
NOVEL TECHNIQUES TO IMPROVE THE

PERFORMANCE AND THE ENERGY OF

VECTOR ARCHITECTURES

Adrián Barredo Ferreira

Barcelona, 2021

Advisors: Adrià Armejach Sanosa
Miquel Moretó Planas

Collaborators: Jonathan C. Beard
Juan M. Cebrián González

Marc Casas Guix
Rhadika Jagtap

A thesis submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy

in the Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya

Abstract

The rate of annual data generation grows exponentially. At the same time, there is a high

demand to analyze that information quickly. In the past, every processor generation came with

a substantial frequency increase, leading to higher application throughput. Nowadays, due

to the cease of Dennard scaling, further performance must come from exploiting parallelism.

Vector architectures offer an efficient manner, in terms of performance and energy, of exploting

parallelism at data-level by means of instructions that operate over multiple elements at the

same time. This is popularly known as Single Instruction Multiple Data (SIMD). Traditionally,

vector processors were employed to accelerate applications in research, and they were not

industry-oriented. However, vector processors are becoming widely used for data processing in

multimedia applications, and entering in new application domains such as machine learning

and genomics. In this thesis, we study the circumstances that cause inefficiencies in vector

processors, and new hardware/software techniques are proposed to improve the performance

and energy consumption of these processors.

We first analyze the behavior of predicated vector instructions in a real machine. We observe

that their execution time is dependent on the vector register length and not on the source mask

employed. Therefore, a hardware/software mechanism is proposed to alleviate this situation,

that will have a higher impact in future processors with wider vector register lengths.

We then study the impact of memory accesses to performance. We identify that an irregular

memory access pattern prevents an efficient vectorization, which is automatically discarded by

the compiler. For this reason, we propose a near-memory accelerator capable of rearranging

data structures and transforming irregular memory accesses to dense ones. This operation may

be performed by the devices as the host processor is computing other code regions.

Finally, we observe that many applications with irregular memory access patterns just

perform a simple operation on the data before it is evicted back to main memory. In these

situations, there is a lack of data access locality, leading to an inefficient use of the memory

hierarchy. For this reason, we propose to utilize the accelerators previously described to

compute directly near memory.

i

Resumen

La tasa de generación de información aumenta cada año. Al mismo tiempo, existe una alta

demanda para analizar dicha información en el menor tiempo posible. En el pasado, se

recurría a aumentar la frecuencia de los procesadores para conseguir una mayor velocidad

de procesamiento de los datos. En la actualidad, debido al fin de la ley de Dennard, la

frecuencia deja de ser una opción y se apunta al paralelismo como la mejor alternativa. Las

arquitecturas vectoriales ofrecen una manera eficiente, en términos de rendimiento y energía,

de explotar el paralelismo a nivel de datos a través de instrucciones que operan sobre múltiples

elementos al mismo tiempo, conocidas popularmente como SIMD. Tradicionalmente, los

procesadores vectoriales se utilizaban para acelerar las aplicaciones en la investigación y no

estaban orientados a la industria. Sin embargo, dichos procesadores están siendo cada vez más

utilizados para el procesamiento de datos en aplicaciones multimedia. En esta tesis doctoral,

se investigan las causas que pueden suponer la ineficiencia de las arquitecturas vectoriales, y

se proponen mejoras a nivel de hardware y software con el fin de mejorar el rendimiento y el

consumo de estos procesadores.

En primer lugar, se estudia el funcionamiento de las instrucciones vectoriales predicadas

en una máquina real. Como resultado, se observa que el tiempo de ejecución y el consumo de

dichas instrucciones es independiente de la máscara empleada, mientras que sí es dependiente

de la longitud de los registros vectoriales que contienen los datos. Por tanto, se propone un

mecanismo hardware/software para aliviar esta situación, que se agravará en el futuro con la

aparición de procesadores con la longitud de los registros vectoriales más alta.

En segundo lugar, se analiza el impacto de los accesos a memoria por parte del procesador

vectorial. En este caso, se comprueba que un acceso irregular a memoria impide una vector-

ización eficiente de las aplicaciones, que es descartada automáticamente por el compilador. Por

tanto, en esta tesis se propone un acelerador cerca de memoria capaz de reordenar los datos y

proporcionar accesos secuenciales a memoria mientras el procesador está computando otras

regiones de la aplicación.

iii

Resumen

En tercer lugar, se propone utilizar los aceleradores previamente descritos como elementos

de cómputo, dado que muchas aplicaciones acceden a memoria de manera irregular para realizar

un cómputo muy sencillo en el procesador. Este movimiento de datos puede ser evitado si la

operación es realizada cerca de memoria. El rendimiento de estos aceleradores es evaluado en

aplicaciones de computación de altas prestaciones y en grafos, un campo de la ciencia muy

afectado por esta situación.

iv

Acknowledgments

Este documento representa el final de un duro camino que comenzaría en 2015 con una mudanza

Santoña-Barcelona para la realización de un máster. Durante este tiempo, mucha gente ha

estado a mi lado y me han ayudado tanto en el ámbito profesional como en el personal. Familia,

amigos y compañeros de trabajo han sido claves y sin los cuales ahora mismo no estaría

escribiendo estas líneas.

En primer lugar, quiero agradecer a mis padres Ángel y Gemma y a mi hermano Jorge

su apoyo incondicional durante este tiempo. Sus consejos y sus visitas me han dado fuerzas

en numerosas ocasiones para seguir adelante. Gracias también a mis abuelos Ángel y María

Ángeles por ser un ejemplo de amor y sacrificio. Muy especialmente, me gustaría agradecer a

mi pareja Alazne su amor y su infinito apoyo durante todo este tiempo. Gracias por creer en mí.

En segundo lugar, quisiera hacer mención a mis directores de tesis, Miquel Moretó y Adrià

Armejach, que han tenido un paper muy importante en su elaboración. Siempre han estado ahí

para ayudarme y motivarme. He aprendido mucho de ellos como personas e investigadores.

Sus consejos han sido fundamentales en muchos momentos. También me gustaría agradecer

a Ramón Beivide de la Universidad de Cantabria, por ofrecerme la oportunidad de estudiar y

formarme en Barcelona. Sin tí este projecto no habría sido posible. Gracias también por haber

sido un apoyo durante la realización del doctorado.

Gracias también a todos mis compañeros, que ya son amigos, del equipo RoMoL del

Barcelona Supercomputing Center. Mención especial para Isaac, Vladimir, Constan, Emilio,

Calvin y Xubin. Nunca se me olvidarán nuestros momentos tanto dentro como fuera de la

oficina. Gracias Isaac por todos tus consejos y ayuda, pero sobre todo por tu paciencia con este

teleco convertido a informático.

I would also like to thank the people at Arm Research in Cambridge (UK) for two excellent

internships in the company. Special thanks to Radhika Jagtap for opening Arm’s doors for me

as well as for being a wonderful advisor during the first internship. Thanks to Jonathan Beard

for being an excellent tutor during the second one. I’m also thankful to Nikos Nikoleris, Javier

v

Acknowledgments

Setoain, Giacomo Travaglini, Ilias Vougioukas and Stephan Diestelhorst for their friendship

and technical expertise during that time.

I’m grateful to the pre-defense committee members, Jaume Abella, Dimitrios Chasapis

and Milan Radulović, and external reviewers, Gilles Sassatelli and María Jesús Garzarán, for

providing valuable feedback, which helped me to improve this thesis.

Finalmente, los agradecimientos oficiales: This work has been partially supported by the

RoMoL ERC Advanced Grant (GA 321253), the European HiPEAC Network of Excellence,

the Spanish Government (contract TIN2015-65316-P) and the European Union’s Horizon 2020

research and innovation program under the Mont-Blanc 2020 project (grant agreement 779877).

Adrián Barredo has been supported by the Spanish Government under Formación del Personal

Investigador (FPI) fellowship number BES-2017-080635.

A todos, A tots, To all, Guztiei:

Gracias, Gràcies, Thank you, Eskerrik asko

vi

Table of contents

Abstract i

Resumen iii

Acknowledgments v

Contents x

1 Introduction 1
1.1 Thesis Objectives and Contributions . 4

1.1.1 Improving Predication Efficiency Through Compaction/Restoration of

SIMD Instructions . 4

1.1.2 PLANAR: A Programmable Accelerator for Near-Memory Data Rear-

rangement . 5

1.1.3 REMOTE: A Programmable Near-Memory Compute Engine 5

1.2 Thesis Outline . 6

2 Background 7
2.1 Vector Architectures . 7

2.1.1 An Example of the Micro-architecture of a Vector Processor 8

2.1.2 Vector Processors in Supercomputers 8

2.1.3 Vector Architectures in Microprocessors 9

2.1.4 SIMD Extensions . 10

2.1.5 Advantages of Vector Architectures 10

2.1.6 Disadvantages of Vector Architectures 11

2.1.7 Challenges of Vectorization . 11

2.2 The Memory Wall . 15

2.2.1 The Memory Hierarchy . 15

TABLE OF CONTENTS

2.2.2 DRAM Organization . 16

2.2.3 Memory Controller . 18

2.2.4 Prefetching . 19

2.2.5 Limitations of the Memory Hierarchy 20

2.2.6 Processing In/Near Memory . 21

2.3 Parallel Programming for Shared-Memory Systems 24

2.3.1 Parallel Processors . 24

2.3.2 Parallel Programming Models . 25

2.4 Runtime-Aware Architectures . 27

3 Experimental Methodology 29
3.1 Simulation Infrastructure . 29

3.1.1 Simulator . 29

3.1.2 Environment . 31

3.2 Benchmarks . 34

3.2.1 Benchmarks for the Divergence Proposal 34

3.2.2 Benchmarks for the Near-Memory Data Rearrangement Proposal . . 36

3.2.3 Benchmarks for the Near-Memory Computing Proposal 36

3.3 Metrics . 39

4 The Efficiency of Predicated SIMD Instructions 41
4.1 Introduction . 41

4.2 The Predication Problem in SIMD Extensions 42

4.3 The Compaction/Restoration Mechanism 44

4.3.1 Overview . 44

4.3.2 CR Hardware Components . 46

4.3.3 CR in an Out-of-Order Processor 48

4.3.4 Detecting Compactable Instructions 49

4.3.5 Populating Dense Instructions . 50

4.3.6 Compaction Phase . 50

4.3.7 Execution of Compacted Instructions 50

4.3.8 Restoration Phase . 51

4.3.9 Dense Register Forwarding . 52

4.3.10 CR Case Study . 53

4.3.11 Optimizing SIMD Legacy Code . 56

viii

TABLE OF CONTENTS

4.3.12 Discussion . 56

4.4 Design Space Exploration . 57

4.4.1 Compaction and Restoration Latencies 57

4.4.2 Timeout Policies . 59

4.4.3 Costly SIMD Instruction Ratio . 59

4.4.4 Effectiveness with Different Loop Lengths 60

4.5 Area and Power Consumption of CR Units 61

4.6 Evaluation . 61

4.6.1 Predicated SIMD Applications . 62

4.6.2 Optimizing AVX-2 Legacy Code . 63

4.6.3 Comparison with Other Proposals 64

4.7 Conclusions . 65

5 PLANAR: A Programmable Accelerator for Near-Memory Data Rearrangement 67
5.1 Introduction . 67

5.2 Motivation . 69

5.3 PLANAR Design . 72

5.3.1 Modifications to Application Code 74

5.3.2 Allocation of Memory and PLANAR 75

5.3.3 Offloading of Rearrange Function 75

5.3.4 Execution of Rearrange Functions 76

5.3.5 Synchronization Between PLANAR and Host 76

5.3.6 Release of PLANAR Devices and Memory 77

5.3.7 PLANAR Execution Example . 77

5.4 Design Space Exploration . 80

5.4.1 Pipeline Width . 80

5.4.2 Number of Functional Units . 81

5.4.3 Cache Size . 81

5.4.4 Number of PLANAR Devices . 81

5.4.5 Synchronization Granularity . 82

5.4.6 Selected Configuration . 83

5.5 Evaluation . 83

5.5.1 Impact to the Memory Hierarchy . 86

5.5.2 Area and Power Overhead . 87

5.5.3 Comparison to Other Proposals . 89

ix

TABLE OF CONTENTS

5.6 Conclusions . 91

6 Near Memory Compute Engine 93
6.1 Introduction . 93

6.2 Motivation . 94

6.3 Proposal . 96

6.3.1 The REMOTE Device . 97

6.3.2 Changes to the Application . 100

6.3.3 Changes to the Runtime System . 100

6.4 Design Space Exploration . 101

6.4.1 Pipeline width . 101

6.4.2 Number of functional units . 102

6.4.3 Latency of functional units . 102

6.4.4 Frequency . 103

6.4.5 Selected configuration . 104

6.5 Evaluation . 104

6.5.1 Profiling of the Applications . 104

6.5.2 Results with REMOTE . 105

6.5.3 Impact to the Memory Hierarchy . 108

6.5.4 Host Core vs REMOTE Performance and Area Comparison 110

6.5.5 Comparison to Other Proposals . 110

6.6 Conclusions . 113

7 Conclusions and Future Work 115
7.1 Conclusions . 115

7.2 Future Work . 117

7.3 Publications . 118

Bibliography 121

List of figures 143

List of tables 149

x

Chapter 1
Introduction

Moore’s Law predicted that the number of transistors in a chip would double every two years.

For decades, increasing the number of transistors was the common solution to improve the

Instructions per Cycle (IPC) metric of the processors. In this scenario, deeper pipelines, branch

predictors and cache memories greatly increased the instruction throughput of the processors.

For a long time, Moore’s Law had two fundamental outcomes: (1) more features and

functionality in an integrated circuit, and (2) higher operating frequencies with the same power

density. Both of these outcomes contributed to the processor’s overall performance increase.

Frequency scaling was generally transparent to the programmer and algorithms were expected

to execute faster with every new generation of processor.

At the beginning of the twenty first century, in what is commonly named as the cease of

Dennard scaling [59, 32], thermal and power issues made it unfeasible to continue increasing

the processor’s operating frequency. This phenomenon is popularly known as the Power Wall,

and it was reached around 2005 as shown in Figure 1.1. While Moore’s Law still held true, the

free performance scaling finally came to an end [175]. The industry had to shift its focus on

using the extra available transistors to achieve better performance through explicit parallelism.

Parallelization techniques can be broadly categorised as instruction-level (ILP), thread-level

(TLP) and data-level (DLP) [70]. When it is possible to exploit it, DLP is by far the most

efficient form of parallelism [86]. DLP is defined as applying the same operation to multiple

data elements. DLP can be exposed to the hardware by means of vector computations [20, 67],

where a Single Instruction operates over Multiple Data streams (SIMD).

Vector machines appeared in the early 1970s and dominated supercomputer designs for two

decades [155, 55, 26, 191]. These designs exploited DLP with long vectors of thousands of

bits. Such vector designs are less popular nowadays, although the NEC’s SX-Aurora processor

has been recently announced featuring 16,384-bit vectors [139].

1

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

100

101

102

103

104

105

106

107 Transistors
Frequency
Power
Number of Cores

Figure 1.1: Historical trends of important metrics in computing systems.

Transistor count is presented in thousands, frequency in Hz and power in W. Original data up to 2010 collected
and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten. Data from 2010
to 2017 collected by K. Rupp [154].

SIMD extensions to scalar Instruction Set Architectures (ISA) appeared in the late 1990s to

improve the efficiency of multimedia applications, using short vectors of 128 bits [93, 74]. Such

SIMD extensions have become ubiquitous in today’s computer architectures [94, 17, 173, 6].

Processors with longer SIMD vector lengths have appeared in the last years, such as the 512-bit

SIMD implementations from Intel [169, 94] and Fujitsu [201]. Nowadays, DLP exploitation is

not limited to SIMD extensions. GPUs are alternative architecture designs that benefit from

DLP with a massive amount of threads executing the same instruction in a lock-step model.

The effectiveness of a vector architecture depends on its ability to vectorize large quantities

of code [86]. Although efficient vectorization by the compiler has captured industry’s attention

for several years, still some challenges remain unsolved, such as horizontal operations, data

structure conversion or divergence control [91].

On the other hand, memories have been an integral part of computers ever since the

appearance of the first concept for a programmable computing machine in 1837 [22]. Since

they store both instructions and data, fast memory accesses are essential in order to achieve

good application performance.

2

Introduction

The differences in the technologies employed to manufacture processors and memories

have widely increased the performance gap between these two resources. This effect, known as

the Memory Wall [197], is clearly seen on Figure 1.2. In order to reduce this gap, the concept of

cache memories came to light. Caches offer shorter access latency compared to main memory,

but they are more costly in terms of area and power per byte of storage.

1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

100

101

102

103

104 Microprocessor
Memory

Figure 1.2: Evolution of relative processor and memory performance.
Data collected and plotted by Hennessy and Patterson [86]

Cache memories are a good alternative for applications that have locality of reference [171,

182] which means that cache memories with low latencies can meet data demands while

prefetchers can act in parallel in the background to hide memory access latency. Deep cache

hierarchies are the natural result of this trend, providing low-latency data access to high

performance out-of-order processing elements.

However, recent trends show that we have effectively plateaued on the effectiveness of data

prefetchers [132]. Trends also demonstrate ineffectiveness for irregular sparse patterns [207].

As a result of sparsity and irregular reuse distances, some studies have measured utilization

of transmitted bandwidth as low as 20% for some applications [29]. Past studies have also

proved that a significant fraction of the data brought into the last level cache goes unused before

eviction [172]. This issue has a bigger impact on multi-core systems, where shared resources

exist and every core competes for the memory bandwidth.

Performance is not the only factor affected by data motion. Approximately two thirds of

the energy required to compute is consumed by data movement, specifically by the memory

and interconnect [33]. In addition, irregular and sparse patterns preclude harnessing data-

level parallelism (DLP) via vector instructions. Supplying SIMD units with high-bandwidth,

low-latency data is critical to their efficiency [140].

In order to reduce the data movement through the memory hierarchy, the concept of

Processing In/Near Memory (PINM) was born. The idea relies on placing computing resources

3

1.1 Thesis Objectives and Contributions

close to where the data resides. Recent processing in memory proposals are summarized by

Zhang et al. [204] and Balasubramonian et al. [23]. They can be split into two categories: (1)

processing elements in memory (PIM), which require a special technology for the memory (i.e.,

Hybrid Memory Cube) [2, 138, 90, 62], and (2) near memory processing (PNM), where the

compute elements are close to memory, such as in the memory controller [142, 124, 170, 206].

1.1 Thesis Objectives and Contributions

The main goal of this thesis is to improve the performance and the energy consumption of the

chips, focusing on the vector architectures. To the best of our knowledge, vector architectures

will be a key component in future processors, where huge amounts of data will require a fast

and efficient processing. Nowadays, many challenges related to vector architectures remain

unsolved and tackling these problems will be important for the next generations of processors.

Moreover, targeting the Memory Wall, we study techniques to make a more efficient use of

the memory hierarchy and to reduce data movement on chip in applications that do not benefit

from it. We propose solutions from the Processing In Memory (PIM) domain to do so.

In particular, we focus on three main problems: (1) alleviating the inefficiency in perfor-

mance and energy of predicated vector instructions, (2) transforming irregular memory access

patterns into sequential ones, to reduce data movement on chip and enable efficient vector-

ization, and (3) operating near memory, in those applications that present irregular memory

accesses and low arithmetic intensity.

1.1.1 Improving Predication Efficiency Through Compaction/Restora-
tion of SIMD Instructions

In the first contribution of this thesis, we target the inefficiency of predicated SIMD instructions.

These instructions are a particular type of vector instructions. They have an additional operand

called mask. The mask operand is a vector register which contains as many bits as the number

of elements in the other vector source registers. Only if a bit is active in the mask, the operation

has to be done to the elements in that position in the other vector operands.

Using real hardware, we observe that the execution time and energy consumption of these

instructions is independent of the mask operand. We believe this situation will represent a

problem in future processors. For this reason, we propose a hardware/software mechanism, the

Compaction/Restoration (CR) mechanism. In our proposal, the elements in a vector register

4

Introduction

whose corresponding mask bit is active are extracted and inserted into a new register. This

process is named Compaction and it is performed for the predicated vector instructions of

the same Program Counter (PC). In the best case scenario, the new registers are completely

populated. These new operands will access the vector functional unit instead of the original

instructions. After the operation is done, the results are moved into the active positions of the

original destination vector registers. This process is called Restoration.

The CR mechanism can be accomplished with minimal hardware support, and loops can be

marked as good CR candidates at compile time (i.e., several predicated instructions in every

iteration). This information is combined with runtime information (e.g., number of active

elements in the mask) to decide whether CR should be activated for the current application.

1.1.2 PLANAR: A Programmable Accelerator for Near-Memory Data
Rearrangement

The second contribution of this thesis is a near-memory accelerator that performs data-layout

transformations. The goal of this proposal is to reduce the data-movement on chip and to allow

the compiler to provide an efficient vectorization.

Our accelerator, called PLANAR, is a novel hardware approach that performs data rearrange-

ments near memory, converting sparse data into dense. PLANAR rearranges data enabling an

efficient use of memory bandwidth by host cores. Moreover, PLANAR decouples access and

execute, allowing the overlap of rearrangements performed by the accelerator and computation

done by host cores. As a result, PLANAR allows applications to take better advantage of the

memory hierarchy by exploiting locality of dense data, and unlocks additional performance

due to better prefetching and vectorization.

PLANAR is programmed via simple library calls that can be inserted by the programmer or

the compiler. PLANAR has virtual memory support and it does not require a specific memory

technology (i.e., 3D-stacking) to operate.

1.1.3 REMOTE: A Programmable Near-Memory Compute Engine

The third contribution of this thesis consists of an accelerator that performs computation near-

memory. It targets applications with irregular memory accesses that do not benefit from the

memory hierarchy. In these applications, a deep cache hierarchy can hurt performance as every

cache level increasses main memory access latency.

5

1.2 Thesis Outline

This accelerator, called REMOTE, is a novel hardware approach whose simple and pro-

grammable design leads to performance and energy gains in applications that suffer from

irregular memory accesses. Contrary to PLANAR, REMOTE targets applications that access

memory in an irregular manner but the computation is so simple that the operation could be

directly done near memory rather than in the host core. As a result, applications benefit from a

higher memory bandwidth and a reduction in the data movement on chip.

REMOTE is programmed via pragmas that can be inserted by the programmer or the

compiler. Moreover, the runtime system is in charge of scheduling codes to the accelerators

depending on their availability. REMOTE has virtual memory support and it does not require a

specific memory technology (i.e., 3D-stacking) to operate.

1.2 Thesis Outline

The contents of this thesis are organized as follows:

Chapter 2 presents the background of the relevant hardware and software components in

the context of the work developed for this thesis.

Chapter 3 introduces the simulation infrastructure used for the experiments described in the

thesis, and the description of the benchmarks used for the evaluation of the proposed designs.

Chapter 4 proposes the Compaction/Restoration (CR) mechanism, explaining its function-

ality and its integration to an out-of-order processor. It describes the hardware required and

performs a thorough evaluation, obtaining performance and energy numbers.

Chapter 5 presents the PLANAR accelerator. It describes the proposal as well as the

programming application interface. The effects to the memory hierarchy are explained and

performance and energy numbers are also provided.

Chapter 6 presents the REMOTE device. It describes the proposal and the changes to the

application and to the runtime system. An exhaustive design space exploration is performed to

obtain the most optimal hardware configuration and a detailed evaluation with a wide range of

applications is presented.

Chapter 7 summarizes the contributions presented in this dissertation and provides possible

directions for future work.

6

Chapter 2
Background

This chapter presents the background of the relevant hardware and software components in the

context of the work developed for this thesis. First, vector architectures are introduced, describ-

ing their design, their operation and the main causes of performance and energy degradation.

In particular, we focus on horizontal instructions, irregular memory accesses and divergence

control. Further, the chapter provides a state of the art on the work done to optimize these

causes of performance degradation. Second, the memory hierarchy is introduced, describing its

main components, such as: caches, prefetchers, memory controllers and main memory. Next,

the concept of processing in/near memory is presented and the most relevant works from the

state-of-the-art are described. Finally, parallel processors and parallel programming models are

described. We also present the concept of runtime-aware architectures.

2.1 Vector Architectures

Vector architectures use vector instructions to operate on the values of the vector registers, which

hold multiple values rather than a single-value as in common scalar registers. In particular,

every position in a vector register is called lane. Vector architectures are known to be very

energy efficient and yield high performance whenever there is enough data-level parallelism

(DLP) [120]. This phenomenon is commonly referred to as Single Instruction Multiple Data

streams (SIMD) in Flynn’s taxonomy [71]. For example, a scalar addition instruction would

take values from two scalar registers A and B, and produce a result that would be stored in

scalar register C, as Figure 2.1 (left) shows. A vector addition instruction would take two

vectors A and B of vector length (VL) elements, and produce a final vector C of the same size,

as in Figure 2.1 (right). In the Figure, the VL is 4.

The high potential of vector architectures is useful in applications that involve comparing

or processing large blocks of data. Examples of these applications are multimedia process-

7

2.1 Vector Architectures

A B C+ =

A1 B1 C1
+ =

A2 B2 C2

A3 B3 C3

A0 B0 C0

Scalar Vector

VL = 4

Figure 2.1: Comparison of a scalar and vector instruction.

ing (compression, graphics, audio synthesys, image processing), standard benchmark kernels

(matrix multiply, FFT, convolution, sort), lossy compression (JPEG, MPEG video and au-

dio), cryptography (RSA, DES/IDEA, SHA/MD5) and databases (hash/join, data mining,

image/video serving).

2.1.1 An Example of the Micro-architecture of a Vector Processor

In order to better understand the concept of vector architectures, the micro-architecture of

the VIRAM vector processor [111] is shown in Figure 2.2, focusing on the vector hardware

and the memory system. VIRAM is a complete, load-store, vector instruction set defined as

a coprocessor extension to the MIPS architecture [85]. It includes a vector register file with

32 entries that may store integer or floating-point elements. The vector registers contain four

64-bit element lanes which are connected to independent 64-bit functional units. The four lanes

receive identical control signals on each clock cycle. The use of parallel lanes is a fundamental

concept in the micro-architecture that leads to advantages in performance, design complexity,

and scalability. Assuming sufficiently long vectors, VIRAM achieves high performance by

executing in parallel multiple element operations for each vector instruction. Vector load and

store instructions bypass SRAM caches and access DRAM main memory directly. DRAM is

multi-banked to allow multiple data accesses concurrently, as vector instructions have a higher

memory bandwidth utilization than scalar instructions.

2.1.2 Vector Processors in Supercomputers

Vector processors were frequently used in the past for large scientific and engineering appli-

cations. The first vector architectures in early 70s were memory-based with instructions that

8

Background

Figure 2.2: The micro-architecture of the VIRAM vector processor, from [111]

operate on memory-resident vectors [88, 191]. Later, Cray released the first commercially

successful supercomputers [155]. They were register-based, providing arithmetic instructions

that operate on vector registers, while separate vector load and store instructions move data

between vector registers and memory.

The Japanese manufacturers, Fujitsu (VP50, VP100, VP200, VP400), Hitachi (S810) and

NEC (SX) have been very successful in building vector processors for supercomputing [161].

For example, the Earth Simulator (ES) was a highly parallel vector supercomputer system

based on NEC SX-6 architecture [82]. It was the fastest supercomputer in the world from 2002

to 2004. ES was replaced by the Earth Simulator 2 (ES2) in 2009, that is based on the NEC

SX-92 architecture [203]. More recently, NEC’s SX-Aurora processor was announced with

16,384-bit vectors [139].

2.1.3 Vector Architectures in Microprocessors

Due to the high performance of vector supercomputers, computer architects decided to in-

corporate the design of vector architectures to microprocessors. In the late 90s, Espasa et al.

predicted that vector architectures would have a great potential for the future [67].

Some of examples are Torrent-0 and VIRAM [19, 111]. Torrent-0 is a vector microprocessor

designed for multimedia, neural networks, and other digital signal processing tasks while

9

2.1 Vector Architectures

VIRAM is a vector coprocessor for the scalar MIPS processors. CODE [110], the successor of

VIRAM, overcomes the limitations of conventional vector processors, such as: the complexity

of a multiported centralized register file, the difficulty of implementing precise exceptions for

vector instructions, and the high cost of on-chip vector memory systems.

Espasa showed that vector processors can improve their performance and hide latency by

applying techniques such as decoupling, out-of-order execution, and multithreading [66]. As

part of this effort, Espasa et al. developed Tarantula [65], a vector extension to the Alpha

architecture.

2.1.4 SIMD Extensions

More recently, vector architectures have been added to scalar ISAs in the form of SIMD exten-

sions. They appeared in the late 1990s to improve the efficiency of multimedia applications,

using short vectors of 128 bits [74] and they have become ubiquitous in today’s computer

architectures. SIMD extensions are a particular case in vector architectures, where the width of

the vector functional unit is equal to the size of the vector registers and the data is computed in

parallel for the whole register. They also provide weaker memory units than the original vector

machines and they do not support all gather/scatter memory operations. SIMD extensions to

scalar ISAs tend to be less general-purpose, less uniform and more diversified [151].

SIMD extensions with wider vector registers have appeared in the last years, such as the

512-bit implementations from Intel [169] and Fujitsu [201], and the Arm Scalable Vector

Extension (SVE) that allows up to 2,048-bit vectors [173].

2.1.5 Advantages of Vector Architectures

Vector processors and SIMD extensions have several advantages with respect to scalar ISAs:

• A single vector instruction specifies N operations, where N represents multiple oper-

ations. It dramatically reduces the pressure to the fetch and decode pipeline stages,

what represents a bottleneck in conventional processors, particularly in terms of power

consumption [133, 143].

• These N operations are independent. It allows simultaneous execution of all operations.

• Reduced control logic complexity. Hardware needs only to check for data hazards

between two vector instructions once per vector operand. Therefore, the dependency

10

Background

checking logic required between two vector instructions is approximately the same as the

required between two scalar instructions, but now many more operations can be in flight.

• Vector memory instructions can amortize a high overall latency, because a single access

is initiated for the entire vector rather than for a single word.

• Vector memory instructions have a known access pattern. A memory system can imple-

ment important optimizations if it has accurate information on the address stream.

2.1.6 Disadvantages of Vector Architectures

Vector processors and SIMD extensions have several disadvantages with respect to scalar ISAs:

• They only work well if there is enough DLP. If the application does not contain enough

DLP, the vector units will be underutilized or even idle [91].

• Vector architectures are more area and energy efficient than scalar-based microarchitec-

tures [120]. However, the vector functional units are power-hungry and they should be

disconnected in case they are not used.

• Vector memory accesses consume more bandwidth than scalar memory operations [66].

• In the event of sparse data, vector architectures are more inefficient in terms of power

and energy than their dense counterparts. In these situations, just a small percentage of

the data requested by a vector memory instruction is used, and later computed. Different

compressed formats have been proposed to increase the performance and energy of vector

architectures when dealing with sparse data to outperform scalar architectures [31, 35,

34].

2.1.7 Challenges of Vectorization

Many applications can potentially benefit from vectorized execution for better performance and

higher energy efficiency [86]. Ultimately, the effectiveness of a vector architecture depends on

its ability to vectorize large quantities of code [160]. However, the code vectorization faces

certain challenges that require solutions, such as: horizontal operations, divergence control,

and irregular memory accesses. These challenges are described below:

11

2.1 Vector Architectures

A1 B1 C1
+ =

A2 B2 C2

A3 B3 C3

A0 B0 C0

Vertical instruction

src1 src2 dest

A1

B1

A2

A3

A0
B0

C

Horizontal instruction

src

result

+

+

+

partial
result

Figure 2.3: Comparison of a vertical (addition) and horizontal (reduction) instruction.

2.1.7.1 Horizontal instructions

A vector processor is able to perform two kinds of operations on a vector [92]:

• Vertical operations: operate on two vectors of the same width, and the result has the

same width (e.g., a vector addition). These instructions can operate simultaneously on

the source operands, since every element in the vector registers is independent of each

other. If the vector functional unit has the same width as the vector operands, the whole

operation could be performed in the same cycle, in the best case.

• Horizonal operations: combine multiple data items from the same vector. They funda-

mentally differ from other vector instructions in that they introduce data dependencies

between different elements of the vector. They access particular lanes in the source vector

operand and the result can be a scalar value. The most common horizontal instruction is

a vector addition reduction, where the output is the addition of all the lanes of the vector

source register. Horizontal instructions are more costly than the vertical ones, both in

terms of time and hardware. However, these operations are needed so frequently in real

algorithms, that they have to be part of the vector architectures.

Both instruction types are shown in Figure 2.3. In particular, a vector addition is depicted

as a vertical instruction, and a vector reduction as an horizontal operation.

Much effort has been made to analyze the impact of horizontal instructions and to study

other possible alternatives. Corbal et al. [54] demostrate that although reductions account

for a small percentage of total instructions (less than 5%), their impact on final application

performance can be much larger (up to 40% degradation in jpeg decode). They claim that

given the current trend towards ever-increasing clock frequencies and hyper-pipelining, the

12

Background

latencies of horizontal operations are bound to increase. They propose two solutions to the

horizontal instruction problem, and in particular to the vector reductions, such as using packed

accumulators and Matrix ISAs.

2.1.7.2 Irregular memory accesses

Vector architectures exploit data-level parallelism by operating on several data elements at the

same time using a single vector instruction. Due to the reduced number of instructions, vector

architectures reduce the pressure to the fetch and decode pipeline stages [86]. However, they

require the memory subsystem to provide data transfers with high bandwidth or the vector units

will remain idle, with the energy waste it implies [120]. This problem is studied by Sebot et

al. [162], that shows that memory was the main bottleneck for 7 of the 9 applications they

optimized for SIMD. For this reason, it is important that either the application is optimized to

avoid irregular memory accesses at runtime or that the memory subsystem is fast enough.

On the one hand, many proposals focus on optimizing the original application. For instance,

Abel et al. [25] study the interactions between memory and the vector units as the memory

access pattern changes. In particular, they demonstrate the impact of the data layout in

memory to performance and the importance of software prefetching to reduce memory latency.

Moreover, they study the performance benefits of splitting the data structures in subsets that

fit the processor caches for multimedia applications. Targeting the same issue, Krishnaiyer

et al. [112] demostrate how software prefetch and non-temporal store instructions may hide

memory latencies for the Intel Xeon Phi coprocessor [168], which contains 512-bit SIMD units.

They show that these instructions can be automatically generated by the compiler.

On the other hand, many proposals focus on hardware approaches to accelerate the memory

subsystem for SIMD extensions. For instance, multi-bank or parallel memory structures are

proposed to allow multiple data accesses concurrently [107, 176, 48]. The approach of Geng et

al. [77] describes the design of a memory system based on a smart memory controller that

automatically loads data according to the access pattern.

2.1.7.3 Divergence control

Vector architectures have vertical operations that perform the same operation on all the vector

register elements. This situation happens when all the elements belong to the same execution

flow. However, there may be situations where every lane in a vector register follows its own

execution flow. For instance, in the event of an if/else conditional block, some lanes may

13

2.1 Vector Architectures

execute the if portion while the other lanes may execute the else portion depending on the

branch condition for each lane. This phenomenon is known as control flow divergence [183].

The control flow divergence problem appears frequently when executing vectorized codes [91].

Previous studies indicate that at least 10% of the most common vectorizable loops have di-

vergence control issues [41]. The divergence problem is targeted both at application level

and at micro-architectural level. From the software standpoint, Harrison et al. and Pichon et

al. propose reordering techniques and implement math libraries so that divergence is mini-

mized [84] [147]. From the micro-architectural perspective, the work of Smith et al. [166]

analyzes different mechanisms to implement divergence control in the context of vector instruc-

tion sets. For example, they compare the performance of gathering only the active elements

in each conditional block versus compressing data in memory and only loading the required

elements. One of the proposals, Register compress/expand, compresses the active elements of

a long vector into a dense one using new instructions, such as IOTA. It is supported in multiple

vector supercomputers [155, 55, 181, 189]. Other works, such as the one of Kumar et al. [113],

disable the lanes that do not execute on each conditional block, so that the power consumption

on the vector functional unit is reduced.

A1 B1 0
+ =

A2 B2 C2

A3 B3 0

A0 B0 C0

Predicated vector addition instruction

src1 src2 dest

0

1

0

1

mask

Figure 2.4: Predicated vector addition instruction.

