) The classical associated order AL/Q has Z-basis{
1G, σ,

−1G + τ

2
,
−σ + στ

2

}
.

(ii) The non-classical associated orders AHi , i ∈ {1, 2, 3}, have Z-bases{
u1,
−u1 + u2

2
,

u3

2
,

u4

2

}
,{

v1, v2,
−v1 − v2 + v3

2
, v4

}
,{

w1, w2,
−w1 − w2 + w3

2
, w4

}
.
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3. If m, n, k ≡ 1 (mod 4), then:

(i) The elements of G form a Z-basis of AL/Q.
(ii) The associated orders AH1 , AH2 and AH3 have Z-bases{

u1, u2, u3,
−u3 + u4

2

}
,{

v1, v2, v3,
−v3 + v4

2

}
,{

w1, w2, w3,
−w3 + w4

2

}
.

Theorem 3.26 (Freeness). 1. If m ≡ 3 (mod 4) and n, k ≡ 2 (mod 4), then:

(i) The element β = 1 +
√

m +
√

n+
√

k
2 is a free generator of OL as AL/Q-module.

(ii) OL is AH1-free (resp. AH2-free, resp. AH3-free) if and only if there are integers
a, b such that a2 + mb2 = ±4d (resp. a2 + nb2 = ±2d, resp. a2 + kb2 = ±2 n

d ).

2. If m ≡ 1 (mod 4) and n, k 6≡ 1 (mod 4), then:

(i) A generator of OL as AL/Q-module is β = γ2 + γ4

(ii) OL is AH1-free if and only if there are integers a, b such that a2 + mb2 = ±2d.
Moreover, OL is never AH2-free nor AH3-free.

3. If m, n, k ≡ 1 (mod 4), then:

(i) OL has AL/Q-generator

β =

{
1
4

(
−1 + m

d

)
γ1 − 1

2

(
1 + m

d

)
γ3 + γ4 if m

d ≡ 1 (mod 4),
1
4

(
1 + m

d

)
γ1 − 1

2

(
1 + m

d

)
γ3 + γ4 if m

d ≡ 3 (mod 4).
.

(ii) OL is AH1-free (resp. AH2-free, resp. AH3-free) if and only if there are integers
a, b such that a2 + mb2 = ±2d (resp. a2 + nb2 = ±2d, resp. a2 + kb2 = ±2 n

d ).

3.4 Totally ramified cyclic quartic extensions of Q2

If L/Q2 is a totally ramified cyclic quartic extension of 2-adic fields, L is the splitting
field over Q2 of one of the polynomials

x4 ± 4x2 + 2, x4 ± 20x2 + 50, x4 ± 52x2 + 26, x4 ± 20x2 + 10.

The first four polynomials correspond to the liftings of Q(
√

2) to cyclic quartic ex-
tensions and appear in [Rio95, Section 2.7]. The other ones generate the liftings of
Q2(
√

10) and are taken from the online database [LMFDB]. Looking at the roots of
these polynomials (that can be computed easily as solutions of a biquadratic equa-
tion), we see that there are a, b, c, d ∈ Z2 for which L/Q2 is as in [Har+87, Theorem
1] and f (x) = x4 − 2adx2 + a2c2d. The relations determined in Section 3.2 remain
valid in this case. Then

w =
1

abc
z3 − b2 + d

bc
z.

When f is 2-Eisenstein, B = {1, z, z2, z3} is an integral basis of L. For this reason, we
will need also the coordinates of the powers of w:

w2 = −z2 + 2ad,

w3 =
b2 + d

bc
z3 − ad

bc
(d + 3b2)z.
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3.4.1 Classical Galois structure

We begin with the classical Galois structure. The Gram matrix where in L we fix the
basis of the powers of z is

G(Hc, LB) =


1 z z2 z3

1 w w2 w3

1 −z z2 −z3

1 −w w2 −w3

 .

Case 1: f (x) = x4 + 4sx2 + 2, s ∈ {−1, 1}

The roots of f are

z =

√
−s(2 +

√
2), w =

√
−s(2−

√
2)

and the negatives. Then a = −s, b = c = 1 and d = 2. Since f is 2-Eisenstein,
B is an integral basis of L. Now, we have w = −3z − sz3, w2 = −4s − z2 and
w3 = 10sz + 3z3. Then, the Gram matrix is

G(Hc, L) =


1 z z2 z3

1 −3z− sz3 −4s− z2 10sz + 3z3

1 −z z2 −z3

1 3z + sz3 −4s− z2 −10sz− 3z3

 .

The Hermite normal form of the matrix of the action is

D =


1 0 1 2
0 1 0 −1
0 0 2 2
0 0 0 4

 ,

which gives the basis of AL/Q2{
1G, σ,

−1G + σ2

2
,
−1G + σ− σ2 + σ3

4

}
.

We also deduce that I(Hc, L) = v2(det(D)) = 3. If β ∈ OL,

Dβ(Hc, L) = −8 β3

(
β2

2s + 10 β4
2s− 6 β2 β4

)
(−2 β3 s + β1) .

If β1 = β2 = β3 = 1 and β4 = 0, then this is 16− 8s, which has 2-adic valuation 3, so
β = 1 + z + z2 is a normal integral basis generator.

Case 2: f (x) = x4 + 20sx2 + 50, s ∈ {1,−1}

In this case, the roots of f are

z =

√
−5s(2 +

√
2), w =

√
−5s(2−

√
2),

and the negatives, and we have a = −5s, b = c = 1 and d = 2. The Gram matrix is
in this case

G(Hc, L) =


1 z z2 z3

1 −3z− s
5 z3 −20s− z2 50sz + 3z3

1 −z z2 −z3

1 3z + s
5 z3 −20s− z2 −(50sz + 3z3)

 .
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The Hermite normal form of M(Hc, L) turns out to be

D =


1 0 1 2
0 1 0 −1
0 0 2 2
0 0 0 4

 .

Then, as before, I(Hc, L) = 3 and AL/Q2 has Z2-basis{
1G, σ,

−1G + σ2

2
,
−1G + σ− σ2 + σ3

4

}
.

For β ∈ OL,

Dβ(Hc, L) =
8β3

(
β2

2s + 250 β4
2s− 30 β2 β4

)
(−10 β3 s + β1)

5
.

In particular, if β = 1+ z+ z2, then v3(Dβ(Hc, L)) = 3, so β is a normal integral basis
generator.

Case 3: f (x) = x4 + 52sx2 + 26, s ∈ {−1, 1}

The roots are z =
√
−s(26 + 5

√
26), w =

√
−s(26− 5

√
26), −z and −w. Then

a = −s, b = 5, c = 1 and d = 26. The Gram matrix in this case is

G(Hc, L) =


1 z z2 z3

1 − 51z+sz3

5 −52s− z2 2626sz+51z3

5
1 −z z2 −z3

1 51z+sz3

5 −52s− z2 − 2626sz+51z3

5

 .

We obtain once again as Hermite normal form of M(Hc, L)

D =


1 0 1 2
0 1 0 −1
0 0 2 2
0 0 0 4

 ,

whence I(Hc, L) = 3 and a Z2-basis of AL/Q2{
1G, σ,

−1G + σ2

2
,
−1G + σ− σ2 + σ3

4

}
.

For β ∈ OL, one computes

Dβ(Hc, L) = −
8β3

(
β2

2s + 2626 β4
2s− 102 β2 β4

)
(−26 β3 s + β1)

5
.

For β = 1 + z + z2, we have Dβ(Hc, L) = 208
5 −

8s
5 , with 2-adic valuation 3, so this β

is a normal integral basis generator of L.
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Case 4: f (x) = x4 + 20sx2 + 10, s ∈ {−1, 1}

Now, we have

z =

√
−s(10 + 3

√
10), w =

√
−s(10− 3

√
10).

Then, a = −s, b = 3, c = 1 and d = 10. The Gram matrix in this case is

G(Hc, L) =


1 z z2 z3

1 − 19z+sz3

3 −20s− z2 370sz+19z3

3
1 −z z2 −z3

1 19z+sz3

3 −20s− z2 − 370sz+19z3

3

 .

This leads to exactly the same Hermite normal form

D =


1 0 1 2
0 1 0 −1
0 0 2 2
0 0 0 4


as in the previous cases, so the basis of AL/Q2 is the same as above. On the other
hand, for β ∈ OL, we have

Dβ(Hc, L) = −
8β3

(
β2

2s + 370 β4
2s− 38 β2 β4

)
(−10 β3 s + β1)

3
.

In particular, for β = 1 + z + z2, one obtains Dβ(Hc, L) = 80
3 −

8s
3 , so this is a normal

integral basis generator of OL.

3.4.2 Non-classical Hopf Galois structure

Now, we consider the non-classical Hopf Galois structure H := HT,1 of L/Q2. The
Gram matrix where in L we fix the basis B = {1, z, z2, z3} is

G(H, LB) =


1 z z2 z3

1 −z −z2 z3

2 0 2w2 0
0 2w

√
d 0 2w3

√
d

 .

Let us determine the entries in the last row in terms of the basis of the powers of z.
We know by Section 3.2.2 that

w
√

d = − 1
ac

z3 +
2d
c

z.

Using the expression of w2 computed in the Galois case,

w3
√

d = −2d
c

z3 +
4ad2

c
z− acdz.

Then, the Gram matrix results as follows:

G(H, LB) =


1 z z2 z3

1 −z z2 −z3

2 0 −2z2 + 4ad 0
0 − 2

ac z3 + 4d
c z 0 − 4d

c z3 +
(

8ad2

c − 2acd
)

z

 .
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Case 1: f (x) = x4 + 4sx2 + 2, s ∈ {−1, 1}

The Gram matrix above becomes

G(H, L) =


1 z z2 z3

1 −z z2 −z3

2 0 −8s− 2z2 0
0 8z + 2sz3 0 −28sz− 8z3

 .

Now, the Hermite normal form of M(H, L) is

D(H, L) =


1 1 2 0
0 2 2 0
0 0 4 0
0 0 0 2

 ,

which yields the basis of AH{
w1,
−w1 + w2

2
,
−w1 − w2 + w3

4
,

w4

2

}
.

Moreover, I(H, L) = 4. On the other hand, given β ∈ OL, we have

Dβ(H, L) = 16β3(β1 − 2sβ3)(sβ2
2 + 14sβ2

4 − 8β2β4).

For β = 1 + z + z2, we obtain Dβ(H, L) = 16s− 32, which has 2-adic valuation 4, so
OL is AH-free with generator β.

Case 2: f (x) = x4 + 20sx2 + 50, s ∈ {1,−1}

The Gram matrix of H is in this case

G(H, L) =


1 z z2 z3

1 −z z2 −z3

2 0 −40s− 2z2 0
0 8z + 2s

5 z3 0 −140sz− 8z3

 .

We obtain the same Hermite normal form as in the previous case, and hence the
same basis for the associated order. Regarding the freeness, for β ∈ OL,

Dβ(H, L) =
16 β3

(
β2

2s + 350 β4
2s− 40 β2 β4

)
(−10 β3 s + β1)

5
.

In particular, this equals−32+ 16s
5 for β = 1+ z+ z2, soOL is AH-free with generator

β.

Case 3: f (x) = x4 + 52sx2 + 26, s ∈ {−1, 1}

In this case,

G(H, L) =


1 z z2 z3

1 −z z2 −z3

2 0 −104s− 2z2 0
0 104z + 2sz3 0 −5356sz− 104z3

 .
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In this case, we obtain as Hermite normal form

D(H, L) =


1 1 2 0
0 2 2 0
0 0 4 0
0 0 0 2


once again. Now, given β ∈ OL,

Dβ(H, L) = 16β3(sβ2
2 + 2678sβ2

4 − 104β2β4)(β1 − 26sβ3).

In particular, for β = 1 + z + z2, Dβ(H, L) = 16s− 416, which has 2-adic valuation
4. Then, OL is AH-free with generator β.

Case 4: f (x) = x4 + 20sx2 + 10, s ∈ {−1, 1}

The Gram matrix for this case is

G(H, L) =


1 z z2 z3

1 −z z2 −z3

2 0 −40s− 2z2 0
0 40z + 2sz3 0 −780z− 40z3

 .

The Hermite normal form of M(H, L) is as in the previous cases. On the other hand,
for β ∈ OL, one has

Dβ(H, L) = 16β3(β1 − 10sβ3)(sβ2
2 + 390sβ2

4 − 40β2β4).

Choosing β = 1 + z + z2, we have

Dβ(H, L) = 16s− 160,

which has 2-adic valuation 4 and once again OL is AH-free with generator β.

3.4.3 Summary of results

We gather the results obtained in this section. Although we have considered four
different cases, we have obtained uniform behaviour for all of them. Concretely:

Theorem 3.27. Let L/Q2 be a cyclic quartic extension of 2-adic fields.

1. The Hermite normal form of M(Hc, L) is
1 0 1 2
0 1 0 −1
0 0 2 2
0 0 0 4

 ,

and consequently, AL/Q has Z2-basis{
1G, σ,

−1G + σ2

2
,
−1G + σ− σ2 + σ3

4

}
.
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2. The Hermite normal form of M(H, L) is
1 1 2 0
0 2 2 0
0 0 4 0
0 0 0 2

 ,

so AH has Z2-basis {
w1,
−w1 + w2

2
,
−w1 − w2 + w3

4
,

w4

2

}
.

3. The element β = 1 + z + z2 is a generator of OL both as AL/Q-module and as AH-
module.

3.5 Totally ramified biquadratic extensions of Q2

Let L/Q2 be a totally ramified quartic extension of 2-adic fields with elementary
abelian Galois group G ∼= C2 × C2. By [Rio95, Section 2.6], L is the splitting field
over Q2 of one of the polynomials

x4 + 1, x4 + 25, x4 + 4x2 + 9, x4 − 4x2 + 9.

Even though none of these polynomials is 2-Eisenstein, the powers of a root of each
of them generate an integral basis. Indeed, all of them have discriminant with 2-adic
valuation 8, and this coincides with the discriminant exponent of L. This is deduced
from applying Proposition 1.24 to the chain of ramification groups of L/Q2, which
is

C2 × C2 ⊃ C2 × C2 ⊃ C2 ⊃ C2 ⊃ {1}.

3.5.1 Classical Galois structure

As in the previous sections, we work first with the classical Galois structure Hc. We
will determine the Gram matrix with respect to a convenient basis to then carry out
a change of basis for each polynomial. We know that L/Q2 has three intermediate
quadratic subfields Ei, i ∈ {1, 2, 3}. Let us write Ei = Q2(zi) with zi ∈ Ei, zi /∈ Q2
and z2

i ∈ Q2 for every i ∈ {1, 2, 3}. Then L has a Q2-basis Bc = {ei}4
i=1 given by

e1 = 1 and ei = zi−1 for i ∈ {2, 3, 4}, which of course need not be an integral basis.
We may assume that E1 = L〈τ〉, E2 = L〈σ〉 and E3 = L〈στ〉. Since z1z2 /∈ E1, E2 and
(z1z2)2 = z2

1z2
2, necessarily there exists r ∈ Q2 such that z3 = rz1z2, and G acts on z3

as on the product z1z2. Then the Gram matrix with respect to this basis is

G(Hc, LBc) =


e1 e2 e3 e4
e1 −e2 e3 −e4
e1 e2 −e3 −e4
e1 −e2 −e3 e4

 .

What we do for each case is to change the Gram matrix from Bc to the power inte-
gral basis B = {1, α, α2, α3}, where α is a root of the polynomial f that defines the
extension.
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Case 1: f (x) = x4 + 1

The intermediate fields in this case are given by E1 = Q2(
√
−1), E2 = Q2(

√
2) and

E3 = Q2(
√
−2). A root of the polynomial f is α =

√
2+
√
−2

2 , and we have

α2 =
√
−1, α3 =

−
√

2 +
√
−2

2
.

Then, we have

PB
Bc

=


1 0 0 0
0 0 1 0
0 1

2 0 − 1
2

0 1
2 0 1

2

 .

Now,

G(Hc, LB) = G(Hc, LBc)PB
Bc

=


e1

e3
2 + e4

2 e2 − e3
2 + e4

2

e1
e3
2 −

e4
2 −e2 − e3

2 −
e4
2

e1 − e3
2 −

e4
2 e2

e3
2 −

e4
2

e1 − e3
2 + e4

2 −e2
e3
2 + e4

2

 .

We pass the coordinates of each entry from Bc to B by applying PBc
B , and we obtain

G(Hc, LB) =


1 α α2 α3

1 −α3 −α2 −α
1 −α α2 −α3

1 α3 −α2 α

 .

From this we can determine the matrix of the action M(Hc, LB). Its Hermite normal
form is

D =


1 0 1 2
0 1 0 −1
0 0 2 2
0 0 0 4

 .

This gives the Z2-basis of AL/Q2{
1G, σ,

−1G + σ2

2
,
−1G + σ− σ2 + σ3

4

}
.

On the other hand, given β ∈ OL,

Dβ(Hc, L) = −8β1β3(β2 + β4)(β2 − β4).

In particular, for β = 1 + α + α2 this is −8, so this β is a normal integral basis gener-
ator.

Case 2: f (x) = x4 + 25

In this case, the intermediate fields are E1 = Q2(
√
−1), E2 = Q2(

√
10) and E3 =

Q2(
√
−10), and the integral basis is B = {1, α, α2, α3}, where

α =

√
10 +

√
−10

2
, α2 = 5

√
−1, α3 = 5

−
√

10 +
√
−10

2
.
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Then, in this case

PB
Bc

=


1 0 0 0
0 0 5 0
0 1

2 0 − 5
2

0 1
2 0 5

2

 .

Now, the Gram matrix is

G(Hc, LB) =


1 α α2 α3

1 − α3

5 −α2 −5α
1 −α α2 −α3

1 α3

5 −α2 5α

 .

The Hermite normal form of the matrix of the action turns out to be

D =


1 0 1 2
0 1 0 −1
0 0 2 2
0 0 0 4

 ,

exactly the same as in the previous case, so we obtain the same basis of AL/Q2 . Now,
for β ∈ OL,

Dβ(Hc, L) =
−8β1 β3 (β2 − 5 β4) (β2 + 5 β4)

5
.

For β = 1 + α + α2, this is − 8
5 , proving that β is a normal integral basis generator.

Case 3: f (x) = x4 + 4x2 + 9

The intermediate fields for this case are E1 = Q2(
√
−5), E2 = Q2(

√
2) and E3 =

Q2(
√
−10), and we have

α =

√
2 +
√
−10

2
, α2 = −2 +

√
−5, α3 =

−7
√

2−
√
−10

2
.

The Gram matrix is

G(Hc, L) =


1 α α2 α3

1 − 4α+α3

3 −4− α2 7α+4α3

3
1 −α α2 −α3

1 4α+α3

3 −4− α2 − 7α+4α3

3

 ,

which leads to the Hermite normal form

D =


1 0 1 2
0 1 0 −1
0 0 2 2
0 0 0 4

 .

Then, AL/Q2 has basis {
1G, σ,

−1G + σ2

2
,
−1G + σ− σ2 + σ3

4

}
.

Let β ∈ OL. One computes

Dβ(Hc, L) = −8
3

β3 (β2 − β4) (β2 − 7 β4) (β1 − 2 β3) .

For β = 1 + α + α2, we have Dβ(Hc, L) = 8
3 , and its 2-adic valuation is 3, which co-

incides with I(Hc, L) = v2(det(D)) = 3, so this is a normal integral basis generator.
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Case 4: f (x) = x4 − 4x2 + 9

We have the intermediate fields E1 = Q2(
√
−5), E2 = Q2(

√
−2) and E3 = Q2(

√
10).

The root of f and its powers are

α =

√
−2 +

√
10

2
, α2 = 2 +

√
−5, α3 =

7
√
−2 +

√
10

2
.

We obtain the Gram matrix

G(Hc, L) =


1 α α2 α3

1 − 4α−α3

3 4− α2 − 7α−4α3

3
1 −α α2 −α3

1 4α−α3

3 4− α2 7α−4α3

3

 ,

whence we compute the Hermite normal form of M(Hc, L):

D =


1 0 1 2
0 1 0 −1
0 0 2 2
0 0 0 4

 ,

just exactly the same as in the previous case, and then the basis of AL/Q2 is also the
same. For β ∈ OL,

Dβ(Hc, L) = −8
3

β3 (β2 + 7 β4) (β2 + β4) (β1 + 2 β3) .

Setting β = 1 + α + α2, then Dβ(Hc, L) = 8, so this β is a normal integral basis
generator.

3.5.2 Non-classical Hopf Galois structures

Let us consider the non-classical Hopf Galois structures Hi := HTi ,1 of L/Q2, i ∈
{1, 2, 3}. By Section 3.1.2, a basis of Hi is

{Id, µi, ηTi ,1 + µiηTi ,1, (ηTi ,1 − µiηTi ,1)zi},

where zi ∈ Ei. As in Section 3.3.2, we call these bases {ui}4
i=1, {vi}4

i=1 and {wi}4
i=1, re-

spectively. Since the intermediate fields are fixed, the bases are uniquely determined
by the convention that E1 = L〈τ〉, E2 = L〈σ〉 and E3 = L〈στ〉.

Case 1: f (x) = x4 + 1

If f (x) = x4 + 1, then E1 = Q2(
√
−1), E2 = Q2(

√
2) and E3 = Q2(

√
−2), so

G(H1, L) =


1 α α2 α3

1 −α α2 −α3

2 0 −2α2 0
0 2α 0 −2α3

 ,

G(H2, L) =


1 α α2 α3

1 −α3 −α2 −α
2 −α + α3 0 α− α3

0 −2α2 2α + 2α3 −2α2

 ,



92 Chapter 3. Quartic Galois extensions

G(H3, L) =


1 α α2 α3

−1 α3 −α2 α
2 −α− α3 0 −α− α3

0 2α2 2α− 2α3 −2α2

 .

The corresponding matrices of the action M(Hi, L) have Hermite normal forms

D(H1, L) =


1 1 2 0
0 2 2 2
0 0 4 0
0 0 0 4

 , D(H2, L) =


1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 2

 ,

D(H3, L) =


1 0 1 0
0 1 1 0
0 0 2 0
0 0 0 2

 .

Then, for i ∈ {1, 2, 3}, AHi has Z2-basis{
u1,
−u1 + u2

2
,

u1 + u2 + u3

4
,
−2u2 + u4

4

}
,{

v1, v2,
v1 + v2 + v3

4
,

v4

2

}
,{

w1, w2,
−w1 − w2 + w3

2
,

w4

2

}
,

respectively. Concerning the freeness, for β ∈ OL, we have

Dβ(H1, L) = −32β1β2β3β4,

Dβ(H2, L) = 8β1(β2 − β4)(β2
2 + 2β2β4 + 2β2

3 + β2
4),

Dβ(H3, L) = −4β1(β2 + β4)(β2
2 − 2β2β4 − 2β2

3 + β2
4).

The powers of α form an integral basis of eigenvectors for H1. Then, OL is AH1-
free with generator β = 1 + α + α2 + α3. For i ∈ {2, 3}, OL is also AHi -free with
generator β = 1 + α + α2.

Case 2: f (x) = x4 + 25

In this case, the Gram matrices are

G(H1, L) =


1 α α2 α3

1 −α α2 −α3

2 0 −2α2 0
0 2α 0 −2α3

 ,

G(H2, L) =


1 α α2 α3

1 − α3

5 −α2 −5α

2 −α + α3

5 0 5α− α3

0 −2α2 10α + 2α3 −10α2

 ,

G(H3, L) =


1 α α2 α3

1 α3

5 −α2 5α

2 −α− α3

5 0 −5α− α3

0 2α2 10α2 −10α2

 .
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The Hermite normal form of the matrix of the action at each Hopf Galois structure is

D(H1, L) =


1 1 2 0
0 2 2 2
0 0 4 0
0 0 0 4

 , D(H2, L) =


1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 2

 ,

D(H3, L) =


1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 2

 .

Then the associated orders have Z2-bases{
u1,
−u1 + u2

2
,

u1 + u2 + u3

4
,
−2u2 + u4

4

}
,

{
v1, v2,

v1 + v2 + v3

4
,

v4

2

}
,{

w1, w2,
w1 + w2 + w3

4
,

w4

2

}
.

Concerning the freeness, given β ∈ OL,

Dβ(H1, L) = −32β1β2β3β4,

Dβ(H2, L) = −8
5

β1 (β2 − 5 β4)
(

β2
2 + 10 β2 β4 + 10 β3

2 + 25 β4
2
)

,

Dβ(H3, L) = −8
5

β1 (β2 − 5 β4) (β2 + 5 β4) (β2 + 5 β3 − 5 β4) .

Again, the powers of α are eigenvectors of the action of H1, so OL is AH1-free with
generator β = 1 + α + α2 + α3. As for the other two, one checks easily that OL is
AH2-free with generator β = 1 + α + α2 and AH3-free with generator β = 1 + α.

Case 3: f (x) = x4 + 4x2 + 9

The Gram matrices for the non-classical Hopf Galois structures are

G(H1, L) =


1 α α2 α3

1 −α α2 −α3

2 0 −8− 2α2 0
0 2α−4α3

3 0 −44α−2α3

3

 ,

G(H2, L) =


1 α α2 α3

1 − 4α+α3

7 −4− α2 7α+4α3

3
2 α+α3

3 −4 −7α−7α3

3
0 −4− 2α2 14α+2α3

3 4 + 2α2

 ,

G(H3, L) =


1 α α2 α3

1 4α+α3

3 −4− α2 −7α−4α3

3
2 −7α−α3

3 −4 7α+α3

3
0 4 + 2α2 −10α−10α3

3 −56− 28α2

 .
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The Hermite normal forms for this case are once again

D(H1, L) =


1 1 2 0
0 2 2 2
0 0 4 0
0 0 0 4

 , D(H2, L) =


1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 2

 ,

D(H3, L) =


1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 2

 ,

just as in the previous case, so the bases are the same. Now, for β ∈ OL, one com-
putes

Dβ(H1, L) = −
32 β3

(
β2

2 + β2 β4 − 11 β4
2
)
(β1 − 2 β3)

3
,

Dβ(H2, L) = −8
3
(β2 − 7 β4)

(
β2

2 − 2 β2 β4 + 2 β3
2 + β4

2
)
(β1 − 2 β3) ,

Dβ(H3, L) = −8
3
(β2 − β4)

(
β2

2 − 21 β2 β4 − 10 β3
2 + 98 β4

2
)
(β1 − 2 β3) .

In this case, OL is AHi -free for i ∈ {1, 2, 3}, and the element β = 1 + α + α2 is always
a generator.

Case 4: f (x) = x4 − 4x2 + 9

The Gram matrices are

G(H1, L) =


1 α α2 α3

1 −α α2 −α3

2 0 8− 2α2 0
0 −2α−4α3

3 0 −44α+2α3

3

 ,

G(H2, L) =


1 α α2 α3

1 −4α+α3

3 4− α2 −7α+4α3

3
2 α−α3

3 4 7α−7α3

3
0 5−5α2

3
−14α+2α3

3
5−5α2

3

 ,

G(H3, L) =


1 α α2 α3

1 4α−α3

3 4− α2 7α−4α3

3
2 −7α+α3

3 4 −7α+α3

3
0 −4 + 2α2 10α−10α3

3 −28 + 14α2

 .

The corresponding matrices of the actions have Hermite normal forms

D(H1, L) =


1 1 2 0
0 2 2 2
0 0 4 0
0 0 0 4

 , D(H2, L) =


1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 2

 ,

D(H3, L) =


1 0 −1 0
0 1 −1 0
0 0 4 0
0 0 0 2

 ,
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as in the previous two cases, so we obtain the same bases.

Let us study the freeness. Given β ∈ OL, we have

Dβ(H1, L) = −
32 β3

(
β2

2 − β2 β4 − 11 β4
2
)
(β1 + 2 β3)

3
,

Dβ(H2, L) =
8 (β2 + 7 β4) (β2 + β4) (3 β2 − β3 + 3 β4) (β1 + 2 β3)

9
,

Dβ(H3, L) =
8
3
(β2 + β4)

(
β2

2 + 14 β2 β4 + 10 β3
2 + 49 β4

2
)
(β1 + 2 β3) .

For the last two cases, OL is AHi -free with generator β = 1 + α. As for the first one,
OL is AH1-free with generator β = 1 + α + α3.

