mzurICh Institute for Dynamic Systems and Control

Pedro Reyero Santiago

Sensor rejection for reliable state
estimation of an autonomous
last-mile delivery vehicle

Master’s Thesis

Institute for Dynamic Systems and Control
Swiss Federal Institute of Technology Zurich

Supervision

Dr. Erik Wilhelm
Prof. Dr. Christopher Onder

July 2021

‘IDSC

Abstract

State estimation is a critical component of an autonomous vehicle. Safe, accurate and reliable
localization can be a challenging task, especially in worst-case scenarios where sensors may suffer
from poor performance or failure (for instance, a GPS system inside a building). In these cases, the
sensors provide corrupt measurements. Previous works have studied the fusion of valid information
from different sensors, however the sensor rejection problem has barely been explored in a general,
non algorithm-specific formulation. In this thesis, the online cross-validation and rejection of pose
estimates coming from sensors that may fail is studied. This is the applied to the Autonomous
Plus2, an autonomous vehicle prototype for last-mile delivery developed by Kyburz Switzerland
AG. First, a general overview of autonomous vehicle sensors and their typical failure modes is
presented. The specific localization algorithms present on the Autonomous Plus2 are also described.
Then, existing sensor rejection approaches are explored, based on parity-based Fault Detection
and Isolation (FDI) techniques. New approaches are studied, based on Machine Learning (ML)
techniques (decision trees, k-NN, feedforward neural networks and RNNs). A solution combining
the aforementioned techniques is proposed, to improve reliability. Finally, an experimental setup
is presented and implemented to test and tune each algorithm on the Autonomous Plus2. Various
challenging scenarios are considered, to assess performance, trade-offs and weaknesses. The final
proposal is a combined decision algorithm, capable of a 70% rejection rate of failed measurements
while only losing 5% of the valid measurements.

Keywords: Pose estimation, Autonomous vehicles, Reliability, Sensor rejection, Fault Detection
and Isolation, Machine Learning.

ii

Acknowledgment

Throughout the writing of this thesis, I have received a great deal of support and assistance, which
have been key to reaching the final result I hereby present.

I would first like to thank my supervisor at Kyburz, Dr. Erik Wilhelm, whose constant and active
feedback was invaluable in formulating the thesis problem and coming up with solutions to tackle
it successfully, as well as refine and improve results and aim the project in the right direction in
difficult times.

I would like to thank my supervisor at ETH Ziirich, Prof. Dr. Christopher Onder, who put his
trust in an exchange student and granted me the great and unique opportunity to develop this
thesis in collaboration between university and industry. His support and kind feedback was very
useful to keep the project progressing on a sound and fruitful track.

I would also like to thank the rest of the team in Kyburz, and in particular the people in the research
team, who always offered me their help and time to solve issues with the vehicle and overcome
obstacles on the way. Their assistance allowed me to get used to working with the Autonomous
Plus2 very fast and to collect data and test efficiently and extensively.

In addition, I would like to thank my family and friends for their support and care, which was
indispensable for reaching where I am right now. I owe them my personal and academic development
over these seven years at university, as well as some of my dearest memories during that time.

iii

iv

Contents

[LI_Problem statementl
L3 Thesisoutlind
2.1 GPSI
R2IMU
2.3 INSI . . .
BA_TIDARI.
5 _Cameralo
2.6 Wheel odometry|]o
BT _Othersl

Sensor rejection and trust estimation|

4.3 Learning-based approaches|
K.3.1 Classical ML, classification methods|.

4.3.2 Fully-connected feedforward neural networks|

4.3.3 Sequence models|
4.4 Voting systems| oo

]

Experimental procedure|

.1 Performance evaluationl
0.2 Test scenarios description|
b.3 Data acquisition and pipelinel
.4 Training and parameter tuning procedures|.

6 Reosul i ol

6.1 Model training and tuning results|.

6.1.1 EXNIS cross-validationl

3.1 Google Cartographer|
3.2 GPS/INS|

:;;; lzraéonllﬂ

8.4 Dead reckoning|o
3.5 ROS architecture and pipeline|.

4.1 Manual heuristics (rule-based).

4.2 Fault Detection and Isolation methodsl

W N = =

—_
== 00 00~ O Ot

[

13
15
16
17
18

21
21
22
22
25
28
31
32
34

37
37
38
38
42

[6.1.6 Note on performance metrics|
[6.2 Final performance in test SCENATios|« o v v v v vt

7 Conclusion

[A_Cod¢d
IA.1 Data pre-processing|

A.2 Algorithm nodes|
1A.3 _Other ROS filesl

vi

Chapter 1

Introduction

1.1 Problem statement

This project’s objective is to develop and deploy strategies for improving reliability of state esti-
mation for Kyburz’s autonomous vehicle Autonomous Plus2 (see Figure[l.1)), which is designed for
last-mile mobility.

In particular, sensor rejection schemes are developed to deal with worst-case scenarios, where
one or more of the different pose estimation sources fail to provide a reliable estimate, but still
provide an estimate (and potentially also a covariance matrix associated to it) that has to be
rejected. Common sensor fusion techniques rely on covariance matrices for filtering new incoming
information and producing a new state estimate, and thus are biased towards precision. In normal
situations, when all sensors/sources are providing reliable information, these approaches provide
accurate and precise results with relatively low computational cost. In "sensor failure" scenarios,
however, some of the sources may provide apparently very precise estimates (according to their
statistical information), which are actually not accurate. Those estimates have to be rejected before
filtering, in order to avoid corrupting the vehicle’s state estimate by fusing inaccurate information
(which filtering techniques may trust due to their high precision).

The Autonomous Plus2 has many on-board sensors which provide information that can be used for
localization purposes. Seizing the available setup (both hardware and software) at the project start
date, in this project it is considered that the Autonomous Plus2 can receive 2D pose estimates (i.e. 2
position variables and 1 orientation variable) from 4 different sources, which are described in detail
in Chapter Those estimates come as pose vectors of the form [z, y, 8], obtained by processing and
filtering data from several sensors and sometimes also using localization algorithms (e.g.: SLAM).
Those 4 estimates are available to decide which sources can be trusted and which should be rejected.
In this project, schemes/algorithms are developed to make this decision autonomously and on-the-
fly (before, this decision was taken manually by a skilled member of the Kyburz team before
starting navigation, and it couldn’t be changed afterwards). This decision comes in the form of a
binary decision vector [s1, $2, 83, 84] (with 0 meaning source rejection) and can be complemented
with trust/belief information, to express the degree of reliability of each source. Such information
can also be additionally used by the vehicle’s planning and decision systems in very challenging
worst-case scenarios (where several sensors aren’t reliable) in order to re-plan motion to ensure
safe navigation (e.g.: by lowering path speeds). Figure summarizes the system developed in this
project.

2 1.2. Previous and related research

Figure 1.1: Autonomous Plus2, the autonomous vehicle prototype used in this thesis.

1.2 Previous and related research

In order to improve reliability on autonomous vehicle state estimation, many techniques have been
developed and tested across literature. There is quite a broad consensus in the community that
in order to avoid the perceptual limitations and uncertainties of a single sensor, to build a richer
comprehension about the vehicle’s environment and to improve its overall external perception
abilities, it is essential to integrate information obtained by different sensors [I].

Multi-source and heterogeneous information fusion (MSHIF) can be performed at different levels of

abstraction from the original data in the fusion phase, which motivates the following classification
from [1]:

o Fusion strategies based on discernible units: Direct fusion of the data coming from each sensor,
and further processing of the data after the fusion.

o Fusion strategies based on complementary features: For each target, combination or fusion
of features obtained with each sensor (to build a richer representation of each target) and
subsequent classification or recognition of each target using the fused multi-sensor features.

o Fusion strategies based on target attributes: Different sensors are used to generate different
target lists, which are then fused to acquire a reliable target list with reliable information,
avoiding false alarms and missed detections.

Chapter 1. Introduction 3

sensor selection signal
[S1 Sz S3 S4

v

4 filtered pose estimates Project's focus
[x; vi 6] system block

trust/belief information

v

Figure 1.2: Schematic representation of this project’s inputs, outputs and developed system.

o Fusion strategies based on multi-source decision: For each sensor, a decision is made regarding
location, attributes or categories of the target, and then fusion strategies are applied to
combine the decisions from individual sensors.

The problem proposed in this thesis can be classified as a part of a fusion strategy that lies in
the last of the former categories. The Autonomous Plus2 has 4 independent sources of 2D pose
estimates which are generated using different sensors (although some may share, for instance, the
IMU data). Those 4 preliminary estimates have to be used to produce a final pose estimate, which
may or may not use the full information from each preliminary estimate. In this thesis, this fusion
problem is broken into 2 distinctive steps, and the focus is set on only the first of them:

1. The 4 pose estimates are used to cross-validate their information and detect which sources are
reliable and which may be falling into a "failure mode", a failure that can be just temporary
or need a reset routine. The output of this step are a sensor selection signal for the next step
and trust/belief information on each sensor’s estimates.

2. Using the sensor selection signal from the previous step, and potentially also its trust/belief
information, the non-rejected estimates are fused into a final estimate that should ideally be
more accurate and reliable.

The latter step is a well-studied and active topic across the literature, for which many algorithms
have been successfully applied. Two of the most used algorithms for it are Kalman Filters and
Particle Filters, with countless variants proposed, depending on the characteristics of the sensors
used on each vehicle and the algorithms used to process raw sensor data. Some previous works on
this task for autonomous last-mile delivery vehicles are [2], [3] and [4].

The former step, however, is not a very explored topic across literature, especially with this formula-
tion, that is, independent of which algorithms were used to generate the pose estimates (algorithm-
specific sensor selection methods have been presented, for instance, in [5], where the method is re-
stricted to sensors/algorithms that provide a 2D discrete grid-map). A few related previous works
on general sensor rejection and/or cross-validation using residuals and fault detection techniques
can be found in [6], [7] and [8]. More modern techniques (e.g.: Machine Learning approaches)
haven’t been applied to this particular problem, to the best of the writer’s knowledge.

1.3 Thesis outline

The remainder of this thesis is organized as follows. Chapter [2| describes the main sensors used
in autonomous vehicles, their characteristics and the different scenarios/situations in which they
can "fail" and provide non-accurate information. Chapter [3] presents the 4 sources of 2D pose
estimates used on the Autonomous Plus2 for this project, together with the way their output
information is preprocessed/treated before feeding it to the decision schemes. Chapter [4] presents
the different approaches to sensor rejection that are explored in this thesis. Chapter [5| describes
how each scheme’s performance is assessed (metrics, test scenarios, etc.) and how each scheme’s
parameters are tuned/learned. Chapter |§| contains the final experimental results for each scheme
and scenario, together with an assessment of their overall performance and reliability. Finally,
Chapter [7] summarizes the main conclusions of this thesis.

1.3. Thesis outline

Chapter 2

Sensors and sensor failure in
autonomous vehicles

In order to localize an autonomous vehicle, information about ego motion or the environment has
to be gathered. This can be done using many sensors, which can provide various types of raw
information that can be later processed by localization algorithms (e.g.: SLAM) to generate an
estimate of "where the vehicle is". Some sensors can provide local/relative information (e.g.: position
of obstacles with respect to the ego vehicle, relative ego movement...), while others provide global
information (e.g.: position of the ego vehicle with respect to a fixed terrestrial reference frame).

Although there are a lot of different sensors that can be used nowadays in autonomous vehicles,
here the focus is put on the sensors that are currently being used on the Autonomous Plus2
for localization. For those sensors, their main characteristics, working principles, advantages and
disadvantages are presented, together with a discussion on sensor "failure modes" that may arise
during typical operation of the vehicle (either due to the sensors’ intrinsic characteristics or due to
typical associated algorithms’ limitations) and that can be triggered in a controlled experimental
setup. These failure modes condition and motivate some of the different test scenarios presented in
Chapter [5] which focus on triggering sensor failure to assess algorithm performance in worst-case
scenarios. Finally, this chapter also includes a brief discussion of other common sensors present in
the Autonomous Plus2 that could be used for localization in the future.

2.1 GPS

GPS is a constellation of satellites that provides a user with an accurate position on the surface
of the earth [9]. A GPS receiver can provide precise global position information to an autonomous
vehicle anywhere in the world, by locking on to any visible satellites. This information is provided
in the form of latitude and longitude, which can be transformed into northing and easting.

The GPS system has a constellation of 24 satellites in fixed orbits around the earth (see Figure7
each of which continuously transmits GPS signals to the earth. These signals consist of 2 carrier
frequencies, digital codes and a navigation message. The distance between satellite and receiver
can be determined using the carrier frequencies and digital codes, while the navigation message is
used for clock compensation, knowing the satellite’s location, etc. GPS receivers use trilateration
[10], which requires at least 4 visible satellites at a given time in order to provide the position
estimate (see Figure , but can greatly benefit from having more than 4 satellites visible.

In Table 3 failure modes are considered for GPS systems [I1], which are also graphically
depicted in Figure [2.2] Satellite visibility is key for a good GPS performance, so any situation that
may affect it is likely to trigger a reduction in accuracy (e.g.: when navigating between trees) or

6 2.2. IMU

Sat4

Figure 2.1: The GPS network has 24 satellites that orbit in 6 planes around the Earth. GPS
trilateration needs at least 4 satellites visible at a given time [10].

Table 2.1: Summary of considered GPS failure modes.

Failure mode Code Description
. The number of visible satellites decreases due to blockage
Satellite blockage GPS_1 by elements like buildings, trees, bridges, etc.
Time-of-flight calculations are corrupted by GPS signal
getting reflected off of buildings, walls, etc.
Indoor or underground navigation impose a physical ceiling
above the vehicle, blocking proper satellite visibility.

Multi-path effect GPS_2

Complete ceiling

above vehicle GPS_3

even produce a corrupted estimate (e.g.: when entering a building, where a ceiling blocks satellite
visibility). Another common and easy-to-trigger failure mode for GPS is the so-called "multi-path
effect” [12], where some GPS signals are reflected off of high buildings or walls and don’t reach the
vehicle directly. As GPS positioning relies on computing the distance from the satellites to the GPS
receiver using the propagation time taken for the signal to travel from satellite to receiver, reflected
multi-path signals (which take longer paths than direct signals) can cause significant errors.

2.2 IMU

Initial measurement units (IMUs) are sensors that can directly measure the vehicle’s 6 DOF accel-
eration, through the combination of an accelerometer (three linear acceleration components) and a
gyroscope (three rotational acceleration components). Some IMU units also include a magnetome-
ter, although they are not very useful for autonomous vehicles due to the presence of magnetic
fields from the ego vehicle and other nearby vehicles [13].

IMUs provide a way to estimate ego motion without interacting with the environment or having any
knowledge from it, which is very useful for localization algorithms in terms of safety and reliability.
This environment-independent nature allows IMUs to track position even in complicated scenarios,
like slipping and skidding, where tires lose traction and measurements from wheel odometry become
inaccurate.

In Table 1 failure mode is presented for IMUs [I1], which is also graphically depicted in Figure
When an autonomous vehicle enters an area where it suffers significant vibration (e.g.: uneven

Chapter 2. Sensors and sensor failure in autonomous vehicles 7

o=
< §§’ &
&
&% & \+ < X
eflected
path
direct
path
SATELLITE BLOCKAGE MULTI-PATH EFFECT COMPLETE CEILING ABOVE VEHICLE

Figure 2.2: Schematic representation of situations that can trigger the considered GPS failure

modes in Table

Table 2.2: Summary of considered IMU failure modes.

Failure mode Code Description
Vibration IMU 1 eavy vibration (e g (.iue to terrain conditions)
can affect inertial measurements.

or very rough floors), IMUs ingest these vibrations as a part of their acceleration measurements,
altering the resulting signal.

2.3 INS

An inertial navigation system (INS) takes the readings from GPS, gyroscope, accelerometer and
magnetometer and fuses them to achieve a more accurate and reliable output. Inertial navigation
systems must contain some sort of central processing unit (CPU) in order to perform the sen-
sor fusion of GPS and IMU. While GPS provides global positioning information, IMUs provide
information relative to their last known position. The fusion of these two sources (for instance,
running a Kalman Filter on its CPU) also allows an INS to reduce problems like drift or mag-
netic interference in heading estimation, allowing for proper compassing and ultimately providing
a better estimate of the ego vehicle’s pose. This fused inertial and global positioning information
can be used, for instance, to confirm and update position with respect to high precision maps in
applications combining INS with other sensors like LiDAR [I].

As INS systems fuse GPS and IMU readings, they may enter failure whenever one of those two main
components does (and thus no separated failure modes have been defined for INS systems). It may
also happen that the other component (and the algorithm on the CPU) is enough to compensate
the problem and the INS system does not provide corrupt or unreliable estimates even in situations
that would be challenging for one of the components individually.

Figure 2.3: Schematic representation of a situation that can trigger the considered IMU failure

mode in Table

8 2.4. LiDAR

2.4 LiDAR

A LiDAR (Light Detection and Ranging) sensor allows to determine the distance between a laser
transmitter and an object or surface using a beam of pulsed laser. The distance to the object
is determined by measuring the time difference between the pulse emission and the detection of
the reflected signal (see Figure . These reflections conform a point cloud that represents the
environment around the vehicle (both static and dynamic elements), which can be used by algo-
rithms for positioning, obstacle detection, environmental reconstruction, etc. The most common
wavelength for LIDARs nowadays is in the 900 nm range (the Autonomous Plus2, in particular,
uses a LIDAR with a 850 nm wavelength), although longer wavelengths may be used to obtain
better performance under challenging weather conditions (e.g.: rain, fog...) [14].

TOF=2-d/c
>

I t

emmited reflected
light pulse light pulse

Figure 2.4: Working principle of LiDAR sensors: time-of-flight (TOF) [I5]. Distance d to the de-
tected obstacle is computed with the TOF and the speed of light c.

There are two main types of LIDAR systems [16]: mechanical LIDARs and solid-state LiDARs. The
Autonomous Plus2 has a mechanical LIDAR, which uses high-grade optics and a rotating assembly
to create a wide Field Of View (usually 360°). The resulting implementation is bulky, but offers
a high signal-to-noise ratio over a wide FOV. They are the most commonly used LiDAR sensors,
although their price tag make them quite restrictive in some cases.

LiDAR systems present much higher spatial resolution than Radar, because of the more focused
laser beam, the larger number of vertical scan layers and the high density of LiIDAR points in
each layer [I4], but most LiDAR implementations can’t measure velocity of objects directly, unlike
Radar systems. They are also much more affected by weather conditions or dirt on the sensor, as
these elements can interfere in the emission and reflection of the laser pulses.

In Table 4 failure modes are presented for LiDAR [I7], [I8], some of which are also exemplified
in Figure 2.5 Ground clutters are reflection points that appear, for instance, when the road has
abrupt inclination changes. When using SLAM algorithms, saliency qualifies if a landmark or a
set of landmarks as having enough information to compute a unique localization solution that
is coherent with the real displacement [I8]. Motion distortion occurs in mechanical LiDARs at
non-slow speeds, where the ego motion of the vehicle during a full turn of the LiDAR shaft is
significant and needs to be compensated (usually handled by LiDAR data processing pipelines [19]
or localization algorithms using LiDAR raw data).

2.5 Camera

Cameras are one of the first sensors that were used in autonomous vehicles and are nowadays
present in almost any such system [14]. They allow the vehicle to visualize its environment in
a similar way a human driver would do (and even much beyond human sensing capabilities, as
usually many cameras are mounted in different parts of a vehicle, even achieving 360° global FOV,
as can be seen in Figure . In order to capture the scene, cameras use an imaging sensor [20],

Chapter 2. Sensors and sensor failure in autonomous vehicles 9

Table 2.3: Summary of considered LiDAR failure modes.

Failure mode Code Description
. . Rain, fog or snow can heavily affect

Weather conditions LiDAR,_ 1 -)
LiDAR’s performance.

Non-salient . Available landmarks do not give enough information

. LiDAR_ 2 . . N ! .
configurations for a unique solution (e.g.: "tunnel passage" scenarios).
Ground clutters LiDAR_ 3 Undulations on the grounsl or going up / down.hlll can
generate an accumulation of reflection points.
At higher speeds, car movement during a full rotation
Motion distortion LiDAR_ 4 of mechanical LiDARs can generate distortions in
the point cloud.

possible locations
of the vehicle

symmetric
passage

D

by by?

= T SN
B Fae=0

NON-SALIENT

WEATHER CONDITIONS CONFIGURATIONS

location at the

end of the
LiDAR turn
location at the
beginning of the MOTION
LiDAR turn ' DISTORTION

detections

GROUND CLUTTERS

Figure 2.5: Schematic representation of situations that can trigger the considered LiDAR failure
modes in Table 2.3]

10 2.5. Camera

Figure 2.6: Example of sensors mounted on an autonomous vehicle [21]. Several cameras allow for
a full 360° FOV, and may be used by different vision algorithms for different tasks.

for which two main technologies are used: charge-coupled device (CCD) and complementary metal
oxide semiconductor (CMOS).

Cameras are a mature and very affordable technology (specially when compared to other sensors
like LIDAR) that is very efficient at capturing scene texture. Latest cameras allow for high-definition
image streams at high frame rates (usually between 30 and 60 fps), which need to be processed in
real-time, which can also pose a computational power problem. Optical imaging allows capturing
contour, texture and color distribution information [I], which can be used by algorithms for target
recognition and tracking, object identification, local path planning, etc. If binocular (stereo) cam-
eras are used, instead of monocular (mono) cameras, depth information is also obtained, similar
to human vision, which can be further exploited by algorithms to improve their performance and
extend their capabilities and reliability [22].

in Figure Some camera-based localization algorithms (like the one present on the Autonomous
Plus2, described in Chapter have much worse performance in outdoors environments [25], due to
lower feature density, usually higher distances to detected features, high proportions of the image
occupied by the sky, etc. Some vehicle movements can also degrade camera-based algorithms’
performance, like non-planar movements, higher speed movements, navigation on rough floors that
generate significant vibration, etc.

In Table 7 failure modes are presented for camera [23], [24], some of which are also exemplified

POOR LIGHTING WEATHER CONDITIONS LOW-TEXTURE SCENERY

Figure 2.7: Some of the situations that can trigger considered camera failure modes in Table

Chapter 2. Sensors and sensor failure in autonomous vehicles 11

Table 2.4: Summary of considered camera failure modes.

Failure mode Code Description

Too dark/bright light conditions can heavily
degrade camera’s performance.
Rain, fog or snow can heavily
affect camera’s performance.

Some camera-based algorithms suffer significant
performance degradation when operating outdoors.
Some camera-based algorithms suffer significant
performance degradation when not operating at low speed.
Low texture scenes (e.g.: off-road open empty areas)
don’t have many visual features to use for localization.
Motion jitter and vibration can degrade some
camera-based algorithms’ performance.
Non-planar movement (e.g.: going up/downhill) can
mislead some camera-based algorithms.