From all the proposals, predicated execution is considered the most effective and compiler-

friendly. A predicated vector instruction is a vector instruction that contains an additional source

register, called mask register, where every lane has one bit. If the bit is one, the instruction

operation for that lane, in the other source registers, has to be performed. In this case, we

consider the elements in that lane position as active. If the bit is zero, the operation does not

have to be performed and the elements in that lane position are considered inactive. Figure 2.4

depicts a high-level overview of how a predicated vector addition instruction is executed.

Generally, the percentage of active elements in a mask register is known as the mask density.

14

Background

If the number of active elements is high, the mask density is dense, if not it is sparse. In the

example, the mask density is 50%, as only half of the elements in the mask are active.

2.2 The Memory Wall

The increase of the annual data generation rate is leading to changes in the computing paradigm

and, in particular, to the notion of moving computation to data in what we call the Processing

In/Near Memory (PINM) approach. A traditional computing architecture is shown in Figure 2.5.

Computing units may include the CPU, GPU, and other accelerators such as a digital signal

processor (DSP). Data are transferred between the computing units and main memory through

the memory-hierarchy levels.

For many applications, the bottleneck of data processing for a traditional computing

architecture is the bandwidth and latency of memory data transfers [205, 86]. One alternative

to mitigate this problem is to exploit PIM technology.

In this chapter, the memory hierarchy is introduced, as well as the situations where the

processors do not benefit from it. Finally, the PIM domain is presented. We describe the

technology behind PIM and different proposals from the state-of-the-art.

CPU GPU DSP

System bus

Memory Controller

Memory

Figure 2.5: Traditional computing architecture.

2.2.1 The Memory Hierarchy

The advances in process technology have led to an ever-increasing gap between processor and

memory speeds, as shown in Figure 1.2. This phenomenon is popularly known as the Memory

Wall [197] and it was the main reason to add cache memories to computing systems. Caches

15

2.2 The Memory Wall

Core

L1 Cache

L2 Cache

L3 Cache

Memory

Disk

C
ap

ac
it

y

La
te

n
cy

Figure 2.6: The memory hierarchy.

are a small and fast storage that keeps frequently accessed data. They offer a lower access

latency compared to main memory. However, they consume more power per unit of storage.

In today’s processors, it is common to see a multi-layered cache hierarchy, which employs

several caches of increasing sizes and latencies. The first level of cache is typically pretty

small but fast enough to keep up with the processor’s demands. Instructions and data often

exhibit different access patterns. To tailor the cache design to these specific needs, modern

processors split instruction and data caches. Figure 2.6 depicts a high-level overview of the

memory hierarchy, with three levels of cache.

The appearance of multi-core processors had an impact on the cache hierarchy as well.

In general, the L1 cache is private to the core, while the upper levels can be either private or

shared. Figure 2.7 illustrates the most common memory hierarchy designs encountered in

modern processors. Single-core (i) and low-performance multi-cores (ii) usually employ a

two-level cache hierachy where the second level is shared. More advanced designs employ

three-level cache hierarchies (iii), while some of the recent processors add an L4 cache (iv)

implemented in DRAM technology as a separate die on the same package.

2.2.2 DRAM Organization

Dynamic random-access memory (DRAM) is widely used as a computer’s main memory. Each

DRAM memory cell is made up of a transistor and a capacitor within an integrated circuit, and

a data bit is stored in the capacitor. Since transistors always leak a small amount of current,

capacitors will slowly discharge, causing information stored in it to drain. For this reason,

DRAM has to be refreshed every few milliseconds to retain stored data.

A common DRAM organization in the modern systems is shown in Figure 2.8. Processors

offer multiple memory interfaces (channels). Each channel can hold one or two DIMM modules,

16

Background

L1

C

L2

L3

L4 eDRAM

Memory

L1

C

L2

L1

C

L2

L3

Memory

L1

C

L2

L1

C

Memory

L2

L1

C

M

L1

C

L2

D
I
E

P
A
C
K
A
G
E

(i) (ii) (iii) (iv)

Figure 2.7: Typical memory hierarchy architectures

each of which can have up to two ranks. Within a rank, the memory is further subdivided

into banks, and banks into sub-arrays. Sub-arrays within the bank can operate simultaneously.

However, since all components on the same channel share physical commands, addresses

and data buses, the access needs to be serialized. Devices residing on different channels can

function independently from each other.

Due to the technological properties of a DRAM cell, the content of a row first needs to

be loaded into a buffer before it can be accessed. Every memory request is decomposed into

three commands: (i) Activate reads a row from a sub-array into the row buffer. (ii) Read/Write

accesses the selected column inside the row buffer. (iii) Precharge writes the contents of the

row buffer back into the corresponding row of the sub-array. Since an activate command

destroys the original data in the row, the row buffer always needs to be written-back before a

new row is activated. Depending on the row buffer status, the latency of a memory access can

vary significantly. For example, if a requested row buffer already holds the necessary data, only

the Read command needs to be issued. On the other hand, if the row-buffer holds the content

of another row, the executed command sequence is Precharge - Activate - Read.

A memory block corresponding to a cache line is distributed across banks in a rank.

Therefore, to serve a LLC cache miss, memory controller simultaneously issues appropriate

commands to the banks within the selected channel, device and rank. Modern DRAM designs

expose a great level of parallelism. In order to obtain higher bandwidths and maximize row

17

2.2 The Memory Wall

Figure 2.8: DRAM organization, obtained from [149].

buffer hit rates and bank/rank parallelism, it is necessary a careful design of the memory

controller. Many techniques have been developed with this goal in mind [145, 184, 153].

2.2.3 Memory Controller

A memory controller is a component that lies between the processor and main memory and

manages the flow of data in and out of DRAM. Until early 2010s, the memory controller was

part of a separate chip typically called the North-Bridge. Since the appearance of the Intel

Sandy Bridge and AMD Sledgehammer architectures, enabled by the increasing number of

transistors on chip, the memory controllers have become a part of the processor die.

Due to the complexity of DRAM memory-access protocols, the large number of timing

parameters, the innumerable combinations of memory system organizations, the different

workload characteristics, and different design goals, the design space of a DRAM memory

controller is really wide.

Figure 2.9 illustrates some basic components of an abstract DRAM memory controller. The

memory controller accepts requests from one or more cores and one or more I/O devices and

provides the arbitration interface to determine which request agent will be able to place its

request into the memory controller.

Once a transaction wins arbitration and enters into the memory controller, it is mapped to a

memory address location and converted to a sequence of DRAM commands. The sequence of

commands is placed in queues that exist in the controller. The queues may be arranged as a

generic queue pool, where the controller will select from pending commands to execute, or

the queues may be arranged so that there is one queue per bank or per rank of memory. Then,

18

Background

Figure 2.9: Abstract DRAM memory controller, obtained from [98].

depending on the DRAM command scheduling policy, commands are scheduled to the DRAM

devices through the electrical signaling interface.

2.2.4 Prefetching

To overcome the Memory Wall, computer architects have resorted to the memory hierarchy,

which relies on the memory access locality to reduce the memory access latency. Unfortunately,

many important workloads exhibit adverse memory access patterns that do not benefit from the

memory hierarchy. As such, processors often spend much time idling upon a demand fetch of

memory blocks that miss in higher cache levels. One way to hide memory access latency is to

prefetch [68]. Prefetching means to predict future memory accesses and issuing requests for

the corresponding memory blocks in advance of explicit accesses. However, late or inaccurate

prefetches waste energy and, in the worst case, can hurt performance.

To hide latency effectively, a prefetching mechanism must: (i) predict the address of a

memory access, (ii) predict when to issue a prefetch, and (iii) choose where to place prefetched

data (and, potentially, which other data to replace).

Prefetching can be controlled by hardware or software. In software prefetching [42], explicit

prefetch instructions are provided and the compiler or programmer are responsible to place them

in the correct code regions in the application. In hardware prefetching, changes to the software

are not needed, and a new hardware is attached to the memory hierarchy. The prefetching unit

monitors memory accesses and looks for common patterns. Predicted addresses are placed into

the prefetch queue, which is only checked when no processor requests are waiting. Prefetching

requests look like read requests to the memory hierarchy. Prefetchers trade memory bandwidth

for latency. Commercial processors have multiple prefetchers, which are usually closer to the

core, as it is easier to detect memory access patterns.

19

2.2 The Memory Wall

The prefetching mechanism has been deeply studied. For example, Lee et al. [118] study

the benefits and limitations of hardware and software prefetching. Similarly, Byna et al. [36]

discuss various issues that have to be considered in designing a prefetching strategy for

multi-core processors. Due to the advantages of prefetching, it is now being widely used in

high-performance processors, for example, Intel Xeon [100, 60], and IBM POWER [156].

2.2.5 Limitations of the Memory Hierarchy

The memory hierarchy and prefetching have been proposed as solutions to mitigate the effects

of the Memory Wall. In this scheme, small cache memories with low latencies can meet

data demands while prefetchers can act in the background to hide memory access latency.

Deep cache hierarchies are the natural result of this trend, providing low-latency data access

to high-performance out-of-order processing elements. Applications that exhibit locality of

reference can benefit from this hardware organization [171, 182]. However, recent trends show

that we have effectively plateaued on the effectiveness of data prefetchers [132] and that they

have become ineffective for irregular memory access patterns [207].

As a result of sparsity and irregular reuse distances, some studies have measured utilization

of transmitted bandwidth as low as 20% for some applications [29]. Srinivasan et al. prove

that a significant fraction of the data brought into the last level cache goes unused before

eviction [172]. The data moved throughout the memory hierarchy that is not used is popularly

known as the dark bandwidth [28]. Dark bandwidth results into more energy, higher memory

access latency and less usable memory bandwidth.

Making matters worse, many applications that exhibit poor prefetching behavior have

dependent or indirect access loads [64], meaning that every cache level adds to the overall

round-trip access latency. This issue has a bigger impact on multi-core systems, where resources

are shared and every core competes for the memory bandwidth.

Performance is not the only factor affected by data motion. Approximately two thirds of

the energy required to compute is consumed by data movement, specifically by the memory

and interconnect [33].

There are a few options to increase bandwidth utilization and reduce data movement.

Some researchers suggest that byte-level addressing is the key to improve bandwidth utilization.

However, this type of system is impractical from an engineering perspective. Another alternative

is Processing In/Near Memory (PINM), where the computing elements are placed next to where

data resides. In the following sections, we will discuss the PINM technology and proposals

from the state of the art.

20

Background

CPU GPU DSP

System bus

Memory Controller

Memory PIM Core

Figure 2.10: Processing In Memory concept.

2.2.6 Processing In/Near Memory

In a traditional computing architecture, data is moved towards a CPU independently of where it

resides, as depicted in Figure 2.5. However, applications with irregular memory accesses do

not benefit from the memory hierarchy available in a traditional computing architecture. With

the evolution of emerging DRAM technologies, Processing In/Near Memory (PINM) has now

become of great interest to academia as well as different industries [180, 204]. Figure 2.10

illustrates the PINM concept.

PINM is usually split into two categories, (i) Processing In Memory (PIM), where the

new compute engine is tightly integrated with the memory and usually requires a specialized

memory technology, and (ii) Processing Near Memory (PNM), where compute logic is placed

near memory to exploit low latency and high bandwidth of near-memory data accesses.

2.2.6.1 Processing Near Memory

Near-memory computing refers to bringing logic or processing units closer to memory. Notwith-

standing the closer integration, processing units still remain distinct from memory arrays.

Near-memory computing has been explored at various levels of the memory hierarchy. For

example, Wei et al. [192] propose an in-order processor connected to the memory controller.

It contains a scratchpad, scalar and vector units and 64x64 bit memory to perform bit-level

operations. It is programmed through memory-mapped operations. Solihin et al. also add a

processor to the memory controller [170]. In this case, the new hardware performs correlation

prefetching, although the prefetching scheme may be customized depending on the application.

The Scatter-Add proposal [56] extends the memory controller to enable parallel execution of

21

2.2 The Memory Wall

atomic operations, that serialize execution in data-parallel architectures. Similarly, Zhang et

al. [206] present the Impulse memory controller. It performs gather/scatter operations as the

core requested memory belonging to particular regions. It receives a rearrange function and

transforms a sparse data structure into a dense structure. The work of Beard [29] also performs

data structure rearrangement but contrary to Impulse, this operation can be done ahead of time

and be overlapped by computation in the host core. His proposal, The Sparse Data Reduction

Engine, may be placed anywhere in the cache hierarchy.

Lockerman et al. [124] propose Livia, a tiled-multicore system where every tile has a chunk

of L3. Every tile contains an out-of-order core with L1 and L2 caches, and an in-order core

(an accelerator) connected to the L2 and L3. These in-order cores were shared by all the tiles.

Depending on the location of the data, the task is migrated from the original out-of-order core

to the tile where the data resides and it is computed in the accelerator.

Ozdal et al. [142] connect hardware accelerators to the DRAM. They contain special

hardware to deal with graph applications, and they may be combined to provide parallelism.

Other proposals modify the SRAM cell to support simple operations in the cache [105,

108]. For example, the work of Aga et al. [1], Compute Caches, implements operations such as

copy, search, compare and logical operators in the caches.

Finally, the NYU supercomputer [81] supports atomic operations inside network switches.

2.2.6.2 Processing In Memory

The technological advances of chip fabrication, (e.g., 3D-stacked memory designs), help to pack

much more DRAM cells on a single chip. Moreover, they allow a better integration between

memory and compute logic. For example, the High Bandwidth Memory (HBM) [117, 104]

and the Hybrid Memory Cube (HMC) [144] are commercial implementations of a 3D-stacked

memory connected to a logic layer via through-silicon vias (TSV) [177]. Figure 2.11 depicts a

high level overview of a 3D-stacked memory connected to a logic layer.

Since their introduction, many proposals based on these designs exploit the in-memory

computation capabilities. The Active Memory Cube [138] uses HMC as the base of its design.

It offers a significant amount of parallelism by having multiple lanes in the logic layer with

scalar and vector units. Tesseract [2] is also implemented on the HMC. It consists of 512

in-order cores that communicate with each other using a message passing protocol. It targets

graph applications. GraphPIM [136] proposes to execute graph workloads directly on HMC

using new HMC atomic operations.

22

Background

Figure 2.11: High-level overview of a 3D-stacked DRAM based architecture, obtained
from [79].

The data rearrangement engine (DRE) [123] performs in-memory data restructuring to

accelerate irregular, data-intensive applications. Authors add some logic to the HMC’s logic

layer to perform in-memory operations and propose an API to program the new hardware.

In TOM [90], a host GPU is interconnected to multiple 3D-stacked memories that have

small lightweight GPU cores. Authors present a compiler framework which automatically

identifies possible offloading candidates and which uses a mapping scheme which ensures data

and code co-location.

Lee et al. [119] analyze the architectural behavior of search applications. In particular, they

focus on the k-nearest neighbors algorithm. Their study reveals a high percentage of vector

operations and memory reads, which confirms that vector operations are important for search

applications and that they are bound by high data movement. Based on the observation, they

integrate specialized vector processing units in the HMC’s logic layer and propose instruction

extensions to leverage those hardware units.

The Mondrian Data Engine [62] consists of a mesh of HMC with tightly connected Arm

cores in the logic layer. Authors demonstrate that a hardware and software co-design is needed

to achieve an efficient performance in PIM systems.

Similarly, Liu et al. [122] propose an heterogeneous PIM architecture to train deep neural

network models. In particular, the logic layer of their 3D-stacked memory comprises pro-

grammable Arm cores and large fixed-function units. A runtime system dynamically maps and

schedules the kernels, based on an online profiling.

Singh et al. [165] evaluate these works and observe that certain challenges currently prevent

a wide adoption of these designs. While they provide notable performance improvements over

the traditional paradigms, a lack of programming model support and the resulting increase in

application complexity are still open issues in the current state of the art.

23

2.3 Parallel Programming for Shared-Memory Systems

2.3 Parallel Programming for Shared-Memory Systems

2.3.1 Parallel Processors

Traditionally, software has been written in a serial/sequential fashion, where instructions are

executed one after another and only one may execute at any moment in time. Improvement

in computer performance was implemented through clock rate ramping in order to provide

faster execution of the instructions. However, increasing the clock frequency hit a wall (see

Figure 1.1). As a consequence, and enabled by Moore’s Law, computer architects decided to

keep packing more transistors on a single chip but to use them to pack multiple processors.

Not long afterwards, the first multi-core processors were introduced, as shown in Figure 2.12,

where multiple cores collaborate to solve a computational problem.

Figure 2.12: Multi-core processor. Four cores are connected to the same L3 cache. Obtained
from [131].

Some recent designs employ heterogeneous architectures, which combine low-power,

slower cores with high-performance cores. Arm’s bigLITTLE [10] architecture is an example

of an heterogeneous processor design. In this case, the cores in the big cluster are only activated

if the workload is really demanding.

In order to program a multi-core processor it is necessary a new programming model.

Parallel programming models are explained in the next section.

24

Background

2.3.2 Parallel Programming Models

Parallel programming models exist as an abstraction of hardware and memory architectures. In

fact, these models are not specific and do not refer to particular types of machines or memory

architectures. Parallel programming models represent the way in which the software must

be implemented to perform a parallel computation. Each model has its own way of sharing

information with other processors in order to access memory and divide the work. Popularly,

two main parallel programming models exist:

• Message passing. This programming model is usually applied in the case where each

processor has its own memory (i.e., distributed memory systems). The programmer

is responsible for determining the parallelism and data exchange that occurs through

the messages, in a shared network, whenever a synchronization is needed, as shown in

Figure 2.13.

Processor 0

Network

Processor 1

Processor 2 Processor 3

Local
mem

Local
mem

Local
mem

Local
mem

Figure 2.13: Example of a distributed system with four processors, where every processor has
a local memory. If they want to communicate, they need a message passing protocol. In this

case, processor 0 sends a message to processor 1.

For example, the Message Passing Interface (MPI) [53] is a specification for the de-

velopers and users of message passing libraries. It was created in 1980 and supports

both point-to-point and collective communication. MPI remains the dominant parallel

programming model used in high-performance computing today [174]. The MPI API

provides a set of functions to let two processors communicate. If processor 0 wants to

send a message to processor 1, it will use the MPI_send function, whereas processor 1

will utilize the MPI_receive function.

• Shared memory. In this programming model, processors share a common address

space, which they read and write to asynchronously. Various mechanisms such as

25

2.3 Parallel Programming for Shared-Memory Systems

locks/semaphores are used to control access to the shared memory, manage contention

and to prevent race conditions and deadlocks. All processors see and have equal access

to shared memory, as Figure 2.14 illustrates.

Processor 0 Processor 1 Processor 2 Processor 3

Memory

Figure 2.14: Example of shared memory system with four processors. If they need to
synchronize, they use the shared memory.

For example, the OpenMP standard [141], created in 1996, allows parallel programming

in a shared memory system in a fork-join fashion. In this case, neither communication

nor data distribution is needed. For loops are a common target for parallelization in

parallel codes, achieved by using #pragma parallel for annotation before a for loop in

OpenMP. The supporting library automatically creates threads and distributes the loop

iterations among them. To support intra-thread synchronization, programmers can use

atomic constructs to guard the access to a certain variable. The specification offers a

customizable scheduling policy to achieve the best load balancing among threads by

using the directive schedule. Aside from loops, it is possible to manually define sections

that are executed by different threads using pragma omp parallel.

An alternative to the fork-join paradigm is the use of task as a unit of parallel work.

Tasks are viewed as portions of the serial code that can execute asynchronously with

other tasks while respecting the synchronization points between them. The programmer

splits the sequential code into tasks and defines the dependencies between them. During

the execution, the main task creates user-defined tasks until it arrives to a explicit

synchronization primitive, such as taskwait in OpenMP, which pauses the main task until

all the children tasks complete. Upon its creation, a task is added into a task dependency

graph (TDG) as pending. When all dependencies of a task are fulfilled, meaning that all

the predecessor tasks completed their execution, the task is considered a ready task and it

can be assigned to a thread to be executed. Examples of task-based programming model

are OpenMP 3.0 [141] and OmpSs [63].

Other popular parallel programming models exist, such as Threading Building Blocks

(TBB) [150] and Transactional Memory (TM) [87]. Similar to OpenMP, TBB breaks

computation down into tasks that can run in parallel. The library manages and schedules

26

Background

threads to execute these tasks. On the other hand, TM requires hardware support that

has recently been adopted by major hardware vendors like Intel [200], IBM [188], and

Arm. TM implementations can differ significantly as there are many implementation

choices [16, 163, 179, 83].

2.4 Runtime-Aware Architectures

The evolution in processor manufacturing has led to complex hardware designs. This makes

efficient programming of such systems more difficult. Historically, the hardware and software

design has been decoupled to ease the programmability and provide code portability. However,

in order to achieve a good performance it is important to fully exploit hardware resources. To

that end, the hardware implementation details need to be known at the software level.

In order to target this situation, Valero et al. [185] propose the concept of Runtime-Aware

Architectures where hardware and software are managed by an intermediate layer, the runtime

system. It manages the hardware and software and provides a set of optimization techniques

that are not feasible in the current computer designs. Moreover, Casas et al. [43] explore the

potential of the runtime system-level information in the hardware and software design. This

may ultimately lead to a better overall performance, lower energy consumption and reduced

programming complexity of future systems.

Many recent works have focused on studying and optimizing the runtime system. For

example, Chasapis et al. propose a job scheduling algorithm for power-restricted NUMA

systems [49]. Castillo et al. [44] design a runtime-assisted management of the frequency of

the cores depending on the criticality of running tasks. Alvarez et al. [5, 4] propose a runtime-

guided management of scratchpad memories. Sanchez et al. [158, 157] perform partitioning of

the task-dependency graph to reduce the data movement in NUMA systems. Caheny et al. [40,

38, 39] present a runtime optimization to reduce cache coherence traffic in NUMA systems and

to deactivate coherence for data that does not need it. Finally, Jaulmes et al. [101, 102, 103]

analyze the utility of runtime systems for reliability.

27

Chapter 3
Experimental Methodology

This chapter presents the methodology followed in this thesis. The first section describes the

simulator used for the evaluation and details of the simulated architectures. The second section

introduces the benchmarks employed. Finally, the third section briefly presents the metrics

used to evaluate the proposals developed in this thesis.

3.1 Simulation Infrastructure

3.1.1 Simulator

The gem5 simulator [30, 126] has been used to model the hardware extensions proposed in this

thesis. gem5 is an execution-driven multi-core full system simulator that can do a cycle accurate

execution of a complete operating system. gem5 supports various ISAs with different CPU and

memory models ranging from pure functional ones to highly detailed and cycle accurate.

gem5 supports checkpointing and KVM Emulation [159] to accelerate system and bench-

mark initialization using less detailed CPU and memory models. In this thesis we employ the

checkpointing capabilities so that simulations start right at the parallel sections.

The experiments in this thesis have been done using three different configurations as listed

in Tables 3.1, 3.2 and 3.3. In the second proposal, the PLANAR devices reside outside of

the coherent network, so specific flush/invalidate requests are needed to maintain the data

coherence between the host cores and the accelerators. In the third proposal, the host cores and

the devices belong to the same coherent network.

In Chapter 4 we employ the x86-64 ISA in the simulator, while Chapters 5 and 6 are

based on the Armv8 ISA. The reason for this is that, at the time the thesis started, Arm had

not released the Scalable Vector Extension (SVE) [173]. This situation made us resort to

Intel’s SIMD extensions to test our hardware proposals. Nevertheless, due to an internship to

29

3.1 Simulation Infrastructure

Arm Limited in 2017 and to the release of SVE, we moved from x86-64 to Armv8. All the

experiments are run with the most detailed configurations available for each architecture trying

to resemble a real system.

During the development of this thesis, we needed to extend gem5 with the Intel’s SIMD

extensions. We did the following contributions to the official gem5:

• We re-implemented the Streaming SIMD Extensions (SSE) [93], which operates on

128-bit vector registers. In particular, we compared the statistics of gem5 with the

performance counters of a real machine and we discovered a huge increment on the

µoperation count in the simulator. We realised that there was a lack of vector registers in

gem5, and that the µoperations of SSE were modelled as two 64-bit scalar µoperations.

For this reason, we implemented a vector register file and adapted the original SSE

instructions to work with proper vector operands.

• We implemented the Advanced Vector Extensions [94] (AVX2 and AVX512) to operate

with 256 and 512-bit vector registers. This process was done following closely the

architecture as explained in the Intel’s manuals. In particular, every addressing mode and

feature, such as predication, was considered during the decoding of these vector instruc-

tions in gem5 and modelled as in the manual description. Overall, this gem5 extension

accounts for 500K+ lines of code, 7400+ macro instructions and 2000+ µinstructions.

• We modified the context switch mechanism to properly save/restore vector registers.

• We accurately modelled 42 different SIMD instruction types, with the corresponding

issue and execution latencies reported by Fog [72].

• We have adopted the configuration of different x86 processors, such as a latency and a

throughput-oriented implementation based on the Icelake (ICE) [187] and the Knights

Landing (KNL) [169].

• We created a semi-automatic validation framework which allowed us to compare the

statistics provided by gem5 to a real machine. This tool was used to find several sources

of error that altered the expected behavior of the simulated processor, which we later

documented and corrected. This work was accepted and published in a journal:

J. M. Cebrián, A. Barredo, H. Caminal, M. Moretó, M. Casas and M. Valero, "Semi-

automatic Validation of Cycle-Accurate Simulation Infrastructures: The Case for gem5-

x86", 2020 Future Generation Computer Systems.

30

Experimental Methodology

Table 3.1: Configuration of gem5 simulations for the first proposal.

Chip details
Cores 1 single-threaded out-of-order x86 core, 2GHz

Core details
Fetch, decode, rename width 4 insts/cycle
Dispatch, issue, commit width 4 insts/cycle
Branch target buffer 1 way, 2048 entries
Branch predictor, Branch target buffer Bimode, 8K+8K entries
Fetch Buffer, Decode Buffer 16B, 56-µops
Fetch, Load and store queues 32 entries, 90 entries, 72 entries
Physical registers 200 integer + 360 floating point
Issue queue, re-order buffer 196 entries, 320 entries
Functional units 1 Int ALU + 3 Int/FP/SIMD ALU
Instruction latencies (int) add (1c.), mul (4c.), div (22c.)
Instruction latencies (FP) add (5c.), mul (5c.), div (22c.)
Instruction latencies (Icelake SIMD) add (3c.), mul (5c.), div (14c., 8c. issue), sqrt (16c., 10c. issue)
Instruction latencies (KNL SIMD) add (6c.), mul (10c.), div (30c., 16c. issue), sqrt (40c., 20c. issue)
L1 instruction cache 32KB, 8-way, 1 cycle access lat.
L1 data cache 32KB, 8-way, 4 cycle access lat.
L2 unified cache 4MB, 16-way, 12 cycle access lat.

CR structures
Compaction Unit 1 pipelined unit, 2 stages
Restoration Unit 1 pipelined unit, 2 stages
Dense Ticket Table 64 entries, 8 bits per entry
Compactable Instruction Table 160 entries, 170 bits per entry

The energy consumption and the microprocessor area are evaluated using McPAT [121].

McPAT is an integrated power, area and timing simulator for multi-core architectures built on

top of CACTI [135, 134, 24]. It models various processor components, such as cores, including

the functional units, caches, on-chip interconnections and memory controllers. We add the

model of a vector functional unit (VFU) to perform a power analysis in our first contribution.

In particular, we scale the model of the scalar functional unit by a factor. As we simulate the

AVX-512 ISA in gem5, we consider this factor to be 8 (i.e., 8 double-type elements fit in a

single 512-bit vector register). The accuracy of the built-in models is improved by incorporating

the changes suggested by Xi et al. [198]. gem5 is extended with appropriate counters to record

the necessary statistics corresponding to the hardware components.

3.1.2 Environment

In the first contribution, the simulated system is an Ubuntu v16.04 with a Linux kernel v4.9.4.

Benchmarks are compiled with GCC v5.5 using the “-O2” optimization flag. We do not employ

31

3.1 Simulation Infrastructure

Table 3.2: Configuration of gem5 simulations for the second proposal.

Chip details
Cores 8 single-threaded out-of-order Arm cores, 2GHz

Core details
Fetch, decode, rename width 4 insts/cycle
Dispatch, issue, commit width 8 insts/cycle
Branch target buffer 1 way, 2048 entries
Branch predictor Bimode, 8K+8K entries, RAS 16 entries
Load and store queues 48 entries, 48 entries
Physical registers 256 integer + 256 floating point
Issue queue, re-order buffer 92 entries, 192 entries
Functional units 3 Int ALU + 2 FP/SIMD ALU
Instruction latencies (int) add (1c.), mul (3c.), div (12c.)
Instruction latencies (FP) add (5c.), mul (4c.), div (9c.)
L1 instruction cache 48KB, 3-way, 64B/block, 1 cycle access lat.
L1 data cache 32KB, 2-way, 64B/block, 2 cycle access lat.
L2 banked unified cache 2MB, 16-way, 64B/block, 12 cycle access lat.
Prefetcher Stride prefetcher

Memory details
Type DDR4 2400
Channel 2 channels, 16GB/s per channel

PLANAR details
Number of devices 8
µCore in-order core, single-threaded, 2GHz
Functional units 1 Int ALU
Instruction latencies (Int) add (3c.), mul (3c.), div (9c.)
L1 instruction µcache 1KB, 2-way, 64B/block, 1 cycle access lat.
L1 data µcache 1KB, 2-way, 64B/block, 2 cycle access lat.
Translation lookaside buffer (µTLB) 8 entries

32

Experimental Methodology

Table 3.3: Configuration of gem5 simulations for the third proposal.

Chip details
Cores 8 single-threaded out-of-order Arm cores, 2GHz

Core details
Fetch, decode, rename width 4 insts/cycle
Dispatch, issue, commit width 8 insts/cycle
Branch target buffer 1 way, 2048 entries
Branch predictor Bimode, 8K+8K entries, RAS 16 entries
Load and store queues 48 entries, 48 entries
Physical registers 256 integer + 256 floating point
Issue queue, re-order buffer 92 entries, 192 entries
Functional units 3 Int ALU + 2 FP/SIMD ALU
Instruction latencies (int) add (1c.), mul (3c.), div (12c.)
Instruction latencies (FP) add (5c.), mul (4c.), div (9c.)
L1 instruction cache 64KB, 3-way, 64B/block, 1 cycle access lat.
L1 data cache 32KB, 2-way, 64B/block, 2 cycle access lat.
L2 unified shared cache 512KB, 16-way, 64B/block, 12 cycle access lat.
L3 unified shared banked cache 16MB, 16-way, 64B/block, 20 cycle access lat.
Prefetcher Stride prefetcher in L1 and L2

Memory details
Type DDR4 2400
Channel 2 channels, 16GB/s per channel

REMOTE details
Number of devices 1/2/4/8/16/32
µCore in-order core, single-threaded, 2GHz
Functional units 2 Int ALU, 1 FP ALU
Instruction latencies (Int) add (6c.), mul (6c.), div (18c.)
Instruction latencies (FP) add (12c.), mul (12c.), div (12c.)
L1 instruction µcache 1KB, 2-way, 64B/block, 1 cycle access lat.
L1 data µcache 1KB, 2-way, 64B/block, 2 cycle access lat.
Translation lookaside buffer (µTLB) 8 entries

33

3.2 Benchmarks

“-O3” since it enables auto-vectorization and manually vectorizing our applications with Intel’s

intrinsics [95] provides better performance. In the second and third contributions, the simulated

system is an Ubuntu v18.04 with a Linux kernel v4.15. Benchmarks are compiled with GCC

v7 using the “-O3” flag.

We use the cluster arvei (now sert) at the Departament d’Arquitectura de Computadors in

the Universitat Politècnica de Catalunya to run our experiments on real machines. The cluster

consists of 4,111 cores with x86_64 processors from different manufacturers and generations.

We utilize the newest nodes, in particular, the AMD EPYC 7101p [7] at 2.80GHz and the Intel

Xeon E5-2630L v4 [96] at 2.20GHz. The software stack comprises an Ubuntu v18.04 with a

Linux kernel v5.3.0-61-generic.

3.2 Benchmarks

The benchmarks used for the evaluation of the proposals in this thesis are selected among HPC

benchmarks, graph applications and other kernel codes to cover a wide range of algorithms. The

codes in the first proposal are single-threaded, but the ones for the second and third contributions

are parallel as they were written in OpenMP [27] and OmpSs [63] programming models. Most

of the benchmarks are chosen from larger collections, such as the ParVec Benchmark suite [45],

Coral-2 benchmarks [114], NAS Parallel Benchmarks [47], the PERFECT suite [115], the

GraphBIG suite [137] and the BSC Application Repository [46].

Some of the applications are manually vectorized by the author of this thesis to exploit better

the SIMD resources. The remaining of this section describes the benchmarks corresponding

to each proposal, including proposal-specific changes introduced in each code, the input

parameters and some code properties relevant to each contribution.

3.2.1 Benchmarks for the Divergence Proposal

Table 3.4 lists the benchmarks employed in the divergence proposal and their description. They

are manually vectorized using Intel intrinsics, as compilers frequently try to minimize the

number of predicated instructions and, since our proposal targets the predication issue, we need

that the compiler generates codes with this type of instructions. The inputs of these applications

are images, signals and arrays which do not exceed 8MB of total memory footprint.

Figure 3.1 shows the instruction breakdown of the main loop in the region of interest

of each benchmark. In particular, we differenciate SIMD instructions (regular, high-latency

34

Experimental Methodology

Table 3.4: Benchmarks used to evaluate the proposal about divergence.

Benchmark Description

Bilateral Filter (B-Filter)
It is a non-linear, edge-preserving, and noise-reducing smoothing
filter for images. It replaces the intensity of each pixel with a
weighted average of intensity values from nearby pixels [178].

Convolution (Convol) A signal convolution [164].

Gaussian Blur (G-Blur) An image being blurred by a Gaussian function [76].

K-means (Kmeans) It partitions N observations into K clusters in which each obser-
vation belongs to the cluster with the nearest mean [109].

k-nearest neighbors (KNN)
It finds the distances between a query and all the examples in the
data, selecting the specified number examples (K) closest to the
query, then votes for the most frequent label [148].

Quadratic equation (Quadr) It performs the quadratic equation to an input array.

Random Number Generator (RNG) A Box-Muller number generator [61].

Sound distorter (S-Distort) A form of audio signal processing used to alter the sound [50].

Distance Calculator (Stream) A distance calculator based on Streamcluster [45].

predicated instructions, low-latency predicated instructions) and scalar instructions. Loops

contain between 9 and 58 instructions. The predicated instruction percentage is between 21%

(KNN) and 72% (B-Filter).

B-Fil
ter
(37)

Convol(9)
G-Blur

(28)
Kmean

s
(14) KNN

(58)
N-Body

(27)
Quadr

(25) RNG
(22)

S-Disto
rt
(42)

Stre
am
(18)

0

25

50

75

100

In
st

ru
ct

io
n

Ty
pe

No SIMD Insts
Non Pred SIMD Insts

Low latency Pred SIMD Insts
High latency Pred SIMD Insts

Figure 3.1: Loop iteration breakdown. In the X axis, the applications name and their number of
instructions per iteration. In the Y axis, the instruction type percentage in every iteration.

35

3.2 Benchmarks

3.2.2 Benchmarks for the Near-Memory Data Rearrangement Proposal

Table 3.5 lists the benchmarks employed in the near-memory data rearrangement proposal,

their description and their input. The matrices are obtained from the University of Florida

Sparse Matrix Collection [58], which has sparse matrices collected from a wide range of real

applications. The table also contains the number of different rearrangements, split among

the available devices. For example, if 8 devices are available, every rearrangement will be

performed on 4 devices in the benchmark named “SymGS”. The evaluated benchmarks contain

strided and irregular memory accesses, have a low cache block utilization and do not benefit

from the memory hierarchy. The eliglible codes can be optimized by creating a new version of

the data where data resides sequentially in memory.

The selected benchmarks are modified to work with the accelerators. This process involves:

(i) to define the rearrange function; (ii) to replace the original irregular accesses of the original

data structures to the dense one; and (iii) to add the device allocation, offload, and release calls.

In most of the mentioned benchmarks, very few modifications are required to the original code:

≈20 lines of code for the rearrange function, the three device library calls, allocation via regular

malloc/free of the dense data structure, and the code modification to access the new dense data.

3.2.3 Benchmarks for the Near-Memory Computing Proposal

Table 3.6 lists the benchmarks employed in the near-memory compute proposal, their descrip-

tion and their input. The matrices are obtained from the University of Florida Sparse Matrix

Collection [58], which has sparse matrices collected from a wide range of applications.