3.5.3 Summary of results

Looking back at the results obtained, we see that we have obtained the same be-
haviour in the classical Galois structure, regardless of the defining polynomial. It is
in the non-classical Hopf Galois structures where the behaviour may differ.

Theorem 3.28. Let L/Q2 be a biquadratic extension of 2-adic fields.

1. In the classical Galois structure, the associated order AL/Q2 has Z2-basis{
1G, σ,

−1G + σ2

2
,
−1G + σ− σ2 + σ3

4

}
.

Moreover, β = 1 + α + α2 is always a generator of OL as AL/Q2-module.

2. At case 1, the associated orders AH1 , AH2 and AH3 have Z2-bases{
u1,
−u1 + u2

2
,

u1 + u2 + u3

4
,
−2u2 + u4

4

}
,{

v1, v2,
v1 + v2 + v3

4
,

v4

2

}
,{

w1, w2,
−w1 − w2 + w3

2
,

w4

2

}
,

respectively. In the other three cases, those bases are{
u1,
−u1 + u2

2
,

u1 + u2 + u3

4
,
−2u2 + u4

4

}
,{

v1, v2,
v1 + v2 + v3

4
,

v4

2

}
,{

w1, w2,
w1 + w2 + w3

4
,

w4

2

}
.

3. At each case, OL is AHi -free for all i ∈ {1, 2, 3} and a generator is indicated in the
table below.

Case H1 H2 H3

1 1 + α + α2 + α3 1 + α + α2 1 + α + α2

2 1 + α + α2 + α3 1 + α + α2 1 + α

3,4 1 + α + α2 1 + α + α2 1 + α + α2
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Chapter 4

Separable degree p extensions with
dihedral Galois closure

We have seen that we can apply the reduction method to low degree Galois exten-
sions with success in most of the cases. Moreover, in Chapter 2 we worked with the
main example of [GP87], which is an extension that is not Galois. This is an example
of the simplest case of Hopf Galois extensions that are not Galois; namely, for an
odd prime number p, a separable non-normal degree p extension E/K whose Galois
closure L has Galois group over K isomorphic to the dihedral group Dp.

By Proposition 1.12, such an extension E/K is indeed Hopf Galois, and by the
generalized Byott Uniqueness Theorem 1.17, it has a unique Hopf Galois structure
H1, which is almost classically Galois. In this chapter we study these extensions, and
when they are Hermite, we consider the problem of determining the Hopf Galois
module structure of OE. Concerning the example in [GP87], we could even deter-
mine a normal integral basis because the action of the Hopf Galois structure is given
explicitly, and the Hopf algebra was described using descent theory. In general a
description like that one is not available. In the first section we give a basis of the
Hopf Galois structure using a different approach, the one given by Greither-Pareigis
theory.

It is in the second section when we assume that the extension is Hermite, and we
discuss all requirements we need so as to apply the reduction method. In the third
section we determine the entries of the Gram matrix G(H1, E), and since it is a p× p
matrix, we carry out the reduction with concrete cases: K = Q3 and K = Q5. We
will find a basis of the associated order AH1 at each case and prove thatOE is always
AH1-free.

4.1 The unique Hopf Galois structure

Let E/K be an extension of arbitrary fields of degree p which is non-normal and
whose Galois closure L has Galois group over K isomorphic to Dp. We use Greither-
Pareigis theory so as to describe the unique Hopf Galois structure of E/K.

Let us analyze the unique Hopf Galois structure of E/K. Let G = Gal(L/K)
and G′ = Gal(L/E). Since G is the dihedral group of 2p elements, it has p order 2
subgroups and a unique order p one. By the fundamental theorem of Galois theory,
this gives the lattice of subextensions of L/K: it has p different degree p subexten-
sions, among which it is E/K, and a unique quadratic subextension that we call F/K.
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We establish a presentation of G

G = 〈σ, τ | σp = τ2 = 1, τσ = σp−1τ〉.

The unique order p subgroup of G is J = 〈σ〉, while the p order 2 subgroups are

〈σdτ〉, 0 ≤ d ≤ p− 1.

Let us choose such a d so that G′ = 〈σdτ〉. Then,

G/G′ = {1G, σ, . . . , σp−1},

where σi = {σi, σd−iτ} for every 0 ≤ i ≤ p− 1.

As already mentioned, E/K has a unique Hopf Galois structure. Let λ : G −→
Perm(G/G′) be the left translation map. By Greither-Pareigis theorem, there is a
unique regular subgroup N1 of Perm(G/G′) which is normalized by λ(G). One can
easily check that N1 = λ(J) satisfies the required properties. Let us call µ = λ(σ),
which can be expressed as the permutation (1G, σ, . . . , σp−1) of the quotient set G/G′.
This element is the generator of N1, that is,

N1 = 〈µ〉 = {Id, µ, . . . µp−1}.

Next, we determine the Hopf algebra H1 = L[N1]
G of this Hopf Galois structure.

Theorem 4.1. The Hopf algebra of the unique Hopf Galois structure of E/K has a K-basis
formed by the p elements

w1 = Id, w1+i = z(µi − µ−i), w p−1
2 +i = µi + µ−i,

where 1 ≤ i ≤ p−1
2 and:

• µ = λ(σ) ∈ Perm(G/G′) is the image of σ by the left translation map λ := G −→
Perm(G/G′) of G into Perm(G/G′)

• z =
√

d is any element such that d ∈ K and d /∈ K2, so that F = K(z).

Proof. Let x ∈ H1. Since H1 ⊂ L[N1], there are elements ai ∈ L with 0 ≤ i ≤ p− 1
such that

x =
p−1

∑
i=0

aiµ
i.

The action of G on N1 is given by

σ(µ) = µ, τ(µ) = µ−1.

Now, since x ∈ H, it is fixed by the action of G on H1. Then,

x = σ(x) =
p−1

∑
i=0

σ(ai)µ
i,

x = τ(x) =
p−1

∑
i=0

τ(ai)µ
−i

=
p−1

∑
i=0

τ(ap−i)µ
i,
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where in the last line we consider the subscripts mod p. The first equality gives that
σ(ai) = ai for all 0 ≤ i ≤ p− 1, so ai ∈ L〈σ〉 = F. On the other hand, the second one
yields τ(ai) = ap−i for every i. Since subscripts are mod p, τ(a0) = a0, giving that
a0 ∈ K.

Now, ai ∈ F for 1 ≤ i ≤ p, so there are a(1)i , a(2)i ∈ K such that ai = a(1)i + a(2)i z.

For those values of i, τ(ai) = a(1)i − a(2)i z, but also τ(ai) = ap−i, so ap−i = a(1)i − a(2)i z.
Then,

x = a0Id +

p−1
2

∑
i=0

(a(1)i + a(2)i z)µi +

p−1
2

∑
i=0

(a(1)i − a(2)i z)µiη

= a0Id +

p−1
2

∑
i=0

a(1)i (µi + µ−i) +

p−1
2

∑
i=0

a(2)i z(µi − µ−i).

(4.1)

This proves that x belongs to the space generated by a K-basis as in the statement,
so such a space contains H1. But both of them have dimension p, so they coincide.

It is not difficult prove a more general result for separable degree pn extensions
(see Appendix A).

Remark 4.2. Let λ : G −→ Perm(G) be the left regular representation of G. Since the
powers of µ = λ(σ) factorize through G′ as permutations of G, the groups λ(J) and λ(J)
can be identified by establishing λ(σi) = λ(σi), and in particular, µ = µ. Hence, from now
on, we will take the elements of the basis of H1 in the statement above with the powers of µ
instead of µ.

Remark 4.3. The elements wk for k even (resp. odd) can be described as linear combination
of even (resp. odd) powers of w2 = z(µ− µ−1), so they generate H1 as K-algebra. That is,

H1 = K[z(µ− µ−1)].

4.2 The integral setting

Now, let us assume that E/K is Hermite and char(K) 6= 2. Hence, the extension has
an integral setting and we want to determine a basis of AH1 and the structure of OE
as AH1-module, where H1 is the unique Hopf Galois structure of E/K.

We know a basis of H1 from Theorem 4.1. We first show that this is also an OK-
basis of OL[N]G, the naive OK-order in H.

Corollary 4.4. If vK(z2) ≤ 1 and OF = OK[z], then the elements {wi}
p
i=1 of Theorem 4.1

form an OK-basis of the OK-order OL[N]G in H.

Proof. We follow the same steps as in the proof of Theorem 4.1 with an element
x ∈ OL[N]G, so in this case

x =
p−1

∑
i=0

aiµ
i

with ai ∈ OL. We have that a0 ∈ K ∩ OL = OK and ai ∈ OL ∩ F = OF. But OF =
OK[z], so we may obtain a description as in (4.1) with the coefficients in OK.
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Using the basis in Theorem 4.1, we will apply the reduction method so as to de-
termine a basis of AH1 . To this end, we need to know an integral basis on OE and
how H1 acts on this basis.

We discuss the problem of determining an integral basis. It depends strongly
on the nature of the fields, and so nothing can be said in general. Throughout this
chapter, we will work with the hypothesis that E/K has a power integral basis. There
are some sufficient conditions for this to happen. We are interested in extensions of
p-adic or number fields. If E/K is an extension of p-adic fields, it is enough that
the irreducible polynomial of a primitive element α over K is πK-Eisenstein. If we
choose the base field to be Qp, then it is always possible to ensure that condition (see
[AE12, Theorem 5.2]):

Theorem 4.5 (Amano polynomials). Let E/Qp be a degree p extension of local fields
whose Galois closure L/Qp is dihedral of degree 2p. Then, E is generated by some root of
one of the polynomials:

1. If p = 3,
x3 + 3, x3 + 12, x3 + 21,

x3 + 3x + 3, x3 + 6x + 3, x3 + 3x2 + 3.

2. If p > 3,

xp + 2px
p−1

2 + p, xp + p(p− 2)x
p−1

2 + p, xp + pxp−1 + p.

For p ≥ 3, the inertia subgroup of the Galois group of L/Qp is Dp for all polynomials except
xp + pxp−1 + p, in which case the inertia subgroup is Cp.

The polynomials of the previous result will be referred to as the Amano polyno-
mials henceforth. All of them are p-Eisenstein, so in those cases by Theorem 1.20 we
have that the powers of a root α is an integral basis of E. In practice, we will some-
times need to replace f by other polynomial generating the same extension, just as
in Section 2.7.2.

As for extensions of number fields, it is known that extensions of quadratic or
cyclotomic fields have a power integral basis, but beyond that, the available criteria
are much more specific. In Section 4.6, we examine the case in which K = Q and
L = Q( 3

√
m) for m ∈ Z cubic-free.

4.3 The Gram matrix of E/K

To apply the reduction method, the unique ingredient left is the Gram matrix G(H1, E)
where in H1 we fix the basis of Theorem 4.1 and in E we choose an integral basis.
Actually, we will fix a power basis generated by an element α ∈ OE. This is enough
when the basis is integral. The action of H1 on E when taking these bases can be
expressed in general by means of Lucas sequences.

Let f be the irreducible polynomial of α. We use the same idea of Section 2.7.2:
we write

f (x) = (x− α) f1(x),
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where in this case f1 ∈ E[x] is a polynomial of degree p− 1. Now we use the hypoth-
esis that the Galois closure of E/K has Galois group Dp over K to group the roots
of f1 in a convenient way. Indeed, the hypothesis implies that the Galois closure of
E/K is quadratic over E, so

f1(x) =

p−1
2

∏
i=1

Pi(x),

with Pi ∈ E[x] quadratic polynomials. Let us write

Pi(x) = x2 − Aix + Bi, Ai, Bi ∈ E,

for every 1 ≤ i ≤ p−1
2 . Let us call di = A2

i − 4Bi ∈ E the discriminant of Pi. Then, the
roots of Pi are

α2,i =
Ai +

√
di

2
, α3,i =

Ai −
√

di

2
.

We can assume without loss of generality that σ−i(α) = α2,i for every 1 ≤ i ≤ p−1
2

(otherwise we would reorder the polynomials Pi). Then,

α3,i = τ(α2,i) = τσ−i(α) = σiτ(α) = σi(α).

In other words, the roots of Pi are σ−i(α) and σi(α). Looking at the form of the
elements of the basis of H1, we have to deal with sums and differences of each pair
of roots of Pi. The suitable tool to deal with such objects are Lucas sequences.

Definition 4.6. Let K be a field and let A, B ∈ K. The Lucas sequences of first kind
Uj(A, B) and of second kind Vj(A, B) for the parameters A, B are defined by the expres-
sions

U0(A, B) = 0,
U1(A, B) = 1,
Uj(A, B) = AUj−1(A, B)− BUj−2(A, B), j ≥ 2,

V0(A, B) = 2,
V1(A, B) = A,
Vj(A, B) = AVj−1(A, B)− BVj−2(A, B), j ≥ 2.

The characteristic polynomial of Uj(A, B) and Vj(A, B) is defined as P(x) =
x2 − Ax + B. The relation of the sequences with the roots of the polynomial is given
by the following result, whose proof is straightforward by induction on j.

Proposition 4.7. Assume that the discriminant d = A2 − 4B of P is non-zero and let
α2 = A+

√
d

2 and α3 = A−
√

d
2 be its roots. Then,

Uj(A, B) =
α

j
2 − α

j
3√

d
,

Vj(A, B) = α
j
2 + α

j
3.

We compute the action of H1 over E as follows:
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Theorem 4.8. Let us consider the basis W = {wi}
p
i=1 of H1 as before and the integral basis

B = {αi}p−1
i=0 of E. Call di the discriminant of Pi. Then, for every 1 ≤ i ≤ p−1

2 and every
0 ≤ j ≤ p− 1,

w1 · αj = αj, w1+i · αj = Uj(Ai, Bi)
√

diz, w p+1
2 +i · α

j = Vj(Ai, Bi).

Proof. The first equality is trivial since w1 = Id. Let 1 ≤ i ≤ p−1
2 and 0 ≤ j ≤ p− 1.

Then,

w1+i · αj = (z(µi − µ−i)) · αj = (σ−i(αj)− σi(αj))z

= (α
j
2,i − α

j
3,i)z = Uj(Ai, Bi)

√
diz

w p+1
2 +i · α

j = (µi + µ−i) · αj = σ−i(αj) + σi(αj)

= α
j
2,i + α

j
3,i = Vj(Ai, Bi)

Remark 4.9. This result shows the reason why we have chosen α2,i = σ−i(α). Other-
wise, since µ acts on elements of L as σ−1, we would have w1+i · αj = −Uj(Ai, Bi)

√
diz.

Another option is to identify G and λ(G) by identifying σ with µ = λ(σ), which in
terms of actions means to replace µ by −µ.

Corollary 4.10. Let us call Ui(Pi) = Ui(Ai, Bi) and Vi(Pi) = Vi(Ai, Bi) for every 1 ≤ i ≤
p−1

2 . The Gram matrix of H1 is

G(H1, E) =



1 α · · · αp−1

U0(P1)
√

d1z U1(P1)
√

d1z · · · Up−1(P1)
√

d1z
U0(P2)

√
d2z U1(P2)

√
d2z · · · Up−1(P2)

√
d2z

...
...

. . .
...

U0(Pp−1
2
)
√

d p−1
2

z U1(Pp−1
2
)
√

d p−1
2

z · · · Up−1(Pp−1
2
)
√

d p−1
2

z

V0(P1) V1(P1) · · · Vp−1(P1)
V0(P2) V1(P2) · · · Vp−1(P2)

...
...

. . .
...

V0(Pp−1
2
) V1(Pp−1

2
) · · · Vp−1(Pp−1

2
)


Note that Corollary 4.10 implies that

√
diz ∈ E for every 1 ≤ i ≤ p−1

2 . That is,√
di is the product of an element of E and z. But recall that z can be any element such

that z2 ∈ OK and z ∈ OL −OK. In practice, what we will usually do is to choose z
after computing

√
d1, so that the expression of

√
d1z is convenient enough.

All the previous considerations lead to the following method to compute G(H1, E):

1. We factorize the polynomials f in terms of a root α to compute the polynomials
Pi ∈ E[x], 1 ≤ i ≤ p−1

2 .

2. For every 1 ≤ i ≤ p−1
2 , we compute the square root of di =

√
A2

i − 4Bi.

3. We determine the entries of G(H1, E) following Corollary 4.10.
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Once we have computed G(H1, E), if the power basis is integral, we can deter-
mine M(H1, E) from its entries and use the reduction method to obtain a basis of AH
and determine the freeness of OE as AH-module.

Thus, if we know explicitly an Eisenstein polynomial f of a generating root of E,
this would lead to a description of the Hopf Galois module structure of OE. This is
possible when K = Qp thanks to Theorem 4.5. Unfortunately, the general expression
of the terms of the Lucas sequences Uk(A, B) and Vk(A, B) with respect to A and B
is very complicated as k increases. We also need to compute the square root of the
discriminants di of the quadratic polynomials Pi, something difficult to find explic-
itly unless the degree is very low. For those reasons, when K = Qp, we have been
able to carry out all the explicit computations only for p = 3 and p = 5.

4.4 The case K = Q3

Let E/Q3 be a separable degree 3 extension with Galois closure D3. Then, E = Q3(α)
with α a root of one of the polynomials

x3 + 3, x3 + 12, x3 + 21, x3 + 3x + 3, x3 + 6x + 3, x3 + 3x2 + 3.

These polynomials correspond to [LMFDB, p-adic field 3.3.5.1, p-adic field 3.3.5.3,
p-adic field 3.3.5.2, p-adic field 3.3.3.2, p-adic field 3.3.3.1, p-adic field 3.3.3.4], respec-
tively. We divide them in three groups. The first three are of the form x3 + 3a with
a ∈ {1, 4, 7}, and these are the radical cases. The next two polynomials may be ex-
pressed by x3 + 3ax + 3 with a ∈ {1, 2}, while the sixth polynomial is the unique one
for which L/Qp is not totally ramified. From now on, these will be called the first
and second group and the singular case, respectively.

4.4.1 The action on the 3-part

The extension E/Q3 has a unique Hopf Galois structure H1 with Q3-basis

w1 = Id, w2 = z(µ− µ−1), w3 = µ + µ−1

where µ = λ(σ) and z is any quadratic element in L. Let f denote one of the previous
polynomials. We know that

f (x) = (x− α)P(x),

where P(x) = x2 − Ax + B and A, B ∈ E. Let d be the discriminant of f . According
to Corollary 4.10,

G(H1, E) =

1 α α2

0
√

dz A
√

dz
2 A A2 − 2B

 .

Since the first terms of Lucas sequences are well known, the matter is to determine√
dz.

Let f be a polynomial of the first group. Using Ruffini algorithm one checks
easily that

f (x) = (x− α)(x2 + αx + α2),

https://www.lmfdb.org/LocalNumberField/3.3.5.1
https://www.lmfdb.org/LocalNumberField/3.3.5.3
https://www.lmfdb.org/LocalNumberField/3.3.5.2
https://www.lmfdb.org/LocalNumberField/3.3.3.2
https://www.lmfdb.org/LocalNumberField/3.3.3.1
https://www.lmfdb.org/LocalNumberField/3.3.3.4
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that is, A = −α and B = α2. Then, the discriminant of the quadratic polynomial is

d = A2 − 4B = α2 − 4α2 = −3α2.

Let us take z =
√
−3. Then,

√
d = αz. Thus, one obtains

G(H1, E) =

1 α α2

0 −3α 3α2

2 −α −α2

 .

We move to the second group. Fix a root α of f . Now

f (x) = (x− α)(x2 + αx + α2 + 3a),

that is, A = −α and B = α2 + 3a. Then,

d = α2 − 4(α2 + 3a) = −3α2 − 12a = −3(α2 + 4a).

To compute its square root, we distinguish cases again.

If a = 1, we need to compute the square root of −3α2 − 12 in L. To do this, we
solve a system of equations. Let α2 + lα + m ∈ E and r ∈ Qp such that

−3α2 − 12− r(α2 + lα + m)2 = 0.

Expanding the expression and associating by powers of α,(
−3 +

(
−l2 − 2 m

)
r
)

α2 + (−2 lm + 3 ) rα− 12 +
(
6 l −m2) r = 0.

The system of equations 
−3 +

(
−l2 − 2 m + 3

)
r = 0

−2 r
(
− 3

2 + (m− 3) l
)
= 0

−12 +
(
−m2 + 6 l

)
r = 0

has as unique solution over Q3{
l = −3

2
, m = 2 , r = − 12

13

}
,

meaning that

−3α2 − 12 = − 12
13

(α2 − 3
2

α + 2)2.

This can be rewritten as

−3α2 − 12 = − 3
13

(2α2 − 3α + 4)2.

Then,
√

d =

√
−3
13

(2α2 − 3α + 4),

where we have chosen the sign by convention (choosing the negative of this quan-
tity would mean exchanging α2 and α3).
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Let z =
√
−39. Since 13 ≡ 1 (mod 3),

√
13 is a square in Q3 and actually F =

Q3(z). Then, √
dz = −6α2 + 9α− 12.

If a = 2, we need to compute the square root of −3α2 − 24 in L. Proceeding as in
the previous case, we find that

−3α2 − 24 = − 3
41

(4α2 − 3α + 16)2.

Hence, choosing again the sign by convention,

√
d =

√
3
−41

(−4α2 + 3α− 16).

Let us choose z =
√
−123. Since −41 ≡ 1(mod 3),

√
−41 is a square in Q3, so

F = Q3(z) = Q3(
√

3). Then,
√

dz = −12α2 + 9α− 48.

Now, it is easy to fill the whole matrix G(H1, E). We have

G(H1, E) =

1 α α2

0 −6aα2 + 9α− 12a2 −9α2 − 6a2α− 18a
2 −α −α2 − 6a

 .

Finally, let us assume that f (x) = x3 + 3x2 + 3. Let us fix a root α of f . Then,

f (x) = (x− α)(x2 + (α + 3)x + α2 + 3α),

that is, A = α + 3 and B = α2 + 3α. We compute

d = (α + 3)2 − 4(α2 + 3α) = −3α2 − 6α + 9.

In this case,

−3α2 − 6α + 9 = −1
7
(2α2 + 9α + 3)2

Thus,
√

d =

√
−1

7
(−2α2 − 9α− 3).

Let z =
√
−7. Then F = Q3(z) = Q3(

√
−1) and

√
dz = 2α2 + 9α + 3.

From here, we deduce

G(H1, E) =

1 α α2

0 2α2 + 9α + 3 −9α2 − 30α− 3
2 −α− 3 −α2 + 9


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4.4.2 Basis of AH1

For the radical cases,

M(H1, E) =



1 0 2
0 0 0
0 0 0
0 0 0
1 −3 −1
0 0 0
0 0 0
0 0 0
1 3 −1


,

while for polynomials of the second group, we have

M(H1, E) =



1 0 2
0 0 0
0 0 0
0 −12a2 0
1 9 −1
0 −6a 0
0 −18a −6a
0 −6a2 0
1 −9 −1


.

In both cases, the Hermite normal form turns out to be

D(H1, E) =

1 0 −1
0 3 0
0 0 3

 .

The columns of its inverse

D(H1, E)−1 =

1 0 1
3

0 1
3 0

0 0 1
3


provide a Z3-basis of AH {

w1,
w2

3
,

w1 + w3

3

}
for the five polynomials.

Note also that for the radical cases, E/Q3 has the eigenvectors property with
respect to its unique Hopf Galois structure. The matrix of eigenvalues is

Λ =

1 0 2
1 −3 −1
1 3 −1

 ,

with inverse

Ω =
1
6

2 2 2
0 −1 1
2 −1 −1

 .
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Then, in the radical cases, AH1 has also the Z3-basis of pairwise orthogonal idempo-
tents {

w1 − w3

3
,

2w1 − w2 − w3

6
,

2w1 + w2 − w3

6

}
.

Finally, for the singular case,

M(H1, E) =



1 0 2
0 0 0
0 0 0
0 3 −3
1 9 −1
0 2 0
0 −3 9
0 30 0
1 −9 −1


,

and the Hermite normal form is

D(H1, E) =

1 0 −1
0 1 0
0 0 3

 .

This provides the basis of AH {
w1, w2,

w1 + w3

3

}
.

4.4.3 Freeness over AH

Let f be of the first group. Since 3 appears twice in the diagonal of D, I(H1, E) = 2
in this case. On the other hand, given ε = ε1 + ε2α + ε3α2, the matrix associated to
this element is

Mε(H1, E) =

ε1 0 2ε1
ε2 −3ε2 −ε2
ε3 3ε3 −ε3

 ,

with determinant 18ε1ε2ε3. If ε = 1 + α + α2, then

v3(Dε(H1, E)) = 2 = I(H1, E),

so OE is AH-free and ε is a generator.

For the second group, the matrix associated to an element ε = ε1 + ε2α + ε3α2 is

Mε(H1, E) =

ε1 −12a2ε2 − 18aε3 2ε1 − 6aε3
ε2 9ε2 − 6a2ε3 −ε2
ε3 −6aε2 − 9ε3 −ε3

 ,

with determinant

Dε(H1, E) = −18
(
aε2

2 + 3 ε3ε2 − a2ε3
2) (ε1 − 2a ε3) .

If ε = 1 + α, then the determinant is −18a, and so

v3(Dε(H1, E)) = 2 = I(H1, E).
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Thus, OE is AH-free with generator ε.

Finally, if f is the sixth polynomial,

Mε(H1, E) =

 ε1 −9 ε3 + 9 ε2 2 ε1 + 9 ε3 − 3 ε2
ε2 −90 ε3 + 27 ε2 −ε2
ε3 −27 ε3 + 6 ε2 −ε3

 ,

with determinant

Dε(H1, E) = 6
(
ε2

2 − 9 ε3ε2 + 15 ε3
2) (ε1 − ε2 + 3 ε3) .

In this case, OE is AH1-free with generator ε = 2 + α.

4.4.4 Summary of results

For the case p = 3, we have proved the following:

Theorem 4.11. Let E/Q3 be a separable degree 3 extension with dihedral degree 6 Galois
closure and let H1 be its unique Hopf Galois structure.

1. The associated order AH1 has Z3-basis{
w1,

w2

3
,

w1 + w3

3

}
for all polynomials but the last one, in which case a basis is{

w1, w2,
w1 + w3

3

}
.

For the first three polynomials, AH1 has also a Z3 basis of pairwise orthogonal idem-
potents {

w1 − w3

3
,

2w1 − w2 − w3

6
,

2w1 + w2 − w3

6

}
.

2. OE is AH1-free and a normal basis generator can be determined explicitly at each case.

4.5 The case K = Q5

If p = 5, then L is the splitting field over Q5 of one of the polynomials

x5 + 15x2 + 5, x5 + 10x2 + 5, x5 + 5x4 + 5,

which we call f as usual. Those polynomials appear in [LMFDB, p-adic field 5.5.6.2,
p-adic field 5.5.6.1, p-adic field 5.5.8.6], respectively. The majority of the field-theoretical
considerations for this case are completely analogous to the case p = 3, so we will
usually skip them.

However, there are some important differences. For instance, p = 5 ≡ 1 (mod 4),
which implies that the Galois group of L/Q5, which is D5, is contained in the al-
ternating group A5. By Galois theory, this is the same as saying that disc( f ) is a
square in Q5. Then, we cannot use the square root of the discriminant to identify the
quadratic subextension of L/Q5. We will get that information from the discriminant
of the quadratic polynomials in the decomposition of f in E[x]. The other difference
is that for a root α of f , the factorisation of f in L does not have coefficients in Q(α),
so we will need to replace f by another polynomial with that property generating
the same extension.

https://www.lmfdb.org/LocalNumberField/5.5.6.2
https://www.lmfdb.org/LocalNumberField/5.5.6.1
https://www.lmfdb.org/LocalNumberField/5.5.8.6
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4.5.1 The action on E

Let H1 be the unique Hopf Galois structure of E/Q5. A basis of H1 is given by

w1 = Id, w2 = z(µ− µ−1), w3 = z(µ2 − µ−2),

w4 = µ + µ−1, w5 = µ2 + µ−2,

where z ∈ L is a square root of some element in Q5. Let f be the Amano polyno-
mial defining L/Q5. For a polynomial g defining the same extension, we have that
g(x) = (x − α)P1(x)P2(x), where Pi(x) = x2 − Aix + Bi is a quadratic polynomial
with discriminant di = A2

i − 4Bi, i ∈ {1, 2}. In this case,

G(H1, E) =


1 α α2 α3 α4

0
√

d1z A1
√

d1z (A2
1 − B1)

√
d1z (A2

1 − 2B1)
√

d1z
0
√

d2z A2
√

d2z (A2
2 − B2)

√
d2z (A2

2 − 2B2)
√

d2z
2 A1 A2

1 − 2B1 A1(A2
1 − 3B1) A4

1 − 4A2
1B1 + 2B2

1
2 A2 A2

2 − 2B2 A2(A2
2 − 3B2) A4

2 − 4A2
2B2 + 2B2

2

 .