Poor lighting Camera_1
Weather conditions Camera_ 2

Outdoor navigation Camera_ 3

Medium speed

.. Camera,_ 4
navigation

Low-texture scenery Camera_ 5
Vibration Camera,_ 6

3D movement Camera,_ 7

2.6 Wheel odometry

Odometry is the use of motion sensors (e.g.: wheel encoders) to determine the vehicle’s ego motion
relative to a previous known position [26]. Vehicles usually have shaft encoders attached to their
drives’ wheels that measure wheel turning and allow determining how far the vehicle has travelled
by using a certain model for its motion, usually based on its kinematic configuration.

Wheel odometry is commonly used in autonomous vehicles, as its information can be very useful
in scenarios where the environment doesn’t provide enough feature density for LiDAR or camera
systems and GPS signal is poor, but odometry is heavily affected by drift due to error accumulation
in wheel sensor measurements. Some solutions have been proposed to estimate this error and
compensate it [27], but such algorithms usually can only reduce the consequences of these errors.
Some sources of odometry error can be inaccurate wheel diameter measurements, non-homogenous
wheel sizes, counting errors in shaft encoders, slow processing of odometry data, etc.

In Table 3 failure modes are presented for wheel odometry [28], [29]. Motion models’ assump-
tions condition their performance, and thus bringing them to the limit (e.g.: heavy maneuvering
when motion model assumes constant heading) can trigger very inaccurate pose estimates. Also,
situations where the contact between floor and wheels is not ideal can progressively or abruptly
degrade wheel odometry’s performance.

Table 2.5: Summary of considered wheel odometry failure modes.

Failure mode Code Description

Heavy maneuver Odom 1 Abrupt changes in direction (aggressive maneuvering)
changes — can cause drift, depending on sampling time and motion model.
Travelling on uneven floors or floors with unexpected objects
on them can cause wheel odometry errors.
Slippery floors, over-acceleration and skidding in fast turns
can cause wheel odometry errors.

Uneven floors Odom_ 2

Wheel slippage Odom__ 3

2.7 Others

The previously presented automotive sensors are currently being used on the Autonomous Plus2
for localization purposes, either alone or through some algorithm that uses more than one sensor

12 2.7. Others

at a time. Nevertheless, the vehicle also has other sensors that may be used in the future for
localization purposes, the most remarkable of which are Radar and Sonar systems.

Radar systems have some very interesting advantages, like being able to better operate in hard
weather conditions (e.g.: fog, rain, etc.), providing a direct and independent measurement of ob-
stacle speed, or needing less computational power to process their output data [14]. Their limited
resolution (especially in the vertical direction), complex return signals or smaller angular accu-
racy are some of their main drawbacks. Several algorithms have been recently developed to allow
localization using Radar data (for instance, [30] and [31]).

Sonar systems are usually used in autonomous ground vehicles for collision avoidance or in combi-
nation with Radar systems, but some algorithms have also been recently developed for standalone
localization in the field of autonomous underwater vehicles [32], [33], where these sensors can per-
form reliably. Some of their advantages for autonomous ground vehicles are robustness against
weather conditions, reduced cost and compact sensor size, which support this technology as a good
complement to some of the other sensors already presented.

Chapter 3

Pose estimation on the
Autonomous Plus2

The sensors presented in Chapter [2] don’t directly output pose estimates, but rather provide very
different information (e.g.: point-cloud data, latitude and longitude estimations, image data, etc.)
that usually has to be pre-processed, handled by dedicated localization algorithms that can turn
that data into actual pose estimates, and finally post-processed, in order to obtain directly com-
parable data that can be fed into the decision schemes of this thesis (see Figure and later also
to the fusion schemes that may be used with the non-rejected sensor data.

The Autonomous Plus2 has 4 different sources of pose estimates, each of them using different
sensors (or combinations of them). Here, each of those sources are discussed, including sensors used,
underlying algorithms, data pre-/post-processing and other relevant considerations. The part of
the ROS pipeline present on the Autonomous Plus2 that is relevant for this thesis is also described.

3.1 Google Cartographer

Google Cartographer is an open-source system that provides real-time simultaneous localization
and mapping (SLAM) in 2D and 3D across multiple platforms and sensor configurations [34]. In
the case of the Autonomous Plus2, in particular, its ROS integration is used [35], ingesting the
available information from the vehicle’s LIDAR and IMU sensors. Cartographer developers claim
that it can achieve real-time mapping and loop closure up to a 5 cm resolution. It has significantly
lower computational requirements than other LiDAR SLAM solutions (especially when executing
real-time loop closure [36]) and can apply inertial corrections with IMU data. Figure shows
an overview of the Cartographer system blocks and possible inputs that it can use. It comprises
two main separated but related subsystems: "local SLAM" (for constructing submaps) and "global
SLAM" (for finding loop-closure constraints).

Upon other information, Cartographer’s ROS integration provides the Autonomous Plus2 with a
pose estimate including 2D position and orientation information (that is, 3 degrees of freedom).
Alongside that information, an estimation of the covariance matrix associated to that estimate is
provided by Kyburz’s proprietary code on the vehicle. This format already fits the input defined
in Figure but before being directly comparable to the rest of estimates, a translation + rota-
tion operation (change of reference frame) has to be performed. Upon initialization of the sensor
rejection system, the initial values of z¢oq, yog and Ocg are recorded to be used for the fixed
transformation between Cartographer’s reference frame and a common zero-origin reference frame
(where all pose variables have an initial value of 0). Any incoming pose estimate is transformed
into the common reference frame using Equations and which consist of a translation and
a rotation. As Cartographer outputs the o estimate wrapped between —7m and +m, the unwrap

13

14 3.1. Google Cartographer

Input Sensor Data Local SLAM
Range Data
(Laser scan/ Voxel Filter _,| Adaptive
Laser range/ (fixed size) Voxel Filter ‘
Paint cloud) Scan Matching
(ceres)
+ PoseQbservation
SR ——— | PoseExtrapolator
Pose
PoseEstimate

Motion Filter Still
(linearfangular —| Dropped
motion or time})

[muData l
(Linear Maovement or Old
acceleration, (an al\.r'\:t;;?;:::enlj
Angular Submaps
velocity)
Woxel Grid

— Update
(active)
Fixed Frame Global SLAM (background thread)
Pose

Compute Constraints
(INTRA: node + 2

————————————— insertion submaps

INTER: loop closure)

Sparse Pose InsertionResult
Adjustrment (time, pose,
range data,
l submaps)

Extrapolate all
poses that were
added later

Figure 3.1: Overview of the Cartographer system [35].

function is applied before subtracting the initial ¢ value to eliminate jumps and properly shift
the angle. Wrapping back after shifting is not necessary and can add complexity to the algorithms
(e.g.: comparing angles by direct subtraction doesn’t work around the wrapping limits), so it is not
performed. Here, variables with a prime symbol (e.g.: ;) refer to those pose variables expressed
in the common zero-origin reference frame, after applying the corresponding transformation. Thus,
Tea.00 Yoa,o and 0pg o all have a value of 0 (this convention also holds for the other sources of
pose estimates).

.IICG _ COS(—90G70) —SZ'TL(—GCGQ) TCcG — TCG,0
/ - ; ’ (3'1)

Yca sin(—0cg,0) cos(—bca,0) YoGe — Yca,o
00 = unwrap(ca) — boa,o (3.2)

Although a covariance matrix estimate for Cartographer is produced by Kyburz’s proprietary code,
its values have been detected to be unreliable upon analyzing data recorded on vehicle from sensor
nominal conditions. In particular, although the provided values are on average in a reasonable range
(cm precision), very low values are often received (around pm precision), which alter the results
from some algorithms that use these covariance matrices values and worsen their performance
(although the effect isn’t deal-breaking, it does influence negatively). For this reason, instead of
using the provided covariance matrix values, the fixed matrix in Equation [3.3] has been defined for
Cartographer, rounding the average values from gathered data, which are in physically reasonable
ranges.

Qca fizea=] 0 001 0 (3.3)

Chapter 3. Pose estimation on the Autonomous Plus2 15

3.2 GPS/INS

The Autonomous Plus2 has an INS that fuses GPS and IMU readings to provide an estimate in
the form of latitude and longitude coordinates. In the vehicle, the GPS system also fuses vehicle
speed information coming from wheel odometry.

The latitude and longitude estimates produced by the INS have to be projected into a 2D Cartesian
space [37] in order to fit the input format shown in Figure To achieve this, the Universal
Transverse Mercator (UTM) projection is used [38], which consists on a cylindrical projection that
transforms the latitude and longitude estimates into a zone number, an hemisphere (North or
South), an easting and a northing. For the purposes of this thesis, the easting and northing values
are used as position estimates. The value of the vehicle’s orientation is obtained directly from IMU
readings in the form of a heading. The implementation of the UTM projection has been translated
from the one provided in [37]. The details of the transformation equations can be found in the
open code [39].

Once the easting, northing and heading values are obtained, a similar transformation to the one in
Equations[3.I]and [3:2] has to be used to obtain comparable pose estimates. Nevertheless, there is one
additional consideration in the GPS case. Fasting and northing values can be directly used as zgps
and ygpg respectively, but the heading values coming from IMU can’t be directly used as 0gps.
While 6; values are defined from the x; axis increasing in a counterclockwise sense, the heading
values from IMU are defined from the northing axis (corresponding to the y; axis) increasing in
a clockwise sense. For this reason, Equation has to be applied to the heading readings before
applying the transformation to the common reference frame. This equation shifts the angle by
90° to define it from the z; axis, and then inverts its sense to make it increase counterclockwise.
Figure [3.2] portrays the conflict between the two orientation values. Once the value of Ogpg is
obtained, a transformation completely analogous to Equations and is applied to obtain the
pose estimate in the common reference frame. Due to the subtraction of the initial 0gpg value in
the transformation, omitting the 90° shift would yield the same final results, but here the shift is
kept for clarity of the transformation between heading and 8 pg.

Ocps = —(Heading — w/2) (3.4)

N X
E y

Figure 3.2: Reference axes and positive senses for heading and 6; (also 67).

Note that no covariance matrix for INS is produced by Kyburz’s proprietary code. For this reason,
and taking into account orders of magnitude of the errors and comparative errors between the
different sources, the fixed matrix in Equation has been defined for GPS/INS.

01 O 0

Qcps,fizea=| 0 01 0 (3.5)
0 0 0.001

16 3.3. Dragonfly

3.3 Dragonfly

Dragonfly is a commercial system that provides real-time simultaneous localization and mapping
(SLAM) in 3D (6 degrees of freedom) using a standard camera [40]. It offers support for mono
and stereo cameras, and claims to achieve centimeter-level accuracy in indoor scenarios (usage
in outdoor scenarios is discouraged by the developers). In the Autonomous Plus2, its available
ROS integration is used, which is configured to work with the vehicle’s front stereo camera, using
the on-board local computation architecture described in Figure [3.3] which relies on the vehicle’s
computational power in exchange for lower latency and thus higher performance of the underlying
Visual SLAM algorithm.

Device 1
RE TP

@ /5

! Browser connected to
USB ornetwork Mini PC | | the Dragonfly Web Ul
camera . L T R T
e e o e e e e e e e e e e e e e e e ———— a
On board location computation =
_________________________ local WLAN =
Device 2

wan

RP CP
-
USBornetwork | @)

camera Mini PC

On board location computation

Figure 3.3: Dragonfly’s on-board local computation architecture scheme [40].

Dragonfly’s ROS integration is configured to provide the Autonomous Plus2 with a pose estimate
including 2D position and orientation information (that is, 3 degrees of freedom). Alongside that
information, an estimation of the covariance matrix associated to that estimate is provided by
Kyburz’s proprietary code on the vehicle. Being the incoming data already in such format, the
only necessary step to process Dragonfly’s data for the sensor rejection algorithms is to perform a
transformation to the common reference frame, analogous to the one defined by Equations [3.1] and
but this time using xpp, ypr and Opp. As with Google Cartographer and unlike with GPS,
the orientation data does not need a shift or change of sense to fit the common frame’s 6 definition
(referenced to the x axis and positive counterclockwise).

Analogously to the Cartographer case, the covariance matrix produced by Kyburz’s proprietary
code has been found to be unreliable, often providing unreasonably low values that can reduce
the performance of some algorithms using covariance matrix information, so the fixed matrix in
Equation has been defined for Dragonfly, rounding the average values from gathered data,
which are in physically reasonable ranges.

0.02 0 0

QpF fizea=| 0 002 0 (3.6)
0 0 0.001

Chapter 3. Pose estimation on the Autonomous Plus2 17

3.4 Dead reckoning

Dead reckoning comnsists in calculating the current position of the vehicle by using a previously
determined position to which estimations of speed and heading direction are incorporated. For this
work, the Autonomous Plus2 provides speed information obtained from its wheel odometry and
heading information from its IMU.

Given the inner workings of Kyburz’s proprietary code on the vehicle, wheel odometry and heading
information are published on the ROS pipeline in the form of a combined message with both
information. This message contains a heading value H; and a displacement value d;, the latter
corresponding to the total advanced distance in the vehicle’s forward direction. Internally, those
two values are computed according to Equations [3.7]and [3.8] where the superscript meas indicates
measured values and b is the length of the wheelbase. The Autonomous Plus2’s INS provides the
value of H™¢*S at each time instant, while its wheel odometry provides the value of v™¢%%. The
value of the steering angle « is also measured.

o - tan(aps)

b

meas A, A
Hy = H™™ + @1 - AL, O =

(3.7)

dt = dt—l + U;neas - At (38)

In order to convert the values H; and d; into the format defined in Figure first the heading
H needs to be transformed into the right angle definition of 6;, analogously to the transformation
in Equation [3:4] Once the value of ppr is computed, the last remaining processing step is to
perform a non-static transformation to the common zero-origin frame, following Equations [3.:9)and
[B:10] Notice that the latter transformation differs from the one in Equation [3.1] due to the nature
of dead reckoning (i.e., incrementally adding to = and y the corresponding part of the forward
displacement of the vehicle). As a consequence of this, as already commented in Chapter [2| when
discussing wheel odometry, dead reckoning is subject to position error accumulation and progressive
drift. The presented formulation allows, for instance, to reset the dead reckoning position (e.g.:
by setting xbat_l and y’DR,t_1 to the last fused position estimate) when the sensor rejection
scheme has labeled dead reckoning as non-reliable for a certain amount of time, and thus recover
dead reckoning from an accumulated error that would otherwise not be undone (unlike in SLAM
approaches or GPS, where recovery can happen automatically once the factors causing failure stop,
as they are not based in numerical integration).

0pr = unwrap(@pr) —Opr,o (3.9)

| [Ad

0 :| ’ Ad = dt - dt,1 (310)

+ COS(Q/DR,t) —Sm(ebR,t)
sin(ﬁbR’t) cos(@bR)t)

A !
Tort| _ |TDRt—1
! - /
YDR,¢ YDRt—1

Analogously to the GPS/INS case, as no covariance matrix is produced by Kyburz’s proprietary
code, fixed values are chosen for dead reckoning’s covariance matrix (taking into account orders of
magnitude of the errors and comparative errors between the different sources), which can be seen

in Equation 3.11]

02 0 0

QDR fizea=| 0 02 0 (3.11)
0 0 0.001

18 3.5. ROS architecture and pipeline

3.5 ROS architecture and pipeline

Many of the vehicle’s systems, especially sensors and localization algorithms, are connected through
a ROS infrastructure. The Robot Operating System (ROS) is an open-source, meta-operating
system for robotic systems [41I], which provides hardware abstraction, low-level device control,
message-passing between processes, etc. It is not a real-time framework, although it is possible to
integrate ROS with real-time code. ROS is based on a publisher-subscriber paradigm, and is one
of (if not the most) widely-spread frameworks in the field of robotics (especially in academia).

The ROS infrastructure available in the Autonomous Plus2 is very wide and offers many function-
alities, but here the focus is put on the part of the overall pipeline that is relevant for this thesis.
Figure summarizes the main topics and nodes involved in this work. For the purpose of solving
the problem stated in Chapter [I} one ROS node has been developed for each of the different pro-
posed solutions described in Chapter [f] together with a ROS node that does all data pre-processing
needed by the algorithms, to avoid repeating those steps in each solution node. Each of the ROS
nodes are developed in Python and ROS Melodic. The data processing node subscribes to avail-
able topics with data steams from the different sensors/algorithms on the vehicle, and publishes a
topic with a custom message containing the processed data and a time stamp. The solution nodes
subscribe to this topic, and publish a topic with a custom message containing the sensor selection
signal (see Figure and, depending on the algorithm, also the sensor trust signal, time-stamped
again.

Finally, Table summarizes relevant inputs and outputs of the algorithms presented in this work,
at a data level, each of which may be sent through different messages (see Figure , all of them
time-stamped by ROS by default. Algorithm [3.I] summarizes all the data processing pipeline from
data streams already available on the vehicle’s ROS architecture to (2,4}, 0) pose estimates in
the common reference frame, format that suits the input definition for our problem in Figure [1.2

Table 3.1: Summary of inputs from the different sources considered in this work and outputs from
the presented algorithms, all at a data level.

I/0 Source Data Format(s)
Cartographer Toa, Yoo, ca, Qcc float64, float64[9]
Lat, Long float64 (all)
Input GPS/INS Heading float64
Dragonfly Tpr, Ypr, Opr, QpF float64, float64[9]
Dead reckoning Ad, H, float64 (all)
selection bool[4]
(only some algorithms) trust float64[4]
Output Toas Yoo oa, Qea float64, float64[9

! ! /
Tapss Yops Oaps: Qaps
/ ! /
Tprs YDr> 9DF7 Qpr
! ! /
Tphrs YDR aDRa QbR

(9]
float64, float64[9]
float64, float64[9]
float64, float64[9]

Chapter 3. Pose estimation on the Autonomous Plus2 19

Algorithm 3.1 Processing of available ROS data streams

function DATASTREAMPROCESSING()
Retrieve zcoq, yoa, Oca from cartographer/tracked _pose topic

Toas Yoo 0og < TRANSFORM_FRAMES(ZcG, Yoa, 0cc) > Equations
Qcc < Qca, fized > Equation [3.3]

Retrieve Lat, Long from gps topic
Retrieve Heading from ins_raw/state topic

raprs, Yaps <— UTM__PROJECTION(Lat, Long) > Transformation details in [39]
Ocps <— HEADING__To_ THETA(H eading) > Equation
Teps, Yaps, 0apg < TRANSFORM _FRAMES(Zaps, Yars, Oaps) > Equations
Qcprs < Qaps,fizved > Equation
Retrieve zpr, ypr, Opr from dragonfly_manager/tracked__pose topic

'y Ynps Oy < TRANSFORM__FRAMES(Zpr, Ypr, OpF) > Equations
Qpr — QDF fized = Equation [3.6]
dpreva w;rev? yé)rey —0 > Initialization
Retrieve H;, d; from odom topic

Opr < HEADING _To_ THETA(H;) > Equation
Ad «— dy — dprev

dprev —dy

/

vrevs Yprev) > Equations

TppsYprr Opr < TRANSFORM__FRAMES2(OpRr, Ad, x
/ /

‘Tpre'u “~ IpRr
/ /

yprev “~ YDpR

QbR < QDR, fized = Equation [3.17]

return z}, y;, 0;, Q; Vie {CG,GPS,DF,DR}
end function

20

3.5. ROS architecture and pipeline

node.py
(can_node)

ins_raw/state

proparker_msgs/TruckState

odom

nav_msgs/Odometry
gps

sensor_msgs/Nav5atFix

node.cc
(cartographer_node)

cartographer/tracked_pose

Data stream processing

node_data.py

dragonfly_manager_node.py
(dragonfly_manager)

geometry_msgs/PoseWithCovarianceStamped

dragonfly_manager/tracked_pose

geometry_msgs/PoseWithCovarianceStamped

(node_data)

state estimation/processed data
state_estimation/ProcessedData

ExNIS algorithm

node_exnis.py

state_estimation/exnis_decision

(node_exnis)

———

Decision tree

node_tree.py

state_estimation/AlgDecision

state_estimation/tree_decision

(node_tree)

N/

k-Nearest Neighbors

e B

node_knn.py

state_estimation/AlgDecision

state_estimation/knn_decision

Voting system

(node_knn)

|

FC feedforward NN

node_ffnn.py

state_estimation/AlgDecision

state_estimation/ffnn_decision

(node_ffnn)

A ——

Recurrent NN

node_rnn.py

state_estimation/AlgDecision

state_estimatien/rnn_decision

(node_rnn)

A ——

state_estimation/AlgDecision

(node_voting)

node_voting.py

state_estimation/voting_decision

state_estimation/AlgDecision

Figure 3.4: Part of the Autonomous Plus2’s ROS pipeline that is relevant for this project’s solutions.
In blue, nodes already available in the vehicle; in orange, nodes developed in this work (one main
node for each different approach, plus another one for data pre-processing); in black, different
topics used to communicate between nodes. For each node, its associated file name is provided,
together with its ROS node name in parentheses.

Chapter 4

Sensor rejection and trust
estimation

The main object of this thesis is sensor rejection of 4 different pose estimate sources with flexible
algorithms that do not restrict their applicability to a particular set of sensors/sources. Here, the
techniques explored in this thesis are presented, some of them coming from related literature, and
others being novel proposals or application of existing algorithms to a different problem. Techniques
for solving this problem can be split into three big categories/paradigms:

o Manual heuristics (rule-based)
e Fault Detection and Isolation (FDI) methods

¢ Learning-based approaches

4.1 Manual heuristics (rule-based)

Manually designing a set of rules is one of the simplest approaches for sensor rejection. The crafting
of such rules can be done through the use of theoretical knowledge of the system’s elements,
practical knowledge from experienced technicians, and /or analysis of recorded data from the vehicle
and insight extraction from it. Such rules can come in many forms (thresholding the differences
between each source’s x;, rejecting sensors that indicate heavy position variations when wheel
speed readings are close to 0, etc.) and imply hand-crafting conditional checks that can validate
or reject a certain hypothesis about a sensor’s reliability.

The process of building such manual heuristics is usually not standardized or systematic, and an
"only hand-crafted" rule set may miss important scenarios or fail to generalize to new scenarios (and
can also be hard to migrate to a different platform, as the rules can end up being very vehicle-
specific). Also, as discussed later in Section there are learning based methods like decision
trees that can automatically build simple and/or complex rule-based models from representative
training data, which can directly look for good heuristics based on input data, and which can be
manually aided by feature engineering techniques. Nevertheless, manual rules can be useful to aid
other more systematic approaches, adding additional conditions and last-resort checks to make
them more reliable in very specific situations where a particular algorithm may fail to perform well
due to its inherent structure and properties.

For these reasons, in this work no "only manual" rule-based system is used (although rule-based
systems are discussed through learning approaches), but instead additional hand-crafted rules (e.g.:
last-resort sensor) and other hand-crafted algorithms (e.g.: multi-level multi-signal thresholding for

21

22 4.2. Fault Detection and Isolation methods

more flexibility) are proposed in the rest of sections from this chapter to be used along with other
systematic approaches.

4.2 Fault Detection and Isolation methods

Fault Detection and Isolation (FDI) is a subfield of control engineering that concerns itself with
monitoring a system, identifying when a fault has occurred, and pinpointing the type of fault
and its location [42]. This thesis’ problem (see Figure can be seen as an FDI problem, where
information coming from sensors is monitored to detect when some sensor becomes "faulty" (not
reliable for localization purposes) and to be able to reject the information coming from faulty
sensors (and only from faulty sensors), before it corrupts the running fused pose estimate.