In this case, we consider applications that contain irregular memory access patterns. We

split these benchmarks in two categories: (1) graph applications, which have an elevated

data movement on chip, do not benefit from the memory hierarchy and perform a simple

computation on the data, and (2) HPC applications, which suffer from the same issue but benefit

from the memory hierarchy to access particular data structures and have a higher arithmetic

intensity than the graph applications. A profiling of these benchmarks is done in Section 6.5.

The selected benchmarks are modified to work with the accelerators. We identify the code

regions which can be offloaded to the near-memory devices to obtain a performance benefit

and to reduce data movement on chip. These regions are marked with a pragma and compiled

so that the runtime system performs the code offloading.

36

Experimental Methodology

Table 3.5: Benchmarks used to evaluate the proposal about data layout transformation.

Benchmark Description Input # rearr.

Multigrid compute
(CompMG)

An algorithm for solving differential equa-
tions using a hierarchy of discretizations, from
HPCG [152].

Matrices: bcspwr10 (A),
bcsstk15 (B), blckhole (C),
circuit_1 (D), ex12 (E),
lns_3937 (H), G30 (F),
jan99jac100sc (G)

2

Extended box filter-
ing approximation
(EBOX)

An extended box filtering approximation of a Gaus-
sian convolution for an image [78].

Stride: 8, 16 and 32. 400,000
double-type elements 4

Matrix-matrix block
multiply (MatMul)

An optimized matrix-matrix multiplication with
blocking support [80].

1x1 block of 400x400 elements,
2x2 blocks of 200x200 elements,
4x4 blocks of 100x100 elements,
2x2 blocks of 300x300 elements,
3x3 blocks of 200x200 elements,
6x6 blocks of 200x200 elements

1

Meabo
A multi-phased multi-purpose benchmark. Used
for energy efficiency studies [12]. It accesses mem-
ory using a pseudo random indirection vector.

Phase2, 300,000 double-type ele-
ments 1

Spatter Kernel used for timing scatter/gather kernels on
CPUs and GPUs [116].

Distance: 1, 2, 4, 8, 16, 32,
64, 128, 256, random, 300,000
double-type elements

1

Sparse Matrix-Vector
multiply (SpMV)

The sparse matrix is represented in the CSR for-
mat [31] and the vector is dense. Matrices: A, B, C, D, E, F, G, H 1

STRIDE Memory stress benchmark commonly used to char-
acterize the memory system of HPC systems.

Distance: 1, 2, 4, 8, 16, 32, 64,
128. 320,000 double-type ele-
ments

1

Symmetric Gauss-
Seidel smoother
(SymGS)

Symmetric Gauss-Seidel smoother, from
HPCG [152]. It performs a forward and backward
triangular solve.

Matrices: A, B, C, D, E, F, G, H 2

37

3.2 Benchmarks

Table 3.6: Description of the benchmarks used to evaluate the near-memory compute proposal.

Benchmark Description Input

Breadth-First Search
(BFS)

It traverses a graph. It starts at the tree root or some
arbitrary node, and explores all of the neighbor
nodes at the present depth prior to moving on to
the nodes at the next depth level.

–dataset LDBC/output-100k/
–root 31

pageRank
It counts the number and quality of links to a page
to determine a rough estimate of how important the
website is.

–dataset LDBC/output-100k/
–quad 0.001 –damp 0.85

k-Core decomposition
(kCore)

It removes all the vertices that have degree less
than K from the input graph.

–dataset LDBC/output-100k/
–kcore 6

Graph coloring
(graphCol)

It is special case of graph labeling. It is an as-
signment of labels traditionally called "colors" to
elements of a graph subject to certain constraints.

–dataset LDBC/output-100k/

Shortest path (SPath)
It finds a path between two vertices (or nodes) in
a graph such that the sum of the weights of its
constituent edges is minimized.

–dataset LDBC/output-100k/
–root 31

G
ra

ph
ap

pl
ic

at
io

ns

Triangle count (trCount)
It finds a path between two vertices (or nodes) in
a graph such that the sum of the weights of its
constituent edges is minimized.

–dataset LDBC/output-100k/

Connected component
(CComp)

It computes connected components for a given
graph. Connected components are the set of its
connected subgraphs. Two nodes belong to the
same connected component when there exists a
path between them.

–dataset LDBC/output-100k/

Degree centrality
(DCentr)

It measures the number of incoming and outgoing
links from the node. –dataset LDBC/output-100k/

Random access
(randAcc)

It measures the rate of integer random updates of
memory. Table 256MB

Histogram (hist)

Calculates a histogram of weighted averages us-
ing a 3D 27-point stencil over a N×N×N cube
represented by a dense 3D matrix of floating point
numbers.

1D of 3D matrix: 220

Meabo
A multi-phased multi-purpose benchmark. Used
for energy efficiency studies [12]. It accesses mem-
ory using a pseudo random indirection vector.

Array of 9,000,000 double-
type elements

Spatter Kernel used for timing scatter/gather kernels on
CPUs and GPUs [116].

Stride 16, 32, 64. Array
of 9,000,000 double-type el-
ements.

1D Particle in Cell A kernel from a 1D particle-in-cell code used for
kinetic simulations in physics [128]. 83MBH

PC
ap

pl
ic

at
io

ns

Sparse Matrix-Vector
multiply (SpMV)

The sparse matrix is represented in the CSR for-
mat [31] and the vector is dense.

Matrices: italy_osm, tx2010,
ecology1, webbase-1M

Symmetric Gauss-Seidel
smoother (SymGS)

Symmetric Gauss-Seidel smoother, from
HPCG [152]. It performs a forward and backward
triangular solve.

Matrices: italy_osm, tx2010,
ecology1, webbase-1M

38

Experimental Methodology

3.3 Metrics

The evaluation of the proposals in this thesis is performed by analyzing several performance

metrics. gem5 provides metrics that measure the execution time, depending on the number

of cycles and the frequency of the simulated processor. It also gives statistics regarding the

memory hierarchy and the network on chip.

The comparison relative to the baseline architectures is done by using equation 3.1.

Metric =
Metricbaseline

Metricproposal
(3.1)

To compare the proposals in the general case, the metric values corresponding to different

benchmarks are aggregated to provide a single measure of performance. For the metrics defined

as ratios, such as speedup, geometric mean is used (equation 3.2). Metrics that represent

absolute values are averaged using arithmetic mean (equation 3.3).

Geometric mean = n
√

value1× value2×· · ·× valuen (3.2)

Arithmetic mean =
value1 + value2 + · · ·+ valuen

n
(3.3)

The cache missrate is obtained at the Miss Status Holding Registers (MSHR). This is

because two consecutive cache misses to the same block address only generate one request to

the next level in the memory hierarchy, after checking in the MSHR that the first miss is being

handled. Thus, cache missrate is calculated using the equation:

Cache missrate =
MSHR misses

MSHR total accesses
(3.4)

Cache misses are combined with the instruction count to form a compound metric of misses

per kilo instructions (MPKI) using the following equation:

MPKI =
Cache misses

Total executed instructions
1000

(3.5)

The performance in terms of power is obtained from McPAT, and is used to compute the energy

using the following equation:

Energy = Power×Execution time (3.6)

39

3.3 Metrics

Data movement on chip is calculated by performing the addition of the size of all the

packets moved between the cores and main memory, using the following equation:

Data movement =
ncores

∑
i=1

Bytes trans f erred between corei and L1Di+ (3.7)

ncores

∑
i=1

Bytes trans f erred between L1Di and L2+ (3.8)

Bytes trans f erred between L2 and LLC (3.9)

Memory bandwidth is obtained by performing the addition of the size of all the data moved

between the memory controllers (MC) and main memory, and dividing it by the execution time

of the application. It is compared to the maximum theoretical bandwidth. It is done using this

equation:

Memory bandwidth =
∑

nMC
i=1 Bytes trans f erred between MCi and Memory

Execution time
(3.10)

40

Chapter 4
The Efficiency of Predicated SIMD Instructions

4.1 Introduction

This chapter presents a hardware solution to target the inefficiency of predicated instructions in

SIMD extensions. As explained in Section 2.1.7.3, predication is the most common approach

to deal with control flow divergence in vector architectures. However, we observed that the

performance and energy consumption of predicated SIMD instructions is independent on the

number of active elements in the mask operands (mask density). Instead, current designs lead to

performance and energy be proportional to the vector length (VL). We evaluated this problem

in real hardware on an Intel Xeon Platinum 8160 processor [97].

With the current trend of doubling the register size every four years [86], SIMD implemen-

tations with VL-time performance will become extremely energy inefficient when executing

predicated instructions. Thus, there is an urgent need towards SIMD implementations with

mask density-time performance for predicated executions.

In order to target this issue, we propose a novel hardware mechanism, the Compaction/Restora-

tion (CR) design. CR identifies code sections with SIMD instructions guarded by a mask,

extracts the active elements from the predicated instructions belonging to different loop itera-

tions, and compacts them into a single dense instruction. Such dense instructions are executed

efficiently with density-time performance and energy. Finally, their results are restored to the

original predicated SIMD instructions.

Moreover, CR improves the performance of unmodified legacy code by dynamically and

transparently compacting several vector instructions into a wider register ISA.

CR could be combined with compiler information to detect code regions that benefit more

from our proposal.

41

4.2 The Predication Problem in SIMD Extensions

Next, we list the main contributions of this proposal:

• The CR hardware design to enable density-time performance and energy efficiency

for predicated SIMD instructions. CR requires minimal hardware support to compact

predicated instructions. A detailed design space exploration is performed to properly size

the CR hardware structures.

• An exhaustive evaluation with a full system cycle-accurate simulator. Our evaluation

shows that CR achieves an average of 11% speed-ups, while reducing dynamic energy

consumption by an average of 16%.

• CR transparently executes unmodified legacy code with 256-bit Advanced Vector Ex-

tensions (AVX-2) [93] on a newer architecture with twice longer vectors. By using the

512-bit registers and VFUs in AVX-512 [94], CR achieves an average of 17% speed-ups

on unmodified AVX-2 applications.

4.2 The Predication Problem in SIMD Extensions

In SIMD extensions, the latency and energy of predicated instructions depends on architectural

vector length (VL), not on the number of elements to be executed. This situation has become

a challenge for current and future processors, that will contain wider vector registers. Many

studies have measured the mask density1 on modern codes, and results into 18-20% on typical

benchmarks [75, 183, 45]. Such a low mask density means that current SIMD extensions waste

a significant portion of energy on unnecessary computations, and increase contention in the

VFU, which can hurt performance.

To illustrate the divergence control problem for predicated SIMD instructions, we analyze

the performance degradation and energy waste in a set of benchmarks2 with different mask

densities. The selected representative benchmarks contain AVX-512 instructions (VL=512 bits),

with a wide range of SIMD instructions types including different percentages of predicated

instructions.

For the selected benchmarks, Figure 4.1 shows the potential performance degradation and

dynamic energy waste with several percentages of active elements in the masks. Mask densities

range from 12.5% to 87.5% in increments of 12.5%. The processor employed in this evaluation

has a configuration similar to Intel’s Knights Landing (KNL) [169]. Knowing the execution

1Percentage of active elements in the mask register.
2Section 3.2.1 describes in detail the employed benchmarks.

42

The Efficiency of Predicated SIMD Instructions

12.5 25 37.5 50 62.5 75 87.5
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

P
e
rf

.
D

e
g
ra

d
a
ti

o
n

12.5 25 37.5 50 62.5 75 87.5
1.0

1.1

1.2

1.3

1.4

1.5

1.6

E
n
e
rg

y
 D

e
g
ra

d
a
ti

o
n

B-Filter

Distortion

Convolution

Kmeans

Stream

KNN

G-Blur

N-Body

RNG

Quadr

Figure 4.1: Performance and dynamic energy degradation for predicated SIMD applications
with different mask densities.

time and energy of each vector instruction, we estimate the performance and energy for the

mask density of each scenario. These results are estimated with respect to an ideal processor

with density-time performance and energy efficiency.

Results with several mask densities show no significant difference in time for the evaluated

configurations. Indeed, AVX-512 has a VL-time performance in the evaluated architecture,

which is not optimal. As a result, performance significantly degrades with respect to an

ideal density-time SIMD implementation. All benchmarks are sensitive to mask density,

with performance degradations ranging from 4% (G-Blur) to 2.2× (RNG) with 12.5% mask

densities.

In the case of dynamic energy, a density-time implementation reduces VFU energy linearly

with the mask density. In benchmarks with a high percentage of predicated SIMD instructions

such as S-Distortion or B-Filter, this translates into a significant waste in dynamic energy (up

to 54% with 12.5% mask densities). On average, dynamic energy waste is 35% with 12.5%

densities.

The results shown in Figure 4.1 make clear that significant fractions of energy and perfor-

mance are wasted in current SIMD implementations with VL-time performance and energy

efficiency. In the next section we introduce CR, a hardware proposal that achieves density-

time performance and energy efficiency in predicated SIMD instructions without any code

transformations.

43

4.3 The Compaction/Restoration Mechanism

4.3 The Compaction/Restoration Mechanism

The CR approach aims at achieving density-time3 performance and energy efficiency in predi-

cated instructions in SIMD extensions without user mediation. CR could be combined with

information from the compiler to know which code regions could benefit more from the

compaction/restoration mechanism.

4.3.1 Overview

CR targets SIMD extensions available in current processors (such as AVX [94]), where vector

length (VL) is equal to the VFU width. CR creates a dense version of several dynamic

predicated SIMD instructions for a certain program counter (PC). The active elements4 of these

instructions are selected and compacted into a dense instruction. Candidates for compaction

delay execution until dense registers are full. In the best scenario, this dense instruction has

source registers with all elements active and is executed instead of the original instructions.

As a result, contention and the number of accesses to the VFU decreases. This is crucial for

performance and energy efficiency, since VFU can add up to 75% of the total power dissipated

by the core [167]. Once the dense instruction is executed, results are restored back to the

original destination registers.

CR can be implemented in any architecture with predication support. Modern SIMD

architectures with variable-length vectors, such as RISC-V [190] and Arm Scalable Vector

Extension (SVE) [173] can also benefit from CR. These processors know the register length at

runtime and CR needs the same information. In this proposal, we have deployed CR in an out-

of-order processor with 512-bit VFUs. Section 4.3.2 describes the new hardware components

to support CR, while Section 4.3.3 contains a detailed description of the changes required to

an out-of-order pipeline to implement CR. Afterwards, we describe the different phases in

the CR mechanism: i) detection of compactable instructions (Section 4.3.4), ii) compaction

of dense instructions (Section 4.3.6), iii) execution of dense instructions (Section 4.3.7), and

iv) restoration of compacted instructions (Section 4.3.8). Next, we present a case study with

CR (Section 4.3.10). Finally, we describe how CR can be used to execute SIMD legacy

code on newer and wider SIMD extensions (Section 4.3.11) and discuss other considerations

(Section 4.3.12).

3Results are relative to the mask densities.
4Elements whose corresponding mask bits are true.

44

The Efficiency of Predicated SIMD Instructions

4.3.1.1 Basic Functionality Example

CR basic functionality is shown in Figure 4.2. In this case, there are two predicated instructions

with 50% mask densities, corresponding to two loop iterations for the same PC. In particular, for

the instruction 0, active lanes5 are 0 and 3, and for the instruction 1, the active lanes are 1 and

2. CR decides to compact both instructions into a single dense instruction. After compaction,

the dense instruction is executed and the result is restored to the corresponding lanes of the

destination registers of the original instructions 0 and 1.

Figure 4.3 shows a time diagram of the same example comparing the baseline to CR. In

the baseline, the second predicated instruction cannot access the VFU as it is busy executing

operations of the same type. In CR, the execution of the first instruction is delayed until the

dense registers become full (best case scenario). After compaction, only one instruction is

executed reducing VFU contention. Finally, a pipelined restoration phase happens and results

are committed.

VFU Restoration
A B

C D

Inst 0
A B C D W X Y Z

W X

Y Z

Compaction

Inst 1

Figure 4.2: CR basic functionality. In this case, two intructions for the same PC with 50%
mask densities are compacted and restored.

F DE I DI E

F DE I DI VFU busy CE

DI CM

F DE I DI CM CR

Baseline

CR
F DE I

T diff

Inst 0

Inst 0

Inst 1

Inst 1

E

Delay CR

C

Figure 4.3: Time diagram comparing the execution of baseline vs CR in the pipeline. The
pipeline stages are: Fetch (F), Decode (DE), Issue (I), Dispatch (DI), Execute (E), Commit (C),

Compact (CM), Restore (R).

5Position in a vector register that contains an element.

45

4.3 The Compaction/Restoration Mechanism

4.3.2 CR Hardware Components

CR hardware components are described below.

1) The Compactable Instruction Table (CIT) is a direct-mapped table which contains the

information regarding to dense instructions and their compactable instructions. It is needed

to perform the Compaction (Section 4.3.6) and Restoration (Section 4.3.8) phases. Table 4.1

defines the functionality and size of every CIT entry. In this case, we target double-precision

operations although finer-grain operations can be supported (e.g., machine learning). It would

require more bits per entry but the chances of finding a non-true element would be higher,

increasing CR efficiency. The number of CIT entries should be smaller than the maximum

amount of in-flight instructions. In our design, CIT entries must be filled with at least one

compactable. Thus, the maximum number of entries is ROB Entries/2 although we did not

exceed half of its capacity.

Table 4.1: CIT entry fields, size in bits.

Dense instruction information
Capacity Number of elements the dense instruction may handle 4

Alloc Occupancy Number of elements allocated by compactable instructions 4

Insert Occupancy Number of elements inserted by compactable instructions 4

Last Insertion Cycle the latest compacted instruction was inserted 6

isSquash/isTimeout Whether dense instruction was squashed/timeout triggered 1

Insertd Whether dense instruction was inserted 1

Compactable Instruction Information
Mask Instruction mask bits 8

Dest Reg Idx ROB entry where instruction is stored 8

Allocate Whether instruction is allocated 1

Insertc Whether instruction is inserted 1

Next, we describe how and when the entry bits in the CIT are modified. First, we start

with the CIT fields regarding the dense instruction. The “capacity” is updated when the dense

instruction is created, with the number of lanes in the vector register for that instruction (i.e.,

it depends on the vector register length and the data type specified in the instruction). The

“alloc occupancy” is modified as an instruction is marked as compactable, adding to the current

value the number of active elements in the instruction, at the issue stage. If a new compactable

instruction for this PC is encountered, and the “capacity” and “alloc occupancy” have the same

value, the current dense instruction for this PC is full and a new dense instruction is required.

The “insert occupancy” is updated when all the source operands of any of the compactable

46

The Efficiency of Predicated SIMD Instructions

instructions for this PC are ready. The content of this field will be modified, adding to the

current value the number of active lanes in the compactable instruction. In this case, the

compaction phase can happen for this instruction and the “last insertion” is modified with the

current cycle. If the “insert occupancy” and the “capacity” have the same value, the dense

instruction for this PC can proceed to the execute stage. In case the dense instruction is squashed

(e.g., branch missprediction) or a timeout is triggered, the “isSquash/isTimeout” is set to one.

Finally, the “insert” field will be set to one after the compaction phase of one compactable

instruction for this PC has finished. It ensures that the dense is executed in case of squash or

timeout.

Second, we continue with the CIT fields regarding the compactable instruction. As the

predicated instruction is marked as compactable, the “mask” is updated with the content of

the mask register and the “dest reg idx” with the index of the destination register. Both fields

are needed to perform the compaction and restoration phases. The “allocate” bit is also set

to one to indicate that this entry is allocated. If a new compactable instruction for the same

PC is encountered, if it is not full, the following entry will be accessed if it is, a new dense

instruction will be required. Finally, after the source operands for the compactable instruction

for this PC are ready, the “insert” bit will be set to one. This information is required so that the

compaction/restoration phases occur for this particular compactable instruction.

2) The Dense Ticket Table (DTT) is a direct-mapped table which keeps track of the latest

created dense instruction for every PC. It facilitates the accesses to the CIT, since there can

be multiple dense instructions for the same PC waiting to be executed. The DTT holds a set

of unique keys or tickets, representing CIT entry identifiers. Every dense and compactable

instruction keeps a ticket to access the CIT. The number of DTT entries is limited by the number

of instructions in every loop iteration, a maximum of 60 in our applications. By indexing

DTT entries using the 10 lowest PC bits, we avoid conflicts. If no entry exists for a particular

PC, a new one is created and a new ticket is chosen from the DTT. If a new dense instruction

is created, the existing DTT entry for that PC gets a new ticket. Tickets are restored as the

associated dense instructions commit. The ticket size is limited by the number of in-flight dense

instructions (i.e., log2 ROB Entries/2 bits).

3) The Compaction Unit moves active lanes from source vector registers in compactable

instructions to the assigned dense registers. It happens separately for every source register as

they become ready. It receives a vector register and a mask as inputs and a dense register as

output. Section 4.3.6 describes the Compaction phase and Section 4.4.1 explores its design

space.

47

4.3 The Compaction/Restoration Mechanism

From
Rename

Issue

- Create dense inst
- Allocate Dense ROB
- Allocate Dense RS

yes

All Operands Ready

Dispatch

Execute - Writeback
- Execute dense without predication
- Compactable executed if timeout was
 triggered, otherwise bypassed.
- Write into resultbus with Dense ROB ID
- Bypass result to other dense RS
- Restoration

Commit
- Check Exceptions
- Write into dense / vector register
- Free ROB

Is predicated? Is mask ready?

Is first compactable?

Regular flow
Block

Is dense?

Is compactable?

Is full or timeout?

Regular flowWait

 Select active lanes

 Add to dense RS Free RS

Else Regular flow
- Allocate ROB
- Allocate RS

yes

yes

yes

yes

yes

yes

nono

no

no

compaction
ask CIT

ask CIT

wire from Decode

Compact?

yesno

wire from Issue

wire from Issue

wire from Issue

Figure 4.4: CR overview when incorporated to an out-of-order processor.

4) The Restoration Unit restores the results of an executed dense instruction back to

the original destination registers. The dense destination register elements are moved to the

corresponding active lanes of the destination registers. It receives a dense vector register and a

mask as inputs and a vector register as output. Section 4.3.8 describes the Restoration phase,

while Section 4.4.1 performs a design space exploration to size it.

4.3.3 CR in an Out-of-Order Processor

Next, the main functional changes to incorporate CR into a classic out-of-order processor are

described. Figure 4.4 depicts the whole process in a state-diagram style.

1) Decode: In case a predicated instruction is found a signal is sent to Issue stage.

2) Issue: If the signal from Decode is active and the mask register is ready, a logic decides

whether the instruction has to be compacted or not (see Section 4.3.4). If so, it is marked

as compactable. Then, the DTT and CIT are accessed to know if it is the first compactable

instruction for that PC or if existing dense instructions for that PC are already fully occupied.

In case a new dense instruction is required, a dense instruction is created and its operands

are renamed. The DTT creates and stores a new ticket, which is provided to the compactable

instruction and employed to create a new CIT entry. In the CIT entry, the Capacity field is

updated with the total number of lanes in the dense register. A reservation station (RS) and a

re-order buffer (ROB) entry are allocated for the dense instruction. Also, a dense destination

register is reserved in the Register Alias Table (RAT) to allow operand forwarding. Candidates

to be compacted on it are given the DTT ticket after their mask operand becomes ready.

Finally, the Alloc Occupancy, Mask, Dest Reg Idx and Allocate CIT fields are updated with the

compactable instruction information.

48

The Efficiency of Predicated SIMD Instructions

3) Dispatch: As compactable operands become ready, the compaction occurs independently

for every compactable instruction and their RS are freed. The Insert Occupancy, Insertc and

Last Insertion fields in the CIT are updated. Once dense operands are full, a timeout occurs, or

a squash happens, the instruction becomes ready to execute.

4) Execution: The dense instruction is executed and compacted instructions are bypassed

(Section 4.3.7). If the dense destination register is used by subsequent dense instructions, it is

forwarded (Section 4.3.9).

5) Writeback: The dense instruction is written in the ROB and the restoration is performed

to copy the results to the original destination registers (Section 4.3.8).

6) Commit: Dense and compacted instructions commit sequentially, ensuring speculation

and exception handling are performed in-order.

4.3.4 Detecting Compactable Instructions

To have a simple CR implementation, we currently consider all loops as compaction candidates.

However, in a preliminary analysis (Section 4.4) and in the evaluation (Section 4.6) we observe

that several factors should be considered to enable an efficient CR mechanism: i) predicated

instruction latency, ii) number of instructions per iteration, iii) inter-loop dependencies, iv)

mask densities and v) processor events that hide CR latencies.

The first three factors can be statically determined and have important effects on perfor-

mance. For instance, inter-loop dependencies cause an execution serialization. On the other

hand, mask densities are fundamental and input-dependent (see Section 4.4). Finally, some

processor events, such as cache misses, pause the core backend hiding CR latencies. A compiler

may analyze the first three static factors and produce a hint to enable CR, if the two latter

factors happen at runtime, for every loop (e.g., using a memory-mapped register).

Predicated SIMD instructions that fulfill all these factors cause a CIT allocation, becoming

compactable. CR distinguishes between CIT allocation and insertion. Allocation is done

in program order, while insertion may happen out of order. Allocation reserves the CIT

entries which will be later filled in the insertion step. Insertion is performed as compactable

instructions become ready. Ensuring program order in insertion is critical to enable dense

register forwarding (described in Section 4.3.9).

49

4.3 The Compaction/Restoration Mechanism

4.3.5 Populating Dense Instructions

In order to populate a dense register, compactable instructions delay execution until it is full or

a timeout triggers. The ROB is used as a buffer to obtain candidates for compaction. Some

events, such as cache misses, pause the core backend until they are resolved. For this reason,

regular processor behavior may hide the delayed execution and it may not affect performance

in many situations (e.g., irregular memory accesses).

4.3.6 Compaction Phase

In this phase, active elements from compactable instructions in an RS are moved into the RS

belonging to the dense. The CIT is accessed to obtain information about the compaction. It

occurs as source operands of compactable instructions become ready, and after CIT insertion is

done. The compaction phase does not require extra ports or buffers as the VFU already reads

all inputs from the RS simultaneously. When compaction finalizes, compactable instructions

are called compacted.

Figure 4.5 shows the compaction phase for one instruction which has a mask density of

50% (lanes 0 and 3). After accessing the CIT, the compaction unit extracts the active elements

(A and D) and places them in the first lanes of an empty dense instruction.

Compaction Unit 1 0 0 1
A B C D

A D # #

RS #0

OP1
Mask

CIT

RS #1
PC @X

Ticket

Figure 4.5: Compaction phase for one compactable instruction with a mask density of 50%.

4.3.7 Execution of Compacted Instructions

Once the dense instruction is ready in the RS, it is executed. Dense instructions can be ready

due to three reasons: i) dense operands are completely populated; ii) a squash happens; or iii) a

timeout is triggered.

The first case is the ideal scenario for CR, minimizing the number of SIMD ALU accesses

as a result. In this case, compacted instructions are not executed (they are bypassed to the next

pipeline stages). It also facilitates dense register forwarding to dependent instructions.

50

The Efficiency of Predicated SIMD Instructions

When a squash happens, CR removes allocated, but not yet inserted, compacted instructions

from the CIT entry, forcing the dense to become ready to execute.

Finally, multiple timeout policies are incorporated into CR to avoid delaying too much the

execution of predicated SIMD instructions.

Postponing the execution of predicated instructions increases the utilization of internal

processor resources, potentially stalling the pipeline and slowing down the whole application.

For this reason, two timeout policies are created. They stop the allocation/insertion of new CIT

entries and trigger the dense instruction execution.

1) Resource occupancy. The lack of free hardware resources prevents instructions from

entering into the pipeline, and thus, it may not allow dense operands to be completely populated.

This situation may lead to performance degradation. For this reason, if resources are occupied

above a certain threshold, the CIT forces the execution of dense instructions whose Last

Insertion field is higher than a timeout. CR considers the occupancy in the reservation station

(RS), the ROB, and the Load-Store Queue (LSQ).

2) Circular dependencies. A dense instruction could have allocated but not inserted

compacted instructions waiting for dependencies to be freed. If the dependency is associated to

another dense instruction, execution is blocked. For this reason, if the dense maximum commit

time is exceeded execution is forced.

If a timeout is triggered, the remaining allocated but not yet inserted compactable instruc-

tions referring to that CIT entry will execute the ordinary way. Section 4.4.2 studies the impact

of the timeout policies.

4.3.8 Restoration Phase

In the Restoration phase, the elements from dense destination registers are moved into the active

lanes of the destination vector registers from the original compacted instructions. Restoration

is performed in the Writeback stage, after the dense instruction is executed and after its result is

placed on its ROB entry. It happens in parallel with the dense register forwarding. Restoration

can be done in parallel for every compacted instruction. The CIT is accessed to get the

information of every compacted instruction. The dense instruction keeps the ticket provided in

the Compaction phase to know its corresponding CIT entry.

Figure 4.6 shows the restoration phase for a dense instruction. In this case, the dense

instruction contains two compacted instructions, with mask densities of 50% (i.e., in the first

instruction the active elements are lanes 0 and 3, and in the second, lanes 0 and 2). For every

compacted instruction, the CIT is accessed to obtain the mask and index of the destination

51

4.3 The Compaction/Restoration Mechanism

registers. First, the restoration unit will extract the first two lanes (E, F) from the dense

destination register and will insert them in the lanes 0 and 3 of the destination register of

the first compacted instruction. Second, the last two lanes will be extracted from the dense

destination register (G, H) and will be inserted in the positions 0 and 2 of the second compacted

instruction.

In the Restoration phase, multiple data values must be written to the ROB. This phase is

usually out of the critical path of execution, as the dense version of the instruction executes.

Thus, this phase can be handled by buffering writes to the ROB not requiring extra ports.

Restoration UnitE # # F

G # H #

Reorder Buffer

CIT

PC @X E F G H
…..

.....

PC @X

PC @X

VFU

Dense #0

Comp #0

Comp #1

Tick X

Tick X + 1

Ticket

1 0 0 1

Mask

1 0 1 0

Figure 4.6: Restoration phase for one dense instruction containing two compacted instructions
with a mask density of 50%.

4.3.9 Dense Register Forwarding

A dense register can be forwarded if it is fully occupied or if the dense instruction and its

dependent ones share the same inserted compacted instructions positions. The Insertc CIT entry

bit provides this information for every allocated compactable instruction. If not, the remaining

uninserted compactable instructions will be compacted. An efficient dense register forwarding

reduces CR latencies and hides the restoration process.

Figure 4.7 shows two cases of dense register forwarding, where the dense instruction @Y is

dependent on instruction @X due to the dense register “r2”. In the left, the dense instructions

@X and @Y contain compactable instructions that share the same active element positions.

In this case, the dense instruction @Y does not require its instructions to be compacted,

as the dense destination register from @X is in compacted form because the compactable

instructions in instruction X were already compacted. For these instructions, there is dense

register forwarding of 100%. In the right, the second compacted instruction from @X does

52

The Efficiency of Predicated SIMD Instructions

vmulpd r2, r0, r0

vsqrtpd r3, r2

CIT

Dense @X, PC @X
@X

@Y

Compacted #0 -> Mask 1000

Compacted #1 -> Mask 0001

Dense @Y, PC @Y

Compacted #0 -> Mask 1000

Compacted #1 -> Mask 0001

CIT

Dense @X, PC @X

Compacted #0 -> Mask 1000

Compacted #1 -> Mask 0100

Dense @Y, PC @Y

Compacted #0 -> Mask 1000

Compacted #1 -> Mask 0001

Figure 4.7: Example of dense register forwarding. In the left, compaction is not needed, but it
is on the right, as the mask for the second compactable instruction differs.

not have the same active element position as compared to the one from @Y. In this case,

compaction for the first compactable instruction in @Y is not needed, but it must be done for

the second one. For these instructions, there is dense register forwarding of 50%.

4.3.10 CR Case Study

To illustrate how the CR mechanism works, we refer to the code from Figure 4.8. It is used

to describe the different phases in CR: activation, compaction, execution, and restoration.

For the sake of simplicity, in this particular example, we assume a 128-bit vector length

architecture. Thus, each vector register may hold 2 double precision elements. In this case,

a vector multiplication (vmulpd, line 8), a subtraction (vsubpd, line 9), and a square root

(vsqrtpd, line 7) represent the 3 predicated instructions in this loop. They are guarded by a

mask register k1 created in line 6. This mask is built by comparing each element in array C to

a zero-filled vector. In this case, we assume that the compiler marks this loop as suitable for

1 f o r (i←0; i≤N_ELEMENT; i +=VL)
2 vmovapd r2 , &B[i]
3 vaddpd r1 , r2 , <imm>
4 vmovapd r3 , &C[i]
5 vmovapd r4 , &D[i]
6 vcmppd k1 , r3 , <zero > , <NE>
7 v s q r t p d r5 { k1 } , r4
8 vmulpd r5 { k1 } , r5 , r3
9 vsubpd r1 { k1 } , r1 , r5

10 vmovapd &A[i] , r1

Figure 4.8: SIMD loop in Intel’s assembly.

53

4.3 The Compaction/Restoration Mechanism

vsqrtpd r180 <- r220 {r210}

vmulpd r190 <- r180, r122 {r210}

vsqrtpd r240 <- r230 {r211}

vmulpd r250 <- r240, r132 {r211}

ID:20

ID:21

ID:43

ID:44

-

-

RS0

RS2

RS0 -

Compaction unit

1

op1

ALU

B

op2

RS1 A 0B

RS3 d300 0C D

RS2 - 1- D -

PC: ticket Z

….

….

DTT

Z: Entry info

CIT

….

….

Dense (1)

Dense (2)

ID:20

ID:21

ID:43

ID:44

freeID

PC: X

Ticket Z

CIT entry info

H Gd300

r220 ? A

r122

r230

r132

? C

B ?

D ?

r210 0 1

r211 1 0

ROB

Vector register file

Rename

Issue

Dispatch

Execute

op2 yes, op1 fwd

op1

PC: Y

fwd

PC

Figure 4.9: Example of the Compaction phase.

CR. Figures 4.9 and 4.10 show the compaction and restoration processes for the instructions

vsqrtpd and vmulpd.

Activation Phase. At the Issue stage, there are two instances of these instructions (with

identifiers 20, 21, 43 and 44). Mask registers r210 and r211 are read as they become ready.

Since their mask density is low (50%), CR is enabled for this loop. Then, two dense instructions

for these PCs are created and the CIT allocation is performed, allocating two CIT entries with

Capacity 2. The Alloc Occupancy, Mask, Dest Reg Idx and Allocate fields are updated for

every compactable, since the mask registers for every dynamic instrucion are ready and the

Rename stage has been previously accessed. A ROB and an RS entry are allocated for each

dense instruction. Two tickets are created and stored in DTT.

Compaction Phase. As operands become ready, the instructions are moved to the Dispatch

stage. The CIT insertion is performed, updating the corresponding Insert Occupancy, Insertc
and Last Insertion CIT fields. After that, the compaction for the dense vsqrtpd instruction starts.

This process is shown in Figure 4.9. In this case, the active element in register r220 (A) is

moved to the dense RS entry (RS1) using the CIT information. After that, the RS belonging to

ID:20 is released. Similarly, in the next loop iteration, CR compacts the active element from

register r230 (B) into RS1. This dense instruction is ready for execution. The same process

54

The Efficiency of Predicated SIMD Instructions

Restoration unit

Z: Entry info

CIT

….

….

Dense (1)

Dense (2)

ID:20

ID:21

ID:43

ID:44Ticket Z

CIT entry info

r180 ? H

r190

r240

r250

? S

G ?

T ?

r210 0 1

r211 1 0

ROB

Vector register file

Pipelined, hidden by fwd

d300 H G

dxxx S T
fwd

Figure 4.10: Example of Restoration phase.

is done with instruction vmulpd, where the second operand is compacted moving the active

lane in r122 (C) and r132 (D) to the dense instruction in RS3. However, the first operand in the

compactable instruction is dependent of vsqrtpd, an already compacted one. The CIT notices

this situation and skips its compaction, notifying that a dense register forwarding is going to

happen. In particular, the register d300.

Execution Phase. The dense vsqrtpd instruction is executed as compaction is finished and

its destination register d300 is forwarded to the dense vmulpd, which will also be executed

afterwards.