In practice, as in previous cases, we will take g to be some polynomial that decom-
poses over Q(α) for α a root of g.

Assume that f is the first polynomial of the three above. By [LMFDB, Number
Field 5.1.23765625.1], L is the completion at 5 of the number field generated by a root
α of the polynomial

g(x) = x5 − 15x3 − 10x2 + 75x + 30,

so L = Q5(α). Moreover, g splits over E with

P1(x) = x2 +

(
−α4 − α3 + 11α2

6
+ 3α− 5

)
x +

α4

6
− α3

3
− 7α2

3
+

5α

2
+ 10,

P2(x) = x2 +

(
α4 + α3 − 11α2

6
− 2α + 5

)
x− α3

2
− 3α2

2
+

5α

2
+ 10.

Then, we have

A1 = −
(
−α4 − α3 + 11α2

6
+ 3α− 5

)
, B1 =

α4

6
− α3

3
− 7α2

3
+

5α

2
+ 10,

A2 = −
(

α4 + α3 − 11α2

6
− 2α + 5

)
, B2 = −α3

2
− 3α2

2
+

5α

2
+ 10,

d1 =
α8 + 2α7 − 21α6 − 58α5 + 121α4 + 504α3 − 1440α− 540

36
,

d2 =
α8 + 2α7 − 21α6 − 46α5 + 157α4 + 396α3 − 200α2 − 1080α− 540

36
.

We compute the square root of d1:

α8 + 2α7 − 21α6 − 58α5 + 121α4 + 504α3 − 1440α− 540 =

= − 3
65

(3α4 + 15α3 − 25α2 − 110α− 30)2.

Therefore, √
d1 =

1
6

√
− 3

65
(3α4 + 15α3 − 25α2 − 110α− 30).

https://www.lmfdb.org/NumberField/5.1.23765625.1
https://www.lmfdb.org/NumberField/5.1.23765625.1
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Now, we have √
−65

3
=

√
−39
3

√
5

and −39 ∈ Z2
5, so the element

z = −
√
−65

3

satisfies F = Q5(z) = Q5(
√

5) and√
d1z =

1
6
(3α4 + 15α3 − 25α2 − 110α− 30).

Now we compute the square root of d2:

α8 + 2α7 − 21α6 − 46α5 + 157α4 + 396α3 − 200α2 − 1080α− 540 =

= − 3
65

(11α4 + 25α3 − 75α2 − 270α− 30)2.

Therefore, √
d2 =

1
6

√
−3
65

(11α4 + 25α3 − 75α2 − 270α− 30),

and √
d2z =

1
6
(11α4 + 25α3 − 75α2 − 270α− 30).

Now, we choose f to be the second polynomial. By [LMFDB, Number field
5.1.34515625],

g(x) = x5 − 35x2 + 50x + 20,

generates the same extension as f . Now, g decomposes over E with

P1(x) = x2 +

(
−α4

42
− 5 α3

21
− 8 α2

21
+

α

42
+

85
21

)
x

+
19 α4

42
+

11 α3

21
+

26 α2

21
− 565 α

42
+

170
21

,

P2(x) = x2 +

(
α4

42
+

5 α3

21
+

8 α2

21
+

41 α

42
− 85

21

)
x

+
2α4

21
− α3

21
+

11 α2

21
− 65 α

21
+

80
21

.

A1 = −
(
−α4

42
− 5 α3

21
− 8 α2

21
+

α

42
+

85
21

)
, B1 =

19 α4

42
+

11 α3

21
+

26 α2

21
− 565 α

42
+

170
21

,

A2 = −
(

α4

42
+

5 α3

21
+

8 α2

21
+

41 α

42
− 85

21

)
, B2 =

2α4

21
− α3

21
+

11 α2

21
− 65 α

21
+

80
21

,

d1 =
α8 + 20 α7 + 132 α6 + 318 α5 − 3296 α4 − 7128 α3 − 14175 α2 + 95260 α− 28220

1764
,

d2 =
α8 + 20 α7 + 132 α6 + 402 α5 + 64 α4 − 1752 α3 − 7455 α2 + 7900 α + 2020

1764
.

https://www.lmfdb.org/NumberField/5.1.34515625.1
https://www.lmfdb.org/NumberField/5.1.34515625.1
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We compute the square root of d1. We have

α8 + 20 α7 + 132 α6 + 318 α5 − 3296 α4 − 7128 α3 − 14175 α2 + 95260 α− 28220 =

441
235

(α4 + 10α3 + 20α2 + 35α− 170)2.

Hence,

√
d1 =

1
42

√
441
235

(α4 + 10α3 + 20α2 + 35α− 170)

=
1
42

21√
235

(α4 + 10α3 + 20α2 + 35α− 170)

Since
√

235 =
√

94
2

√
10 and 94 ≡ 4 (mod 5) is a square in Z/5Z, the element z =√

235 satisfies F = Q5(z) = Q5(
√

10) and

√
d1z =

α4 + 10α3 + 20α2 + 35α− 170
2

.

Now, we compute the square root of d2. In this case,

α8 + 20 α7 + 132 α6 + 402 α5 + 64 α4 − 1752 α3 − 7455 α2 + 7900 α + 2020 =

(53α4 + 110α3 + 260α2 − 2195α− 190)2

235

This implies that

√
d2 =

1
42

√
1

235
(53α4 + 110α3 + 260α2 − 2195α− 190),

whence √
d2z =

1
42

(53α4 + 110α3 + 260α2 − 2195α− 190).

Finally, we take f to be the third polynomial. In this case, the same extension is
generated by

g(x) = x5 + 10x4 + 50x3 + 125x2 + 150x + 60,

which is obtained by applying the change x 7→ x + 2 to the polynomial [LMFDB,
Number Field 5.1.3515625.1]. Now, one has g(x) = (x− α)P1(x)P2(x) with

P1(x) = x2 − 5α4 + 38α3 − 150α2 + 199α− 40
22

x− α4

22
+

5α3

11
+

51α2

11
+

475α

22
+

345
11

,

P2(x) = x2 +
5α4 + 38α3 + 150α2 + 221α + 180

22
x+

3α4

11
+

25α3

11
+

101α2

11
+

170α

11
+

130
11

.

A1 =
5α4 + 38α3 − 150α2 + 199α− 40

22
, B1 = −α4

22
+

5α3

11
+

51α2

11
+

475α

22
+

345
11

,

A2 = −5α4 + 38α3 + 150α2 + 221α + 180
22

, B2 =
3α4

11
+

25α3

11
+

101α2

11
+

170α

11
+

130
11

,

d1 =
1

484
(25 α8 + 380 α7 + 2944 α6 + 13390 α5 + 37312 α4

+55780 α3 + 18625 α2 − 57720 α− 59120),

https://www.lmfdb.org/NumberField/5.1.3515625.1
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d2 =
1

484
(25 α8 + 380 α7 + 2944 α6 + 13610 α5 + 40568 α4

+75580 α3 + 85065 α2 + 49640 α + 9520).

We compute the square root of d1:

√
d1 =

1
22

√
−1

3
(9α4 + 86α3 + 402α2 + 895α + 720).

Let z =
√
−3. Then F = Q5(z) and√

d1z =
1

22
(9α4 + 86α3 + 402α2 + 895α + 720).

As for d2, we have

√
d2 =

1
22

√
−1

3
(7α4 + 62α3 + 254α2 + 415α + 120).

Then, √
d2z =

1
22

(7α4 + 62α3 + 254α2 + 415α + 120).

Once
√

d1z and
√

d2z are computed in all cases, we can obtain all the entries of
G(H1, E) following Corollary 4.10.

4.5.2 Basis of AH1

We compute a basis for the associated order AH1 . The matrices of the action for the
first, second and third polynomial can be found in (B.16), (B.17) and (B.18) respec-
tively.

For the first polynomial, the Hermite normal form of M(H1, E) is

D(H1, E) =



1 0 0 0 −1

0 1 2 0 0

0 0 5 0 0

0 0 0 1 −1

0 0 0 0 5


and the columns of its inverse provide a basis for the associated order{

w1, w2,
−2w2 + w3

5
, w4,

w1 + w4 + w5

5

}
Analogously, for the second polynomial, we obtain the Hermite normal form

D(H1, E) =


1 0 0 0 −1
0 1 −2 0 0
0 0 5 0 0
0 0 0 1 −1
0 0 0 0 5

 ,
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which provides the basis for AH{
w1, w2,

2w2 + w3

5
, w4,

w1 + w4 + w5

5

}
.

Finally, for the third polynomial,

DE =


1 0 0 0 −1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 −1
0 0 0 0 5


and we obtain the basis of the associated order{

w1, w2, w3, w4,
w1 + w4 + w5

5

}
.

4.5.3 Freeness over AH1

From the above we can compute the associated matrix Mε(H1, E) of an element
ε = ε1 + ε2α + ε3α2 + ε4α3 + ε5α4 ∈ OE.

For the first polynomial, 5 appears twice in the diagonal of D, so I(H1, E) = 2.
On the other hand,

Dε(H1, E) = 25q1(ε1, ε2, ε3, ε4, ε5)

for a product q1 of homogeneous polynomials of degree at most 4 (see (B.19)). We
have that v5(25) = 2 and this coincides with I(H1, E). Taking ε = 1 + α + α2 + α3 +
α4, q2(1, 1, 1, 1, 1) is coprime with 5, and then OE is AH1-free with generator ε.

Moving on to the second polynomial, we have that I(H1, E) = 2 and

Dε(H1, E) = 50q2(ε1, ε2, ε3, ε4, ε5)

for a product q2 of homogeneous polynomials of degree at most 4 (see (B.20)). As in
the previous case, OE is AH1-free with generator ε.

Finally, for the third polynomial, I(H1, E) = 1 and

Dε(H1, E) = 10q3(ε1, ε2, ε3, ε4, ε5)

for a product q3 of homogeneous polynomials of degree at most 4 (see (B.21)). For
ε = 1 + α + α2 + α3 + α4 the determinant has 5-adic valuation 1, and again, OE is
AH1-free with generator ε.

4.5.4 Summary of results

For the case p = 5, we have proved the following results.

Theorem 4.12. Let E/Q5 be a separable degree 5 extension with dihedral degree 10 Galois
closure and let H1 be its unique Hopf Galois structure.
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1. A basis of AH1 is {
w1, w2,

−2w2 + w3

5
, w4,

w1 + w4 + w5

5

}
,

{
w1, w2,

2w2 + w3

5
, w4,

w1 + w4 + w5

5

}
,{

w1, w2, w3, w4,
w1 + w4 + w5

5

}
,

for the first, second and third polynomial respectively.

2. OE is AH1-free and a normal basis generator can be determined explicitly for each case.

Remark 4.13. The element w1+w4+w5
5 obtained in the three bases in Theorem 4.12

is actually Id+µ+µ2+µ3+µ4

5 . Likewise, for p = 3, the element w1+w3
3 was obtained in

all the bases in Theorem 4.11, and it is Id+µ+µ2

3 . For an arbitrary p, the element
∑

p−1
i=0 µi

p (which acts on E as 1
p times the trace map of J = 〈σ〉) always belongs to

the associated order AH1 . Indeed, its action on α gives ∑
p
i=1 αi

p , where {αi}
p
i=1 are the

conjugates of α. Working with the symmetric functions of the roots, we see that this
is −1 for the field defined by the polynomial xp + pxp−1 + p and 0 otherwise.

4.6 Radical cubic extensions of Q

When one chooses Q instead of Qp as ground field, there is not a finite collection of
polynomials that covers all possibilities for a non-Galois extension of L/Q. Instead,
we will focus on a specific class of these extensions, the radical ones. Concretely, we
will take E = Q(α) where α = 3

√
m, for m ∈ Z cube-free and not divisible by 9. Let

us write m = hk2, for h and k coprime and square-free integers. An integral basis of
E is given as follows (see [Mar77, Exercise 2.41]):

1. If m 6≡ 1,−1(mod 9), B = {1, α, α2

k }.

2. If m ≡ s(mod 9) with s ∈ {−1, 1}, B = {1, α, k2+sk2α+α2

3k }.

We will first determine the Gram matrix G(H1, EB′) with respect to the power
basis B′ = {1, α, α2}, and then carry out a change of basis so as to obtain the matrix
G(H1, EB). Actually, this first computation is exactly the same as the one in Section
4.4.1: since f (x) = (x− α)(x2 + α + α2x), A, B and d are the same as in that case, so
one has

G(H1, EB′) =

1 α α2

0 −3α 3α2

2 −α −α2

 .

In particular, B′ is a basis of eigenvectors.

Let us assume that m 6≡ ±1 (mod 9). Then,

G(H1, EB) = G(H1, EB′)PB
B′ =

1 α 1
k α2

0 −3α 3
k α2

2 −α −1
k α2

 .
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This means that B is an integral basis of eigenvectors with eigenvalues matrix

Λ =

1 0 2
1 −3 −1
1
k

3
k

−1
k

 .

The inverse is

Ω =
1
6

2 2 2k
0 −1 k
2 −1 −k

 .

Then, AH1 has a Z-basis of pairwise orthogonal idempotents{
w1 − w3

3
,

2w1 − w2 − w3

6
,

2kw1 + kw2 − kw3

6

}
.

Moreover, OE is AH1-free and ε = 1 + α + α2 is a normal integral basis generator.

Now, we assume that m ≡ ±1 (mod 9). In this case,

G(H1, EB) = G(H1, EB′)PB
B′ =

1 α k2+sk2α+α2

3k
0 −3α −k− 2skα + 3 k2+sk2α+α2

3k
2 −α k− k2+sk2α+α2

3k

 .

Now, we apply the matrix

U =



1 0 0 0 0 0 0 0 0

1 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 1 −s 0

2 0 0 0 −1 0 0 0 −1

0 0 0 0 0 0 2 −s 0

0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0



,

to reduce M(H1, EB) to the matrix 
1 0 2
0 3 3
0 k k
0 0 6
0 0 2k

 .

If 3 divided k, since m = hk2, we would have m ≡ 0(mod 9), but we are assuming
m ≡ ±1 (mod 9). Then 3 is coprime with k, so we can use Euclid’s algorithm for the
second and third rows and the fourth and fifth ones to place 1 and 0 instead of k and
3. We obtain then as Hermite normal form

D =

1 0 0
0 1 1
0 0 2

 ,
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giving the basis of AE/Q {
w1, w2,

−w1 + w2

2

}
.

Let us study the freeness over AE/Q. For ε ∈ OE, one has

Dε(H1, E) = 2ε3(skε3 + 3ε2)(3ε1 + kε3).

Let k = 3a + b be the Euclidean division of k by 3. Since 3 does not divide k, b ∈
{1, 2}.

• If b = 1, then we choose ε1 = −a, ε2 = −as and ε3 = 1, and we have
Dε(H1, E) = 2s, so OE is AE/Q-free and ε = −a − asα + k2+sk2α+α2

3k is a gen-
erator.

• If b = 2, choosing ε1 = −(1 + a), ε2 = −s(1 + a), ε3 = 1, we have again
Dε(H1, E) = 2s, so OE is AE/Q-free and ε = −(1 + a)− (1 + a)sα + k2+sk2α+α2

3k
is a generator.

To sum up, we have obtained the following result:

Corollary 4.14. Let E = Q( 3
√

m) with m ∈ Z not divisible by 9 and write m = hk2,
h, k ∈ Z coprime and square-free.

1. If m 6≡ 1,−1 (mod 9), AH1 has a Z-basis of pairwise orthogonal idempotents{
w1 − w3

3
,

2w1 − w2 − w3

6
,

2kw1 + kw2 − kw3

6

}
.

Moreover, OE is AH1-free and ε = 1 + α + α2 is a normal integral basis generator.

2. If m ≡ ±1 (mod 9), AH1 has a Z-basis{
w1, w2,

−w1 + w2

2

}
.

Moreover, OE is AH1-free and a generator is

ε =

{
−a∓ aα + k2±k2α+α2

3k if k mod 3 = 1,
−(1 + a)∓ (1 + a)α + k2±k2α+α2

3k if k mod 3 = 2.
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Chapter 5

Induced Hopf Galois structures

Let p be an odd prime number. For a separable degree p Hermite extension of fields
E/K with dihedral degree 2p Galois closure L, we have given account of the associ-
ated order in its unique Hopf Galois structure and the Hopf Galois module structure
of OE. Now, we are interested in the Galois closure L/K itself. Namely, we would
like to determine all its Hopf Galois structures and the module structure of OL over
all the corresponding associated orders. Since the Galois group is not abelian, the
classical Galois structure and the canonical non-classical Hopf Galois structure are
two different Hopf Galois structures of L/K. But other than these, there are a num-
ber of other Hopf Galois structures that can be built from the Hopf Galois structures
of more simple extensions. These are what we will call induced Hopf Galois struc-
tures. Before studying dihedral degree 2p extensions, in this chapter we establish
the basic theory of induced Hopf Galois structures and their properties.

Let L/K be a Hopf Galois extension of fields. The induction of Hopf Galois struc-
tures of L/K consists in the process of construction of Hopf Galois structures in L/K
from Hopf Galois structures of other extensions of smaller degree. Under suitable
hypotheses on the extension, we can induce Hopf Galois structures of L/K either
from L/E and E/K for some intermediate field E of L/K, or from E/K and F/K for
some intermediate fields E and F of L/K such that L = EF. The notion of induced
Hopf Galois structure was introduced in the first approach of the above by Crespo,
Rio and Vela in their paper [CRV16]. We will prefer the second approach as it is more
suitable for our purposes.

First we will motivate the induction of Hopf Galois structures by presenting the
particular case in Galois theory as usual; namely, the product of Galois extensions
E/K and F/K, whose Galois group is the direct product of the Galois groups of E/K
and F/K. Then we will prove the equivalence of both approaches in the previous
paragraph and we shall define induced Hopf Galois structures by means of the cor-
responding permutation subgroups under the Greither-Pareigis correspondence.

The replacement of the classical Galois structure by an arbitrary Hopf Galois
structure translates into the replacement of the direct product of the Galois group by
the semidirect product. Consequently, our basic hypothesis will be that the Galois
group of L/K is a semidirect product G = J o G′. We will give an explicit descrip-
tion of induced Hopf Galois structures: if E = LG′ and F = LJ , then all induced
Hopf Galois structures arising from the previous decomposition of G as semidirect
product are of the form H = H1 ⊗K H2 both as Hopf algebras and actions, where H1
(resp. H2) is a Hopf Galois structure on E/K (resp. F/K).
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In the last section, we will assume that the extension is Hermite and we will
study the Hopf Galois module structure of OL. We shall seek criteria to ensure that
AH = AH1 ⊗OK AH2 , and whether the AH-freeness of OL can be deduced from the
AH1-freeness of OE and the AH2-freeness of OF. For both problems, a sufficient con-
dition can be found in the arithmetic disjointness of E/K and F/K. Moreover, for the
first one, there is a slightly stronger sufficient condition: the existence of an integral
induced basis.

5.1 Inducing a Galois extension

Let E/K and F/K be finite Galois extensions such that E, F ⊂ K such that E ∩ F =
K. We want to construct a Galois extension of K from these two and describe its
Galois group in terms of the Galois groups of E/K and F/K. Let us consider the
compositum L = EF of E and F. We begin by checking that it is Galois and studying
its Galois group.

Proposition 5.1. Let L1/K and L2/K be Galois extensions with L1, L2 ⊂ K and let L =
L1L2. Call G1 = Gal(L1/K) and G2 = Gal(L2/K). Then:

1. L/K is Galois.

2. Let G = Gal(L/K). The map

f : G −→ G1 × G2
σ 7−→ (σ|L1 , σ|L2)

is injective.

Proof. 1. It is straightforward to check that normality and separability are pre-
served by compositum.

2. Trivially, f is an homomorphism of groups. Let σ ∈ G such that σ|L1 = IdL1

and σ|L2 = IdL2 . Since elements of L are sums of products of an element of L1
and an element of L2 and σ preserves sums and products, σ = IdL.

Thus, we have that this result holds for our extensions E/K and F/K, without
needing that E ∩ F = K. But under this hypothesis, we will show that we can see
the extension L/K in pieces. We know that elements of L are sums of products of an
element of E and an element of F. What we mean by pieces is that for (x, y), (x′, y′) ∈
E× F, we have xy = x′y′ if and only if x′ = rx and y = ry′ for some r ∈ K.

Definition 5.2. We say that two extensions of fields L1/K and L2/K with L1, L2 ⊂ K are
linearly disjoint if the map

L1 ⊗K L2 −→ L1L2
x⊗ y 7−→ xy

is an isomorphism of K-algebras.

We are interested in the following equivalent definition of linear disjointness (see
[Coh91, Proposition 5.1]).

Proposition 5.3. Two extensions L1/K and L2/K are linearly disjoint if and only if every
finite set S ⊂ L1 which is K-linearly independent is also L2-linearly independent.
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Another equivalent condition can be consulted in [Lan02, Chapter VIII, §3, Propo-
sition 3.1]. An easy property of linearly disjoint extensions is that their intersection
is the base field.

Proposition 5.4. If L1/K and L2/K are linearly disjoint extensions, then L1 ∩ L2 = K.

Proof. Let a ∈ L1 ∩ L2. Then, {1, a} is a finite subset of L1 which is L2-linearly de-
pendent, since a · 1− 1 · a = 0 with a,−1 ∈ L2. By linear disjointness, {1, a} is K-
linearly dependent, so there exist λ, µ ∈ K some not zero such that λ · 1 + µ · a = 0.
If µ = 0, then λ = 0 which contradicts linear dependence, so µ 6= 0, and then

a = −λ

µ
∈ K.

The converse of this result in general does not hold. However, the converse holds
when we assume that the extensions are Galois (see [Cla, Proposition 12.11]).

Proposition 5.5. Two Galois extensions of fields L1/K and L2/K such that L1, L2 ⊂ K and
L1 ∩ L2 = K are linearly disjoint.

Proof. We must check that the map

L1 ⊗K L2 −→ L1L2
x⊗ y 7−→ xy

is an isomorphism of K-algebras. It is in general an epimorphism, so it is enough to
check that the dimensions of domain and codomain coincide, that is,

[L1L2 : K] = [L1 : K][L2 : K].

Let L = L1L2. By Proposition 5.1, L/K is Galois. Then, so are L/L1 and L/L2. Let
us call Gi = Gal(L/Li), i ∈ {1, 2}. Let us call G = Gal(L/K). Since L1/K and
L2/K are normal extensions, G1 and G2 are normal subgroups of G. By the Galois
correspondence,

L = LG1 LG2 = LG1∩G2 ,

so G1 ∩ G2 = {1G}. Then, G1G2 ∼= G1 × G2. On the other hand, by the hypothesis
and the Galois correspondence,

K = L1 ∩ L2 = LG1 ∩ LG2 = LG1G2 .

Hence, G = G1G2. Since this is isomorphic to G1 × G2, |G| = |G1||G2|, which trans-
lates into

[L : K] = [L : L1][L : L2] =
[L : K]
[L2 : K]

[L : K]
[L1 : K]

.

We conclude that [L : K] = [L1 : K][L2 : K].

From the proof of this result we also deduce the following:

Corollary 5.6. If L1/K and L2/K are Galois extensions such that L1, L2 ⊂ K and L1 ∩
L2 = K, then

Gal(L1L2/K) ∼= Gal(L1/K)×Gal(L2/K).
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That is, the map f in Proposition 5.1 is an isomorphism.

We go back to the case of our extensions E/K and F/K such that E, F ⊂ K and
E ∩ F = K. We have seen that the compositum L = EF gives a Galois extension
of K with Galois group the direct product of the Galois groups of E/K and F/K.
Using the fundamental theorem of Galois theory, it is straightforward to check that
the converse also holds: if L/K is a Galois extension with Galois group G = J × G′

and we define E = LG′ and F = LJ , then E/K and F/K are Galois and E ∩ F = K.

Example 5.7. Let L/K be a biquadratic extension. Then, there are different a, b ∈ K
such that L = K(

√
a,
√

b) and G = 〈σ, τ〉 with σ2 = τ2 = 1G. Then G = J × G′ with
J = 〈σ〉 and G′ = 〈τ〉. Let E = K(

√
a) and F = K(

√
b). By the previous paragraph,

E/K and F/K are Galois extensions with E ∩ F = K. Then, L/K can be seen as the
Galois extension induced by E/K and F/K.

Now, we study the behaviour of the group algebras of the corresponding Galois
groups.

Corollary 5.8. With the hypotheses of Proposition 5.1, K[G] ∼= K[J]⊗K K[G′] as K-vector
spaces.

Proof. Since J ∩ G′ = {1G} and G = JG′, K[J] ⊗K K[G′] can be embedded in K[G].
Now,

dimK(K[J]⊗K K[G′]) = dimK(K[J])dimK(K[G′]) = |J||G′| = |G| = dimK(K[G]).

We deduce that K[G] ∼= K[J]⊗K K[G′].

Next, we study the relation between the Galois actions. Recall that for an H-
Galois extension L/K, the Hopf algebra H has a linear representation ρH : H −→
EndK(L) associated. In general, for A a K−algebra and V a K−vector space, a lin-
ear representation of A in V is a K−algebra homomorphism ρ : A −→ EndK(V).
The tensor product or Kronecker product of two linear representations ρ1 : A1 −→
EndK(V1) and ρ2 : A2 −→ EndK(V2) is the representation

ρ1 ⊗ ρ2 : A1 ⊗K A2 −→ EndK(V1 ⊗V2)

defined by
ρ1 ⊗ ρ2(a1 ⊗ a2)(v1 ⊗ v2) = ρ1(a1)(v1)⊗ ρ2(a2)(v2).

This is the correct notion to describe the Galois action on the product of linearly
disjoint Galois extensions.

Proposition 5.9. If E/K and F/K are Galois extensions with groups J and G′, such that
E, F ⊂ K and E ∩ F = K, then

ρK[G] = ρK[J] ⊗K ρK[G′].

Proof. We want to see that ρK[G] : K[G] −→ EndK(L) and ρK[J] ⊗K ρK[G′] : K[J] ⊗K
K[G′] −→ EndK(E ⊗K F) coincide. By Corollary 5.8, the domains are isomorphic.
Since E/K and F/K are linearly disjoint, the codomains are also isomorphic. Let
us identify them. Regarding the definition, we also identify L = EF. Given σ ∈ J,
τ ∈ G′, x ∈ E and y ∈ F,

ρK[J] ⊗K ρK[G′](στ)(xy) = σ(x)τ(y) = (στ)(xy) = ρK[G](στ)(xy),

which finishes the proof.
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Now, let us take the extension L/K to be Hermite. The Galois module structure
of OL has been studied and characterized in the case that the extensions E/K and
F/K are arithmetically disjoint.

Definition 5.10. Two Hermite extensions of fields L1/K and L2/K are said to be arith-
metically disjoint if they are K-linearly disjoint and their discriminants are coprime.

Our interest in arithmetically disjoint extensions relies in the fact that if L1/K
and L2/K are arithmetically disjoint, then OL1L2 = OL1 ⊗OK OL2 (see [FT92, Chapter
III, (2.13)] for a proof). The result that gives account of the associated order and the
module structure of OL is the following (see [BL96, Lemma 5]):

Proposition 5.11. Let K be the quotient field of a Dedekind domain OK and let E/K, F/K
be finite Galois extensions. Put L = EF and suppose that E/K and F/K are arithmetically
disjoint. Then:

1. AL/F = AE/K ⊗OK OF and AL/K = AE/K ⊗OK AF/K.

2. If there exists some γ ∈ OE with OE = AE/K · γ, then OL = AL/F · (γ⊗ 1).
If there also exists δ ∈ OF with OF = AF/K · δ, then OL = AL/K · (γ⊗ δ).