There have been a vast amount of FDI methods proposed and applied successfully across literature
[43]. Due to the nature of this thesis’ problem and the desire to focus on generalist methods
(which can, for instance, be used with completely different sets of sensors/algorithms, or even in
a completely different vehicle), the parity-relation based FDI method proposed in [7] is explored.
In parity-based FDI methods, a set of residual signals or "parity relations" are derived, whose
evolution is affected by system faults. By monitoring those parity relations over time, faults may
be detected and isolated. Some model or set of assumptions is needed regarding how faults affect
those residuals.

Usually, residuals are designed such that each fault triggers a different response on residuals, so
that faults can not only be detected, but also isolated (i.e., recognize which fault has occurred). For
this thesis’ problem, although several failure modes have been defined for each sensor in Chapter
they have all been considered the same fault in the application of the FDI method in [7] (i.e.,
all failure modes associated to Dragonfly trigger the same "Dragonfly fault"). This formulation
suits the output definition in Figure [I.2] where the selection signal is the binary complement of
the "fault signal", which has one binary value for each sensor that is set to 1 when a fault on that
sensor occurs (regardless of which particular failure mode the sensor may have fallen into).

4.2.1 Extended NIS sensor validation

The approach proposed in [7] generalizes the NIS test for multiple measurements validation. In
the NIS test [44], when a sensor measurement is available, as the true state is not known, the
innovation between the observation data s; and the predicted state §; is assumed to obey a Gaus-
sian distribution with covariance I and is used to verify the coherence of the measurement with
the prediction. In particular, Equation [£.] defines the difference vs;, Equation [£:2] computes the
covariance matrix of vs; (where p(t|t_1) is the covariance of the prediction, (); is the covariance
of measurement and H; is the measurement model), and Equation computes the Mahalanobis
distance dj; between observed measurement and predicted state. Under the uncorrelated Gaussian
process assumption, dy; follows a Chi-squared distribution of m degrees of freedom, with m being
the dimension of the measurement vector. The NIS test rule rejects a measurement if dj; doesn’t
lie within the confidence region defined by the corresponding x2(m) distribution.

VSt = St — §t (41)

I = H, - P,

v (tﬁ—l) 'H;1 + Qt (42)

dy = vs! - (I!

)7 ws, (4.3)

The extended NIS (ExNIS) sensor validation method proposed in [7] allows to check the coherence
between the measurements coming from multiple sensors (also including the process model, if

Chapter 4. Sensor rejection and trust estimation 23

used, whose prediction is considered as a virtual sensor observation and might be rejected if not
coherent with the other sensors’ observations). In particular, a parity relation is calculated for every
sensor pair, yielding a set of parity relations associated to each sensor. For this thesis’ problem, for
instance, Cartographer has 3 associated parity relations, originating from separately comparing its
measurements to the measurements from GPS/INS, Dragonfly and Dead reckoning, respectively.
Whenever two sensors are not coherent with each other, their associated parity relation rises. The
authors of [7] apply this approach only to single-sensor fault scenarios, as in those cases there is
a single set of parity relations that rise at the same time (i.e., all the parity relations associated
to the faulty sensor rise, while the rest remain stable). Nonetheless, the ExNIS approach can also
be applied to multi-sensor fault scenarios, as long as at least 2 sensors remain non-faulty. This
further extension hereby proposed implies, however, that in scenarios where no pair of sensors are
coherent with each other, a last-resort decision rule has to be provided, which can’t rely on sensor
cross-validation, in order to still select one source for pose estimation. This last situation, however,
is unlikely to happen if the autonomous vehicle has enough independent and uncorrelated pose
estimate sources (like in the case of the Autonomous Plus2, where 4 are available), as even in very
challenging scenarios usually a couple of sensors still can function reliably (e.g.: if the vehicle is
inside a building and the lights go off, GPS/INS and Dragonfly won’t be reliable, but Cartographer
and Dead reckoning will still work to survive such worst-case scenario).

Equation computes vsij , which denotes the difference between the measurements of sensor i
and sensor j at time instant ¢. It is important to note that, for this work, all sources provide a
full state vector (z;,y;,6;), so vsy always is a 3-dimensional vector with all state components. As
proposed in [7], in case some of the sources/sensors only provide a part of the state vector, the same
equations can be used, using only the state dimensions that both sensors in a sensor pair share. If
two sensors don’t share a single state dimension (i.e., they do not provide redundant information),
no parity relation can be associated to their pair. Equation computes the covariance matrix I?
associated to each vs,’ (using the corresponding measurement covariances, Q%), and Equation
computes the parity relation associated to the sensor pair ¢, j. Note that, by definition, all parity
relations are non-negative quantities, and that d;; = d;;.

vs = st — (4.4)
IL=Qi+ Q! (4.5)
dij = (vs)" - (I3) 7" - (vsy!) (4.6)

Once the parity relations have been computed, parity checking methods can be applied to detect
sensor faults. The main assumption of this approach is that whenever a sensor enters failure
mode, all parity relations associated to that sensor shall rise. In single-sensor fault scenarios, this
assumption has been proven to hold well [7]. In multi-sensor fault scenarios, this assumption may
not hold if, for instance, 2 faulty sensors start drifting in the same way, and thus their associated
parity relation does not rise. Such scenarios are highly unlikely if the input data used by different
sensors/sources is uncorrelated (e.g.: camera and LiDAR data).

In order to check the evolution of parity relations for FDI, many change detection algorithms
can be used, which can usually be recast into the problem of deciding between the following two
hypotheses [45]:

Hy: E(s¢) =0, Hi: E(s¢) >0 (4.7)

In order to solve this problem, we need a tool to decide whether a result is significant or not, which
is sometimes called a "stopping rule". A stopping rule can be achieved by:

1. Low-pass filtering s; (to smooth instantaneous fluctuations and make the decisions more
stable and less sensitive to noise).

24 4.2. Fault Detection and Isolation methods

2. Comparing the filtered value to a threshold.

Two well-known computationally cheap and simple low-pass filtering techniques are Cumulative
Sum (CUSUM) and Exponentially Weighted Averages (EWA). Equation [4.§|computes the CUSUM
filtered signal g; from the original signal s; (the parity relation in this case). The drift parameter
v € R allows to tune the low-pass effect (which has a significant impact on each algorithm’s
performance in terms of fault detection speed). Equation computes the EWA filtered signal
instead, where the forgetting factor B € [0,1] allows to tune the low-pass effect.

gt = max(gi—1 + s¢ — v,0) (4.8)

g=PB g1+ (1 —pB) s (4.9)

Equation [4.10] gives an approximate relation between parameter 5 and the number of time steps
taken into account for the weighted average. Note that setting a value of 8 = 0 is equivalent to
not filtering. Upon initialization, the EWA filtered signal takes some steps to reach the signal’s
average value, yielding a biased result in the first steps. Equation applies a bias correction,
which solves this problem and allows for better performance in the first steps. Note that the effect
of this correction vanishes significantly with time, as 0 < 8 < 1. Details on the tuning procedure
for all parameters appearing in this chapter are discussed in Chapter

1
t t N —— 4.10
ime steps ~ T— 3 (4.10)

corr __ gt
i = 1 (111)

Regarding thresholding techniques, once each parity relation has been low-pass filtered, each sensor
has 3 signals to threshold and reach a final decision on whether "all the parity relations associated
to that sensor have risen" or not. In [7] the way this decision is taken is not specifically described,
so here two approaches are proposed:

e Independent 1-level thresholding on all 3 signals separately.
e Combined 3-level thresholding on all 3 signals together.

The first approach consists in applying the same single threshold to all 3 signals associated to a
sensor, separately. Once all 3 signals exceed the threshold, the sensor associated to those signals
is considered faulty. In other words, a sensor is considered non-faulty as long as there is at least
1 signal associated to it that lies inside the range defined by the threshold. This simple approach
only has 1 parameter to tune, the threshold th, whose candidate values can be taken from a
x%(3) distribution (the measurement vector has dimension 3). This way, for instance, applying
this approach with th = 7.815 would be roughly equivalent to considering that a sensor is faulty
if its "distances" to the rest of the sensors are all less than 5% likely to occur under non-faulty
circumstances.

The second approach (novel for this problem, to the best of the writer’s knowledge) consists in
applying 3 different thresholds to all 3 signals associated to a sensor, at the same time. A sensor
is considered non-faulty if at least 1 of the following 3 conditions are met:

e 1 or more signals lie inside the range defined by th;.
e 2 or more signals lie inside the range defined by ths.

o All 3 signals lie inside the range defined by thg.

Chapter 4. Sensor rejection and trust estimation 25

Sensor 1 Sensor 2
42
. 4
di4
—————————————————————————————————— th3 e ————- th3
[]
d23
—————————————————————————————————— thz R it e) 1]
[]
di13
————————————————————————————————— th1 S 1
diz d21

v | ; within th

¢ 2 within th2 X 2 within th2

X 3 within th3 X 3 within th3

Figure 4.1: Particular scenario where the combined 3-level thresholding approach allows for addi-
tional flexibility, not possible with the first approach. In green and red, respectively, fulfilled and
non-fulfilled conditions before the change described by the arrow.

Here, normally th, < the < ths, although some degenerate cases can be explored by setting the
values of th; so that they don’t follow this inequality. In particular, if tho is chosen such that
the < thy, its associated condition becomes redundant and the 3-level thresholding collapses into
2-level thresholding. Same occurs when setting ths is chosen such that ths < the and/or ths < thy.
If both the < th; and ths < thy, the approach collapses into the first approach, with th = th;.
For this reason, this second approach can be considered a generalization of the first approach,
with more flexibility (it allows for 1-level, 2-level and 3-level thresholding) and several rejection
conditions at the same time.

While the first approach only has 1 parameter, th, producing fairly simple rules (e.g.: reject when
all signals have values less than 5% likely to occur), this second approach has 3 parameters, thy,
ths, and ths, whose values can be chosen to reach more refined rules (e.g.: if one of the signals is
very unlikely to occur, reject unless either the 2 remaining are in a low level, or one of them is in a
very low level). Another worth noting consequence of this flexibility is the possibility of situations
like the one in Figure when one sensor in a pair is supported by 2 validation conditions (1st
condition on djs, and 2nd condition on dis and dy3), while the other sensor only by 1 (1st condition
on do1 = dj2). If their associated parity relation rises above thy, sensor 1 would still be considered
non-faulty, while sensor 2 wouldn’t. With the first approach, both sensor would have to be rejected
in this situation, not allowing sensor 1 to have a second validation condition.

Finally, in order to summarize all approaches presented in this section, pseudocode for each of
them are presented in Algorithms [4.1] {2 and [4:3] Note that at the end of Algorithm [41] an
additional last-resort step is proposed. Due to ExNIS being based on cross-validation of sources,
in unlikely cases where 3 out of 4 sources fail, the selection signal becomes a vector of zeros,
even if the remaining source is very reliable. Adding a last-resort step allows enforcing individual
trust on the sensor that is most likely to be reliable in such "3/4 situations". In the case of the
Autonomous Plus2, Cartographer is chosen as the last-resort source, as it has shown to be the least
prone-to-failing source by far.

4.3 Learning-based approaches

Statistical learning theory is a framework for machine learning (ML) arising from statistics and
functional analysis that deals with the problem of finding a predictive function (sometime also

26

4.3. Learning-based approaches

Algorithm 4.1 Extended NIS-based sensor validation [7]

function EXNIS(zk, vk, Ok, Qk)

Sk = [$k7yk,9k]T

> Measurement vectors

for Z h 1’ A 7n50u7'(/’63 do
for] <~ 17 -« Nsources)] # 1 do
VS;j — S; — S
I, Qz + Qj
dij — (vsij)T - (I,)71 - (vsi5) > Parity relation associated to the 7, j pair
9gij < LOWPASSFILTER(d;;) > Either CUSUM or EWA
end for
end for

selection «— THRESHOLDING(g;;)

> Either 1-level or 3-level approaches

if selection = [O, . ,O] then = Last-resort mechanism if 3/4 sources fail

selectioncg «— 1
end if
return selection
end function

Algorithm 4.2 Low pass filtering approaches

function CUSUM(S, v)
g<1o0,...,0]
Iprev < 0
fort —0,...,tf do
gt — maz(gpres + St — 1,0)
Gprev < Gt
end for
return g
end function

function EWA(S,)
gerr —[0,...,0]
Gprev < 0
fort < 0,...,ty do
Inew < B 'gprev + (1 - 6) © St
Gprev < Gnew
gfow < Gnew / (]- - 6t)
end for
return gco"
end function

> Applied one step at a time
> Initialization

> Filtering rule

> Applied one step at a time
> Initialization

> Filtering rule

> Bias correction for first steps

Chapter 4. Sensor rejection and trust estimation 27

Algorithm 4.3 Multi-signal thresholding approaches

function INDEPENDENTONELEVELTH(g:, th)
selection «— [0, . ,0]
for i — 1,...,Nsources dO
for j — 1,... Nsources, J # & do
if g;; < th then > Parity relations for sensor ¢ are thresholded independently
selection; «— 1
break
end if
end for
end for
return selection
end function

function COMBINEDTHREELEVELTH(g¢, thy, tha, ths)
selection « [O, ey O]
for i — 1,...,Nsources dO
if count(g;; < thy, Vj #14) =1 ©> Parity relations for sensor i are thresholded together
or count(g;j < tha, Vj # 1) =2
or count(g;; < ths, Yj # 1) = 3 then
selection; «— 1
end if
end for
return selection
end function

called an input-output "mapping") based on data. It is commonly used for many tasks in the field
of autonomous vehicles [46], like perception, motion planning, localization, etc. This thesis’ problem
can be approached with learning techniques by either considering it an FDI problem (monitoring
sensor measurement to label sensors as faulty or non-faulty) and using learning-based FDI tech-
niques, which output binary information about the sensors, or taking advantage of the probabilistic
nature of some learning-based algorithms to not only produce binary sensor state information (cor-
responding to the selection signal in Figure , but also generate some probabilistic non-binary
"trust" information about each sensor (e.g.: a reliability score ranging from 0 to 1, where a value of
0.7 indicates that a sensor is 70% likely to be reliable). This additional information can be valuable
both for later sensor fusion and/or for other decision tasks the autonomous vehicle may need to
perform. Therefore, learning-based approaches capable of producing such probabilistic information
are considered of great interest for this thesis and explored in greater detail.

There is a wide variety of statistical/machine learning algorithms that have been proposed and
applied across the literature, both for autonomous driving-related and non-related tasks. These
algorithms are usually classified into 3 big paradigms:

e Unsupervised learning: The algorithm learns patterns directly from unlabeled data.

e Supervised learning: The algorithm learns an input-output mapping through labeled data
(input-output examples).

¢ Reinforcement learning: The algorithm (usually called an "agent") learns how to take
actions in a certain environment to maximize a "cumulative reward".

This thesis’ problem fits well into the second paradigm, supervised learning, as there is an input-
output mapping to be learned (where pose estimates from different sources are the inputs and the
sensor selection and trust signals are the outputs) and input-output examples (labeled data) can be
obtained for the problem (as discussed in Chapter . Supervised learning approaches have proven

28 4.3. Learning-based approaches

very successful in learning highly nonlinear and complex input-output mappings, especially with
the recent works in the field of Deep Learning. However, this high flexibility comes with a cost: there
is a considerable need for (labeled) data, which increases with model’s and problem’s complexity,
in order to learn a map that can both fit the input-output examples and properly generalize to
new, never-seen-before examples (which is the ultimate goal of the practical application of these
techniques).

This ulterior need for labeled data is one of the main differences between the methods described
in this section and methods like ExNIS. Labeled data is very useful for assessing any algorithm’s
performance with quantitative metrics, and can also be used in ExNIS for systematically tuning
its parameters (e.g.: thresholds), as described in Chapter 5| but approaches like ExNIS can be
deployed without using any labeled data, manually tuning parameters by either trial-and-error or
manual inspection of unlabeled data and intuition from an experienced technician. In the case of
supervised learning algorithms, this is almost never a possibility, as model complexity, size (i.e.
number of parameters) and "close-to-black-box" structure makes it impractical to manually tune
them. Therefore, relevant labeled data has been collected for this thesis following the approach
described in Chapter

In order to use supervised learning approaches, the inputs chosen for the algorithms can have a
huge impact on their performance, as they are the only information used to predict the outputs.
There are two main approaches to define inputs for supervised learning approaches applied to
this thesis’ problem: directly using the (2, y}, 6) pose estimates, or manually extracting "features"
(alternative representations, usually of different dimension, of the input pose estimates obtained by
a fixed "hand-crafted" transformation) from those pose estimates and using them as inputs to the
supervised learning algorithms. There are many techniques to hand-craft features to allow for better
algorithm performance (e.g.: subtracting z; from different sensors to create "z distance features",
computing the square of signals, using numerical derivatives or integrals, etc.). This process is
usually called "feature engineering" and it requires practical experience, as well as some trial-and-
error (each problem and algorithm may have completely different optimal input features). Because
optimal feature engineering is usually non-intuitive and non-systematic to tackle, and due to the
recent advancements in Deep Learning, this feature hand-crafting process is being progressively
substituted by the use of big and complex models that can learn those feature transformations
internally when trained with enough data, in exchange for a less explainable, more "black-box"
model. For this reason, in this work the focus is mostly put on models that can directly use
pose estimates as inputs, avoiding manual feature engineering (which can also cause information
simplification if the resulting feature vector is of lower dimension). Nevertheless, in order to still
analyze the possibilities of manual feature engineering for this problem, and in order to help some
smaller and less complex ML models, motivated by the previously presented ExNIS approach, the
parity relations d;; defined in Equation @ are considered as a manual feature alternative to direct
pose estimate input for the supervised learning algorithms.

4.3.1 Classical ML classification methods

Supervised Machine Learning algorithms can tackle a wide variety of problems, which are usually
classified into two big categories: prediction and classification. This thesis’ problem falls into the
classification category (in particular, binary classification). For such task, before the recent rise of
Deep Learning, some of the most widely used ML algorithms were logistic regression, k-nearest
neighbors, decision trees, support vector machines and naive Bayes. Among these options, in this
work decision trees (DT) and k-nearest neighbors (k-NN) are explored, as they gave the best
preliminary results for the particular problem in hand in a vanilla model training session where
all the aforementioned algorithms were trained in different hyperparameter configurations and in
slightly different versions of each algorithm, in a coarse search to discard the less promising options.

Chapter 4. Sensor rejection and trust estimation 29

Decision trees

A decision tree is a tree-structure classification model, where each internal node (also known as
"decision node") represents a "test' on an attribute, each branch represents one of the possible
outcomes of a test, and each end node (also known as "leaf node") represents a final label into
which the sample is classified. A path from the root of the tree to a certain leaf represents a
classification rule. Figure [{.2] presents an example of a very simple decision tree for classifying a
person’s gender.

Root Node

Yes No

!

Yes No

|

Figure 4.2: Example of a very simple decision tree for gender classification. In brown, the root
node, where the inference starts; in green, decision nodes, where a certain input variable is used
for branching; in blue, leaf nodes, corresponding to a male/female classification label.

Decision trees are usually easy to understand, visualize and interpret (even by non-expert users)
and can be efficiently induced from data [47]. They are related to manual rule-based systems, but
learn their decision rules (and their hierarchy) automatically from the training data, instead of
being manually programmed. They also implicitly perform feature selection (feature importance is
natively modelled by the hierarchy of decision nodes, and non-relevant variables end up not being
used in them), and have fast run time. Nevertheless, decision trees are prone to overfitting (creating
over-complex trees that do not generalize to new data), can be unstable (small variations in the
training data can create very different trees, which can be reduced with techniques like boosting)
and can create biased trees if some class dominates in unbalanced training data.

In order to make the prediction for each of the sources, two main different approaches can be
followed:

o Build 4 trees, each predicting the class label (0/1) of one of the sources.

e Build 1 tree, which outputs a single class label representing the combination of labels for all
sources. In this case, 16 different labels could be assigned, from 0 corresponding to all sources
being rejected up to 15 corresponding to all sources being valid.

After preliminary testing of each option, here one tree is built for each of the 4 sources. The single
tree approach is more difficult to train (it needs significant data from all 16 possible combinations)
and is prone to mistaking cases with only 1 source labelled differently. These two factors combined
end up causing poor performance, and also make it more difficult to generalize to other vehicles,
especially if the number of sources is higher than on the Autonomous Plus2 (the number of labels
grows as 2Msources),

The main parameter to tune when using decision trees is the maximum number of splits, which
controls how many decision nodes a tree can have. This has a direct impact on the tree’s complexity

30 4.3. Learning-based approaches

and its proneness to overfitting. Trees with too few splits usually can’t fit the training data, while
trees with too many splits may not generalize well to new samples. Details on the tuning of this
parameter are found in Chapter

Once the model is trained, classifying a new sample with a decision tree only requires to evaluate
decision nodes sequentially, following the branches associated to the outcomes of the tests for that
particular sample.

k-Nearest Neighbors

K-Nearest Neighbors (k-NN) is a classification algorithm that relies on the assumption that similar
things exist in proximity in the space defined by the input variables. A new example is assigned
the most common class label between its k nearest neighbors (see Figure , according to a
distance function (e.g.: Euclidean distance) defined in the input space. It approximates the input-
output mapping locally, and it defers all computations until evaluation of a new sample. Instead
of explicitly learning a model, k-NN stores the training examples (also known as "instance-based
learning" [48]), which are then used for inference with new samples.

N
X1 P [] .
¢ e -, v o
o ® g
o =3 e o
° T e
®

>
Xy

Figure 4.3: Example of k-nearest neighbors binary classification with k¥ = 3. The new sample (in
blue) is assigned the most common class between its 3 nearest neighbors (here, the green class).

K-NN is simple and easy to interpret, and doesn’t require building and tune a model (although the
value of k can be tuned for optimal performance) or make additional assumptions. Nevertheless,
k-NN requires higher computational times and uses more memory the bigger the training dataset
is (and the bigger the dimensionality of the data), which poses a trade-off between performance
and resource requirements.

Analogously to decision trees, there is the option to choose between building 4 different k-NN
classifiers, each dedicated to 1 source, or a single k-NN classifier with non-binary labels. After
preliminary testing of each option and for the same reasons discussed for decision trees, here one
classifier is built for each of the 4 sources.

The main parameter to tune when using k-NN is the value of k, which controls how many neighbors
are taken into account for each decision. Usually, k is chosen to be an odd number to avoid tie
situations in binary classification. Values of k£ close to 1 yield less stable results, more prone to
overfitting, as less training examples are considered to make the final decision. Higher value of k
yield more stable results, reducing overall noise in the training data, but too high values can cause
underfitting and an increase in the number of classification errors.

In order to classify a new sample with k-NN, Algorithm is used, where it can be seen that
all the computational effort is concentrated in the inference step for new samples, as no model is
previously learned.