Restoration Phase. After execution, the restoration phase occurs for the dense instructions

vsqrtpd and vmulpd. A brief overview is depicted in Figure 4.10. The CIT contains the

information regarding every inserted compactable instruction for every dense. In vsqrtpd, the

restoration unit reads the dense output d300 and the original mask values from the instructions

with ID 20 and 43, inserted in the CIT. Then, the restoration unit moves the d300 elements to

the destination entries in the ROB, performing an offset calculation depending on the mask

values and the compacted instruction insertion order. For example, the register r180 (instruction

ID:20) receives the first element from the dense register d300 (H) and it is placed in the second

lane, where the mask register r210 contains a true element. The register r240 gets the second

element (G), as the accumulated capacity is one, and it is placed in the first lane, specified by

55

4.3 The Compaction/Restoration Mechanism

mask r211. The same process is done with the dense vmulpd, moving S and T to the second

and first lanes of registers r190 and r250 respectively.

4.3.11 Optimizing SIMD Legacy Code

CR hardware can also be employed to optimize legacy SIMD codes on modern and wider

processors. Many applications make use of hand-coded programs with SIMD intrinsics.

Porting such codes to modern SIMD architectures is costly and time consuming. For this

reason, many 256-bit or 128-bit SIMD codes are executed on 512-bit VFUs, underutilizing

hardware capabilities. The CR mechanism can be employed to dynamically create dense

instructions that compact two AVX-2 instructions into a single AVX-512 instruction.

This way, every SIMD instruction is a candidate for compaction as the CR mechanism

is not restricted to predicated instructions. In this case, the mask density and the active

element positions are known before-hand, as they are defined by the architecture (e.g., 50% if

compacting two AVX-2 instructions into a single AVX-512 instruction). In such scenario, the

compaction/restoration units complexity is reduced, enabling lower CR latencies than in the

general CR case, and enhancing the CR mechanism efficiency.

This approach is transparent to the programmer and only requires a compiler to analyze

the static factors described in Section 4.3.4 to determine if CR could improve performance.

Section 4.6.2 evaluates the AVX-2 instruction compaction over AVX-512 using CR.

4.3.12 Discussion

The CIT is squashed in the event of a branch miss-prediction. Two scenarios must be considered:

a) miss-predicted instructions created an entry within a dense instruction, but operands were

not ready and thus, not compacted; and b) operands were ready and compacted. In the first

case, the CIT would be waiting forever for this instruction. In the second case, a false version

of the dense register would be created, since some lanes belong to miss-predicted instructions

operands. The first scenario is handled by making the CIT aware of miss-predictions. The

second scenario is not critical because results are written into miss-predicted ROB entries in

the Restoration phase, but these results never commit.

Page faults need a special handling as they are attended at commit but a dense instruction

may be blocking its attendance. A timeout is required to force the dense execution and of every

instruction prior to it.

56

The Efficiency of Predicated SIMD Instructions

Precise exceptions are also feasible with CR. If an exception occurs while a dense instruction

is executing, such as arithmetic overflow, the exception is restored to the corresponding

compacted instruction to be handled.

A challenge to be faced in the future is the implementation of dense horizontal instructions.

Horizontal instructions, such as shuffles, move a value from a particular vector register lane to

another one. At the moment a dense register is created, the original element positions are lost

so the operation cannot be done.

4.4 Design Space Exploration

Next, a design space exploration is done to size the CR hardware and to study the application

impact on CR. In this case, we make use of a micro-benchmark hand-coded using Intel’s

AVX-512 intrinsics. It is parameterized so that the mask density, the percentage of costly

instructions and the number of instructions in each loop iteration can be changed.

4.4.1 Compaction and Restoration Latencies

1 2 4 8 16 321.00

1.02

1.04

1.06

1.08

Sl
ow

do
wn

One Two Four

Figure 4.11: Compaction unit configuration slowdown on performance. Normalized to
non-latency CR scenario. In the x-axis the different number of stages. Each line represents a

different compaction unit count.

As explained in Section 4.3, CR requires four hardware components. The DTT and CIT

sizes are defined by the ROB size. The compaction and restoration units are sized in this section.

First, we start with the compaction unit design. Figure 4.11 shows the performance slowdown

57

4.4 Design Space Exploration

obtained when varying its number and operation latency. Performance is normalized to an ideal

design with no CR latencies.

Figure 4.11 depicts the average results for the SIMD micro-benchmark executed with

several mask densities. Increasing the number of compaction units from 1 to 4 provides less

than 1.3% performance improvements. In contrast, when having more than 8 compaction

stages, performance degrades. Thus, we select a compaction configuration with a single unit

and two pipeline stages. It provides only a 1.4% performance degradation with respect to an

ideal CR mechanism and a simple design.

1 2 4 8 16 321.00

1.05

1.10

1.15

Sl
ow

do
wn

One Two Four

Figure 4.12: Restoration unit configuration slowdown on performance. One two-stage
compaction unit latency considered. Normalized to non-latency CR scenario. In the x-axis the

different number of stages. Each line represents a different restoration unit count.

Next, we explore the restoration unit design. Figure 4.12 shows the performance degrada-

tion with different restoration formats. For this experiment, use the selected compaction unit

configuration. Results are normalized to an ideal design with no CR latencies. In this case,

with 1, 2 and 4 stages, varying the number of units and restoration stages marginally degrades

performance (less than 0.5% and 0.2% slowdowns, respectively). However, as 8-stage restora-

tion units are reached, performance degrades drastically. A 14% performance degradation is

achieved with 32-stage units, where increasing the unit number from 1 to 4 provides a benefit

of up to 6%. As we are interested in reducing energy consumption, the final design is limited

to a single two-stage unit. Thus, restoring a dense instruction with four compacted ones takes

five cycles. This format combined with the selected compaction unit, has a 1.9% slowdown

compared to an ideal scenario.

58

The Efficiency of Predicated SIMD Instructions

18 20 24 28 32

1.00

1.05

1.10

1.15

Sl
ow

do
wn

RS
RS+ROB

LSQ
LSQ+ROB

ROB
RS+LSQ+ROB

RS+LSQ

Figure 4.13: Timeout policy combinations impact on performance, normalized to the best
scenario. The circular dependency policy is implicit in every scenario. In the x-axis the number

of cycles for each timeout policy changes.

4.4.2 Timeout Policies

Next, we measure the impact of the timeout policies discussed in Section 4.3.7. In this

case, the micro-benchmark is used with different timeout policies. Figure 4.13 depicts the

performance degradation obtained by combining the original timeout policies, normalized to

the best configuration. The timeout policies consider the occupancy in different resources (RS,

LSQ and ROB) and different timeouts (from 18 to 32 cycles). All policies take into account

circular dependencies as this is required for the correct execution of the benchmarks.

Selecting the optimal timeout policy is fundamental for CR, preventing the CPU from

waiting too much for dense register population. Results show up to a 10% slowdown when only

the issue queue is considered. The best outcome is obtained when considering all resources.

4.4.3 Costly SIMD Instruction Ratio

Next, we analyze the influence of the predicated instructions latencies to performance and

energy. In this case, we consider the same base micro-benchmark where the ratio between

low and high latency instructions increases, from 0% to 100%. All of them have the same

memory access pattern and the same number of instructions per iteration. The mask density

varies between 25-50%. Results are normalized to the 0% long latency instruction scenario.

Figure 4.14 shows performance and energy results. The higher the costly instruction ratio,

the better the speedup and energy reduction. If instructions have a long latency, the dense

register population and the CR latencies can be hidden by the execution and even lead to a

performance benefit. For instance, in the case of a predicated square root with a 25% mask

59

4.4 Design Space Exploration

density scenario, the fact of delaying the execution of instructions from four iterations (50

cycles) and executing only one instruction (20 cycles) would be better than executing four

instances of the same dynamic instruction (70 vs 80 cycles). Long latency SIMD instructions

also permit higher timeout policy values, allowing more occupied dense registers, reducing the

accesses to VFUs, and thus, generating higher dynamic energy benefits.

0 25 50 75 100 AVG0.95
1.00
1.05
1.10
1.15
1.20

Sp
ee

du
p

0 25 50 75 100 AVG0.95
1.00
1.05
1.10
1.15
1.20

Dy
n.

 E
ne

rg
y

Re
du

ct
io

n

25% 50%

Figure 4.14: Impact of costly predicated SIMD instructions to performance (left) and dynamic
energy (right). Normalized to the no-long latency instruction scenario. In the x-axis, the

percentage of costly predicated instructions.

4.4.4 Effectiveness with Different Loop Lengths

Finally, we study the sensitivity of the CR mechanism to the loop instruction length. In this case,

we consider the same SIMD micro-benchmark as in the previous sections. We use the same

mask densities (25%, 50%) and different number of instructions per iteration in a processor

with a 320-entry ROB.

Figure 4.15 shows the average number of predicated instructions compacted per dense

instruction. With both mask densities, CR achieves a high number of compacted instructions

with loops of 40 or less instructions. An increase in the number of instructions per loop iteration

causes a higher ROB occupancy, preventing CR from doing an efficient population of dense

registers. For example, moving from 20 to 60 instructions per iteration reduces the average

compaction from 4 to 1.5 in a 25% mask density scenario.

Also, a higher mask density leads to more pressure on the ROB occupancy as a dense

instruction is added more frequently (every 2 compacted instructions with 50% mask density;

every 4 instructions with 25%). Consequently, loops with 160 instructions and 50% mask

density can not be compacted with CR. In contrast, loops with 80 instructions and 25% mask

density can be partially compacted with CR (1.45 instructions are compacted per dense).

60

The Efficiency of Predicated SIMD Instructions

10 20 30 40 50 60 800

1

2

3

4

In
st

s.
Co

m
pa

ct
ed

20 40 60 80 100 120 1600

1

2

3

4

Max. Theoretical Value
Min. Theoretical Value

Figure 4.15: Average number of predicated instructions compacted per dense in CR. In the
x-axis, the number of instructions per loop iteration. Masks: 25% (left) and 50% (right).

4.5 Area and Power Consumption of CR Units

The power consumption of the CR units is evaluated with McPAT [121] using a process

technology of 22nm, a voltage of 0.6V and the default clock gating scheme. We incorporate the

changes suggested by Xi Vaidya et al. [198] to improve the accuracy of the models. The CIT

structure is modeled in CACTI 6.5 [135], adding the appropriate counters in gem5 to measure

the extra power introduced by it.

CR units have been modeled in RTL [130, 37] with the configurations chosen in Section 4.4.

Results for a 22nm technology show area requirements of 5000µm2. It is almost three orders

of magnitude smaller than a 512-bit ALU modeled in McPAT (4.45 mm2). In terms of power,

every unit consumes 11.25mW of peak power (combined leakage plus dynamic), almost two

orders of magnitude smaller than the power of the 512-bit ALU computed by McPAT (0.92W).

This estimation is used in the next section to quantify the energy cost of the CR structures

and to compare it to the baseline, while executing different benchmarks.

4.6 Evaluation

This section explains the performance and energy benefits of CR in real applications. We also

describe the benefits of using CR to optimize legacy SIMD code.

61

4.6 Evaluation

4.6.1 Predicated SIMD Applications

The CR proposal is evaluated with ten different applications. As described in Section 3.1.1, we

employ two processor configurations with different instruction latencies (ICE and KNL).

Fung and Vaidya et al. studied the mask densities in several applications [75, 183]. They

showed they are usually input-dependent and range between 15−60%. Since input selection

may strongly impact mask density and complicate the evaluation analysis, we consider values

from 25% to 50% for all the codes. These values capture almost entirely the mask density

range from the representative applications.

For each application, we perform an exploration with several timeout values and we select

the configurations which provide the best performance outcomes. For the CR mechanism, we

make use of the configuration determined in Section 4.4.

0.9

1.0

1.1

1.2

1.3

1.4

Sp
ee

du
p

ICE 50% ICE 25% KNL 50% KNL 25%

1.0

1.2

1.4

1.6

1.8

2.0

VF
U

Ac
. R

ed
.

B-Fil
ter

Convol
G-Blur

Kmean
s
KNN

N-Body
Quadr

RNG

S-Disto
rt
Stre

am AVG

1.0

1.2

1.4

1.6

En
er

gy
 R

ed
.

B-Fil
ter

Convol
G-Blur

Kmean
s
KNN

N-Body
Quadr

RNG

S-Disto
rt
Stre

am AVG
0.9

1.0

1.1

1.2

1.3

1.4

En
er

gy
 R

ed
.

Figure 4.16: Performance (up left), VFU access (up right), dynamic energy (bottom left)
reductions and leakage energy (bottom right) results of CR. Normalized to a non-CR scenario.

Figure 4.16 depicts the results in terms of speed-up, VFU access reduction and dynamic

and leakage energy reductions. Energy reductions correspond to energy savings in the whole

system. Results are normalized to a regular no-CR execution. On average, applications achieve

between 3.6% and 10% speed-ups, between 21% and 41% VFU access reductions, and between

6.2% and 13.4% dynamic energy reductions. In all the experiments, the KNL configuration

provides more opportunities to the CR mechanism as there is more contention in the VFU.

Also, lower mask densities (i.e., 25%) lead to more compaction opportunities.

62

The Efficiency of Predicated SIMD Instructions

Significant speed-ups are obtained for some of the evaluated benchmarks. This is the case

of N-Body and RNG, which contain a high percentage of long latency SIMD instructions per

loop iteration (as shown in Figure 3.1). They achieve performance improvements up to 25%

and 15%, respectively, and dynamic energy reductions up to 22% and 43%. This reduction in

dynamic energy is a result of the significant reduction in VFU accesses (up to 42% and 87%,

respectively). In the case of N-Body, the CR phases are hidden by the memory access requests

and lead to better performance benefits.

B-Filter and S-Distort also contain long latency SIMD instructions. However, a higher

number of instructions per loop iteration prevents an efficient population of dense registers.

Only with a VFU contention increase in the KNL configuration, speed-ups reach a 7%.

The application memory access pattern is important for CR, since it can hide the dense

register compaction/restoration. Convol, with an irregular access pattern and low-latency

predicated instructions, is able of marginally improving performance and reducing dynamic

energy consumption up to 5%. In contrast, Kmeans and KNN have a contiguous memory

access pattern and no long latency predicated instructions. Kmeans is capable of reducing VFU

accesses up to a 60%. However, the large amount of instructions and the low percentage of

predicated instructions in KNN prevent CR from achieving performance benefits. KNN also

contains horizontal operations, blocking dense register forwarding.

For all the applications, the long latencies of the KNL configuration enable higher VFU

access reductions that lead to better dynamic energy results. In this configuration, there is a

higher contention in the VFU than in the ICE one. As a result, a higher occupancy of dense

registers is achieved. We have measured the dense register forwarding, in particular, at the

lane level. If a dense register lane can be forwarded, the compaction phase can be avoided for

that lane, reducing latency and energy consumption. For instance, 72% of dense lanes can be

forwarded in BF, 65% in S-Distort, 73% in Kmeans, 46% in KNN, 77% in RNG and 46% in

G-Blur.

4.6.2 Optimizing AVX-2 Legacy Code

The CR mechanism can also be used to optimize SIMD legacy code. Section 4.3.11 describes

the motivation and the advantages of this approach. In this section, we explain the results of

employing CR to compact two AVX-2 instructions into one AVX-512 instruction.

Figure 4.17 shows the results of CR with real applications compiled with AVX-2 support.

Results are normalized to a regular execution without CR. In this case, we limit the original set

of evaluated applications to seven, since three of them do not have a memory access behavior

63

4.6 Evaluation

or the required percentage of SIMD instructions suitable for CR. A compiler may identify

these static application characteristics and notify CR when to compact AVX-2 codes into wider

SIMD extensions.

As expected, average results are better than in the scenario with predicated SIMD instruc-

tions. In the KNL configuration, speed-up and leakage energy reduction reach 17% on average,

while dynamic energy reaches 16% reductions. In the ICE configuration, average results are

more modest (5% and 12%). Both configurations achieve an average 35% reduction in VFU

accesses.

The largest reductions in VFU accesses are achieved with B-Filter and RNG (between

60% and 73%). This translates into significant reductions in dynamic energy. RNG achieves a

significant 56% performance improvement. N-body also reduces dynamic energy (between

10% and 12%). In contrast, KNN still suffers from the blocking of dense register forwarding

due to horizontal operations and achieves minimal energy savings, even if VFU accesses are

reduced by more than 10%.

B-Fil
ter

Convol KNN
Quadr

N-Body
RNG

Stre
am AVG

1.00
1.25
1.50
1.75
2.00

Sp
ee

du
p

B-Fil
ter

Convol KNN
Quadr

N-Body
RNG

Stre
am AVG

1.00
1.25
1.50
1.75
2.00

VF
U

Ac
ce

ss
 R

ed
uc

tio
n

ICE KNL

B-Fil
ter

Convol KNN
Quadr

N-Body
RNG

Stre
am AVG

1.00
1.25
1.50
1.75
2.00

Dy
na

m
ic

En
er

gy
 R

ed
uc

tio
n

Figure 4.17: Results of AVX-2 legacy codes compacted into AVX-512 using CR. Normalized
to a non-CR scenario. Speed-Up left, VFU access reduction (center) and dynamic energy

reduction (right).

4.6.3 Comparison with Other Proposals

This section compares CR with Disable Inactive Lanes (DIL) [113], an alternative hardware

proposal to reduce power consumption in the VFU. DIL reads the mask operands before

executing predicated instructions and disables the lanes in the VFU with inactive elements.

This solution reduces power consumption at the cost of increasing the complexity of the VFU

design. However, DIL does not reduce the contention in the VFU and cannot be used to

speed-up the execution of AVX-2 legacy codes. Interestingly, CR and DIL can be combined to

further reduce the power consumption of CR when a timeout avoids instructions compaction.

64

The Efficiency of Predicated SIMD Instructions

The left chart of Figure 4.18 presents the average speed-up of CR, DIL and CR+DIL over a

baseline without CR. As expected, DIL and CR+DIL do not improve performance over the

baseline and CR, respectively. The right chart of Figure 4.18 presents the average energy

reduction of the three techniques over a baseline without CR. DIL reduces energy between 5%

and 8% as it reduces the dynamic power in the VFU. CR achieves higher energy reductions than

DIL due to the increased performance in some of the benchmarks. However, in benchmarks

in which CR provides no performance benefits (Convol, Kmeans, KNN), DIL achieves up to

18% energy reduction. Thus, CR+DIL provides the best energy results with average energy

reductions between 6% and 13%.

 DIL CR CR+DIL0.95
1.00
1.05
1.10
1.15

Sp
ee

du
p

 DIL CR CR+DIL0.95
1.00
1.05
1.10
1.15

En
er

gy
 R

ed
uc

tio
n

ICE 50% ICE 25% KNL 50% KNL 25%

Figure 4.18: Speed-Up (left) and total energy reduction (right) of DIL, CR and CR+DIL
normalized over a non-CR scenario.

4.7 Conclusions

Exploiting DLP in current processors with SIMD extensions is critical to improve performance

and energy efficiency. When vectorizing applications, divergence control using predication is

one of the most challenging obstacles to overcome.

Current SIMD extensions execute all elements in a predicated instruction independently of

the values in the mask operand, wasting significant fractions of energy and performance.

In this approach, we propose the Compaction/Restoration (CR) hardware design, which is

capable of achieving density-time performance and energy efficiency with predicated SIMD

instructions. CR creates a dense instruction with several dynamic predicated instructions for a

certain PC. The active elements of these regular SIMD instructions are compacted into a dense

instruction. Then, dense instructions are executed and their results are restored to the original

instructions. This is achieved without programmer intervention.

65

4.7 Conclusions

Our evaluation shows that CR improves performance by up to 25% and reduces dynamic

energy consumption by up to 43% on real unmodified predicated applications.

Moreover, CR allows executing unmodified legacy code with short SIMD instructions (AVX-

2) on newer architectures with wider vectors (AVX-512), achieving up to 56% performance

benefits.

66

Chapter 5
PLANAR: A Programmable Accelerator for

Near-Memory Data Rearrangement

5.1 Introduction

Memory latencies have not experienced the near-exponential improvements seen in processing

speed and memory capacity [73, 69]. As a result, data access times increasingly limit sys-

tem performance, a phenomenon known as the Memory Wall [197]. Deep cache hierarchies

are the natural solution to this trend, providing low-latency data access to high-performance

out-of-order processing units. Applications that have locality of reference benefit from cache

hierarchies [171, 182], while prefetchers act in the background to hide memory access la-

tency [132].

In the presence of sparsity and irregular reuse distances, studies show that data prefetching

is not effective [207], utilization of transmitted bandwidth can be as low as 20% [29], and that

most blocks in the last level cache are not reused before eviction [172, 28]. In addition, for

applications with dependent or indirect access loads, every cache level increases the overall

round-trip access latency [64]. Finally, irregular and sparse patterns preclude harnessing data-

level parallelism via vector instructions that operate on multiple data values (SIMD) [125,

173, 190]. Data movement not only affects performance: approximately two-thirds of the

energy required to compute is consumed by data movement, specifically by the memory and

interconnect [33].

Data Layout Transformation (DLT) mechanisms have been proposed to tackle these prob-

lems. DLT aims to rearrange sparse data into a dense representation to improve locality and

make better use of the memory hierarchy. Table 5.1 qualitatively compares multiple state-of-the-

art proposals. A balanced design should fulfill three principles. First, a comprehensive design

that scales well with multi-core systems by carefully choosing where rearrangements occur.

67

5.1 Introduction

Table 5.1: Comparison with state-of-the-art DLT proposals.

Features Impulse [206] DLT Acc. [89] SPiDRE [29] DRE [123] PLANAR

Full design ✓ ✓ ✗ ✓ ✓

Scalable design ✗ ✓ ✓ ✗ ✓

Non-blocking DLT ✓ ✗ ✓ ✗ ✓

Fine-grain sync. ✓ ✗ ✗ ✗ ✓

VM support ✓ ✓ ✓ ✗ ✓

Normal allocator ✗ ✓ ✓ ✗ ✓

Second, maximize system performance by providing non-blocking fine-grain rearrangements

to hide DLT latency. Third, ease programmability for the DLT engine and target applications

by providing virtual memory (VM) support and conventional memory allocation mechanisms.

Previous proposals make compromises on these design principles hindering their adoption.

In this chapter we present a ProgrammabLe Accelerator for Near-memory datA Rear-

rangement (PLANAR). PLANAR is located within the system-on-chip at the same level as

the memory controllers, avoiding custom off-chip memory modifications that are difficult to

adopt. Our design is non-blocking as it decouples access and execute, allowing overlap of data

rearrangements and host core computation. In addition, we provide mechanisms for fine-grain

synchronization between PLANAR and host cores to allow dense data to be consumed as it is

rearranged, hiding rearrangement latency. PLANAR is programmable via simple library calls

that can be inserted by a programmer or by a compiler pass. This simple programming interface

is possible due to the fact that PLANAR has virtual memory support and employs well-known

existing memory management mechanisms for the new dense data structures.

Moreover, PLANAR enables applications to take better advantage of the memory hierarchy

by exploiting locality of dense data, and unlocks additional performance due to better prefetch-

ing and vectorization. On the latter, PLANAR allows compilers to optimize instruction emission

for contiguous memory [194], which is critical to vector performance [140].

This chapter makes the following contributions:

• We introduce minimal functional changes to incorporate PLANAR into a system-on-chip

with out-of-order cores. By locating PLANAR devices at the memory controller level we

enable the design to (i) scale with multi-core systems, (ii) perform fine-grain non-blocking

data rearrangements, (iii) operate with virtual memory support, and (iv) be off-chip memory

technology agnostic. No solution in the state-of-the-art provides all such properties at once.

68

PLANAR: A Programmable Accelerator for Near-Memory Data Rearrangement

1 vo id s t r i d e _ k e r n e l (d oub l e *x , i n t * idx , . . .) {
2
3 f o r (l e n = 0 ; i < l e n ; l e n ++) {
4 v1s1m3 () ; v1s2m3 () ; v1s3m3 () ; v2s2m3 () ; v2s2m4 () ;
5 v 1 s 1 i 3 (x , i d x) ;
6 }
7 }
8 vo id v 1 s 1 i 3 (d oub l e *x , i n t * idx , . . .) {
9

10 f o r (j = 0 ; j < i r e p ; j ++) {
11 t 1 = 1 . 0 / (do ub l e) (j + 1) ;
12 f o r (i = 0 ; i < n ; i ++)
13 y [. . .] += t 1 *x [i d x [i]] ; / / i r r e g u l a r a c c e s s e s
14 }
15 }

Figure 5.1: Original STRIDE code.

• A detailed evaluation using a full-system cycle-accurate simulator shows that a multi-core

system with PLANAR achieves an average speed-up of 4.58× across a wide range of appli-

cations featuring sparse and irregular access patterns. This performance improvement is

due to PLANAR reducing L1-D cache misses by an average of 89% and L1-D cache miss

latency by an average of 53%. Overall, dynamic energy consumption is reduced by more

than 40% in all benchmarks. PLANAR also enables additional vectorization of rearranged

codes, increasing the average speed-up to 5.71×.

• We show that PLANAR outperforms software DLT techniques in Section 5.2 and two state-of-

the-art hardware proposals, Impulse [206] and a DLT accelerator [89], in Section 5.5. Our

quantitative comparison shows that, on average, PLANAR outperforms Impulse by 2.12× and

the DLT accelerator by 2.23×. Thanks to non-blocking fine-grain rearrangements, PLANAR

can hide DLT latency, allowing the host to consume dense data as it is rearranged.

5.2 Motivation

To explain the limitations of DLT techniques in software, and the advantages of performing DLT

with PLANAR, we have chosen a representative case study based on the STRIDE benchmark 1.

STRIDE is a memory intensive benchmark that consists of a loop where every iteration executes

six different kernels. In the original code, v1s1i3 is the kernel with sparse memory accesses

1Section 3.2 describes the benchmark in detail.

69

5.2 Motivation

1 vo id s t r i d e _ k e r n e l (d oub l e *x , i n t * idx , . . .) {
2
3 f o r (l e n = 0 ; i < l e n ; l e n ++) {
4 v1s1m3 () ; v1s2m3 () ; v1s3m3 () ; v2s2m3 () ; v2s2m4 () ;
5 v 1 s 1 i 3 _ s w _ r e a r r (x , i d x) ;
6 }
7 }
8 vo id v 1 s 1 i 3 _ s w _ r e a r r (d oub l e *x , i n t * idx , . . .) {
9

10 x _ r e a r r = m a l lo c (s i z e) ;
11 f o r (i = 0 ; i < n ; i ++)
12 x _ r e a r r [i] = x [i d x [i]] ; / / s o f t w a r e r e a r r a n g e m e n t
13

14 f o r (j = 0 ; j < i r e p ; j ++) {
15 t 1 = 1 . 0 / (do ub l e) (j + 1) ;
16 f o r (i = 0 ; i < n ; i ++)
17 y [. . .] += t 1 * x _ r e a r r [i] ; / / r e g u l a r a c c e s s e s
18 }
19 f r e e (x _ r e a r r) ;
20 }

Figure 5.2: Software-rearranged STRIDE code.

(see lines 8-15 in Figure 5.1). The memory access pattern is governed by the idx array which is

populated with a configurable input stride2.

The programmer could decide to replace the indirect memory accesses from x with sequen-

tial ones in an x_rearr array using a software DLT solution, as shown in Figure 5.2. This extra

code should be placed just before the original loop in v1s1i3 (see lines 10-12 in Figure 5.2).

This software rearrangement is beneficial as x is accessed irep times in the baseline with strided

accesses, and only once in this new version. As a result, execution time improves 22.1% on

average for different stride values in the indirection vector idx.

In this chapter we present PLANAR, a hardware solution that performs near-memory

data layout transformations. Figure 5.3 shows the pseudo-code of STRIDE compatible with

PLANAR. The rearrange function (offload function in lines 1-7) performs the data layout

transformation using the PLANAR devices. Several PLANAR devices can be allocated to do

this transformation in parallel (line 12) and execute the rearrange function (line 13), extracting

higher memory-level parallelism (MLP) than in the software rearrangement version. Finally,

the PLANAR devices are released (line 6).

2Section 3.2 describes the strides employed in the evaluation.

70

PLANAR: A Programmable Accelerator for Near-Memory Data Rearrangement

1 vo id o f f l o a d (d oub l e *x , i n t * idx , d oub l e * x _ r e a r r , . . .) {
2 / / R e a r r a n g e f u n c t i o n e x e c u t e d on PLANAR
3 f o r (i = s t a r t _ i d x ; i < end_ idx ; i ++)
4 x _ r e a r r [i] = x [i d x [i]] ;
5 / / R e l e a s e d e v i c e i f l a s t e l e m e n t
6 planar_release() ;
7 }
8 vo id s t r i d e _ k e r n e l (d oub l e *x , i n t * idx , . . .) {
9

10 f o r (l e n = 0 ; i < l e n ; l e n ++) {
11 x _ r e a r r = m a l lo c (s i z e) ;
12 n_dev = planar_alloc(min, max) ;
13 offload«<n_dev»> (x , idx , x _ r e a r r , s i z e , . . .) ;
14 v1s1m3 () ; v1s2m3 () ; v1s3m3 () ; v2s2m3 () ; v2s2m4 () ;
15 v 1 s 1 i 3 _ h w _ r e a r r (x _ r e a r r) ;
16 f r e e (x _ r e a r r) ;
17 }
18 }
19 vo id v 1 s 1 i 3 _ h w _ r e a r r (d oub l e * x _ r e a r r , . . .) {
20
21 f o r (j = 0 ; j < i r e p ; j ++) {
22 t 1 = 1 . 0 / (do ub l e) (j + 1) ;
23 f o r (i = 0 ; i < n ; i ++)
24 y [. . .] += t 1 * x _ r e a r r [i] ; / / r e g u l a r a c c e s s e s
25 }
26 }

Figure 5.3: PLANAR-rearranged STRIDE code.

This rearrangement can be done ahead of time while the host is operating on the first

five kernels, thereby overlapping data rearrangements and host execution (see lines 14-15 in

Figure 5.3). As a result, PLANAR effectively hides rearrangement latency Executing STRIDE

with eight PLANAR devices provides average performance speedups of 2.77× and 3.39× over

software-rearranged and the original versions, respectively.

PLANAR provides the required hardware support to enable fast data rearrangement near

memory, converting sparse data to dense, resulting in a more efficient usage of the available

bandwidth. This transformation is done while the host core performs useful computation,

effectively decoupling access to memory and execution.

71

5.3 PLANAR Design

RCT L1

Core

M
em

o
ry

Coherent Interconnect

Page #17 Page #32 Dense Data

L2 Slice MC

PLANAR Device

µTLB

µCachesRCT L1

Core

L2 Slice….. MC…..

µCore

O
n

 c
h

ip

Page #3

PLANAR Device

Control logic

Figure 5.4: System overview with two PLANAR devices. Cores are augmented with a
Rearrangement Control Table (RCT) to monitor ongoing rearrangements.

5.3 PLANAR Design

PLANAR targets applications with irregular memory access patterns, often due to the utilization

of sparse data structures. In such applications, the memory subsystem is poorly utilized, leading

to latency and bandwidth bottlenecks because of low cache block utilization [28] caused by

disperse memory accesses that lead to high (but underutilized) traffic on data transfer networks

(e.g., coherence bus, interconnects) [129].

Figure 5.4 shows a high level system overview with two PLANAR devices. PLANAR is

implemented as a near-memory programmable accelerator connected to the main coherence

bus with direct access to the memory controllers. Despite being programmable, it is a simple

device that can be implemented as a microcontroller, as we do in this work. It is comparable to

an Arm Cortex M0+, with the addition of a 64-bit ALU and minimal support for data caching

and address translation.

The design enables accesses from the cores to bypass the PLANAR units when in normal

operation, while allowing the PLANAR units to use the same memory controllers when com-

manded by the host core to reorganize data. In the figure, every core is augmented with a small

Rearrangement Control Table (RCT) to monitor the status of ongoing transformations. The

RCT has one entry per rearrangement in flight, within each RCT entry there is a slot for each

72

PLANAR: A Programmable Accelerator for Near-Memory Data Rearrangement

Table 5.2: Rearrangement Control Table (RCT) with the information about a rearrangement in
flight being performed by 4 PLANAR devices.

PLANAR #ID First elem Last elem Max elem
0 0 99 32

1 100 199 140

2 200 299 261

3 300 399 310

PLANAR device, and per-device sub-entries containing progress information for each ongoing

rearrangement (three 64-bit entries to track virtual address range and status).

Table 5.2 depicts the RCT filled in with details of a data rearrangement being performed by

four devices. The first and last elements represent the ranges in the final rearranged structure

that correspond to that particular accelerator. The max element is the latest element that has

been rearranged. As an example, if a hardware unit requests a memory access to element 120,

the entry with ID 1 will be checked, because the element is contained in the range (100−199)

and since the latest rearranged element is 140, the memory request will proceed. While we

show the RCT as represented by a table of indices, it could conceptually be composed of

address ranges or another logical identifier capable of specifying the location of a range of data.

PLANAR creates a new data structure whose elements are sorted the way they are to be

accessed by the host core. This way, cache block and bandwidth utilization improves. In the

best case, the process latency can be hidden if there is sufficient time between the rearrangement

and the data access by the host core, allowing to overlap the rearrangement with computation.

Multiple devices can be used to apply the same rearrange function, or multiple rearrange

functions can be done in parallel by different devices. PLANAR works as an accelerator on

behalf of a requesting core that sends commands to the PLANAR device. If there is computation

to be done in the meantime, and suspends or computes until synchronization messages are

received.

Figure 5.4 shows an example with two PLANAR devices. A host core has requested them to

perform the near-memory data restructuring of the sparse elements in color from data pages

3, 17 and 32. The result is a dense version of the data placed into another data page. The

host core may access this new dense structure via contiguous accesses instead of the original

sparse accesses, reducing data movement and hiding latency. As an example, if the core only

uses one 8B value from each of the cache blocks accessed (64B) the total payload needed

73

5.3 PLANAR Design

would be 48B (six elements). In the original case, the core would have to access six different

cache lines (i.e., 384B). However, with PLANAR the reduced payload would be a single cache

line (assuming they are aligned), i.e., 64B with 48B of the transfer actually utilized. This

represents an 83% reduction in data movement for this simple example case. Moreover, dense

data presents additional opportunities to improve performance: (i) simple next-line prefetching

schemes are efficient, and (ii) data level parallelism via vectorization is also easy to achieve.

The following sections provide the operational details of PLANAR, including the required

modifications at application level, the different phases involved in a rearrangement, and finally

a comprehensive step-by-step example of operation.

5.3.1 Modifications to Application Code

In our implementation, the programmer is responsible for providing a rearrange function to

map the irregular data access to a dense data access. Most actions taken to offload to PLANAR

units are handled either by the hardware or via library calls as shown in Figure 5.3.

• planar_alloc() takes a minimum and maximum number of devices to be allocated and

returns the number of allocated devices. If allocation is not possible, the host core suspends

until later notification is received when the minimum number of accelerators is available.

PLANAR devices are simple and can have just a few in-flight memory requests; therefore, it is

difficult for a single device to saturate memory bandwidth. Having several allocated devices

leads to higher memory-level parallelism and to better utilization of the memory bandwidth.

• offloadFunc<<<N>>>() contains the code that is executed in the PLANAR devices, which

includes the rearrange function. The N parameter between triple chevrons determines the

number of devices to offload to, and it is used to calculate the start and end bounds of the

rearrange loop for each device.

• planar_release() signals the device to finish.

Future versions could use compiler or pragma guided insertion. The information to produce

a rearrange function is often known at compile time although data is often dynamic (e.g., loop

bounds, indices), so a compiler with PLANAR support could enable transparent rearrangements

as suggested by previous works [106, 146].

74

PLANAR: A Programmable Accelerator for Near-Memory Data Rearrangement

5.3.2 Allocation of Memory and PLANAR

A memory region is allocated so that the PLANAR devices may store the rearranged data on it.

This allocation is needed to prevent the host core from accessing an outdated dense structure

(i.e., from a previous rearrange task). This is done in line 11 in Figure 5.3.

To allocate PLANAR devices, the planar_alloc function is used, as there can be multiple

host cores planning to use these devices at the same time. In our proposal, the cores can access

a list of the available PLANAR devices from firmware table and dynamically choose a minimum

and a maximum number of accelerators they want to employ. Each device is accessed via a

memory mapped work queue, which could be virtualized by the operating system using many

existing mechanisms [193].

If there are not enough available PLANAR accelerators, the host core suspends until later

notification is received when the minimum number of accelerators is available. An alternative

to suspending which we did not explore, but PLANAR is capable of doing, is to execute the

rearrange code on the host core. It is left to future work to investigate the performance impact

versus suspending.