5.2 Inducing a Hopf Galois extension

We want to repeat the procedure of the previous section under slightly less restric-
tive hypotheses over E/K and F/K. Namely, we will assume that E/K is almost
classically Galois and F/K is a Galois complement of E/K, that is, Ẽ ⊂ E⊗K F. Let
us call L = E⊗K F. By the definition of almost classically Galois extension, the Galois
group of L/K is of the form

G = J o G′,

where J = Gal(L/F) and G′ = Gal(L/E). Actually, since this is an equivalent defi-
nition, we may take the following equivalent approach: instead of assuming that the
Galois group of L/K is a direct product G = J×G′, we assume that it is a semidirect
product G = J o G′, which implies that E/K is almost classically Galois with Galois
complement F/K and E ∩ F = K.

The aim is to build a Hopf Galois structure on L/K from Hopf Galois structures
on each E/K and F/K, which will be what we call an induced Hopf Galois structure.
We will prove the following:

Theorem 5.12. If E/K has a Hopf Galois structure of type N1 and F/K has a Hopf Galois
structure of type N2, then L/K has a Hopf Galois structure of type N1 × N2.

In the next section, we will give the explicit form of the permutation subgroups
involved in this statement. On the other hand, we have:

Proposition 5.13. The Hopf Galois structures of L/E and F/K are in one-to-one corre-
spondence.

Proof. By the Galois correspondence, L/E is Galois with group G′, and since J is
normal in G, F/K is Galois with group G/J. Hence, by using Greither-Pareigis
theorem, the Hopf Galois structures of L/E (resp. F/K) are in one-to-one corre-
spondence with regular subgroups of Perm(G′) (resp. Perm(G/J)) normalized by
λG′(G′) (resp. λG/J(G/J)). Since G′ ∼= G/J and under this isomorphism the def-
initions of λG/J and λG′ are the same, regular subgroups of Perm(G′) normalized
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by λG′(G′) are in bijective correspondence with regular subgroups of Perm(G/J)
normalized by λG/J(G/J). Hence, Hopf Galois structures of L/E and F/K are in
bijective correspondence.

Hence, we can reformulate Theorem 5.12 as follows:

Theorem 5.14. If E/K has a Hopf Galois structure of type N1 and L/E has a Hopf Galois
structure of type N2, then L/K has a Hopf Galois structure of type N1 × N2.

This is the result of induction that appears in [CRV16].

Whenever E ∩ F = K, the extensions E/K and F/K are still linearly disjoint, so
actually L = EF. This is a consequence of the following result, which generalizes
Proposition 5.5.

Theorem 5.15. Let L1/K and L2/K be finite extensions of fields such that one of them is
normal and one (possibly the same) separable. Then L1/K and L2/K are linearly disjoint if
and only if L1 ∩ L2 = K.

Proof. See [Coh91, Theorem 5.5].

Example 5.16. Let E/K be a separable degree p extension of fields whose Galois
closure L/K is dihedral of degree 2p, for an odd prime number p. Let F = K(z) with
z ∈ L, z /∈ K and z2 ∈ K, so F/K is quadratic and then Galois. Since [E : K] and
[F : K] are coprime, then E ∩ F = K. By the previous theorem, E/K and F/K are
linearly disjoint. Then the extension EF/K is of degree 2p, so it must be L = EF.
By Theorem 5.12, we can induce Hopf Galois structures on a dihedral degree 2p
extension from Hopf Galois structures of its subextensions.

We have seen that when E/K and F/K are Galois, the tensor product of the group
algebras of the Galois groups gives a Hopf Galois structure on L/K, but this fact
does not hold in general with the semidirect product. Instead, as shown in Theorem
5.12, we multiply the corresponding permutation subgroups which by the Greither
Pareigis Theorem give Hopf Galois structures of E/K and F/K.

5.2.1 Induced permutation subgroups

We begin by considering the extension L/K. By the Greither-Pareigis theorem, its
Hopf Galois structures are in bijective correspondence with regular subgroups of G
normalized by λ(G), where

λ : G −→ Perm(G)
g 7−→ g′ 7→ gg′

is the left regular representation of G. We explore this map in terms of the decompo-
sition G = J o G′.

Proposition 5.17. Let λJ : J −→ Perm(J) (resp. λG′ : G′ −→ Perm(G′)) be the left
regular representation of J (resp. G′) and let φ : G −→ Aut(G) be the map such that φ(τ)
is the conjugation-by-τ automorphism. Given g = στ, g′ = σ′τ′ ∈ G with σ, σ′ ∈ J and
τ, τ′ ∈ G′, we have

λ(g)(g′) = (λJ(σ)φ(τ))(σ′)λG′(τ)(τ′).
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Proof.

λ(g)(g′) = gg′

= στσ′τ′ = στσ′τ−1ττ′

= σφ(τ)(σ′)λG′(τ)(τ′)

= (λJ(σ)φ(τ))(σ′)λG′(τ)(τ′)

Thus, we can describe the left regular representation of G as

λ = ι ◦ χ,

where ι and χ are the group homomorphisms given by

χ : G −→ Perm(J)× Perm(G′)
στ 7−→ (λJ(σ)φ(τ), λG′(τ)),

ι : Perm(J)× Perm(G′) −→ Perm(G)
(ϕ, ψ) 7−→ στ 7→ ϕ(σ)ψ(τ).

Next, we consider the almost classically Galois extension E/K. Recall that we are
assuming that F/K satisfies that Ẽ ⊂ EF. By Theorem 1.13, there is also F′/K such
that Ẽ = EF′. By the Greither-Pareigis theorem, Hopf Galois structures of E/K are in
one-to-one correspondence with regular subgroups of Perm(G̃/G̃′) normalized by
λ̃(G̃), where G̃ = Gal(Ẽ/K), G̃′ = Gal(Ẽ/E) and λ̃ : G̃ −→ Perm(G̃/G̃′) is the left
translation map of G into Perm(G̃/G̃′). We see that in order to apply the Greither-
Pareigis theorem we take the Galois group of the extension given by adjoining F′/K
to E/K. Let us call G = Gal(L/K) and G′ = Gal(L/E). The fundamental theorem of
Galois theory gives us the isomorphisms

Gal(Ẽ/K) ∼= Gal(L/K)/Gal(L/Ẽ),

Gal(Ẽ/E) ∼= Gal(L/E)/Gal(L/Ẽ).

Hence, there is a canonical bijection G̃/G̃′ ∼= G/G′ which induces an isomorphism
Perm(G̃/G̃′) ∼= Perm(G/G′), under which the definition of the map λ̃ coincides
with the one of

λ : G −→ Perm(G/G′)
g 7−→ g′ 7→ gg′

,

which is the left translation map of G into Perm(G/G′). Hence, regular subgroups
of Perm(G̃/G̃′) normalized by λ̃(G̃) are in bijective correspondence with regular
subgroups of Perm(G/G′) normalized by λ(G). Thus, in order to compute the Hopf
Galois structures of E/K, we can apply the Greither-Pareigis theorem with the Ga-
lois group of any extension of K that contains the Galois closure Ẽ of E/K, instead of
the Galois group of Ẽ/K itself.

Under this consideration, Hopf Galois structures of E/K are in one-to-one corre-
spondence with regular subgroups of Perm(G/G′) normalized by λ(G). Now, J is
a transversal of G′ in G, that is, at every left coset of G/G′ there is a unique element
of J. Let us write J = {σ1, ..., σr}. Then, we can write G/G′ = {σ1G′, ..., σrG′} and
identify J with G/G′. Carrying this identification to λ we obtain a map λc : G −→
Perm(J) whose definition corresponds to the action of G on left cosets of G/G′. But
this action turns out to be the first component of χ.
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Proposition 5.18. Let π1 : Perm(J)× Perm(G′) −→ Perm(J) be the projection onto the
first component. Then, λc = π1 ◦ χ.

Proof. It is enough to check that the action of G on the left cosets of G/G′ is the
definition of the first component of χ. Let g = στ ∈ G with σ ∈ J and τ ∈ G′. Given
i ∈ {1, ..., n},

g · (σiG′) = στσiG′ = σ(τσiτ
−1)τG′ = σφ(τ)(σi)G′

= λJ(σ)φ(τ)(σi)G′ = π1 ◦ χ(g)(σi)G′.

This means that λ(g)(σiG′) = π1 ◦ χ(g)(σi)G′, and by means of the identification of
G/G′ with J we obtain that λc(g)(σi) = π1 ◦ χ(g)(σi). Since g and i are arbitrary,
λc = π1 ◦ χ.

Corollary 5.19. Given g = στ ∈ G with σ ∈ J and τ ∈ G′,

χ(g) = (λc(g), λG′(τ)).

Example 5.20. Let L/K be a dihedral degree 2p extension of fields with Galois group
G. We establish the presentation

G = 〈σ, τ〉, σp = τ2 = 1, τσ = σ−1τ.

We review the lattice of subgroups of G: it has a unique order p subgroup J = 〈σ〉
and p order 2 subgroups G′d = 〈σdτ〉, where d ranges from 0 to p− 1. Then G has p
possible decompositions as semidirect product

G = J o G′d, 0 ≤ d ≤ p− 1.

As in the discussion preceding Theorem 4.1, let us fix d and denote G′ = G′d. Let
us check in this concrete example that the maps λ and λc are compatible. The map
λ : G −→ Perm(G/G′) operates as follows:

λ(σi)(σk) = σi+k,

λ(σiτ)(σk) = σiτσk = σi−kτ = σi−k−d

On the other hand, by Proposition 5.18, the definition of the map λc : G −→ Perm(J)
is given by:

λc(σ
i)(σk) = λJ(σi)(σk) = σi+k,

λc(σ
iτ)(σk) = λc(σ

i−dσdτ)(σk) = λJ(σi−d)φ(σdτ)(σk) = σi−dσdτσk+dτ = σi−k−d.

5.2.2 The Induction Theorem

We proceed to construct a Hopf Galois structure on L/K from Hopf Galois structures
on E/K and F/K working with the corresponding permutation groups. We will
prove a more general version of Theorem 5.12 by showing the explicit form of the
subgroup of Perm(G) that gives the induced Hopf Galois structure. Concretely:

Theorem 5.21 (Induction Theorem). Let N1 ≤ Perm(J) be regular and normalized by
λc(G) and let N2 ≤ Perm(G′) be regular and normalized by λG′(G′). Then, N = ι(N1 ×
N2) is a regular subgroup of Perm(G) normalized by λ(G).

The proof of this theorem will follow from the results that regularity and stability
by action of the corresponding groups are preserved when multiplying N1 and N2.
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Proposition 5.22. If N1 ≤ Perm(J) and N2 ≤ Perm(G′) are regular, so is N.

Proof. Since |N| = |ι(N1× N2)| = |N1× N2| = |N1||N2| = |J||G′| = |G|, it is enough
to check that the action of N on G is transitive. Let g = στ, g′ = σ′τ′ ∈ G with
σ, σ′ ∈ J and τ, τ′ ∈ G′. Since N1 (resp. N2) is regular, there exists ϕ ∈ Perm(J) (resp.
ψ ∈ Perm(G′)) such that ϕ(σ) = σ′ (resp. ψ(τ) = τ′). Then,

ι(ϕ, ψ)(g) = ι(ϕ, ψ)(στ) = ϕ(σ)ψ(τ) = σ′τ′ = g′.

Proposition 5.23. If N1 ≤ Perm(J) is normalized by λc(G) and N2 ≤ Perm(G′) is
normalized by λG′(G′), then:

1. N1 × N2 is normalized by χ(G).

2. ι(N1 × N2) is normalized by λ(G).

Proof. 1. By Corollary 5.19, χ(g) = (λc(g), λG′(τ)) for every g = στ ∈ G with
σ ∈ J and τ ∈ G′. Then, given (η, µ) ∈ N1 × N2,

χ(g)(η, µ)χ(g−1) = (λc(g)ηλc(g)−1, λG′(τ)µλG′(τ−1)) ∈ N1 × N2.

2. It follows immediately from 1 and the fact that ι is an homomorphism of
groups: if (η, µ) ∈ N1 × N2 and g ∈ G,

λ(g)ι(η, µ)λ(g−1) = ι ◦χ(g)ι(η, µ)ι ◦χ(g−1) = ι(χ(g)(η, µ)χ(g−1)) ∈ ι(N1×N2).

The Induction Theorem assures that every pair of Hopf Galois structures of E/K
and F/K (or L/E) gives rise to a Hopf Galois structure on L/K.

Definition 5.24. Every Hopf Galois structure on L/K given by Theorem 5.21 is called
induced.

We see some examples of induced Hopf Galois structures.

Example 5.25. The induction procedure generalizes the product of Galois extensions
presented at Section 5.1 of this chapter. Indeed, if L/K is Galois with group G = J ×
G′, then G is in particular a semidirect product. Let E = LG′ and F = LJ . Then both
E/K and F/K are Galois with Gal(E/K) = G/G′ ∼= J and Gal(F/K) = G/J ∼= G′.
By abuse of notation, let us call J = Gal(E/K). The classical Galois structure of
E/K (resp. L/E) is given by ρJ(J) (resp. ρG′(G′)) where ρJ : J −→ Perm(J) (resp.
ρG′ : G′ −→ Perm(G′)) is the right regular representation of J (resp. G′). By induc-
tion theorem, they induce the Hopf Galois structure given by ι(ρJ(J)× ρG′(G′)) ≤
Perm(G). Given g = στ, g′ = σ′τ′ ∈ G with σ, σ′ ∈ J and τ, τ′ ∈ G′, one has

ι(ρJ(σ)ρG′(τ))(g′) = ρJ(σ)(σ′)ρG′(τ)(τ′) = σ′σ−1τ′τ−1 = σ′τ′(στ)−1 = ρ(g)(g′),

so ι(ρJ(J)× ρG′(G′)) = ρ(G) gives the classical Galois structure of L/K.
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Example 5.26. Let us consider again a dihedral degree 2p extension L/K and recover
the notation of Example 5.20. For each decomposition G = J o G′ of G := Gal(L/K)
as semidirect product, the subgroups of Perm(G) giving an induced Hopf Galois
structure on L/K are of the form

N = ι(N1 × N2),

where N1 is a regular subgroup of Perm(J) normalized by λc(G) and N2 is a reg-
ular subgroup of Perm(G′) normalized by λG′(G′). In this case, Perm(J) has a
unique regular subgroup N1 = 〈(Id, σ, . . . , σp)〉, and it is normalized by λc(G), and
Perm(G′) has also a unique regular subgroup N2 = 〈(Id, τ)〉, trivially normalized
by λG′(G′). As there are p possibilities for G′ and J is unique, L/K has in total p
induced Hopf Galois structures.

If p = 3:

1. For J = 〈σ〉 and G′ = 〈τ〉, N = 〈(1G, στ, σ2, τ, σ, σ2τ)〉.

2. For J = 〈σ〉 and G′ = 〈στ〉, N = 〈(1G, σ2τ, σ2, στ, σ, τ)〉.

3. For J = 〈σ〉 and G′ = 〈σ2τ〉, N = 〈(1G, τ, σ2, σ2τ, σ, στ)〉.

From a theoretical point of view, the existence of induced Hopf Galois structures
is assured in case the Galois group is semidirect. However, it is interesting to analyze
the relations involving Hopf algebras and Hopf actions of the extensions L/K, E/K
and F/K.

5.2.3 Induced Hopf algebras

First, we describe the Hopf algebras involved in the Induction Theorem. By the
Greither-Pareigis Theorem, these are

H = L[ι(N1 × N2)]
G, H1 = L[N1]

G, H = L[N2]
G′ , H2 = F[N2]

G/J = L[N2]
G.

We know that the Hopf Galois structures of H2 and H correspond to each other
by means of the bijective correspondence showed in Proposition 5.13. Actually, this
correspondence works as follows:

{Hopf Galois structures of L/E} ←→ {Hopf Galois structures of F/K}
H 7−→ H J

E⊗K H2 ←− [ H2

.

Remark 5.27. The actions of the Hopf algebras involved work as follows:

• E⊗K H2 acts on L = E⊗K F through the product on E in the first factor and the Hopf
action in the second one.

• The E-action of H = L[N2]G
′

on L is J-equivariant, namely σ(h · x) = σ(h) · σ(x)
for σ ∈ J, h ∈ H and x ∈ L. Indeed, J acts on L by the classical Galois action and
by conjugation on N2, but this last action turns out to be trivial. Consequently, the
restricted action of H J on L = F J makes sense, and this is the Hopf Galois action of
H2 on F.

The result that gives the form of the Hopf algebra H in the Hopf Galois structure
on L/K is the following.
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Theorem 5.28. Let H be the Hopf algebra of the induced Hopf Galois structure on L/K
given by the permutation subgroup N = ι(N1× N2). Let H1 (resp. H2) be the Hopf algebra
of the Hopf Galois structure on E/K (resp. F/K) given by N1 (resp. N2). Then,

H = H1 ⊗K H2.

Proof. We have

H = L[ι(N1 × N2)]
G

= L[ι(N1 × {1})ι({1} × N2)]
G = (L[ι(N1 × {1})]⊗K L[ι({1} × N2)])

G

= (L[N1]⊗K L[N2])
G.

Since λ factorizes through Perm(J)× Perm(G), the action of G on L[N1]⊗K L[N2] by
conjugation by λ(G) coincides with the action by conjugation by λc(G) on the first
factor and conjugation by λG′(G′) on the second factor. Hence,

H = (L[N1]⊗K L[N2])
G = L[N1]

G ⊗K L[N2]
G = H1 ⊗K H2.

Note that this result is the naive generalization of Corollary 5.8.

5.2.4 Induced Hopf actions

Finally, we see the action of H on L in terms of the action of H1 on E and of H2 on F.

Proposition 5.29. Given w ∈ H1, η ∈ H2, x ∈ E and y ∈ F,

(w⊗ η) · (x⊗ y) = (w · x)(η · y),

that is,
ρH = ρH1 ⊗K ρH2 .

Proof. Let us write N1 = {ηi}r
i=1, N2 = {µj}u

j=1. Then,

w ∈ H1 = L[N1]
G =⇒ w =

r

∑
i=1

ciηi, ci ∈ L,

η ∈ H2 = L[N2]
G =⇒ η =

u

∑
j=1

djµj, dj ∈ L.

Hence,

(w⊗ η) · (x⊗ y) =

(
r

∑
i=1

u

∑
j=1

cidjι(ηi, µj)

)
· (x⊗ y)

=
r

∑
i=1

u

∑
j=1

cidjι(ηi, µj)
−1(IdG)(xy) =

r

∑
i=1

u

∑
j=1

cidjι(η
−1
i , µ−1

j )(IdG)(xy)

=
r

∑
i=1

u

∑
j=1

η−1
i (IdJ)(x)µ−1

j (IdG′)(y)

=

(
r

∑
i=1

ciη
−1
i (IdJ)(x)

)(
u

∑
j=1

djµ
−1
j (IdG′)(y)

)
= (w · x)(η · y)
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Again, this result generalizes the behaviour of the Galois action in Proposition
5.9. We can use it to prove the naive generalization of Lemma 2.48.

Proposition 5.30. The product of bases of eigenvectors of E and F with respect to the actions
of H1 and H2 is a basis of eigenvectors of L with respect to the action of H.

Proof. Let {αk}r
k=1 be a basis of eigenvectors of E and {zl}u

l=1 a basis of eigenvectors
of F. Let {wi}r

i=1, {ηj}u
j=1 be K-bases of H1 and H2, so that {wiηj}i,j is J-basis of H.

By hypothesis,
wi · αk = λikαk, 1 ≤ i, k ≤ r,

ηj · zl = µjlzl , 1 ≤ j, l ≤ u.

Now, {αizj}n
i,j=1 is a K-basis of L, and the action of H on this basis is

(wiηj) · (αkzl) = (wi · αk)(ηj · αl) = λikµjlαkzl .

Theorem 5.28 and Proposition 5.29 together mean that the Hopf Galois structures
(H1, ρH1) of E/K and (H2, ρH2) of F/K produce (induce) the induced Hopf Galois
structure (H1 ⊗K H2, ρH1 ⊗K ρH2). We remark that the converse trivially holds: if
(H, ρH) is an induced Hopf Galois structure on L/K, then H and ρH must decompose
as above for some decomposition G = J o G′ of the Galois group as a semidirect
product. Thus, we have:

Corollary 5.31. Let L/K be a Galois extension. The induced Hopf Galois structures of L/K
are of the form

(H1 ⊗K H2, ρH1 ⊗K ρH2),

where (H1, ρH1) is a Hopf Galois structure on E = LG′/K, (H2, ρH2) is a Hopf Galois struc-
ture on F = LJ/K and G = J o G′ runs through the decompositions of G as a semidirect
product.

5.3 Induced Hopf Galois module structure

Let L/K be an H-Galois Hermite extension of fields, where H is an induced Hopf
Galois structure. From now on we will keep the convention H = H1 ⊗K H2, with H1
a Hopf Galois structure on E/K and H2 a Hopf Galois structure on F/K.

In this part we will address the problems of determining the associated order and
the freeness of OL not only for the induced Hopf Galois structure H, but also for the
inducing structures H1 and H2. We will apply the reduction method simultaneously
to the three Hopf Galois structures and try to relate them. We shall check that the
behaviour is far from trivial. Regarding the associated order, one may expect that
AH = AH1 ⊗OK AH2 , but this does not happen in general. As for the freeness over
AH, the products of generators of OE as AH1-module and of OF as AH2-module is
not in general a generator of OL as AH-module. However, as in the Galois case,
both of them hold when E/K and F/K are arithmetically disjoint. Moreover, for the
associated order, we shall provide a stronger sufficient condition.
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5.3.1 Relation between the matrices of actions

The starting point of the reduction method is the determination of the matrix of the
action. For this reason, it seems reasonable to try to find some relation between
the matrices of the actions involved in the induction procedure; namely M(H, L),
M(H1, E) and M(H2, F). Since no reduction is performed in this part, actually we
can take L/K as an arbitrary H-Galois extension of fields.

The Kronecker product

As H = H1 ⊗K H2 and ρH = ρH1 ⊗K ρH2 , one may expect that the relation between
the aforementioned matrices might have something to do with the tensor product.
The analogous notion of tensor product for matrices is the following:

Definition 5.32. Let F be a field and let A = (aij) ∈ Mm1×n1(F) and B = (bkl) ∈
Mm2×n2(F). The Kronecker product of the matrices A and B is the matrix A ⊗ B =
(cxy)x,y ∈ Mm1m2×n1n2(F) whose entries are given by the relations:

aijbkl = c(i−1)m2+k,(j−1)n2+l

In other words, the Kronecker product of two matrices A and B is the matrix
whose entries are products between all possible entries of A and B, arranged so that
any entry of A is multiplied by all possible entries of B. For instance:

A =

(
a11 a12
a21 a22

)
, B =

b11 b12
b21 b22
b31 b32

 =⇒ A⊗ B =



a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a11b31 a11b32 a12b31 a12b32
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22
a21b31 a21b32 a22b31 a22b32

 .

Induced Gram matrix

Going back to the induced Hopf Galois structure H = H1⊗K H2 of L/K, we may de-
duce easily from Proposition 5.29 the relation between the Gram matrices involved:

G(H, L) = G(H1, E)⊗ G(H2, F),

whenever we consider in L the basis B which is the product of the previously fixed
bases of E and F. If B′ is another basis of L, we can combine the previous equality
with the one in Proposition 2.10 to obtain:

G(H, LB′) = (G(H1, E)⊗ G(H2, F))PB′
B .

Then, to compute the Gram matrix of an induced Hopf Galois structure is quite
straightforward once one knows the Gram matrices of the inducing Hopf Galois
structures.

Remark 5.33. This is actually the strategy we have followed in Sections 3.3 and 3.5
to study the classical Galois structure of elementary abelian extensions of Q and
Q2. Indeed, in those cases the basis Bc = {e1, e2, e3, e4} is almost a product basis of
the extensions E = K(e3) and F = K(e2), where K = Q or Q2. It is not exactly the
product basis because e4 is not the product of e2 and e3 but it is so up to multiplication
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by an element in the ground field, which does not affect the action. Let us call H1
(resp. H2) the unique Hopf Galois structure on E/K (resp. F/K). Then

G(H1, E) =
(

e1 e3
e1 −e3

)
, G(H2, F) =

(
e1 e2
e1 −e2

)
,

G(Hc, LBc) =

(
e1 e3
e1 −e3

)
⊗
(

e1 e2
e1 −e2

)
=


e1 e2 e3 e4
e1 −e2 e3 −e4
e1 e2 −e3 −e4
e1 −e2 −e3 e4


Induced matrix of the action

The relation between the matrices of the action is not as straightforward. Namely, it
does not hold in general that M(H, L) = M(H1, E)⊗M(H2, F), even if in H and L
we fix the corresponding product bases. The reason is that carrying out the tensor
product and transforming from matrices to column vectors are not commutative op-
erations. However, the equality holds up to a permutation of the rows. Concretely:

Theorem 5.34. Let us fix the product bases of H and L. Then, there is a permutation matrix
P ∈ Mn2(K) such that

PM(H, L) = M(H1, E)⊗M(H2, F).

Proof. Let n = [L : K], r = [E : K] and u = [F : K] (in particular n = ru). Let us fix a
K-basis {wi}r

i=1 of H1 and a K-basis {ηj}u
j=1 of H2. Since H = H1⊗K H2, {wiηj}n

i,j=1 is
a K-basis of H, and similarly, since L = E⊗K F, for bases {αk}r

k=1 of E and {zl}u
l=1 of

F, {αkzl}k,l is a K-basis of L. These are the bases we use to build the matrix M(H, L).

We will use the description of the matrices of the action provided by Proposition
2.5. First we fix some notation. Given m ≥ 0, let ϕm : Mm(K) −→ Km2

be the map
that takes matrices to column vectors. For a, b ≥ 0 we call Em

ab the matrix with zero in
all entries but the (a, b)-th one, filled with 1. Then, {Em

ab}m
a,b=1 is a K-basis ofMm(K).

We compute the columns of M(H, L) and M(H1, E) ⊗ M(H2, F) and compare
them to find the suitable permutation. The columns of M(H, L) are

{ϕn(ρH(wi ⊗ ηj))}n
i,j=1.

Since ρH = ρH1 ⊗ ρH2 by Proposition 5.29,

ϕn(ρH(wi ⊗ ηj)) = ϕn(ρH1(wi)⊗ ρH2(ηj)).

Now, ρH(wi ⊗ ηj) ∈ Mn(K), so it is linear combination of elements of the form
Er

ab ⊗ Eu
cd. And we have:

ϕn(Er
ab ⊗ Eu

cd) = ϕn(En
u(a−1)+c,u(b−1)+d) = enu(b−1)+n(d−1)+u(a−1)+c.

On the other hand, the columns of M(H1, E)⊗M(H2, F) are

{ϕr(ρH1(wi))⊗ ϕu(ρH2(ηj))}n
i,j=1.

Moreover, ρH1(wi) ∈ Mr(K) and ρH2(ηj) ∈ Mu(K). Then:

ϕr(Er
ab)⊗ ϕu(Eu

cd) = er
r(b−1)+a ⊗ eu

u(d−1)+c = enu(b−1)+u2(a−1)+u(d−1)+c.
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Let P be the n2× n2 matrix obtained by permuting the rows of the identity matrix
following the permutation of {1, ..., n}

nu(b− 1) + n(d− 1) + u(a− 1) + c 7−→ nu(b− 1) + u2(a− 1) + u(d− 1) + c,

for 1 ≤ a, b ≤ r and 1 ≤ c, d ≤ u. By construction,

Pϕn(Er
ab ⊗ Eu

cd) = ϕr(Er
ab)⊗ ϕu(Eu

cd).

Then, by K-linearity,

Pϕn(ρH(wi ⊗ ηj)) = ϕr(ρH1(wi))⊗ ϕu(ρH2(ηj))

for every 1 ≤ i, j ≤ n. Therefore,

PM(H, L) = P

 | | |
ϕn(w1 ⊗ η1) . . . ϕn(wr ⊗ ηu)

| | |


=

 | | |
ϕr(w1)⊗ ϕu(η1) . . . ϕr(wr)⊗ ϕu(ηu)

| | |


= M(H1, E)⊗M(H2, F).

Remark 5.35. When L/K is a Hermite extension, P ∈ GLn2(OK) is a unimodular
matrix, as its entries are 0 or 1 and its determinant is 1 or −1.