Chapter 4. Sensor rejection and trust estimation 31

Algorithm 4.4 k-Nearest Neighbors

function K-NN(Z},cq) > Query sample with N features
Ztrain,is Yi < LOADTRAININGDATA() > Training data with M samples, loaded once
d < |0,...,0]
fori<—0,...,M do

d; — \/ S (kL — T qini)? > Distance between query and i-th training sample

end for
I — arg min d;
(k best)
Ynew — MAJORITYLABEL(Y ;e 1)
return Y,
end function

4.3.2 Fully-connected feedforward neural networks

Artificial neural networks, sometimes simply called neural networks (NN), are a widely used super-
vised ML technique, based on a collection of connected units (often called neurons, in an analogy
with animal brains) that can process input signals to generate an output signal, which is then
sent to other units. These units are often aggregated into layers, which can be classified into the
input layer (to which input data is fed), the output layer (which yields the final signal for the ML
task) and intermediate layers (which have a certain number of units each and process signals from
their previous layer to produce signals to be fed to their next layer). Neural networks with only 1
intermediate layer are usually called shallow, while networks with more than 1 intermediate layers
are usually called deep, whose study is the object of the field of Deep Learning (DL).

Connections between neurons in different layers can be established in several ways. One of the most
common is fully-connected (FC) feed-forward (FF) neural networks, an architecture such that all
the units in one layer are (only) connected to all the units in the next layer (see Figure [£.4). Such
architecture can give rise to very flexible and versatile networks that can learn highly non-linear
mappings.

Fully-connected feedforward neural networks, however, are usually computationally intense and
prone to overfitting (due to the high number of parameters associated to the high number of con-
nections, especially in deeper networks), and have shown some limitations when used alone for
dealing with image or time-series data. Nevertheless, they have been successfully applied in many
research areas, significantly improving the results from classical supervised ML methods, especially
as the amount of labeled training data has become substantially bigger in many application areas.
In Figure the dependence between the amount of available data and the maximum perfor-
mance of learning algorithms is depicted, which explains the reason for the increasing interest
in Deep Learning. Unlike most "traditional" supervised learning approaches, whose performance
plateaus at a certain amount of available training data, DL approaches usually keep increasing
their performance when trained with even more data. The potential performance of DL algorithms
is also increased with the number of layers ("how deep the network is"), in exchange for a higher
proneness to overfitting (and an associated bigger need for training data).

Feedforward neural networks can automatically deduce and optimally tune features for the desired
task (i.e. they perform feature engineering without prior manual extraction), and they can learn
inherent variability in data coming from that task. When using certain activation functions (e.g.:
sigmoid function), their output provides probabilistic information, richer than the binary infor-
mation from other classical ML algorithms (it can, for instance, be interpreted as a trust metric,
which can both be used for sensor rejection and other tasks in the autonomous vehicle). However,
they can require large amounts of data to perform significantly better than other ML techniques
and avoid overfitting, there is no standard theory to guide the process of designing networks’ archi-
tectures, and the resulting models are much less explainable (closer to the "black-box" modelling
paradigm).

32 4.3. Learning-based approaches

Input Layer € R® Hidden Layer € R Hidden Layer € R"™ Qutput Layer € B*

Figure 4.4: Example of a FC feedforward neural network with 6 inputs, 4 outputs and 2 intermediate
layers, each with 10 units. Every unit of a certain layer is connected to all units in the next layer.

Feedforward neural networks have many architecture parameters that can be tuned, like the number
of intermediate layers, the number of units per layer, the activation function used in each layer, the
use of regularization (e.g.: L2, dropout, ...) and normalization techniques, all of which can have a
big impact in the potential performance of the resulting NN. Many other hyperparameters are also
linked to the training of the network, like learning rate (the most relevant in general), optimization
algorithm, batch size, etc. Details on parameter tuning are found in Chapter [f]

Once the model is trained, classifying a new sample with a fully-connected neural network (either
shallow or deep) simply requires to perform a forward propagation pass, feeding the inputs to the
input layer, computing linear combinations and non-linear activation functions, and feeding the
output signals to the next layers, until the output layer’s activation is computed, which yields the
output signals for the given input sample. For the particular problem of this thesis, both shallow
and deep FF neural networks are discussed. A more detailed discussion on the output format of
the network can be found in Chapter [6}

4.3.3 Sequence models

Standard feedforward neural networks, like the neural networks discussed before, do not share
features across different positions of the network, assuming that all inputs and outputs are inde-
pendent of each other. These models can have a hard time when working with sequence data (e.g.:
time-series data), as with this kind of data previous inputs (and even outputs) are key for predict-
ing the next output, capturing trends and time-associated information. Although some approaches
exist to try to handle sequence data with FC neural networks (e.g.: storing the last n samples of x;
and including them all as part of the input vector), in order to directly deal with this limitation,
sequence models can be used, whose structure is explicitly designed for supervised ML tasks that
have sequence input data.

Chapter 4. Sensor rejection and trust estimation 33

Deep Leamning

M J—

Muost learning algorithms

Performance

Amount of data

Figure 4.5: Maximum performance of traditional supervised learning and Deep Learning algorithms
depending on the amount of available labeled training data.

For the particular case of this thesis’ problem, the sensor rejection and trust estimation has so
far mostly been tackled as a time-isolated decision problem, where only the (x;,y;,6;) estimates
from the current time instant are taken into account (except when signal filtering techniques have
been applied). However, this same problem can also be tackled by considering information from
previous time instants too (i.e.: treating pose estimate streams as sequence data, instead of isolated
instantaneous data), by using sequence models, which allow for a state-dependent decision scheme.
In particular, in this work, the use of Recurrent Neural Networks (RNN) is explored.

Recurrent Neural Networks

Recurrent neural networks (RNN) are a type of artificial neural networks that exhibit temporal
dynamic behavior, as the connections between units form a directed graph along a temporal se-
quence. They have an internal state (usually interpreted as a form of memory), which can be used
to process variable length sequences of inputs. Figure [£.6] depicts a vanilla RNN architecture that
has 1 recurrent fully-connected layer between the input and output layers.

B AR N

6 &

Figure 4.6: Example of two ways of schematically representing a vanilla RNN architecture.

Recurrent neural networks can process inputs of any length, their model size does not grow with
input size (as the same weights are shared for any time step) and they can learn time dependencies
through their internal state. However, recurrent layers can be computationally more demanding,
training RNN models can be more difficult, and they are more prone to suffering from gradient
exploding and /or vanishing. When long-term time dependencies need to be captured, vanilla RNN
models may not perform well and modifications like long short-term memory (LSTM) models are
needed.

Similarly to FC feed-forward neural networks, there are many parameters that can be tuned for
RNN models, both regarding network architecture and training procedure, most of which are
analogous to the ones presented for feedforward neural networks. Again, details on parameter
tuning are found in Chapter 5.

34 4.4. Voting systems

Once the model is trained, a single pass through the net is done with every new sample, similarly
to the case of FF NN models. The main difference, though, lies on the fact that RNN recurrent
layers’ activations from last time step (which conform the internal state or memory) are fed back
as input to the same recurrent layers for the next time step (see Figure . For the particular
problem of this thesis, vanilla RNN models are discussed, as LSTM models didn’t show significant
performance differences upon basic testing of different RNN model options (which may indicate
the absence of hard-to-capture long-term dependencies that justify switching to more complex and
heavier models).

4.4 Voting systems

Across this chapter, the following final approaches have been presented (whose tuning and results
are discussed in later chapters):

¢ Extended NIS cross-validation

o Decision trees

e k-Nearest Neighbors

o Fully-connected feedforward neural networks
o Recurrent neural networks

For each of these approaches, a ROS node has been built to perform independent sensor rejection,
yielding each a binary selection signal (and in some cases also a continuous trust signal). The
training and tuning procedures for each algorithm to obtain the final weights and parameters is
discussed in Chapter 5] and the individual results obtained by their final versions in several relevant
test scenarios are discussed in Chapter [6} Nonetheless, in order to take a final decision on which
sources to trust, two main approaches can be used:

e Only use the decision coming from the rejection algorithm that displayed the best perfor-
mance in test scenarios according to some of the presented metrics.

e Build a voting system that takes into account the decision of each proposed method to come
up with a final decision.

The first option would render all nodes but one useless, only needing the one associated to the
"best-performing" algorithm, which can reduce computational load, in exchange for potentially
worse overall performance (trade-offs usually exist, as some algorithms may perform better than
others in different scenarios, capturing different failure modes).

Voting is also considered an ensemble ML algorithm. For classification, hard voting systems consider
the final label assigned by each individual algorithm to the sample, while soft voting consider
probabilistic information provided by each algorithm for the sample. Examples of the former are
choosing the most voted label (most common simple approach), considering a source reliable only
when at least a certain fraction of the algorithms label it as reliable (usually more conservative),
etc. An example of the latter can be adding up the probabilities or trust scores from each algorithm
and taking the label with the highest total score.

These approaches are very computationally cheap and can slightly increase the final system’s
reliability. In this work, as only some algorithms offer a continuous trust estimate, while all of them
provide a binary selection signal, hard voting systems are the most natural choice. In particular,
a simple majority voting system is explored, which provides a final sensor selection signal for each
of the 4 pose estimate sources. No tie-breaking rule is needed, as the number of implemented
algorithms is odd. In Chapter [6] results from individual algorithms and the voting system are
compared.

Chapter 4. Sensor rejection and trust estimation 35

Finally, Algorithm [4.5] summarizes the overall system proposed as the solution to this thesis’
problem, from data streams available at system input, to individual selection signals (and trust
information in some algorithms) and final selection signal available at system output. Note that
an additional last-resort step is used at the end of the overall process, for cases where the voting
system happens to label all sources as unreliable. Due to the nature of autonomous vehicles, the
Autonomous Plus2 needs to rely on at least one source at every time to keep updated information
on its current location, but in some situations the voting system may end up labelling all sources
as unreliable. In those cases, a default sensor has to be chosen to keep the localization (as well as
potentially sending a warning to the vehicle’s logic systems about this situation), which for the
Autonomous Plus2 is chosen to be Cartographer, as discussed before.

Algorithm 4.5 Proposed overall system for sensor rejection and trust estimation

procedure SENSOR REJECTION AND TRUST ESTIMATION

x5, yi, 0, Qi < DATASTREAMPROCESSING() > Algorithm
selectiony «— EXNIS(z5, v}, 0%, Q) = Algorithm
selectiony < DECISIONTREE(z,, v, 6})

selectionrrr < K-NN(x%, yi, 0%) > Algorithm [1.4]

selectionyy , trustyy < FEEDFORWARDFCNN (7, y., 6})
selectiony , trusty < RECURRENTNN (a7, yi, 6})

selectiony < VOTINGSYSTEM(selectiony,) = Final selection signal

if selectiony = [0, e O] then = Last-resort mechanism if all sources are voted unreliable
selectiony.cq < 1

end if

end procedure

36

4.4. Voting systems

Chapter 5

Experimental procedure

In Chapter[4] different approaches for sensor rejection have been presented, which need to be trained
and/or tuned to ideally obtain their maximum potential performance. Also, once an optimal version
of each approach is obtained, they can be compared and contrasted to determine which approach
yields the best performance on the Autonomous Plus2, or to assess the existing trade-offs in case
none of the options is a clear "winner".

Here, metrics for quantitatively assessing algorithm performance are presented, different real and
relevant test scenarios are proposed, training data acquisition and processing are discussed, and
algorithm training and/or tuning procedures are described. All of these aspects determine how the
results in Chapter [6] are obtained.

5.1 Performance evaluation

Performance metrics

There are many metrics that can be defined for classification tasks, and their relevance depends on
the particular problem in hand. For this thesis, two metrics are the basis of algorithm performance
evaluation:

o True negative rate (TNR): It is defined as the fraction of ground-truth negative samples
that are labeled by the algorithm as negative (label 0).

o True positive rate (TPR): It is defined as the fraction of ground-truth positive samples
that are labeled by the algorithm as positive (label 1).

In particular, TNR represents the fraction of times when our algorithm manages to reject faulty
samples, while TPR represents the fraction of times when our algorithm doesn’t reject a reliable
sample. Due to this thesis’ focus on reliability in worst-case scenarios, TNR is the most important
metric, as the obtained algorithms aim at rejecting faulty measurements to avoid corrupting the
fused estimates. However, TPR is also relevant, as rejecting too many reliable measurements is not
desirable (it may affect localization performance), although it is much less critical than accepting
a faulty measurement.

Parameter optimization approaches like grid search, discussed later in this chapter, benefit from
having a single metric to compare, which summarizes the preferences regarding the existing trade-
offs into a number that can be computed for each considered combination of parameters. Here, two
ways of combining TNR and TPR are proposed:

o Computing a harmonic mean (Equation [5.1]), which gives the same importance to both
metrics, but only has a large value when both metrics are high, penalizing imbalances (unlike
a plain average).

37

38 5.2. Test scenarios description

o Computing a normalized weighted average (Equation , which first normalizes TNR
and TPR to have comparable metrics (especially useful for metrics with different orders
of magnitude in their ranges), and then imposes the desired importance for these metrics
through weights ary g and arpg. In particular, respective values of 2/3 and 1/3 have been
chosen, to give double importance to TNR over TPR. Note that these weights must add up

to 1.
2-TNR-TPR
_ g Nl
N = INR+TPR (5.1)
TNR TPR
¢2 = QTNR " m +arpr- m (5.2)

All the aforementioned metrics allow analyzing performance for the algorithms on each individual
source. However, in order to have a single global metric for each grid point, the metric value for each
source can be combined with the rest of sources. In order to do so, different statistical measures
can be used. Due to this thesis’ focus on reliability in worst-case scenarios, a low metric value for
one of the sources is not desirable, even if the rest of the sources have a high value, so a statistical
measure that is sensitive to outliers must be chosen. For this reason, the harmonic mean of the
values for each source is chosen (Equation , as it heavily penalizes single low values, and other
choices like the median are discarded, which are robust to outliers and could hide poor performance
on a single source.

~

nsources
i = S T (5.3)

Nsources

k=1 bik

Loss function

As this work deals with a binary classification problem for each source, when training neural
networks the binary cross-entropy loss function is used (Equation , which highly penalizes
probabilities that are very far from the actual ground-truth label. With this loss function, training
isn’t biased in favoring TNR or TPR, which is instead handled by parameter tuning. The same
"balanced training and biased tuning" idea has also been applied with classical ML techniques,
which use different mechanisms to select error relevance in training.

M
C- _% > [- log(p(yi)) + (1 = y2) - log(1 = p(y)] (5.4)

5.2 Test scenarios description

Once proper performance metrics have been defined, data has to be gathered directly from the
vehicle. In particular, real sensor data is needed to train and/or tune the proposed algorithms,
and afterwards real output data is needed to verify the performance of those algorithms running
on the Autonomous Plus2. As the focus of this work lies on reliability and worst-case situations,
relevant test scenarios have to be defined, such that they aim to consistently trigger failure modes
from Tables and In order to do so, 16 test scenarios are proposed in Table
from which independent training, validation and test data are obtained.

5.3 Data acquisition and pipeline

In order to train learning approaches (e.g.: weights in neural networks) and/or tune algorithm
parameters (e.g.: k in k-NN), real data has to be gathered from the tests scenarios in Table
and processed to convert it into appropriate labeled data.

Chapter 5. Experimental procedure

39

Table 5.1: Test scenarios considered for the Autonomous Plus2 in this work

Target failure

Test name Description modes
Several laps of starting at hangar entrance,
1 Hangar 1 traversing the corridor, turning around, GPS_3
and getting back to the entrance.
Several laps of starting at hangar entrance,
2 Hangar 2 traversing the corridor, and getting back GPS_3
to the entrance without turning around.
Several laps of starting at hangar entrance,
3 Hanear 3 traversing the corridor in a straight line, Camera_ 4
& and getting back to the entrance GPS_3
wihout turning around, all at medium speed.
4 Around }.1angar Several laps of.drlvmg aroun(.l the hangar, outside, Camera_ 3
(morning) in a closed trajectory.
5 Around hangar Several laps of.drlvmg aroun(.i the hangar, outside, Camera_ 3
(afternoon) in a closed trajectory.
Tall building Several laps of derlng in a straight line, GPS 1
6 fAat 1 back and forth, in a flat area GPS 2
next to tall buildings. -
Tall building Several laps of drlv’lng in a circles, GPS 1
7 Aat 2 back and forth, in a flat area GPS 2
next to tall buildings. -
. Several laps of driving in a straight line, GPS_1
8 Tasliobléﬁdlmg back and forth, in a sloped area GPS_2
p next to tall buildings. LiDAR 3
I Several laps of driving in circles, GPS_1
9 Tasliobl:jld;ng back and forth, in a sloped area GPS_2
P next to tall buildings. LiDAR_3
Several laps of driving in a straight line, IMU_1
10 Vibration 1 back and forth, in a non-smooth terrain Camera_ 6
made of dihedral-shaped tiles. Odom_ 2
Several laps of driving in circles, IMU_1
11 Vibration 2 back and forth, in a non-smooth terrain Camera_ 6
made of dihedral-shaped tiles. Odom_ 2
12 Tunnel passage Seve?al laups of going bad“(and forth LiDAR 2
in a "tunnel passage" area.
Several laps of driving in a straight line, LiDAR_2
13 Open field back and forth, in an open field area. Camera_ 5
14 Main ramp 1 Several laps of going up a.nd down a steep ramp, LiDAR_3
without turning around. Camera_7
15 Main ramp 2 Several la'ps of going up and down a steep ramp, LiDAR_3
turning around to always face forward. Camera_ 7
Several laps of navigating in an open parking area
16 Heavy maneuvering while doing intense direction changing Odom_ 1

("snake movements").

40 5.3. Data acquisition and pipeline

Data acquisition

Regarding data acquisition, the process can be handled easily thanks to the available ROS ar-
chitecture. Using capabilities from the rosbag package, the topics shown in Figure that are
already available from existing nodes in the Autonomous Plus2 are recorded into .bag files. Those
files can be either replayed on an external computer with ROS installed, or opened in Matlab
using functions from the ROS Toolbox. The latter allows for offline quick visualization, scripting
and simulation, which has been very useful for developing and testing under COVID restrictions,
reducing the required hands-on time on the vehicle. Each recorded .bag file includes all topics
needed for the proposed solution (see Algorithms and in a certain scenario. Once algo-
rithms had been developed and deployed in ROS nodes, the output information for the proposed
solution also started to be recorded in the .bag files (by recording the corresponding topics, also
displayed in Figure , in order to assess performance when running in the real vehicle (although
the developed Matlab scripts could already simulate the expected output with very high fidelity).

Data labeling

Before the different algorithms can be trained with the relevant data recorded in a set of .bag files,
this data needs to be labeled in order to be able to compute the proposed performance metrics
and/or define loss functions for the learning approaches. Before this thesis, choosing which sensor
to trust according to the expected environment and issues the Autonomous Plus2 was likely to
encounter had to be manually done by an experienced human technician before navigation. In
consequence, it is reasonable to assume that labeled data can be obtained by having a person
manually label the recorded data for each of the different scenarios.

In particular, by observing temporal plots of x}, y; and 6, from all sources at the same time,
together with X-Y trajectory plots, it is possible to generate 0/1 binary labels for this problem,
where a 0 label is assigned to parts of the trajectory where one sensor is clearly presenting some
failure mode. This decision is subjective and not completely systematic, but it can be aided by the
column for target failure modes in Table by qualitative knowledge of the actual trajectory done
by the human driving during the test, by qualitative and quantitative analysis of the superposed
plots for each source, etc. The resulting human-labeled data gives reasonable results, as it can be
seen in Figure [5.1] where recorded and labeled data for Scenario #3 is shown.

This labeling approach has proven to be good enough to allow the algorithms to learn the pat-
terns and interactions that occur when failure modes arise, even though the exact moment of the
transition from 0 to 1 labelling can be slightly arbitrary and thus some labels near the transition
zone can actually be ambiguous/wrong. This problem arises only for a few time steps for each
test scenario, which doesn’t have a significant effect in the algorithms’ qualitative performance and
reliability. Nevertheless, the somewhat arbitrary transition time and the fact that there is not an
absolute objective "ground-truth", but a partially subjective decision instead, does affect the quan-
titative metrics’ values, which are actually approximate/indicative values (unlike, for instance, in
pure localization accuracy problems, where there actually exists an objective ground-truth position
where the vehicle ultimately is, regardless of whether it is known precisely or not).

Note that choosing a fixed and systematic labeling decision rule instead that can automatically
label any training data with no human subjectivity is not an option, as it would be equivalent to
this thesis’ problem itself, so if any such rule were to be used to label the training data instead
of human labelling, the solution to this thesis problem with 100% accuracy would be to just have
an algorithm that mimics that rule and would bias any solution towards learning that particular
(arbitrarily) chosen rule.

Train/validation/test split and data augmentation

Once labeled data has been produced, a train/validation/test split is performed. Training data
is used to train learning-based methods, validation data is used to tune algorithm parameters,
and test data is used to evaluate the performance of the best obtained version of each algorithm.

Chapter 5. Experimental procedure 41

Recorded data Labeled data
30

O Label: 1
x_ Label: 0

-10 -0+

x [m] x [m]

Figure 5.1: Example of recorded (left) and labeled (right) data from Scenario #3. The human
labeling produces a qualitatively good result, where data from sources under failure is rejected
(only after the failure).

In order for performance evaluation to be unbiased, it is important not to mix samples of the
same .bag file in training, validation and test datasets, as they could be significantly correlated,
especially samples of the same .bag file that are close in time. Choosing different .bag files for
training, validation and testing allows the algorithm to fit and generalize well, and to offer reliable
quantitative performance metric estimates, as long as both datasets have examples of various
failures modes for each source. Note that this restriction doesn’t prevent from training and testing
on the same scenario from Table as long as at least 2 different .bag files have been recorded
for it.

Due to the limited number of different and relevant areas for data collection and testing available
during this thesis’ development and a bounded number of considered failure scenarios of interest
that can be triggered repetitively, the amount of "different" data that can be gathered is limited.
Moreover, test scenarios usually have a certain fixed orientation due to the position of tracks,
buildings, and other elements of interest, which is a form of bias in the available data. The combi-
nation of this two effects can lead to some algorithms tending to overfit the training data, either
learning its biases or not managing to learn the relevant underlying patterns that allow for proper
classification in any new scenario.

A resource-cheap way to overcome this limitation is data augmentation, which consists on increasing
the amount of training data available by creating synthetic (but realistic and representative) data
from existing (real) data. In particular, for this work, the original training data is augmented by
adding random displacements (of a maximum size of the same order of magnitude as the overall
trajectories in the test scenarios, i.e. around +20 m) and random rotations (of any magnitude
between —27 and +2m). Such technique only requires a bit of offline computation power and
can potentially increase the available data to any desired amount, although the relevance of new
synthesized data starts to decrease at some point. Data augmentation is not performed on validation
or test data, as it is good common practice to try to always obtain these datasets directly from
the real system with no modification, so that its data follows the desired target "distribution".

