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In this article, we investigate Reeb dynamics on bm-contact 
manifolds, previously introduced in [37], which are contact 
away from a hypersurface Z but satisfy certain transversality 
conditions on Z. The study of these contact structures is 
motivated by that of contact manifolds with boundary. The 
search of periodic Reeb orbits on those manifolds thereby 
starts with a generalization of the well-known Weinstein 
conjecture. Contrary to the initial expectations, examples 
of compact bm-contact manifolds without periodic Reeb 
orbits outside Z are provided. Furthermore, we prove that 
in dimension 3, there are always infinitely many periodic 
orbits on the critical set if it is compact. We prove that 
traps for the bm-Reeb flow exist in any dimension. This 
investigation goes hand-in-hand with the Weinstein conjecture 
on non-compact manifolds having compact ends of convex 
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type. In particular, we extend Hofer’s arguments to open 
overtwisted contact manifolds that are R+-invariant in the 
open ends, obtaining as a corollary the existence of periodic 
bm-Reeb orbits away from the critical set. The study of 
bm-Reeb dynamics is motivated by well-known problems in 
fluid dynamics and celestial mechanics, where those geometric 
structures naturally appear. In particular, we prove that the 
dynamics on positive energy level-sets in the restricted planar 
circular three body problem are described by the Reeb vector 
field of a b3-contact form that admits an infinite number of 
periodic orbits at the critical set.
© 2021 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The existence of periodic orbits of the Hamiltonian vector field on a given level-set 
of a Hamiltonian function is a central question in symplectic geometry. Historically, this 
question is being motivated through its applications to classical mechanics and has ever 
since given rise to spectacular developments in the field. This problem may be treated 
under different additional assumptions. In the contact context the Weinstein conjecture 
asserts that the Reeb vector field of a closed contact manifold has at least one periodic 
orbit. There are several Hamiltonian and symplectic relatives of this conjecture such as 
the Hamiltonian Seifert conjecture or the Conley conjecture about the periodic orbits 
of Hamiltonian systems on a symplectic manifold. The tools of Floer theory allow to 
obtain refinements of these conjectures and the whole community in symplectic and 
contact geometry has experimented a golden age period during the last decades.

In this alluring symplectic and contact picture, the study of singularities has been 
neglected. General singularities are too complicated, however in the last years, particular 
singularities known under the name of bm-symplectic or log-symplectic forms, have been 
widely explored by several authors [24,25,27,28,46]. The geometry of bm-manifolds appear 
in the study of manifolds with boundary. Assuming the manifold is even-dimensional, 
bm-symplectic structures are symplectic away from the boundary but their associated 
Poisson structure meets some mild degeneracy conditions on the boundary. This can be 
generalized to manifolds with a fixed hypersurface, called critical hypersurface. Recently, 
the geometry of the odd-dimensional counterpart of those have been studied by the 
authors in [37].

Contact structures appear as regular level-sets of symplectic manifolds whenever there 
exists a transverse Liouville vector field. This construction is connected to the study of 
Hamiltonian systems. Singularities in the orbits of the Hamiltonian system (as for in-
stance homoclinic or more generally heteroclinic orbits) hinder the dynamical description 
in terms of contact geometry. This yields a first motivation to analyze the singular coun-
terpart to contact structures in order to take these situations into account.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Understanding the dynamics of the Reeb vector field in contact geometry and the 
Hamiltonian vector field has been (and still is) a leading question in the field. The global 
behavior of the Reeb vector field is fundamentally different when there are singularities 
in the contact form.

We show that there are compact examples of bm-contact manifolds in any dimension 
without any periodic orbits away from the critical set. Similarly, by considering the 
symplectization, we show that bm-symplectic manifolds can have very different dynamical 
behavior as examples without periodic orbits of the Hamiltonian vector field on any level-
set are constructed, which is related to the Hamiltonian Seifert conjecture.

In dimension 3, the dynamics on the critical set is Hamiltonian and as a consequence 
we prove that for compact Z, there are infinitely many periodic orbits on the critical set. 
This is especially interesting in view of the physical applications of bm-contact structures.

Even though plugs for the smooth Reeb flow cannot exist by the proof in dimension 3
of the Weinstein conjecture (respectively by the partial positive answers of the conjecture 
in higher dimensions), the existence of traps (which is a weaker notion than plugs) is 
a subtle topic. It was proved that in dimension 3 traps do not exist for the Reeb flow, 
see [13]. In the same paper, it was conjectured that a similar result holds in higher 
dimensions. This was elegantly disproved: the authors of [19] proved that for higher 
dimensions, traps for the Reeb flow do exist. We prove that the dynamics of the bm-
Reeb flow contrasts the smooth one: traps do exist in any dimension. The construction 
of traps for the bm-Reeb flow strongly uses the singularization technique, previously 
introduced in [37] to prove the existence of bm-contact structures.

In this article we also extend Hofer’s proof of Weinstein conjecture under the assump-
tion of existence of overtwisted disk (see [31]) to non-compact manifolds whenever some 
additional condition is imposed on the ends. Our approach is different from previous 
results on the existence of periodic orbits on non-compact compact manifolds as is done 
for instance in [8,41]. The condition imposed on the ends is compatible with that of 
bm-contact structures and in general for any contact manifold with boundary admitting 
some transversality conditions close to the boundary or, more generally, for non-compact 
manifolds which can be compactified via a convex hypersurface. Coming back to the case 
of bm-contact manifolds, a necessary condition to guarantee the existence of periodic or-
bits away from the critical set is that the contact structure is overtwisted away from the 
critical set. To overcome non-compactness, we additionally assume R+-invariance around 
the critical set. Under those assumptions, we prove that the J-holomorphic curves meth-
ods developed by Hofer in [31] extend to this set-up. The non-triviality of this result 
originates in the non-compactness of the situation. We show that the Bishop family orig-
inating from the elliptic singularity of the overtwisted disk gives rise to bubbling of a 
finite energy plane in the symplectization. We show that the bubbling takes place either 
away from the critical set or in the R+-invariant part. The invariance here plays an 
important role to assure uniform convergence of the pseudoholomorphic disks by trans-
lating the disks in the R+-invariant direction. Those finite energy planes, as follows from 
classical results due to Hofer [31], show that there exists either a periodic Reeb orbit 
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away from the critical set or infinitely many periodic Reeb orbits in the R+-invariant 
neighborhood.

The above-mentioned results naturally lead to a reformulation of the Weinstein con-
jecture for bm-contact manifolds: indeed, summarizing the above discussion, the existence 
of overtwisted disks away from the critical set Z and the additional symmetry around 
it constitute a sufficient condition for the existence of periodic orbits away from Z. In 
view of the compact examples without periodic orbits together with the possible pres-
ence of singularities of the dynamics on Z, we are lead to rewrite Weinstein conjecture 
for bm-contact manifold. Not only this sheds new light on the study of homoclinic and 
heteroclinic orbits, but eventually this can lead to far-reaching extensions of variational 
approaches, and thereby ultimately Floer techniques, to the singular contact and sym-
plectic realm, and in particular to an important class of Poisson manifolds.

The study of the Reeb dynamics on bm-contact manifolds has substantial applications 
to celestial mechanics: the dynamics on positive energy level-sets of the restricted planar 
circular three body problem are described by the flow of a b3-Reeb vector field. The crit-
ical set describes the manifold at infinity. Due to non-compactness, the above explained 
results a priori do not apply. However, even though non-compact, we prove that there 
are infinitely many periodic orbits on the critical set, thereby generalizing results about 
periodic orbits at infinity obtained in the parabolic case in [11] to the hyperbolic case.

Other applications are obtained in the terrain of fluid dynamics in view of the corre-
spondence between b-contact structures and Beltrami flows on manifolds with boundary 
(see [9]). In [10] some universality features (in the sense of [49]) are proved for regular 
Euler equations [10] which could be extended to this novel singular set-up and could be 
useful for the study of blow-up in finite time of Navier-Stokes equations (see for instance 
[48]).

Organization of this article: We open this article with a review on b-symplectic and 
b-contact geometry. We continue by motivating the study of bm-contact geometry at the 
hand of examples coming from both celestial mechanics and fluid dynamics and out-
line the importance of considering singularities in those examples. In Section 4, taking 
into account the singularities present in celestial mechanics, we prove the existence of 
infinitely many periodic Reeb orbits at infinity in the planar restricted three body prob-
lem, the initial motivating example of this paper. In Section 5 we continue with a survey 
on well-known results in Hamiltonian and Reeb dynamics that will guide us through 
the results that we are going to prove for bm-contact and bm-symplectic manifolds. In 
Section 6 we prove the existence of infinitely many periodic Reeb orbits in dimension 3
when Z is compact and give examples of compact bm-contact manifolds without periodic 
orbits away from the critical set. As a corollary we produce examples of bm-symplectic 
manifolds with proper Hamiltonian functions without periodic orbits on all level-sets 
away from the critical set. In Section 7, we prove that the singularization can be used to 
prove a trap construction. We will prove in Section 8 that in the case of an R+-invariant 
bm-contact manifold with an overtwisted disk away from the critical set, there are always 
periodic Reeb orbits away from the critical set. The above mentioned results lead us to 
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reformulate the Weinstein conjecture in Section 9 for bm-contact manifolds about the 
existence of singular orbits as admissible solutions and discuss open problems.