Remark 5.36. The permutation only depends on the factorisation of the degree of
the extension: For different extensions L/Qp of the same degree and with induced
Hopf Galois structures H = H1 ⊗K H2, the matrix determining the relation between
M(H, L) and M(H1, E)⊗M(H2, F) is always the same.

Example 5.37. Let us assume that r = u = 2. Then, n = 4 and P ∈ GL16(K). Let us
compute the corresponding permutation.

{
ϕ(E2

11 ⊗ E2
11) = e1

ϕ(E2
11)⊗ ϕ(E2

11) = e1

}
1 7→ 1

{
ϕ(E2

21 ⊗ E2
11) = e3

ϕ(E2
21)⊗ ϕ(E2

11) = e5

}
3 7→ 5{

ϕ(E2
11 ⊗ E2

21) = e2
ϕ(E2

11)⊗ ϕ(E2
21) = e2

}
2 7→ 2

{
ϕ(E2

12 ⊗ E2
11) = e9

ϕ(E2
11)⊗ ϕ(E2

21) = e9

}
9 7→ 9{

ϕ(E2
11 ⊗ E2

12) = e5
ϕ(E2

11)⊗ ϕ(E2
12) = e3

}
5 7→ 3

{
ϕ(E2

22 ⊗ E2
11) = e11

ϕ(E2
22)⊗ ϕ(E2

11) = e13

}
11 7→ 13{

ϕ(E2
11 ⊗ E2

22) = e6
ϕ(E2

11)⊗ ϕ(E2
22) = e4

}
6 7→ 4

{
ϕ(E2

21 ⊗ E2
12) = e7

ϕ(E2
21)⊗ ϕ(E2

12) = e7

}
7 7→ 7{

ϕ(E2
21 ⊗ E2

22) = e8
ϕ(E2

21)⊗ ϕ(E2
22) = e8

}
8 7→ 8

{
ϕ(E2

21 ⊗ E2
21) = e4

ϕ(E2
21)⊗ ϕ(E2

21) = e6

}
4 7→ 6{

ϕ(E2
12 ⊗ E2

12) = e13
ϕ(E2

12)⊗ ϕ(E2
12) = e11

}
13 7→ 11

{
ϕ(E2

12 ⊗ E2
21) = e10

ϕ(E2
12)⊗ ϕ(E2

21) = e10

}
10 7→ 10{

ϕ(E2
22 ⊗ E2

21) = e12
ϕ(E2

22)⊗ ϕ(E2
21) = e14

}
12 7→ 14

{
ϕ(E2

12 ⊗ E2
22) = e14

ϕ(E2
12)⊗ ϕ(E2

22) = e12

}
14 7→ 12{

ϕ(E2
22 ⊗ E2

12) = e15
ϕ(E2

22)⊗ ϕ(E2
12) = e15

}
15 7→ 15

{
ϕ(E2

22 ⊗ E2
22) = e16

ϕ(E2
22)⊗ ϕ(E2

22) = e16

}
16 7→ 16
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Thus, P corresponds to the permutation

(3, 5)(4, 6)(11, 13)(12, 14).

Let us check it in a specific example. Let L = Q(
√

2,
√

3). Then L/Q is Galois
with group

G = Gal(L/Q) = 〈σ, τ〉 ∼= C2 × C2,

where
σ(
√

2) = −
√

2, σ(
√

3) =
√

3,

τ(
√

2) =
√

2, τ(
√

3) = −
√

3.

We consider the bases {1G, σ, τ, στ} of Hc and {1,
√

2,
√

3,
√

6} of L. Let us call E =
Q(
√

3) and F = Q(
√

2). We know by Remark 5.33 that

G(Hc, L) =


1
√

2
√

3
√

6
1 −

√
2
√

3 −
√

6
1
√

2 −
√

3 −
√

6
1 −

√
2 −

√
3
√

6

 .

On the other hand, the matrices of the action of E/Q and F/Q are:

M(H1, E) =


1 1
0 0
0 0
1 −1

 M(H2, F) =


1 1
0 0
0 0
1 −1


Now, we compare the matrix of the action M(Hc, L) with the Kronecker product

M(H1, E)⊗M(H2, F):

M(Hc, L) = M(H1, E)⊗M(H2, F) =

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 −1 1 −1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 −1 −1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 −1 −1 1





1 1 1 1
0 0 0 0
0 0 0 0
1 −1 1 −1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 −1 −1
0 0 0 0
0 0 0 0
1 −1 −1 1


It is immediate to check that the permutations of rows (3, 5)(4, 6)(11, 13)(12, 14)

carries the left side matrix to the right side one.
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5.3.2 Induced bases

Once we have found a relation between M(H, L) and M(H1, E)⊗M(H2, F), we may
apply the reduction method simultaneously in order to find a relation between AH,
AH1 and AH2 . Indeed, we will see how the reduction method applied to this equality
yields that AH = AH1 ⊗OK AH2 . But before, we need to take into account that the re-
duction method requires the basis fixed at L to be integral, and Theorem 5.34 holds
for the basis of L which is product of previously fixed bases of B1 and B2.

To sort out this problem, we can in fact work with the hypothesis that E/K and
F/K are arithmetically disjoint, so that the product basis is actually an OK-basis of
OL. However, this does not mean a significant improvement. If, for instance, L/K is
an extension of p-adic fields, then the discriminants of E/K and F/K being coprime
is equivalent to E/K or F/K being unramified. This brings to light the fact that
the arithmetic disjointness is a very restrictive condition: unramified extensions of
p-adic fields are not common.

Example 5.38. Let us consider the biquadratic extension in Example 5.37. Since
2, 3 6≡ 1 (mod 4), OE = Z[

√
2] and OF = Z[

√
3]. Then, OE ⊗Z OF = Z[

√
2,
√

3]. On
the other hand, by Proposition 3.14, L has an integral basis{

1,
√

2,
√

3,

√
2 +
√

6
2

}
.

Thus,
√

2+
√

6
2 ∈ OL and

√
2+
√

6
2 /∈ OE ⊗Z OF, whence OL 6= OE ⊗Z OF.

Example 5.39. Let E be the separable degree 3 extension of Q3 generated by a root α
of the polynomial f (x) = x3 + 3. Its Galois closure is L = EF, where F = Q3(z), for
z =
√
−3, is the unique quadratic subextension of L/Q3. We know by the previous

chapter that B1 = {1, α, α2} is OK-basis of OE and B2 = {1, z} is OK-basis of OF.
Nevertheless, B = {1, z, α, αz, α2, α2z} is notOK-basis ofOL. For example, γ = z

α ∈ L
is a root of x6 + 3, so it lies inOL (in fact it is a uniformising parameter), and it clearly
cannot be written as an OK-linear combination of elements of B.

Actually, we can work without difficulty in a slightly more general context. When
we apply the reduction method to the Hopf Galois structures H, H1 and H2, all we
need to prove a relation between their associated orders is that the matrices M(H, L)
and M(H1, E)⊗M(H2, F) are similar enough. This leads to the following definition.

Definition 5.40. Let us fix bases of H1 and H2 and let W be their product basis, which is
a basis of H. We will say that a K-basis B of L is induced with respect to W if there is a
unimodular matrix P ∈ GLn2(OK) such that

PM(HW , LB) = M(H1, E)⊗M(H2, F).

By Theorem 5.34, the product of bases of E and F is always an induced basis. The
integral basis of L in Example 5.37 is not still an induced basis. In Chapter 6, we will
see that the basis of the powers of γ in Example 5.39 is an integral induced basis.

5.3.3 Determination of the induced associated order

This section is devoted to prove the following result.
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Theorem 5.41. Assume that L has some integral induced basis with respect to W. Then,

AH = AH1 ⊗OK AH2 .

In particular, we have:

Corollary 5.42. If E/K and F/K are arithmetically disjoint, then

AH = AH1 ⊗OK AH2 .

We start the proof of Theorem 5.41.

Proposition 5.43. Let B be an integral induced basis of L with respect to W. Then, the
matrices M(H, L) and M(H1, E)⊗M(H2, F) have the same reduced matrices.

Proof. Let D ∈ Mn(K). Then D is a reduced matrix of M(H, L) if and only if there
is U ∈ GLn2(OK) unimodular such that

UM(H, L) =

(
D

O

)
.

Likewise, D is a reduced matrix of M(H1, E) ⊗ M(H2, F) if and only if there is a
unimodular matrix U′ ∈ GLn2(OK) such that

U′M(H1, E)⊗M(H2, F) =

(
D

O

)
.

Since the basis B is induced, there is a unimodular matrix P ∈ GLn2(OK) such that
PM(H, L) = M(H1, E)⊗M(H2, F). Now, given a matrix U ∈ GLn2(OK), one has

UM(H, L) = UP−1PM(H, L) = UP−1M(H1, E)⊗M(H2, F),

and U is unimodular if and only if UP−1 is. Hence, D is a reduced matrix of M(H, L)
if and only if it is a reduced matrix of M(H1, E)⊗M(H2, F).

Corollary 5.44. If D1 (resp. D2) is a reduced matrix of M(H1, E) (resp. M(H2, F)), then
D1 ⊗ D2 is a reduced matrix of M(H, L).

Proof. Let U1 ∈ GLr2(OK) and U2 ∈ GLu2(OK) such that

U1M(H1, E) =

(
D1

O

)
, U2M(H2, F) =

(
D2

O

)
.

The Kronecker product of these two matrices is

U1 ⊗U2M(H1, E)⊗M(H2, F) =

(
D1 ⊗ D2

O

)
,

with U1 ⊗ U2 ∈ GLn2(OK) unimodular. Then, D1 ⊗ D2 is a reduced matrix of
M(H1, E) ⊗ M(H2, F). By Proposition 5.43, it is also a reduced matrix of M(H, L).

Then, Theorem 5.41 is an immediate consequence of the following:
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Corollary 5.45. For i ∈ {1, 2}, let Vi be anOK-basis of AHi obtained by using the reduction
method, and let

V := V1V2 = {vw | v ∈ V1, w ∈ V2}.

Then, V is an OK-basis of AH.

Proof. Let D1 (resp. D2) be a reduced matrix of M(H1, E) (resp. M(H2, F)). By Corol-
lary 5.44, D1 ⊗ D2 is a reduced matrix of M(H, L). By Theorem 2.25, the columns of
(D1 ⊗ D2)−1 as vector coordinates with respect to W form an OK-basis V ′ of AH.
Now, it is easy to check that (D1 ⊗ D2)−1 = D−1

1 ⊗ D−1
2 . Hence, by definition of

Kronecker product, the columns of this matrix are the products of the columns of
D−1

1 and D−1
2 . We conclude that V ′ = V, so V is an OK-basis of AH.

In summary, reducing M(H1, E) by means of a unimodular matrix U1 and reduc-
ing M(H2, F) by means of a unimodular matrix U2 is the same as reducing M(H, L)
by using U = U1 ⊗U2. This solves the problem of finding a basis of the associated
order in an induced Hopf Galois structure (whenever there is an induced basis) from
a theoretical point of view.

In practice, it is more convenient to work with matrices with integer coefficients.
This is always possible because in order to reduce the matrix of the action it is equiv-
alent to reduce its primitive part, due to the following result.

Corollary 5.46. Call d1 = cont(M(H1, E)), d2 = cont(M(H2, F)) and d = cont(M(H, L)).
Then, there is a unit u ∈ O∗K such that d = d1d2u.

Proof. Let D be a reduced matrix of M(H, L), so there exists a unimodular matrix

U ∈ GLn2(OK) such that UM(H, L) =

(
D

O

)
. By the proof of Proposition 5.43,

UP−1M(H1, E)⊗M(H2, F) =

(
D

O

)
.

Since UP−1 is unimodular,

cont(M(H1, E)⊗M(H2, F)) = cont(UP−1M(H1, E)⊗M(H2, F)) = cont(D).

Now, the content is unique up to multiplication by a unit, so there is some u ∈ O∗K
such that d = d1d2u.

5.3.4 Induced freeness

In this part we study the freeness of OL as AH-module when H = H1 ⊗K H2 is an
induced Hopf Galois structure. To obtain a direct relation, we need the arithmetic
disjointness.

Theorem 5.47. Let us assume that E/K and F/K are arithmetically disjoint. IfOE is AH1-
free and OF is AH2-free, then OL is AH-free. Moreover, if γ is a AH1-free generator of OE
and δ is a AH2-free generator of OF, then γδ is a AH-free generator of OL.

Proof. Let {vi}r
i=1 be anOK-basis of AH1 and let {µj}u

j=1 be anOK-basis of AH2 . Then,
{vi · γ}r

i=1 is an OK-basis of OE and {µj · δ}u
j=1 is an OK-basis of OF. Since OL =
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OE ⊗OK OF, the product of these bases is anOK-basis ofOL. But that basis is formed
by the elements

(vi · γ)(µj · δ) = (viµj) · (γδ), 1 ≤ i ≤ r, 0 ≤ j ≤ u.

Since AH = AH1 ⊗OK AH2 , this amounts to say that γδ is a AH-free generator of
OL.

5.3.5 Freeness after tensoring by OF

We finally compute the associated order of OL in H(1) := H1 ⊗K F and discuss the
freeness of OL as AH(1)-module. Note that this is actually a Hopf Galois structure on
L/F because H1 is a Hopf Galois structure on E/K and F is K-flat. Moreover, the
action of H(1) on L is obtained by extending F-linearly the one of H1 on E.

We study the relation between AH1 and AH(1) , as well as the AH1-freeness of OE
and the AH(1)-freeness of OL. In order to do this, we need a suitable description of
elements of OL. For this reason, we make again the hypothesis that E/K and F/K
are arithmetically disjoint, which implies that OL = OE ⊗OK OF.

Let {αi}r
i=1 be an OK-basis of OE and let {zj}u

j=1 be an OK-basis of OF. Since
OL = OE ⊗OK OF, {αizj}i,j is an OK-basis of OL.

Proposition 5.48. If E/K and F/K are arithmetically disjoint, then AH(1) = AH1 ⊗OK OF.

Proof. First, we prove that AH1 ⊗OK OF ⊂ AH(1) . It is clearly contained in H1⊗OK F =

H1 ⊗K F = H(1). On the other hand, it acts OK-linearly on OL componentwise since
OL = OE ⊗OK OF. This proves the claim.

For the reverse inclusion, let h ∈ AH(1) . Trivially, h ∈ H(1) = H1 ⊗K F. Since
{zj}u

j=1 is a K-basis of F and H1 is K-flat, it is also an H1-basis of H(1). Then,

h =
u

∑
j=1

h(j)zj, h(j) ∈ H1.

The result will follow from the fact that h(j) ∈ AH1 for all 1 ≤ j ≤ u. In order to
prove this, we may check that h(j) · γ ∈ OE for all γ ∈ OE. Take any such γ ∈ OE. In
particular γ ∈ OL, and since h ∈ AH(1) , we have that h ·L γ ∈ OL. But

h ·L γ =

(
u

∑
j=1

h(j)zj

)
·L γ =

u

∑
j=1

(h(j) ·E γ)zj ∈ OL.

Now, {zj}u
j=1 is an OE-basis of OL because OE is OK-flat. Hence, the previous ex-

pression yields that h(j) ·E γ ∈ OE for all 1 ≤ j ≤ u.

With this result, we have determined how the associated order changes when we
tensor with an arithmetically disjoint extension. It is, together with Corollary 5.42,
the direct generalization of the first part in Proposition 5.11. Now, we move to the
question of the freeness of OL as AH(1)-module. We have:

Corollary 5.49. Assume that E/K and F/K are arithmetically disjoint. If OE is AH1-free,
then OL is AH(1)-free.
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Proof. Since OF is OK-flat, OE ⊗OK OF = OL is AH1 ⊗OK OF-free. By the previous
result, AH1 ⊗OK OF = AH(1) and the claim follows.

This result and Theorem 5.47 generalize the second part of Proposition 5.11.
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Chapter 6

Dihedral degree 2p extensions of
Qp

Let p be an odd prime number. The standard setup in this chapter is a Galois exten-
sion L/Qp of p-adic fields (i.e, a finite field extension of Qp) whose Galois group G
is isomorphic to the dihedral group of order 2p, for a prime p ≥ 3. We establish the
following presentation of G henceforth:

G = 〈σ, τ | σp = τ2 = 1, τσ = σp−1τ〉.

We carry out a detailed study on the arithmetic setting and the Hopf Galois module
structure of such an extension.

Regarding the problem of determining Hopf Galois structures, we will take a
dihedral degree 2p extension L/K of arbitrary fields, as restrictions over the fields
themselves are not required. This problem was solved by Byott in his paper [Byo04]
in the more general case of extensions of degree pq, for p and q different primes such
that q divides p − 1. We recover dihedral degree 2p extensions by considering the
ones with q = 2 and non-abelian Galois group. It turns out that L/K has 2 Hopf
Galois structures of type Dp, the classical and the canonical non-classical (which de-
fine different Hopf Galois structures because Dp is not abelian), and p Hopf Galois
structures of type C2p. We will see that the last ones are just the induced Hopf Galois
structures of L/K, which we computed in Examples 5.20 and 5.26.

Going back to the case of a dihedral degree 2p extension of Qp, the Hopf Ga-
lois module structure is almost completely described for the dihedral Hopf Galois
structures thank to results of Truman and Johnston, and completed by using the re-
duction method. For the cyclic ones, even though we have not solved the problem
in its more general situation, we have obtained complete answers for the cases p = 3
and p = 5.

Furthermore, we consider the extension L/F, where F/Qp is the unique quadratic
subextension of L/Qp, which consequently is a cyclic degree p extension. These ex-
tensions have a unique Hopf Galois structure and their local setting has been deeply
studied. Descriptions of the associated order AL/F and the freeness over AL/F are
available (see for example [Fer74]). For p = 3, we shall compute the associated
order using the reduction method.
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6.1 Description of the Hopf Galois structures

Let L/K be a dihedral degree 2p extension of arbitrary fields, for a prime p ≥ 3 and
call G its Galois group. By the Greither-Pareigis theorem, Hopf Galois structures of
L/K are in one-to-one correspondence with regular subgroups of Perm(G) normal-
ized by λ(G), where λ : G −→ Perm(G) is the left regular representation of G. By
[Byo04, Theorem 6.2], the permutation subgroups giving Hopf Galois structures of
L/K are the following:

• Dihedral type: The regular subgroup N is isomorphic to Dp. There are two
such Hopf Galois structures: the classical one, corresponding to Nc = ρ(G),
and the canonical non-classical one, corresponding to Nλ = λ(G).

• Cyclic type: The regular subgroup N is isomorphic to C2p. There are p such
Hopf Galois structures, corresponding to N(d) = 〈µ, ηd〉 for 0 ≤ d ≤ p − 1,
where:

µ : σkτl 7−→ σk+1τl

ηd : σkτl 7−→ σk+(−1)l+1dτl+1

Let us focus on the Hopf Galois structures of cyclic type. Note that in Example
5.26, all the permutation subgroups N are cyclic, so induced Hopf Galois structures
are of cyclic type. Since there are a total of p, this gives that the cyclic Hopf Galois
structures are the induced ones. Then, each N(d) is actually induced by permuta-
tion subgroups of Perm(J) and Perm(G′) as in the Induction Theorem 5.21, for some
decomposition G = J o G′ of the Galois group G as a semidirect product. Let us
identify those subgroups.

First, we study the generators µ and ηd. After the remark that µ = λ(σ), it is
immediate that the element µ has order p. As for ηd, we claim that it coincides with
ρ(σdτ), where ρ : G −→ Perm(G) is the right translation map of G. Indeed, we have

ρ(σdτ)(σkτl) = σkτlσ−dτ. (6.1)

Since τσ−d = σdτ and τσd = σ−dτ by definition of G, one obtains by induction that
τlσ−d = σ(−1)l+1dτl . Carrying this to (6.1), we obtain

ρ(σdτ)(σkτl) = σk+(−1)l+1dτl+1 = ηd(σ
kτl),

which proves the claim. Consequently, ηd is of order 2.

Theorem 6.1. Fix 0 ≤ d ≤ p − 1 and define J = 〈σ〉 and G′ = 〈σdτ〉, which gives a
decomposition of G as semidirect product. Then,

N(d) = ι(N1 × N2),

where N1 = λJ(J) and N2 = λG′(G′), and λG′ : G′ −→ Perm(G′) (resp. λJ : J −→
Perm(J)) is the left regular representation of G′ (resp. J).

Proof. We have
µ = λ(σ) = ι ◦ χ(σ) = ι(λJ(σ), 1).

Then N1 is an order p subgroup of Perm(J), and it is clearly regular and normal-
ized by λc(G). On the other hand, we know that ηd = ρ(σdτ). Since ηi(1) = σdτ
and ηi(σ

dτ) = 1, this permutation restricts to G′, and that restriction coincides with
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λG′(σdτ). But this element is the generator of N2, which is a regular order 2 sub-
group of Perm(G′) normalized by itself.

Now, µηi generates N and verifies

µηi = λ(σ)ρ(σiτ) = ι(λJ(σ), λG′(σiτ)) ∈ ι(N1 × N2).

In order to check the last equality, we remark that λ(σ)ρ(σiτ)(σkτl) = σk+1+(−1)l+1iτl+1

and compute

ι(λJ(σ), λG′(σiτ))(σk) = σk+1σiτ

= λ(σ)σkσiτ

= λ(σ)ρ(σiτ)(σk),

ι(λJ(σ), λG′(σiτ))(σkτ) = σk+1+i(σiτ)2

= σk+1+iτ

= λ(σ)ρ(σiτ)(σkτ).

Then N ≤ ι(N1 × N2), and since their orders are equal, they coincide.

6.1.1 The Hopf algebras involved

For each of the Hopf Galois structures of L/K, let us describe the corresponding
Hopf algebra.

For the classical Galois structure, given by ρ(G), it is well known that the corre-
sponding Hopf algebra is the K-group algebra Hc = K[ρ(G)], which we can identify
(as Hopf algebras) with K[G], so the elements of G form a K-basis. Regarding the
canonical non-classical structure, by the Greither-Pareigis theorem the Hopf algebra
is given by Hλ = K[λ(G)]λ(G). Let us call µ = λ(σ) and η = λ(τ). By [Koc+19,
Section 6], it holds that

Hλ = {a0 +

p−1
2

∑
i=1

(aiµ
i + τ(ai)µ

−i) + b0η +
p−1

∑
i=1

σi p−1
2 (b0)η

−i | a0 ∈ K, ai ∈ F, b0 ∈ E},

where E = L〈τ〉 and F = L〈σ〉.

Now, we determine the Hopf algebras of the cyclic Hopf Galois structures, which
is the same as determining those of the induced Hopf Galois structures. Let H be
such a Hopf Galois structure. By Corollary 5.31, H = H1 ⊗ H2, where H1 is a Hopf
Galois structure of E/K, H2 is a Hopf Galois structure of F/K, and E = LG′ , F = LJ

for some decomposition G = J o G′ of the Galois group as a semidirect product.

We determine, then, the Hopf Galois structures of these subextensions. For E/K
it is just what we did in Chapter 3: By Theorem 4.1, H1 = K[z(µ−µ−1)]. On the other
hand, F/K is a quadratic extension, so the classical Galois structure is its unique
Hopf Galois structure. Its Hopf algebra K[G/J] is isomorphic to K[ηd], where d cor-
responds to the choice of the generator σdτ of G′ in the decomposition G = J o G′.

Once we have described the Hopf Galois structures of H1 and H2, we obtain the
explicit expression of H = H1 ⊗ H2.
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Corollary 6.2. The cyclic Hopf Galois structures of L/K are those with Hopf algebras of the
form

Hd = K[z(µ− µ−1), ηd],

where z ∈ F− K is such that z2 ∈ K, µ = λ(σ), ηd = ρ(σdτ) and 0 ≤ d ≤ p− 1.

6.2 The arithmetic of the extension

For this section and for the remainder of the chapter, we take a dihedral degree 2p
extension L/Qp of p-adic fields.

6.2.1 Integral bases

First, we compute a Qp-integral basis of L, as this is needed in order to apply the
reduction method. Since L is the splitting field of a p-Eisenstein polynomial, all its
degree p subextensions E/Qp are totally ramified. Equivalently, L/Qp is totally ram-
ified if and only if so is its unique quadratic subextension F/Qp. We may try to build
an integral basis of L from integral bases of E and F. Let α be a root of the Amano
polynomial defining E/Qp and let z =

√
d ∈ OF with d ∈ Zp −Z2

p and vp(d) ≤ 1.
Then, {1, α, . . . , αp−1} (resp. {1, z}) is an integral basis of E (resp. F).

The easiest case is when F/Qp is unramified. If so, we have that E/Qp and
F/Qp are arithmetically disjoint, so by the definition, OL = OE ⊗Zp OF. Hence, the
product of integral bases of E and F is an integral basis of L. For the ones above, we
have

B = {1, z, α, αz, . . . , αp−1, αp−1z}.

Now, let us assume that F/Qp has ramification, so L/Qp is totally ramified. Then
the basis B is still a basis of L but it is not integral. In this case we use the following
result:

Proposition 6.3. If L/Qp is a totally ramified dihedral degree 2p extension of p-adic fields,
then

γ =
z

α
p−1

2

is an uniformising parameter of OL, where α and z are as above. Consequently,

B′ = {1, γ, . . . , γ2p−1}

is an integral basis of L.

Proof. It is enough to check that γ has L-valuation 1. Since vF(z) = 1 and e(L/F) = p
(as it has ramification), vL(z) = p. On the other hand, since F/Qp has ramification
index 2 and is linearly disjoint with E/Qp, L/E also has ramification index 2. Then,
vE(α) = 1 implies that vL(α) = 2. Finally,

vL(γ) = p− 2
p− 1

2
= 1.

We summarize the results obtained in this section:
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Corollary 6.4. Let L/Qp be a dihedral degree 2p extension of p-adic fields. Let α be a root of
the Amano polynomial of which L is the splitting field over Qp and let z be an uniformising
parameter of the unique quadratic subextension of L/Qp. An integral basis of L is given as
follows:

1. If L/Qp is not totally ramified, B = {1, z, α, αz, . . . , αp−1, αp−1z}.

2. If L/Qp is totally ramified, B′ = {1, γ, . . . , γ2p−1}.

6.2.2 Discriminant and ramification

We determine the discriminant and the chain of ramification groups of L/Qp. We
will first compute the discriminant of a degree p subextension E/Qp. By Theorem
4.5, E is generated by the root of one of the Amano polynomials listed there. Let
f be the defining Amano polynomial and α one of its roots. Since the powers of α
up to p − 1 form an integral basis, disc(E/Qp) = disc( f ). We then compute the
discriminant of the Amano polynomials by using the Ore condition.

Theorem 6.5 (Ore condition). Given j0 ∈, there exist totally ramified extensions E/Qp of
degree p and with discriminant exponent c(E/Qp) = p + j0 − 1 if and only if 1 ≤ j0 ≤ p.

In that case, if f (x) = xp +
p−1

∑
i=0

fixi ∈ Zp[x] is an Eisenstein polynomial, we have:

1. For j0 = p, vp(disc( f )) = 2p− 1 if

vp( fi) ≥ 2 for 1 ≤ i ≤ p− 1.

2. For 0 < j0 < p, vp(disc( f )) = p + j0 − 1 if

vp( fi) ≥ 2 for 1 ≤ i < p− 1, i 6= j0, and vp( f j0) = 1.

Proof. See [Ore24] or [PR01, Proposition 3.1 and Lemma 5.1].

We apply the lemma to our situation. We begin with the polynomials x3 + 3a
with a ∈ {1, 4, 7}. If we take j0 = 3, what the first part of Theorem 6.5 says
is that there are degree 3 extensions of Qp with discriminant exponent 5. Since
v3( f2) = v3( f1) = ∞ > 2, we can then apply the first statement of the second
part in the theorem to obtain v3(disc( f )) = 5.

We move on to the case of the polynomials xp + 2px
p−1

2 + p, xp + p(p− 2)x
p−1

2 +

p, for which we take j0 = p−1
2 . Since

vp( fp−1) = · · · = vp( f p+1
2
) = vp( f p−3

2
) = · · · = vp( f1) = ∞ > 2

if p > 3 and vp( f p−1
2
) = 1, vp(disc( f )) = p + p−1

2 − 1 = 3(p−1)
2 .