In particular, in this thesis, data from the proposed scenarios has been collected twice. The first
data is split for train and validation datasets, while the second data is used for the test dataset, in

42 5.4. Training and parameter tuning procedures

order to ensure unbiased performance evaluation. Before data augmentation, the first labeled data
follows approximately a 60%/40% train/validation split (measured as the respective fraction of the
total number of samples), with 11 different .bag files for the training dataset, comprising a total of
40:14 min of recordings, and 6 different .bag files for the validation dataset, for a total of 25:31 min
of recordings. Data augmentation has been used to make the training dataset around 100 times
bigger than originally, also eliminating the potential position origin and orientation biases in it.
Such data augmentation has displayed a regularizing effect, significantly driving performance and
qualitative generalization capabilities up. For the test dataset, 16 different .bag files have been
used, with a total of 29:27 min of recordings.

5.4 Training and parameter tuning procedures

Once training and test data are available, the algorithms can be trained and tuned to achieve their
best potential performance for this thesis’ problem. In this section, the applied parameter tuning
techniques and optimization algorithms are presented. The particular results of these procedures
are described and discussed in Chapter [6]

Grid search

In this work, for tuning each algorithm’s parameters, a grid search approach is used, which con-
sists on exhaustively searching through a manually chosen set of values of each parameter, which
defines a grid in the parameter space. Once every possible point in the grid is tested, a sam-
pled approximation to the function of each performance metric with respect to the algorithm’s
parameters is obtained, which allows to choose the final values of each parameter, taking into
account usually existing trade-offs. Grid search suffers from high computational (offline) demand,
which increases significantly (and not proportionally) with the number of parameters to explore.
However, sometimes the different parameters can be explored independently, as long as they do
not interact significantly, reducing the dimensionality of each parameter grid and thus the overall
computational load.

ExNIS tuning

For the presented version of the ExNIS sensor validation approach, summarized in Algorithm [£.1]
there are two parts of the algorithm that can be tuned:

o Thresholding: either parameter th (1-level) or parameters thy, the and ths (3-level).
o Low-pass filtering: either parameter 5 (EWA) or v (CUSUM).

Unlike in some learning-based approaches, all these parameters can relatively easily be tuned
manually (e.g.: by trial-and-error and using some sample data as guidance). However, systematic
parameter optimization methods can also be used, which also provide quantitative insight on the
effect of parameters on the final values of the performance metrics.

In order to avoid dimensionality problems, first two grid searches are performed, one with the
EWA filtering and the other with the CUSUM filtering, both using 1-level thresholding (which
only has 1 parameter), to determine which of the two filtering approaches has a better potential
in terms of performance. Then, once the best low-pass filtering method has been chosen, a grid
search is performed with 3-level thresholding together with the best filtering, to determine the best
thresholding approach and decide the final chosen parameters for the ExNIS approach.

Doing a grid search on 3-level thresholding already includes the 1-level case (it is a degenerate case
of it), as discussed in Chapter |4} but this separation in 2 phases avoids a single grid search on 5
different parameters, which would require very high computational times (of the order of days),
and also allows for an isolated analysis on low-pass filtering techniques with a simpler thresholding
method.

Chapter 5. Experimental procedure 43

Decision tree training and tuning

As mentioned in Chapter [4] a decision tree is trained for each of the 4 sources of this thesis. For
this model, one parameter is tuned: the maximum number of splits. A simple grid search on this
parameter is used. A quantitative discussion on whether to use (z}, yi, 0) directly or to perform
manual feature engineering first is also developed using this simple grid search.

Regarding the training procedure, which is repeated for each point in the grid, the augmented
training dataset is used, as it drastically reduces overfitting and dataset size does not make the
final model heavier. To train the decision trees, the Classification Learner from Matlab’s Statistics
and Machine Learning Toolbox is used, as well as the Python library scikit-learn.

k-NN tuning

Analogously to the case of decision trees, one k-NN classifier is built for each of the 4 sources in this
thesis. The only parameter to tune in this case is k& (the number of nearest neighbors to take into
account). A simple grid search on this parameter is used again, but in this case no training occurs.
All computational load is differed until new sample prediction, and the training data only needs to
be stored. However, due to these distinctive aspects of k-NN, final model size and inference time
grow with training dataset size. Thus, instead of the full x100 data augmentation, after k& has been
selected, a smaller augmentation is proposed, after a quantitative discussion to see which is the
smaller augmentation that achieves similar levels of performance to the x100 case.

FC feedforward NN training and tuning

For fully-connected feedforward neural networks, one unique network is trained for all the 4 sources
of this thesis, making the intermediate layers focus on features that can help classify several sources
at the same time. For this algorithm, there are many parameters (usually also called hyperparam-
eters) than can be tuned. Here, three hyperparameters are tuned, one for the optimizer and two
for the model, as they tend to have the biggest impact on final performance: the learning rate, the
amount of intermediate layers, and the number of units per layer. A grid search is performed on
these 3 parameters.

Regarding the training procedure, repeated for each parameter combination in the grid, the full
augmented training dataset is used, as it doesn’t make the final model heavier and has a desirable
regularizing effect. To train the neural networks, the Adam optimizer is used [49], together with
the Keras library on Python.

RNN training and tuning

The training and tuning procedures are analogous to those for fully-connected feedforward neural
networks, but having recurrent FC layers instead of plain dense intermediate layers.

44

5.4. Training and parameter tuning procedures

Chapter 6

Results and Discussion

After describing this thesis’ system and problem, proposing solutions to it, and defining the ex-
perimental procedure to use, here, the actual obtained results are presented and discussed. In
particular, model training and tuning results for each approach guide towards the selection of the
best version of each of them, which have been deployed on the Autonomous Plus2 as described
in Figure Once a final version of each algorithm is ready, they are compared with each other
in the different scenarios described in Table Finally, overall performance and reliability of
the approaches is discussed, reaching a final decision and insights on the existing trade-offs, weak
points and limitations.

6.1 Model training and tuning results

6.1.1 ExNIS cross-validation
Choosing a low-pass filter

Following the split strategy described in Chapter[5] the first two grid searches are performed in order
to compare the low-pass filtering techniques while keeping the simplest thresholding approach.

For the thresholding parameter th, the following values are considered, extracted from the x?(3)
distribution (as the measurement vector is 3-dimensional): 0.072, 0.115, 0.352, 0.584, 1.212, 2.366,
4.11, 6.25, 7.82, 11.35, 12.84, 16.3. For the [parameter, the values in Table are considered,
which are presented together with their equivalence in number of time steps taken for averaging,
according to Equation For the v parameter, equally spaced values between 0.0 and 12.0 are
considered, with a step of 0.5. Figure [6.1] shows the results for the grid search using EWA for
low-pass filtering. Figure [6.2] shows the results for the grid search using CUSUM.

In Figure values for TNR, TPR, ¢ (Equation and ¢, (Equation are plotted as
a function of th and B. The resulting sampled surface allows to visualize the relations between

performance metrics and algorithm parameters, and to assess the existing trade-offs.

First, it is clear that the parameter with the biggest influence, by far, is th, as it directly defines
the decision rule. The effect of 8 is secondary, as it only controls the low-pass filtering profile, and
it only starts to be significant with values of § around 0.8 (averaging approximately the last 5

Table 6.1: Values considered for the 8 parameter for EWA, together with an approximate value
for the number of steps used for the exponentially weighted average.

Beta 0 05 0.8 09 095 098 0.99
Time steps | 1 2) 10 20 50 100

45

46 6.1. Model training and tuning results

TNR TPR

0.9

0.8

TNR
TrPR

0.7

0.6

2/8 TN Ryopm + 1/3 TP Ryorrn

.5 04

Figure 6.1: Grid search on the ExNIS approach using EWA and 1-level thresholding. Two param-
eters define the grid: th and 5.

TNR TPR

0.9

0.7
12

2/3 TN Ry + 1/3 TP Rygyry

0.76
0.74

& 02
0.7

0.68
12

Figure 6.2: Grid search on the ExNIS approach using CUSUM and 1-level thresholding. Two
parameters define the grid: th and v.

Chapter 6. Results and Discussion 47

time steps). Values of 3 closer to 1 increase the time-averaging effect, generating "smoother" parity
relations, which favors TNR and harms TPR. The th parameter has opposite effects on TNR and
TPR, with higher values of th yielding a more "permissive" algorithm, which results in lower TNR
and higher TPR.

Observing the resulting combined metrics (Z)l and ¢, a stronger trade-off effect is observed in (Z)g.
In the higher th ranges, while the harmonic mean is more permissive with lower TNR in exchange
for higher TPR, the weighted average clearly favors TNR and makes this range for th much less
desirable. The respective maxima for each metric is reached in the following points of the parameter
grid: @1 maz = 0.731 for th = 6.25, 8 = 0.8, and ¢ mas = 0.768 for th = 1.212, B = 0.99.

In Figure the same plots are shown for the grid search with CUSUM filtering, which has the
parameter v, instead of 3. Here, it is the parameter v that has the strongest influence, conditioning
both the low-pass filtering and the final performance, and leaving th as a secondary parameter.
Greater values of v favor TPR and harm TNR, because a bigger subtracted drift creates a more
"permissive’ algorlthm There is also an optimal value of drift, after which overall performance de-
creases according to ¢1 The values where each metric reach their respective maxima are: ¢1 maz =

0.702 for th = 16.3, v = 9.5, and ¢27maz = 0.767 for th = 16.3, v = 2.

Comparing the maximum performance obtained, EWA reaches higher maxima than CUSUM in
both metrics. For this reason, EWA has been chosen as the low-pass filtering approach for the final
ExNIS approach on the vehicle. Note that performance without filtering has also been considered
with the grid points corresponding to 5 = 0.

Tuning the general 3-level thresholding approach

With the EWA filtering approach fixed, a grid search is performed on the proposed 3-level ExNIS
approach. This way, the parameters that define the grid are thy, the, ths and 3. For the thresholding
parameters th;, the same set of values is chosen as in the last grid searches for th, while for 3 the
previous values of this parameter are also copied.

In this case, a 4-dimensional grid is built, which can’t be directly visualized in all its dimensions.
In order to observe trade-offs and parameter effects, two parameters can be fixed each time (for
instance, to their optimal values) and the two others can be used as variables for plotting the local
3D surface corresponding to each performance metric. The values where each metric reach their
respective maxima are: &me = 0.731 for thy = 6.25, tho = 7.82, thy = 0.072, = 0.5, and
D2 maz = 0.768 for thy = 1.212, thy = 0.072, thy = 0.072, 8 = 0.99. Figures [6.3/and [6.4] show some
local visual results for this grid search.

In Figure the effects of parameters on qﬁAl can be visualized. Like in other previous analyses,
starts to have a significant effect around a value of 0.8, but the effect is still mild in comparison to
the thresholding variable thq, which is the most relevant parameter for performance. An increase
of thy improves performance until the 6.25 - 7.82 range, and after that it starts worsening the
performance. Parameter tho also has a relevant effect, as it interacts with the effect of thy, as it
can be seen in the lower-right plot in Figure[6.3] The other thresholding parameter, ths, as already
discussed, only "affects" the algorithm when 1ts value is higher than the previous th; (otherwise,
degenerate cases occur), and in those cases it doesn’t provide better performance. The resulting
maximum is a degenerate case, where the proposed approach has 2 active levels, defined by th
and thy. There is a significant increase in the maximum value for metric q[;l with this proposed
thresholding approach.

In Figure the effects of parameters on d;g can be visualized. Note that conclusions on 3’s effect
are the same as before. Lower values of th; offer better performance on this metric, as they highly
increase the TNR, although the resulting TPR is quite worse than the obtained in gz§1’s maximum.
This fact, again, indicates that ég is much more permissive than qgl with low TPR values as long
as TNR is significantly higher in exchange, which for our problem is not always the best option
(having low TPR implies rejecting many valid measurements), suggesting that $1 can be a better

48 6.1. Model training and tuning results

Harmonic mean of TNR and TPR
Fixed thy:7.82, thy:0.072 Fixed thy:6.25, thy:0.072 Fixed thy:6.25, thy:7.82

0.73
0.72

0.71

5 5 5
8 U] th B 0 0 ths B8 00 thy

Fixed thy:0.072, 3:0.5 Fixed thy:7.82, (3:0.5 Fixed thy:6.25, 3:0.5

0.73

0.725

EN

0.72

0.715

| 5 E 5 : :
th 00 th thy 00 th thy 00 thy

Figure 6.3: Results for the aggregated metric (51 on the ExNIS grid search using EWA and 3-level
thresholding. Four parameters define the grid: thy, thse, ths, and 5.

choice of performance metric for this problem. Finally, for the aggregated metric gzgg, the and thg
only worsen performance when set above thy (i.e., when they are actually "doing something").

From the plots and the resulting maxima, it can be concluded that the extended 3-lvl approach
offers significant performance improvements for this problem in terms of ¢;, but the maximum for
gﬁz is the same. It seems that it is worth it to have a more complex solution in exchange for slightly
better performance, especially due to the very tiny increase in computational load it implies.

After all the presented analyses, the final ExNIS cross-validation approach chosen for the vehicle
is:

o Use fixed Q) matrices from Equations [3.3] [3.5] 3.6] and [3:11]
o Use EWA for low-pass filtering, with 8 = 0.5 (approx. 2 time steps averaging).

e Use 2-1vl thresholding, with thy = 6.25 and thy = 7.82 (10% and 5% probability of the values
happening in nominal conditions, respectively).

With these choices, the final values for the aggregated metrics are: b1 = 0.731 and ¢y = 0.733.

6.1.2 Decision trees

For decision trees, the only parameter tuned is the maximum number of splits, for which the
following values are considered: 1, 3, 5, 7, 10, 15, 25, 50, 100. However, there is another very
important factor when applying such classical ML techniques: whether to apply manual feature
engineering on the inputs. As discussed in Chapter [d] there are many possible manual features
to extract for this thesis’ problem (e.g.: subtracting variables from different sources, computing
numerical derivatives, etc.), but in this work the ExNIS parity relations are considered as relevant
features, as they guide the algorithms towards paying attention on differences between sources’
variables (similar to an unsigned subtraction calculation).

In order to determine whether to use (z}, v}, 6;) directly, use the 6 parity relations, or just use
the 3 parity relations theoretically associated to the source each tree is classifying, the simple grid

Chapter 6. Results and Discussion 49

2/3 TN Ry + 1/3 TPRyorm
Fixed thy:0.072, ths:0.072 Fixed thy:1.212, thy:0.072 Fixed thy:1.212, thy:0.072

0.76.

0.72

il 0 0 thy B 0 0 thy

Fixed thy:0.072, 3:0.99 Fixed th»:0.072, 3:0.99 Fixed thy:1.212, 3:0.99

0.78
0.76

0.76

0.74

" 5 A 5 " 5
thy 00 th thy 00 th thy 00 the

Figure 6.4: Results for the aggregated metric (52 on the ExNIS grid search using EWA and 3-level
thresholding. Four parameters define the grid: thq, the, ths, and 5.

search described above has been performed for each of the 3 options, yielding the results of Figure
Note that the same value for the maximum number of splits parameter has been used for each
tree, in order to assess the general trade-offs and have a solution that is not heavily over-tuned
for the Autonomous Plus2, but that can be easily generalized and migrated to other vehicles and
similar problems.

Using the position estimates directly is not a good option, as vanilla decision trees only have
decision nodes that do simple thresholding on 1 input variable. Such a structure does not allow
the decision tree to compare different sources’ variables directly, which is one of the main sources
of insight for the decisions in this problem. Thus, here, decision trees clearly fail at providing good
performance without prior feature engineering. In particular, it would take a value of around 5000
maximum splits to approach its maximum potential performance, which would still be significantly
lower (this analysis is omitted from the plots for visual clarity) and wouldn’t generalize as well to
new samples.

The differences between using all 6 parity relations or just the 3 parity relations that are theoreti-
cally associated to the source each tree is classifying are relatively small. Using all parity relations
may provide additional information that could be helpful, while using only the theoretically as-
sociated parity relations may help the algorithm focus on what should be important. The peak
performance for ¢1 (which penalizes imbalanced TNR-TPR situations better than (;52) is achieved
using only the associated parity relations. Although the difference is small, the final chosen decision
trees use (each) the theoretically associated parity relations as inputs.

Figure [6.5 also shows how larger values for the maximum number of splits tend to cause higher
TNR, but lower TPR, until around the value 25, where the relation stabilizes for both metrics. Both
metrics present a maximum around values 10-15, and from there on performance only degrades,
suggesting that the additional splits cause overfitting to the training data, instead of allowing for
better generalization.

In this case, as decision trees are very computationally cheap, the increase in performance is more
important than the slight increase in model size and inference time with higher parameter values,

50 6.1. Model training and tuning results

TNR TPR
0.8 - o 1
@———@—————m—— O m e ———— -)E o
S i <
0. D n /973\\\\
l@@@@ 0.8l B ——=0
0.6¢% .- T Y e
I
. I
05 0.6
= = |
= 04} o |
= g
03l 04
I
02} 1
0.2 ‘L
01f
o . . . S o 0 o . . . a o
10 20 30 10 50 60 0 20 9 100 10 20 30 10 50 60 0 80 90 100
max. number of splits max. number of splits
———-Raw 2}, y}, 0] ———-All d;; ———-Only "associated” d;;
Harmonic mean of TNR and TPR 2/3 TN Ryorm + 1/3 TP Ry
0Sr o oo 0.8 - o
06,0 SN ---c-z—--@-—ccc———m——————====§ @ s m oo -
0.7 f?bg]@ ==8= 0.75 -;agg\ S T~ T T T T -8
I /e T8
0.6} 0.7
i
I
0.5} 0.65
1
<5 0l & 06
I
0.3} 055
I
o2f 0.5
1 _—®
0.1} 045 -
& & 0.4 T S, S 4 =T

. > o . oo . . .)
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 920 100
max. number of splits max. number of splits

Figure 6.5: Grid search on decision trees for the 3 input options. Only one parameter defines the
grid: the maximum number of splits. The same parameter value is used for each source’s tree.

but as results show, once the maximum is achieved, adding new splits to the tree doesn’t improve
the trees’ ability to classify, so the value of 15 is chosen.

After all the presented analyses, the final decision tree approach chosen for the vehicle is:
e Use 4 decision trees, one for each source.
o For each tree, use its theoretically associated parity relations as inputs.
e For all trees, max. number of splits = 15.

With these choices, the final values for the aggregated metrics are: $1 = 0.784 and ¢» = 0.780.

6.1.3 k-Nearest Neighbors

For k-NN, the only parameter tuned is k, the number of considered neighbors, for which the
following (odd) values are considered: 1, 3, 5, 7, 11, 15, 25, 51, 101. Analogously to the decision
tree approach, this grid search is repeated for the 3 input options, yielding Figure Note that,
again, the same value for k has been used for each classifier, in order to see the general trade-offs,
which can be used when migrating this solution to other vehicles.

In this case, it can be seen that using only the theoretically associated parity relations for each
classifier is the best choice, while not doing manual feature engineering fails again to perform well,
as the structure of the classifier doesn’t allow it to easily learn cross-validation logic. As k-NN
uses a distance function that does not prioritize any input feature, when computing the nearest
neighbors, if all 6 parity relations are used, differences (distance) in a theoretically associated parity
relation are treated the same way as differences in theoretically non-associated parity relations,
which may explain the drop in performance when adding the remaining 3 parity relations.

As shown in Figure[6.6] the value of k doesn’t seem to impact performance with x100 data augmen-
tation. For k-NN, the value of k impacts prediction time (which for most implementations of k-NN
is O(k -log M)), but not model size, so choosing a smaller k can benefit when running predictions
with k-NN.

Chapter 6. Results and Discussion 51

TNR TPR
085 085
HOOO -G O— —— O~ ——— = —— = — G—mmmmmmmm—mm—m o o} @ —=m==—————==——————=0
0.8F o
5—G
OO
: 08F
075000 -G - — - O-———— —— - — — G —mmm e o}
BOOO ~0- O — — B — = — — — —— — — @ — e)
o 0T]
& 075
=065 =
0.6
g 0.7
05540080-C o ——o _____ -
e BOOS ~G- 0= — — O ——— — — — — — — @ — e)
)
05 ; 065
10 2 30 10 50 60 0 0 0 100 10 20 30 10 50 60 0 80 0 100
k k
———-Raw 2}, ¢, 0] ———-All d;; —— —-Only "associated” d;;
Harmonic mean of TNR and TPR 2/3 TN Rugrm + 1/3 TP Ry
0.78 ¢ 08¢
BOOS ~G- = — = B === —— ——— — G mmmmmmmm o
R G mmmmmmm e m e)
6L
0.74 - 0.75 -
072k BOOO ~C- 0 — — B —— = — — ——— G o
50 & o7
068 F
OB -G B —— D~ ——— == — —— G o
0.66 0.65
o @ e ___
- ——— booo —C © - -—-0
0644000 —C © e e O
0.62] 06

L L L L L L L L L L L L L L L
10 20 30 10 50 60 70 80 90 100 10 20 30 10 50 60 70 80 90 100
k k

Figure 6.6: Grid search on k-NN classifiers for the 3 input options. Only one parameter defines the
grid: k. The same parameter value is used for each source’s classifier.

Once the type of inputs have been decided, and a flat profile for k& has been observed, in order to
reduce the size and inference time of the resulting k-NN classifiers, another grid search has been
performed to assess which is the minimum data augmentation that provides similar performance
to the previously used x100 augmentation for k-NN. Figure [6.7] shows the results of this data
augmentation grid search, for fixed values of k 1, 5 and 11. Looking at different values of k is
interesting because for lower augmentations the flat profile for £ may not hold.

As seen in the figure, data augmentation does not offer an improvement in the k-NN classifiers’
performance, while it does increase model size and inference time. Also, using a value of 1 for
k allows for peak performance with no data augmentation, which is the best situation possible.
For higher values of k, as more neighbors are taken into account, data augmentation is needed to
achieve peak performance.

After all the presented analyses, the final k-NN approach chosen for the vehicle is:
e Use 4 k-NN classifiers, one for each source.
o For each classifier, use its theoretically associated parity relations as inputs.
o For all classifiers, k = 1 with no data augmentation.

With these choices, the final values for the aggregated metrics are ¢Al = 0.667 and gz§2 = 0.725.

6.1.4 FC feedforward NN

For fully-connected feedforward neural networks, three parameters are tuned. For the learning rate,
the values 0.1, 0.01, 1e-3, le-4 and le-5 are considered; for the number of intermediate layers, the
values 1, 2, 3, 4 and 5 are considered; for the number of units in each intermediate layer, the values
2,4, 8, 16, 32 and 64 are considered.

In this case, no previous feature engineering is performed, as neural networks can already learn
appropriate feature mappings from data without a priori knowledge. Theoretically, this capabilities
increase as the number of intermediate layers increase, although those benefits come with an
increased proneness to overfitting the training data.

52 6.1. Model training and tuning results

TPR

INR
54 067
P N
|
0.3 | nra
N 066 L1
! I
1 -
o752 1
' i |
1 065 |
= \ = !
&z 0.751 , < I
= \ = 1
\ 061f
0.75 \ |
\ i
! 063l |
0.740%) P
|
v J
074 Y NN I e o 062)
10 20 30 10 50 60 0 20 90 100 10 2 30 10 50 60 0 80) 100
data augmentation factor data augmentation factor
T k=1---k=5--——k=11

. Harmonic mean of TNR and TPR 0726 2/3 TN Rogpry + 1/3 TP Rygr
67 - 726 -

b
0.665 | !
/ !
I
0.66 |/ I
/
0.655 | 1

s ! :
065F - !
721 |

0.645F oral !