5.3.3 Offloading of Rearrange Function

When offloadFunc<<<N>>> is called, a command data packet is created for each of the N

PLANAR devices. The packet consists of pointers to the sparse and final dense data, and the

start address (virtual program counter) of the rearrange function.

The boundaries of the dense data structure are used to split the workload among all the

PLANAR devices (N) in charge of rearranging the same data structure. This data packet is

the equivalent of two cache blocks of data (including a header of setup information for the

host core). Approximately five cycles are needed to save this setup information. Subsequent

transport of this setup information to the PLANAR devices is dependent on the topology of the

interconnect and latency of cache write-back between the host and the PLANAR units. Further

details about our configuration are given in Table 3.2. Once the command packet is sent, the

host core updates the RCT entries of the PLANAR devices that have been allocated.

PLANAR is by definition an accelerator. As such it must communicate results with the host

core. To do so, it makes use of a common coherent interconnect. PLANAR will often work on

shared data with the host core, meaning that modified data could exist within the host caches.

In order to maintain memory consistency between the host core and PLANAR, flush operations

are triggered from PLANAR before the rearrangement starts. To achieve this, after receiving the

75

5.3 PLANAR Design

command packet, PLANAR issues cache maintenance commands [11] to flush the sparse data

address range from caches. They are issued from a state machine co-located with the PLANAR

device. Once it finishes, the data rearrangement can start.

5.3.4 Execution of Rearrange Functions

Every device has received its rearrange function, data pointers and work boundaries in the

offloading phase. Therefore, in this phase every PLANAR device accesses the sparse data,

performing the irregular memory accesses, and populating the dense data structure. It is worth

noting that PLANAR is designed to have virtual memory support. This can be accomplished

by connecting the PLANAR devices to an input-output memory management unit (IOMMU),

which provides virtual-to-physical address translation for the direct memory accesses (DMA)

that PLANAR performs. The operating system also keeps track of the pages being accessed

by the PLANAR devices. Whenever a rearrangement is happening, the involved data blocks

are available to the host core in shared state but read only. This way, memory consistency is

ensured.

5.3.5 Synchronization Between PLANAR and Host

Once a PLANAR device completely populates a set of cache blocks (number explored in

Section 5.4) belonging to a dense data structure, a cache maintenance operation is issued to

flush the blocks from the local cache, forcing a writeback to main memory.

A synchronization mechanism between PLANAR and the host core is needed to ensure

the host only accesses data when it is ready. After the flush to a set of dense cache blocks is

issued, a synchronization packet is created, containing the index of the last element in the last

cache block. This packet is sent to the host core in order to update the corresponding RCT

entry and to wake up the host in case it is suspended. The RCT keeps information for every

rearrangement in flight from a host core, including the boundaries (virtual addresses) for every

PLANAR device as well as the last rearranged element.

After the RCT is updated, a cache maintenance packet is sent to the core’s cache to

invalidate the set of cache blocks in case they are present in the caches. This is necessary as

some hardware units, such as the prefetchers, may issue memory requests to these memory

locations while PLANAR is operating, caching data that has not yet been rearranged. As

explained in Section 5.3.4, data being rearranged is in read only state and it cannot be accessed

by the host due to the RCT. For this reason, writebacks of these invalidated cache blocks are

76

PLANAR: A Programmable Accelerator for Near-Memory Data Rearrangement

not needed. After invalidation, the host core or other hardware units can access a valid version

of the dense data, located in main memory, as mediated by the RCT.

Whenever a load address is calculated in the execute stage of the host core, if the RCT

contains valid entries it will be accessed and every virtual data range compared with the load

address. If a match is found and the load address is part of the already rearranged region, the

memory request can proceed. Otherwise, the load instruction is moved to a FIFO queue. The

queue size is limited by the instruction window of the host core, since the host core will stall or

suspend as it will not be able to proceed with the execution. Later PLANAR synchronization

messages will notify the host core, which will check the FIFO queue, moving the instructions

to the load-store queue as data becomes ready.

For example, Figure 5.5 shows a high-level synchronization between a host core and a

PLANAR device. In this case, the device rearranges the sparse vector (X) from the SpMV

benchmark to a dense form (X’). In the benchmark, the matrix is stored in CSR format [31]

so the vector is accessed depending on the column index vector from the matrix. After the

offloading, where the rearrange function, the data structure pointers and the loop bounds (start

1, end 20,000) are provided to the accelerator, the PLANAR device starts operating. During

operation, the host core may block or even perform other computation. As the device finishes

rearranging a set of dense cache blocks, a synchronization packet is issued to the host core,

updating the RCT and allowing the host to consume it.

5.3.6 Release of PLANAR Devices and Memory

PLANAR devices are released via the planar_release call (see Figure 5.3, line 6). The

PLANAR device sends a packet to the host and suspends, becoming available for future

operations. Once the host core receives the packet, the related RCT entry is cleared. Finally,

after the dense data is consumed by the host, it is freed (Figure 5.3, line 16).

5.3.7 PLANAR Execution Example

Figure 5.6 shows a detailed example of operation with PLANAR. It considers a single rearrange-

ment performed by one PLANAR device. It shows four main hardware components (top), the

host core, the coherent interconnect, the PLANAR accelerator and a representation of several

main memory pages. From the core we show the view of the RCT, the data cache (D$), and the

FIFO queue used to hold instructions that try to access data still not rearranged. From PLANAR,

77

5.3 PLANAR Design

Figure 5.5: Synchronization example for a rearrangement that employs one PLANAR device.

we show the logic that, amongst other things, is in charge of processing command packets

from/to all the devices, and from the device itself, the core (µcore) and data cache (µ$).

In Phase #1 (Section 5.3.2), the dense structure is allocated 1 via a malloc call so that

PLANAR has a memory region to store the dense data. The planar_alloc function triggers

the allocation of PLANAR devices. In the example, all the devices are free and one device is

requested, therefore device ID0 is reserved for the current process (PID 33), allocating entry 0

in the RCT 2 .

In Phase #2 (Section 5.3.3), offloading begins by sending a command data packet 1 from

the core to the PLANAR accelerator. This packet contains the information to program PLANAR,

including the rearrange function with the appropriate loop bounds, which depend on the number

of devices involved. After that, the core updates the corresponding RCT entry with the dense

virtual address range and offset of rearranged elements 2 . When the control logic receives

a command packet it uses a state machine to issue cache maintenance flush requests of the

sparse data 3 . This ensures PLANAR devices will access the latest version from main memory.

Finally, the control logic programs the PLANAR device to start the rearrangement 4 .

In Phase #3 (Section 5.3.4), PLANAR starts executing the rearrangement, accessing the

sparse data (@A) and writing to the dense data structure (@A′) 1 . Subsequent accesses will fill

78

PLANAR: A Programmable Accelerator for Near-Memory Data Rearrangement

a cache block with dense data 2 3 4 . The device continues executing the rearrange function,

filling dense cache blocks until the operation completes.

Figure 5.6: Execution example for a rearrangement that employs one PLANAR device.

In Phase #4 (Section 5.3.5), the synchronization phase ensures that the host core obtains

the results produced by the PLANAR device in a timely manner, while preventing the core from

accessing data that has not yet been rearranged. Note that actions in this phase can happen

in parallel with Phase #3 actions. Therefore, to achieve this synchronization, for each dense

cache block that is completely populated, a cache maintenance operation is issued to flush the

block to the memory controller (MC) 1 . This data is eventually written to main memory in

the dense data page 2 . Additionally, a synchronization packet is sent to the core to notify a

new dense block is available, updating the corresponding RCT entry offset field 3 . To prevent

the core from accessing stale data, an invalidation is sent to the cache hierarchy 4 , ensuring

the dense data will be fetched from main memory. Finally, the FIFO queue is checked for

stalled instructions to the now available rearranged cache block 5 , which would be able to

proceed. The other mechanism present in this phase is triggered when the host core issues a

load and there are in-flight rearrangements 6 . The RCT table is checked to see if the virtual

target address conflicts with an in-flight range for the executing process. If that is the case the

current offset determines if the rearranged data is ready to be consumed. If that is not the case,

the load instruction is stalled and placed into the FIFO queue 8 . Eventually, the target address

of the load instruction will be rearranged and the FIFO checked, allowing it to execute.

79

5.4 Design Space Exploration

In Phase #5 (Section 5.3.6), when the dense structure has been fully populated 1 , PLANAR

is released. A packet is sent to the host core to indicate the operation has completed 2 , which

clears the pertinent RCT entry 3 . In addition, the accelerator control logic is notified 4 and

the device suspends. Once the dense data is consumed, it is freed via a free function call.

5.4 Design Space Exploration

In this section, we perform a design space exploration to obtain the best configuration of

PLANAR. PLANAR is envisioned as a simple microcontroller with in-order execution. For this

reason, we explore the pipeline width, the data cache size, the synchronization granularity, and

the number of functional units and PLANAR devices.

1 2 4 81.00

1.02

1.04

Pipeline Width

1 2 4 8

Number of ALUs

1 2 4 8 16 32

L1D size

Figure 5.7: Normalized PLANAR design impact to performance in Spatter. Pipeline width
(left), number of functional units (center) and L1-D cache size (right). In the x-axis the pipeline

widths, number of functional units and cache size in KB.

5.4.1 Pipeline Width

Figure 5.7 (left) depicts the performance impact when changing the PLANAR pipeline width.

Results are obtained using the average of all the inputs of the Spatter benchmark normalized to

the single-issue scenario. When changing the input distance from 1 to 256 (see Section 3.2.2),

Spatter provides a wide coverage of different irregular memory access patterns. Increasing

the pipeline width from one to two provides between 2.0% and 4.0% improvements for the

different inputs (3.1% on average). Further increasing the pipeline width provides diminishing

improvements (3.9% and 4.3% on average for 4− and 8-wide pipelines, respectively). For

small input distances, Spatter shows more cache locality. Thus, having a wider pipeline width

in PLANAR provides higher performance benefits. As input distance increases, the latency of

the memory requests hides the reduced performance of a narrow pipeline width.

80

PLANAR: A Programmable Accelerator for Near-Memory Data Rearrangement

5.4.2 Number of Functional Units

Figure 5.7 (center) shows the performance impact with respect to the number of functional units

in PLANAR. Results are obtained using Spatter, normalized to one functional unit scenario.

Increasing the number of functional units provides a marginal performance benefit, reaching an

average 0.42% improvement with 8 units.

5.4.3 Cache Size

Figure 5.7 (right) depicts the performance impact with respect to L1-D cache size. Spatter

results are normalized to the 1KB scenario. In this case, increasing the data cache size

provides negligible performance benefits (0.28% on average with 32KB). This is expected as

the rearrange function has a streaming memory access pattern with nearly no temporal locality.

Only for small input distances, Spatter shows some cache locality, providing reduced benefits.

As distance increases, the cache size does not provide any performance benefit. Regarding

the L1-I cache, the rearrange function requires less than 100 instructions in the evaluated

benchmarks. Thus, it does not exceed the 1KB capacity.

1 2 4 8 16 32 640.80

0.85

0.90

0.95

1.00

Sp
ee

du
p

MatMul Meabo Spatter SpMV STRIDE AVG

Figure 5.8: Performance relative to the number of PLANAR devices (x-axis), normalized to 64.

5.4.4 Number of PLANAR Devices

Figure 5.8 shows the impact of the number of PLANAR devices to performance. Due to

hardware constraints, it is difficult for a single device to saturate the memory bandwidth,

as not many outstanding memory requests are allowed per device. Results are obtained by

81

5.4 Design Space Exploration

performing the average across all inputs for the selected applications. We limit this study to

the benchmarks that contain only a single rearrangement. This way we keep the number of

devices per rearrangement constant. Results are normalized to the 64-PLANAR device scenario,

which represents a close-to-ideal case in our simulation infrastructure. All benchmarks except

STRIDE are sensitive to the number of PLANAR devices. With a single PLANAR device,

performance degrades 9.5% on average with respect to 64 devices. Increasing the number of

devices from 1 to 2 provides a 5.1% performance improvement, while moving from 2 to 4

provides an additional 3% improvement. With 8 devices all benchmarks are already within

1.0% the performance of 64.

5.4.5 Synchronization Granularity

During the description of the design we assume the RCT table is updated after every populated

dense cache block (Section 5.3.5). However, synchronization between PLANAR and host can

be done at a coarser granularity. We analyze scenarios where the host is notified it can consume

rearranged data after 64 bytes, 4KB, and 8KB. Fine-grain synchronization lets the host consume

dense data as PLANAR rearranges it, but increases synchronization traffic. As Figure 5.9 shows,

coarser grain granularities of 4KB cause less than 1% performance slowdown on average. This

is because after the first dense chunk finishes, PLANAR and host can overlap subsequent chunk

rearrangements with compute over already rearranged chunks.

Spatter MatMul EBOX Meabo SpMV SymGS CmpMG AVG0.96

0.98

1.00

1.02

S
pe

ed
up

64B 4kB 8kB

Figure 5.9: Performance with different synchronization chunk sizes normalized to 64B.

82

PLANAR: A Programmable Accelerator for Near-Memory Data Rearrangement

5.4.6 Selected Configuration

At the device level there is no significant improvement as the hardware complexity increases.

For this reason, we choose a simple, low-power, dual issue in-order PLANAR accelerator, with

a single integer functional unit, and a 1KB L1-D cache. The selected ratio of PLANAR devices

with respect to off-chip bandwidth is one for every 4GB/s. Therefore, eight devices in our

simulated system, as further increasing the number of devices provides negligible benefits.

Finally, we chose a synchronization granularity of 4KB between PLANAR and host cores.

5.5 Evaluation

In this section, we analyze the performance impact of PLANAR. We use the applications

described in Table 3.2.2. For each application we evaluate all the listed inputs and plot the

average. We run simulations with one and eight threads to see their behavior. We also evaluate

the impact of compiler auto-vectorization using the recently proposed Scalable Vector Extension

(SVE) ISA [173]. SVE is vector length agnostic, meaning that a single binary can run on any

target vector length [15, 14]. Therefore, we evaluate a scalar binary and an SVE-enabled binary

with vector lengths of 128, 256, and 512 bits. Figure 5.10 shows speed-up for the evaluated

benchmarks normalized to the scalar baseline system without PLANAR devices (Baseline +

Scalar) for each core count. Figure 5.11 shows the average memory bandwidth usage.

0

1

2

3

4

5

6

7

8

S
pe

ed
up

no
rm

al
iz

ed
to

sc
al

ar

1c 8c
Spatter

1c 8c
MatMul

1c 8c
EBOX

1c 8c
Meabo

1c 8c
SpMV

1c 8c
SymGS

1c
STRIDE

1c 8c
CompMG

1c 8c
GMean

Baseline + Scalar
Baseline + 128 SVE

Baseline + 256 SVE
Baseline + 512 SVE

PLANAR + Scalar
PLANAR + 128 SVE

PLANAR + 256 SVE
PLANAR + 512 SVE

Figure 5.10: Speed-Ups with eight PLANAR devices for one and eight core runs. Both
normalized to Baseline + Scalar.

In Spatter, a 3.44× speed-up is achieved when using PLANAR and a single thread without

vectorization. However, benefits are input-dependent. Low distances lead to lower sparseness

83

5.5 Evaluation

0

5

10

15

20

25

30

B
W

(G
B

/s
)

1c 8c
Spatter

1c 8c
MatMul

1c 8c
EBOX

1c 8c
Meabo

1c 8c
SpMV

1c 8c
SymGS

1c
STRIDE

1c 8c
CompMG

1c 8c
GMean

Baseline + Scalar
Baseline + 128 SVE

Baseline + 256 SVE
Baseline + 512 SVE

PLANAR + Scalar
PLANAR + 128 SVE

PLANAR + 256 SVE
PLANAR + 512 SVE

Figure 5.11: Average bandwidth usage at the memory controllers with eight PLANAR devices
for one and eight cores.

and more cache locality. Higher distances affect execution time as there is a lower cache block

utilization. Results also demonstrate that the original code is not auto-vectorized due to the

irregular memory access pattern. However, PLANAR versions allow efficient auto-vectorization

as memory accesses are now contiguous. Therefore, PLANAR unlocks further performance

improvements through data-level parallelism, achieving 3.4×, 4.02× and 4.13× speed-up for

128, 256, and 512-bit SVE, respectively. Memory bandwidth is better utilized with PLANAR

as cores now bring useful dense data into their caches, while sparse accesses are done near-

memory. With eight threads, the speed-ups remain significant at 3.61× for scalar, with similar

results for the vectorized versions. In this case vectorization is not improving performance

significantly because with PLANAR we are able to saturate memory bandwidth, driving 29GB/s

out of the 32GB/s peak.

In MatMul, sparse memory accesses appear when accessing the second matrix. In this

case, PLANAR dynamically transposes one of the input matrices to create a contiguous memory

access pattern from the host core standpoint. The bigger the blocks, the higher the distance

between elements. Using multiple matrix block sizes, an average 2.31× speed-up is obtained

on a single thread. In the baseline, vectorization provides a small performance benefit of

11%, as some phases of the application can be vectorized. Using PLANAR, SVE improves

execution time as memory bandwidth is not a constraint. For instance, 512-bit SVE can drive

an additional 6.05GB/s of memory bandwidth as the same baseline configuration, translating

into a 6.70× speed-up. With eight threads, PLANAR speed-ups are 3.24× for scalar. However,

vectorization for wide vectors offers diminishing returns as memory bandwidth saturates.

84

PLANAR: A Programmable Accelerator for Near-Memory Data Rearrangement

EBOX performs a Gaussian convolution by means of a filtering approximation. Filters take

samples of the inputs to process the data. Consequently, PLANAR can be a good method to

reorganize the input data and improve performance. In particular, EBOX extracts particular

positions of an input and operates on them in two pairs (i.e., A[i] = p1*(B[-]-C[-]) + p2*(D[-]-

E[-])). We have used PLANAR to create four dense structures, one for each element in the two

pairs (i.e., B, C, D, E). As a result, we obtain a speed-up of 1.86× for scalar and up to 6.83×
for 512-bit SVE with good vector performance scaling. In the multi-threaded scenarios the

performance behavior is similar. Note that in eight thread runs PLANAR again provides better

normalized speed-up compared to single-thread - 2.37× compared to 1.86×. This means that

the overall design is well balanced in terms of compute, memory bandwidth and acceleration.

In Meabo, memory is accessed using a random indirection vector, which leads to non-

existent locality and low cache block utilization. Single-thread runs with PLANAR obtain

4.85×, 6.14×, 7.07×, and 7.67× speed-up for scalar, 128, 256, 512-bit SVE. Using a dense

structure makes a large difference in this benchmark as memory bandwidth is poorly utilized in

the baseline: due to (i) the low amount of reuse, and (ii) the small amount of memory level

parallelism the cores are able to extract, as stalls are common due to long latency misses and

contention. With PLANAR the memory bandwidth utilization almost doubles both for single

and multi-threaded scenarios, saturating it in the latter.

In SpMV and SymGS, the matrix is compressed in CSR format and the vector is accessed

sparsely, jumping from one element to the other. This vector is rearranged by PLANAR.

Performance is dependent on the vector access pattern. For this reason, the selected input

matrices that define the vector access pattern are obtained from a wide variety of scientific

domains. In SpMV the matrix is traversed forward, while in SymGS it is done forward and

backwards, requiring two rearrange tasks. On average, a 3.9× speed-up is obtained for the

scalar code on both applications. SVE 512-bit vectorization yields a 4.93× speed-up, while the

baseline cannot be efficiently vectorized by the compiler. The performance gap is larger on

eight thread runs with a 6.7× speed-up.

STRIDE is a memory-intensive application where the use of longer distances implies

requesting memory more often, since fewer elements per cache block are accessed. In this

particular benchmark, the host core and PLANAR can operate at the same time, competing

for memory bandwidth resources. We evaluate multiple inputs to study this phenomenon and

obtain an average speed-up of 3.21× in the scalar version. Even though some phases in this

benchmark are auto-vectorized in the baseline code, the phase with sparse memory accesses is

85

5.5 Evaluation

again not vectorized. For this reason, baseline reaches an improvement of 1.15× using 512-bit

SVE, while the PLANAR version obtains 5.77× for the same configuration.

Lastly, CompMG performs recursive calls that contain several calls to SpMV and SymGS.

For every CompMG call only two different rearrange tasks are required, as the rearrange task in

SpMV is the same as the first rearrange in SymGS (i.e., the forward matrix traversal). PLANAR

speed-ups are 3.8×, 3.32×, 3.74× and 4.45× for scalar, 128, 256, and 512-bit SVE. Using

eight threads we observe a better speed-up than in the single thread case, such as a 5.19× in

PLANAR with SVE 512-bit.

5.5.1 Impact to the Memory Hierarchy

Contiguous accesses to a dense data structure offer significant benefits compared to the original

sparse access pattern, such as high cache block utilization and efficient data prefetching. Next

lines demonstrate the impact PLANAR has on the memory hierarchy.

Figure 5.12 shows L1D miss reduction on host cores. The L1D is critical for the core’s

performance, and PLANAR rearrangements enable an average L1D miss reduction of 1.89× for

one core. In PLANAR, all the elements contained in a rearranged cache block are referenced

by the host core, whereas in the baseline, only one element is accessed in the worst case. The

dense structure also causes a reduction of 53% in L1D miss latency. This is due to: (i) less

touched cache blocks due to locality within a cache block, and (ii) memory access latencies

being hidden due to better prefetching. Prefetching is less effective with irregular accesses,

where data locality is difficult to exploit.

0

1

2

3

4

5

6

7

8

R
ed

uc
tio

n
no

rm
al

iz
ed

to
sc

al
ar

1c 8c
Spatter

1c 8c
MatMul

1c 8c
EBOX

1c 8c
Meabo

1c 8c
SpMV

1c 8c
SymGS

1c
STRIDE

1c 8c
CompMG

1c 8c
GMean

Baseline + Scalar
Baseline + 128 SVE

Baseline + 256 SVE
Baseline + 512 SVE

PLANAR + Scalar
PLANAR + 128 SVE

PLANAR + 256 SVE
PLANAR + 512 SVE

Figure 5.12: L1D miss reduction with 8 PLANAR devices for one and eight cores, both
normalized to baseline scalar.

86

PLANAR: A Programmable Accelerator for Near-Memory Data Rearrangement

0

1

2

3

4

5

6

7

R
ed

uc
tio

n
no

rm
al

iz
ed

to
sc

al
ar

1c 8c
Spatter

1c 8c
MatMul

1c 8c
EBOX

1c 8c
Meabo

1c 8c
SpMV

1c 8c
SymGS

1c
STRIDE

1c 8c
CompMG

1c 8c
GMean

Baseline + Scalar
Baseline + 128 SVE

Baseline + 256 SVE
Baseline + 512 SVE

PLANAR + Scalar
PLANAR + 128 SVE

PLANAR + 256 SVE
PLANAR + 512 SVE

Figure 5.13: Byte reduction in the L1D-L2 bus with 8 PLANAR for one and eight cores,
normalized to baseline scalar.

Figure 5.13 shows the data movement reduction in the L1D-L2 bus. The dense structure

enables efficient cache block utilization and reduces cache pollution. On average, there is a

1.65× data movement reduction for one core.

In terms of DRAM accesses, one of the advantages of performing DLT is that subsequent

accesses to the dense structure do not require accessing the intermediate data structure of

the indirect memory access. In the baseline, both the intermediate and sparse structures are

accessed. The latter may even have cache blocks accessed more than once, due to the significant

cache pollution. Figure 5.14 depicts the normalized number of DRAM accesses. When using

PLANAR, 1.6% of the total DRAM accesses are generated by PLANAR devices on average (up

to 9.09% in CompMG). Overall, there is an average 41.89% DRAM access reduction. This

reduction is primarily due to increased reuse, which can be observed indirectly through the

increased L1D hit rate (see Figure 5.12) and L1D to L2 bandwidth reduction (see Figure 5.13).

Despite writing the dense data structure back to memory, the actual accesses to DRAM are

reduced because of better data cache utilization and far higher reuse of cached data. Writing

data back to main memory, is of course, a compromise, however, it is one that reduces the

repeated re-arrangement calls needed by alternatives such as Impulse, it also enables the dense

data structure to be reused many times before being freed.

5.5.2 Area and Power Overhead

PLANAR devices can be compared to the Arm Cortex M0+ microprocessor, which is augmented

with a 64-bit ALU (as discussed in Section 5.4). Using public data for an equivalent M0+ at

87

5.5 Evaluation

0.0

0.5

1.0

N
or

m
.

M
em

.
A

cc
.

B P
Spatter

B P
MatMul

B P
EBOX

B P
Meabo

B P
SpMV

B P
SymGS

B P
STRIDE

B P
CompMG

B P
AVG

CPU PLANAR

Figure 5.14: Normalized DRAM accesses for baseline (B) and PLANAR (P) on 8 cores with
scalar codes.

40LP [13], the dynamic power is given as 5.3µW/MHz and the floor planned area as .008mm2.

To estimate the area of a single microcontroller, we scale these numbers, considering fin pitch,

gate pitch, and interconnect pitch, using data from [57, 199, 196, 195, 18, 51] to arrive at a 12×
area reduction when moving from 40nm to 7nm and an estimated reduction in power of 10×.

Therefore, a system-on-chip could place 8 PLANAR devices, with their caches, using < .25mm2

area of floor plan on chip. Equivalently, energy for this configuration would be < .015W/GHz.

We also estimate the area of the out-of-order core described in Table 3.2. We start from a

similar production core at 20nm [127] and scale it to 7nm, which arrives at a ≈ 4mm2 in area.

As a result, 8 PLANAR devices represent a 6.25% of the area of an out-of-order core. Similarly,

8 PLANAR devices represent a 1% of the dynamic power of an out-of-order core. Both results

assume the devices run at 2GHz.

To estimate the dynamic energy and power consumption for our PLANAR proposal we

used McPAT 1.3 [121] with the enhancements proposed by Xi et al. [198]. We performed this

estimation, using a process technology node of 22nm, a supply voltage of 0.8V, and the default

clock gating scheme. Figure 5.15 depicts the dynamic energy reduction for the applications

with eight host cores. Overall, dynamic energy is reduced by more than 40% and up to 70% in

Meabo. Energy savings are mainly due to reduced data movement across the memory hierarchy

and reduced execution time (speed-up) as shown in Figure 5.10.

Figure 5.16 depicts the dynamic energy breakdown for the same applications. Compared

to the baseline, PLANAR spends less DRAM energy. As explained in Section 5.5.1, PLANAR

creates a dense structure and makes the applications more compute intensive form the host

standpoint, as average data access latencies are lower.

88

PLANAR: A Programmable Accelerator for Near-Memory Data Rearrangement

The total dynamic power is higher in PLANAR. On average, the dynamic power increases

with PLANAR by 2.41× in the cores, by 1.41× in the memory controller, and by 1.14× in

DRAM. This is due to an increase in terms of activity per unit of time. However, taking

into account the performance speed-ups of PLANAR, the overall energy spent is significantly

reduced. As previously discussed, static power is barely affected when adding PLANAR.

0.0

0.5

1.0

R
ed

uc
tio

n

B P
Spatter

B P
MatMul

B P
EBOX

B P
Meabo

B P
SpMV

B P
SymGS

B P
CmpMG

Cores PLANAR NOC L2 MC DRAM

Figure 5.15: Dynamic energy reduction baseline (B) vs PLANAR (P) in scalar applications on
eight cores.

0.0

0.5

1.0

B
re

ak
do

w
n

B P
Spatter

B P
MatMul

B P
EBOX

B P
Meabo

B P
SpMV

B P
SymGS

B P
CmpMG

Cores PLANAR NOC L2 MC DRAM

Figure 5.16: Dynamic energy breakdown baseline (B) vs PLANAR (P) in scalar applications on
eight cores.

5.5.3 Comparison to Other Proposals

We compare PLANAR to Impulse [206]. Impulse is a hardware approach that creates a dense

structure out of a sparse one. It performs data reordering in the memory controller as the

host core accesses memory belonging to a shadow address space, which must be contiguous

in physical memory. Thus, Impulse rearranges data just in time, not like PLANAR which is

capable of rearranging data before-hand as the host is executing other code regions. Therefore,

Impulse cannot hide the rearrangement latency. Moreover, in case the dense data is evicted and

89

5.5 Evaluation

requested by the host again, Impulse will perform a new rearrangement, as it cannot assume

that the original and new rearrage functions are the same. Finally, in a design with multiple

memory controllers, the rearrange functions of different Impulse instances are not synchronized,

limiting scalability.

Figure 5.17 depicts the performance comparison between PLANAR and Impulse for SpMV.

PLANAR obtains an average 2.12× speed-up compared to Impulse. This is due to: (i) higher

MLP of data rearrangements in PLANAR; (ii) more data reuse; and (iii) less data movement in

the cache hierarchy as dense data is created just once. For instance, snoop traffic from the core

to the L2 cache is 21× higher in Impulse.

A B C D E F G H AVG
0

1

2

3

4

S
pe

ed
up

Impulse PLANAR

Figure 5.17: Performance of Impulse vs PLANAR in SpMV. In the x-axis, the matrix inputs
from Table 3.2.2.

In addition, we compare to a more recent DLT accelerator proposal by Hoang et al. [89].

The DLT accelerator is tightly coupled to the host core, whereas PLANAR is connected at the

memory controller level. Their proposal can bypass the cache hierarchy and directly access

main memory, as PLANAR does, but requires an additional data bus. The accelerator does not

allow the host to consume the dense data as the device rearranges it, and memory accesses are

blocked on the host during DLT operation to maintain data consistency. Moreover, it supports a

maximum of four parallel operations, contrary to PLANAR, where more devices can be added

to the system, enabling additional parallelism.

Figure 5.18 depicts the performance comparison between PLANAR and the DLT accelerator

for several benchmarks. We employ up to 8 PLANAR devices and also allow up to 8 simul-

taneous operations on the DLT accelerator. On average, PLANAR obtains a 2.23× speed-up

compared to the DLT accelerator, with a maximum of 5.82× in SymGS. This is due to two

main reasons: in PLANAR (i) the host is not blocked while devices are operating, as PLANAR

90

PLANAR: A Programmable Accelerator for Near-Memory Data Rearrangement

effectively decouples rearrange and compute, and (ii) the host can consume dense data as it is

rearranged, which hides rearrangement latencies.

Spatter MatMul EBOX Meabo SpMV SymGS CmpMG AVG
0

2

4

6

S
pe

ed
up

4 DLT Acc 8 DLT Acc 4 PLANAR 8 PLANAR

Figure 5.18: Performance of the DLT accelerator vs PLANAR for multiple applications.

5.6 Conclusions

Irregular memory accesses represent a challenge for current and future architectures. In this

work, we present PLANAR, a programmable near-memory accelerator that rearranges sparse

data into a dense representation. Contrary to prior proposals, the design of PLANAR scales

with multi-core systems, hides operation latency by performing non-blocking fine-grain data

rearrangements, and eases programmability by supporting virtual memory and conventional

memory allocation mechanisms. Moreover, accesses to the dense structure expose locality,

favouring prefetching and enabling efficient vectorization in applications with irregular memory

accesses. No prior solution provides all such properties at once.

Our evaluation shows that PLANAR improves cache block utilization and reduces on-chip

data movement. As a result, PLANAR improves performance for single-threaded runs by 3.28×
and 5.56×, and for multi-threaded executions by 4.58× and 5.71×, for scalar and compiler-

vectorized codes. Finally, we compare PLANAR to two state-of-the-art proposals, achieving

2.12× and 2.23× average performance improvements.

91

Chapter 6
Near Memory Compute Engine

6.1 Introduction

This chapter still targets the problems derived from irregular memory accesses described in

Chapter 5. Processing In Memory (PIM) has been recently proposed as an alternative to deal

with this issue. The idea relies on placing computing resources close to where the data resides.

Recent processing in memory proposals are summarized by Zhang et al. [204] and Balasub-

ramonian et al. [23]. In this field, most approaches requiere a special memory technology

(e.g., 3D-stacking) to place the compute logic in the memory chip. Some popular examples

are the Active Memory Cube [138] and Tesseract [2], which rely on the Hybrid Memory Cube

(HMC) [144]. Moreover, most PIM proposals operate with physical memory rather than with

virtual memory, and require a high programming effort to use them, a phenomenon known as

the Programmability Wall [86].

In this chapter, we present a pRogrammable nEar Memory cOmpuTe Engine (REMOTE),

a novel hardware approach, located on-chip side and connected to the memory controller,

which performs computation outside of the memory hierarchy and closer to where the data

resides. REMOTE devices share the coherent network with the host processor. They operate

with virtual memory and do not require contiguous physical memory allocation or uncached

memory regions, as most prior proposals do [136, 62]. Contrary to many PIM proposals, our

approach can be used on any system, no matter the memory technology. REMOTE devices

are programmed in the application by means of pragmas [52] and used depending on their

availability as mediated by the runtime system [185, 43].

This chapter makes the following contributions:

• The design, including area and power estimations of REMOTE, a programmable near-memory

accelerator. We describe the functional changes to incorporate REMOTE into a system-on-

93

6.2 Motivation

chip with out-of-order cores. The programming interface and the changes to the runtime

system are explained in detail. REMOTE is designed to work and scale with multi-core

systems. It operates with virtual memory and it does not require custom memory allocators

or uncached memory regions, as many existing proposals do.

• A comprehensive evaluation, including performance and energy results, shows that REMOTE

is a good candidate to execute graph applications as it provides an average speed-up of 6.33×
and 9.76×, with 16 and 32 accelerators, whereas the baseline reaches 5.76× with 8 out-of-

order cores. REMOTE is also a good alternative to run HPC applications, outperforming the

baseline in particular configurations.

• A profiling of the applications that benefit more from the REMOTE devices. The main aim is

that the runtime system dynamically detects and offloads suitable parallel regions or tasks to

REMOTE devices.

• A detailed comparison to three state-of-the-art hardware proposals. In particular, we compare

to the Smart Memory Cube (SMC) [21], to the Programmable Prefetcher [3] and to a

bigLITTLE configuration [186]. Our comparison shows that 8 REMOTE devices outperform

the SMC by 1.41×, the Programmable Prefetcher by 1.82×, and 32 accelerators outperform

a (8+16) bigLITTLE configuration by 1.29×.

6.2 Motivation

To explain the limitations and consequences of irregular memory access patterns, and the

advantages of doing so with a mechanism such as REMOTE, we have chosen a case study

using the PageRank benchmark. PageRank is a memory-intensive benchmark that traverses a

graph and performs a simple computation on the vertices. In the original code (see Figure 6.1),

line 11 represents a sparse memory access. The memory access pattern is governed by the

“vit→edges()” array which depends on the graph connectivity.

We have executed this application in a system with 8 out-of-order cores, a shared memory

hierarchy of three cache levels and an input that exceeds the capacity of the last-level cache

(LLC). This execution takes 0.534 seconds, presents a 94.16% LLC missrate and has 125.27

misses per kilo-instruction (MPKI). Therefore, this application is dominated by data movement,

as cores spend most part of their execution requesting data rather than performing useful

computation. A metric that clearly demostrates this phenomenon is the IPC, that ranges

between 0.0356 and 0.0425 out of 4 for all the cores. Moreover, prefetchers are inefficient

94

Near Memory Compute Engine

1
2 # pragma omp p a r a l l e l {
3
4 f o r (u n s i g n e d v i d = s t a r t ; v id <end ; v i d ++){
5 v e r t e x _ i t e r a t o r v i t = g . f i n d _ v e r t e x (v i d) ;
6 f l o a t p r_push = damp *
7 v i t > p r o p e r t y () . o l d _ p r / (do ub l e) v i t > e d g e s _ s i z e () ;
8 f o r (i t e r a t o r e i t = v i t > e d g e s _ b e g i n () ;
9 e i t != v i t > edges_end () ;

10 e i t ++){
11 u i n t 6 4 _ t d e s t = e i t > t a r g e t () ;
12 v e r t e x _ i t e r a t o r d v i t = g . f i n d _ v e r t e x (d e s t) ;
13 # pragma omp a to mi c
14 d v i t > p r o p e r t y () . p r += pr_push ;
15 }
16 }
17
18 }
19

Figure 6.1: Original PageRank code.

as there is not a predictable access pattern and they contribute to the existing cache block

pollution.