Finally, for the polynomial xp + pxp−1 + p, we take j0 = p− 1, for which vp( f1) =
... = vp( fp−2) = ∞ > 2 and vp( fp−1) = 1, so vp(disc( f )) = p + j0 − 1 = 2(p− 1).

We represent in the following table the information above together with the last
line of Theorem 4.5 concerning the inertia group.



144 Chapter 6. Dihedral degree 2p extensions of Qp

Polynomial G0 c(E/Qp)

p = 3 x3 + 3a (a ∈ {1, 4, 7}) D3 5

p ≥ 3 xp + (p− 2)px
p−1

2 + p Dp
3(p−1)

2

xp + 2px
p−1

2 + p Dp
3(p−1)

2
xp + pxp−1 + p Cp 2(p− 1)

We can obtain the discriminant of L/Qp by using the relative discriminant for-
mula

disc(L/Qp) = NE/Qp(disc(L/E))disc(E/Qp)
2.

Since the ramification index is multiplicative in towers, L/E is unramified if and
only if so is F/Qp. For the polynomial xp + pxp−1 + p with p ≥ 3 the inertia group
is G0 ∼= Cp, so the extension L/E is indeed unramified, and then disc(L/E) ∈ O∗E.
Applying the formula above, disc(L/Qp) = disc(E/Qp)2. Otherwise, since L/E is
a quadratic extension of p-adic fields, vE(disc(L/E)) = 1, and then disc(L/Qp) =
pdisc(E/Qp)2. Then, one obtains the following table.

Polynomial G0 c(E/Qp) c(L/Qp)

p = 3 x3 + 3a (a ∈ {1, 4, 7}) D3 5 11

p ≥ 3 xp + (p− 2)px
p−1

2 + p Dp
3(p−1)

2 3p− 2
xp + 2px

p−1
2 + p Dp

3(p−1)
2 3p− 2

xp + pxp−1 + p Cp 2(p− 1) 4(p− 1)

Finally, we compute the chain of ramification groups by means of the formula of
Proposition 1.24

c(L/Qp) = f (L/Qp)
∞

∑
i=0

(|Gi| − 1).

If p = 3 and the polynomial is one of x3 + 3a, a ∈ {1, 4, 7}, then f (L/Qp) = 1 and
v3(disc(L/Q3)) = 11, and replacing in the previous formula, ∑∞

i=0(|Gi| − 1) = 11.
Since |G0| = 6, it must be |G1| = |G2| = |G3| = 2. Then, the chain of ramification
groups is

D3 ⊇ C3 ⊇ C3 ⊇ C3 ⊇ {1}.

If the polynomial is one of xp + apx
p−1

2 + p, a ∈ {2, p − 2}, we have again
f (L/Qp) = 1, and ∑∞

i=0(|Gi| − 1) = 3p − 2. We know that |G0| = 2p, so it must
be |G1| = p and |Gi| = 1 for all i > 1. Then, the chain of ramification groups is

Dp ⊇ Cp ⊇ {1}.

For the polynomial xp + pxp−1 + p, f (L/Qp) = 2 and vp(disc(L/Qp)) = 4(p−
1), so ∑∞

i=0(|Gi| − 1) = 2(p− 1). Since |G0| = p, it must be |G1| = p and |Gi| = 1 for
all i > 1. Then, the chain of ramification groups is

Cp ⊇ Cp ⊇ {1}.

Finally, the chain of ramification groups of L/F is obtained as the intersection of
the one of L/Qp with Gal(L/F) ∼= Cp. Then, it becomes the same but with inertia
Cp (and without changes for the last polynomial). Then, the ramification number
t(L/F) is 3 for the polynomials x3 + 3a and 1 otherwise. To sum up:
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Theorem 6.6. Let L/Qp be an absolute dihedral degree 2p extension of p-adic fields. The
discriminant and ramification of L/Qp is given by the following table:

Polynomial c(L/Qp) Ramification groups t(L/F)
p = 3 x3 + 3a (a ∈ {1, 4, 7}) 11 D3 ⊇ C3 ⊇ C3 ⊇ C3 ⊇ {1} 3

p ≥ 3 xp + (p− 2)px
p−1

2 + p 3p− 2 Dp ⊇ Cp ⊇ {1} 1
xp + 2px

p−1
2 + p 3p− 2 Dp ⊇ Cp ⊇ {1} 1

xp + pxp−1 + p 4(p− 1) Cp ⊇ Cp ⊇ {1} 1

It can be observed that the extensions corresponding to the non-radical polyno-
mials are weakly ramified. Then, the classification of dihedral extensions L/Qp of
degree 2p can be presented in a more convenient way:

Corollary 6.7. Let p be an odd prime number and let L/Qp be a dihedral degree 2p exten-
sion of p-adic fields.

1. If L/Qp is weakly ramified, then L is the splitting field over Qp of one of the polyno-
mials

xp + 2px
p−1

2 + p, xp + p(p− 2)x
p−1

2 + p, xp + pxp−1 + p.

2. Otherwise, p = 3 and L is the splitting field over Q3 of one of the polynomials

x3 + 3, x3 + 12, x3 + 21.

6.3 Dihedral Hopf Galois module structure

In this part we consider the problem of determining both the associated order and
the freeness over it for the Hopf Galois structures of dihedral type, that is, the clas-
sical Galois structure Hc and the canonical non-classical Hopf Galois structure Hλ.
The strategy will be completely different depending on whether L/Qp is weakly
ramified or not.

6.3.1 Weakly ramified cases

If L/Qp is weakly ramified, by Corollary 6.7 it is the splitting field of xp + 2px
p−1

2 + p,

xp + (p − 2)px
p−1

2 + p or xp + pxp−1 + p. To study the classical Galois structure,
we can make use of the results of Johnston in [Joh15], while for the canonical non-
classical structure, Truman studies its relation with the former in [Tru16].

The associated order

Concerning the classical Galois structure, as L/Qp is always wildly ramified (since
its degree p subextensions are totally ramified), Johnston’s result [Joh15, Theorem
1.2] gives that

AL/Qp = Zp[G]

[
TrG0

p

]
and OL is AL/Qp -free.

For the canonical non-classical Hopf Galois structure Hλ, we have:
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Theorem 6.8. Let L/K be a non-abelian Galois extension of fields with Galois group G.
If OL is AL/K-free with generator x and {hi}n

i=1 is an OK-basis of AL/K, then there is an
OK-basis of AHλ

formed by

ĥi = ∑
g∈G

(
∑

σ∈G
σ(xi)g−1σ(x̂)

)
λ(g),

where xi = hi(x) for every i and x̂ ∈ L is such that {σ(x̂)}σ∈G is the dual basis of the
normal basis {σ(x)}σ∈G of L.

Proof. The existence of an element x̂ with the aforementioned property is justified
by [Tru16, Lemma 3.1]. The proof that {ĥi} is an OK-basis of AHλ

follows from the
proof of [Tru16, Proposition 4.1].

SinceOL is AL/Qp -free, this solves the problem of the description of the associated
order.

Module structure over the associated order

Concerning the freeness, we already know thatOL is AL/Qp -free by Johnston’s result.
Moreover, he constructs explictly the form of a normal integral basis generator (see
[Joh15, Theorem 4.1]). On the other hand, for the canonical non-classical structure,
we have:

Theorem 6.9. Let L/K be a non-abelian Galois extension of fields with Galois group G.
Then, OL is free as AL/K-module if and only if so is as AHλ

-module.

Proof. This the main result of [Tru16, Theorem 1.1].

In our case, since OL is AL/Qp -free, Truman’s result yields that it is also free over
the associated order in the canonical non-classical structure.

6.3.2 The radical cases

Now we assume that L/Qp is not weakly ramified, which by Corollary 6.7 implies
that p = 3 and f is one of the radical Amano polynomials, that is, f (x) = x3 + 3a
with a ∈ {1, 4, 7}. To study the associated order and the module structure of OL, we
will use the reduction method. Since the Galois group is still not abelian, we can use
Theorems 6.8 and 6.9, so it is enough to study the classical Galois module structure.

In these cases L/Qp is totally ramified, so by Proposition 6.3, the powers of z
α up

to 5 form a basis ofOL, where α is a root of f and z =
√

d ∈ L with d ∈ Zp −Z2
p. Let

t =
√

a ∈ Z∗3 . For convenience we will take as integral basis the powers up to 5 of

γ = t
z
α

.

In order to completely determine this integral basis, we will look for possible val-
ues for z. Since the Galois group of L/Q3 is isomorphic to D3, then the discriminant
of f is not a perfect square, so its square root generates the unique quadratic subex-
tension of L/Q3. Thus, z can be chosen as any element of L such that Q3(

√
disc( f )) =

Q3(z). Now,
disc( f ) = −27 · 32 · a2 = −35a2,
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and since v3(a) = 0, we may choose z =
√
−3.

On the other hand, we have that α3 = −3a, so 1
α = − α2

3a . Thus, we have

γ2 = −3a
α2 = α, γ3 = tz, γ4 = α2, γ5 = tαz.

Next, we need to determine the Galois action on the powers of γ. Since all of
them are products of α and z, we determine the action on these elements. The action
on the latter is much easier: σ(z) = z and τ(z) = −z. On the other hand, we may
assume that α is the root of f that is fixed by τ (so that the other two are fixed by στ
and σ2τ). Then, τ(α) = α by choice and σ(α) is a conjugate of α. For τ, this gives
that τ(γ) = −γ. Since f is radical, it may be checked that the conjugates of α are ξ3α
and ξ2

3α, where ξ3 = −1+z
2 is a primitive third root of unity. We can assume without

loss of generality that σ(α) = ξ3α (otherwise we would replace σ by σ2), and then
σ(γ) = ξ2

3γ. With these assumptions, we obtain the Gram matrix:

G(H, L) =



1 γ γ2 γ3 γ4 γ5

1 −1
2

γ− 1
2t

γ4 −1
2

γ2 +
1
2t

γ5 γ3 3t
2

γ− 1
2

γ4 3t
2

γ2 − 1
2

γ5

1 −1
2

γ +
1
2t

γ4 −1
2

γ2 − 1
2t

γ5 γ3 −3t
2

γ− 1
2

γ4 −3t
2

γ2 − 1
2

γ5

1 −γ γ2 −γ3 γ4 −γ5

1
1
2

γ +
1
2t

γ4 −1
2

γ2 +
1
2t

γ5 −γ3 3t
2

γ− 1
2

γ4 −3t
2

γ2 +
1
2

γ5

1
1
2

γ− 1
2t

γ4 −1
2

γ2 − 1
2t

γ5 −γ3 −3t
2

γ− 1
2

γ4 3t
2

γ2 +
1
2

γ5


.

We can build the matrix of the action M(H, L) from this, and as the fixed basis
of L is integral, reducing this matrix gives a basis of the associated order AL/K. The
Hermite normal form of M(H, L) is

D =



1 0 −1 0 0 0
0 1 −1 0 0 0
0 0 3 0 0 0
0 0 0 1 0 −1
0 0 0 0 1 −1
0 0 0 0 0 3

 .

The columns of D−1 provide the basis of AL/K{
1G, σ,

1G + σ + σ2

3
, τ, στ,

τ + στ + σ2τ

3

}
.

Although this is not an induced Hopf Galois structure, the matrix D is a Kronecker
product and consequently the associated order AL/K is a tensor product of OK-
modules.

Let us move on to the freeness over AL/K. Since 3 appears twice in the diagonal
of D, the index of the classical Galois structure is I(Hc, L) = 2. Now, given β =

∑6
i=1 βiγ

i−1, we have

Dβ(H, L) = −2β1β4(β2β3 − 3aβ5β6)(β2β3 + 3aβ5β6)

t2 .
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In particular, if we take β = 1 + γ + γ2 + γ3 + γ4 + γ5, then

Dβ(H, L) =
18(1− 9a2)

a
,

and since 3 does not divide 1− 9a2, v3(Dβ(H, L)) = 2 = I(Hc, L). Hence, β indeed
generates OL as an AL/Q3-module.

The following summarizes the results obtained in this section:

Corollary 6.10. Let L/Q3 be a dihedral degree 6 extension defined by one of the radical
polynomials. Then:

1. {1,−t α2z
3a , α, z, α2, αz} is an integral basis of L.

2.
{

1G, σ,
1G + σ + σ2

3
, τ, στ,

τ + στ + σ2τ

3

}
is a Z3-basis of AL/Q3 .

3. OL is AL/Q3-free and β = 1 + γ + γ2 + γ3 + γ4 + γ5 is a normal integral basis
generator.

6.4 Cyclic Hopf Galois module structure

Now, we consider the Hopf Galois structures of L/Qp of type C2p and consider the
problem of determining the associated order and the module structure ofOL in each
of them. Recall that the Hopf Galois structures of cyclic type of a dihedral degree
2p extension are the induced ones and were completely described in Theorem 6.1.
We know that H = H1 ⊗ H2, where H1 is a Hopf Galois structure of some degree
p subextension E/Qp and H2 is a Hopf Galois structure of the unique quadratic
subextension F/Qp. As in Corollary 6.4 the form of an integral basis depended on
the ramification of F/Qp, we make the same distinction again.

Corollary 6.11. Assume that F/Qp is unramified. Then:

1. AH = AH1 ⊗Zp AH2 .

2. If OE is AH1-free, then OL is AH-free and the product of normal integral basis gener-
ators of E and F gives a normal integral basis generator of L.

Proof. Since F/Qp is unramified, E/Qp and F/Qp are arithmetically disjoint. Then,
Corollary 5.42 gives that AH = AH1 ⊗Zp AH2 . For the second part, by assumptionOE
is AH1-free, and the hypothesis that F/Qp is unramified gives that OF is AH2-free.
Then we apply Theorem 5.47.

Next, we assume that F/Qp is ramified, which implies that L/Qp is totally ram-
ified. By Proposition 6.3, the powers of the uniformising parameter γ = z

α
p−1

2
form

an integral basis
B′ = {1, γ, γ2, · · · , γ2p−1}

of L. Since the action of H on L is the tensor product of the actions of H1 on E and of
H2 on F, it is clear that

G(HW , LB) = G(H1, E)⊗ G(H2, F).
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Besides, we know that G(HW , LB′) = G(HW , LB)PB′
B .

Then, in practice, carrying out the product of matrices above, one can compute
the Gram matrix where in L we fix an integral basis. However, powers of γ greater
than 2p − 1 normally appear in the result. In order to reduce them, we need the
minimal polynomial of γ. To this end, we use the following fact about the resultant:

Proposition 6.12. If K is a field and f , g ∈ K[x] are polynomials with f monic, then

Resx( f , g) = ∏
f (α)=0

g(α)

and it gives an explicit polynomial expression in the coefficients of f and g.

We take the expression of γ in terms of the tensor basis B and define a polynomial
Γ ∈ F[x] obtained by replacing α by an indeterminate x in the expression of γ. Let Y
be another indeterminate. Then, Resx( f , Y− Γ) = ∏

p
i=1(Y− Γ(αi)) gives an explicit

polynomial expression

Yp + c1Yp−1 + · · ·+ cp−1Y + cp

in Y with coefficients ci ∈ F and root γ. Let us write ci = ai + biz, ai, bi ∈ Qp. Then,

(Yp + a1Yp−1 + · · · ap−1Y + ap)
2 − z2(b1Yp−1 + · · ·+ bp−1Y + bp)

2

is a polynomial of degree 2p with root γ, which turns out to be its minimal polyno-
mial.

This yields the following method to compute M(HW , LB′):

1. Write the powers of γ in terms of the tensor basis B to compute the matrix PB′
B .

2. Compute the minimal polynomial of γ.

3. Compute the Kronecker product G(H1, E)⊗G(H2, F) and multiply on left side
by PB′

B , obtaining G(HW , LB′).

4. Compute M(HW , LB′) from the entries of G(HW , LB′).

Once we have computed M(HW , LB′), since B′ is an integral basis of L, we can
apply the reduction method to compute a basis of AH and determine the AH-freeness
of OL.

6.4.1 The case p = 3

If p = 3, we know that L is the splitting field over Q3 of one of the polynomials

x3 + 3, x3 + 12, x3 + 21, x3 + 3x + 3, x3 + 6x + 3, x3 + 3x2 + 3.

We adopt the terminology of Section 4.4. We can solve the singular case easily.
In this case, we have that F/Q3 is unramified and we know by Proposition 4.11 that
OE is AH1-free, so we apply Corollary 6.11 to conclude that AH = AH1 ⊗Z3 AH2 and
OL is AH-free with normal integral basis generator the product of normal integral
basis generators of E and F.

So assume that L/Q3 is totally ramified, that is, f is one of the first five polyno-
mials.
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Change basis matrix

Let H = H1 ⊗ H2 be an induced Hopf Galois structure. We fix as Q3-basis of H the
product of the bases in H1 and H2, that is,

W := {w1η1, w1η2, w2η1, w2η2, w3η1, w3η2}.

Since L/Q3 is totally ramified, by Proposition 6.3, the basis B′ given by the pow-
ers of z

α up to 5 is integral, where z is the square root of a non-square in Z3 and α is
a root of f . We determine the change basis matrix from the product basis B to the
basis B′.

As usual, we begin with the radical cases f (x) = x3 + 3a, a ∈ {1, 4, 7}. We have
that

z
α
= −α2z

3a
with z =

√
−3. Let t =

√
a. In order to simplify computations, we will choose

γ := −t
α2z
3a

,

which is also an uniformizing parameter of OL because t ∈ Z∗3 . Now, we compute
the powers of γ:

γ2 = α, γ3 = tz, γ4 = α2, γ5 = tαz.

Then, the change of basis matrix from the tensor basis B to the basis B′ of the powers
of γ is

PB′
B =



1 0 0 0 0 0
0 0 0 t 0 0
0 0 1 0 0 0
0 0 0 0 0 t
0 0 0 0 1 0
0 − 1

3t 0 0 0 0

 .

Let us move to the second group. In this case,

z
α
= − (α2 + 3a)z

3
.

If a = 1, we take

γ = − (α2 + 3)tz
3

,

where z =
√
−39 and t =

√
1
13

, so tz =
√
−3. The powers of γ are

γ2 = −α2 + α− 3, γ3 = tα2z− tαz + 4tz,

γ4 = 4α2 − 3α + 15, γ5 = −5tα2z + 4tαz− 18tz.

Hence, in this case

PB′
B =



1 0 −3 0 15 0
0 −t 0 4 t 0 −18 t
0 0 1 0 −3 0
0 0 0 −t 0 4 t
0 0 −1 0 4 0
0 − t

3 0 t 0 −5 t

 .
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If a = 2, we choose again γ = − (α2+3)tz
3 , but now t =

√
− 1

41 and z =
√
−123, so

tz = −
√

3. The powers of γ are

γ2 = 2α2 − α + 12, γ3 = −4tα2z + 2tαz− 25tz,

γ4 = 25α2 − 12α + 156, γ5 = −52tα2z + 25tαz− 324tz.

Hence, we obtain

PB′
B =



1 0 12 0 156 0

0 −2 t 0 −25 t 0 −324 t

0 0 −1 0 −12 0

0 0 0 2 t 0 25 t

0 0 2 0 25 0

0 − t
3 0 −4 t 0 −52 t


.

The minimal polynomial of γ

To compute the minimal polynomial of γ for the radical cases it is enough to remark
that

γ6 = (γ3)2 = (tz)2 = −3a,

so γ is a root of Y6 + 3a.

For polynomials of the second group, we use the resultant. For a = 1, we have

Resx

(
x3 + 3x + 3, Y−

(
− (α2 + 3)tz

3

))
= Y3 + tzY2 − tz = Y3 + (Y2t− t)z.

Recall by Proposition 6.12 that this has root γ as a polynomial in Y. Then, evaluating
in γ and rising to the square gives that

Y6 − (Y2t− t)2z2 = Y6 + 3Y4 − 6Y2 + 3

is the minimal polynomial of γ. For a = 2, similarly we find the polynomial

Y6 − 12Y4 − 12Y2 − 3.

The action on L/Q3

For the first three cases,

G(H1, E)⊗ G(H2, F) =



1 z α α z α2 α2z
1 −z α −α z α2 −α2z
0 0 −3 α −3 α z 3 α2 3 α2z
0 0 −3 α 3 α z 3 α2 −3 α2z
2 2 z −α −α z −α2 −α2z
2 −2 z −α α z −α2 α2z

 ,
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whence we compute the Gram matrix

G(HW , LB′) = (G(H1, E)⊗ G(H2, F))PB′
B

=



1 γ γ2 γ3 γ4 γ5

1 −γ γ2 −γ3 γ4 −γ5

0 3 γ −3 γ2 0 3 γ4 −3 γ5

0 −3 γ −3 γ2 0 3 γ4 3 γ5

2 −γ −γ2 2 γ3 −γ4 −γ5

2 γ −γ2 −2 γ3 −γ4 γ5

 ,

where we have used that γ7 = 3aγ to determine the entries of the second column.
For the fourth and fifth polynomial the matrix G(HW , LB′) is obtained in a com-
pletely analogous way and their entries can be checked in (B.22) and (B.23) respec-
tively.

Basis of AH

From the previous step we compute the matrix M(HW , LB′), and since B′ is an inte-
gral basis of L, reducing this matrix provides a basis of OL as AH-module.

For the first class of polynomials, the Hermite normal form of M(HW , LB′) is

D =



1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

 ,

with inverse 

1 0 0 0 1
3 0

0 1 0 0 0 1
3

0 0 1
3 0 0 0

0 0 0 1
3 0 0

0 0 0 0 1
3 0

0 0 0 0 0 1
3


.

Then, we obtain the basis of the associated order AH{
w1η1, w1η2,

w2η1

3
,

w2η2

3
,

w1η1 + w3η1

3
,

w1η2 + w3η2

3

}
.

Taking into account the basis of AH1 in Theorem 4.11 and the basis of AH2 computed
using Theorem 2.50, we see that AH = AH1 ⊗AH2 .

Although this is enough for our purposes, it is worth taking a deeper look at this
case. Note that we can also use that B′ is an eigenvectors basis with eigenvalues
matrix

Λ =



1 1 0 0 2 2
1 −1 0 0 2 −2
1 1 3 3 −1 −1
1 −1 3 −3 −1 1
1 1 −3 −3 −1 −1
1 −1 −3 3 −1 1

 ,
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which gives the basis of pairwise orthogonal idempotents{w1η1 + w1η2 + w3η1 + w3η2

6
,

w1η1 − w1η2 + w3η1 − w3η2

6
,

2w1η1 + 2w1η2 + w2η1 + w2η2 − w3η1 − w3η2

6
,

2w1η1 − 2w1η2 + w2η1 − w2η2 − w3η1 + w3η2

6
,

2w1η1 + 2w1η2 − w2η1 − w2η2 − w3η1 − w3η2

6
,

2w1η1 − 2w1η2 − w2η1 + w2η2 − w3η1 − w3η2

6

}
In addition, we see that B is a (non-integral) basis of eigenvectors and the eigen-

values matrix in this case is obtained from erasing the zero rows of M(H1, E) ⊗
M(H2, F), that is,

Λ′ =



1 1 0 0 2 2
1 −1 −3 3 −1 1
1 1 3 3 −1 −1
1 −1 0 0 2 −2
1 1 −3 −3 −1 −1
1 −1 3 −3 −1 1

 ,

and this matrix is obtained from permuting the rows of Λ, which was obtained by
erasing the zero rows of M(HW , LB′). That is, there is a permutation matrix P such
that PM(HW , LB′) = M(H1, E) ⊗ M(H2, F), which proves that the basis B′ is in-
duced. Consequently, B′ is an example of integral induced basis in which the pieces
E/Q3 and F/Q3 are not arithmetically disjoint. Furthermore, since B′ is an integral
induced basis, we can also reach the conclusion that AH = AH1 ⊗AH2 using Theorem
5.41.

For the second group of polynomials we get

D =



1 0 0 0 0 −1
0 1 0 0 0 −1
0 0 1 −1 0 0
0 0 0 3 0 0
0 0 0 0 1 −1
0 0 0 0 0 3

 ,

with inverse 

1 0 0 0 0 1
3

0 1 0 0 0 1
3

0 0 1 1
3 0 0

0 0 0 1
3 0 0

0 0 0 0 1 1
3

0 0 0 0 0 1
3


.

and the associated order AH has Z3-basis{
w1η1, w1η2, w2η1,

w2

3
(η1 + η2), w3η1,

w1 + w3

3
(η1 + η2)

}
.

In this case AH 6= AH1 ⊗Z3 AH2 since w2
3 η1 ∈ AH1 ⊗Z3 AH2 and w2

3 η1 /∈ AH.
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Freeness over AH

For the first three polynomials we have I(H, L) = 4 and the matrix associated to an
element β = ∑6

i=1 βiγ
i−1 has determinant

Dβ(H, L) = −2592β1β2β3β4β5β6.

Since v3(2592) = 4, for β = 1+γ+γ2 +γ3 +γ4 +γ5 we have the equality v3(Dβ(H, L)) =
I(H, L). Hence, OL is AH-free and β is a generator.

For the fourth polynomial

Dβ(H, L) = −288
(

3 β3
2 − 23 β3 β5 + 43 β5

2
)
(β2 − 6 β4 + 24 β6)(

β2
2 − 15 β2 β4 + 66 β6 β2 + 27 β4

2 − 261 β6 β4 + 621 β6
2
)
(β1 − β3 + 7 β5) .

If β = γ + γ4, then the determinant is −86688, which has 3-adic valuation 2. Since
I(H, L) = 2, we conclude that OL is AH-free with generator β.

For the fifth polynomial

Dβ(H, L) = −288
(

20 β3
2 + 499 β3 β5 + 3112 β5

2
)
(2 β2 + 27 β4 + 348 β6)

(
4 β2

2

+ 114 β2 β4 + 1473 β6 β2 + 720 β4
2 + 18684 β6 β4 + 121194 β6

2
)
(β1 + 4 β3 + 56 β5) .

We take again β = γ + γ4. In such case, the determinant is −401522688, which has
3-adic valuation 2, and then OL is AH-free with generator β.

The product of generators

Let us check that the product β′ of the generators ε of OE as AH1-module and δ of
OF as AH2-module is not a generator of OL as AH-module.

Such a product is of the form

β′ = (ε1 + ε2α + ε3α2)(δ1 + δ2z) = ε1δ1 + ε1δ2z + ε2δ1α + ε2δ2αz + ε3δ1α2 + ε3δ2α2z

with εi, δj ∈ Z3 such that ε1ε2ε3, δ1δ2 ∈ Z∗3 .

For the first three polynomials, changing coordinates to the basis of the powers
of γ gives

PB
B′β
′
B =



1 0 0 0 0 0
0 0 0 0 0 −3t
0 0 1 0 0 0
0 1

t 0 0 0 0
0 0 0 0 1 0
0 0 0 1

t 0 0





ε1δ1
ε1δ2
ε2δ1
ε2δ2
ε3δ1
ε3δ2

 =



ε1δ1
−3tε3δ2

ε2δ1
ε1δ2

t
ε3δ1
ε2δ2

t

 ,

that is, β′ = ε1δ1 − 3tε3δ2γ + ε2δ1γ2 + ε1δ2
t γ3 + ε3δ1γ4 + ε2δ2

t γ5. Then,

Dβ′(H, L) = 7776
ε2

2δ2
3ε3

2δ1
3ε1

2

t
.
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Since v3(7776) = 5, we have that v3(Dβ′(H, L)) > 4, proving that β′ is not a gen-
erator of OL as AH-module.

Let us consider the second class of polynomials. If a = 1,

Dβ′(H, L) = 7776
δ1

3 (ε2
2 + 3 ε2 ε3 − ε3

2)2
δ2

3 (ε1 − 2 ε3)
2

t3 .

and if a = 2,

Dβ′(H, L) = 31104
δ1

3 (ε2
2 + 3

2 ε2 ε3 − 2 ε3
2)2

δ2
3 (ε1 − 4 ε3)

2

t3

In both cases, since v3(Dβ′(H, L)) ≥ 5 > I(H, L), β′ is not a free generator.

Summary of results

We summarize the results we have obtained for the case p = 3. With the notation
used throughout this section:

Theorem 6.13 (Associated orders). 1. For the first three polynomials and the last one,
AH = AH1 ⊗Z3 AH2 .