!
064 0.719¢ &4

I I I I I I I I ,
10 20 30 10 50 60 70 80 90 100
data augmentation factor

0.635 L L 1 1 1 L L J
30 10 50 60 0 80 20 100

data angmentation factor

L L
10 20

Figure 6.7: Grid search on k-NN classifiers for £ = 1, 5 and 10. Only one parameter defines the
grid: the data augmentation factor. The same parameter value is used for each source’s classifier.

Regarding the network’s architecture, an input layer with 12 units is needed to ingest the (a7, 3/, 0%)
estimates. Intermediate layers use ReLu activation, while the output layer uses sigmoid activation.
In the latter, 4 units provide a value from 0 to 1 that can be interpreted as a trust estimation (the
value 1 indicating a 100% reliable source), which can then be thresholded to obtain a decision.
The thresholding could also be adjusted for each source and using the data, but keeping with the
overall approach of having a solution that is not heavily over-tuned for the Autonomous Plus2,
which can be easily generalized and migrated to other vehicles and general problems, a threshold
of 0.5 is used (common choice in binary classification problems with sigmoid activation functions

in the output layer).

In order to perform the training, the Adam optimizer (natively supported in Keras) has been used,
whose learning rate can be changed according to the current point in the grid. A batch size of 64
has been used for a maximum of 50 epochs for each grid point, adding early stopping in case the
validation loss does not decrease for 5 consecutive epochs (to avoid running for an unnecessary
number of epochs), and saving the model with the best AUC on validation data (saving the model
with the best validation loss yielded almost the same results, but using AUC may help choose a

more robust classifier).

Figures and show some local visual results for this grid search. The effects of parameters
on ¢A1 and (52 are almost completely analogous. Many combinations of parameters can be observed
that do not provide proper learning, especially when the learning rate is too high/low (0.1 and
le-5, extreme values) or the network is too shallow (low values of number of intermediate layers).
An intermediate value of learning rate (0.01) provides the best learning results. Having the highest
value of intermediate layers (5) provides great performance, both with high number of units (64)

and lower number of units (8).

After all the presented analyses, the final feedforward FCNN approach chosen for the vehicle is:
e Use 1 neural network, which outputs the trust for each sensor.
e Use a 0.5 threshold for converting trust into selection.

e Use a learning rate of 0.01.

Chapter 6. Results and Discussion 53

Harmonic mean of TNR and TPR

Fixed # of units per layer: 64 Fixed # of intermediate layers: 5 Fixed leamning rate: 0.01

102 102

2
of intermediate layers 1 learning rate (log) # of units / layer learning rate (log) # of units / layer 1 # of intermediate layers

Figure 6.8: Grid search on feedforward FCNN classifiers (aggregated metric qgl) Three parameters
define the grid: the learning rate, the number of intermediate layers and the number of units in
each layer.

2/3 TN Ryormy + 1/3 TPRyorm,

Fixed # of units per layer: 64 Fixed # of intermediate layers: 5 Fixed learning rate: 0.01

60

10 102 10

20 20
10

of intermediate layers e N its " of intermediate layers
B learning rate (log) # of units / layer learning rate (log) # of units / layer 1 #)

2

Figure 6.9: Grid search on feedforward FCNN classifiers (aggregated metric gi;g) Three parameters
define the grid: the learning rate, the number of intermediate layers and the number of units in
each layer.

o Use 5 intermediate layers, each with 64 units.

With these choices, the final values for the aggregated metrics are 451 = 0.879 and ¢AQ = 0.866.

6.1.5 Recurrent NN

For recurrent neural networks, the same three parameters as in the feedforward case are trained,
with the same considered ranges of values. Again, no previous feature engineering is performed.

Regarding the network’s architecture, the input layer has the same properties as in the feedforward
case (12 units for the pose estimates). Intermediate recurrent layers use ReLu activation, while the
output layer uses sigmoid activation. The same units (and thus weights) are applied to every
time instant in the sequence (in Keras, this is achieved by using SimpleRNN and TimeDistributed
layers). Again, non-binary trust information is found in the output, which is also thresholded with
a threshold of 0.5.

In order to perform the training, the Stochastic Gradient Descent optimizer (current implemen-
tation of Adam in the Keras library sometimes triggers numerical issues when using SimpleRNN
layers) has been used, whose learning rate can be changed according to the current point in the
grid. A batch size of 64 has been used for a maximum of 30 epochs for each grid point, again
adding early stopping in case the validation loss does not decrease for 5 consecutive epochs, and
saving the model with the best AUC on validation data.

54 6.1. Model training and tuning results

Figures [6.10] and [6.11] show some local visual results for this grid search. Again, the effects of
parameters on qgl and qgg are almost completely analogous. The worst performance results are
obtained when using a small number of units per intermediate recurrent layer. Too small learning
rates also prevent proper learning in a reasonable amount of epochs. The best results are obtained
with a moderate amount of intermediate layers (3), and having a higher number of units per
layer (64) also helps performance. The highest explored learning rate (0.1) gives the best results,
also providing faster convergence. Nevertheless, in this case the trade-offs sometimes aren’t as
strong and clear, with some surfaces having a low smoothness due to abrupt local minima, so the
combination of parameters that turns out to yield the highest values for q§1 and Q§2 is directly
chosen.

Harmonic mean of TNR and TPR
Fixed # of units per layer: 64 Fixed # of intermediate layers: 3 Fixed learning rate: 0.1

&

102 40 102

20

10

104 5
of units / layer learning rate (log) # of units / layer 1 # of intermediate layers

4 of intermediate layers 1 learning rate (log)

Figure 6.10: Grid search on RNN classifiers (aggregated metric qgl) Three parameters define the
grid: the learning rate, the number of intermediate layers and the number of units in each layer.

2/3 TN Ruorm + 1/3 TPRuorm
Fixed # of units per layer: 64 Fixed # of intermediate layers: 3 Fixed learning rate: 0.1

0.9 0.9
0.8

0.7

d2
62

0.6

60

40

102 102

20

of intermediate layers 2 104

learning rate (log)

104

of intermediate layers
1 learning rate (log) # v

of units / layer # of units / layer i

Figure 6.11: Grid search on RNN classifiers (aggregated metric (52) Three parameters define the
grid: the learning rate, the number of intermediate layers and the number of units in each layer.

After all the presented analyses, the final RNN approach chosen for the vehicle is:
e Use 1 neural network, which outputs the trust for each sensor.
e Use a 0.5 threshold for converting trust into selection.
e Use a learning rate of 0.1.
o Use 3 intermediate layers, each with 64 units.

With these choices, the final values for the aggregated metrics are 951 = 0.792 and d;g = 0.785.

Chapter 6. Results and Discussion 55

6.1.6 Note on performance metrics

During the tuning of the different approaches, gzgl and 452 have been computed in all cases to try
to condense all main performance traits into 1 number that can be used to choose the best point
in each grid (and thus the best parameter for each algorithm).

From the analyses presented, the effects of parameters on both metrics are usually quite similar,
with the main difference being that cz;l penalizes more cases with low TPR, even when TNR is
very high, while $> can hide such situations due to arithmetically averaging and using a higher
weight on TNR. For this reason, qgl is chosen here as the best considered performance metric to
summarize the solutions’ performance in 1 number (e.g.: for parameter optimization). Nevertheless,
when analyzing performance in specific scenarios (which is the object of the next section of this
chapter), it is interesting to use more metrics than just a single number, in order to get a complete
picture of the actual performance in each case, and to be able to assess in which situations each
algorithm performs better or fails to perform well at all.

6.2 Final performance in test scenarios

Table [6.2] presents the final performance results in the test scenarios defined in Table obtained
with the test dataset. The results are provided for each test scenario and each proposed approach.

Regarding the used metrics, as discussed in the last paragraph of the previous section, to analyze
the performance of each specific scenario, apart from a single condensed metric (useful for taking
tuning decisions), more metrics are used to paint a more detailed picture of the actual performance
of each algorithm for each case. In particular, global TNR and TPR metrics are used, which
correspond, respectively, to the total number of failure measurements successfully rejected and to
the total number of valid measurements successfully kept, which answer to the 2 main questions
in sensor rejection algorithms. Additionally, a condensed global metric ¢; is provided, computed
with Equation [5.1] and the aforementioned global TNR and TPR metrics.

In Table the best value for each global metric for each scenario is highlighted in bold. As already
forecasted in previous chapters, each algorithm has different performance in each test scenario. The
"best" algorithm for each test scenario changes from case to case, and all algorithms have at least
a test scenario where they perform better than the others. In terms of the condensed metric ¢1,
k-NN and RNN are the algorithms that "win" the biggest number of times (5 each), while decision
trees and the voting system "win" only once each. When looked globally (putting together all test
scenarios), k-NN and the voting system have the highest values of the global metrics.

The ExNIS cross-validation approach manages to provide the best TPR results in many scenarios,
and its TPR is very high in almost all cases, even when it doesn’t "win" in terms of that metric. Its
TNR, however, is quite irregular and falls behind other approaches’ results. In consequence, the Ex-
NIS approach (with the presented tuning) provides quite a "conservative" approach, which doesn’t
reject many valid measurements in exchange for lower rejection of actual failure measurements,
only rejecting when the failure is very clear on the inputs.

The decision trees approach also provides great TPR values in most scenarios (with a global result
better than that of ExNIS), while its TNR is at the same level as the ExNIS approach, being
quite irregular and not the best. Thus, the decision tree approach (with the presented tuning) also
provides a quite "conservative" approach. Note, however, that this approach already manages to
reject more than 2 out of every 3 faulty measurements, while only losing less than 5% of the valid
measurements in exchange, which is a great result.

The k-NN approach has the greatest TNR results, managing to reject almost 3 out of every 4 faulty
measurements, while still having a great TPR, avoiding significant valid information loss. In terms
of ¢ this is the best-performing approach, even better than the voting system that combines all 5
proposed algorithms. Note that these results, together with the decision tree results, confirm that

56 6.2. Final performance in test scenarios

the parity relations d;; (Equation [4.6)) are a great manual feature for this problem, which allow
applying classical ML techniques successfully.

The feedforward NN approach has worse performance than its classical ML counterparts. Although
TPR is high in most cases, TNR is very irregular and in some failure scenarios it struggles signif-
icantly in detecting failure (e.g.: in the "Heavy maneuvering" scenario). However, there are some
other scenarios (e.g.: the "Hangar 3" scenario) where it clearly outperforms the other approaches
in rejecting failure measurements, so even if it is a worse standalone approach, when used in com-
bination with other approaches in the voting system, it still offers value to the decision scheme.
Note that the NN approach performing worse than the classical ML counterparts can be caused by
overfitting to the train data and/or non-optimal parameter tuning, as theoretically a deep-enough
network should be able to learn a just-as-good or better feature map and classification logic than
approaches like k-NN or decision trees. Another reason for this lower performance could be that
the training data is not suitable enough for a NN to learn the underlying patterns.

The RNN approach has a very similar performance than the feedforward NN approach, only having
slightly lower TPR. This can indicate that this problem doesn’t require a time-series treatment of
the data, being the instantaneous "snapshot" approach good enough. Also, it reinforces the idea
that the neural network approaches are suffering from either overfitting or a training data that is
not good enough for such an approach to learn and generalize.

The voting approach, finally, has the best TPR results, combined with the second best TNR results.
Although it doesn’t have the best possible performance in particular scenarios, combining the pros
and cons of the 5 different algorithms allows generating high performance (70% rejection) while
keeping a low impact on the valid data (less than 5% loss).

This smoothing effect from the voting system is very beneficial for this thesis’ problem, focused
on increasing reliability, as, although it causes a decrease in TNR from the best approach for that
metric (k-NN), it promotes that the navigation doesn’t suffer from performance drop from valid
data loss, and it ensures that regardless of the particular failure scenario, the system doesn’t rely
on only 1 approach that may suffer in a particular case. Also, following the same reasoning used
across this entire work, k-NN may have proven the best for the considered scenarios and with the
particular gathered data for the test dataset, but when looking for a non-overtuned approach that
can generalize to different vehicles and similar problems, having a combined solution is a more
reasonable choice, which achieves a performance close to the best individual option, but can have
several backups in case this individual option fails. Furthermore, other scenarios may arise when
migrating the proposed solution to a different vehicle or set of sensors, which makes the combined
solution a more "conservative" choice, ideal when reliability is the main objective.

For these reasons, the voting system is chosen as the final solution for this thesis’ problem, which
combines the outputs from 5 different algorithms to produce a final choice. Table [6.3] summarizes
the relative performance of the algorithms in terms of the global metrics and considering all test
scenarios together.

o7

Chapter 6. Results and Discussion

: . : : . . : : : . : . : . . . : . SITNSTY
§08 P96 00L | VEL ET8 0¢9 | 06L 988 099 | T'€8 TEC 6L | VO3 CG6 969 | §8L L06 L69 | oo o
JurIeAnoURW
029 V798 LVS | 9L9 GG9 869 | T'TF 9L9 96T | P'I8 ¥98 0°LL | L99 VG LVS | TOL GL6 LFS £xeop]
969 098 V8 | LLL 08 9LL | TLS 998 6TV | 989 I8 €65 | 169 098 LLS | OVL 6°68 89 | ¢ dwerurp
008 €L6 6L9 | 69% T8 T69 | FOL 0T8 LT9 | €F8 L98 0'C8 | §E€8 G96 9€L | 879 946 €9y | T dwerurep
8¢8 666 LOL | 8GL €96 0€9 | 0F8 ¢06 €8L | 00T 00T 00T | ¥'¥8 LL6 €FL | ¥IL 198 019 | PPYwdQ
o3essed
V.6 796 786 | 996 ¥'E€6 00T | 006 8S¢6 8F8 | 00T 00T 00T | 296 F¥96 096 | 99. LT 786 o
9TL 00T 8GS | P'GL L8 €99 | ¥IL 00T GGG | ¢¢L 96 T6S | 98¢ 00T ¥V | V65 0€8 g9V | ¢ UOnRIqIA
€L9 196 8IS | 999 0¥6 91¢ | 2TL O0F6 985 | 989 606 1S5 | V.9 €96 8TI¢ [gTL 00T G9G | T Uoneiqrp
: . . . : : : . . : : : : ¢ podoys
L8 00T ¥70L | L'98 00T G9L | '8 00T 289 | €8 8 L0L | ¢'I8 00T §89 | LG9 00T 68% | gy ey
.) : : . : . .) : T podors
099 188 L2G | L'TL 8T8 8F9 | TOL 9.8 F8G | €L C€6 169 | 9L9 TS 674 | 819 0L6 €9 | guing e
: . . . : . : : : : : . : : : : . : ¢ ey
GLL €08 GTL | 6'8L 98 OTL | LEL CTL TGL | VL T6L 8'GL | TLL 6L OFL | 8TL €86 V09 | gy g
. : . : : . : : : : . . : : . : . : T 1eQ
488 €6 €98 | 978 €TL 296 | 98 96L V6 | V06 €96 TGS | 198 TE6 108 | 988 866 LO6L | gy e
(uoouregye)
€08 00T TL9 | LC9 00T 9GF | €L 00T 9'8S | €08 L66 L9 | €68 00T L¥L |T'€6 666 TL8 Teguer
UQSOH«Q
(Buruwrowr)
8%¥8 986 ¥VL | LT9 0L6 TGV | GFL 0L6 ¥09 | €98 L96 CT9L | €F8 886 GEL | 998 1.8 T'98 Teguer
punoxy
v¥L 676 179 | 0GL 60L 96L | 9°T6 CS¥8 00T | 6€8 €€6 €9L | 9TL G€6 08¢ | 0€L 966 9LG ¢ reguey
9L LL6 €€9 | 8LL 988 F69 | TL9 LTL ¥TY | 8T8 186 LTIL | 8GL L8 GTI9 | 0I8 916 T69 ¢ redueqy
TT6 T8 098 | 299 9€9 0L | ¥I8 T8 969 | ¥08 998 0G.L | 66 00T 8.8 | 888 686 908 1 TeSuefy
' 4dl UNL | ¢ ddl UNL | ¢ YdL YNL | ¢ ddLl dNL | ¢ YdL UNL | ¢ UdLl UNL | syrey gser
Surjop NNY NN 44 NN-% 931} UOISIa(SINXH

BIRD 159)M OLIRUSIS [Dd 10] S)Nsal soururiopad [eulq :g'9 o[qe],

58

6.2. Final performance in test scenarios

Table 6.3: Summary of relative final performance for the proposed algorithms (for each metric, top
algorithm is the best-performing)

TNR performance TPR performance ¢; performance

k-NN Voting k-NN

Voting Decision trees Voting

ExNIS k-NN Decision trees
Decision trees ExNIS ExNIS
FF NN / RNN FF NN FF NN

RNN RNN

Chapter 7

Conclusion

This thesis aimed to develop and deploy strategies for improving reliability of state estimation for
a last-mile mobility vehicle. Based on quantitative and qualitative analysis in different relevant test
scenarios, focused on triggering failure as much as possible, it can be concluded that the proposed
algorithms successfully reject a significant fraction of the measurements in failure situations while
keeping most of the valid measurements to preserve nominal localization performance. In particular,
all algorithms are capable of rejecting at least 2/3 of failure measurements encountered in the
different test scenarios, while the best-performing approach in this regard reaches a rejection of
3/4 of failure measurements. Most approaches are capable of having valid data losses below the
10%, with the best-performing approach in this regard reaching losses below 5%.

The results indicate that different failure scenarios have different algorithms as their best perform-
ers, suggesting that putting together all decisions through a voting system is the best approach
in terms of reliability, especially when a general solution is desired, which can be migrated to
different vehicles and sensor configurations. This way, a 70% rejection of failure measurements is
achieved while keeping a loss of valid information below 5%. When it comes to individual algorithm
performance, according to the collected and labeled data, the classical ML approach k-NN ranks
top in rejection and overall results, as long as proper manual feature engineering is performed to
the input data prior to feeding it to the algorithm (using the general parity relations proposed in
previous research).

Across this work, different algorithms have been proposed for the sensor rejection problem prior to
potential sensor fusion. Exploration of this problem with such general formulation, without relying
on the properties and particularities of the localization sources used, helps to fill a gap in the
autonomous vehicle localization literature, in which most of the focus is put in valid information
fusion and algorithm-specific rejection strategies, and provides a solution to increase reliability in
worst-case scenarios, which are usually the situations that end up making the difference when such
autonomous systems want to be launched into the market and accepted by the user community.

Future works following this thesis could consider migrating the proposed solution to a different
vehicle, especially one with a different set of sensors / localization sources, which could complement
the study of individual algorithm performance and the trade-offs analyses for their parameters, as
well as provide further insights on how well the proposed approaches generalize when changing the
system and using new components. Another potential follow-up path would be to investigate how
to adapt other promising approaches from the broad field of FDI, especially on its model-based
branch, in order to further extend the proposed combined decision scheme, and/or to explore other
manual features to apply to this problem that could further enhance the performance of classical
ML techniques, which has been proven here to heavily rely on this feature engineering step.

59

60

Appendix A

Code

This appendix contains the code for the data pre-processing and algorithm ROS nodes, together
with other helpful auxiliary ROS launch files. This code is also published in executable form with
sample .bag files on the GitHub repository https://github.com/pedroreyero/state_estimationl

A.1 Data pre-processing

Listing A.1: Data pre-processing node

#!/usr/bin/env python

import rospy

from nav_ msgs.msg import Odometry

from geometry_msgs.msg import PoseWithCovarianceStamped
from sensor__msgs.msg import NavSatFix

from state_ estimation.msg import ProcessedData

import numpy as np

from lltoutm import LLtoUTM

from unwrap import unwrap

from proparker__msgs.msg import TruckState

from tf.transformations import euler from__quaternion, quaternion_ from_ euler
from geometry__msgs.msg import Quaternion

from std__srvs.srv import Empty, EmptyResponse

from std__msgs.msg import Float32

class DataProcessingNode:
def init (self):
rospy.init_node(’node_ data’, anonymous=True)

self.data__publisher = rospy.Publisher(’state__estimation/processed__data’, ProcessedData,
queue_size=1)

self.ins _sub = rospy.Subscriber(’ins_raw/state’, TruckState, self.ins callback)
self.odom__sub = rospy.Subscriber(’odom’, Odometry, self.odom__callback)
self.cartographer sub = rospy.Subscriber(’cartographer/tracked pose’,
PoseWithCovarianceStamped, self.cartographer_ callback)

self.dragonfly__sub = rospy.Subscriber(’dragonfly__manager/tracked__pose’,
PoseWithCovarianceStamped, self.dragonfly callback)

self.gps__sub = rospy.Subscriber(’gps’, NavSatFix, self.gps_ callback)

self.reset__origins_srv = rospy.Service(’state__estimation/reset_ origins’, Empty, self.
handle_ reset origins)

self.processed__data = ProcessedData/()

61

https://github.com/pedroreyero/state_estimation

62

A.1. Data pre-processing

self.debug pub = rospy.Publisher(’state_estimation/debug’, Float32, queue_size=1)

self.ins__available = False

self.ins data = None

self.odom__available = False

self.odom data = None

self.last__deadr_d = 0

self.deadr x = 0

self.deadr_y =0

self.deadr_refth = None

self.deadr__th = None # prev th for unwrappping
self.cartographer_ available = False
self.cartographer_ data = None
self.cartographer_ turn = None
self.cartographer_ refx = None
self.cartographer_ refy = None
self.cartographer_ refth = None
self.cartographer__th = None # prev th for unwrappping
self.dragonfly available = False

self.dragonfly _data = None

self.dragonfly turn = None

self.dragonfly refx = None

self.dragonfly refy = None

self.dragonfly_refth = None

self.dragonfly th = None # prev th for unwrappping
self.gps_ available = False

self.gps__data = None

self.gps_ turn = None

self.gps_ refx = None

self.gps_ refy = None

self.gps_ refth = None

self.gps_th = None # prev th for unwrappping

def ins__callback(self, data):

self.ins data = data
self.ins available = True

self.check _and_fuse()

def odom__callback(self, data):

self.odom data = data
self.odom__available = True

self.check__and_ fuse()

def cartographer__callback(self, data):

self.cartographer_data = data
self.cartographer_ available = True

self.check and_ fuse()

def dragonfly callback(self, data):

self.dragonfly data = data
self.dragonfly available = True

self.check__and_ fuse()

def gps_ callback(self, data):

Appendix A. Code 63

self.gps_ data = data
self.gps_ available = True

self.check__and_ fuse()

def handle_ reset__origins(self, req):

Make sure data is available

if (self.ins_data is None) or (self.gps data is None) or (self.odom_data is None) or \
(self.cartographer_ data is None) or (self.dragonfly data is None):
rospy.logerr("Reset origins iwas_called when, no datais available from, the
required, topics!!")
return EmptyResponse()

If data is indeed available (expected behaviour):
heading = self.ins_ data.heading