Acknowledgments: We are grateful to Alain Chenciner, Jacques Féjoz, Urs Frauen-
felder, Viktor Ginzburg, Andreas Knauf and Charles-Michel Marle for several key con-
versations during the preparation of this article. Special thanks to Francisco Presas 
for suggesting Hofer’s approach on overtwisted contact manifolds. We are thankful to 
Daniel Peralta-Salas for pointing out and providing a complete proof that in the regular 
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along it, which contrasts the b-Beltrami case. We warmly thank Amadeu Delshams and 
Marcel Guardia for enlightening discussions concerning the three-body problem. We are 
indebted to the Fondation Sciences Mathématiques de Paris for endowing the first au-
thor with a Chaire d’Excellence in 2017-2018 when this adventure started and to the 
Observatoire de Paris for being a source of inspiration for many of the constructions in 
this article and for their hospitality during the stay of both authors during the Fall and 
Winter of 2017-2018. Thanks also to Robert Cardona and Arnau Planas for their help 
with the figures in this article. The authors would like to thank the anonymous referee 
for pointing out the approach to the Weinstein conjecture in the non-compact setting 
carried out in [8].

2. Preliminaries: bm-symplectic and bm-contact geometry

In this section, we review the basics of bm-symplectic and bm-contact geometry. For 
more details, we refer the reader to [7] and [29] for a review on bm-symplectic struc-
tures and to [37] for an extensive study of the topology and the geometry of bm-contact 
manifolds.

Let (Mn, Z) be a smooth manifold of dimension n with a hypersurface Z. In what 
follows, the hypersurface Z will be called critical set. Assume that there exists a global 
defining function for Z, that is f : M → R such that Z = f−1(0). The space of vector 
fields that are tangent to Z form a Lie sub-algebra of the Lie algebra of vector fields on 
M . By the Serre–Swan theorem [47], there exists an n-dimensional vector bundle which 
sections are given by the b-vector fields. We denote this vector bundle by bTM , the b-
tangent bundle. We denote the dual of this vector bundle by bT ∗M := (bTM)∗ and call 
it the b-cotangent bundle. A b-form of degree k is the section of the kth exterior wedge 
product of the b-cotangent bundle: ω ∈ Γ

(
Λk(bT ∗M)

)
:= bΩk(M). By the following 

decomposition lemma, we can easily extend the exterior derivative.

Lemma 2.1 ([27]). Let ω ∈ bΩk(M) be a b-form of degree k. Then ω decomposes as 
follows:

ω = df ∧ α + β, α ∈ Ωk−1(M), β ∈ Ωk(M).

f
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The exterior derivative for b-forms is defined by

dω := df

f
∧ dα + dβ.

Equipped with the extension of the exterior derivative, we are able to defined b-symplectic 
and b-contact forms.

Definition 2.2.

(1) An even-dimensional b-manifold W 2n with a b-form ω ∈ bΩ2(W ) is b-symplectic if 
dω = 0 and ωn �= 0 as a section of Λ2n(bT ∗W ).

(2) An odd-dimensional b-manifold M2n+1 is b-contact if there exists a b-form α ∈
bΩ1(M) such that α ∧ (dα)n �= 0. The b-form α is called b-contact form and the 
kernel kerα ⊂ bT ∗M is called b-contact structure.

Outside of the critical set Z, both definitions coincide with the usual definition 
of symplectic and contact manifolds respectively. The local theory of both are well-
understood, as the language of differential forms for this complex gives rise to Moser’s 
path method and Darboux local normal forms. Furthermore, b-symplectic, respectively 
b-contact manifolds, can be seen as particular cases of Poisson manifolds (see [27]), re-
spectively Jacobi manifolds (see [37]) satisfying some transversality conditions. Similarly, 
those transversality conditions can be relaxed by considering higher order tangencies. A 
similar construction to the one mentioned here leads to bm-contact and bm-symplectic 
structures, see [46]. As one would expect, the symplectization of bm-contact manifolds 
are bm-symplectic manifolds and conversely, bm-contact manifolds can be seen as hy-
persurface in bm-symplectic manifolds that admit a transverse Liouville vector field. We 
emphasize that the Reeb vector field associated to a bm-contact form can be singular. 
In fact, the vanishing of the Reeb vector field determines the local geometry of the 
bm-contact form as is proved in the bm-Darboux theorem in [37].

We give two examples of bm-contact manifolds that possess some interesting dynamical 
properties as we will see later.

Example 2.3. The 3-dimensional sphere S3 admits a b-contact structure. Consider the 
R4 with the standard b-symplectic structure ω = dx1

x1
∧dy1 +dx2 ∧dy2 and denote by S3

the unit sphere in R4. The Liouville vector field X = 1
2x1

∂
∂x1

+y1
∂

∂y1
+ 1

2 (x2
∂

∂x2
+y2

∂
∂y2

)
is transverse to the sphere and hence ιXω defines a b-contact form on S3. The critical set 
is a 2-dimensional sphere, S2, given by the intersection of the sphere with the hyperplane 
x1 = 0.

Example 2.4. Consider the torus T 2 as a b-manifold where the boundary component if 
given by two disjoint copies of S1. The unit cotangent bundle S∗T 2, diffeomorphic to the 
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3-torus T 3 is a b-contact manifold with b-contact form given by α = sinφ dx
sin(x) +cosφdy, 

where φ is the coordinate on the fiber and (x, y) the coordinates on T 2.

To study the dynamics on the critical set in dimension 3, we make use of the fact that 
the Reeb vector field restricted to the critical set is Hamiltonian.

Proposition 2.5 ([37]). Let (M, α) be a b-contact manifold of dimension 3 and let us write 
α = udz

z + β, u ∈ C∞(M) and β ∈ Ω1(M) as in Lemma 2.1. Then the restriction on Z
of the 2-form Θ = udβ + β ∧ du is symplectic and the Reeb vector field is Hamiltonian 
with respect to Θ with Hamiltonian function u, i.e. ιRΘ = du.

We furthermore notice that u is not constant on closed critical sets in dimension 3. 
Indeed, if u|Z was constant, then the area form on Z given by Θ = udβ is exact which 
contradicts Stokes theorem. We therefore have the following proposition.

Proposition 2.6. Let (M, α = udz
z + β) be a 3-dimensional b-contact manifold with a 

closed critical hypersurface Z, where u ∈ C∞(M) and β ∈ Ω1(M) as before. Then the 
function u|Z is non-constant.

In [37], the existence of bm-contact structures is solved by relating the critical set to 
convex hypersurfaces in contact manifolds. More precisely, the following is proved.

Theorem 2.7 ([37]). Let (M, ξ) be a contact manifold and let Z be a convex hypersurface 
in M . Then M admits a b2k-contact structure for all k that has Z as critical set.

A similar result holds for b2k+1-contact structures, where the critical set Z is given 
by two diffeomorphic copies of the convex hypersurface Z.

Theorem 2.8 ([37]). Let (M, ξ) be a contact manifold and let Z be a convex hypersurface 
in M . Then M admits a b2k+1-contact structure for all k that has two connected com-
ponents, both diffeomorphic to Z, as critical set. Additionally, one of the hypersurfaces 
can be chosen to be Z.

The topology of bm-contact manifolds can be related to the one of contact manifolds 
through a desingularization technique, similar to the one introduced in [29]. A necessary 
condition for applying the desingularization is that the bm-contact form is almost convex.

Definition 2.9. We say that a bm-contact structure (M, kerα) is almost convex if β = π∗β̃, 
where π : N (Z) → Z is the projection from a tubular neighborhood of Z to the critical 
set and β̃ ∈ Ω1(Z). We will abuse notation and write β ∈ Ω1(Z). We say that a bm-
contact structure is convex if β ∈ Ω1(Z) and u ∈ C∞(Z).

Using almost convexity, the following is proved.
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Fig. 1. The restricted planar three-body problem: Sun-Earth-Moon system.

Theorem 2.10 ([37]). Let (M2n+1, kerα) a b2k-contact structure with critical hypersurface 
Z. Assume that α is almost convex. Then there exists a family of contact forms αε which 
coincides with the b2k-contact form α outside of an ε-neighborhood of Z. The family of 
bi-vector fields Λαε

and the family of vector fields Rαε
associated to the Jacobi structure 

of the contact form αε converges to the bivector field Λα and to the vector field Rα in 
the C2k−1-topology as ε → 0.

A similar results holds for b2k+1-contact structure, where the resulting desingulariza-
tion yields the so-called folded contact structures, see [37].

3. Motivating examples

3.1. Motivating examples from celestial mechanics

Let us consider the restricted three body problem. This is a simplified version of 
the general 3-body problem: one of the bodies has negligible mass. The other two bodies 
called primaries move independently of it following Kepler’s laws for the 2-body problem. 
In the example below we will assume these are circles and we will refer to it as the 
restricted circular three body problem. The planar version assumes that the motion 
occurs in a plane and we abbreviate it by RPC3BP. See Fig. 1.

Singular symplectic structures show up naturally in examples in celestial mechanics 
as an offspring of regularization transformations (see for instance [35] and references 
there-in, and [20,34]). In the case of the restricted 3-body problem, these regularization 
transformations are due to McGehee. See also [7,12,33] for examples in celestial mechanics 
where singular symplectic structures are analyzed in detail.

We now follow [33] and [11] for the description of the singular symplectic geometry of 
the RPC3BP.

• The time-dependent self-potential of the small body is U(q, t) = 1−μ
|q−q1(t)| + μ

|q−q2(t)| , 
with q1(t), q2(t) the position of the planet with mass 1 − μ, respectively μ.
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L3

L4

L5

L1 L2

Fig. 2. Lagrangian points.

• The Hamiltonian of the system is

H(q, p, t) = |p|2
2 − U(q, t), (q, p) ∈ R2 \ {q1(t), q2(t)} ×R2, (3.1)

where p = q̇ is the momentum of the planet.
• Passing to rotating coordinates, the positions of the two planets can be assumed to 

be fixed at q1 = (μ, 0), respectively q2 = (−(1 − μ), 0). The resulting Hamiltonian is 
autonomous but therefore ceases to be the sum of kinetic and potential energy, see 
[4,18]. It is given by

H(q, p) = |p|2
2 − 1 − μ

|q − q1|
− μ

|q − q2|
+ p1q2 − p2q1. (3.2)

• We then consider the symplectic change of coordinates to polar coordinates given 
by (q, p) �→ (r, α, Pr, Pα), where q = (r cosα, r sinα) and p = (Pr cosα −
Pα

r sinα, Pr sinα + Pα

r cosα).
• We then introduce the McGehee coordinates (x, α, Pr, Pα), where r = 2

x2 , x ∈ R+.
• The geometric structure is a singular form given by − 4

x3 dx ∧dPr +dα∧dPα which is 
symplectic away from the line at infinity and extends to a singular symplectic form 
(technically called b3-symplectic structure) on R+ × S1 ×R2.