2. For the fourth and the fifth polynomials AH 6= AH1 ⊗Z3 AH2 and a basis of AH is{
w1η1, w1η2, w2η1,

w2

3
(η1 + η2), w3η1,

w1 + w3

3
(η1 + η2)

}
.

Theorem 6.14 (Freeness). OL is AH-free in all cases. For the last polynomial the product
of a generator of OE as AH1-module and a generator of OF as AH2-module is a generator of
OL as AH-module, while in the rest of the cases such a product is never a generator.

6.4.2 The case p = 5

We consider the dihedral degree 10 extension L/Q5. Recall that L is the splitting
field over Q5 of one of the polynomials

x5 + 15x2 + 5, x5 + 10x2 + 5, x5 + 5x4 + 5.

We have seen in Section 6.2.2 that the unique case in which F/Q5 is unramified is
the third one. In that case, Corollary 6.11 gives us again that AH = AH1 ⊗Z5 AH2 . On
the other hand, Theorem 4.12 gives us that OE is AH1-free, and by Theorem 2.50, OF
is AH2-free. Then, applying Corollary 6.11,OL is AH-free with generator a product of
generators of OE and OF. Hence, throughout this section we consider the first two
cases.

Integral basis of L

By Proposition 6.3, the powers of z
α2 form an integral basis B′ of L.

For the first case, recall that the polynomial

x5 − 15x3 − 10x2 + 75x + 30
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defines the same extension. In this case, we take

γ = 12t
z
α2 =

1
5

(
5 α4 − 2 α3 − 75 α2 − 20 α + 395

)
tz,

where t = −
√
− 3

13 (and then tz =
√

5, since z = −
√
−65

3
), which is also an uni-

formizer because 12t ∈ Z∗5 . The other powers of γ that complete B′ are expressed in
(B.24).

In the other case, we take

γ = 40t
z
α2 =

1
5

(
5 α4 − 2 α3 − 175 α + 320

)
tz,

where t = −
√
− 2

47 (and then tz =
√

10, since z =
√
−235). The other powers of γ

are in (B.25).

The minimal polynomial of γ

For the first case, we have

Resx

(
x5 − 15 x3 − 10 x2 + 75 x + 30, Y− zt

(
x4 − 2

5
x3 − 15 x2 − 4 x + 79

)
, x
)
=

− 6912 z5t5

25
+

3456 z4t4Y
5

− 720 z3t3Y2 + 376 z2t2Y3 − 83 ztY4 + Y5.

Writing this in the form c1 + c2z with c1, c2 polynomials in Y and rising to the square,
one obtains that

Y10 − 30685 Y8 + 580960 Y6 − 5564160 Y4 + 49766400 Y2 − 238878720

is the minimal polynomial of γ.

For the second case, we similarly find the minimal polynomial

Y10 − 56920 Y8 + 1844800 Y6 − 29163520 Y4 − 209715200 Y2 − 671088640.

Basis of AH

We recall the procedure for both cases:

• From the Gram matrix G(H1, E) computed in Section 4.5.1 and the Gram ma-
trix G(H2, F) computed in the case of Theorem 2.50, we compute the Kronecker
product G(H1, E)⊗ G(H2, F).

• We apply the matrix PB′
B , whose columns are the coordinates of the powers

of γ with respect to the tensor basis B, computed in Section 6.4.2. We obtain
G(HW , LB′).

• We use the minimal polynomial of γ computed in Section 6.4.2 to obtain the
coordinates of all entries with respect to the basis of γ.

• Now, we are able to determine M(HW , LB′).
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We show directly the Hermite normal form of M(HW , LB′) for the totally rami-
fied cases.

For the first polynomial, the Hermite normal form is

D =



1 0 0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0 0 −1
0 0 1 0 0 2 0 0 0 0
0 0 0 1 0 2 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 5 0 0 0 0
0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 5


,

which gives the basis of AH{
w1η1, w1η2, w2η1, w2η2, w3η1,

−2w2 + w3

5
(η1 + η2),

w4η1, w4η2, w5η1,
w1 + w4 + w5

5
(η1 + η2)

}
.

For the second one, we obtain as Hermite normal form

D =



1 0 0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0 0 −1
0 0 1 0 0 −2 0 0 0 0
0 0 0 1 0 −2 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 5 0 0 0 0
0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 5


,

giving the basis of AH{
w1η1, w1η2, w2η1, w2η2, w3η1,

2w2 + w3

5
(η1 + η2),

w4η1, w4η2, w5η1,
w1 + w4 + w5

5
(η1 + η2)

}
.

In both cases, AH 6= AH1 ⊗Z5 AH2 .

Freeness over AH

Let β = ∑6
i=1 βiγ

i−1 ∈ OL. Using the matrix M(HW , LB) that we have computed
in the previous section, we can determine the matrix Mβ(HW , LB) associated to β,
whose determinant allows us to determine whether or not OL is AH-free. In both
cases, we have I(H, L) = 2, and if

β = 1 + γ + γ2 + γ3 + γ4 + γ5 + γ6 + γ7 + γ8 + γ9,
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v5(Dβ(H, L)) = 2, so OL is AH-free with generator β.

Let us study whether or not the product of generators is a generator. Let ε =

∑5
i=1 εiα

i−1 be an AH1-generator of OE and δ = δ1 + δ2z an AH2-generator of OF.
Such product is

β′ = ε1δ1 + ε1δ2z + ε2δ1α + ε2δ2αz + ε3δ1α2 + ε3δ2α2z + ε4δ1α3 + ε4δ2α3z

+ε5δ1α4 + ε5δ2α4z,

and applying PB
B′ on the column of its coordinates, we obtain its vector of coordinates

(β′i)
10
i=1 with respect to B′. The vectors for each case are shown in (B.26) and (B.27). If

we set these coordinates to the previously computed determinant Dβ(H, L), we find
that v5(Dβ′(H, L)) > 2, so β′ is not a AH-generator of OL.

Summary of results

For p = 5, we obtain the following results:

Theorem 6.15 (Associated orders). 1. The equality AH = AH1 ⊗Z5 AH2 holds only
for the third polynomial.

2. For the first polynomial, a basis of AH is{
w1η1, w1η2, w2η1, w2η2, w3η1,

−2w2 + w3

5
(η1 + η2),

w4η1, w4η2, w5η1,
w1 + w4 + w5

5
(η1 + η2)

}
,

while for the second polynomial, a basis is{
w1η1, w1η2, w2η1, w2η2, w3η1,

2w2 + w3

5
(η1 + η2),

w4η1, w4η2, w5η1,
w1 + w4 + w5

5
(η1 + η2)

}
.

Theorem 6.16 (Freeness). OL is AH-free for all cases. Only for the last polynomial the
product of a generator of OE as AH1-module and a generator of OF as AH2-module is a
generator of OL as AH-module.

Remark 6.17. SinceOE is always free by Theorem 4.12 andOF is always AH2-free by
Theorem 2.50, we see that the first statement of Theorem 5.47 hold for this case even
though E/Q5 and F/Q5 are not arithmetically disjoint.

6.5 The extension L/F

As usual in this chapter, let L/Qp be a dihedral degree 2p extension of p-adic fields,
and let F/Qp be its unique quadratic subextension. In this section we are interested
in the extension L/F rather than in L/Qp. Since this is a cyclic degree p extension,
the classical Galois structure is its unique Hopf Galois structure. Actually, this struc-
ture can be seen as the tensor product of the (almost classically Galois) Hopf Galois
structure of any degree p subextension E/Qp by F. Concerning the integral setting,
we want to study the extension L/F so as to compare the information obtained from
the one of E/Qp, that has been already determined.
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In order to compare AL/F with AE/Q3 , since the latter is inside L[λ(J)], we will
consider AL/F inside F[λ(J)]. In general, we do not identify anymore the Galois
group of an extension with its image by the left translation λ when considering the
Hopf algebra of the classical Galois structure.

As in the previous sections, the easiest case is the singular one, when the defin-
ing polynomial is xp + pxp−1 + p. In that case, E/Qp and F/Qp are arithmetically
disjoint, so:

• By Proposition 5.48, AL/F = AE/Qp ⊗OF.

• By Corollary 5.49, whenever OE is AE/Qp -free, OL is AL/F-free with the same
generator.

The second item does not solve completely the problem in that case but gives a
sufficient condition, which is satisfied for both p = 3 and p = 5 (see Theorems 4.11
and 4.12).

For the remainder of the section, we assume that L/Qp is totally ramified. In that
case, by Proposition 6.3, z

α
p−1

2
is an uniformising parameter of L and consequently its

powers up to 2p− 1 form an integral basis of L/K.

6.5.1 The associated order AL/F

Radical cases

Let us assume that f (x) = x3 + 3a with a ∈ {1, 4, 7}. Let us define again γ = tz
α for

t =
√

a ∈ O∗F. Let us call δ = − tz
3a ∈ F, which has valuation vF(δ) = −1. Since L/F

is totally ramified, the powers of γ up to 2 form an integral basis

B = {1, α, δα2}

of L/F. We compute the corresponding Gram matrix:

G(Hc, LB) =

1 α δα2

1 ξ2
3α ξ3δα2

1 ξ3α ξ2
3δα

 .

Then, B is a basis of eigenvectors with eigenvalues basis

Λ =

1 1 1
1 ξ2

3 ξ3
1 ξ3 ξ2

3

 .

The inverse of this matrix is

Ω =
1
3

1 1 1
1 ξ3 ξ2

3
1 ξ2

3 ξ3

 ,

which gives the basis of AL/F{
Id + µ + µ2

3
,

Id + ξ3µ + ξ2
3µ2

3
,

Id + ξ2
3µ + ξ3µ2

3

}
.
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This is coherent with [Fer74, Section 2.1], according to which the associated order
AL/F is the maximal OK-order in F[λ(J)] since t = 3 ≡ 0 (mod 3).

Now, let us compare AL/F with AE/Q3 ⊗Z3 OF, which is another OF-order in
F[λ(J)] (in this case we cannot apply Proposition 5.48). We know by Theorem 4.11
that the elements

w1 = Id,
w2

3
=

z(µ− µ2)

3
,

w1 + w3

3
=

Id + µ + µ2

3
form a Z3-basis of AE/Q3 , and hence an OF-basis of AE/Q3 . We have the equalities

Id+µ+µ2

3 = Id+µ+µ2

3
Id+ξ3µ+ξ2

3µ2

3 = 1
2 Id + 1

2
z(µ−µ2)

3 − 1
2

Id+µ+µ2

3
Id+ξ2

3µ+ξ3µ2

3 = 1
2 Id− 1

2
z(µ−µ2)

3 − 1
2

Id+µ+µ2

3

.

Hence, the matrix of the change of basis is0 1
2

1
2

0 1
2 − 1

2
1 − 1

2 − 1
2

 .

The determinant is −1 ∈ O∗F, so AL/F = AE/Q3 ⊗Z3 OF.

We summarize the results that we have obtained.

Theorem 6.18. Let L/Q3 be a radical degree 6 extension of 3-adic fields. Then, AL/F has
Z3-basis {

Id + µ + µ2

3
,

Id + ξ3µ + ξ2
3µ2

3
,

Id + ξ2
3µ + ξ3µ2

3

}
.

Moreover, AL/F = AE/Q3 ⊗Z3 OF.

Weakly ramified cases

We will use the reduction method to determine a basis of the associated order AL/F.
Due to the high volume of computations, we will work only with the case p = 3.
Then, the defining polynomial f of L is one of x3 + 3ax + 3, with a ∈ {1, 2}.

First, we must determine an integral basis B of L/F. As in the radical case, the
powers up to 2 of a uniformising parameter γ of L/K determine an integral basis
of L/F. We take the value of γ given in Section 6.4.1, but renaming tz by z, so
γ = − (α2+3a)z

3 with z =
√
−3 if a = 1 and z = −

√
3 if a = 2. By the computations

in the aforementioned section, γ2 = (−1)a(aα2 − α + 3a2). Then, the change basis
matrix is

PB
Bc

=

1 −az (−1)a3a2

0 0 (−1)a+1

0 − z
3 (−1)aa

 .

In order to compute the Gram matrix with respect to Bc, we must deal with the
conjugates of α. Indeed, since the classical Galois structure has basis {1, µ, µ2} for
µ = λJ(σ), that matrix is

G(Hc, LBc) =

1 α α2

1 σ2(α) σ2(α2)
1 σ(α) σ(α2)

 .
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We computed the conjugates of α in Section 4.4.1. By convention, we choose σ =
(α1, α2, α3) with α1 = α and

α2 = aωα2 − 1 + 3aω

2
α + 2aω,

α3 = −aωα2 +
−1 + 3aω

2
α− 2aω,

where ω =
√
− 3

13 if a = 1 and ω =
√
− 3

41 if a = 2. Hence, we have:

G(Hc, LBc) =


1 α α2

1 −aω α2 +
( 3

2 aω− 1
2

)
α− 2 aω α2

3

1 aω α2 −
( 3

2 aω + 1
2

)
α + 2 aω α2

2

 ,

with

α2
2 =
(

a3ω2 +
9
4

a2ω2 +
3
2

aω +
1
4

)
α2+(

3 a3ω2 − 3 a2ω2 + a2ω
)

α + 4 a4ω2 + 9 a2ω2 + 3 aω,

α2
3 =
(

a3ω2 +
9
4

a2ω2 − 3
2

aω +
1
4

)
α2+(

3 a3ω2 − 3 a2ω2 − a2ω
)

α + 4 a4ω2 + 9 a2ω2 − 3 aω.

Now, we have that G(Hc, LB) = G(Hc, LBc)PB
Bc

, and from this we can compute
the matrix of the action M(Hc, LB).

If a = 1, we have that

M(Hc, LB) =



1 1 1

0 0 0

0 0 0

0 − 1
2 z (1 + ω) 1

2 z (−1 + ω)

1 − 5
2 ω− 1

2
5
2 ω− 1

2

0 1
3 ω z − 1

3 ω z

0 − 3
2 −

ω
2 − 3

2 +
ω
2

0 −9 ω
z 9 ω

z

1 5
2 ω− 1

2 − 5
2 ω− 1

2



.
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On the other hand, for a = 2, the matrix of the action is

M(Hc, LB) =



1 1 1

0 0 0

0 0 0

0 − 127 z
82 − 4 ω z − 127 z

82 + 4 ω z

1 − 11
4 − 11 ω − 11

4 + 11 ω

0 − 12 z
41 −

4
3 ω z − 12 z

41 + 4
3 ω z

0 16 ω + 381
41 −16 ω + 381

41

0 3
2

52 ω+9
z − 3

2
52 ω−9

z

1 103
82 + 11 ω 103

82 − 11 ω



.

In both cases, the Hermite normal form is

D =

1 0 −1
0 1 −1
0 0 z

 .

Hence, AL/F has OF-basis {
Id, µ,

Id + µ + µ2

z

}
.

If instead we apply [Fer74, Proposition 2], the basis of AL/F obtained is{
Id,−Id + µ,

Id− 2µ + µ2

z

}
,

which is easily seen to be equivalent to the one provided by the reduction method,
since the change basis matrix is unimodular.

Let us check if AL/F coincides with AE/Q3 ⊗OK OF. Again by Theorem 4.11, this
last order has OF-basis formed by

w1 = Id,
w2

3
=

z(µ− µ2)

3
,

w1 + w3

3
=

Id + µ + µ2

3
.

We write those elements with respect to the basis of AL/F computed in this section:
w1 = Id,
w3
3 = z

3 Id + 2z
3 µ + (−1)a−1 Id+µ+µ2

z ,
w1+w3

3 = (−1)a

z
Id+µ+µ2

z .

Then, the matrix of the change of basis is

P =

1 z
3 0

0 2z
3 0

0 (−1)a−1 (−1)a

z

 .

Now, det(P) = (−1)a 2
3 /∈ O∗F. Thus, AL/F 6= AE/Q3 ⊗Z3 OF.

To sum up:
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Theorem 6.19. Let L/Q3 be a weakly ramified degree 6 extension of 3-adic fields. Then,
AL/F has Z3-basis {

Id, µ,
Id + µ + µ2

z

}
.

Moreover, AL/F 6= AE/Q3 ⊗Z3 OF.

6.5.2 Module structure of OL over AL/F

We apply Proposition 1.33 to our situation with the cyclic degree p extension L/F,
which is totally ramified. The ramification number can be obtained from the table
in Theorem 6.6: it is t = 1 when p > 3 and t ∈ {1, 3} when p = 3, depending on
whether the extension is weakly ramified or not.

For p > 3, we have that p does not divide t, and since t < p, we deduce a = t. If
the defining polynomial is one of the first two, then F/Qp is ramified and e(F/Qp) =
2, thus

pe(F/Qp)

p− 1
− 1 =

2p
p− 1

− 1 =
p + 1
p− 1

,

and t < p+1
p−1 . Since t divides p− 1, OL is AL/F-free. For the last polynomial, F/Qp is

unramified and e(F/Qp) = 1, so

pe(F/Qp)

p− 1
− 1 =

p
p− 1

− 1 =
1

p− 1

and then 1
p−1 < t < p

p−1 . The expansion of 1
p is trivial, so OL is AL/F-free.

Now assume p = 3. For the radical cases, we have that t = 3 and e(F/Q3) = 2.
Hence

3e(F/Q3)

2
− 1 =

6
2
− 1 = 2,

and then t = 3e(F/Q3)
2 . The expansion of 3

3 = 1 is again trivial, so AL/F-free. Now, if
L/Q3 is weakly ramified, for the totally ramified cases we have t = 1 and e(F/Q3) =

2, so t < 3e(F/Q3)
2 − 1 and as it divides 2, OL is AL/F-free. Finally, if L/Q3 is weakly

ramified and it is not totally ramified (the last polynomial), then t = e(F/Q3) = 1,
so

3e(F/Q3)

2
− 1 =

3
2
− 1 =

1
2

and t > 1
2 . Since the expansion of 1

3 is trivial, OL is AL/F-free.

In summary, we obtain:

Corollary 6.20. Let L/Qp be a dihedral degree 2p extension and let F be its unique subfield
of degree p over Qp. Then, OL is AL/F-free.

In particular, this result holds for p = 3 and p = 5, and for those cases we have
obtained that OE is AH1-free. Then, we have that Corollary 5.49 is valid for dihedral
degree 6 and 10 extensions, even though E/Qp and F/Qp are not arithmetically dis-
joint. Then, Corollary 6.20 together with Theorems 6.14 and 6.16 suggest a connec-
tion between freeness and induced Hopf Galois structures stronger than arithmetic
disjointness.





Conclusions

The initial and main aim of this project was to achieve a better comprehension of the
Hopf Galois module structure of dihedral degree 2p extensions of p-adic fields. In
general, for an H-Galois extension L/K of local or global fields, studying the Hopf
Galois module structure means to provide answers to the following three questions:

1. Find an OK-basis of the associated order AH.

2. Determine whether OL is AH-free or not.

3. If OL is indeed AH-free, find a free generator of OL as AH-module.

The dichotomy of induced Hopf Galois structures

Recovering an expression used in Chapter 5, dihedral degree 2p extensions can be
seen by pieces, i.e. L = EF with E/K a separable degree p extension and F/K a
quadratic extension, K-linearly disjoint with each other. It was the study of a par-
ticular degree 3 extension of Q3 that motivated the development of the reduction
method, which is presented in all its generality in Chapter 2. The results therein
show that the reduction method provides a complete answer to the three questions
above whenever an integral basis and the action of H on this basis are known explic-
itly. In practice, these requirements reduce the range of its applicability to extensions
of very low degree.

From a theoretical point of view, the reduction method is a key ingredient to
prove the results of Chapter 5 concerning the induced Hopf Galois module structure
of OL. These results show that the Hopf algebras and the actions of induced Hopf
Galois structures also can be seen by pieces, as well as the associated order AH and
the AH-module structure of OL, when E/K and F/K are arithmetically disjoint. In
this sense, the study of induced Hopf Galois structures translates the separation of
L/K by pieces to the context of its Hopf Galois structures. For this reason, it could
be preferable to talk about products of Hopf Galois structures rather than induced Hopf
Galois structures.

Separable degree p extensions in literature: scaffolds

It is not the first time that the notion of the Hopf Galois module structure of a sepa-
rable degree p extension appears in literature. In the paper [Eld18], Elder deals with
what he calls typical degree p extensions: totally ramified degree p extensions L/K
of local fields that are not generated by the p-th root of an uniformiser of K. The
techniques used in that paper to study the Hopf Galois module structure of these
extensions is the theory of scaffolds, which is developed in its most general form
available in his paper [BCE18] with Byott and Childs. Roughly speaking, for a de-
gree pn totally ramified extension, a scaffold is a collection of elements {Ψi}n

i=1 in an
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algebra A acting on L together with another collection {λt}t∈Z of elements of L such
that the valuations vL(Ψi · λt) are determined with a prescribed precision.

In [Eld18, Corollary 3.6], Elder constructs a scaffold for any typical extension and
uses it to provide criteria for the freeness of OL as module over its associated order
AH (and actually for an arbitrary fractional ideal in L instead of OL). A requirement
to apply these criteria is that the ramification number l of L/K (see [Ser, Chapter IV
§3 Remark 2] for the definition for a non-Galois extension) satisfies

l <
pvK(p)
p− 1

− 2.

In our case, following the classification in Theorem 4.5 of separable degree p ex-
tensions E/Qp, only the non-radical ones are typical (which is not a restriction if
p > 3). By [Eld18, Theorem 2.2], l = t

2 where t is the ramification number of L/F.
Recall that t = 1 (since we exclude the radical cases), so l = 1

2 . As for the right hand

side, pvp(p)
p−1 − 2 = − p−2

p−1 , so the inequality is never satisfied. This means that [Eld18,
Corollary 3.6] cannot be applied to determine the AH1-freeness of OE. Hence, the re-
sults of Chapter 4 can be seen as the beginning of an extension of the results of Elder.

The results of the computations in Chapter 4 answer the three questions above
for p = 3 and p = 5. The most important conclusion is that OE is AH1-free for all
cases that we have studied. Moreover, we have been able to show in Section 6.2.2
that the ramification of the extension L/F (and then the generalized ramification
number of E/Qp) is always the same. The aforementioned result of Elder shows
that there is a strong connection between the ramification of a typical degree p ex-
tension and the Hopf Galois module structure of its valuation ring. Then, it seems
reasonable to expect that OE is always AH1-free, or at least, that the behaviour is the
same for the two totally ramified dihedral degree 2p extensions of Qp.

The likeness between degree p and 2p extensions

In Chapter 6, the results on the induced Hopf Galois module structure of a Hermite
extension of fields made effective the step from separable degree p extensions with
Dp-Galois closure to the Galois closure itself, and we were able to give complete
answers again for p = 3 and p = 5. It is remarkable that the freeness of OL as
AH-module is the same as the one of OE as AH1-module, which suggests that this
relation could hold in the general case. But even more remarkable is the resemblance
of the Hermite normal forms of M(H1, E) and M(H, L). For instance, when L/Q3 is
defined by x3 + 3x + 3, we have:

DE =

1 0 −1
0 3 0
0 0 3

 , DL =



1 0 0 0 0 −1
0 1 0 0 0 −1
0 0 1 −1 0 0
0 0 0 3 0 0
0 0 0 0 1 −1
0 0 0 0 0 3

 .

With our choice of bases of H1, H2, E and F, all our particular cases (except the
radical ones if p = 3) satisfy the following:
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• An entry 1 in the diagonal of DE translates into a block
(

1 0
0 1

)
in the diagonal

of DL.

• An entry p in the diagonal of DE becomes a block
(

1 −1
0 p

)
in the diagonal of

DL.

• An entry x over a p in the diagonal of DE corresponds to a block
(

0 −x
0 −x

)
in

the corresponding position of DL.

Thus, even though AH 6= AH1 ⊗Zp AH2 , these rules translate into an alternative
description of AH in terms of AH1 and AH2 .

Quartic extensions: What is known and curiosities

The presence of Chapter 3 in this thesis responds to the necessity of testing the re-
duction method in a bunch of cases which are substantially different from dihedral
degree 2p extensions. The most interesting result is the criteria obtained for the free-
ness of biquadratic extensions of Q, which for each Hopf Galois structure depends
on the existence of solutions of a generalized Pell equation. However, we obtained
that OL is free at every Hopf Galois structure for cyclic quartic extensions of Q, as
well as both cyclic and biquadratic extensions of Q2. We see that, as in the Galois
case, H-Galois extensions L/K such that OL is not AH-free are not common.

Regarding the application of the techniques in Chapter 2 themselves, we can
note that Dβ(H, L) is always a product of homogeneous polynomials on {βi}4

i=1 of
degree at most 2. This behaviour also occurs in all examples of this thesis (for di-
hedral degree 2p extensions, p ∈ {3, 5}, the maximal degree of the homogeneous

polynomials is p − 1). In the case of cyclic quartic extensions Q(
√

a(d + b
√

d)/Q,
this fact facilitated us to derive criteria for the freeness in terms of the parameters
a, b, c and d. Another curious fact for those extensions is that for every β ∈ OL,
β2

3 + β2
4 is one of the factors of Dβ(H, L), unless d is odd and H is the classical Galois

structure. As a consequence, in all these cases a free generator β must accomplish
{|β3|, |β4|} = {0, 1}.

Some precedent papers in the study of quartic extensions other than the already
mentioned [Tru12] are [Eld98] or [BE02], which, for a biquadratic totally ramified
extension L/K of number fields, give an explicit expression of OL (or any fractional
ideal) as Z[G]-module. On the other hand, the Hopf Galois module structure of
quartic Galois extensions has been studied as a particular case of the more general
context of Galois degree p2 extensions. For example, in [Byo02], Byott considers
Galois degree p2 extensions L/K of p-adic fields and gives a necessary and sufficient
condition for OL to be AH-Galois for each Hopf Galois structure H of L/K. The
definition of a Hopf Galois structure of an extension of rings is completely analogous
to the case of fields (see for example [Chi00, Definition 2.7]). Galois degree p2 of local
fields with characteristic p are studied, among others, in the paper of Byott and Elder
[BE13] and the thesis of Chetcharungkit [Che18], with the theory of scaffolds as main
tool.
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Future work

Most of the results in this thesis concerning the Hopf Galois module structure of
rings of integers are only explicit for extensions of very low degree. We have seen
that there are some patterns that could motivate more general results. Consequently,
there are many open questions that could take part of future works. For instance:

• Is there an explicit relation between freeness over associated order and in-
duced Hopf Galois structures? Theorem 5.47 is quite unsatisfactory because
arithmetic disjointness is a very restrictive condition, but as aforesaid, freeness
is preserved on induced Hopf Galois structures for dihedral degree 6 and 10
extensions.

• What about the associated order of an induced Hopf Galois structure H =
H1 ⊗K H2 in terms of the associated orders of H1 and H2? In this case, we
obtained a sufficient condition for the equality AH = AH1 ⊗OK AH2 stronger
than arithmetic disjointness, namely the existence of integral induced bases
(see Theorem 5.41). Is that condition necessary? If not, is there a characteriza-
tion?

• How is the general behaviour in the Hopf Galois module structure of dihedral
degree 2p extensions? Althought AH = AH1 ⊗OK AH2 does not hold for all
cases, there could be another relation.

• We have seen that bases of eigenvectors normally arise when the correspond-
ing extensions are radical (see Examples 2.2, 2.45 and Section 4.4.2). Is there a
general relation between these two notions?

It seems unlikely that the mere application of the reduction method will provide
a complete answer to any of the questions above. However, it could be applied
more efficiently to support or discard the corresponding suspicions. On the other
hand, our techniques completely ignore the comultiplication, counit and coinverse
operations of the Hopf algebras acting on fields, and perhaps one cannot dispense
with this additional structure anymore to obtain further information. But at the
same time, the techniques and results in this thesis bring to light the importance of
the Hopf Galois representations of Hopf Galois structures, as well as the suitability
of such objects to study the Hopf Galois module structure of rings of integers. Are
they useful beyond the study of rings of integers? If so, it might be interesting to
explore the development of a theory of Hopf Galois representations.