##H## FIXED TRANSFORMATION

GPS origin

UTMNorthing, UTMEasting, UTMZone = LLtoUTM(self.gps_ data.latitude, self.gps_data. !
longitude)

self.gps_turn = heading — np.pi/2

self.gps_ refx = UTMEasting

self.gps_ refy = UTMNorthing

self.gps_ refth = —heading # there is no way to unwrap upon initialization

Dead reckoning "origin"

self.last__deadr__d = self.odom__data.pose.pose.position.x

self.deadr_x = 0

self.deadr_y = 0

q = self.odom__data.pose.pose.orientation

eul = euler from quaternion([q.x, q.y, 9.z, q.w])

self.deadr_ refth = —eul[2] # there is no way to unwrap upon initialization
self.deadr__th = self.deadr__refth # prev th for unwrappping

Cartographer origin

q = self.cartographer_ data.pose.pose.orientation

eul = euler_ from__quaternion([q.x, q.y, q.z, q.w])

self.cartographer turn = — eul[2]

self.cartographer__refx = self.cartographer__data.pose.pose.position.x
self.cartographer_ refy = self.cartographer_ data.pose.pose.position.y

q = self.cartographer_ data.pose.pose.orientation

eul = euler_ from__quaternion([q.x, q.y, q.z, q.w])

self.cartographer_refth = eul[2] # there is no way to unwrap upon initialization
self.cartographer_ th = self.cartographer_refth # prev th for unwrappping

Dragonfly origin

q = self.dragonfly data.pose.pose.orientation

eul = euler_ from_ quaternion([q.x, q.y, 9.z, q.w])

self.dragonfly__turn = — eul|2]

self.dragonfly refx = self.dragonfly_data.pose.pose.position.x
self.dragonfly refy = self.dragonfly data.pose.pose.position.y

self.dragonfly refth = eul[2] # there is no way to unwrap upon initialization
self.dragonfly th = self.dragonfly_refth # prev th for unwrappping

return EmptyResponse()

def check and_fuse(self):

if (self.ins_ available and self.odom__available and self.cartographer_available and self.
dragonfly available and self.gps_ available):
Everything available :)

64

A.1. Data pre-processing

#A### FIXED FRAME TRANSFORMATIONS
Process INS
heading = self.ins_ data.heading

Process GPS
UTMNorthing, UTMEasting, UTMZone = LLtoUTM(self.gps_ data.latitude, self.
gps__data.longitude)
if self.gps_ turn is None:
self.gps_turn = heading — np.pi/2
self.gps_ refx = UTMEasting
self.gps_ refy = UTMNorthing
self.gps_ refth = —heading # there is no way to unwrap upon initialization
self.gps_ th = self.gps_ refth # prev th for unwrappping
mat__turn = np.array([[np.cos(self.gps__turn), —np.sin(self.gps__turn)],[np.sin(self.
gps__turn), np.cos(self.gps__turn)]])
gps_x, gps_y = (np.matmul(mat_ turn,np.array([[UTMEasting — self.gps_ refx],[!
UTMNorthing—self.gps_refy]]))).ravel()
gps__th = —heading
gps__th = unwrap(gps__th, self.gps__th) — self.gps_refth
self.gps_th = gps_ th # prev th for wrapping
CovGPS = np.array(][[0.1,0,0],[0,0.1,0],[0,0,0.001]])

Process Dead reckoning

if self.deadr_ refth is None:
self.last__deadr_d = self.odom__data.pose.pose.position.x
q = self.odom__data.pose.pose.orientation
eul = euler_ from_ quaternion([q.x, q.y, 9.z, q.w])
self.deadr refth = —eul[2] # there is no way to unwrap upon initialization
self.deadr_th = self.deadr_ refth # prev th for wrapping

deadr_d = self.odom__data.pose.pose.position.x

delta_ d = deadr_d — self.last__deadr_d

self.last__deadr_d = deadr_d

CovDR = np.array([[0.2,0,0],(0,0.2,0],[0,0,0.001]])

deadr__turn = —(heading — np.pi/2) + self.gps_turn

mat_ turn = np.array([[np.cos(deadr_turn), —np.sin(deadr_turn)],[np.sin(deadr_turn
), np.cos(deadr__turn)]])

corrected = np.matmul(mat_turn, np.array([[delta_d],[0]]))
self.deadr_x += corrected[0,0]

self.deadr y += corrected[1,0]

deadr_ x, deadr__y = self.deadr_ x, self.deadr_y

q = self.odom__data.pose.pose.orientation

eul = euler_ from_ quaternion([q.x, q.y, 9.z, q.w])

deadr__th = —eul[2]

deadr_th = unwrap(deadr_ th, self.deadr_th) — self.deadr_refth
self.deadr_th = deadr__th # prev th for wrapping

Process Cartographer
if self.cartographer_turn is None:
q = self.cartographer__data.pose.pose.orientation
eul = euler from quaternion([q.x, q.y, 9.z, q.w])
self.cartographer turn = — eul[2]
self.cartographer_ refx = self.cartographer_ data.pose.pose.position.x
self.cartographer_ refy = self.cartographer_ data.pose.pose.position.y
self.cartographer_refth = eul[2] # there is no way to unwrap upon
initialization
self.cartographer_ th = self.cartographer_refth # prev th for wrapping
mat_turn = np.array([[np.cos(self.cartographer turn), —np.sin(self.cartographer turn
A
[np.sin(self.cartographer__turn), np.
cos(self.cartographer_turn)]])
cartographer_ x, cartographer_y = (np.matmul(mat_ turn,np.array(\
[[self.cartographer data.pose.pose.position.x — self.
cartographer_ refx], \
[self.cartographer data.pose.pose.position.y — self. <l
cartographer_ refy]]))).ravel()
q = self.cartographer__data.pose.pose.orientation

Appendix A. Code

65

eul = euler_ from__quaternion([q.x, q.y, q.z, q.w])

cartographer th = eul[2]

cartographer__th = unwrap(cartographer_ th, self.cartographer_th) — self. !
cartographer_ refth

self.cartographer_ th = cartographer_th # prev th for wrapping

CovCG = np.array([[0.01,0,0],[0,0.01,0],[0,0,0.001]])

Process Dragonfly
if self.dragonfly turn is None:
q = self.dragonfly_ data.pose.pose.orientation
eul = euler from quaternion(|q.x, q.y, 9.z, q.w])
self.dragonfly turn = — eul[2]
self.dragonfly refx = self.dragonfly data.pose.pose.position.x
self.dragonfly refy = self.dragonfly data.pose.pose.position.y
self.dragonfly_refth = eul[2] # there is no way to unwrap upon initialization
self.dragonfly th = self.dragonfly refth # prev th for wrapping
mat__turn = np.array([[np.cos(self.dragonfly_turn), —np.sin(self.dragonfly_ turn)], \
[np.sin(self.dragonfly turn), np.cos(</
self.dragonfly_ turn)]])
dragonfly x, dragonfly y = (np.matmul(mat_turn,np.array(\
[[self.dragonfly data.pose.pose.position.x — self. <!
dragonfly_ refx], \
[self.dragonfly data.pose.pose.position.y — self. I
dragonfly_refy]]))).ravel()
q = self.dragonfly data.pose.pose.orientation
eul = euler_ from__quaternion([q.x, q.y, q.z, q.w])
dragonfly th = eul[2]
dragonfly th = unwrap(dragonfly th, self.dragonfly th) — self.dragonfly refth
self.dragonfly th = dragonfly _th # prev th for wrapping
CovDF = np.array([[0.02,0,0],]0,0.02,0],[0,0,0.001]])

ExNIS parity relations computation

dX = np.array([cartographer_ x, gps_ x, dragonfly_ x, deadr_x])

dY = np.array([cartographer_y, gps y, dragonfly y, deadr y])
dTh = np.array([cartographer_th, gps_th, dragonfly th, deadr_ th])

dXYTh = np.stack((dX,dY,dTh))

112 = CovCG + CovGPS;

aux = (dXYTh[:,0] — dXYTh][:,1])[np.newaxis]

d12 = np.matmul(np.matmul(aux,np.linalg.inv(I12)),aux.T).squeeze()
113 = CovCG + CovDF;

aux = (dXYTh[:,0] — dXYTh[:,2])[np.newaxis]

d13 = np.matmul(np.matmul(aux,np.linalg.inv(I13)),aux.T).squeeze()
114 = CovCG + CovDR;

aux = (dXYTh[:,0] — dXYTh]:,3])[np.newaxis]

d14 = np.matmul(np.matmul(aux,np.linalg.inv(I14)),aux.T).squeeze()
123 = CovGPS + CovDF;

aux = (dXYTh[:,1] — dXYTh[:,2])[np.newaxis]

d23 = np.matmul(np.matmul(aux,np.linalg.inv(I23)),aux.T).squeeze()
124 = CovGPS + CovDR;

aux = (dXYTh[:,1] — dXYTh[:,3])[np.newaxis]

d24 = np.matmul(np.matmul(aux,np.linalg.inv(I24)),aux.T).squeeze()
134 = CovDF + CovDR;

aux = (dXYTh[;,2] — dXYTh]:,3])[np.newaxis]

d34 = np.matmul(np.matmul(aux,np.linalg.inv(I34)),aux.T).squeeze()

Publish processed data
self.processed_ data.stamp = rospy.Time.now()

self.processed__data.cartographer x = cartographer_ x
self.processed__data.cartographer_y = cartographer_y
self.processed__data.cartographer_th = cartographer_th
self.processed _data.cartographer cov = CovCG.reshape(—1,).tolist()

self.processed__data.gps_x = gps_ x
self.processed__data.gps_y = gps_y
self.processed__data.gps_ th = gps_ th

66 A.1. Data pre-processing

self.processed_ data.gps cov = CovGPS.reshape(—1,).tolist()

self.processed__data.dragonfly x = dragonfly x
self.processed__data.dragonfly y = dragonfly_y
self.processed__data.dragonfly th = dragonfly th
self.processed_data.dragonfly cov = CovDF .reshape(—1,).tolist()

self.processed__data.deadr_x = deadr_ x
self.processed__data.deadr_y = deadr_y
self.processed_data.deadr_th = deadr_th

self.processed_ data.deadr cov = CovDR.reshape(—1,).tolist()

self.processed_ data.dij = [d12, d13, d14, d23, d24, d34]

self.data__publisher.publish(self.processed__data)

RESET FLAGS

self.ins_ available = False
self.odom__available = False
self.cartographer__available = False
self.dragonfly available = False
self.gps_ available = False

DEBUGGING PUBLISHER :)
self.debug pub.publish(Float32(gps th))

else:
return

def main_loop(self):
while not rospy.is_ shutdown():
rospy.spin()

if _ name ==’ main_
state_estimation_node = DataProcessingNode()

try:
state_estimation node.main_loop()
except rospy.ROSInterrupt Exception:

pass
Listing A.2: UTM projection [3§]

e, it i s sitonorti\''oot$iri h

Convert lat/long to UTM coords. Equations from USGS Bulletin 1532

#

FEast Longitudes are positive, West longitudes are negative.
North latitudes are positive, South latitudes are negative
Lat and Long are in fractional degrees

Adapted from the code written by Chuck Gantz— chuck.gantz@globalstar.com

Link to source:

https://github.com/rosbook/effective__robotics programming with_ros/blob/master/chapter8 _tutorials/src <
/c8_fixtoUTM.cpp

A — e -

import math
def LLtoUTM(Lat, Long):

RADIANS PER_DEGREE = math.pi/180.0
DEGREES_PER_RADIAN = 180.0/math.pi

Appendix A. Code 67

WGES84 Parameters

WGS84_ A = 6378137.0 # major axis

WGS84_ B = 6356752.31424518 # minor axis
WGS84_F = 0.0033528107 # ellipsoid flattening
WGS84__EP = 0.0820944379 # second eccentricity

WGS84_E = 0.0818191908 # first eccentricity

UTM Parameters

UTM__ KO0 = 0.9996 # scale factor

UTM__FE = 500000.0 # false easting

UTM_FN_N = 0.0 # false northing on north hemisphere
UTM__FN_S = 10000000.0 # false northing on south hemisphere
UTM_E2 = (WGS84_E+«+WGS84_E) # e 2

UTM_E4 = (UTM_E2+xUTM_E2) # ¢4

UTM_E6 = (UTM__E4xUTM_E2) # ¢ 6

UTM_EP2 = (UTM_E2/(1-UTM_E2)) # "2

a=WGS84 A
eccSquared = UTM__ E2
k0 = UTM_ KO

Make sure the longitude is between —180.00 .. 179.9
LongTemp = (Long+180)—int((Long+180)/360)+360—180

LatRad = Lat*RADIANS PER_DEGREE
LongRad = LongTemp*xRADIANS_PER_DEGREE

ZoneNumber = int((LongTemp + 180)/6) + 1;

if (Lat >= 56.0 and Lat < 64.0 and LongTemp >= 3.0 and LongTemp < 12.0):
ZoneNumber = 32
print("ZoneNumber: ", ZoneNumber)

Special zones for Svalbard
if(Lat >= 72.0 and Lat < 84.0):
if(LongTemp >= 0.0 and LongTemp < 9.0):
ZoneNumber = 31
elif(LongTemp >= 9.0 and LongTemp < 21.0):
ZoneNumber = 33
elif(LongTemp >= 21.0 and LongTemp < 33.0):
ZoneNumber = 35
elif(LongTemp >= 33.0 and LongTemp < 42.0):
ZoneNumber = 37
+3 puts origin in middle of zone
LongOrigin = (ZoneNumber — 1)%6 — 180 + 3
LongOriginRad = LongOrigin * RADIANS_PER_DEGREE
print("Letter: ", UTMLetterDesignator(Lat))
##H# compute the UTM Zone from the latitude and longitude
UTMZone = str(ZoneNumber) + UTMLetterDesignator(Lat)

eccPrimeSquared = (eccSquared)/(1—eccSquared)
N = a/math.sqrt(1—eccSquared*math.sin(LatRad)+math.sin(LatRad))
T = math.tan(LatRad)*math.tan(LatRad)
C = eccPrimeSquared«math.cos(LatRad)*math.cos(LatRad)
A = math.cos(LatRad)*(LongRad—LongOriginRad)
M = ax((1 — eccSquared/4 — 3xeccSquaredxeccSquared/64 — 5xeccSquaredxeccSquaredxeccSquared/256)*
LatRad \
— (3%eccSquared/8 + 3xeccSquaredxeccSquared/32 + 45keccSquared*
eccSquaredsxeccSquared/1024)xmath.sin(2+LatRad) \
+ (15xeccSquared+eccSquared /256 + I
45%eccSquared*eccSquared* <J
eccSquared/1024)*math.sin(4* <
LatRad) \
— (35xeccSquaredseccSquared*
eccSquared/3072)*math.sin(6x
LatRad))
UTMEasting = (k0xN*(A+(1—T+C)xAxAxA/6 \

68

A.1. Data pre-processing

+ (5—18+T+T*T+72xC—58+eccPrimeSquared) * AxAxAxAxA/120) \

+ 500000.0)

UTMNorthing = (kOx(M+Ns*math.tan(LatRad)*(A*A /24 (5—T+9xC+4xCxC)x AxAxAxA /24 \
+ (61—58+T+T*T+600xC—330%eccPrimeSquared)*AxAxAxAxAxA /720)))

if(Lat < 0):

UTMNorthing = UTMNorthing + 10000000.0 # 10000000 meter offset for southern hemisphere

return UTMNorthing, UTMEasting, UTMZone

#HH

Determine the correct UTM letter designator for the given latitude

#

Q@Qreturns 'Z’ if latitude is outside the UTM limits of 84N to 80S

#

Adapted from the code written by Chuck Gantz— chuck.gantz@globalstar.com
A A —

def UTMLetterDesignator(Lat

):

if ((84 >= Lat) and (Lat >= 72)

elif ((72 > Lat) and (Lat
elif ((64 > Lat) and (Lat
elif ((56 > Lat) and (Lat

elif ((32 > Lat) and (Lat

>= 64)
>= 56)
>= 48)

>= 24)

: LetterDesignator =
: LetterDesignator =
: LetterDesignator =
: LetterDesignator =

LetterDesignator =

: LetterDesignator =
: LetterDesignator =

B¢
"W
"\
U
g
°q
R’

)
)
(()
(()
elif ((48 > Lat) and (Lat >= 40)):
elif ((40 > Lat) and (Lat >= 32))
(()
elif ((24 > Lat) and (Lat >= 16)): LetterDesignator = ’'Q’
elif ((16 > Lat) and (Lat >= 8)): LetterDesignator = 'P’
elif ((8 > Lat) and (Lat >= 0)): LetterDesignator = "N’
elif ((0 > Lat) and (Lat >= —8)): LetterDesignator = "M’
elif ((—8 > Lat) and (Lat >= —16)): LetterDesignator = 'L’
(
(
(
(
(
(
(

~

elif((—56 > Lat) and (Lat >= —64)):
elif((—64 > Lat) and (Lat >= —72)): LetterDesignator = 'D’
elif((—72 > Lat) and (Lat >= —80)): LetterDesignator = 'C’
’Z’ is an error flag, the Latitude is outside the UTM limits
else: LetterDesignator = ’Z’

LetterDesignator = "E’

elif((—16 > Lat) and (Lat >= —24)): LetterDesignator = 'K’
elif((—24 > Lat) and (Lat >= —32)): LetterDesignator = ’J’
elif((—32 > Lat) and (Lat >= —40)): LetterDesignator = "H’
elif((—40 > Lat) and (Lat >= —48)): LetterDesignator = 'G’
elif((—48 > Lat) and (Lat >= —56)): LetterDesignator = "F’
-) (
-) (

return LetterDesignator

Listing A.3: Angle unwraping function

A —

new__th = unwrap(th,prev_th) unwraps the radian phase angle th.

Whenever the jump between consecutive angles is greater than or equal
to pi radians, unwrap shifts the angles by adding multiples of +/—2pi
until the jump is less than pi.

#

Inspired by Matlab’s unwrap function:

https://www.mathworks.com/help/matlab/ref/unwrap.html

L

import math
def unwrap(th, prev_ th):

new_th = th

#print(new_th, "0")

while (new_th — prev_ th) >= math.pi:
new_th —= 2xmath.pi
#print(new_th, "1")

Appendix A. Code

69

while (new__th — prev_th) <= —math.pi:
new_ th += 2xmath.pi
#print(new_th, "2")

return new th

70 A.2. Algorithm nodes

A.2 Algorithm nodes

Listing A.4: ExNIS cross-validation node

#!/usr/bin/env python
import rospy
import numpy as np
from state_estimation.msg import ProcessedData, AlgDecision
class ExnisDecisionNode:
def __ init__ (self):
rospy.init_ node(’node_ exnis’, anonymous=True)

self.decision_ publisher = rospy.Publisher(’state_ estimation/exnis_ decision’, AlgDecision,
queue_size=1)

self.data_ sub = rospy.Subscriber(’state_ estimation/processed_data’, ProcessedData, self. <
data__callback)

self.alg_decision = AlgDecision()

self.vlj = np.zeros((1,3))

self.v2j = np.zeros((1,3))

self.v3j = np.zeros((1,3))

self.v4j = np.zeros((1,3))

self.k corr =1

self.thl = 6.25 # 6.25 = chi—square 3—dof 10% prob. of exceeding that value

self.th2 = 7.82 # 7.82 = chi—square 3—dof 5% prob. of exceeding that value
self.beta = 0.5 # 0.5 = approx. 2 time steps average (higher weights to recent values)

def data_ callback(self, data):
ExNIS cross—validation

Collect dij from message data

dlj = np.array([data.dij[0], data.dij[1], data.dij[2]])
d2j = np.array([data.dij[0], data.dij[3], data.dij[4]])
d3j = np.array([data.dij[1], data.dij[3], data.dij[5]])
d4j = np.array([data.dij[2], data.dij[4], data.dij[5]])
EWA

Filtering

self.vlj = self.beta * self.vlj + (1 — self.beta) * d1j
self.v2j = self.beta * self.v2j + (1 — self.beta) * d2j
self.v3j = self.beta * self.v3j + (1 — self.beta) * d3j
self.v4dj = self.beta * self.v4j + (1 — self.beta) * d4j

Bias correction

if self.k_corr < 700: # wuntil it has no significant effect
clj = self.vlj / (1 — self.beta *x self.k_corr)
c2j = self.v2j / (1 — self.beta *x* self.k__corr)
c3j = self.v3j / (1 — self.beta #x* self.k corr)
cdj = self.v4j / (1 — self.beta == self.k corr)
self.k corr +=1

else:
clj = self.vlj
c2j = self.v2j
c3j = self.v3j
c4j = self.v4j

2—Ivl combined thresholding
selected1 = np.array([np.sum(clj <= self.thl) >= 1, np.sum(c2j <= self.thl) >=1, \
np.sum(c3j <= self.thl) >= 1, np.sum(c4j <= self.thl) >= 1])

Appendix A. Code

71

selected2 = np.array([np.sum(clj <= self.th2) >= 2, np.sum(c2j <= self.th2) >= 2, \
np.sum(c3j <= self.th2) >= 2, np.sum(c4j <= self.th2) >= 2])
selected = np.logical_or(selectedl, selected2)

if not selected.any(): # in case rule discards everyone
selected = np.array([True, False, False, False]) # rely on Cartographer

Publish topic with algorithm decision
self.alg decision.stamp = rospy.Time.now()
self.alg decision.selected = selected
self.decision__publisher.publish(self.alg decision)

def main_ loop(self):
while not rospy.is_shutdown():

rospy.spin()

if name == main___ "

state__estimation_node = ExnisDecisionNode()

)

try:

state_estimation node.main_loop()
except rospy.ROSInterruptException:

pass

Listing A.5: Decision trees node

#!/usr/bin/env python3
import rospy

import rospkg

import numpy as np
import os

import sklearn, joblib
from state_ estimation.msg import ProcessedData, AlgDecision

class TreeDecisionNode:
def init (self):
rospy.init__node(’node__tree’, anonymous=True)
self.tree__model = ||
r = rospkg.RosPack()
for source in CG’,’GPS’DF’’DR’|:
path = os.path.join(r.get_ path(’state_estimation’), "models/tree " + source + ’.sav’)

self.tree__model.append(joblib.load(path))

self.decision__publisher = rospy.Publisher(’state_ estimation/tree_ decision’, AlgDecision, <J
queue__size=1)

self.data__sub = rospy.Subscriber(’state__estimation/processed__data’, ProcessedData, self. !
data_ callback)

self.alg decision = AlgDecision()

self.associated = [[0,1,2], [0,3,4], [1,3,5], [2,4,5]] # dij associated to each source

def data_ callback(self, data):
Decision trees

##H# Tree prediction

72 A.2. Algorithm nodes

pred = np.zeros((4))

for i in range(4):
input_ dij = np.array([data.dij[k] for k in self.associated][i]])
input_ dij = np.expand_dims(input_ dij, axis=0)
pred|i] = self.tree__model[i].predict(input__dij)

selected = pred.astype(np.bool)

Publish topic with algorithm decision
self.alg decision.stamp = rospy.Time.now()
self.alg_decision.selected = selected
self.decision__publisher.publish(self.alg decision)

def main__loop(self):
while not rospy.is_ shutdown():
rospy.spin()