As it is customary in the classical theory of symplectic and contact geometry, the 
restriction of the symplectic form on regular level-sets of H induces a contact structure 
whenever there exists a Liouville vector field that is transverse to it. In this new picture 
this contact structure may have singularities.

In [1] the authors apply results from contact topology to prove existence of periodic 
orbits in the RPC3BP using a regularization introduced by Moser. The study of the 
topology of the problem strongly depends on the geography of the Lagrangian points, 
which are the critical points of the Hamiltonian, depicted in Fig. 2.
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Following [1], for low energy levels c ∈ R of the Hamiltonian, the level-set Σc =
H−1(c) has 3 connected components. The component where the position of the satellite is 
bounded in position around the earth (respectively moon) is denoted by ΣE

c (respectively 
ΣM

c ). The third component corresponds to the case in which the satellite is far away in 
position from the primaries.

The first Lagrangian point L1 lies on the axis between earth and moon and it is a 
critical point of the energy. As discussed in [1] if c = H(L1) + ε (for ε sufficiently small) 
the satellite can cross from the region around the earth to the region around the moon 
and in this case there are two connected components, one bounded (which we denote by 
ΣE,M

c ) and one unbounded.
To deal with the singularities of the Kepler problem, Moser [39] introduced a reg-

ularization procedure for 2-body collisions. This can be applied to the planar circular 
restricted 3-body problem. Using Moser’s regularization the components ΣE

c and ΣM
c

can be compactified to ΣE

c and ΣM

c which are diffeomorphic to the real projective space 

RP 3 and ΣE,M

c is diffeomorphic to RP 3#RP 3.

Theorem 3.3 ([1]). For c < H(L1) the contact structures 
(
ΣE

c , kerα
)

and 
(
ΣM

c , kerα
)

coincide with the standard contact structure on RP 3 which is tight and for c ∈
(H(L1), H(L1) + ε) the contact structure 

(
ΣE,M

c , kerα
)

coincides with the tight
RP 3#RP 3.

A relevant outcome of this theorem is the application of contact topology results to 
the actual problems in celestial mechanics. More concretely, the celebrated Weinstein 
conjecture (proved in dimension 3 by Taubes [50]) claims that the Reeb vector field of a 
contact compact manifold admits at least one periodic orbit.

The combination of Weinstein conjecture with Theorem 3.3 yields,

Theorem 3.4 ([1]). For any value c < H(L1), the regularized planar circular restricted 
three body problem has a closed orbit with energy c.

The results of [1] identify the contact topology on the level-sets of H and prove exis-
tence of periodic orbits but do not localize these orbits with respect to the line at infinity. 
This is mainly due to the fact that the Moser’s regularization and compactification gets 
rid of this singular set. However, this is not the case of McGehee regularization where 
the line at infinity is identified with the singular set of the b3-symplectic structure. For 
astrodynamical purposes it is convenient to be able to understand periodic orbits getting 
close to the line at infinity and periodic orbits at the line at infinity. Considering the 
new b3-symplectic model described above, one can raise the following question:

Question 3.5. Are the dynamics on the level-sets of the Hamiltonian described by the flow 
of a Reeb vector field associated to a singular contact form? Can we use new methods 
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in singular contact geometry to localize these periodic orbits with respect to the line at 
infinity?

More generally, to understand the dynamical behavior of those manifolds, it is natural 
to ask about the generalization of Weinstein conjecture in this setting as this is, by the 
above considerations, strongly related to the existence of periodic orbits in the RPC3BP.

Question 3.6. Does the Weinstein conjecture hold in this singular set-up?

3.2. Motivating examples from fluid dynamics

Euler equations model the dynamics of an inviscid and incompressible fluid flow. Their 
viscid counterpart yield the Navier-Stokes equations.

Euler equations can be generalized from the Euclidean to the general Riemannian 
case as follows: On a Riemannian 3-manifold (M3, g) they can be described by

∂X

∂t
+ ∇XX = −∇P

divX = 0

where X is the velocity, ∇ the Riemannian gradient and P the pressure. The Bernoulli 
function is given by B = P + 1

2g(X, X). We can take advantage of the metric g to identify 
several classical concepts using Riemannian duality as follows: The vorticity vector ω is 
defined as

ιωμ = dα

where α = ιXg and μ the Riemannian volume.
Even though, the classical work in the subject uses the language of vector calculus. 

In this article we adopt the language of forms. For more information about the subject 
please consult [44].

When the flow does not depend on time we obtain the so-called stationary solutions. 
In terms of α = ιXg, stationary Euler equations can be written as,{

ιXdα = −dB

dιXμ = 0.

An important class of stationary solutions are given by Beltrami fields which satisfy

curlX = fX, with f ∈ C∞(M).

When f �= 0, we call those vector field rotational. Among the examples of Beltrami fields 
we find Hopf fields and ABC flows.
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If X is non-vanishing rotational Beltrami then α = ιXg is a contact structure. In 
order to prove this note that the Beltrami equation in the language of forms described 
above can be written as dα = fιXμ. Since f is strictly positive and X is not vanishing 
we obtain: α ∧ dα = fα ∧ ιXμ > 0. Thus proving that α is a contact structure.

Further, the vector field X satisfies ιX(dα) = ιXιXμ = 0 so X ∈ ker dα. This implies 
that it is a reparametrization of the Reeb vector field by the function α(X) = g(X, X).

This proves one of the implications of the theorem below proved Etnyre and Ghrist 
[17]:

Theorem 3.7. Any nonsingular rotational Beltrami field is a reparametrization of a Reeb 
vector field for some contact form and conversely any reparametrization of a Reeb vector 
field of a contact structure is a nonsingular rotational Beltrami field for some metric and 
volume form.

The geometrical approach to hydrodynamics probably started with Arnold [3] (see 
also the joint book with Khesin [5]). In [14–16] the authors exploit the geometrical flavor
of stationary solutions to the Euler equations to study knots, links and vortex tubes in 
this context solving in particular a conjecture of Lord Kelvin in [16].

In [9] contact manifolds with boundary having a singular contact structure on the 
boundary of b-type are identified with contact manifolds with boundary where the bound-
ary is pushed to infinity (or manifolds with cylindrical ends). Using this identification 
in [9] it is proved that the correspondence contact/Beltrami can be extended to the 
singular set up thus extending the previous geometrical picture on Beltrami fields to 
3-dimensional manifolds with boundary.

The correspondence between non-singular Beltrami fields and regular contact struc-
tures holds in any odd dimension (see [10] for a proof) and similarly higher dimensional 
singular contact structures naturally arise associated to Euler’s equations. In [10] the 
authors prove universality properties for Euler’s equations via a Reeb embedding theo-
rem which we prove thanks to refining the h-principle techniques in [6]. Extending those 
techniques to the singular realm would allow to understand if such universality properties 
still hold on manifolds with cylindrical ends.

4. Motivating examples revisited

In this section, we revisit the motivating examples and use the view-point of b-contact 
geometry as explained in the preliminaries to deepen the understanding of the dynamics 
in both the RPC3BP and Beltrami vector fields. Those examples make apparent the 
importance of an exhaustive knowledge of the Reeb dynamics for bm-contact manifolds.
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4.1. Infinitely many periodic orbits on the manifold at infinity in the RPC3BP

We will apply the results on the dynamics of the bm-Reeb flow already introduced in 
Proposition 2.5 and 2.6 to prove that there exists infinitely many periodic Reeb orbits 
on the manifold at infinity.

It was proved in [12] (see also [7]) that the underlying geometric structure in the 
restricted three body problem after the McGehee change of coordinates is a b3-symplectic 
structure. In this section, we focus on level-sets of the Hamiltonian. In particular, we 
study the motion of the satellite at infinity and therefore assume that H = c > 0. We 
will see that in this case the dynamics are described by the Reeb flow of a b3-contact 
form and that there are infinitely many periodic Reeb orbits on the manifold at infinity.

Our approach contrasts the one given in [1], where the authors use Moser’s regular-
ization (see also [35]) to show that the level-sets can be regularized to compact contact 
manifolds. In our case, the existence of periodic orbits on the critical set follows from the 
observation that the Reeb vector field in dimension 3 is a Hamiltonian vector field on 
the critical set, see Proposition 2.5. First, let us pass to polar coordinates (r, α, Pr, Pα)
through a symplectic change of coordinates.

This change of coordinates is given by q = (r cosα, r sinα) and p = (Pr cosα −
Pα

r sinα, Pr sinα + Pα

r cosα) and the symplectic form is given by ω =
∑2

i=1 dqi ∧ dpi =
dr ∧ dPr + dα ∧ dPα and we then perform the McGehee change of coordinates, given by

r = 2
x2 . (4.1)

The symplectic form then gives rise to a b3-symplectic form which can be written as:

−dx

x3 ∧ dy + dα ∧ dG. (4.2)

We now look at the level-sets of H under those coordinate changes. In contrast to 
[1], as the McGehee change of coordinate exchanges infinity with the origin, we consider 
the level-sets Σc such that π(Σc) is unbounded: indeed, we will only consider c > 0. 
Furthermore, we do not consider the Liouville vector field in the position coordinates, 
that is X = (q− qM ) ∂

∂q , but the one given by momenta. The reason for this is that X is 
not a b3-vector field and therefore the contraction ιXω does not give rise to a b3-form.