Hardware mechanisms such as REMOTE, a simple in-order core connected to the memory

controller, are key in this type of workloads. REMOTE devices operate closer to main mem-

ory taking advantage from the higher memory bandwidth. Figure 6.2 shows the PageRank

benchmark adapted for REMOTE. The only difference is the “target(REMOTE)” clause in

the pragma. This information makes the runtime system schedule this parallel region to the

REMOTE devices, as they are a good candidate to execute this code instead of the host cores.

We have executed this PageRank version on a system with up to 32 REMOTE devices. In this

case, the execution takes 0.254 seconds (speedup of 2.102×) and reduces the number of bytes

transferred from the cores to main memory by 1.46×.

As a result, we may conclude that REMOTE accelerators are a good alternative for this type

of benchmarks, as they introduce a higher parallelism, lead to performance benefits and they

are more energy efficient than the host cores.

Table 6.1 shows a comparison of the REMOTE proposal with other approaches from the

state of the art. Contrary to them, REMOTE is a general purpose solution, as it targets any

application suffering from irregular memory access patterns. It does not require a particular

95

6.3 Proposal

system distribution or a specific memory technology. Moreover, it is easy to program and

the tasks are scheduled between the accelerators and the host cores by the runtime system as

determined by the programmer or compiler. Finally, to demonstrate the potential of REMOTE,

in Section 6.5 we perform a quantitative comparison with three hardware approaches from the

state of the art.

1
2 # pragma omp p a r a l l e l t a r g e t (REMOTE) {
3
4 f o r (u n s i g n e d v i d = s t a r t ; v id <end ; v i d ++){
5 v e r t e x _ i t e r a t o r v i t = g . f i n d _ v e r t e x (v i d) ;
6 f l o a t p r_push = damp *
7 v i t > p r o p e r t y () . o l d _ p r / (do ub l e) v i t > e d g e s _ s i z e () ;
8 f o r (i t e r a t o r e i t = v i t > e d g e s _ b e g i n () ;
9 e i t != v i t > edges_end () ; e i t ++){

10 u i n t 6 4 _ t d e s t = e i t > t a r g e t () ;
11 v e r t e x _ i t e r a t o r d v i t = g . f i n d _ v e r t e x (d e s t) ;
12 # pragma omp a to mi c
13 d v i t > p r o p e r t y () . p r += pr_push ;
14 }
15 }
16
17 }
18

Figure 6.2: REMOTE version of the PageRank code.

6.3 Proposal

Many applications suffer from irregular memory access patterns. In such applications, the

memory subsystem is poorly utilized, leading to latency and bandwidth bottlenecks because of

a low cache block utilization [28] caused by dispersed memory accesses that lead to high (but

underutilized) traffic on data transfer networks (e.g., coherence bus, interconnects) [129].

In this section we describe the design of the REMOTE devices, a novel hardware approach

which targets these situations. We also explain the required modifications to the application

and the runtime system, in order to program and schedule workloads to the accelerators.

96

Near Memory Compute Engine

Table 6.1: Comparison with state-of-the-art proposals.

Features Pref. [202, 99] Prog. Pref. [3] SPiDRE [29] Acc. graph. [142]

General purpose ✓ ✓ ✓ ✗

No specific system/tech ✓ ✓ ✓ ✓

Easy to program ✓ ✗ ✗ ✗

Reduces data movement ✗ ✗ ✓ ✓

Dynamic scheduling - ✗ ✗ ✗

Host computes ✓ ✓ ✓ ✗

Quantit. comparison to SoA ✓ ✓ ✗ ✗

Features Livia [124] Tesseract [2] GraphPIM [136] TOM [90] REMOTE

General purpose ✓ ✗ ✗ ✓ ✓

No specific system/tech ✗ ✗ ✗ ✗ ✓

Easy to program ✗ ✗ ✓ ✗ ✓

Reduces data movement ✓ ✓ ✓ ✓ ✓

Dynamic scheduling ✓ ✗ ✗ ✓ ✓

Host computes Tasks split ✗ ✗ ✗ Tasks split
Quantit. comparison to SoA ✓ ✗ ✗ ✗ ✓

6.3.1 The REMOTE Device

Figure 5.4 shows the overall architecture of our design. It depicts a system with several

high-performance cores sharing a three-level cache hierarchy. We add REMOTE devices and

supporting hardware to perform address translations. In particular, we connect an Input-Output

Memory Management Unit (IOMMU), which provides virtual-to-physical address translation

for the direct memory accesses (DMA) that REMOTE performs. The REMOTE units are a set

of in-order, low power, programmable cores attached to the memory controller that share the

same coherent network with the cores. They are responsible for executing kernels dominated

by irregular memory accesses.

The runtime system is in charge of scheduling codes to the REMOTE devices, which are

marked as good offloading candidates by the compiler or programmer in the application. The

REMOTE units run until completion of the kernels, which are typically only a few lines of code.

During execution, they access directly the main memory skipping the cache hierarchy which is

not useful in this type of applications. Finally, they sleep until the runtime system schedules

additional tasks on them.

Attached to every REMOTE unit there is a small instruction cache and a small data cache.

The amount of code footprint required for most applications is small, so instruction cache size

requirements are minor: in the benchmarks described in Section 3.2 a maximum of 1 KB is

fetched from main memory by the devices for the entirety of each application. The data cache

is also small as REMOTE is aimed at applications with an irregular memory access pattern.

97

6.3 Proposal
M

em
o

ry

Coherent Interconnect

Page #17 Page #32

L3 Slice MC µCachesL3 Slice….. MC…..

µCoreO
n

 c
h

ip

Page #3

REMOTE

Page #40

L1

Core

µCaches

µCore

REMOTEIOMMU

L2

L1L1

Core

Figure 6.3: System overview with two REMOTE devices.

However, these applications also contain some small auxiliary structures that have spatial

locality so, therefore, a modest data cache can make a large difference in these situations.

Figure 6.3 shows a system with two REMOTE devices. In this case, the application accesses

data from memory pages 3, 17, 32 and 40. This represents an irregular access pattern, as only

one element of these pages is accessed. The only exception is page 32, which is accessed twice

to obtain two elements in the same cache block. In particular, if we consider 64-bit elements,

12.5% of the cache blocks are used in pages 3, 17, and 40, and 25% in page 32. Moreover,

if both elements in page 32 are not accessed in a small period of time, it is possible that the

cache block containing them is evicted, requiring a new memory access. In these situations: (i)

prefetching schemes do not work properly, (ii) there is a low memory bandwidth utilization,

and (iii) there is a high and under utilized data movement (i.e., cache pollution). REMOTE is

a good alternative in these scenarios, as it operates closer to main memory, taking advantage

of lower access latencies and not causing an elevated traffic on the chip. Moreover, due to its

simple and efficient design, multiple devices may operate in parallel, exploiting a higher level

of parallelism than the host cores.

6.3.1.1 Design

In order to obtain the best hardware design for REMOTE, Section 6.5 performs a detailed design

space exploration. Finally, REMOTE results into an in-order core with a 1-width stage pipeline.

We also include a small TLB of 8 entries to perform fast virtual-to-physical memory address

98

Near Memory Compute Engine

translations. The final REMOTE hardware configuration is really simple and energy efficient,

and it is summarized in Table 3.3.

Due to compatibility issues, the REMOTE units must execute the same ISA than the host

cores. However, some ISAs provide a subset of instructions that have similar functionality but

occupy less space, making the pipeline simpler, than the original ISA (e.g., Thumb in Arm [9]).

The compiler may generate Thumb instructions as it identifies, or the programmer marks, a

code region as suitable for REMOTE.

6.3.1.2 Virtual Memory Support

The REMOTE devices are designed to have virtual memory support. For this reason, we

include an Input-Output Memory Management Unit (IOMMU) [8] that connects DMA devices

that directly access main memory. It allows peripheral devices to use virtual memory using

conventional memory allocation functions (i.e., contiguous physical memory not needed).

Moreover, the IOMMU offers memory protection from malicious devices.

6.3.1.3 Operating System

REMOTE units are visible to the operating system, but the OS cannot schedule processes to

them unless it is explicitly marked in the application code either by the programmer or compiler.

In the event of a page table walk or a page fault, the IOMMU takes over and makes the host

core perform the required accesses to the kernel. In these situations, the host cores perform a

much faster context switch and kernel code execution than the REMOTE units due to a more

complex hardware design. Thus, the REMOTE devices do not require privileged instructions.

6.3.1.4 Hardware Requirements

We perform an area and a power estimation of our REMOTE proposal using McPAT v1.3 [121]

with the enhancements proposed by Xi et al. [198]. We perform this estimation, using a

process technology node of 22nm, a supply voltage of 0.8V, and the default clock gating

scheme. In our estimation, the area of a single REMOTE device corresponds to the 26.64% of

an out-of-order core and the power of a single REMOTE device corresponds to the 4.97% of

an out-of-order core. We also employ McPAT to obtain the total energy consumption of the

hardware configuration listed in Table 3.3 when executing all the applications from Table 3.6.

It is described in Section 6.5.

99

6.3 Proposal

6.3.2 Changes to the Application

Our current implementation requires the programmer to annotate the code regions with irregular

memory accesses, although future versions could resort to the compiler to do so. In particular,

we conceive the REMOTE devices to be programmed through a shared memory programming

model, such as OpenMP [52] or OmpSs [63]. In these scenarios, the programmer writes

sequential code and adds annotations to define a parallel region to be executed by several

threads, or to define tasks which are executed asynchronously following the synchronization

rules defined by the dependences.

In order to program the REMOTE devices, the programmer just needs to add “target(REMOTE)”

to the “#pragma omp parallel” clause or to the “#pragma omp task depend(in/out/inout)” clause.

In the first case, the parallel region will be executed simultaneously by all the available REMOTE

devices and in the second case, a task will be executed by one REMOTE unit. Our evaluation in

Section 6.5 assumes that, in both cases, the code is executed in the accelerators, waiting for

them if none is available. We do not consider executing a code targeting REMOTE in the host

cores if all the devices are busy and any host core is idle. This is left to future work.

6.3.3 Changes to the Runtime System

We modified the Nanos++ runtime system [63] to perform kernel scheduling to the REMOTE

devices. We believe these changes could be extended to any runtime system supporting a shared

memory programming model. This process involves:

(1) To modify the software thread class to include a “isREMOTE” variable to differenciate

host core software threads from REMOTE software threads.

(2) To include a new option to specify the total number of REMOTE accelerators in the

system.

(3) To create a new class for REMOTE devices, similar to the class of the host cores, that

binds software REMOTE threads to hardware REMOTE threads.

(4) To modify the work descriptor class with a new variable which specifies whether tasks

are suitable for the host core threads or for the REMOTE threads. This variable is true if the

“target(REMOTE)” clause is specified it the application, or false otherwise.

(5) To modify any of the existing scheduling policies and to add a new ready queue for the

REMOTE threads. Once the task dependencies are freed, any task will be moved to any of these

queues, depending on its work descriptor, and the host or REMOTE threads will pick it to be

executed.

100

Near Memory Compute Engine

W
o

rk
er

 t
h

re
ad

s

Task dependence graph

Ready Task Pool

host queue REMOTE queue

Figure 6.4: Nanos++ task flow over runtime structures with the changes to add REMOTE.

Figure 6.4 shows a scheme of the task flow where each circle represents a task. Each circle

color is associated with a task state: yellow for a task being created or a submitted task, green

for a ready task and blue for a finished task. First, a thread pushes the created tasks into the task

dependence graph to determine the task order. Then, other threads “push” the finalized tasks

into the task dependence graph to notify the successor tasks. In addition, this action removes

the finished tasks from the graph and adds the tasks that become ready into the ready task pool.

Ready tasks may be candidates for the host or REMOTE threads. Finally, the worker threads

(host in green or REMOTE threads in red) try to acquire ready tasks from the ready tasks pool

to execute them.

6.4 Design Space Exploration

In this section, we perform a design space exploration to obtain the best hardware configuration

for REMOTE. REMOTE is envisioned as a simple core with in-order execution. For this reason,

we study the impact to performance of the pipeline width, the number and the latency of the

functional units and the clock frequency of the REMOTE devices.

6.4.1 Pipeline width

Figure 6.5 depicts the performance impact when doubling the REMOTE pipeline width and

scaling the internal core resources. This means that a 1-width stage pipeline duplicates the

internal hardware (i.e., doubles the buffers size in each pipeline stage) when moving to a

2-width stage pipeline. It is done to avoid bottlenecks during operation. In a 2-width stage

101

6.4 Design Space Exploration

pipeline every stage may execute two instructions simultaneously. Results are normalized to a

scenario where the pipeline width of the accelerators is 1. Results demostrate that the pipeline

width is not fundamental to achieve a good performance benefit in REMOTE executions. The

highest benefit is 9.97% in RandAcc and the average is 1.62%.

BFS

pageRank
kC

ore

graphCol

sh
ortP

ath

co
nComp

degrC
entr

randAcc

hist
ogram

meabo
PIC

sp
atte

r
SpMV

Sym
GS

AVG
GPH

AVG
HPC

AVG
0.95

1.00

1.05

1.10

R
at

io

1x 2x

Figure 6.5: Impact of REMOTE’s pipeline width (1 and 2) to performance. Results normalized
to a pipeline of width one. In x-axis multiple graph and HPC bechmarks, including average

numbers.

6.4.2 Number of functional units

Figure 6.6 shows the impact of the number of functional units in REMOTE to performance.

In this case, we simulate all the benchmarks with up to 4 functional units and normalize the

results to 1 functional unit. The functional units support integer and floating-point operations,

including multiply and divisions. The benchmarks employed in our evaluation perform this

type of operations near memory. Performance gains are higher on HPC benchmarks (up to

23.58% in Spatter and average of 9.12%, with 4 units), as the arithmetic intensity is higher

than in graph applications (up to 7.83% in PageRank and average of 4%, with 4 units).

6.4.3 Latency of functional units

Figure 6.7 shows the performance impact with respect to instruction latency. In particular, the

latencies are multiplied by 1×, 2× and 4×. In applications domained by irregular memory

accesses, the main bottleneck corresponds to the memory access latency. This study identifies

how much we can increase the instruction latency, saving energy, without affecting performance.

When it comes to graph applications, this feature does not affect much, as the arithmetic

intensity is low. For example, the highest performance degradation is 1.14% for conComp

102

Near Memory Compute Engine

BFS

pageRank
kC

ore

graphCol

sh
ortP

ath

co
nComp

degrC
entr

randAcc

hist
ogram

meabo
PIC

sp
atte

r
SpMV

Sym
GS

AVG
GPH

AVG
HPC

AVG
0.9

1.0

1.1

1.2

1.3

R
at

io

1 2 4

Figure 6.6: Impact of REMOTE’s functional units (1, 2 and 4) to performance. Results
normalized to 1 functional unit. In x-axis multiple graph and HPC bechmarks, including

average numbers.

when latency is multiplied by 4×, while the average slowdowns are negligible. When it comes

to HPC applications, the highest slowdown is 5.66% for histogram when latency is multiplied

by 4×, the average result reaches 1.3% with a 4× latency. These results demonstrate that, for

applications with irregular memory accesses, fast functional units are not fundamental to obtain

performance gains and their latency can be increased to reduce area and power in REMOTE.

BFS

pageRank
kC

ore

graphCol

sh
ortP

ath

co
nComp

degrC
entr

randAcc

hist
ogram

meabo
PIC

sp
atte

r
SpMV

Sym
GS

AVG
GPH

AVG
HPC

AVG
0.92

0.94

0.96

0.98

1.00

R
at

io

1 2 4

Figure 6.7: Impact of the latency of REMOTE’s functional units (1×, 2× and 4×) to
performance. Results normalized to 1× functional unit. In x-axis multiple graph and HPC

bechmarks, including average numbers.

6.4.4 Frequency

Figure 6.8 shows the impact of the frequency of the devices to performance. In this case, we

consider frequencies of 1, 2 and 4GHz. Results are normalized to 1GHz. Results are similar in

graph (5.7% benefits at 2GHz and 9.67% benefits at 4GHz) and in the HPC applications (7%

103

6.5 Evaluation

benefits at 2GHz and 10.56% benefits at 4GHz). We conclude that increasing the frequency

does not translate into linear performance benefits.

BFS

pageRank
kC

ore

graphCol

sh
ortP

ath

co
nComp

degrC
entr

randAcc

hist
ogram

meabo
PIC

sp
atte

r
SpMV

Sym
GS

AVG
GPH

AVG
HPC

AVG
0.95

1.00

1.05

1.10

1.15

R
at

io

1 2 4

Figure 6.8: Impact of REMOTE’s frequency (1, 2 and 4GHz) to performance. Results
normalized to 1GHz. In x-axis multiple graph and HPC bechmarks, including average

numbers.

6.4.5 Selected configuration

After doing the previous design explorations, we have chosen the configuration that provides

the best performance at the optimal energy cost. In particular, we have chosen a 1-width

REMOTE device with 2 functional units at a 2× latency, running at 2GHz.

6.5 Evaluation

6.5.1 Profiling of the Applications

Next, we profile the applications to see how REMOTE may improve their performance depending

on their behavior.

Figure 6.9 shows the LLC missrate for several applications. We can observe that almost

all applications present large missrates above 90%. However, as depicted in Figure 6.10,

graph benchmarks present a much higher MPKI ratio when compared to HPC benchmarks,

meaning that their execution is dominated by main memory accesses. On the other hand, HPC

applications have higher arithmetic intensity (i.e., 8.55× higher, as shown in Figure 6.11).

Therefore, HPC applications can take further advantage from agressive out-of-order cores,

lowering potential speed-ups when using REMOTE devices.

104

Near Memory Compute Engine

Overall, these three factors (i.e., LLC missrate, MPKI rate and arithmetic intensity) are key

to consider REMOTE devices as good candidates for the execution of these applications. In the

next section, we evaluate the benefits in performance and energy when using REMOTE.

BFS

pageRank
kC

ore

graphCol

sh
ortP

ath

co
nComp

degrC
entr

randAcc

hist
ogram

meabo
PIC

sp
atte

r
SpMV

Sym
GS

AVG
GPH

AVG
HPC

AVG
0.0

0.2

0.4

0.6

0.8

1.0

LL
C

m
is

sr
at

e

Figure 6.9: Missrate in the last-level cache. In x-axis multiple graph and HPC bechmarks,
including average numbers.

BFS

pageRank
kC

ore

graphCol

sh
ortP

ath

co
nComp

degrC
entr

randAcc

hist
ogram

meabo
PIC

sp
atte

r
SpMV

Sym
GS

AVG
GPH

AVG
HPC

AVG
0

50

100

150

200

250

300

M
is

se
s

pe
rK

ilo
In

st
ru

ct
io

ns
(M

P
K

I)

Figure 6.10: Misses Per Kilo Instruction (MPKI). In x-axis multiple graph and HPC
bechmarks, including average numbers.

6.5.2 Results with REMOTE

Next, we show the results of executing the previously described benchmarks on REMOTE

compared to the baseline.

On one hand, Figure 6.12 (up) shows the speed-ups of executing the applications either

on the host cores or on the REMOTE devices. On average, the accelerators outperform the

execution on 8 out-of-order cores when using more than 8 devices. 8 out-of-order cores obtain

105

6.5 Evaluation

BFS

pageRank
kC

ore

graphCol

sh
ortP

ath

co
nComp

degrC
entr

randAcc

hist
ogram

meabo
PIC

sp
atte

r
SpMV

Sym
GS

AVG
GPH

AVG
HPC

AVG
0.00

0.25

0.50

0.75

1.00

1.25

1.50

A
rit

hm
et

ic
in

st
ru

ct
io

ns
pe

rs
ec

on
d ×109

Figure 6.11: Arithmetic intensity. In x-axis multiple graph and HPC bechmarks, including
average numbers.

a speed-up of 5.76×, while REMOTE obtains speed-ups of 6.33× and 9.77× with 16 and 32

devices, respectively. Therefore, in graph applications, REMOTE has a positive impact as it

outperforms the baseline no matter the number of host cores and it does not get affected by

scalability issues.

BFS pageRank kCore graphCol shortPath conComp degrCentr AVG
0

5

10

15

S
pe

ed
up

1 Out-of-Order Core
2 Out-of-Order Core

4 Out-of-Order Core
8 Out-of-Order Core

1 REMOTE

2 REMOTE

4 REMOTE

8 REMOTE

16 REMOTE

32 REMOTE

randAcc histogram meabo PIC spatter SpMV SymGS AVG
0

2

4

6

8

S
pe

ed
up

Figure 6.12: Speed-Up of graph (up) and HPC (down) benchmarks executed on the baseline
and on REMOTE. Results normalized to 1 out-of-order core. In x-axis multiple graph

benchmarks, including average numbers.

On the other hand, Figure 6.12 (down) shows the same results for HPC applications. In

this case, the benchmarks contain more data structures that exhibit memory locality, and thus,

they can take advantage from the cache hierarchy. Moreover, as depicted in Figure 6.11, HPC

benchmarks have a higher arithmetic intensity than graph applications. In these situations, the

complex out-of-order pipeline design from the host cores performs well, whereas the REMOTE

106

Near Memory Compute Engine

devices have a simple in-order micro-architecture that cannot extract available ILP. On average,

8 REMOTE units outperform 1 host core by 22.4% and 16 devices outperform 2 host cores by

11.56%. With 32 REMOTE devices, scalability issues appear in several applications and 8 host

cores perform better. Consequently, in HPC applications, REMOTE should only be used when

there are not enough host cores and there are many accelerators available in the system. For

instance, there are several combinations where REMOTE outperforms the baseline: in RandAcc,

4 devices are a 13.8% faster than 1 host core and 8 devices are a 9.63% faster than 2 host cores.

In Spatter, 4 accelerators achieve the same performance as 1 host core and 8 devices are a 59%

faster than 2 host cores. RandAcc and Spatter do not benefit from data locality in the cache

hierarchy and that is the reason why the REMOTE outperforms the baseline. When it comes to

the remaining HPC benchmarks, the baseline does benefit from data locality and mechanisms

such as prefetching make it perform better than REMOTE. However, increasing the number of

accelerators until a large value makes REMOTE outperform the baseline. For example, in Hist,

16 accelerators are a 15.9% faster than 1 host core and 32 are a 24.7% faster than 2. Despite

the performance benefits, area and power constraints makes us select the baseline as a better

candidate in these scenarios.

In terms of energy, Figure 6.13 shows the energy benefits when using the REMOTE devices.

In particular, each bar contains dynamic numbers relative to 8 out-of-order host cores both for

graph and HPC benchmarks.

0.0

0.5

1.0

Dy
n

En
er

gy
 R

ed
uc

tio
n

8c 8r 16r 32r

BFS
8c 8r 16r 32r

pageRank
8c 8r 16r 32r

kCore
8c 8r 16r 32r

graphCol
8c 8r 16r 32r

shortPath
8c 8r 16r 32r

conComp
8c 8r 16r 32r

degrCentr
8c 8r 16r 32r

AVG

Cores NOC MC

0.00

0.25

0.50

0.75

1.00

Dy
n

En
er

gy
 R

ed
uc

tio
n

8c 8r 16r 32r

randAcc
8c 8r 16r 32r

histogram
8c 8r 16r 32r

meabo
8c 8r 16r 32r

PIC
8c 8r 16r 32r

spatter
8c 8r 16r 32r

SPMV
8c 8r 16r 32r

SYMGS
8c 8r 16r 32r

AVG

Figure 6.13: Relative dynamic energy of graph (up) and HPC (down) benchmarks executed on
the baseline with 8 out-of-order cores (“8c”) and on 8, 16 and 32 REMOTE (“8r”, “16r”, “32r”).
Results normalized to 8 out-of-order cores. In x-axis several graph benchmarks with average

numbers.

In graph applications the dynamic energy reductions are, on average, 62.5% for 8 devices,

69.06% for 16 devices and 71.1% for 32 devices compared to 8 host cores. These applications

107

6.5 Evaluation

do not suffer in terms of performance scaling when increasing the number of accelerators, as

shown in Figure 6.12 (up). In HPC benchmarks the dynamic energy reductions are, on average,

52% for 8 devices, 50% for 16 devices and 34.6% for 32 devices. In HPC applications, the

scalability issues which appear with 16 and 32 devices in certain applications (e.g., randAcc,

PIC in Figure 6.12 (down)), prevent higher dynamic energy reductions.

In graph and HPC benchmarks, energy reductions when using REMOTE configurations

comes from employing simpler hardware to perform the computation, which in turn is more

performant for graph applications. The NOC represents less than 1% of the total dynamic

energy for all the applications. The core energy is also reduced. It represents the 80.98% of the

total dynamic energy with 8 host cores and it is reduced to 10.03% with 32 REMOTE devices

in HPC benchmarks. Finally, the memory controller represents most of the dynamic energy

consumption, ranging from 88.8% to 95.11% overall in all the applications.

6.5.3 Impact to the Memory Hierarchy

BFS pageRank kCore graphCol shortPath conComp degrCentr randAcc histogram meabo PIC spatter SpMV SymGS AVG GPH AVG HPC AVG
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

AV
G

m
is

s
la

te
nc

y
re

du
ct

io
n

Figure 6.14: Average miss latency reduction, normalized to the baseline, when executing the
applications on REMOTE. In x-axis multiple graph and HPC benchmarks, including average

numbers.

Since REMOTE devices operate near memory, the number levels of the memory hierarchy

that data has to traverse is reduced. In the case of the baseline, a cache block requested from

memory traverses the memory controller, the L3, the L2 and L1D caches. When it comes

to REMOTE, the L3 and the L2 are omitted, going from the memory controller directly into

the L1D cache of the REMOTE device. As a result, the memory access time is reduced as the

devices are closer to the data. Figure 6.14 shows the average memory access latency reduction

seen either by the host core or the REMOTE devices, as they perform a memory request. On

average, graph applications see a memory access latency reduction of 1.32× compared to the

baseline, and HPC applications do not see any. This happens as some HPC benchmarks, such

108

Near Memory Compute Engine

as RandAcc have a reduction of 1.57× and others, such as PIC, contain data access locality

and take advantage of the deep memory hierarchy from the baseline. However, note that HPC

applications that do reduce their average access latency, would still experience a cache miss

ratio increase when using REMOTE devices.

BFS pageRank kCore graphCol shortPath conComp degrCentr AVG
0

5

10

15

20

B
W

(G
B

/s
)

1 Out-of-Order Core
2 Out-of-Order Core

4 Out-of-Order Core
8 Out-of-Order Core

1 REMOTE

2 REMOTE

4 REMOTE

8 REMOTE

16 REMOTE

32 REMOTE

randAcc histogram meabo PIC spatter SpMV SymGS AVG
0

5

10

15

20

25

B
W

(G
B

/s
)

Figure 6.15: Memory bandwidth of graph (top) and HPC (bottom) benchmarks executed on the
baseline and on REMOTE. Maximum theoretical bandwidth 32GB/s. In x-axis multiple graph

benchmarks, including average numbers.

Figure 6.15 depicts the memory bandwidth utilization for graph and HPC applications.

These values show that, in average, the baseline cannot exceed 6GB/s in both types of bench-

marks while REMOTE reaches 16GB/s out of a theoretical peak of 32GB/s. Having more

accelerators operating in parallel contributes to a higher exploitation of the memory bandwidth,

ranging from 1.21GB/s with 1 device to 16.13GB/s with 32 devices in graph applications.

These results correlate with the ones presented for performance, as a higher memory bandwidth

utilization leads to higher speed-ups using REMOTE.

We may conclude that, despite the complex hardware design of the baseline which al-

lows many simultaneous memory requests, the irregular memory accesses translate into an

underutilized memory bandwidth and inefficient data movement on chip. Consequently, the

near-memory design of the REMOTE devices tackles both limitations, providing benefits both

in terms of performance and energy.

109

6.5 Evaluation

6.5.4 Host Core vs REMOTE Performance and Area Comparison

In this section, we compare the performance of executing several applications on the host

cores with the performance obtained when executing the same benchmarks on the number of

devices that fit in the same area as the host cores. As estimated in Section 6.3, the area of a

single REMOTE device corresponds to the 26.64% of an out-of-order core. Approximately, 4

devices fit in the area of a single host core. For this reason, in Figure 6.16 we compare the

performance of 16 host cores with 8 host cores + 32 REMOTE devices, which fit in the area

of 16 out-of-order cores. We also show the results obtained when only the accelerators are

employed, without intervention of the host cores.

pageRank BFS kCore degreeCentr AVG0

2

4

S
pe

ed
up

8 Out-of-Order cores 16 Out-of-Order cores 32 REMOTE 8 Out-of-Order cores + 32 REMOTE

Figure 6.16: Relative performance results, normalized to 8 host cores. In x-axis multiple
benchmarks, including average numbers.

Results demonstrate that using REMOTE accelerators leads to higher performance gains

than employing host cores. In all the applications, replacing 8 host cores with 32 REMOTE

devices provides higher benefits than using 16 host cores. On average, 16 host cores obtain

1.79× speed-ups, while 8 host cores + 32 REMOTE devices reaches a speed-up of 3.05×. In

the event that the host cores are busy, using the 32 accelerators translates into 2.53× gains.

When it comes to energy, Figure 6.17 depicts the total energy reduction for all the configura-

tions. On average, using 16 host cores represents an energy increase of 7.7%, while employing

8 host cores + 32 REMOTE devices obtains 63.75% energy reductions. In the case that only the

accelerators are employed, energy reductions reach 90.12%.

6.5.5 Comparison to Other Proposals

In this section, we compare the performance of REMOTE with three other hardware proposals.

In particular, the Smart Memory Cube (SMC) [21], the Programmable Prefetcher (PP) [3] and

the bigLITTLE configuration [186].

110

Near Memory Compute Engine

0.0

0.5

1.0

R
a
ti

o

8 out-of-order cores 16 out-of-order cores 32 REMOTE 8 out-of-order cores + 32 REMOTE

Figure 6.17: Total energy reduction results, normalized to 8 host cores. In x-axis multiple
benchmarks, including average numbers.

Figure 6.18 presents the speed-up of the different proposals and the REMOTE approach with

respect to a baseline with out-of-order cores using the PageRank benchmark while changing

the graph connectivity. A higher graph connectivity implies a higher graph density, but the

irregular memory accesses are still present in the execution.

On the one hand, results show that REMOTE is faster than the baseline beyond 4 devices as

in Section 6.5.2. For instance, with 20% connectivity, 8 devices are 1.63× faster than 2 host

cores, 16 devices are 1.44× faster than 4 host cores and 32 devices are 1.30× faster than 8 host

cores. Moreover, results are more or less steady no matter the graph connectivity.

On other hand, the bigLITTLE configuration performs similarly to the baseline. It consists

of the same number of out-of-order (big) cores but several in-order (LITTLE) cores are added.

For instance, with 20% connectivity, 8 big cores with 16 LITTLE cores are 1.2% faster

than 8 host cores. These LITTLE cores are more complex than the REMOTE accelerators,

but they still suffer from the irregular memory accesses as they traverse the whole memory

hierarchy. In bigLITTLE, the code scheduling represents a performance bottleneck in low

graph connectivities but gets mitigated with higher graph densities. For example, employing

8 big cores plus 16 LITTLE cores the performance gains range from 3.82× to 6.02× with

connectivities of 5% and 20%. These results prove that the bigLITTLE configuration provides

negligible speed-ups and that it should only be considered with high graph densities.

When it comes to the PP, it only outperforms the baseline in low graph connectivities

by 4%, and the results improve marginally with the number of prefetchers. Higher graph

densities facilitate the predictions of the stride prefetcher employed in the baseline, and lead to

performance degradations between 1 and 2% for the PP. In general, speed-ups are low due to

the operation latency of the PP, which is summarized below.

111

6.5 Evaluation

5% 10% 20%

2.5

5.0

7.5

S
pe

ed
up

1 OoO core 8 OoO cores 8 big + 16 LITTLE 12 Prog. Pref. SMC 32 REMOTE

Figure 6.18: Comparison of the speed-up of three different proposals (the Smart Memory
Cube [21], the Programmable Prefetcher [3] and the bigLITTLE configuration [186]) to the

REMOTE approach using the PageRank benchmark. Results normalized to the performance of
1 out-of-order host core. In x-axis graph connectivities of 5%, 10% and 20%.

First, the PP examines the memory addresses of ongoing accesses to check whether the

access corresponds to a data structure to be prefetched. If it does, the subroutine containing

the code to make the prediction has to be assigned to a programmable prefetcher unit (PPU),

which has to be awakened. Then, the PPU enqueues one or several prefetch requests, based on

its prediction, and a translation for each is required. Moreover, the PP performs predictions

based on prefetched addresses (e.g., to perform prefetches in the event of indirection vectors).

The stride prefetcher is simpler, as it operates indexing with the PC of memory requests, not

needing a specific subroutine for each data structure to be prefetched, tracking the memory

access patterns and making a prediction.

In order to obtain higher speed-ups with the PP, a programming effort is needed to create a

better data distribution. For example, in their paper [3] the authors use a different PageRank

implementation which obtains higher speed-ups, but it is much more complex than ours and

not easily adaptable to other proposals such as the SMC.

Finally, SMC consists of an in-order core integrated in the memory chip. It exploits better

the memory bandwidth as it operates directly on it, reducing data movement on chip more

than REMOTE does. The SMC is a 30% faster than 2 out-of-order cores and a 50.1% faster

than 4 REMOTE devices. The synchronization between the host core and the SMC has to be

managed by the operating system, introducing an operation latency, and taken into account by

the programmer. Moreover, a flushing mechanism is required to keep data coherent between

main memory and the host cores, which leads to important performance overheads. We may

conclude that SMC is a good candidate to perform computation on memory, but it requires a

special memory technology (i.e., 3D-stacking), more compute logic to outperform REMOTE

and a larger programming effort.

112

Near Memory Compute Engine

6.6 Conclusions

Irregular memory accesses represent a challenge for current and future architectures. In

this work, we present REMOTE, a programmable near-memory accelerator which performs

computation outside of the memory hierarchy and closer to where data is located. Contrary to

prior proposals, the design of REMOTE scales with multi-core systems and it does not require

a specific memory technology (e.g., 3D-stacking). It targets the Programmability wall, by

operating directly with virtual memory and by requiring simple pragma annotations to be added.

Moreover, the runtime system schedules code to the accelerators depending on their availability.

In our evaluation, we study two different types of applications and demonstrate why they

benefit more from REMOTE. As a result, in graph benchmarks REMOTE improves the 5.76×
speed-up of 8 out-of-order cores reaching 6.33× with 16 devices and 9.76× with 32 devices.

Other HPC applications outperform the baseline in particular configurations. Finally, we

compare REMOTE to three existing hardware proposals, achieving 1.41×, 1.82× and 1.29×
performance benefits.

113

Chapter 7
Conclusions and Future Work

This chapter summarizes the main conclusions and the contributions of this thesis and presents

the future research lines opened by this work. Then it shows the list of publications produced

during the realization of this thesis and acknowledges the financial support.

7.1 Conclusions

Vector architectures have become an important component of current processors in the form

of SIMD extensions. They provide performance and energy benefits when it is possible to

exploit data-level parallelism. However, they are affected by several issues, such as divergence

control and irregular memory accesses. In current systems, these challenges remain unsolved

and measures must be taken, as future processors will be further affected by these situations.

When it comes to the Memory Wall, memory access latency and data movement on chip

lead to performance and energy degradations in the presence of irregular memory access

patterns. Current solutions fail to successfully mitigate these problems, converting both issues

in a challenge for the next generation of processors.

This thesis targets these challenges, proposing hardware/software solutions to better exploit

the potential of vector architectures and to make a proper utilization of the memory hierarchy.

Our hardware approaches can be combined with compile-time information, provided either

by the programmer or the compiler, to utilize them whenever they may lead to performance

benefits. Moreover, in our last contribution, the programmer may decide to delegate the

responsibility of using these resources to the runtime system depending on internal decisions.

The first contribution of this thesis focuses on efficiently performing predication in SIMD

extensions. We discovered that current implementations of predicated instructions have per-

formance and energy consumptions dependent on the vector register length, and not on the

number of active elements in the mask (mask density). For this reason, we propose a hardware

115

7.1 Conclusions

approach that may be combined with compiler information, that achieves mask density-time

performance and energy with minimal hardware support. Our evaluation shows that this con-

tribution improves performance by up to 25% and reduces dynamic energy consumption by

up to 43% on real unmodified applications with predicated execution. Our proposal will have

a higher impact in next-generation processors, as the length of the vector registers doubles

approximately every four years [86]. Moreover, this proposal allows executing unmodified

legacy code with narrower vector instructions (AVX-2) on newer architectures with wider

vectors (AVX-512), achieving up to 56% performance benefits.