))

if name == main, :
state_estimation_node = TreeDecisionNode()

try:

state_estimation_ node.main_ loop()
except rospy.ROSInterrupt Exception:

pass

Listing A.6: k-Nearest Neighbors node

#!/usr/bin/env python3
import rospy

import rospkg

import numpy as np
import os

import sklearn, joblib
from state_ estimation.msg import ProcessedData, AlgDecision

class KNNDecisionNode:
def _ init__ (self):
rospy.init_ node(’node_ knn’, anonymous=True)
self.knn_model = [|
r = rospkg.RosPack()
for source in CG’GPS’,DF’,’'DR’|:
path = os.path.join(r.get_ path(’state_estimation’), "models/knn_" + source + ’.sav’)

self.knn model.append(joblib.load(path))

self.decision__publisher = rospy.Publisher(’state__estimation/knn__decision’, AlgDecision, !
queue_size=1)

self.data_ sub = rospy.Subscriber(’state_ estimation/processed_data’, ProcessedData, self. <
data__callback)

self.alg decision = AlgDecision()

self.associated = [[0,1,2], [0,3,4], [1,3,5], [2,4,5]] # dij associated to each source

def data_ callback(self, data):

k—Nearest Neighbors

Appendix A. Code

73

##H# Tree prediction

pred = np.zeros((4))

for i in range(4):
input_ dij = np.array([data.dij[k] for k in self.associated][i]])
input_ dij = np.expand_ dims(input_ dij, axis=0)
pred[i] = self.knn model[i].predict(input_ dij)

selected = pred.astype(np.bool)

Publish topic with algorithm decision
self.alg decision.stamp = rospy.Time.now()
self.alg_decision.selected = selected
self.decision_ publisher.publish(self.alg decision)

def main_loop(self):
while not rospy.is_ shutdown():

rospy.spin()

’)

if _ name == main :
state__estimation_node = KNNDecisionNode()

try:

state_estimation node.main_loop()
except rospy.ROSInterruptException:

pass

Listing A.7: Feedforward FCNN node

#!/usr/bin/env python3
import rospy

import rospkg

import numpy as np
import os

import onnxruntime as rt
from state_ estimation.msg import ProcessedData, AlgDecision

class FFNNDecisionNode:
def ___init___ (self):
rospy.init_node(’node_ finn’, anonymous=True)
r = rospkg.RosPack()
path = os.path.join(r.get_path(’state_estimation’), "models/ffnn _model.onnx")
self.nn__model = rt.InferenceSession(path)

self.decision__publisher = rospy.Publisher(’state_ estimation/filnn_ decision’, AlgDecision,
queue__size=1)

self.data__sub = rospy.Subscriber(’state__estimation/processed__data’, ProcessedData, self. !
data_ callback)

self.alg decision = AlgDecision()

def data_ callback(self, data):
Feed—forward FC NN
NN prediction

nn_input = [data.cartographer_ x, data.cartographer_y, data.cartographer_th, \
data.gps_ x, data.gps_y, data.gps__th, \

74 A.2. Algorithm nodes

data.dragonfly_x, data.dragonfly_y, data.dragonfly_th, \
data.deadr_x, data.deadr_y, data.deadr_ th]

nn_input = np.array([nn_ input]).astype(np.float32)

nn_input = np.reshape(nn_input, (1, —1)) # from 1D to 2D array

input_ name = self.nn__model.get__inputs()[0].name

label_name = self.nn__model.get__outputs()[0].name

pred = self.nn model.run({label name], {input_name: nn_input})[0]
pred = pred.squeeze() # from 2D to 1D array

selected = (pred > 0.5)

Publish topic with algorithm decision
self.alg decision.stamp = rospy.Time.now()
self.alg_decision.selected = selected
self.alg_decision.trust = pred
self.decision__publisher.publish(self.alg_ decision)

def main loop(self):
while not rospy.is_ shutdown():
rospy.spin()

if name =="__ main %

state_estimation_node = FFNNDecisionNode()

try:

state__estimation__node.main__loop()
except rospy.ROSInterrupt Exception:

pass

Listing A.8: Recurrent NN node

#!/usr/bin/env python3

import rospy

import rospkg

import numpy as np

import os

import onnxruntime as rt

from state__estimation.msg import ProcessedData, AlgDecision

class RNNDecisionNode:
def ___init__ (self):
rospy.init_ node(’node_ rnn’, anonymous=True)
r = rospkg.RosPack()
path = os.path.join(r.get__path(’state_estimation’), "models/rnn__model.onnx")
self.nn__model = rt.InferenceSession(path)

self.decision_ publisher = rospy.Publisher(’state estimation/rnn_ decision’, AlgDecision,
queue_ size=1)

self.data_ sub = rospy.Subscriber(’state_ estimation/processed_data’, ProcessedData, self. <
data__callback)

self.alg_decision = AlgDecision()
Tx = 300

input_ size = self.nn_model.get_inputs()[0].shape[2]
self.last__inputs = np.zeros((1,Tx,input_ size))

Appendix A. Code 75

def data_ callback(self, data):
Recurrent NN

NN prediction

nn_input = [data.cartographer_ x, data.cartographer_y, data.cartographer_th, \
data.gps_ x, data.gps_y, data.gps__th, \
data.dragonfly x, data.dragonfly y, data.dragonfly th, \
data.deadr_ x, data.deadr_y, data.deadr_ th]

self.last_inputs = np.roll(self.last_inputs, —1, axis=1)

self.last__inputs[:,—1,:] = nn_ input

input_name = self.nn_model.get_inputs()[0].name

label _name = self.nn_ model.get_ outputs()[0].name

pred = self.nn__model.run([label name], {input_name: self.last_inputs.astype(np.float32)})[0]
pred = pred[0,—1,:]

selected = (pred > 0.5)

Publish topic with algorithm decision
self.alg__decision.stamp = rospy.Time.now()
self.alg_ decision.selected = selected
self.alg_decision.trust = pred
self.decision_publisher.publish(self.alg decision)

def main_ loop(self):
while not rospy.is_shutdown():
rospy.spin()

))

if name ==’ main :
state__estimation__node = RNNDecisionNode()

try:

state_estimation_node.main_loop()
except rospy.ROSInterrupt Exception:

pass

Listing A.9: Voting node

#!/usr/bin/env python

import rospy
import numpy as np
from state_ estimation.msg import AlgDecision

class VotingDecisionNode:
def ___init___ (self):
rospy.init_ node(’node_ voting’, anonymous=True)

self.decision__publisher = rospy.Publisher(’state_ estimation/voting_decision’, AlgDecision, !
queue__size=1)

self.exnis__sub = rospy.Subscriber(’state__estimation/exnis_ decision’, AlgDecision, lambda
data: self.decision__callback(data,0))

self.tree__sub = rospy.Subscriber(’state__estimation/tree__decision’, AlgDecision, lambda data:
self.decision__callback(data,1))

self. knn_ sub = rospy.Subscriber(’state_ estimation/knn_ decision’, AlgDecision, lambda data:
self.decision_ callback(data,2))

self.finn__sub = rospy.Subscriber(’state__estimation/ffnn_ decision’, AlgDecision, lambda data:
self.decision__callback(data,3))

76 A.2. Algorithm nodes

self.rnn__sub = rospy.Subscriber(’state__estimation/rnn_ decision’, AlgDecision, lambda data:
self.decision__callback(data,4))

self.alg decision = AlgDecision()

n_alg=>5

n_sources = 4

self.decisions = np.ones((n__alg,n_sources), dtype = bool)
self.available = np.zeros(n_ alg, dtype = bool)

def decision_ callback(self, data, alg):

self.decisions[alg,:] = data.selected
self.available[alg] = True

self.vote()

def vote(self):
Voting system (majority)
if self.available.all():

Compute the majority vote (mode)

Numpy doesn’t have a mode function, but knowing that labels are either 0 or 1
we can compute the mode by just averaging and thresholding by 0.5

final decision = np.mean(self.decisions.astype(float), axis=0)

final decision = final decision > 0.5

Last—resort source: Cartographer
if not final decision.any/():
final decision = np.array([True, False, False, False])

Publish topic with algorithm decision
self.alg__decision.stamp = rospy.Time.now()
self.alg_decision.selected = final_ decision
self.decision__publisher.publish(self.alg_ decision)

##H# Reset availability flags
self.available.fill(False)

else:
pass

def main_ loop(self):
while not rospy.is_shutdown():
rospy.spin()

))

if name ==’ main_
state_estimation node = VotingDecisionNode()

try:

state_estimation_ node.main_ loop()
except rospy.ROSInterruptException:

pass

Appendix A. Code 7

A.3 Other ROS files

Listing A.10: Overall solution launcher

<launch>
<!—— State estimation ——>
<!—— 1) Data processing ——>
<node name="node_data" pkg="state_estimation" type="node_ data.py"
<!—— 2) Individual sensor rejection algorithms ——>
<node name="node__ exnis" pkg="state_ estimation" type="node__exnis.py" required="true"/>
<node name="node_ tree" pkg="state estimation" type="node_ tree.py" required="true"/>
<node name="node_knn" pkg="state_ estimation" type="node_knn.py" required="true"/>
<node name="node_ finn" pkg="state__estimation" type="node_ finn.py" required="true"/>
<node name="node_rnn" pkg="state_estimation" type="node_rnn.py" required="true"/>
<!—— 3) Voting system (putting together all algorithms) ——>
<node name="node_ voting" pkg="state_estimation" type="node_voting.py" required="true"/>

required="true"/>

<!—— rqt (optional) ——>
<!——node name="rqt_ gui" pkg="rqt_gui" type="rqt_gui'/——>

< /launch>

Listing A.11: Data recording launcher

<launch>

<!—— rosbag record ——>

<node name="bag_ record" pkg="rosbag" type="record"
args="—o.,/home/$(env ;USER)/Downloads/ /rosout,,/tf ,/odom./gps. /gps_odom,/cartographer/
tracked__pose, /dragonfly__manager/tracked__pose /ins_raw /state /vehicle_speed,,/reverse_travel ,/
state_estimation/fused pose./tf static./tf2 web_ republisher/status./state estimation/
processed__data, ,/state__estimation/exnis_ decision, /state_ estimation/tree_ decision,,/
state_estimation/knn_decision, /state_estimation/finn_ decision, /state estimation/rnn_decision, ./
state_estimation/voting_ decision"/>

< /launch>

78

A.3. Other ROS files

Bibliography

1]

[2]

Z. Wang, Y. Wu, and Q. Niu, “Multi-sensor fusion in automated driving: A survey,” IEEE
Access, vol. 8, pp. 2847-2868, 2020.

Z. Chong, B. Qin, T. Bandyopadhyay, T. Wongpiromsarn, E. Rankin, M. A. Jr., E. Fraz-
zoli, D. Rus, D. Hsu, and K. Low, “Autonomous personal vehicle for the first- and last-mile
transportation services,” 2011.

Q. Li, J. P. Queralta, T. N. Gia, Z. Zou, and T. Westerlund, “Multi-sensor fusion for navi-
gation and mapping in autonomous vehicles: Accurate localization in urban environments,”
Unmanned Systems, vol. 08, no. 03, pp. 229-237, 2020.

B. Li, S. Liu, J. Tang, J.-L. Gaudiot, L. Zhang, and Q. Kong, “Autonomous Last-mile Delivery
Vehicles in Complex Traffic Environments,” arXiv e-prints, 2020.

0. Cohen and Y. Edan, “A sensor fusion framework for on-line sensor and algorithm selection,”
in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005,
pp. 3155-3161.

Y. Lu, E. Collins, and M. F. Selekwa, “Parity relation based fault detection, isolation and
reconfiguration for autonomous ground vehicle localization sensors,” 2004.

L. Wei, C. Cappelle, and Y. Ruichek, “Camera/laser/gps fusion method for vehicle position-
ing under extended nis-based sensor validation,” IEEE Transactions on Instrumentation and
Measurement, vol. 62, no. 11, pp. 3110-3122, 2013.

J. A. Farrell and P. F. Roysdon, “Advanced vehicle state estimation: A tutorial and compar-
ative study,” 20th IFAC World Congress, vol. 50, no. 1, pp. 15971-15976, 2017.

W. Rahiman and Z. Zainal, “An overview of development gps navigation for autonomous car,”
in 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), 2013, pp.
1112-1118.

M. Schmandt, GIS Commons, ch. 2. [Online]. Available: https://giscommons.org/chapter-2-
input/

U. I. Bhatti and W. Y. Ochieng, “Failure modes and models for integrated gps/ins systems,”
Journal of Navigation, vol. 60, no. 2, p. 327-348, 2007.

T. Kos, I. Markezic, and J. Pokrajcic, “Effects of multipath reception on gps positioning
performance,” in Proceedings ELMAR-2010, 2010, pp. 399-402.

L. Teschler, “Inertial measurement units will keep self-driving cars on track,” Microcontroller
Tips, 2018. [Online]. Available: |https://www.microcontrollertips.com/inertial-measurement-
units-will-keep-self-driving-cars-on-track-faq/

J. Kocié, N. Jovic¢i¢, and V. Drndarevié¢, “Sensors and sensor fusion in autonomous vehicles,”
in 2018 26th Telecommunications Forum (TELFOR), 2018, pp. 420-425.

79

https://giscommons.org/chapter-2-input/
https://giscommons.org/chapter-2-input/
https://www.microcontrollertips.com/inertial-measurement-units-will-keep-self-driving-cars-on-track-faq/
https://www.microcontrollertips.com/inertial-measurement-units-will-keep-self-driving-cars-on-track-faq/

80

Bibliography

[15]

[16]

[17]

C. Rablau, “Lidar: a new self-driving vehicle for introducing optics to broader engineering and
non-engineering audiences,” in Fifteenth Conference on Education and Training in Optics and
Photonics: ETOP 2019, A.-S. Poulin-Girard and J. A. Shaw, Eds., International Society for
Optics and Photonics. SPIE, 2019, pp. 84 — 97.

M. Khader and S. Cherian, “An introduction to automotive lidar,” Tezxas Instruments, 2020.
[Online]. Available: https://www.ti.com/lit/wp/slyy150a/slyy150a.pdf

C. de Castro Bonfim, “Reliability and safety improving methods for the evaluation of driving
environment information multiple fault and traget tracking for radar and lidar based sensors,”
Ph.D. dissertation, 2009.

Z. Alsayed, G. Bresson, A. Verroust-Blondet, and F. Nashashibi, “Failure detection for laser-
based slam in urban and peri-urban environments,” in 2017 IEEE 20th International Confer-
ence on Intelligent Transportation Systems (ITSC), 2017, pp. 1-7.

P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur, and X. Savatier, “Lidar point clouds correc-
tion acquired from a moving car based on can-bus data,” ArXiv, vol. abs/1706.05886, 2017.

F. Rosique, P. J.Navarro, C. Ferndndez, and A. Padilla, “A systematic review of perception
system and simulators for autonomous vehicles research,” Sensors, vol. 19, no. 3, 2019.
[Online]. Available: https://www.mdpi.com/1424-8220/19/3/648

Z. Yan, L. Sun, T. Krajnik, and Y. Ruichek, “Eu long-term dataset with multiple sensors for
autonomous driving,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020, pp. 10 697-10 704.

N. Kehtarnavaz, N. C. Griswold, and J. K. Eem, “Comparison of mono- and stereo-camera
systems for autonomous vehicle tracking,” in Applications of Artificial Intelligence I1X, M. M.
Trivedi, Ed., vol. 1468, International Society for Optics and Photonics. SPIE, 1991, pp. 467
— 478.

M. O. A. Agel, M. H. Marhaban, M. 1. Saripan, and N. B. Ismail, “Review of visual odometry:
types, approaches, challenges, and applications,” SpringerPlus, vol. 5, no. 1, oct 2016.

T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual slam algorithms: A survey from 2010 to
2016,” IPSJ Transactions on Computer Vision and Applications, vol. 9, 2017.

“Can i use dragonfly outdoors?” Apr 2021. [Online]. Available: http://dragonflycv.com/
support /knowledge-base/can-dragonfly-be-used-outdoors/

K. Kotay, “Odometry,” 2001. [Online]. Available: https://groups.csail.mit.edu/drl/courses/
¢sb4-2001s/odometry.html

M. Brossard and S. Bonnabel, “Learning wheel odometry and imu errors for localization,” in
2019 International Conference on Robotics and Automation (ICRA), 2019, pp. 291-297.

J. Borenstein, “Experimental results from internal odometry error correction with the om-
nimate mobile robot,” IEEE Transactions on Robotics and Automation, vol. 14, no. 6, pp.
963-969, 1998.

A. Martinelli, “Modeling and estimating the odometry error of a mobile robot,” IFAC Proceed-
ings Volumes, vol. 34, no. 6, pp. 407-412, 2001, 5th IFAC Symposium on Nonlinear Control
Systems 2001, St Petersburg, Russia, 4-6 July 2001.

M. Holder, S. Hellwig, and H. Winner, “Real-time pose graph slam based on radar,” in 2019
IEEFE Intelligent Vehicles Symposium (IV), 2019, pp. 1145-1151.

Z. Hong, Y. Petillot, and S. Wang, “Radarslam: Radar based large-scale slam in all weathers,”
2020.

https://www.ti.com/lit/wp/slyy150a/slyy150a.pdf
https://www.mdpi.com/1424-8220/19/3/648
http://dragonflycv.com/support/knowledge-base/can-dragonfly-be-used-outdoors/
http://dragonflycv.com/support/knowledge-base/can-dragonfly-be-used-outdoors/
https://groups.csail.mit.edu/drl/courses/cs54-2001s/odometry.html
https://groups.csail.mit.edu/drl/courses/cs54-2001s/odometry.html

32]
[33]
[34]
[35]
[36]
[37]
[38]

[39]

[43]
[44]

[45]
[46]

[47]
[48]
[49]

K. Siantidis, “Side scan sonar based onboard slam system for autonomous underwater vehi-
cles,” in 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), 2016, pp. 195-200.

F. Demim, A. Nemra, H. Abdelkadri, A. Bazoula, K. Louadj, and M. Hamerlain, “Slam prob-
lem for autonomous underwater vehicle using svsf filter,” in 2018 25th International Confer-
ence on Systems, Signals and Image Processing (IWSSIP), 2018, pp. 1-5.

Google, “Cartographer.” [Online]. Available: https://opensource.google/projects/cartographer

——, “Cartographer ros integration.” [Online]. Available: |https://google-cartographer-
ros.readthedocs.io/en/latest/

W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d lidar slam,” in 2016
IEEFE International Conference on Robotics and Automation (ICRA), 2016, pp. 1271-1278.

A. Mahtani, L. Sanchez, E. Fernandez, and A. Martinez, Effective Robotics Programming with
ROS, 3rd ed. Packt Publishing, 2016, ch. 8.

Geokov, “Utm - universal transverse mercator.” [Online]. Available: http://geokov.com/
education/utm.aspx

E. Fernandez Perdomo, “Latitude-longitude to utm,” Dec 2016. [Online].
Available: |https://github.com/rosbook/effective_robotics_ programming with_ros/blob/
master/chapter8_ tutorials/src/c8 fixtoUTM.cpp

Onit, “Dragonfly” [Online]. Available: https://dragonflycv.com/support/documentation/
introduction/

“Robot operating system.” [Online]. Available: http://wiki.ros.org/ROS /Introduction

I. Samy and D.-W. Gu, Fault Detection and Isolation (FDI). Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 5-17.

S. X. Ding, Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools,
1st ed. Springer Publishing Company, Incorporated, 2008.

Y. Bar-Shalom, X. Li, and T. Kirubarajan, “Estimation with applications to tracking and
navigation: Theory, algorithms and software.” Wiley, 2001.

F. Gustafsson, Adaptive Filtering and Change Detection. Wiley, 2000.

S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learning techniques
for autonomous driving,” Journal of Field Robotics, vol. 37, no. 3, p. 362-386, Apr 2020.

J. Firnkranz, Decision Tree. Boston, MA: Springer US, 2017, pp. 330-335.
E. Keogh, Instance-Based Learning. Boston, MA: Springer US, 2017, pp. 672-673.
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

https://opensource.google/projects/cartographer
https://google-cartographer-ros.readthedocs.io/en/latest/
https://google-cartographer-ros.readthedocs.io/en/latest/
http://geokov.com/education/utm.aspx
http://geokov.com/education/utm.aspx
https://github.com/rosbook/effective_robotics_programming_with_ros/blob/master/chapter8_tutorials/src/c8_fixtoUTM.cpp
https://github.com/rosbook/effective_robotics_programming_with_ros/blob/master/chapter8_tutorials/src/c8_fixtoUTM.cpp
https://dragonflycv.com/support/documentation/introduction/
https://dragonflycv.com/support/documentation/introduction/
http://wiki.ros.org/ROS/Introduction

ETH:zurich

Institute for Dynamic Systems and Control
Prof. Dr. R. D'Andrea, Prof. Dr. E. Frazzoli, Prof. Dr. Lino Guzzella, Prof. Dr. C. Onder, Prof. Dr. M. Zeilinger

Title of work:

Sensor rejection for reliable state estimation of an autonomous last-
mile delivery vehicle

Thesis type and date:
Master’s Thesis, July 2021

Supervision:

Dr. Erik Wilhelm
Prof. Dr. Christopher Onder

Student:

Name: Pedro Reyero Santiago
E-mail: preyero@student.ethz.ch
Legi-Nr.: 20-909-115

Semester: FS 2021

Statement regarding plagiarism:

By signing this statement, I affirm that I have read and signed the Declaration of Originality, indepen-
dently produced this paper, and adhered to the general practice of source citation in this subject-area.

Declaration of Originality:

https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/
leistungskontrollen/declaration-originality.pdf

Fello B
Zurich, 16.7.2021:

https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/declaration-originality.pdf
https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/declaration-originality.pdf

	1 Introduction
	1.1 Problem statement
	1.2 Previous and related research
	1.3 Thesis outline

	2 Sensors and sensor failure in autonomous vehicles
	2.1 GPS
	2.2 IMU
	2.3 INS
	2.4 LiDAR
	2.5 Camera
	2.6 Wheel odometry
	2.7 Others

	3 Pose estimation on the Autonomous Plus2
	3.1 Google Cartographer
	3.2 GPS/INS
	3.3 Dragonfly
	3.4 Dead reckoning
	3.5 ROS architecture and pipeline

	4 Sensor rejection and trust estimation
	4.1 Manual heuristics (rule-based)
	4.2 Fault Detection and Isolation methods
	4.2.1 Extended NIS sensor validation

	4.3 Learning-based approaches
	4.3.1 Classical ML classification methods
	4.3.2 Fully-connected feedforward neural networks
	4.3.3 Sequence models

	4.4 Voting systems

	5 Experimental procedure
	5.1 Performance evaluation
	5.2 Test scenarios description
	5.3 Data acquisition and pipeline
	5.4 Training and parameter tuning procedures

	6 Results and Discussion
	6.1 Model training and tuning results
	6.1.1 ExNIS cross-validation
	6.1.2 Decision trees
	6.1.3 k-Nearest Neighbors
	6.1.4 FC feedforward NN
	6.1.5 Recurrent NN
	6.1.6 Note on performance metrics

	6.2 Final performance in test scenarios

	7 Conclusion
	A Code
	A.1 Data pre-processing
	A.2 Algorithm nodes
	A.3 Other ROS files

	Bibliography