We first check that the Liouville vector field in momenta is transverse to the positive 
energy level-sets before doing the McGehee change of coordinates.

Lemma 4.3. The vector field Y = p ∂
∂p is a Liouville vector field and is transverse to Σc

for c > 0.

Proof. The vector field Y is a Liouville vector field as LY (
∑2

i=1 dpi ∧ dqi) = ω and is 
transverse to Σc for c > 0. Indeed
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Y (H) = |p|2 + p1q2 − p2q1 = |p|2
2 + 1 − μ

|q − qE |
+ μ

|q − qM | + H(q, p).

Hence Y (H)|H=c = |p|2
2 + 1−μ

|q−E| + μ
|q−M | + c which is a sum of positive terms when 

c > 0. �
We now prove that the vector field Y is also transverse to the level-sets of the Hamil-

tonian at infinity. The strategy of this is to do the McGehee change of coordinates and 
check if the vector field is still transverse to the level-set of the Hamiltonian.

Theorem 4.4. After the McGehee change, the Liouville vector field Y = p ∂
∂p is a b3-vector 

field that is everywhere transverse to Σc for c > 0 and the level-sets (Σc, ιY ω) for c > 0
are b3-contact manifolds. Topologically, the critical set is a cylinder and the Reeb vector 
field admits infinitely many non-trivial periodic orbits on the critical set.

Proof. Let us compute the Hamiltonian given by Equation (3.2) first in polar coordinates 
and then perform the McGehee change of coordinate. The polar coordinates are defined 
by the position q = (r cosα, r sinα), (r, θ) ∈ R+ × S1, and the momenta p = (Pr cosα−
Pα

r sinα, Pr sinα+ Pα

r cosα), (Pr, Pα) ∈ R2. Under this coordinate change, the resulting 
Hamiltonian is given by the following expression:

H(r, α, Pr, Pα)

=1
2(P 2

r − (Pα

r
)2) − 1 − μ

r2 − 2μr cosα + μ2 − μ

r2 − 2(1 − μ)r cosα + (1 − μ)2 − Pα.

The coordinate change is symplectic and therefore the symplectic form is given by 
dr ∧ dα + dPr ∧ dPα and the Liouville vector field writes down Y = Pr

∂
∂Pr

+ Pα
∂

∂Pα
.

After the McGehee change of coordinates r = 2
x2 , the Hamiltonian is given by

H(x, α, Pr, Pα) = 1
2(P 2

r − 1
4x

4P 2
α) − x4 1 − μ

4 − 4μx2 cosα + μ2x4

− x4 μ

4 − 4x2(1 − μ) cosα + (1 − μ)2x4 − Pα.

The Liouville vector field does not change under the McGehee change of coordinates, 
but instead of a symplectic form, the underlying geometric structure is a b3-symplectic 
structure with critical set given by {x = 0} given by ω = −4dx

x3 ∧ dPr + dα ∧ dPα. We 
already checked that the Liouville vector field is everywhere transverse to the level-set 
of H and we now check that it is also transverse at the critical set.

On the critical set, the Hamiltonian is given by H = 1
2P

2
r − Pα, so that Y (H) =

P 2
r − Pα. On the level-set H = c > 0, we obtain Y (H) = 1

2P
2
r + c > 0. Hence it is 

transverse to the critical set as well, and therefore the induced b3-contact form on the 
critical set is given by α = (Pr

dx
3 + Pαdα)|H=c.
x
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The critical set of the b3-contact manifold is given by Z = {(x, α, Pr, Pα)|x = 0, 12P
2
r −

Pα = c}. Topologically, the critical set of the b3-contact manifold is given by Z =
{(x, α, Pr, Pα)|x = 0, 12P

2
r −Pα}. Topologically, the critical set is a cylinder, as solutions 

for 1
2P

2
r − Pα = c are given by Pα = 1

2P
2
r − c := Pα(Pr). The cylinder is described by 

Z = {0, α, Pr, Pα(Pr)} and hence non-compact.
According to the decomposition lemma, the b3-contact form decomposes as α =

udx
x3 + β and by Proposition 2.5, the Reeb vector field on the critical set is Hamilto-

nian for the Hamiltonian function u. The Hamiltonian function here is given by Pr. As 
the Hamiltonian vector field is contained in the level-set of the Hamiltonian, we obtain 
that both cylinder are foliated by non-trivial periodic orbits away from Pr = 0. �

A reformulation of Theorem 4.4 from a view-point of dynamical system is the follow-
ing:

Corollary 4.5. After the McGehee change in the RPC3BP, there are infinitely many non-
trivial periodic orbits at the manifold at infinity for energy values of H = c > 0 (that is 
hyperbolic motion).

Periodic orbits at infinity have been studied in the past to successfully show oscillatory 
motions in the RPC3BP, see [26], as well as to show global instability, see [11]. The result 
presented here in fact generalizes the result on the existence of periodic orbits in [11], 
where the authors consider parabolic motions. As we consider positive energy level-sets, 
the motion considered here is classically known as hyperbolic motion. The authors believe 
that the introduced techniques in this paper do not only provide understanding of the 
dynamics at the manifold at infinity, as is presented in the last result, but also away 
from the critical set by applying perturbation methods (continuation methods, KAM 
theory,...) to the set-up provided in this paper. This will be tackled in an upcoming 
paper.

4.2. b-Reeb dynamics and Beltrami vector fields

In this section we go back to the example of b-contact in the context of Euler flows 
and b-Beltrami fields. We will prove the following proposition which was explained to us 
by Daniel Peralta-Salas [43] but which we include here for the sake of completeness. The 
proof follows the lines as the proof of Proposition 27 in [44].

Proposition 4.6. Consider a closed surface Σ ⊂ M . Assume that Σ is invariant by a 
smooth vector field X. Then if X is a rotational Beltrami, its restriction X|Σ cannot be 
Hamiltonian.

Proof. Let us denote by j : Σ → M the inclusion and let us assume the opposite, that 
is that j∗X is Hamiltonian, i.e., j∗X = XH for H ∈ C∞(Σ). Then by compactness, 
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H attains its extrema on Σ and furthermore the zeros of j∗X are non-degenerate and 
therefore isolated.

To see this, let us first denote as in Subsection 3.2 α = ιXg. Note that j∗α is closed 
because ιXdα = 0 and therefore locally exact, hence there exists a function F ∈ C∞(Σ)
such that j∗α = dF . As α = g(X, ·), this is saying that the vector field j∗X is the 
gradient of F . As X is divergence free, F is in fact harmonic and therefore the critical 
points of F are isolated (see for instance [38]).

There exists hence contractible periodic orbits of X around the extrema of H on Σ. 
Let us denote by γ one of these orbits and the disk supporting γ by D. Let σ be an area 
form on the disk. By Stokes theorem and using the definition of Beltrami vector fields 
(that is curlX = fX),

0 <

∫
γ

Xds =
∫
D

curlX ·Ndσ =
∫
D

fX ·Ndσ = 0

because X is tangent to Σ. This is a contradiction and hence j∗X cannot be Hamilto-
nian. �

This result comes as a surprise in view of the following: As an outcome of Proposi-
tion 2.5 in the 3-dimensional b-contact case the Reeb vector field is tangent to the critical 
set Z and Hamiltonian along Z. Now consider the b-Beltrami case presented in Subsec-
tion 3.2. The critical set of the associated b-contact structure is an invariant manifold 
which is Hamiltonian along Z thus proving that new interesting dynamics emerge from 
the existence of the critical locus.

5. Review of classical results in Hamiltonian and Reeb dynamics

In this section, we outline a survey on the dynamical results in contact and symplectic 
geometry focusing on the Weinstein conjecture. We will review important breakthroughs 
concerning the Weinstein conjecture, the Hamiltonian Seifert conjecture, as well as an 
exposition of traps and plugs.

5.1. The Weinstein conjecture

The well-known Weinstein conjecture asserts the following:

Conjecture 5.1 (Weinstein conjecture). Let (M, α) be a closed contact manifold. Then 
there exists at least one periodic Reeb orbit.

The Weinstein conjecture is still open in full generality but has been proved in several 
cases, the most striking positive answers being Hofer’s proof in the presence of over-
twisted disks, see [2,31] and Taubes proof in dimension 3, see [50]. We are going to 
outline Hofer’s proof for overtwisted contact manifolds. See Fig. 3.
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Fig. 3. An overtwisted disk.

Definition 5.2. A 3-dimensional contact manifold (M, ξ = kerα) is called overtwisted if 
there exists a an embedded disk D2 such that the boundary of T∂D ⊂ ξ|∂D and TD ∩ ξ

defines a 1-dimensional foliation except on a unique elliptic2 singular point e ∈ intD
with TeD = ξp. The disk D is called overtwisted disk and we will denote it by DOT . The 
point e is called the elliptic singularity.

A contact manifold that is not overtwisted is called tight.
The proof is based on J-holomorphic curve techniques applied to the symplectization 

of the contact manifold (M, α). The almost-complex structure J in the symplectization 
is compatible with the contact form.

More precisely, the almost-complex structure considered in the symplectization of 
the contact manifold (M, α) is constructed as follows. First fix a complex structure Jξ
on the plane-field ξ = kerα that is compatible with α, i.e. dα(Jξ·, Jξ·) = dα(·, ·) and 
dα(·, Jξ·) > 0. We then extend the complex structure Jξ on ξ to an almost complex 
structure J on M ×R, compatible with ω = d(etα) in the following way:

• J |ξ = Jξ,
• ω(J ·, J ·) = ω(·, ·),
• ω(·, J ·) > 0,
• J( ∂

∂t ) = Rα.