The second contribution targets the issues derived from irregular memory accesses. Appli-

cations suffering from irregular memory accesses have a poor memory access locality, do not

benefit from the memory hierarchy and have an inefficient vectorization, which is not consid-

ered by the compiler. Our proposal, called PLANAR, consists of a near-memory device, on the

processor side and connected to the memory controller, that performs data-layout transforma-

tions converting sparse data structures into dense ones. These operations are non-blocking, as

the host can compute and access memory while the device is operating, and fine-grained, as the

accelerator synchronizes with the host as the dense structure is being populated, allowing it to

be consumed. We demonstrate how this proposal reduces data movement on chip and enables

an efficient code vectorization due to the new dense version of the sparse data. The hardware

device, including a power and area estimations, and the software interface are described in

detail in this document. As a result, PLANAR improves performance for single-threaded runs

by 3.28× and 5.56×, and for multi-threaded executions by 4.58× and 5.71×, for scalar and

compiler-vectorized codes, respectively. Finally, we compare PLANAR to two state-of-the-art

proposals, achieving 2.12× and 2.23× average performance improvements.

The third contribution also targets the issues derived from irregular memory accesses. This

approach called REMOTE operates near memory but, contrary to PLANAR, it does not require

the host core to compute. REMOTE targets applications with irregular memory access patterns

where the computation is so simple (e.g., single addition) that the operation could be directly

done near memory rather than in the host core. REMOTE is programmed via pragmas and

the runtime system is in charge of scheduling code to the accelerators. The REMOTE device

directly operates with virtual memory and it does not require a specific memory technology

(e.g., 3D-stacking). In our evaluation, we perform a profiling of the applications to see which

perform better using REMOTE and a power and area estimation of the new hardware. As a

result, REMOTE outperforms our baseline of 8 out-of-order cores by 1.57× with 16 devices and

116

Conclusions and Future Work

by 4× with 32 devices, on average, for graph applications. Finally, we compare REMOTE to

three existing hardware proposals, achieving 1.41×, 1.82× and 1.29× performance benefits.

7.2 Future Work

The proposals presented in this thesis open the door to new research topics that could be

explored in the future. Among others, three main research lines can be of great interest.

• The Compaction/Restoration mechanism in multi-threaded systems. The CR mechanism

presented an evaluated in this thesis resorts to stalling the processor’s pipeline in order

to obtain CR candidates. Consequently, this translates into performance penalties and

the saturation of the processor’s internal resources, being both phenomenons currently

tackled by means of timeouts. However, this limitation could be mitigated in multi-

threaded systems. In such scenarios, CR could compact instructions with the same PC

from several threads running the same program, avoiding the latency of waiting for CR

candidates. In this contribution, we would explore the potential of CR in multi-threaded

systems and propose new hardware/software techniques which would lead to higher

performance and energy benefits.

• The Compaction/Restoration mechanism with PLANAR to avoid horizontal operations.

The CR mechanism cannot be applied to horizontal predicated SIMD instructions. These

instructions move the content of a vector register lane to a different one in the same

register. Doing the compaction, the original lane position is lost, so CR cannot be utilized

in these scenarios. However, we could employ PLANAR to reorganize data in memory

so that horizontal instructions are not longer required in the processor and CR could be

applied. In this contribution, we would study the situations where CR cannot be utilized

and how our second proposal could alleviate this issue.

• Runtime support to assist near-memory compute and DLT. Our second and third proposals

resort to a near-memory accelerator which can be used either to perform DLT or compute.

In this contribution, we would combine both approaches and instruct the runtime system

to determine when it is more suitable to perform each. It would require a deeper

analysis of the applications and the new proposal would be software-oriented. This

way, applications that suffer from irregular memory accesses and a high data movement

on chip would be automatically benefited from having these near-memory accelerators,

without programmer’s intervention.

117

7.3 Publications

7.3 Publications

The contents of this thesis led to the following publications:

• (1) A. Barredo, A. Armejach, J. C. Beard and M. Moretó, "REMOTE: A Programmable

Near-Memory Compute Engine", Currently under review.

• (2) A. Barredo, A. Armejach, J. C. Beard and M. Moretó, "PLANAR: A Programmable

Accelerator for Near-Memory Data Rearrangement", 2021 International Conference on

Supercomputing (ICS), Worldwide online event. To appear.

• (3) J. M. Cebrián, A. Barredo, H. Caminal, M. Moretó, M. Casas and M. Valero,

"Semi-automatic Validation of Cycle-Accurate Simulation Infrastructures: The Case for

gem5-x86", Future Generation Computer Systems, 2020.

• (4) A. Barredo, J. M. Cebrián, M. Moretó, M. Casas and M. Valero, "Improving Predi-

cation Efficiency through Compaction/Restoration of SIMD Instructions", IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA), San Diego,

CA, USA, 2020, pp. 717-728.

• (5) A. Barredo, J. C. Beard and M. Moretó, "SPiDRE: Accelerating Sparse Memory

Access Patterns", Accepted as a poster paper in: 28th International Conference on

Parallel Architectures and Compilation Techniques (PACT), Seattle, WA, USA, 2019, pp.

483-484.

• (6) A. Barredo, J. M. Cebrián, M. Moretó, M. Casas and M. Valero, "An Optimized

Predication Execution for SIMD Extensions", Accepted as a poster paper in: 28th

International Conference on Parallel Architectures and Compilation Techniques (PACT),

Seattle, WA, USA, 2019, pp. 479-480.

• (7) A. Barredo, M. Moretó and J. C. Beard, "Hardware Acceleration of Sparse Data

Rearrangement Near Memory", Accepted as a paper in: Arm Research Summit, Austin,

TX, 2019.

The following publications are related but not included in this thesis:

• (1) J. M. Cebrián, A. Jimborean, A. Barredo, M. Casas, T. Balem, A. Ros and M. Moretó,

"Compiler-Assisted Compaction/Restoration of SIMD Instructions", Currently under

review.

118

Conclusions and Future Work

• (2) J. Pavon, I. Vargas, A. Barredo, J. Marimon, M. Moretó, F. Moll, O. Unsal, M. Valero

and A. Cristal, "VIA: A Smart Scratchpad for Vector Units With Application to Sparse

Matrix Computations", IEEE International Symposium on High Performance Computer

Architecture (HPCA), Seoul, South Korea, 2021.

• (3) A. Barredo, J. M. Cebrián, M. Moretó, M. Casas and M. Valero, "Efficiency analysis

of modern vector architectures: vector ALU sizes, core counts and clock frequencies",

The Journal of Supercomputing, 2019.

• (4) A. Barredo, J. M. Cebrián, M. Moretó, M. Casas and M. Valero, "Reconfigurable

vector architectures", Accepted as a poster in: RoMoL project Final Workshop, Barcelona,

Spain, 2018.

• (5) A. Barredo, J. M. Cebrián, M. Moretó, M. Casas and M. Valero, "Advanced Vector

Architectures for Future Applications", Accepted as a paper in: 4th BSC Severo Ochoa

Doctoral Symposium, Barcelona, Spain, 2017, pp. 73-75.

119

Bibliography

[1] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das. “Com-

pute Caches”. In: 2017 IEEE International Symposium on High Performance Computer

Architecture (HPCA). 2017, pp. 481–492.

[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. “A scalable processing-in-memory ac-

celerator for parallel graph processing”. In: 2015 ACM/IEEE 42nd Annual International

Symposium on Computer Architecture (ISCA). June 2015, pp. 105–117.

[3] S. Ainsworth and T. M. Jones. “An Event-Triggered Programmable Prefetcher for

Irregular Workloads”. In: Proceedings of the Twenty-Third International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS).

ASPLOS ’18. Williamsburg, VA, USA: Association for Computing Machinery, 2018,

pp. 578–592. ISBN: 9781450349116.

[4] L. Alvarez, M. Moretó, M. Casas, E. Castillo, X. Martorell, J. Labarta, E. Ayguadé, and

M. Valero. “Runtime-Guided Management of Scratchpad Memories in Multicore Ar-

chitectures (PACT)”. In: Proceedings of the 24th International Conference on Parallel

Architectures and Compilation Techniques (PACT). PACT ’15. 2015, pp. 379–391.

[5] L. Alvarez, L. Vilanova, M. Moreto, M. Casas, M. Gonzàlez, X. Martorell, N. Navarro,

E. Ayguadé, and M. Valero. “Coherence Protocol for Transparent Management of

Scratchpad Memories in Shared Memory Manycore Architectures”. In: Proceedings of

the 42nd Annual International Symposium on Computer Architecture (ISCA). ISCA

’15. ACM, 2015, pp. 720–732. ISBN: 978-1-4503-3402-0.

[6] AMD. “3DNow! Technology Manual”. In: Motorola, 2000.

[7] AMD. AMD EPYC 7101p. 2020. URL: https://www.amd.com/en/products/cpu/amd-

epyc-7401p (visited on 07/09/2020).

121

https://www.amd.com/en/products/cpu/amd-epyc-7401p
https://www.amd.com/en/products/cpu/amd-epyc-7401p

BIBLIOGRAPHY

[8] N. Amit, M. Ben-Yehuda, and B.-A. Yassour. “IOMMU: Strategies for Mitigating

the IOTLB Bottleneck”. In: Proceedings of the 2010 International Conference on

Computer Architecture (ISCA). ISCA’10. Saint-Malo, France: Springer-Verlag, 2010,

pp. 256–274. ISBN: 9783642243219.

[9] Arm Limited. The Thumb Instruction Set. Accessed August 2020. 2005. URL: https:

//developer.arm.com/documentation/ddi0210/c/introduction/architecture/the-thumb-

instruction-set.

[10] Arm Limited. big.LITTLE Technology: The Future of Mobile. White Paper. 2013.

[11] Arm Limited. “Arm Corex-A Series. Programmer’s Guide for Armv8-A”. In: 2015.

[12] Arm Limited. Meabo. Available at https://github.com/ARM-software/meabo. 2018.

[13] Arm Limited. Arm Cortex-M0. Accessed April 2019. URL: https://developer.arm.com/

ip-products/processors/cortex-m/cortex-m0.

[14] A. Armejach, H. Caminal, J. Cebrian, R. Langarita, R. González-Alberquilla, C.

Adeniyi-Jones, M. Valero, and M. Casas. “Using Arm’s scalable vector extension

on stencil codes.” In: The Journal of Supercomputing. 2020, pp. 2039–2062.

[15] A. Armejach, H. Caminal, J. M. Cebrian, R. González-Alberquilla, C. Adeniyi-Jones,

M. Valero, M. Casas, and M. Moretó. “Stencil codes on a vector length agnostic archi-

tecture”. In: Proceedings of the 27th International Conference on Parallel Architectures

and Compilation Techniques, PACT 2018. 2018, 13:1–13:12.

[16] A. Armejach, R. Titos-Gil, A. Negi, O. S. Unsal, and A. Cristal. “Techniques to Improve

Performance in Requester-Wins Hardware Transactional Memory”. In: ACM Trans.

Archit. Code Optim. 10.4 (Dec. 2013). ISSN: 1544-3566.

[17] Arm NEON Technology. Arm, Ltd. URL: https://developer.arm.com/technologies/neon.

[18] F. Arnaud, A. Thean, M. Eller, M. Lipinski, Y. Teh, M. Ostermayr, K. Kang, N. Kim,

K. Ohuchi, J. Han, et al. “Competitive and cost effective high-k based 28nm CMOS

technology for low power applications”. In: IEEE International Electron Devices

Meeting (IEDM). 2009.

[19] K. Asanović and J. Beck. T0 Engineering Data. 1997.

[20] K. Asanović. “Vector Microprocessors”. PhD thesis. 1998. ISBN: 0-591-99087-3.

122

https://developer.arm.com/documentation/ddi0210/c/introduction/architecture/the-thumb-instruction-set
https://developer.arm.com/documentation/ddi0210/c/introduction/architecture/the-thumb-instruction-set
https://developer.arm.com/documentation/ddi0210/c/introduction/architecture/the-thumb-instruction-set
https://github.com/ARM-software/meabo
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0
https://developer.arm.com/technologies/neon

BIBLIOGRAPHY

[21] E. Azarkhish, D. Rossi, I. Loi, and L. Benini. “A Case for Near Memory Computation

Inside the Smart Memory Cube”. In: Workshop on Emerging Memory Solutions, DATE

Conference 2016. Dresden, Germany, 2016.

[22] C. Babbage. “On the Mathematical Powers of the Calculating Engine”. In: The Origins

of Digital Computers: Selected Papers. Ed. by B. Randell. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1982, pp. 19–54. ISBN: 978-3-642-61812-3.

[23] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair, and

S. Swanson. “Near-data processing: Insights from a MICRO-46 Workshop”. In: Micro

34 (2014).

[24] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and V. Srinivas.

“CACTI 7: New Tools for Interconnect Exploration in Innovative Off-Chip Memories”.

In: ACM Trans. Archit. Code Optim. 14.2 (June 2017), 14:1–14:25. ISSN: 1544-3566.

[25] M. Bargeron, T. Craver, M. Phlipot, M. Group, and I. Corp. “Applications Tuning for

Streaming SIMD Extensions”. In: Intel Technol J Q2 (Sept. 2001).

[26] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A. Stokes.

“The ILLIAC IV Computer”. In: IEEE Transactions on Computers C-17.8 (1968),

pp. 746–757. ISSN: 0018-9340.

[27] A. Basumallik, S. Min, and R. Eigenmann. “Programming Distributed Memory Sytems

Using OpenMP”. In: 2007 IEEE International Parallel and Distributed Processing

Symposium (IPDPS). 2007, pp. 1–8.

[28] J. Beard and J. Randall. “Eliminating Dark Bandwidth: A Data-Centric View of Scal-

able, Efficient Performance, Post-Moore”. In: Oct. 2017, pp. 106–114. ISBN: 978-3-

319-67629-6.

[29] J. C. Beard. “The Sparse Data Reduction Engine: Chopping Sparse Data One Byte at a

Time”. In: Proceedings of the International Symposium on Memory Systems. MEMSYS

’17. Alexandria, Virginia: Association for Computing Machinery, 2017, pp. 34–48.

ISBN: 9781450353359.

[30] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,

D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.

Hill, and D. A. Wood. “The Gem5 Simulator”. In: SIGARCH Comput. Archit. News

39.2 (Aug. 2011), pp. 1–7. ISSN: 0163-5964.

123

BIBLIOGRAPHY

[31] S. Blackford. Compressed row storage. Accessed December 2019. 2000. URL: http:

//www.netlib.org/utk/people/JackDongarra/etemplates/node373.html.

[32] M. Bohr. “A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper”. In: IEEE

Solid-State Circuits Society Newsletter 12.1 (2007), pp. 11–13.

[33] S. Borkar. “Role of interconnects in the future of computing”. In: Journal of Lightwave

Technology (2013).

[34] A. Buluç, S. Williams, L. Oliker, and J. Demmel. “Reduced-Bandwidth Multithreaded

Algorithms for Sparse Matrix-Vector Multiplication”. In: 2011 IEEE International

Parallel Distributed Processing Symposium (IPDPS). 2011, pp. 721–733.

[35] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson. “Parallel Sparse

Matrix-Vector and Matrix-Transpose-Vector Multiplication Using Compressed Sparse

Blocks”. In: Proceedings of the Twenty-First Annual Symposium on Parallelism in Algo-

rithms and Architectures. SPAA ’09. Calgary, AB, Canada: Association for Computing

Machinery, 2009, pp. 233–244. ISBN: 9781605586069.

[36] S. Byna, Y. Chen, and X. Sun. “A Taxonomy of Data Prefetching Mechanisms”. In:

2008 International Symposium on Parallel Architectures, Algorithms, and Networks

(i-span 2008). 2008, pp. 19–24.

[37] Cadence. Genus Synthesis Solution. Available at https://www.cadence.com/content/

cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis.html.

URL: https://www.cadence.com/content/cadence-www/global/en_US/home/tools/

digital-design-and-signoff/synthesis/genus-synthesis-solution.html.

[38] P. Caheny, L. Alvarez, S. Derradji, M. Valero, M. Moretó, and M. Casas. “Reduc-

ing Cache Coherence Traffic with a NUMA-Aware Runtime Approach”. In: IEEE

Transactions on Parallel and Distributed Systems 29.5 (2018), pp. 1174–1187. ISSN:

1045-9219.

[39] P. Caheny, L. Alvarez, M. Valero, M. Moretó, and M. Casas. “Runtime-assisted Cache

Coherence Deactivation in Task Parallel Programs”. In: Proceedings of the International

Conference for High Performance Computing, Networking, Storage, and Analysis. SC

’18. 2018, 35:1–35:12.

124

http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html
http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html

BIBLIOGRAPHY

[40] P. Caheny, M. Casas, M. Moretó, H. Gloaguen, M. Saintes, E. Ayguadé, J. Labarta,

and M. Valero. “Reducing cache coherence traffic with hierarchical directory cache

and NUMA-aware runtime scheduling”. In: Proceedings of the 25th International

Conference on Parallel Architecture and Compilation Techniques. PACT ’16. 2016,

pp. 275–286.

[41] D. Callahan, J. Dongarra, and D. Levine. “Vectorizing Compilers: A Test Suite and

Results”. In: Proceedings of the 1988 ACM/IEEE Conference on Supercomputing

(Supercomputing). Orlando, Florida, USA, 1988, pp. 98–105. ISBN: 0-8186-0882-X.

[42] D. Callahan, K. Kennedy, and A. Porterfield. “Software Prefetching”. In: vol. 19. Apr.

1991.

[43] M. Casas, M. Moretó, L. Alvarez, E. Castillo, D. Chasapis, T. Hayes, L. Jaulmes, O.

Palomar, O. S. Unsal, A. Cristal, E. Ayguadé, J. Labarta, and M. Valero. “Runtime-

Aware Architectures”. In: Euro-Par 2015: Parallel Processing - 21st International

Conference on Parallel and Distributed Computing, Vienna, Austria, August 24-28,

2015, Proceedings. 2015, pp. 16–27.

[44] E. Castillo, M. Moreto, M. Casas, L. Alvarez, E. Vallejo, K. Chronaki, R. Badia,

J. L. Bosque, R. Beivide, E. Ayguadé, J. Labarta, and M. Valero. “CATA: Criticality

Aware Task Acceleration for Multicore Processors”. In: Proceedings of the IEEE 30th

International Parallel and Distributed Processing Symposium (IPDPS). IPDPS. 2016,

pp. 413–422.

[45] J. M. Cebrian, M. Jahre, and L. Natvig. “ParVec: Vectorizing the PARSEC Benchmark

Suite”. In: Computing (2015), pp. 1077–1100.

[46] B. S. Center. BSC Application Repository. 2020. URL: https://pm.bsc.es/projects/bar

(visited on 07/09/2020).

[47] N. A. R. Center. NAS Parallel Benchmarks. 2020. URL: http://www.nas.nasa.gov/

Software/NPB/ (visited on 07/09/2020).

[48] H. Chang, J. Cho, and W. Sung. “Performance Evaluation of an SIMD Architecture with

a Multi-bank Vector Memory Unit”. In: 2006 IEEE Workshop on Signal Processing

Systems Design and Implementation. 2006, pp. 71–76.

125

https://pm.bsc.es/projects/bar
http://www.nas.nasa.gov/Software/NPB/
http://www.nas.nasa.gov/Software/NPB/

BIBLIOGRAPHY

[49] D. Chasapis, M. Moretó, M. Schulz, B. Rountree, M. Valero, and M. Casas. “Power

Efficient Job Scheduling by Predicting the Impact of Processor Manufacturing Variabil-

ity”. In: Proceedings of the ACM International Conference on Supercomputing (ICS).

ICS ’19. Phoenix, Arizona: Association for Computing Machinery, 2019, pp. 296–307.

ISBN: 9781450360791.

[50] J. Chen, J. Benesty, and Y. Huang. “A Minimum Distortion Noise Reduction Algorithm

With Multiple Microphones”. In: Audio, Speech, and Language Processing, IEEE

Transactions on 16 (Apr. 2008), pp. 481–493.

[51] K.-L. Cheng, C. Wu, Y. Wang, D.-W. Lin, C. Chu, Y. Tarng, S. Lu, S. Yang, M. Hsieh,

C. Liu, et al. “A highly scaled, high performance 45 nm bulk logic CMOS technology

with 0.242 µm2 SRAM cell”. In: 2007 IEEE International Electron Devices Meeting.

2007.

[52] J. Ciesko, S. Mateo, X. Teruel, X. Martorell, E. Ayguadé, and J. Labarta. “Supporting

Adaptive Privatization Techniques for Irregular Array Reductions in Task-Parallel

Programming Models”. In: OpenMP: Memory, Devices, and Tasks: 12th International

Workshop on OpenMP, IWOMP 2016, Nara, Japan, October 5-7, 2016, Proceedings.

2016, pp. 336–349.

[53] L. Clarke, I. Glendinning, and R. Hempel. “The MPI Message Passing Interface

Standard”. In: Programming Environments for Massively Parallel Distributed Systems.

Ed. by K. M. Decker and R. M. Rehmann. Basel: Birkhäuser Basel, 1994, pp. 213–218.

ISBN: 978-3-0348-8534-8.

[54] J. Corbal, R. Espasa, and M. Valero. “On the efficiency of reductions in µ-SIMD media

extensions”. In: Proceedings 2001 International Conference on Parallel Architectures

and Compilation Techniques (PACT). 2001, pp. 83–94.

[55] I. Cray Research. Cray X-MP Series Model 48 Mainframe Reference Manual. 1984.

[56] W. J. Dally, F. Labonte, A. Das, P. Hanrahan, J.-H. Ahn, J. Gummaraju, M. Erez, N.

Jayasena, I. Buck, T. J. Knight, and U. J. Kapasi. “Merrimac: Supercomputing with

Streams”. In: Supercomputing, 2003 ACM/IEEE Conference. Nov. 2003, pp. 35–35.

[57] D. C. Daly, L. C. Fujino, and K. C. Smith. “Through the Looking Glass-The 2018

Edition: Trends in Solid-State Circuits from the 65th ISSCC”. In: IEEE Solid-State

Circuits Magazine (2018).

126

BIBLIOGRAPHY

[58] T. A. Davis and Y. Hu. “The University of Florida Sparse Matrix Collection”. In: ACM

Trans. Math. Softw. 38.1 (Dec. 2011). ISSN: 0098-3500.

[59] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R. LeBlanc.

“Design of ion-implanted MOSFETs with very small physical dimensions”. In: IEEE

Journal of Solid-State Circuits 9.5 (1974), pp. 256–268.

[60] J. Doweck. “Inside Intel® Core microarchitecture”. In: Aug. 2006, pp. 1–35.

[61] G. Driss, A. Addaim, and A. M. Abdessalam. “Enhanced Box-Muller method for high

quality Gaussian random number generation”. In: International Journal of Computing

Science and Mathematics 9 (Jan. 2018), p. 287.

[62] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Falsafi, B. Grot, and D.

Pnevmatikatos. “The Mondrian Data Engine”. In: Proceedings of the 44th Annual Inter-

national Symposium on Computer Architecture (ISCA). ISCA ’17. Toronto, ON, Canada:

Association for Computing Machinery, 2017, pp. 639–651. ISBN: 9781450348928.

[63] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and J. Planas.

“OmpSs: A Proposal For Programming Heterogeneous Multi-Core Architectures”. In:

Parallel Processing Letters 21.02 (2011), pp. 173–193.

[64] A. Elafrou, G. I. Goumas, and N. Koziris. “Performance Analysis and Optimization of

Sparse Matrix-Vector Multiplication on Modern Multi- and Many-Core Processors”.

In: CoRR (2017).

[65] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Hernandez, T. Juan,

G. Lowney, M. Mattina, and A. Seznec. “Tarantula: a vector extension to the alpha

architecture”. In: Proceedings 29th Annual International Symposium on Computer

Architecture (ISCA). 2002, pp. 281–292.

[66] R. Espasa. Advanced Vector Architectures. PhD. Thesis. 1997.

[67] R. Espasa, M. Valero, and J. E. Smith. “Vector Architectures: Past, Present and Fu-

ture”. In: Proceedings of the 12th International Conference on Supercomputing (ICS).

Melbourne, Australia, 1998, pp. 425–432. ISBN: 0-89791-998-X.

[68] B. Falsafi and T. F. Wenisch. “A Primer on Hardware Prefetching”. In: A Primer on

Hardware Prefetching. 2014.

[69] A. Farmahini-Farahani, S. Gurumurthi, G. Loh, and M. Ignatowski. “Challenges of

High-Capacity DRAM Stacks and Potential Directions”. In: Proceedings of the Work-

shop on Memory Centric High Performance Computing. 2018.

127

BIBLIOGRAPHY

[70] M. J. Flynn. “Very high-speed computing systems”. In: Proceedings of the IEEE 54.12

(1966), pp. 1901–1909.

[71] M. Flynn. “Flynn’s Taxonomy”. In: Encyclopedia of Parallel Computing. Ed. by D.

Padua. Boston, MA: Springer US, 2011, pp. 689–697. ISBN: 978-0-387-09766-4.

[72] A. Fog. Instruction Tables. Instruction latencies, throughputs and micro-operation

breakdowns. 2018. URL: http://www.agner.org/optimize/instruction_tables.pdf.

[73] G. Fuller. “Future lithography technology”. In: Single Frequency Semiconductor Lasers.

2017.

[74] S. Fuller. “Motorola AltiVec Technology”. In: Motorola, 1998.

[75] W. W. L. Fung and T. M. Aamodt. “Thread Block Compaction for Efficient SIMT

Control Flow”. In: Proceedings of the 2011 IEEE 17th International Symposium on

High Performance Computer Architecture (HPCA). HPCA ’11. Washington, DC, USA:

IEEE Computer Society, 2011, pp. 25–36. ISBN: 978-1-4244-9432-3.

[76] E. Gedraite and M. Hadad. “Investigation on the effect of a Gaussian Blur in image

filtering and segmentation”. In: Jan. 2011, pp. 393–396. ISBN: 978-1-61284-949-2.

[77] T. Geng, E. Diken, T. Wang, L. Jozwiak, and M. Herbordt. “An Access-Pattern-Aware

On-Chip Vector Memory System with Automatic Loading for SIMD Architectures”. In:

2018 IEEE High Performance extreme Computing Conference (HPEC). 2018, pp. 1–7.

[78] P. Getreuer. “A Survey of Gaussian Convolution Algorithms”. In: Image Processing

On Line (2013).

[79] S. Ghose, K. Hsieh, A. Boroumand, R. Ausavarungnirun, and O. Mutlu. “The Processing-

in-Memory Paradigm: Mechanisms to Enable Adoption”. In: Beyond-CMOS Technolo-

gies for Next Generation Computer Design. Ed. by R. O. Topaloglu and H.-S. P. Wong.

Cham: Springer International Publishing, 2019, pp. 133–194. ISBN: 978-3-319-90385-

9.

[80] S. Al-Ghuribi. “Matrix Multiplication Algorithms”. In: International Journal of Com-

puter Science and Network Security (2012).

[81] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir.

“The NYU Ultracomputer-Designing an MIMD Shared Memory Parallel Computer”.

In: IEEE Transactions on Computers C-32.2 (Feb. 1983), pp. 175–189.

[82] S. Habata, M. Yokokawa, and S. Kitawaki. “The Earth Simulator system”. In: NEC

Research and Development 44 (Jan. 2003), pp. 21–26.

128

http://www.agner.org/optimize/instruction_tables.pdf

BIBLIOGRAPHY

[83] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd edition. Vol. 5. Dec.

2010.

[84] A. Harrison and D. Joseph. “High Performance Rearrangement and Multiplication

Routines for Sparse Tensor Arithmetic”. In: SIAM Journal on Scientific Computing

(2018).

[85] J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, T. Gross, F. Baskett, and J. Gill.

“MIPS: A microprocessor architecture”. In: ACM SIGMICRO Newsletter 13 (Jan. 1982),

pp. 17–22.

[86] J. L. Hennessy and D. A. Patterson. Computer Architecture, Sixth Edition: A Quan-

titative Approach. 6th. Morgan Kaufmann Publishers Inc., 2017. ISBN: 0128119055,

9780128119051.

[87] M. Herlihy and J. E. B. Moss. “Transactional Memory: Architectural Support for

Lock-Free Data Structures”. In: SIGARCH Comput. Archit. News 21.2 (May 1993),

pp. 289–300. ISSN: 0163-5964.

[88] R. G. Hintz and D. P. Tare. “Control data star-100 processor design”. In: 1972.

[89] T. Hoang, A. Shambayati, and A. Chien. “A Data Layout Transformation (DLT)

Accelerator: Architectural Support for Data Movement Optimization in Accelerated-

centric Heterogeneous Systems”. In: 2016.

[90] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar, O.

Mutlu, and S. W. Keckler. “Transparent Offloading and Mapping (TOM): Enabling

Programmer-Transparent near-Data Processing in GPU Systems”. In: SIGARCH Com-

put. Archit. News 44.3 (June 2016), pp. 204–216. ISSN: 0163-5964.

[91] J. N. Huber, O. R. Hernandez, and M. G. Lopez. “Effective Vectorization with OpenMP

4.5”. In: (Mar. 2017).

[92] C. J. Hughes. Single-Instruction Multiple-Data Execution. 2015.

[93] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual

Volume 1: Basic Architecture. 2012.

[94] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual

Volume 2A: Instruction Set Reference. 2015.

[95] Intel Corporation. Intel Intrisics Guide. 2020. URL: https://software.intel.com/sites/

landingpage/IntrinsicsGuide/# (visited on 07/09/2020).

129

https://software.intel.com/sites/landingpage/IntrinsicsGuide/#
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#

BIBLIOGRAPHY

[96] Intel Corporation. Intel Xeon E5-2630L v4. 2020. URL: https://ark.intel.com/content/

www/us/en/ark/products/92981/intel-xeon-processor-e5-2630-v4-25m-cache-2-20-

ghz.html (visited on 07/09/2020).

[97] Intel Corporation. Processor Intel® Xeon® Platinum 8160. 2020. URL: https://ark.intel.

com/content/www/es/es/ark/products/120501/intel-xeon-platinum-8160-processor-

33m-cache-2-10-ghz.html (visited on 07/09/2020).

[98] B. Jacob, S. Ng, and D. Wang. Memory Systems: Cache, DRAM, Disk. Jan. 2008. ISBN:

978-0-12-379751-3.

[99] A. Jain and C. Lin. “Linearizing Irregular Memory Accesses for Improved Correlated

Prefetching”. In: Proceedings of the 46th Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO). MICRO-46. Davis, California: Association for

Computing Machinery, 2013, pp. 247–259. ISBN: 9781450326384.

[100] T. Jain and T. Agrawal. “The Haswell Microarchitecture - 4th Generation Processor”.

In: International Journal of Computer Science and Information Technologies 4(3) (Apr.

2013), pp. 477–480.

[101] L. Jaulmes, M. Casas, M. Moretó, E. Ayguadé, J. Labarta, and M. Valero. “Exploiting

Asynchrony from Exact Forward Recovery for DUE in Iterative Solvers”. In: Proceed-

ings of the International Conference for High Performance Computing, Networking,

Storage and Analysis. SC ’15. Austin, Texas: Association for Computing Machinery,

2015. ISBN: 9781450337236.

[102] L. Jaulmes, M. Moreto, E. Ayguade, J. Labarta, M. Valero, and M. Casas. “Asyn-

chronous and Exact Forward Recovery for Detected Errors in Iterative Solvers”. In:

IEEE Transactions on Parallel and Distributed Systems PP (Mar. 2018), pp. 1–1.

[103] L. Jaulmes, M. Moreto, M. Valero, and M. Casas. “A Vulnerability Factor for ECC-

protected Memory”. In: July 2019, pp. 176–181.

[104] JEDEC. High Bandwidth Memory (HBM) DRAM. Specification. JESD235C. Jan. 2020.

[105] S. Jeloka, N. Akesh, D. Sylvester, and D. Blaauw. “A 28 nm Configurable Memory

(TCAM/BCAM/SRAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory”. In:

IEEE Journal of Solid-State Circuits 51 (Apr. 2016), pp. 1–1.

[106] W. Jin. Feedback Compilation for Decoupled Access-Execute Techniques. 2017.

[107] Jong Won Park. “Multiaccess memory system for attached SIMD computer”. In: IEEE

Transactions on Computers 53.4 (2004), pp. 439–452.

130

https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e5-2630-v4-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e5-2630-v4-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e5-2630-v4-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/es/es/ark/products/120501/intel-xeon-platinum-8160-processor-33m-cache-2-10-ghz.html
https://ark.intel.com/content/www/es/es/ark/products/120501/intel-xeon-platinum-8160-processor-33m-cache-2-10-ghz.html
https://ark.intel.com/content/www/es/es/ark/products/120501/intel-xeon-platinum-8160-processor-33m-cache-2-10-ghz.html

BIBLIOGRAPHY

[108] M. Kang, E. Kim, M.-S. Keel, and N. Shanbhag. “Energy-efficient and high throughput

sparse distributed memory architecture”. In: 2015 (July 2015), pp. 2505–2508.

[109] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu.

“An efficient k-means clustering algorithm: analysis and implementation”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 24.7 (2002), pp. 881–892.

[110] C. Kozyrakis and D. Patterson. “Overcoming the limitations of conventional vector

processors”. In: 30th Annual International Symposium on Computer Architecture

(ISCA), 2003. Proceedings. 2003, pp. 399–409.

[111] C. Kozyrakis, D. Judd, J. Gebis, S. Williams, D. Patterson, and K. Yelick. “Hardwa-

ter/compiler codevelopment for an media processor”. In: Proceedings of the IEEE 89

(Dec. 2001), pp. 1694–1709.

[112] R. Krishnaiyer, E. Kultursay, P. Chawla, S. Preis, A. Zvezdin, and H. Saito. “Compiler-

Based Data Prefetching and Streaming Non-temporal Store Generation for the Intel(R)

Xeon Phi(TM) Coprocessor”. In: 2013 IEEE International Symposium on Parallel

Distributed Processing (IPDPS), Workshops and Phd Forum. 2013, pp. 1575–1586.

[113] R. Kumar, A. Martıénez, and A. González. “Vectorizing for Wider Vector Units in a

HW/SW Co-designed Environment”. In: 10th IEEE International Conference on High

Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing, HPCC/EUC 2013, Zhangjiajie, China,

November 13-15, 2013. 2013, pp. 518–525.

[114] L. L. N. Laboratory. CORAL-2 Benchmarks. 2020. URL: https://asc.llnl.gov/coral-2-

benchmarks/ (visited on 07/09/2020).

[115] P. N. N. Laboratory. The PERFECT Suite. 2020. URL: https://hpc.pnl.gov/PERFECT/

(visited on 07/09/2020).

[116] P. Lavin, E. J. Riedy, R. Vuduc, and J. Young. “Spatter: A Benchmark Suite for

Evaluating Sparse Access Patterns”. In: CoRR (2018). arXiv: 1811.03743.

[117] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim, D. S. Kim,

H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon, M. J. Kim, J. Lee, K. W. Park, B. Chung,

and S. Hong. “25.2 A 1.2V 8Gb 8-channel 128GB/s high-bandwidth memory (HBM)

stacked DRAM with effective microbump I/O test methods using 29nm process and

TSV”. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC) 2014

IEEE International. 2014, pp. 432–433.

131

https://asc.llnl.gov/coral-2-benchmarks/
https://asc.llnl.gov/coral-2-benchmarks/
https://hpc.pnl.gov/PERFECT/
https://arxiv.org/abs/1811.03743

BIBLIOGRAPHY

[118] J. Lee, H. Kim, and R. W. Vuduc. “When Prefetching Works, When It Doesn’t, and

Why”. In: TACO 9 (2012), 2:1–2:29.

[119] V. T. Lee, A. Mazumdar, C. C. del Mundo, A. Alaghi, L. Ceze, and M. Oskin. “Ap-

plication Codesign of Near-Data Processing for Similarity Search”. In: 2018 IEEE

International Parallel and Distributed Processing Symposium (IPDPS). 2018, pp. 896–

907.

[120] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and K. Asanović.

“Exploring the tradeoffs between programmability and efficiency in data-parallel ac-

celerators”. In: 2011 38th Annual International Symposium on Computer Architecture

(ISCA). 2011, pp. 129–140.

[121] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi. “McPAT: An

Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore

Architectures”. In: International Symposium on Microarchitecture (MICRO). New York,

New York, 2009, pp. 469–480. ISBN: 978-1-60558-798-1.