Appendix A

Separable degree pn extensions
with Frobenius Galois closure

Let p be an odd prime number and let n ∈ Z≥1. In this part we consider separable
degree pn extensions with Galois closure a Frobenius group, that is, of the form

G = J o G′,

with J an order pn normal subgroup of G and G′ a subgroup of G with order r divisor
of pn − 1 (and then coprime with p). Since G is a Galois group, it is transitive. Let us
assume that J and G′ are cyclic, say J = 〈σ〉 and G′ = 〈τ〉. Then the group G has a
presentation

G = 〈σ, τ | σpn
= τr = 1 τσ = σgτ〉,

where g is an integer number of order r modulo pn. Let E = LG′ and F = LJ . By the
fundamental theorem of Galois theory, L = EF with E and F K-linearly disjoint.

We make an extra hypothesis: the extension F/K is Kummer, that is, K con-
tains some (any) primitive r-th root of unity ξr. Consequently, there is an element
z ∈ F such that z /∈ K and zr ∈ K. The conjugates of z are the elements ξ l

rz, with
0 ≤ l ≤ r− 1. On the other hand, E = K(α) with α a root of an irreducible degree pn

polynomial f . We may assume without loss of generality that τ(z) = ξ
g
r z (otherwise

we would replace either τ or ξr by a suitable power).

Now pn is not a Burnside number unless n = 1, so the extension E/K does not
need to have a unique Hopf Galois structure. But we may choose a distinguished
one: its almost classically Galois structure (which is indeed the unique one if n = 1).
If λ : G −→ Perm(G/G′) is the left translation map, that structure is the one given
by the subgroup N1 = λ(J) of Perm(G/G′) (note that Nopp

1 = N1 because N1 is
abelian). Its Hopf algebra is

H1 = L[N1]
G = {x ∈ L[N1] : g(x) = x for all g ∈ G}.

Let µ = λ(σ). It is easily verified that

σ(µ) = µ, τ(µ) = µg.

Theorem A.1. Assume that J and G′ are cyclic groups. The Hopf algebra H1 has a K-basis
formed by the identity Id and the elements

wjk = zj

(
r−1

∑
l=0

ξ
l j
r µgl ik

)
, 0 ≤ j ≤ r− 1, 1 ≤ k ≤ a,

where a = pn−1
r and {i1, ..., ia} is a system of representatives of the orbits of the action of g

on Z/pnZ.
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Proof. Let us take x ∈ H1. Then x = ∑
pn−1
i=0 xiµ

i with xi ∈ L and g(x) = x for all
g ∈ G. In particular, we have

pn−1

∑
i=0

xiµ
i = σ

(
pn−1

∑
i=0

xiµ
i

)
=

pn−1

∑
i=0

σ(xi)µ
i,

which implies that xi = σ(xi) for all 0 ≤ i ≤ pn − 1. That is, xi ∈ F for every
0 ≤ i ≤ pn − 1. Hence,

xi =
r−1

∑
j=0

xijzj, xij ∈ K.

On the other hand,

pn−1

∑
i=0

xiµ
i = τ

(
pn−1

∑
i=0

xiµ
i

)

=
pn−1

∑
i=0

τ(xi)µ
gi.

We deduce that τ(xi) = xgi for every 0 ≤ i ≤ pn − 1. In particular, for i = 0,
τ(x0) = x0, so x0 ∈ K. We focus in the other terms. For i > 0, we have that

r−1

∑
j=0

xgi,jzj = xgi = τ(xi) =
r−1

∑
j=0

xijξ
j
rzj,

whence xgi,j = xijξ
j
r. By induction, one has

xgl i,j = xijξ
l j
r (A.1)

for every 1 ≤ i ≤ pn − 1, 0 ≤ j ≤ r − 1 and 0 ≤ l ≤ r − 1, where the left index is
taken modulo pn. Now, we have

x =
pn−1

∑
i=0

xiµ
i

= x0Id +
pn−1

∑
i=1

r−1

∑
j=0

xijzjµi.

At this point, we must group the addends which have the same coefficient xij,
taking (A.1) into account. The subgroup 〈g〉 of Z acts transitively on Z/pnZ− {0}
by means of g(x) = gx. Let a be the positive integer such that pn − 1 = ar. Then the
action of 〈g〉 on Z/pnZ− {0} yields a orbits of r elements each. Let {i1, ..., ia} be a
system of representatives of the orbits of such action. Then,

x− x0Id =
a

∑
k=1

r−1

∑
l=0

r−1

∑
j=0

xgl ik ,jz
jµgl ik

=
a

∑
k=1

r−1

∑
l=0

r−1

∑
j=0

xik ,jξ
l j
r µgl ik

=
r−1

∑
j=0

a

∑
k=1

xik ,jzj

(
r−1

∑
l=0

ξ
l j
r µgl ik

)
.
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We obtain that

{Id} ∪
{

zj

(
r−1

∑
l=0

ξ
l j
r µgl ik

) ∣∣∣ 0 ≤ j ≤ r− 1, 1 ≤ k ≤ a
}

is a system of generators of H1. Since ar = pn − 1, it has pn elements in total, and all
of them are K-linearly independent. Hence, they form a K-basis of H1.

Example A.2. If we choose n = 1 and r = 2, we recover Theorem 4.1. Indeed, in that
case every field contains the primitive square root of unity, which is −1, and since
g = −1, the action of 〈g〉 on Z/pZ∗ has a = p−1

2 orbits with 2 elements each. We take
as representatives {1, 2, . . . , p−1

2 }. Then, the non-trivial basic elements according to
Theorem A.1 are

wjk = zj

(
1

∑
l=0

(−1)l jµ(−1)lk

)

for j ∈ {0, 1} and 1 ≤ k ≤ p−1
2 . Then,

w0k = µk + µ−k, w1k = z(µk − µ−k),

for every 1 ≤ k ≤ p−1
2 , which are the basic elements in Theorem 4.1.

Example A.3. Let us pick p = 5, n = 1, r = 4, which means that the Galois group of
the normal closure of E/K is the Frobenius group F5 of order 20. In this case, g = 2
is an element of order 4 modulo 5. Its action on Z/5Z yields one orbit of 4 elements,
which is {1, 2, 4, 3}. Moreover, ξ4 = i (a root of x2 + 1) is a primitive 4-th root of
unity. We obtain the non-trivial basic elements

w01 = µ + µ2 + µ3 + µ4, w11 = (µ + iµ2 − iµ3 − µ4)z,

w21 = (µ− µ2 − µ3 + µ4)z, w31 = (µ− iµ2 + iµ3 − µ4)z3.

As a final remark, if we assume that the extension E/K is of p-adic fields, then
K contains the primitive r-th roots of unity, because r is coprime with p and one
can apply Hensel’s lemma. Then, we can use Theorem A.1 to describe its almost
classically Galois structure.





Appendix B

Complete form of some items

Quartic Galois extensions of Q

For a Hopf Galois structure A, U(A, L) is the matrix that reduces M(A, L) to a re-
duced matrix or a previous form.

Cyclic quartic extensions

Case 1

U(H, L) =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1



(B.1)
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Case 2

U(H, L) =



0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 3 2 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 2 1 0 0 0 0 0 −1 0 0 0 0

−1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1



(B.2)

Case 3

U(H, L) =



0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 3 2 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

−1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1



(B.3)



Appendix B. Complete form of some items 175

Case 4

U(H, L) =



0 0 0 0 1 1 0 0 −1 −1 0 0 0 0 0 0

−1 0 0 0 2 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 −2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 −1 0 0 0

−1 0 0 0 2 1 0 0 −2 −2 0 0 2 0 0 0

0 0 0 0 −2 0 0 0 4 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0

0 0 0 0 0 −1 0 0 0 1 0 0 0 −1 0 1

0 0 0 0 −1 0 0 0 2 0 0 1 0 0 0 0

0 0 0 0 0 −1 0 0 0 1 1 0 0 −1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


(B.4)



176 Appendix B. Complete form of some items

Case 5

U(H, L) =



0 0 0 0 1 1 0 0 −1 −1 0 0 0 0 0 0

−1 0 0 0 2 1 0 0 −1 −1 0 0 2 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 3 1 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 −1 0 0 0

−1 0 0 0 2 1 0 0 −2 −2 0 0 2 0 0 0

0 0 0 0 −2 0 0 0 4 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0

0 0 0 0 0 −1 0 0 0 1 0 0 0 −1 0 1

0 0 0 0 −1 0 0 0 2 0 0 1 0 0 0 0

0 0 0 0 0 −1 0 0 0 1 1 0 0 −1 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


(B.5)
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Biquadratic extensions

Case 1

U(H1, L) =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 1



(B.6)

U(H2, L) =



0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 −2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 −2 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 2 1



(B.7)
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U(H3, L) =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0

1 0 0 0 0 −1 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 −2 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 2 1



(B.8)

Case 2

U(H1, L) =



0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 3 2 0 0 0 0 −1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 2 1 0 0 0 0 0 0 0 0 −1 0

−1 0 0 0 2 1 0 0 0 0 −1 0 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 −2 −1 0 0 0 0 1 1 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0


(B.9)
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U(H2, L) =



1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 −3 −1 0 0 0 0 −1 0 0 0 2 0

2 0 0 0 −3 −1 0 0 0 0 −1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 2 d d 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0

0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

−2 0 0 0 4 1 0 0 0 0 1 0 0 0 −2 0

1 0 0 0 −2 −1 0 0 0 0 −1 0 0 0 2 1


(B.10)

U(H3, L) =



1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 −2 0 0

1 0 0 0 −2 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 −4 −1 0 0 0 0 −1 0 0 0 0 0

1 0 0 0 −2 −1 0 0 0 0 −1 0 0 0 2 1


(B.11)
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Case 3

U(Hc, L) =



0 0 0 0 1 1 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 2 1 0 0 1 0 0 0 0 0 0 0

−2 0 0 0 4 2 0 0 1 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 −1 0 0 0 0 0 0 0 2 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

−3 0 0 0 4 2 0 0 2 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 −2 −2 0 0 0 0 0 0 0 2 0 1


(B.12)

U(H1, L) =



1 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0

−1 0 0 0 2 1 0 0 1 0 0 0 −1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 −1 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 −1 −1 0 0 −1 −m
d 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 −2 0 −1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 0 0 2 0 1


(B.13)



Appendix B. Complete form of some items 181

U(H2, L) =

1 0 0 0 d+3m
2d 0 0 − d+m

2d − d+3m
2d 0 0 0 −3 −2 −3 0

0 0 0 0 −3(d+3m)
2d 0 0 d+3m

2d
−d+9m

2d 0 0 0 5 2 7 0

0 0 0 0 −3(d+m)
2d 0 0 d+m

2d
d+3m

2d 0 0 0 3 2 3 0

−1 0 0 0 −2 0 3 d+2m
d 0 0 0 0 8 6 4 1

0 0 0 0 1 0 0 0 0 0 0 0 −2 −1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 −2 −1 −1 0 0 0 0 0 0 0 0 0

−1 0 0 0 4 1 2 0 0 0 0 0 −4 −2 −2 0

0 0 0 0 4 1 2 0 −2 0 −1 0 −4 −2 −2 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 m
d 0 0 0 −2 m

d −m
d

d−m
d 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

−2 0 0 0 0 1 0 1 2 0 1 0 4 2 2 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0


(B.14)
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U(H3, L) =

0 0 0 0 3 d−m
2d 1 d−m

2d 0 −d+m
2d 0 0 0 −1 −d−m

2d 0 0

0 0 0 0 3 d−m
2d 0 d−m

2d 0 −d+m
2d 0 0 0 −1 −d−m

2d 0 0

0 0 0 0 d+m
2d 0 d+m

2d 0 −d−m
2d 0 0 0 1 d+m

2d 0 0

−m
d −m

d 0 0 d+m
d

m
d 0 0 m

d 0 0 0 −2 −m
d 0 0

−m
d 0 0 0 d+m

d
m
d 0 0 m

d 0 0 0 −2 0 −1 0

0 0 0 0 1 1 0 0 −1 0 −1 0 0 0 0 0

1 0 0 0 0 0 0 0 −2 0 −1 0 0 0 0 0

−1 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0

−m
d 2 0 0 0 −1 0 0 2 m

d 0 m
d 0 0 2 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0


(B.15)
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Separable degree 5 extensions with Galois closure D10

Matrices of the action

f (x) = x5 + 15x2 + 5 :

M(H1, E) =
1
6



6 0 0 12 12

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −30 −30 30 −30

6 −110 −270 −18 12

0 −25 −75 −11 11

0 15 25 1 −1

0 3 11 1 −1

0 120 −360 120 60

0 205 −15 45 −45

6 55 55 7 −13

0 −25 5 −5 5

0 −10 0 −2 2

0 150 750 210 −30

0 −245 −1815 −285 285

0 −160 −700 −110 110

6 60 150 22 −28

0 15 85 13 −13

0 450 −5250 1110 −210

0 −1100 −2250 600 −600

0 −135 255 55 −55

0 85 295 −65 65

6 −5 65 −23 17



. (B.16)
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f (x) = x5 + 10x2 + 5 :

M(H1, E) =
1
42



42 0 0 84 84

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −3570 −190 −170 170

42 735 −2195 −1 −41

0 420 260 16 −16

0 210 110 10 −10

0 21 53 1 −1

0 10160 2180 −160 160

0 −14975 −275 655 −655

42 830 1040 −106 64

0 440 20 −40 40

0 485 65 −25 25

0 −3000 13850 3380 1030

0 29790 17320 −830 830

0 −3930 −6010 50 −50

42 −1800 −2050 −16 −26

0 −1020 −730 32 −32

0 −128150 −15650 −9990 1590

0 34625 −109675 −375 375

0 15520 15160 540 −540

0 6550 6850 390 −390

42 235 3205 39 −81



(B.17)
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f (x) = x5 + 5x4 + 5 :

M(H1, E) =
1
22



22 0 0 44 44

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 720 120 −40 −180

22 895 415 199 −221

0 402 254 150 −150

0 86 62 38 −38

0 9 7 5 −5

0 −4410 −330 −830 830

0 −6025 −1155 −1555 1555

22 −2960 −550 −996 974

0 −656 −132 −240 240

0 −73 −11 −31 31

0 11520 −2010 6020 −3270

0 17950 −3500 6510 −6510

0 9930 −2830 3550 −3550

22 2300 −670 804 −826

0 276 −98 100 −100

0 16620 23040 −19700 6500

0 10535 46845 −11525 11525

0 −1550 28550 −3730 3730

0 −950 6690 −590 590

22 −235 805 −51 29



(B.18)
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Non-constant factors of Dε(H1, E)

f (x) = x5 + 15x2 + 5 :

q1(ε1, ε2, ε3, ε4, ε5) = −
1
27

(
11 ε2

4 + 35 ε2
3ε3 + 215 ε2

3ε4 + 830 ε2
3ε5 − 75 ε2

2ε3
2

+ 795 ε2
2ε3 ε4 − 465 ε2

2ε3 ε5 + 1080 ε2
2ε4

2 + 16485 ε2
2ε4 ε5 + 9000 ε2

2ε5
2

+ 5 ε2 ε3
3 − 615 ε2 ε3

2ε4 − 1650 ε2 ε3
2ε5 + 4080 ε2 ε3 ε4

2 + 8550 ε2 ε3 ε4 ε5

− 30075 ε2 ε3 ε5
2 + 200 ε2 ε4

3 + 79650 ε2 ε4
2ε5 + 240525 ε2 ε4 ε5

2 − 112750 ε2 ε5
3

+ 5 ε3
4 − 205 ε3

3ε4 + 725 ε3
3ε5 + 1680 ε3

2ε4
2 − 24975 ε3

2ε4 ε5 + 18825 ε3
2ε5

2

− 3430 ε3 ε4
3 + 135450 ε3 ε4

2ε5 − 373725 ε3 ε4 ε5
2 + 148625 ε3 ε5

3 − 1045 ε4
4

− 16600 ε4
3ε5 + 1473450 ε4

2ε5
2 − 1173625 ε4 ε5

3 + 210125 ε5
4
)
(ε1 + 6 ε3 + 6 ε4 + 30 ε5) .

(B.19)

f (x) = x5 + 10x2 + 5 :

q2(ε1, ε2, ε3, ε4, ε5) = −
1
21

(
50 ε2

4 − 750 ε2
3ε3 − 500 ε2

3ε4 + 13000 ε2
3ε5

− 24250 ε2
2ε3

2 + 99250 ε2
2ε3 ε4 − 61250 ε2

2ε3 ε5 − 77500 ε2
2ε4

2 − 218000 ε2
2ε4 ε5

+ 1137500 ε2
2ε5

2 + 48750 ε2 ε3
3 + 21250 ε2 ε3

2ε4 − 1792500 ε2 ε3
2ε5 − 597750 ε2 ε3 ε4

2

+ 7095000 ε2 ε3 ε4 ε5 − 1711250 ε2 ε3 ε5
2 + 628750 ε2 ε4

3 − 4655000 ε2 ε4
2ε5

− 14302500 ε2 ε4 ε5
2 + 40375000 ε2 ε5

3 − 23750 ε3
4 − 97500 ε3

3ε4 + 1756250 ε3
3ε5

+ 900000 ε3
2ε4

2 − 908750 ε3
2ε4 ε5 − 31756250 ε3

2ε5
2 − 1651250 ε3 ε4

3

− 15948750 ε3 ε4
2ε5 + 125468750 ε3 ε4 ε5

2 − 18518750 ε3 ε5
3 + 907250 ε4

4

+ 18321250 ε4
3ε5 − 73877500 ε4

2ε5
2 − 240725000 ε4 ε5

3 + 495931250 ε5
4
)

(ε1 + 21 ε4 − 40 ε5) .
(B.20)

f (x) = x5 + 5x4 + 5 :

q3(ε1, ε2, ε3, ε4, ε5) =
1
11

(ε1 − 2 ε2 + 25 ε4 − 120 ε5)
(

ε2
4 − 25 ε2

3ε3 + 70 ε2
3ε4 + 50 ε2

3ε5

+ 215 ε2
2ε3

2 − 1035 ε2
2ε3 ε4 − 1895 ε2

2ε3 ε5 + 810 ε2
2ε4

2 + 10050 ε2
2ε4 ε5 − 13300 ε2

2ε5
2

− 755 ε2 ε3
3 + 4585 ε2 ε3

2ε4 + 15000 ε2 ε3
2ε5 − 4725 ε2 ε3 ε4

2 − 115900 ε2 ε3 ε4 ε5

+ 70725 ε2 ε3 ε5
2 − 3275 ε2 ε4

3 + 144750 ε2 ε4
2ε5 + 230050 ε2 ε4 ε5

2 − 949250 ε2 ε5
3

+ 895 ε3
4 − 5600 ε3

3ε4 − 32525 ε3
3ε5 + 650 ε3

2ε4
2 + 293025 ε3

2ε4 ε5 + 38925 ε3
2ε5

2

+ 30575 ε3 ε4
3 − 496025 ε3 ε4

2ε5 − 2641125 ε3 ε4 ε5
2 + 4970875 ε3 ε5

3 − 20225 ε4
4

− 212875 ε4
3ε5 + 6795500 ε4

2ε5
2 − 10711250 ε4 ε5

3 − 8010125 ε5
4
)

.

(B.21)
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Weakly ramified dihedral degree 6 extensions

Gram matrices

f (x) = x3 + 3x + 3 :

G(HW , LB) =



1 γ γ2 γ3 γ4 γ5

1 −γ γ2 −γ3 γ4 −γ5

0 g32 g33 g34 g35 g36
0 g42 g43 g44 g45 g46
2 g52 −γ2 − 3 g54 −γ4 + 21 g56
2 g62 −γ2 − 3 g64 −γ4 + 21 g66

 (B.22)

g32 = −γ5 − 6γ3 − 12γ, g33 = 18γ4 + 69γ2 − 57, g34 = −12γ5 − 33γ3 + 90γ,

g35 = −69γ4 − 258γ2 + 225, g36 = 45γ5 + 114γ3 − 396γ,

g42 = γ5 + 6γ3 + 12γ, g43 = 18γ4 + 69γ2 − 57, g44 = 12γ5 + 33γ3 − 90γ,

g45 = −69γ4 − 258γ2 + 225, g46 = −45γ5 − 114γ3 + 396γ,

g52 = −γ5 − 4γ3 + 2γ, g54 = 6γ5 + 23γ3 − 18γ, g56 = −25γ5 − 96γ3 + 72γ,

g62 = γ5 + 4γ3 − 2γ, g64 = −6γ5 − 23γ3 + 18γ, g66 = 25γ5 + 96γ3 − 72γ.

f (x) = x3 + 6x + 3 :

G(HW , LB) =



1 γ γ2 γ3 γ4 γ5

1 −γ γ2 −γ3 γ4 −γ5

0 g32 g33 g34 g35 g36
0 g42 g43 g44 g45 g46
2 g52 −γ2 + 12 g54 −γ4 + 168 g56
2 g62 −γ2 + 12 g64 −γ4 + 168 g66

 (B.23)

g32 = −4γ5 + 54γ3− 33γ, g33 = −120γ4 + 1497γ2 + 732, g34 = 66γ5− 768γ3− 1116γ,

g35 = −1497γ4 + 18672γ2 + 9144, g36 = 801γ5 − 9276γ3 − 14148γ,

g42 = 4γ5− 54γ3 + 33γ, g43 = −120γ4 + 1497γ2 + 732, g44 = −66γ5 + 768γ3 + 1116γ,

g45 = −1497γ4 + 18672γ2 + 9144, g46 = −801γ5 + 9276γ3 + 14148γ,

g52 = −4γ5 + 50γ3 + 23γ, g54 = −54γ5 + 674γ3 + 324γ,

g56 = −697γ5 + 8700γ3 + 4176γ, g62 = 4γ5 − 50γ3 − 23γ,

g64 = 54γ5 − 674γ3 − 324γ, g66 = 697γ5 − 8700γ3 − 4176.
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Dihedral degree 10 extensions

Powers of γ

f (x) = x5 + 15x2 + 5 :

γ2 = 403 α4 − 158 α3 − 5985 α2 − 1684 α + 30905,

γ3 = 2420195tz− 132252tzα− 468843tzα2 − 12362tzα3 +
157893tzα4

5
,

γ4 = 12365479 α4 − 4840390 α3 − 183587469 α2 − 51790660 α + 947684245,

γ5 = 968400509tzα4 − 379073698tzα3 − 14377621887tzα2 − 4055984300tzα

+ 74217725527tz,

γ6 = 379200596235 α4 − 148435451054 α3 − 5629904912985 α2

− 1588218618420 α + 29061741914945,

γ7 = 29697029362313tzα4 − 11624696765978tzα3 − 440905033279875tzα2

− 124381067546108tzα + 2275965310877435tz,

γ8 = 11628588689479391 α4 − 4551930621754870 α3 − 172647008580452085 α2

− 48704409374429540 α + 891209155931710525,

γ9 = 910690919681482341tzα4 − 356483662372684210tzα3

− 13520820730948482423tzα2 − 3814277428685618700tzα

+ 69794891496872592655tz.
(B.24)

f (x) = x5 + 10x2 + 5 :

γ2 = 780 α4 − 256 α3 + 80 α2 − 27332 α + 47960,

γ3 =
294464tzα4

5
− 19184tzα3 + 6240tzα2 − 2063296tzα + 3616720tz,

γ4 = 44420384 α4 − 14466880 α3 + 4711424 α2 − 1556248160 α + 2727859200,

γ5 = 3350358464tzα4 − 1091143680tzα3 + 355363072tzα2 − 117378281280tzα

+ 205745643392tz,

γ6 = 2526969559040 α4 − 822982573568 α3 + 268028677120 α2 − 88531226060800 α

+ 155181297072640,

γ7 = 190593787496960tzα4 − 62072518829056tzα3 + 20215756472320tzα2

− 6677366422982144tzα + 11704371763281920tz,

γ8 = 143753183324747776 α4 − 46817487053127680 α3 + 15247502999756800 α2

− 5036327217872496640 α + 8827888473614643200,

γ9 = 10842419360763641856tzα4 − 3531155389445857280tzα3

+ 1150025466597982208tzα2 − 379859217523152486400tzα

+ 665833386692785152000tz.
(B.25)
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Product of generators

f (x) = x5 + 15x2 + 5 :

β′ =



ε1 δ1 +
1716415065 ε2 δ1

642386524 + 344708445 ε3 δ1
24707174 + 13637321545 ε4 δ1

642386524 + 150 ε5 δ1

114902815 ε1 δ2
98828696 t + 13637321545 ε2 δ2

7708638288 t + 25
2

ε3 δ2
t + 3045443610 ε4 δ2

160596631 t + 33002652875 ε5 δ2
296486088 t

− 1236455183 ε2 δ1
5139092192 − 3740722775 ε3 δ1

3557833056 − 12064716635 ε4 δ1
30834553152 − 805 ε5 δ1

48

− 3740722775 ε1 δ2
42693996672 t −

12064716635 ε2 δ2
370014637824 t −

805 ε3 δ2
576 t + 153714326975 ε4 δ2

1110043913472 t −
25112657245 ε5 δ2

1778916528 t
429885670895 ε2 δ1

6660263480832 + 15317808053 ε3 δ1
170775986688 + 1690569125905 ε4 δ1

4440175653888 + 18155 ε5 δ1
10368

15317808053 ε1 δ2
2049311840256 t + 1690569125905 ε2 δ2

53282107846656 t + 18155 ε3 δ2
124416 t + 2615627812535 ε4 δ2

17760702615552 t + 457036180625 ε5 δ2
256163980032 t

− 861830682163 ε2 δ1
213128431386624 −

5731464085 ε3 δ1
1366207893504 −

1203824325611 ε4 δ1
35521405231104 −

30685 ε5 δ1
331776

− 5731464085 ε1 δ2
16394494722048 t −

1203824325611 ε2 δ2
426256862773248 t −

30685 ε3 δ2
3981312 t −

5849774679485 ε4 δ2
284171241848832 t −

3525523930915 ε5 δ2
32788989444096 t

28089103 ε2 δ1
213128431386624 +

186769 ε3 δ1
1366207893504 +

39241535 ε4 δ1
35521405231104 +

ε5 δ1
331776

186769 ε1 δ2
16394494722048 t +

39241535 ε2 δ2
426256862773248 t +

ε3 δ2
3981312 t +

190712785 ε4 δ2
284171241848832 t +

114902815 ε5 δ2
32788989444096 t


(B.26)

f (x) = x5 + 10x2 + 5 :

β′ =



ε1 δ1 − 4066158490 ε2 δ1
954111429 + 11621900 ε3 δ1

2321439 + 32953801295 ε4 δ1
954111429 − 200 ε5 δ1

2905475 ε1 δ2
4642878 t + 32953801295 ε2 δ2

7632891432 t − 25 ε3 δ2
t + 87851681855 ε4 δ2

1908222858 t + 2423056375 ε5 δ2
18571512 t

− 2565694281 ε2 δ1
3392396192 + 949487275 ε3 δ1

297144192 − 61041394225 ε4 δ1
20354377152 − 445 ε5 δ1

16
949487275 ε1 δ2

2377153536 t −
61041394225 ε2 δ2

162835017216 t −
445 ε3 δ2

128 t + 6092208052225 ε4 δ2
325670034432 t −

18542187595 ε5 δ2
594288384 t

760219986455 ε2 δ1
15632161652736 −

546579773 ε3 δ1
3169538048 + 223522035595 ε4 δ1

1954020206592 + 28825 ε5 δ1
16384

− 546579773 ε1 δ2
25356304384 t + 223522035595 ε2 δ2

15632161652736 t + 28825 ε3 δ2
131072 t −

66180799869005 ε4 δ2
62528646610944 t + 36935998025 ε5 δ2

25356304384 t

− 21048029533 ε2 δ1
13895254802432 + 338220965 ε3 δ1

76068913152 −
11879343659 ε4 δ1

5210720550912 −
7115 ε5 δ1

131072
338220965 ε1 δ2
608551305216 t −

11879343659 ε2 δ2
41685764407296 t −

7115 ε3 δ2
1048576 t +

4822141269325 ε4 δ2
166743057629184 t −

20676257105 ε5 δ2
608551305216 t

26624495 ε2 δ1
1000458345775104 −

47531 ε3 δ1
608551305216 +

5007295 ε4 δ1
125057293221888 +

ε5 δ1
1048576

− 47531 ε1 δ2
4868410441728 t +

5007295 ε2 δ2
1000458345775104 t +

ε3 δ2
8388608 t −

2033079245 ε4 δ2
4001833383100416 t +

2905475 ε5 δ2
4868410441728 t


(B.27)
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