A J-holomorphic curve is a map from a Riemann surface punctured in a finite set Γ
to the symplectization ũ : (Σ \ Γ, j) → (R × M, J) satisfying the non-linear Cauchy–
Riemann equation dũ ◦ j = J ◦ dũ. Given a J-holomorphic curve, the energy is defined 
by

E(ũ) = sup
φ∈C

∫
Σ\Γ

ũ∗d(φα)

2 For a precise definition of elliptic singular point, we refer to Page 55 of [2].
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where C is the set of all smooth maps φ : R → [0, 1] satisfying that φ′ ≥ 0. In what 
follows, we will always denote ũ = (a, u), where a : Σ \ Γ → R and u : Σ \ Γ → R. The 
horizontal energy, also called the dα-energy, is defined to be

Eh(u) =
∫

Σ\Γ

u∗dα.

It is clear from the definitions that Eh(u) ≤ E(ũ). Hofer proved the following result, 
reducing the quest for periodic Reeb orbits to the existence of non-constant finite en-
ergy planes. Those finite energy planes arise from a careful bubbling-off analysis à la 
Uhlenbeck–Sachs.

Theorem 5.3. Let ũ : C → R × M be a non-constant J-holomorphic plane such that 
E(ũ) < ∞. Then there exists at least one periodic Reeb orbit in M .

The J-holomorphic curve ũ as in Theorem 5.3 is called finite energy plane.
Out of the data of the overtwisted disk, Hofer proved the existence of a family of 

J-holomorphic curves emanating from the elliptic point e of the overtwisted disk DOT

that satisfy some additional properties which are key to study this family. We denote by 
D∗

OT = DOT \ {e}.

Theorem 5.4. Let D be the 2-disk. There is a continuous map

Ψ : D × [0, ε) → R×M

such that for each ũt(·) = Ψ(·, t)

(1) ũt : D → M ×R is J-holomorphic,
(2) ũt(∂D) ⊂ D∗

OT ⊂ {0} ×M for t ∈ (0, ε),
(3) ũt|∂D : ∂D → D∗

OT has winding number 1 for t ∈ (0, ε),
(4) Ψ|D×(0,ε) is a smooth map,
(5) Ψ(z, 0) = e for all z ∈ D,
(6) Ind(ũt) = 2.

The family {ũt}t∈[0,ε[ is called Bishop family. It is then studied whether or not the 
family can be extended. First, as an application of the maximum principle, the Bishop 
family restricted to the boundary is necessarily transverse to the characteristic foliation 
on the overtwisted disk and foliate a neighborhood of the elliptic singularity e by circles.

Lemma 5.5. The Bishop family is transverse to transverse to the characteristic foliation 
of the overtwisted disk ξ|D∗ ∩ TD∗

OT .

OT
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It is shown that if the gradient of ũt is uniformly bounded in the interval [0, T ], 
then the family {ut}t∈[0,ε[ can be maximally extended. However, this results leads to 
a contradiction with the transversality in Lemma 5.5. Hence the norm of the gradient 
blows-up. There are basically two different possibilities for the gradient to blow up: it 
can blow up at the boundary of the J-holomorphic disk or in the interior. A careful 
analysis then shows that in the case where the gradient blows up on the boundary, so 
called disk bubbling happens, which once more contradicts transversality of the Bishop 
family with the characteristic foliation. The only possibility is that the Bishop family 
blows up in the interior. The blow-up of the norm of the gradient in the interior of the 
disk is giving rise to bubbling phenomena. A carefully chosen reparametrization of the 
bubble converges uniformly to a non-constant finite energy plane. Hence by Theorem 5.3
there exists a periodic Reeb orbit.

5.2. Hamiltonian Seifert conjecture

Contact manifolds can be seen as a particular case of a level-set of a Hamiltonian H
in symplectic manifolds, where the Reeb flow is a reparametrization of the Hamiltonian 
flow.

In the set-up of Hamiltonian dynamics, periodic orbits are in a one-to-one correspon-
dence with the critical points of the action functional AH . The action of a contractible 
loop on a symplectic manifold (W, ω) is given by

AH(γ) =
∫
D2

u∗ω +
∫
S1

H(γ(t))dt,

where u : D2 → W is such that u(∂D2) = γ. Here γ is assumed to be periodic.
Powerful variational methods arise from the least action principle. For instance is 

known that “almost all” level-sets contain periodic orbits of the Hamiltonian flow for a 
large class of symplectic manifolds. More precisely, let us mention the following almost-
existence theorem:

Theorem 5.6 ([32]). Let (M, ω) be a symplectic manifold of finite Hofer–Zehnder capac-
ity. Then for all H : M → R such that {H ≤ a} is compact, almost all level-sets contain 
periodic orbits.

A value a of a Hamiltonian H is called aperiodic if the level {H = a} carries no 
periodic orbits and we denote by APH the set of aperiodic orbits. Theorem 5.6 can be 
restated that APH is of measure zero for many symplectic manifolds.

The Hamiltonian Seifert conjecture states that APH for H a proper, smooth function 
in (R2n, ωst) is empty. The conjecture is known to be false:

Theorem 5.7 ([22]). Let 2n ≥ 6. There exists a smooth function H : R2n → R such that 
the flow of XH does not have any closed orbits on the level set {H = 1}.
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The theorem was independently proved by Herman [30] for C2-Hamiltonian functions. 
In dimension 4, a C2-counterexample is proved in [23].

We conclude from the last two results that for many manifolds, APH is of measure 
zero but can be non-empty. In [21], the following question is raised:

Question 5.8. Let M be a symplectic manifold of bounded Hofer–Zehnder capacity and H
a smooth proper function on M . How large can the set APH of regular aperiodic values 
be?

For a review of the known results concerning this question, see [21]. The proof of 
Theorem 5.7 is based on a plug construction.

5.3. Traps and plugs

By the flow-box theorem, the flow of a non-singular vector field on a n-dimensional 
manifold locally looks like the linear flow, that is: on Dn−1 × [0, 1] the flow is given by 
Ψt : (x, s) → (x, s + t), where t ∈ R and Dn−1 denotes a disk of dimension n − 1.

Definition 5.9. A trap is a smooth vector field on the manifold Dn−1 × [0, 1] such that

(1) the flow of the vector field is given by ∂
∂t near the boundary of ∂D × [0, 1], where t

is the coordinate on [0, 1];
(2) there are no periodic orbits contained in D × [0, 1];
(3) the orbit entering at the origin of the disk D × {0} does not leave D × [0, 1] again.

If the vector field additionally satisfies entry-exit matching condition, that is that the 
orbit entering at (x, 0) leaves at (x, 1) for all x ∈ D \ {0}, then the trap is called a plug.

As a result of the flow-box theorem, traps can be introduced to change the local 
dynamics of a flow of a vector field and “trap” a given orbit. However, the introduction 
of a trap can change the global dynamical behavior drastically. A plug additionally asks 
for matching condition at entry and exit in order not to change the global dynamics of 
the vector field. The vector field in question often satisfies some geometric properties (as 
for example volume-preserving, a Reeb vector field, a Hamiltonian vector field,. . . ). The 
crux in the construction of traps and plugs is to produce a vector field satisfying the 
given geometric constraint. In this paper, we are going to tackle the question of existence 
of traps and plugs for the bm-Reeb flow.

Traps and plug have been successfully used to construct counter-example in existence 
theorem for many geometric flows. For instance, Kuperberg constructed a plug in [36] to 
find a smooth non-singular vector field without periodic orbits on any closed manifold of 
dimension 3. The special case of S3 is known as counter-example to the Seifert conjecture. 
In the contact case, by the positive answers of Weinstein conjecture, there cannot exist 
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plugs for the Reeb flow. Furthermore, it is a corollary of a theorem of Eliashberg and 
Hofer [13] that in dimension 3, Reeb traps do not exist. The same was conjectured in 
higher dimension, but Reeb traps were later proved to exist in dimension higher than 5, 
see [19].

6. On the Weinstein conjecture for bm-contact manifolds

We will see that there are examples of compact bm-contact manifolds without periodic 
Reeb orbits away from the critical set but that there always exists infinitely many periodic 
orbits on a closed critical set in dimension 3.

6.1. Existence of infinitely many periodic orbits on the critical set

As was observed in Proposition 2.5, the Reeb vector field on the critical set is a 
Hamiltonian vector field in the 3-dimensional case. This is only true in dimension 3, 
which comes from the fact that area forms are symplectic forms on surfaces. This will 
imply that on the critical set of closed bm-contact manifolds, there are infinitely many 
periodic Reeb orbits.3

Proposition 6.1. Let (M, α) be a 3-dimensional bm-contact manifold and assume the 
critical hypersurface Z to be closed. Then there exists infinitely many periodic Reeb orbits 
on Z.

Note that the critical hypersurface Z is closed if there exists a global function defining 
Z and the ambient manifold M is compact.

Proof. Let us denote the usual decomposition by α = udz
z + β. By Proposition 2.6, the 

function u is non-constant on Z. Furthermore by Proposition 2.5, the Reeb vector field 
is Hamiltonian on Z for the function −u. Let p ∈ Z be a point such that dup �= 0. As 
the preimage of a closed topological set is closed and a closed set of a compact manifold 
is compact, the level-sets are given by circles and the Reeb vector field, contained in the 
level-set, is non-vanishing in view of

ιRα
(udβ + β ∧ du) = du.

Hence the Reeb vector field is periodic on u−1(p). �
The condition of M to be closed is necessary, as it can be seen in the next example.

Example 6.2. Consider S2 × S1 \ {(pN , φ), (pS , φ)} where φ is the angular coordinate on 
S1 and (h, θ) are polar coordinates on S2 and pN (respectively pS) denotes the north 

3 The authors would like to thank Robert Cardona for pointing this out.
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pole (respectively south pole). The b-form α = dφ
sinφ +hdθ is a b-contact form whose Reeb 

vector Rα = sinφ ∂
∂φ vanishes everywhere on Z and does not admit any periodic Reeb 

orbits. However this is a non-compact example and in fact, the north and south pole 
cannot be added to compactify this example as this would yield a trivial Boothby–Wang 
fibration of S2 over S1.