[122] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao. “Processing-in-Memory for Energy-

Efficient Neural Network Training: A Heterogeneous Approach”. In: 2018 51st Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO). 2018, pp. 655–

668.

[123] S. Lloyd and M. Gokhale. “In-Memory Data Rearrangement for Irregular, Data-

Intensive Computing”. In: Computer (2015).

[124] E. Lockerman, A. Feldmann, M. Bakhshalipour, A. Stanescu, S. Gupta, D. Sanchez,

and N. Beckmann. “Livia: Data-Centric Computing Throughout the Memory Hierar-

chy”. In: Proceedings of the Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS). ASPLOS ’20.

Lausanne, Switzerland: Association for Computing Machinery, 2020, pp. 417–433.

ISBN: 9781450371025.

[125] C. Lomont. “Introduction to Intel Advanced Vector Extensions”. In: Intel White Paper

(2011).

[126] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. Andreozzi,

A. Armejach, N. Asmussen, S. Bharadwaj, G. Black, G. Bloom, B. R. Bruce, D. R. Car-

valho, J. Castrillón, L. Chen, N. Derumigny, S. Diestelhorst, W. Elsasser, M. Fariborz,

A. F. Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope, T. Grass, B. Hanindhito,

132

BIBLIOGRAPHY

A. Hansson, S. Haria, A. Harris, T. Hayes, A. Herrera, M. Horsnell, S. A. R. Jafri,

R. Jagtap, H. Jang, R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh,

Y. Kodama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli, T. Mück, O. Naji, K.

Nathella, H. Nguyen, N. Nikoleris, L. E. Olson, M. S. Orr, B. Pham, P. Prieto, T. Reddy,

A. Roelke, M. Samani, A. Sandberg, J. Setoain, B. Shingarov, M. D. Sinclair, T. Ta,

R. Thakur, G. Travaglini, M. Upton, N. Vaish, I. Vougioukas, Z. Wang, N. Wehn, C.

Weis, D. A. Wood, H. Yoon, and É. F. Zulian. “The gem5 Simulator: Version 20.0+”.

In: CoRR abs/2007.03152 (2020). eprint: 2007.03152.

[127] H. T. Mair, G. Gammie, A. Wang, R. Lagerquist, C. Chung, S. Gururajarao, P. Kao, A.

Rajagopalan, A. Saha, A. Jain, et al. “4.3 A 20nm 2.5 GHz ultra-low-power tri-cluster

CPU subsystem with adaptive power allocation for optimal mobile SoC performance”.

In: 2016 IEEE International Solid-State Circuits Conference (ISSCC). 2016.

[128] F. H. McMahon. The Livermore Fortran Kernels: A Computer Test of the Numerical Per-

formance Range. Tech. rep. UCRL-53745. Lawrence Livermore National Laboratory,

Dec. 1986.

[129] J. Mellor-Crummey, D. Whalley, and K. Kennedy. “Improving memory hierarchy

performance for irregular applications”. In: Proceedings of the 13th international

conference on Supercomputing (ICS). 1999.

[130] Mentor. Precision RTL Plus. Available at https://www.mentor.com/products/fpga/

synthesis/precision_rtl_plus/. URL: https://www.mentor.com/products/fpga/synthesis/

precision_rtl_plus/.

[131] Mikhail. SuperUser. 2013. URL: https : / / superuser. com / questions / 584900 / how -

distinguish-between-multicore-and-multiprocessor-systems.

[132] S. Mittal. “A survey of recent prefetching techniques for processor caches”. In: ACM

Computing Surveys (CSUR) (2016).

[133] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Cooper, D. W. Dobberpuhl,

P. M. Donahue, J. Eno, W. Hoeppner, D. Kruckemyer, T. H. Lee, P. C. M. Lin, L.

Madden, D. Murray, M. H. Pearce, S. Santhanam, K. J. Snyder, R. Stehpany, and S. C.

Thierauf. “A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor”. In: IEEE Journal

of Solid-State Circuits 31.11 (1996), pp. 1703–1714.

133

2007.03152
https://www.mentor.com/products/fpga/synthesis/precision_rtl_plus/
https://www.mentor.com/products/fpga/synthesis/precision_rtl_plus/
https://www.mentor.com/products/fpga/synthesis/precision_rtl_plus/
https://www.mentor.com/products/fpga/synthesis/precision_rtl_plus/
https://superuser.com/questions/584900/how-distinguish-between-multicore-and-multiprocessor-systems
https://superuser.com/questions/584900/how-distinguish-between-multicore-and-multiprocessor-systems

BIBLIOGRAPHY

[134] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. “Optimizing NUCA Organiza-

tions and Wiring Alternatives for Large Caches with CACTI 6.0”. In: Proceedings of

the 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

MICRO 40. 2007, pp. 3–14. ISBN: 0-7695-3047-8.

[135] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. CACTI 6.0: A Tool to Under-

stand Large Caches. Tech. rep. 2009.

[136] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim. “GraphPIM: Enabling

Instruction-Level PIM Offloading in Graph Computing Frameworks”. In: 2017 IEEE

International Symposium on High Performance Computer Architecture (HPCA). Feb.

2017, pp. 457–468.

[137] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin. “GraphBIG: Understanding

Graph Computing in the Context of Industrial Solutions”. In: Proceedings of the

International Conference for High Performance Computing, Networking, Storage and

Analysis. SC ’15. Austin, Texas: Association for Computing Machinery, 2015. ISBN:

9781450337236.

[138] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C. .-. Cher, C. H. A.

Costa, J. Doi, C. Evangelinos, B. M. Fleischer, T. W. Fox, D. S. Gallo, L. Grinberg, J. A.

Gunnels, A. C. Jacob, P. Jacob, H. M. Jacobson, T. Karkhanis, C. Kim, J. H. Moreno,

J. K. O’Brien, M. Ohmacht, Y. Park, D. A. Prener, B. S. Rosenburg, K. D. Ryu, O.

Sallenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam, and Z. Sura. “Active Memory

Cube: A processing-in-memory architecture for exascale systems”. In: IBM Journal of

Research and Development 59.2/3 (2015), 17:1–17:14.

[139] NEC. Vector Supercomputer SX Series: SX-Aurora TSUBASA. 2017. URL: http://www.

nec.com/en/global/solutions/hpc.

[140] L. Oliker, A. Canning, J. Carter, J. Shalf, D. Skinner, E. Ethier, R. Biswas, J. Djomehri,

and R. Van der Wijngaart. “Evaluation of cache-based superscalar and cacheless vec-

tor architectures for scientific computations”. In: SC’03: Proceedings of the 2003

ACM/IEEE Conference on Supercomputing. 2003.

[141] OpenMP Architecture Review Board. OpenMP Application Program Interface, v3.0.

2008.

134

http://www.nec.com/en/global/solutions/hpc
http://www.nec.com/en/global/solutions/hpc

BIBLIOGRAPHY

[142] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and O. Ozturk. “Energy

Efficient Architecture for Graph Analytics Accelerators”. In: 2016 ACM/IEEE 43rd

Annual International Symposium on Computer Architecture (ISCA). 2016, pp. 166–177.

[143] S. Palacharla, N. P. Jouppi, and J. E. Smith. “Complexity-Effective Superscalar Pro-

cessors”. In: Proceedings of the 24th Annual International Symposium on Computer

Architecture (ISCA). ISCA ’97. Denver, Colorado, USA: Association for Computing

Machinery, 1997, pp. 206–218. ISBN: 0897919017.

[144] J. T. Pawlowski. “Hybrid memory cube (hmc)”. In: HOT CHIPS 23 (Aug. 2011).

[145] M. Peiron, M. Valero, E. Ayguadé, and T. Lang. “Vector Multiprocessors with Arbitrated

Memory Access”. In: Proceedings of the 22nd Annual International Symposium on

Computer Architecture (ISCA). ISCA ’95. S. Margherita Ligure, Italy: Association for

Computing Machinery, 1995, pp. 243–252. ISBN: 0897916980.

[146] G. Petrousis. “An Evaluation of Decoupled Access Execute on Armv8”. MA thesis.

Uppsala University, 2017.

[147] G. Pichon, M. Faverge, P. Ramet, and J. Roman. “Reordering Strategy for Blocking

Optimization in Sparse Linear Solvers”. In: SIAM Journal on Matrix Analysis and

Applications (2017).

[148] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios. “K-Nearest Neighbors in Uncertain

Graphs”. In: Proc. VLDB Endow. 3.1–2 (Sept. 2010), pp. 997–1008. ISSN: 2150-8097.

[149] R. V. W. Putra, M. Hanif, and M. Shafique. DRMap: A Generic DRAM Data Mapping

Policy for Energy-Efficient Processing of Convolutional Neural Networks. Apr. 2020.

[150] J. Reinders. “Intel Threading Building Blocks”. In: 2007.

[151] G. Ren, P. Wu, and D. Padua. “A Preliminary Study on the Vectorization of Multimedia

Applications for Multimedia Extensions”. In: Oct. 2003, pp. 420–435.

[152] S. Report, J. Dongarra, and M. A. Heroux. “Toward a New Metric for Ranking High

Performance Computing Systems”. In: 2013.

[153] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. “Memory Access

Scheduling”. In: Proceedings of the 27th Annual International Symposium on Computer

Architecture (ISCA). ISCA ’00. Vancouver, British Columbia, Canada: Association for

Computing Machinery, 2000, pp. 128–138. ISBN: 1581132328.

[154] K. Rupp. Microprocessor Trend Data. https://github.com/karlrupp/microprocessor-

trend-data. 2018.

135

https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data

BIBLIOGRAPHY

[155] R. M. Russell. “The CRAY-1 Computer System”. In: Commun. ACM 21.1 (Jan. 1978),

pp. 63–72. ISSN: 0001-0782.

[156] S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke. “IBM Power9 Processor

Architecture”. In: IEEE Micro 37.2 (2017), pp. 40–51.

[157] I. Sánchez Barrera, M. Casas, M. Moretó, E. Ayguadé, J. Labarta, and M. Valero.

“Graph Partitioning Applied to DAG Scheduling to Reduce NUMA Effects”. In: Pro-

ceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming. PPoPP ’18. ACM, 2018, pp. 419–420. ISBN: 978-1-4503-4982-6.

[158] I. Sánchez Barrera, M. Moretó, E. Ayguadé, J. Labarta, M. Valero, and M. Casas.

“Reducing Data Movement on Large Shared Memory Systems by Exploiting Com-

putation Dependencies”. In: Proceedings of the 2018 International Conference on

Supercomputing (ICS). ICS ’18. ACM, 2018, pp. 207–217. ISBN: 978-1-4503-5783-8.

[159] A. Sandberg, N. Nikoleris, T. E. Carlson, E. Hagersten, S. Kaxiras, and D. Black-

Schaffer. “Full Speed Ahead: Detailed Architectural Simulation at Near-Native Speed”.

In: 2015 IEEE International Symposium on Workload Characterization. 2015, pp. 183–

192.

[160] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy, M. Girkar,

and P. Dubey. “Can traditional programming bridge the Ninja performance gap for

parallel computing applications?” In: 2012 39th Annual International Symposium on

Computer Architecture (ISCA). 2012, pp. 440–451.

[161] W. Schönauer. “Scientific computing on vector computers”. In: Special topics in

supercomputing. 1987.

[162] J. Sébot and N. Drach-Temam. “Memory Bandwidth: The True Bottleneck of SIMD

Multimedia Performance on a Superscalar Processor”. In: May 2001.

[163] A. Seyedi, A. Armejach, A. Cristal, O. Unsal, I. Hur, and M. Valero. “Circuit design of a

dual-versioning L1 data cache for optimistic concurrency”. In: Jan. 2011, pp. 325–330.

[164] J. Shi and J. M. F. Moura. Graph Signal Processing: Modulation, Convolution, and

Sampling. 2019. eprint: 1912.06762.

[165] G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans, H. Corporaal, and A.

Boonstra. “Near-Memory Computing: Past, Present, and Future”. In: Microprocessors

and Microsystems (Aug. 2019).

136

1912.06762

BIBLIOGRAPHY

[166] J. E. Smith, G. Faanes, and R. Sugumar. “Vector Instruction Set Support for Conditional

Operations”. In: Proceedings of the 27th Annual International Symposium on Computer

Architecture (ISCA). Vancouver, British Columbia, Canada, 2000, pp. 260–269. ISBN:

1-58113-232-8.

[167] A. Sodani. “Race to Exascale: Opportunities and Challenges”. In: Micro ’11 Keynote.

2011.

[168] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani, S. Hutsell, R.

Agarwal, and Y. Liu. “Knights Landing: Second-Generation Intel Xeon Phi Product”.

In: IEEE Micro 36.2 (2016), pp. 34–46.

[169] A. Sodani. “Knights landing (KNL): 2nd Generation Intel Xeon Phi processor”. In: Hot

Chips. 2015.

[170] Y. Solihin, Jaejin Lee, and J. Torrellas. “Using a user-level memory thread for correla-

tion prefetching”. In: Proceedings 29th Annual International Symposium on Computer

Architecture (ISCA). 2002, pp. 171–182.

[171] J. R. Spirn and P. J. Denning. “Experiments with program locality”. In: Proc. of ACM

Fall Joint Computer Conference, Part I. 1972.

[172] J. R. Srinivasan. Improving cache utilisation. Tech. rep. University of Cambridge,

Computer Laboratory, 2011.

[173] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell,

G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico, and P. Walker. “The Arm

Scalable Vector Extension”. In: IEEE Micro 37.2 (2017), pp. 26–39. ISSN: 0272-1732.

[174] S. Sur, M. J. Koop, and D. K. Panda. “High-Performance and Scalable MPI over

InfiniBand with Reduced Memory Usage: An in-Depth Performance Analysis”. In:

Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. SC ’06. Tampa,

Florida: Association for Computing Machinery, 2006, 105–es. ISBN: 0769527000.

[175] H. Sutter. “The Free Lunch Is Over A Fundamental Turn Toward Concurrency in

Software”. In: 2013.

[176] J. K. Tanskanen, T. Sihvo, and J. Niittylahti. “Byte and modulo addressable parallel

memory architecture for video coding”. In: IEEE Transactions on Circuits and Systems

for Video Technology 14.11 (2004), pp. 1270–1276.

[177] The International Technology Roadmap For Semiconductors: Interconnect. Tech. rep.

2009.

137

BIBLIOGRAPHY

[178] C. Tomasi and R. Manduchi. “Bilateral filtering for gray and color images”. In: Sixth

International Conference on Computer Vision (IEEE Cat. No.98CH36271). 1998,

pp. 839–846.

[179] S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O. Unsal, T. Harris, and

M. Valero. “EazyHTM: EAger-LaZY hardware Transactional Memory”. In: 2009 42nd

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 2009,

pp. 145–155.

[180] J. Torrellas. “FlexRAM: Toward an advanced Intelligent Memory system: A retrospec-

tive paper”. In: 2012 IEEE 30th International Conference on Computer Design (ICCD).

2012, pp. 3–4.

[181] K. Uchida and N. Kasuya. “FACOM Vector Processor”. In: (1983).

[182] D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L. Chamberlain,

R. Cledat, H. C. Edwards, H. Finkel, et al. “Trends in data locality abstractions for

HPC systems”. In: IEEE Transactions on Parallel and Distributed Systems (2017).

[183] A. S. Vaidya, A. Shayesteh, D. H. Woo, R. Saharoy, and M. Azimi. “SIMD Divergence

Optimization Through Intra-warp Compaction”. In: Proceedings of the 40th Annual

International Symposium on Computer Architecture (ISCA). Tel-Aviv, Israel, 2013,

pp. 368–379. ISBN: 978-1-4503-2079-5.

[184] M. Valero, T. Lang, J. M. Llaberıéa, M. Peiron, E. Ayguadé, and J. J. Navarra. “In-

creasing the Number of Strides for Conflict-Free Vector Access”. In: Proceedings of

the 19th Annual International Symposium on Computer Architecture (ISCA). ISCA

’92. Queensland, Australia: Association for Computing Machinery, 1992, pp. 372–381.

ISBN: 0897915097.

[185] M. Valero, M. Moretó, M. Casas, E. Ayguade, and J. Labarta. “Runtime-Aware Archi-

tectures: A First Approach”. In: Supercomputing frontiers and innovations 1.1 (2014).

[186] E. Vasilakis, I. Sourdis, V. Papaefstathiou, A. Psathakis, and M. G. H. Katevenis.

“Modeling energy-performance tradeoffs in Arm big.LITTLE architectures”. In: 2017

27th International Symposium on Power and Timing Modeling, Optimization and

Simulation (PATMOS). 2017, pp. 1–8.

138

BIBLIOGRAPHY

[187] VentureBeat. Intel confirms Ice Lake Core CPUs with 10nm+ process to followup its

8th-gen chips. Available at https://venturebeat.com/2017/08/14/intel-confirms-ice-

lake-core-cpus-with-10nm-process- to- followup- its-8th-gen-chips/. 2017. URL:

https://venturebeat.com/2017/08/14/intel-confirms-ice-lake-core-cpus-with-10nm-

process-to-followup-its-8th-gen-chips/.

[188] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera, and M.

Michael. “Evaluation of Blue Gene/Q Hardware Support for Transactional Memories”.

In: Proceedings of the 21st International Conference on Parallel Architectures and Com-

pilation Techniques (PACT). PACT ’12. Minneapolis, Minnesota, USA: Association for

Computing Machinery, 2012, pp. 127–136. ISBN: 9781450311823.

[189] T. Watanabe, T. Furukatsu, R. Kondo, T. Kawamura, and Y. Izutani. “The Super-

computer SX System: An Overview”. In: Proceedings of the Second International

Conference on Supercomputing (ICS). 1987, pp. 51–56.

[190] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic. “The RISC-v instruction set

manual, volume I: Base user-level ISA”. In: EECS Department, UC Berkeley, Tech.

Rep. UCB/EECS-2011-62 116 (2011).

[191] W. J. Watson. “The TI ASC: A Highly Modular and Flexible Super Computer Archi-

tecture”. In: Proceedings of the December 5-7, 1972, Fall Joint Computer Conference,

Part I (AFIPS). Anaheim, California, 1972, pp. 221–228.

[192] M. Wei, M. Snir, J. Torrellas, R. B. Tremaine, T. M. Siebel, and N. Goodwin. “A

Near-Memory Processor for Vector, Streaming and Bit Manipulation Workloads”. In:

2005.

[193] J. Wiegert, G. Regnier, and J. Jackson. “Challenges for scalable networking in a virtual-

ized server”. In: 2007 16th International Conference on Computer Communications

and Networks. IEEE. 2007, pp. 179–184.

[194] M. J. Wolfe. High performance compilers for parallel computing. Addison-Wesley,

1996.

[195] S.-Y. Wu, C. Lin, M. Chiang, J. Liaw, J. Cheng, S. Yang, M. Liang, T. Miyashita, C.

Tsai, B. Hsu, et al. “A 16nm FinFET CMOS technology for mobile SoC and computing

applications”. In: 2013 IEEE International Electron Devices Meeting. 2013.

139

https://venturebeat.com/2017/08/14/intel-confirms-ice-lake-core-cpus-with-10nm-process-to-followup-its-8th-gen-chips/
https://venturebeat.com/2017/08/14/intel-confirms-ice-lake-core-cpus-with-10nm-process-to-followup-its-8th-gen-chips/
https://venturebeat.com/2017/08/14/intel-confirms-ice-lake-core-cpus-with-10nm-process-to-followup-its-8th-gen-chips/
https://venturebeat.com/2017/08/14/intel-confirms-ice-lake-core-cpus-with-10nm-process-to-followup-its-8th-gen-chips/

BIBLIOGRAPHY

[196] S.-Y. Wu, C. Lin, M. Chiang, J. Liaw, J. Cheng, S. Yang, C. Tsai, P. Chen, T. Miyashita,

C. Chang, et al. “A 7nm CMOS platform technology featuring 4th generation FinFET

transistors with a 0.027 µm2 high density 6-T SRAM cell for mobile SoC applications”.

In: 2016 IEEE International Electron Devices Meeting (IEDM). 2016.

[197] W. A. Wulf and S. A. McKee. “Hitting the memory wall: implications of the obvious”.

In: ACM SIGARCH Computer Architecture News 23.1 (Mar. 1995), pp. 20–24. ISSN:

0163-5964.

[198] S. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks. “Quantifying sources of error

in McPAT and potential impacts on architectural studies”. In: International Symposium

on High Performance Computer Architecture (HPCA). 2015, pp. 577–589.

[199] R. Xie, P. Montanini, K. Akarvardar, N. Tripathi, B. Haran, S. Johnson, T. Hook,

B. Hamieh, D. Corliss, J. Wang, et al. “A 7nm FinFET technology featuring EUV

patterning and dual strained high mobility channels”. In: 2016 IEEE International

Electron Devices Meeting (IEDM). 2016.

[200] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. “Performance Evaluation of Intel®

Transactional Synchronization Extensions for High-Performance Computing”. In: Pro-

ceedings of the International Conference on High Performance Computing, Networking,

Storage and Analysis. SC ’13. Denver, Colorado: Association for Computing Machinery,

2013. ISBN: 9781450323789.

[201] T. Yoshida. “Introduction of Fujitsu’s HPC Processor for the Post-K Computer”. In:

Hot Chips. 2016.

[202] X. Yu, C. J. Hughes, N. Satish, and S. Devadas. “IMP: Indirect memory prefetcher”. In:

2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

2015, pp. 178–190.

[203] T. Zeiser, G. Hager, and G. Wellein. “The world’s fastest CPU and SMP node: Some

performance results from the NEC SX-9”. In: 2009 IEEE International Symposium on

Parallel Distributed Processing (IPDPS). 2009, pp. 1–8.

[204] D. P. Zhang, N. Jayasena, A. Lyashevsky, J. Greathouse, M. Meswani, M. Nutter, and

M. Ignatowski. “A New Perspective on Processing-in-Memory Architecture Design”.

In: Proceedings of the ACM SIGPLAN Workshop on Memory Systems Performance and

Correctness. MSPC ’13. Seattle, Washington: Association for Computing Machinery,

2013. ISBN: 9781450321037.

140

BIBLIOGRAPHY

[205] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatowski.

“TOP-PIM: Throughput-Oriented Programmable Processing in Memory”. In: Proceed-

ings of the 23rd International Symposium on High-Performance Parallel and Dis-

tributed Computing. HPDC ’14. Vancouver, BC, Canada: Association for Computing

Machinery, 2014, pp. 85–98. ISBN: 9781450327497.

[206] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schaelicke, J. B. Carter, W. C. Hsieh,

and S. A. McKee. “The Impulse Memory Controller”. In: IEEE Trans. Comput. (2001).

ISSN: 0018-9340.

[207] X. Zhuang and H.-H. Lee. “A hardware-based cache pollution filtering mechanism

for aggressive prefetches”. In: 2003 International Conference on Parallel Processing,

2003. Proceedings. 2003.

141

List of figures

1.1 Historical trends of important metrics in computing systems. 2

1.2 Evolution of relative processor and memory performance. 3

2.1 Comparison of a scalar and vector instruction. 8

2.2 The micro-architecture of the VIRAM vector processor, from [111] 9

2.3 Comparison of a vertical (addition) and horizontal (reduction) instruction. . . 12

2.4 Predicated vector addition instruction. 14

2.5 Traditional computing architecture. 15

2.6 The memory hierarchy. 16

2.7 Typical memory hierarchy architectures . 17

2.8 DRAM organization, obtained from [149]. 18

2.9 Abstract DRAM memory controller, obtained from [98]. 19

2.10 Processing In Memory concept. 21

2.11 High-level overview of a 3D-stacked DRAM based architecture, obtained

from [79]. 23

2.12 Multi-core processor. Four cores are connected to the same L3 cache. Obtained

from [131]. 24

2.13 Example of a distributed system with four processors, where every processor

has a local memory. If they want to communicate, they need a message passing

protocol. In this case, processor 0 sends a message to processor 1. 25

2.14 Example of shared memory system with four processors. If they need to

synchronize, they use the shared memory. 26

3.1 Loop iteration breakdown. In the X axis, the applications name and their num-

ber of instructions per iteration. In the Y axis, the instruction type percentage

in every iteration. 35

143

LIST OF FIGURES

4.1 Performance and dynamic energy degradation for predicated SIMD applications

with different mask densities. 43

4.2 CR basic functionality. In this case, two intructions for the same PC with 50%

mask densities are compacted and restored. 45

4.3 Time diagram comparing the execution of baseline vs CR in the pipeline. The

pipeline stages are: Fetch (F), Decode (DE), Issue (I), Dispatch (DI), Execute

(E), Commit (C), Compact (CM), Restore (R). 45

4.4 CR overview when incorporated to an out-of-order processor. 48

4.5 Compaction phase for one compactable instruction with a mask density of 50%. 50

4.6 Restoration phase for one dense instruction containing two compacted instruc-

tions with a mask density of 50%. 52

4.7 Example of dense register forwarding. In the left, compaction is not needed,

but it is on the right, as the mask for the second compactable instruction differs. 53

4.8 SIMD loop in Intel’s assembly. 53

4.9 Example of the Compaction phase. 54

4.10 Example of Restoration phase. 55

4.11 Compaction unit configuration slowdown on performance. Normalized to

non-latency CR scenario. In the x-axis the different number of stages. Each

line represents a different compaction unit count. 57

4.12 Restoration unit configuration slowdown on performance. One two-stage

compaction unit latency considered. Normalized to non-latency CR scenario.

In the x-axis the different number of stages. Each line represents a different

restoration unit count. 58

4.13 Timeout policy combinations impact on performance, normalized to the best

scenario. The circular dependency policy is implicit in every scenario. In the

x-axis the number of cycles for each timeout policy changes. 59

4.14 Impact of costly predicated SIMD instructions to performance (left) and dy-

namic energy (right). Normalized to the no-long latency instruction scenario.

In the x-axis, the percentage of costly predicated instructions. 60

4.15 Average number of predicated instructions compacted per dense in CR. In the

x-axis, the number of instructions per loop iteration. Masks: 25% (left) and

50% (right). 61

144

LIST OF FIGURES

4.16 Performance (up left), VFU access (up right), dynamic energy (bottom left)

reductions and leakage energy (bottom right) results of CR. Normalized to a

non-CR scenario. 62

4.17 Results of AVX-2 legacy codes compacted into AVX-512 using CR. Normal-

ized to a non-CR scenario. Speed-Up left, VFU access reduction (center) and

dynamic energy reduction (right). 64

4.18 Speed-Up (left) and total energy reduction (right) of DIL, CR and CR+DIL

normalized over a non-CR scenario. 65

5.1 Original STRIDE code. 69

5.2 Software-rearranged STRIDE code. 70

5.3 PLANAR-rearranged STRIDE code. 71

5.4 System overview with two PLANAR devices. Cores are augmented with a

Rearrangement Control Table (RCT) to monitor ongoing rearrangements. . . 72

5.5 Synchronization example for a rearrangement that employs one PLANAR device. 78

5.6 Execution example for a rearrangement that employs one PLANAR device. . . 79

5.7 Normalized PLANAR design impact to performance in Spatter. Pipeline width

(left), number of functional units (center) and L1-D cache size (right). In the

x-axis the pipeline widths, number of functional units and cache size in KB. . 80

5.8 Performance relative to the number of PLANAR devices (x-axis), normalized to

64. 81

5.9 Performance with different synchronization chunk sizes normalized to 64B. . 82

5.10 Speed-Ups with eight PLANAR devices for one and eight core runs. Both

normalized to Baseline + Scalar. 83

5.11 Average bandwidth usage at the memory controllers with eight PLANAR devices

for one and eight cores. 84

5.12 L1D miss reduction with 8 PLANAR devices for one and eight cores, both

normalized to baseline scalar. 86

5.13 Byte reduction in the L1D-L2 bus with 8 PLANAR for one and eight cores,

normalized to baseline scalar. 87

5.14 Normalized DRAM accesses for baseline (B) and PLANAR (P) on 8 cores with

scalar codes. 88

5.15 Dynamic energy reduction baseline (B) vs PLANAR (P) in scalar applications

on eight cores. 89

145

LIST OF FIGURES

5.16 Dynamic energy breakdown baseline (B) vs PLANAR (P) in scalar applications

on eight cores. 89

5.17 Performance of Impulse vs PLANAR in SpMV. In the x-axis, the matrix inputs

from Table 3.2.2. 90

5.18 Performance of the DLT accelerator vs PLANAR for multiple applications. . . 91

6.1 Original PageRank code. 95

6.2 REMOTE version of the PageRank code. 96

6.3 System overview with two REMOTE devices. 98

6.4 Nanos++ task flow over runtime structures with the changes to add REMOTE. 101

6.5 Impact of REMOTE’s pipeline width (1 and 2) to performance. Results normal-

ized to a pipeline of width one. In x-axis multiple graph and HPC bechmarks,

including average numbers. 102

6.6 Impact of REMOTE’s functional units (1, 2 and 4) to performance. Results

normalized to 1 functional unit. In x-axis multiple graph and HPC bechmarks,

including average numbers. 103

6.7 Impact of the latency of REMOTE’s functional units (1×, 2× and 4×) to

performance. Results normalized to 1× functional unit. In x-axis multiple

graph and HPC bechmarks, including average numbers. 103

6.8 Impact of REMOTE’s frequency (1, 2 and 4GHz) to performance. Results

normalized to 1GHz. In x-axis multiple graph and HPC bechmarks, including

average numbers. 104

6.9 Missrate in the last-level cache. In x-axis multiple graph and HPC bechmarks,

including average numbers. 105

6.10 Misses Per Kilo Instruction (MPKI). In x-axis multiple graph and HPC bech-

marks, including average numbers. 105

6.11 Arithmetic intensity. In x-axis multiple graph and HPC bechmarks, including

average numbers. 106

6.12 Speed-Up of graph (up) and HPC (down) benchmarks executed on the baseline

and on REMOTE. Results normalized to 1 out-of-order core. In x-axis multiple

graph benchmarks, including average numbers. 106

6.13 Relative dynamic energy of graph (up) and HPC (down) benchmarks executed

on the baseline with 8 out-of-order cores (“8c”) and on 8, 16 and 32 REMOTE

(“8r”, “16r”, “32r”). Results normalized to 8 out-of-order cores. In x-axis

several graph benchmarks with average numbers. 107

146

LIST OF FIGURES

6.14 Average miss latency reduction, normalized to the baseline, when executing

the applications on REMOTE. In x-axis multiple graph and HPC benchmarks,

including average numbers. 108

6.15 Memory bandwidth of graph (top) and HPC (bottom) benchmarks executed

on the baseline and on REMOTE. Maximum theoretical bandwidth 32GB/s. In

x-axis multiple graph benchmarks, including average numbers. 109

6.16 Relative performance results, normalized to 8 host cores. In x-axis multiple

benchmarks, including average numbers. 110

6.17 Total energy reduction results, normalized to 8 host cores. In x-axis multiple

benchmarks, including average numbers. 111

6.18 Comparison of the speed-up of three different proposals (the Smart Memory

Cube [21], the Programmable Prefetcher [3] and the bigLITTLE configura-

tion [186]) to the REMOTE approach using the PageRank benchmark. Results

normalized to the performance of 1 out-of-order host core. In x-axis graph

connectivities of 5%, 10% and 20%. 112

147

List of tables

3.1 Configuration of gem5 simulations for the first proposal. 31

3.2 Configuration of gem5 simulations for the second proposal. 32

3.3 Configuration of gem5 simulations for the third proposal. 33

3.4 Benchmarks used to evaluate the proposal about divergence. 35

3.5 Benchmarks used to evaluate the proposal about data layout transformation. . 37

3.6 Description of the benchmarks used to evaluate the near-memory compute

proposal. 38

4.1 CIT entry fields, size in bits. 46

5.1 Comparison with state-of-the-art DLT proposals. 68

5.2 Rearrangement Control Table (RCT) with the information about a rearrange-

ment in flight being performed by 4 PLANAR devices. 73

6.1 Comparison with state-of-the-art proposals. 97

149

LIST OF TABLES

151

	Abstract
	Resumen
	Acknowledgments
	Table of contents
	Contents
	1 Introduction
	1.1 Thesis Objectives and Contributions
	1.1.1 Improving Predication Efficiency Through Compaction/Restoration of SIMD Instructions
	1.1.2 Planar: A Programmable Accelerator for Near-Memory Data Rearrangement
	1.1.3 Remote: A Programmable Near-Memory Compute Engine

	1.2 Thesis Outline

	2 Background
	2.1 Vector Architectures
	2.1.1 An Example of the Micro-architecture of a Vector Processor
	2.1.2 Vector Processors in Supercomputers
	2.1.3 Vector Architectures in Microprocessors
	2.1.4 SIMD Extensions
	2.1.5 Advantages of Vector Architectures
	2.1.6 Disadvantages of Vector Architectures
	2.1.7 Challenges of Vectorization

	2.2 The Memory Wall
	2.2.1 The Memory Hierarchy
	2.2.2 DRAM Organization
	2.2.3 Memory Controller
	2.2.4 Prefetching
	2.2.5 Limitations of the Memory Hierarchy
	2.2.6 Processing In/Near Memory

	2.3 Parallel Programming for Shared-Memory Systems
	2.3.1 Parallel Processors
	2.3.2 Parallel Programming Models

	2.4 Runtime-Aware Architectures

	3 Experimental Methodology
	3.1 Simulation Infrastructure
	3.1.1 Simulator
	3.1.2 Environment

	3.2 Benchmarks
	3.2.1 Benchmarks for the Divergence Proposal
	3.2.2 Benchmarks for the Near-Memory Data Rearrangement Proposal
	3.2.3 Benchmarks for the Near-Memory Computing Proposal

	3.3 Metrics

	4 The Efficiency of Predicated SIMD Instructions
	4.1 Introduction
	4.2 The Predication Problem in SIMD Extensions
	4.3 The Compaction/Restoration Mechanism
	4.3.1 Overview
	4.3.2 CR Hardware Components
	4.3.3 CR in an Out-of-Order Processor
	4.3.4 Detecting Compactable Instructions
	4.3.5 Populating Dense Instructions
	4.3.6 Compaction Phase
	4.3.7 Execution of Compacted Instructions
	4.3.8 Restoration Phase
	4.3.9 Dense Register Forwarding
	4.3.10 CR Case Study
	4.3.11 Optimizing SIMD Legacy Code
	4.3.12 Discussion

	4.4 Design Space Exploration
	4.4.1 Compaction and Restoration Latencies
	4.4.2 Timeout Policies
	4.4.3 Costly SIMD Instruction Ratio
	4.4.4 Effectiveness with Different Loop Lengths

	4.5 Area and Power Consumption of CR Units
	4.6 Evaluation
	4.6.1 Predicated SIMD Applications
	4.6.2 Optimizing AVX-2 Legacy Code
	4.6.3 Comparison with Other Proposals

	4.7 Conclusions

	5 Planar: A Programmable Accelerator for Near-Memory Data Rearrangement
	5.1 Introduction
	5.2 Motivation
	5.3 Planar Design
	5.3.1 Modifications to Application Code
	5.3.2 Allocation of Memory and Planar
	5.3.3 Offloading of Rearrange Function
	5.3.4 Execution of Rearrange Functions
	5.3.5 Synchronization Between Planar and Host
	5.3.6 Release of Planar Devices and Memory
	5.3.7 Planar Execution Example

	5.4 Design Space Exploration
	5.4.1 Pipeline Width
	5.4.2 Number of Functional Units
	5.4.3 Cache Size
	5.4.4 Number of Planar Devices
	5.4.5 Synchronization Granularity
	5.4.6 Selected Configuration

	5.5 Evaluation
	5.5.1 Impact to the Memory Hierarchy
	5.5.2 Area and Power Overhead
	5.5.3 Comparison to Other Proposals

	5.6 Conclusions

	6 Near Memory Compute Engine
	6.1 Introduction
	6.2 Motivation
	6.3 Proposal
	6.3.1 The Remote Device
	6.3.2 Changes to the Application
	6.3.3 Changes to the Runtime System

	6.4 Design Space Exploration
	6.4.1 Pipeline width
	6.4.2 Number of functional units
	6.4.3 Latency of functional units
	6.4.4 Frequency
	6.4.5 Selected configuration

	6.5 Evaluation
	6.5.1 Profiling of the Applications
	6.5.2 Results with Remote
	6.5.3 Impact to the Memory Hierarchy
	6.5.4 Host Core vs Remote Performance and Area Comparison
	6.5.5 Comparison to Other Proposals

	6.6 Conclusions

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work
	7.3 Publications

	Bibliography
	List of figures
	List of tables