We do not know if a similar result to the one in Proposition 6.1 holds in higher dimen-
sion. The dimension 3 is particular here because area forms on surfaces are symplectic.

Question 6.3. Let (M, α) be a closed (2n + 1)-dimensional bm-contact manifold and let 
Z stand for the critical set. Then there exists infinitely many periodic Reeb orbits on Z.

Remark 6.4. The induced geometry of the bm-contact structure on the critical set is 
studied in [37] in the language of Jacobi manifolds. The critical set is foliated by even 
and odd-dimensional leaves, with an induced locally conformally symplectic structure in 
the first case (see [37] for the definition), and a contact structure in the second. In the 
case where dimM = 5 and the contact leaf is compact, it admits at least one periodic 
Reeb orbit in view of the positive answer to the Weinstein conjecture.

Remark 6.5. As in the 3-dimensional compact case, bm-contact manifolds always admit 
infinitely many periodic orbits on the critical set, a first naive generalization of the 
Weinstein conjecture would be that there are always have periodic orbits away from the 
critical set. However this is not true, as we will see in the next subsection.

6.2. Non-existence of periodic Reeb orbits away from the critical set

We will see that in the presence of singularities in the geometric structure, there 
are bm-symplectic manifolds that do not admit any periodic orbit of the Hamiltonian 
vector field away from the critical set. This originates from the fact that the Weinstein 
conjecture stated as in Remark 6.5 does not hold in the singular contact set-up: there 
are compact bm-contact manifolds M with critical set Z with no periodic Reeb orbits 
away from Z. In particular, we prove that taking the symplectization, there are proper 
Hamiltonian functions on bm-symplectic manifolds having no periodic orbits for the 
Hamiltonian flow away from Z ×R.

Claim 6.6. There are compact bm-contact manifolds (M, Z) of any dimension for all 
m ∈ N without periodic Reeb orbits on M \ Z.

In what follows several examples where the Weinstein conjecture is not satisfied are 
given thus proving the claim. The first example is given by Example 2.3.

Example 6.7. Consider the example of the 3-sphere in the standard b-symplectic Eu-
clidean space (R4, ω) as in Example 2.3. The b-contact form is given by α = ιXω where 
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X is the Liouville vector field transverse to S3 given by X = 1
2x1

∂
∂x1

+y1
∂

∂y1
+ 1

2 (x2
∂

∂x2
+

y2
∂

∂y2
). The Reeb vector field is given by

Rα = 2x2
1

∂

∂x1
− x1y1

∂

∂y1
+ 2x2

∂

∂y2
− 2y2

∂

∂x2
.

On the critical set, given by S2, this vector field is giving rise to rotation. Away from 
Z, the Reeb vector field does not admit any periodic orbits. Indeed, the vector field can 
be interpreted as two uncoupled systems in the (x1, y1), respectively (x2, y2)-plane. The 
flow in the (x1, y1)-plane is clearly not periodic.

This example can be generalized to b2k+1-contact forms for any k ≥ 1 by considering 
(R4, ωst = dx1

x2k+1
1

∧dy1+dx2∧dy2) and the Liouville vector field given by X = 1
2x

2k+1
1

∂
∂x1

+
y1

∂
∂y1

+ 1
2 (x2

∂
∂x2

+ y2
∂

∂y2
) that is transverse to S3 and hence α = ιXω is a bm-contact 

form. The associated Reeb vector field does not admit any periodic orbits. The restriction 
on the parity comes from the fact that transversality of a similar Liouville vector field 
with respect to S3 fails.

The next example is given by the 3-torus, as in Example 2.4.

Example 6.8. Consider (T 3, sinφ dx
sinx + cosφdy). The Reeb vector field is given by Rα =

sinφ sin x ∂
∂x + cosφ ∂

∂y . The critical set is given by two disjoint copies of the 2-torus T 2

and the Reeb flow restricted to it is given by cosφ ∂
∂y . As in the last example, the critical 

set Z is given by periodic orbits (except when cosφ = 0, where the Reeb vector field is 
singular). However, away from Z there are no periodic orbits.

This example can be generalized to higher order singularities.

Armed with these examples we conclude that there are examples of bm-symplectic 
manifolds without periodic orbits of the Hamiltonian flow away from the critical hyper-
surface.

Claim 6.9. There are bm-symplectic manifolds with proper smooth Hamiltonian whose 
Hamiltonian flow does not have any periodic orbits away from Z.

To see this, let (M, α) be a compact bm-contact manifold without any periodic Reeb 
orbits away from the critical set and consider in its symplectization the Hamiltonian 
function et (where t is the coordinate in the symplectization). The Hamiltonian vector 
field is a reparametrization of the Reeb vector field on the level-sets and therefore provides 
an example of a proper smooth Hamiltonian containing no periodic orbits in the level-sets 
away from the critical hypersurface.

We define the set-of aperiodic values for a b-symplectic manifold (M, ω) and a Hamil-
tonian H ∈ C∞(M) as follows

bAPH := {a ∈ R|XH does not admit any periodic orbits on H−1(a) away from Z}.
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The corollary can be reformulated: on b-symplectic manifolds there is a proper smooth 
Hamiltonian such that bAPH = R.

This is in stark contrast to the almost-existence theorem (Theorem 5.6) in symplectic 
geometry. To the authors knowledge, there are no known examples of Hamiltonian having 
no periodic orbits on all level-sets (or equivalently having APH = R).

We do not know if there are compact examples without any periodic Reeb orbits, 
neither away from Z nor on Z.

Question 6.10. Are there compact bm-contact manifolds without periodic Reeb orbits nei-
ther on Z nor away from Z?

Remark 6.11. A 1-dimensional closed b-contact manifold without any non-trivial peri-
odic Reeb orbits is given by (S1, dφ

sinφ ). In this example the singularity is transferred from 
the contact form to the orbit as marked points on the circle are declared as zeroes of the 
vector field. There are topological obstructions to generalizing this example to higher 
dimensions using circle actions and transferring the singularity. This follows from the re-
mark in the Example 6.2: Higher dimensional examples without any non-trivial periodic 
Reeb orbits cannot come from a S1-action, as this would yield a trivial Boothby-Wang 
fibration. We still believe that enlarging the class of contact structures to bm-contact 
structures and thereby admitting possible vanishing points of the Reeb vector field al-
lows to construct such examples and thus a counterexample to the smooth Weinstein 
conjecture for bm-contact structures.

As mentioned before, by the positive results on the Weinstein conjecture, Reeb plugs 
cannot exist. However, the compact counterexamples in any dimension in the bm-contact 
case raise the following question:

Question 6.12. Are there plugs for bm-Reeb flows?

More precisely, given a contact manifold, can the singularization be used to change 
the contact structure by a bm-contact structure and thereby controlling the changed 
Reeb dynamics to destroy a given periodic for the initial flow? A guideline example is 
Example 6.7, where the critical set Z is given by a 2-sphere and there are no periodic 
orbits away from Z. Of course, due to Proposition 6.1, when Z is closed, there are always 
infinitely many periodic orbits on the critical set in dimension 3.

In the following section, we give a first approach towards understanding the existence 
of plugs for the bm-Reeb flow. We will see that spheres can be inserted as hypersurfaces 
in local Darboux charts. The dynamics on those spheres is given as in Example 6.7 and 
a given orbit entering the Darboux charge is being captured as it approaches one of the 
fixed points of the sphere. This will yield the existence of traps for bm-Reeb fields.
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7. On the existence of traps and plugs for bm-contact manifolds

As mentioned before, traps for Reeb flows do not exist in dimension 3, see [13], but do 
exist in higher dimensions [19]. We prove that in the b-category, there is no restriction 
on the dimension.

Theorem 7.1. There exist bm-contact traps in any dimension.

Proof. We only consider the 3-dimensional case, the higher dimensional being similar. 
Consider a Darboux ball and denote the standard contact form by αst. For convenience, 
we work in polar coordinates, in which αst writes down as αst = dz + r2dθ. The Reeb 
vector field is given by Rα = ∂

∂z .
We introduce a convex hypersurface and use the existence result, Theorem 2.7. The 

vector field X = 2z ∂
∂z + r ∂

∂r is a contact vector field as LXα = 2α and is transverse to 
the 2-sphere S2. Hence S2 is a convex hypersurface and can be realized as critical set 
of a b2k-contact manifold. More precisely, introducing in a neighborhood around S2 the 
coordinate t such that X = ∂

∂t , the contact form writes in the Giroux decomposition as 
follows:

α = g(udt + β)

where u ∈ C∞(S2), β ∈ Ω1(S2) and g is a smooth function. Note that u and β are 
independent of the t-coordinate, whereas g is not. The b2k-form is given by

αε = g(udfε + β).

In order to compute the Reeb dynamics, let us explicitly compute the functions u, g and 
the 1-form β. We introduce the following change of variables:{

∂
∂t = 2z ∂

∂z + r ∂
∂r

∂
∂ξ = r2 ∂

∂z .

The dual basis is given by {
dt = 1

rdr

dξ = 1
r2 dz − 2z

r3 dr.

Hence r = et and z = e2tξ. Under this change of variable, the Giroux decomposition of 
the standard contact form is given by

αst = e2t(2ξdt + dξ + dθ).

The b2k-contact form is given by
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Z

Fig. 4. The b2k-contact trap. The critical set Z is given by S2. Outside of the ε-neighborhood the dynamics is 
unchanged. One Reeb orbit is trapped. One orbit is depicted that does not satisfy the entry-exit condition.

αε = e2t(2ξdfε + dξ + dθ)

and a direct computation yields that the Reeb vector field associated to αε is given by

Rαε
= f ′

ε − 1
f ′
ε

e−2t ∂

∂θ
+ 1

f ′
ε

e−2t ∂

∂ξ
.

Close to the singularity, f ′
ε = 1

t2 so that on the critical set S2 = {t = 0}, the Reeb 
dynamics is given by R = ∂

∂θ . Furthermore, it follows from the formulas that the orbit 
entering the Darboux ball at θ = 0 limits to the fixed point on S2 and hence is trapped. 
See Fig. 4, where the dynamics around Z = S2 and the trapped orbit is depicted.

A similar proof holds for the case of b2k+1-contact structures, where there are two 
disjoint copies of S2 being identified as critical set to bypass the orientation issues. �

Plugs for the Reeb flow cannot exist by the positive answer to Weinstein conjecture. 
In the case of bm-contact manifolds, we exhibited examples in the last section of compact 
b-contact manifolds without any periodic Reeb orbits away from Z. Although we were 
only able to construct a trap for the Reeb flow on bm-contact manifolds, we strongly 
believe plugs exist in the singular context. In the last proof, due to the term in ∂

∂θ , the 
entry-exit condition is not satisfied, meaning that this construction only yields a trap 
and not a plug.

Note that this construction is narrowly related to Example 6.7. The dynamics on Z
of this example and of the construction in the last proof are the same. In contrast to the 
trap construction, there are no periodic orbits for the example on S3. This corroborates 
our view on the existence of plugs for bm-Reeb flows.
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8. Overtwisted singular contact manifolds and non-compact contact manifolds

While earlier sections dealt with the non-existence of periodic Reeb orbits away from 
the critical set, we will now see a sufficient condition to guarantee the existence of 
periodic orbits away from the critical set. The techniques are based on Hofer’s proof of 
the Weinstein conjecture for overtwisted contact manifolds, recalled in Subsection 5.1.

In this section, we consider bm-contact manifolds that have an overtwisted disk away 
from the critical set. In particular, we consider the manifold in this section to be of 
dimension 3. For the definition of higher dimensional overtwisted contact manifolds see 
[6,40].

Definition 8.1. We say that a bm-contact manifold is overtwisted if there exists an over-
twisted disk away from the critical hypersurface Z.

We will prove that in the case of overtwisted bm-contact manifolds Weinstein conjec-
ture holds, under the supplementary condition that α is R+-invariant around the critical 
hypersurface. Before rigorously defining this R+-invariance, let us first state the main 
theorem of this section. We will prove the following:

Theorem 8.2. Let (M, α) be a closed bm-contact manifold with critical set Z. Assume 
there exists an overtwisted disk in M \Z and assume that α is R+-invariant in a tubular 
neighborhood around Z. Then there exists

(1) a periodic Reeb orbit in M \ Z or
(2) a family of periodic Reeb orbits approaching the critical set Z.

Furthermore, the periodic orbits are contractible loops in the symplectization.

Remark 8.3. The condition of α ∈ bmΩ1(M) to be R+-invariant is a non-trivial condition, 
as is pointed out in Remark 8.5.

The proof is based on Hofer’s original arguments. The novelty here is that we work in 
a non-compact set-up, namely on the open manifold M \Z. On open manifolds, Hofer’s 
method generally does not apply. However the openness is gentle due to the R+-action. 
We will see that this theorem is a corollary of a more general statement: in fact, we do 
not need the geometric structure to be bm-contact, we only need a contact form on an 
open manifold that is R+-invariant in the open ends of the manifold and overtwisted 
away from the R+-invariant part, see Theorem 8.9.

Under those assumptions, in the R+-invariant part of the manifold, the decomposes 
as the union of products of the connected components of the compact boundary with 
R+. We will see that in this decomposition pseudoholomorphic curves can be translated 
in the R+-direction and the compactness of the boundary of compact set guarantees 
convergence. With this in mind, we define the following:
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Definition 8.4. Let α ∈ Ω1(M) be a contact form on an open manifold M . We say that α
is R+-invariant in the open ends of M if there exists a compact set K ⊂ M and a vector 
field X defined on M \ K that satisfies LXα = 0, meaning that X is a strict contact 
vector field and such that X is transverse to ∂K. We say that an R+-invariant contact 
form α is overtwisted if there is an overtwisted disk contained in K.

Remark 8.5. In the light of Definition 8.4, we will view bm-contact manifolds as open 
contact manifolds by considering the manifold without the critical set. The R+-invariance 
then translates into the fact that the bm-contact form admits a decomposition given by 
α = u dz

zm +β, where u ∈ C∞(Z) and β ∈ Ω1(Z). This decomposition was already studied 
thoroughly in [37] in the problem of existence of bm-contact structures under the name 
of convex bm-contact forms (see Definition 2.9). Not every bm-contact form is of course 
R+-invariant: for example the kernel of gα, where g ∈ C∞(M) is positive, defines the 
same contact structure as kerα, but a priori, there is no reason for the function g to be 
R+-invariant.

Example 8.6. An example of an R+-invariant bm-contact form is given by Example 2.4. 
Consider (T 3, α = sinφ dx

sinx +cosφdy). Indeed, the vector field given by sinx ∂
∂x is a strict 

contact vector field (that is it satisfies LXα = 0) and it is transverse to the critical set. 
However, this example is not overtwisted: there are no periodic Reeb orbits away from 
the critical set as we saw in Example 6.8. This example also shows that the presence of 
R+-invariance does not imply that the periodic orbits in Z can be continued away from 
the critical hypersurface.

Example 8.7. The b-contact form on S3 given by α = ιXω exhibited in Example 2.3
is not R+-invariant around the critical set. The Reeb vector field is not transverse to 
the critical set and also, in the decomposition of the b-contact form, it clearly does not 
decompose as α = udz

z + β where u ∈ C∞(Z) and β ∈ Ω1(Z).

The flow of the vector field X generates a R+-action. We often refer to M \K as the 
R+-invariant part of the contact manifold (M, α) and will denote it by Minv.

In the R+-invariant part of the contact manifold Minv, we have coordinates adapted 
to the action. Indeed, by following the flow of X, the R+-invariant part is diffeomorphic 
to ∂K ×R+, where K is the compact set with boundary as in Definition 8.4.

For our purposes, we fix notation for those coordinates in the case of maps from the 
disk D to M . Consider u : D → M and assume that for z ∈ D, u(z) ∈ Minv. We will 
write

u(z) = (d(z), w(z)) (8.8)

where d(z) ∈ R+ and w(z) ∈ ∂K. This notation will appear in the proof of the main 
theorem of this section, which is given by the following.
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Theorem 8.9. Let (M3, α) be an overtwisted R+-invariant contact manifold. Then there 
exists a 1-parametric family of periodic Reeb orbits in the R+-invariant part of M or a 
periodic Reeb orbit away from the R+-invariant part.

It is clear that Theorem 8.2 is a straightforward corollary of this theorem. Further-
more, Theorem 8.9 applies to more general open contact manifolds as is shown in the 
next example.

Example 8.10. Consider the 3-torus T 3 and consider the non-smooth 1-form given by 
α = sinφ dx

sinx +cosφ dy
sin y . The vector field sin x ∂

∂x +cos y ∂
∂y is a strict contact vector field 

and is transverse to the boundary of a tubular neighborhood of T 3 ∩ {x = 0} ∩ {y = 0}
and therefore α is a R+-invariant contact form, but is not a b-contact form.

We now sketch the proof of Theorem 8.9. As in the standard setting, we study the 
Bishop family emanating from the overtwisted disk as in Theorem 5.4 and we aim to 
prove the existence of a finite energy plane and conclude by Theorem 5.3. As in the 
standard case, the gradient blows up in the interior of the disk. However, in contrast to 
the standard proof, we distinguish two different cases.

In the first case, we assume that the sequence where the gradient blows up is con-
tained in a bounded subset of M . In this case, the standard arguments apply, and there 
a reparametrization of the bubble yields a finite energy plane contained in the symplec-
tization of the bounded subset of M . This yields the existence of a periodic Reeb orbit 
away from the R+-invariant part.

In the opposite case, the sequence of points where the gradient blows up is not 
bounded in M . Loosely speaking this means that the point of blow-up diverges in the 
non-compact R+-invariant part. This non-compactness behavior is settled by translat-
ing the J-holomorphic curves in the direction of the R+-action and therefore, in the 
decomposition as in Equation (8.8), the first term is being kept constant (so it trivially 
converges) and the second term is contained in the compact set ∂K, so Arzela–Ascoli 
theorem applies to this term. We thereby obtain a sequence of J-holomorphic disks, 
contained in the symplectization of the R+-invariant part of M , that converge to a non-
trivial finite energy plane. This yields a periodic orbit in the R+-invariant part and by 
R+-invariance therefore also a 1-parametric family of periodic Reeb orbits.

Remark 8.11. In [42], the authors prove a foliated version of the Weinstein conjecture. 
Similar to the main theorem of this section (Theorem 8.9), the leaves of the foliated space 
are not assumed to be compact, however compactness of the ambient space ensures that 
Arzela–Ascoli theorem can be applied.

We begin by collecting the necessary lemmas to prove the main theorem. The proof 
of Theorem 8.9 is then done in the subsequent subsection, Subsection 8.2.
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8.1. Necessary lemmas

We denote the overtwisted disk, that exists away from the R+-invariant part, by DOT

and denote its elliptic singularity by e. As usual D∗
OT denotes DOT \ {e}.

Compactness or non-compactness of the Bishop family {ũt} depends on the whether 
or not the gradient ∇ũt is uniformly bounded.

Lemma 8.12 (Uniform gradient bound implies compactness of family). Let (M, α) be a 
R+-invariant contact manifold. Assume that

ũt = (at, ut) : D → R×M, t ∈ [0, ε)

is a Bishop family as in Theorem 5.4 satisfying the boundary conditions as in Equation 
(8.15). Assume furthermore that

sup
0≤t<ε

‖∇ũt‖C0(D) < ∞. (8.13)

Then ũt → ũε in C∞(D) as t → ε where ũε is an embedded pseudoholomorphic disk 
satisfying ũε(∂D) ⊂ {0} ×D∗

OT .

Proof. The proof can be found in Proposition 8.1.2 in [2]. �
Let us first do a remark concerning gradient blow-ups.

Remark 8.14. As stated in the last lemma, compactness or non-compactness of the 
Bishop family {ũt} depends on the whether or not the gradient ∇ũt is uniformly bounded. 
Let us remark here that by blow-up of the gradient, we mean that the gradient of J-
holomorphic families of disk blows up for a certain parametrization of the disk.

More precisely, it is clear that if ũt : D → R ×M is a family of J-holomorphic disks 
satisfying the usual boundary conditions

ũt(∂D) ⊂ {0} ×D∗
OT and inf

0≤t<ε
dist(ut(∂D), e) > 0 (8.15)

and φ : D → D is a conformal automorphism of the unit disk, then ũt ◦ φ is also a 
J-holomorphic curve satisfying the same boundary conditions. It is well-known that the 
conformal automorphism group is of the disk is non-compact and generated by

φ(z) = eiα
a− z

1 − az
,

where α ∈ [0, 2π) and a ∈ int(D). By choosing a close to ∂D, ‖∇φ‖C0(D) becomes 
arbitrarily large. Therefore, when we say that the gradient blows up, we mean that it 
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blows up for the infimum of all possible conformal reparametrization of the disk. More 
explicitly, we mean that the quantity

e(ũt) := inf
φ∈Aut(D)

‖∇(ũt ◦ φ)‖C0(D)

goes to infinity when t → ε.

As in [2], the energy of the family ũt is bounded above by the dα-area of the overtwisted 
disk.

Lemma 8.16 (Universal upper bound on the energy). Let (M, α) be a R+ invariant contact 
manifold. Assume that

ũt = (at, ut) : D → R×M, t ∈ [0, ε)

is a Bishop family as in Theorem 5.4 satisfying

inf
0≤t<ε

dist(ut(∂D), e) > 0.

Then there exists a constant C = C(α, DOT ) > 0 such that E(ũt) < C.

Proof. See Lemma 8.1.3 in [2]. �
Similar to the arguments in [2], the horizontal energy of the family {ũt}t is bounded 

below independently of t. Note that a priori, compactness is needed in order to apply 
Arzela–Ascoli theorem. However, the limit of the Bishop family in the non-compact 
manifold M is taken care of by the R+-invariance.

Proposition 8.17 (Universal lower bound on the horizontal energy). Let (M, α) be a R+-
invariant contact manifold. Assume that

ũt = (at, ut) : D → R×M, t ∈ [0, ε)

is a Bishop family as in Theorem 5.4 satisfying

inf
0≤t<ε

dist(ut(∂D), e) > 0.

Then there exists a constant c > 0 independent of t so that

Eh(ut) :=
∫

u∗
t dα ≥ c.
D
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Proof. The proof follows the strategy of the proof of Proposition 8.1.4 in [2]. Let us argue 
by contradiction. We pick a sequence {ũtk}k such that tk → ε as k → ∞. For convenience, 
we write ũk = ũtk . We assume by contradiction that 

∫
D
u∗
kdα → 0 as k → ∞. There are 

two possibilities: either the gradient is uniformly bounded or it is not.
Case I: the gradient is uniformly bounded.
The case where the gradient is uniformly bounded is as in proof of Proposition 8.1.4: 

ũk converges in C∞ to some ṽ by Lemma 8.12 which satisfies that Eh(v) = 0. Following 
the original proof, this implies that ṽ is constant, which is a contradiction with ṽ having 
non-zero winding number.

Case II: the gradient blows up.
Let us take a sequence zk ∈ D such that

Rk := |∇ũk(zk)| → ∞

as k → ∞ and let us assume that zk → z0 ∈ D (after passing maybe to a subsequence). 
We will do the bubbling analysis à la Sacks–Uhlenbeck around the point z0 to derive 
a contradiction with the assumption that 

∫
D
u∗
kdα → 0. Due to the non-compactness 

of M , care needs to be taken in the bubbling analysis. Due to the R+-invariance, the 
non-compactness is mild and we will see that Arzela–Ascoli theorem can still be applied 
to show convergence to some J-holomorphic plane (in Subcase I) respectively to some 
J-holomorphic half plane (in Subcase II).

Take a sequence of εk > 0 such that εk → 0 and Rkεk → ∞. By Hofer’s lemma 
(Lemma 4.4.4 in [2]), we can additionally assume that

|∇ũk(z)| ≤ 2Rk if |z − zk| ≤ εk. (8.18)

We distinguish two subcases.
Subcase I: the gradient blows up in the interior.
More precisely, by this we mean that Rkdist(zk, ∂D) → ∞. We will show that in this 

case a non-trivial finite energy plane bubbles off and has zero horizontal energy, which 
leads to a contradiction.

We distinguish two further subcases, depending whether or not the gradient blows up 
in the compact subset K ⊂ M or the R+-invariant part M \K.

First, let us assume that uk(zk) remains in the compact subset K. Then the standard 
arguments as in Proposition 8.1.4 in [2] apply and lead to a non-trivial finite energy 
plane having zero horizontal energy, which is a contradiction.

Hence, we assume that uk(zk) tends to the R+-invariant part. We use the coordinates 
introduced in Equation (8.8),

ũk = (ak, dk, wk)

and we assume that dk(zk) → ∞. If this was not that case, we would be in the case 
where uk(zk) remains in the compact subset K.
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We now define the following pseudoholomorphic curves, which are a translation in 
the invariant direction of a reparametrization of ũk. We define vk(z) = uk(zk + z

Rk
) so 

that vk(0) = uk(zk) is the point where the gradient blows up. For z ∈ BRk
(−Rkzk) ∩

v−1
k (Minv), we define

ṽk(z) =
(
ak

( z

Rk
+ zk

)
− ak(zk), dk

(
zk + z

Rk

)
− dk(zk) + N,wk

(
zk + z

Rk

))
and denote the components by ṽk := (ek, fk, qk) where (fk, qk) ∈ ∂K ×R+ are the R+-
invariant coordinates. The map (fk, qk) is a translation in the R+-invariant direction of 
vk that we do in order to apply Arzela–Ascoli to the function qk that is contained in the 
compact space ∂K.

The family J-holomorphic curves ṽk satisfies

(1) |∇ṽk(0)| = 1,
(2) |∇ṽk(z)| ≤ 2 if z ∈ Ωk := BεkRk(0)(0) ∩BRk

(−Rkzk) ∩ v−1
k (Minv),

(3) ek(0) = fk(0) = 0.

Furthermore ∫
BRk

(−Rkzk)∩v−1(Minv)

(fk, qk)∗dα ≤
∫
D

u∗
kdα → 0

when k → ∞.
We claim that ∪kΩk = C. As z ∈ BεkRk

, |zk − z
Rk

− zk| < εk. As vk(zk) ∈ Minv, we 
thus obtain that for k large, vk(Ωk) ⊂ Minv. Hence for k > k0, where k0 is large, Ωk =
BεkRk(0)(0) ∩BRk

(−Rkzk) := Ω̃k. As Rkdist(zk, ∂D) → ∞, we have that ∪k≥k0Ω̃k = C.
By the C∞

loc-bounds (Theorem 4.3.4 in [2]), we conclude that (up to choosing a sub-
sequence) ṽk converges in C∞

loc to a J-holomorphic plane

ṽ = (b, v) : C → R×Minv

satisfying |∇ṽ(0)| = 1, 
∫
C v∗dα = 0. Furthermore E(ṽ) ≤ C. Indeed, let Q ⊂ C be a 

compact subset and assume k > k0 so that vk(Ωk) ⊂ Minv. We compute

sup
φ∈C

∫
Q

ṽ∗kd(φα) ≤ sup
φ∈C

∫
BRk

(−Rkzk)

Mṽ∗kd(φα) (8.19)

= sup
φ∈C

∫
D

ũ∗
kd(φα) = E(ũk) ≤ C, (8.20)

where C > 0 is such as in Lemma 8.16. We now take the limit k → ∞ and then the 
supremum over all compact sets Q ⊂ C to obtain E(ṽ) < ∞.
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By Proposition 4.4.2 in [2], ṽ is constant, which is in contradiction with |∇ṽ(0)| = 1. 
We conclude that Subcase I cannot happen.

Subcase II: the gradient blows up on the boundary.
More precisely, by this we mean that Rkdist(zk, ∂D) → l ∈ [0, ∞). We furthermore 

assume that the gradient only blows up at the boundary, that is that there does not exist 
another subsequence such that Rkdist(zk, ∂D) → ∞. If this was the case, we would be in 
Subcase I, and therefore obtain a contradiction. Due to the boundary condition ut(∂D) ⊂
DOT , we can assume that the subsequence ut is therefore contained in the compact 
subspace K ⊂ M and therefore the standard arguments of the proof of Proposition 
8.1.4 in [2] apply and shows bubbling of a non-trivial finite energy half-plane. This is in 
contradiction with the horizontal energy to be zero.

This finishes the proof of Proposition 8.17. �
Finally, the next lemma assures that bubbling does not happen at the boundary of 

the holomorphic disks.

Proposition 8.21 (Forbidding bubbling at the boundary). Let {ũt}t a Bishop family as 
before. Assume that the gradient blows up, that is

sup
0≤t≤ε

e(ũt) = ∞

where e(ũt) is given as in Equation (8.22). If t → ε and (zk)k∈N ⊂ D are sequences so 
that Rk := |∇ũtk(zk)| → ∞. Then the sequence Rkdist(zk, ∂D) is unbounded.

Proof. See Proposition 8.2.1 in [2]. �
8.2. Proof of Theorem 8.9

We continue by proving the main theorem, that is Theorem 8.9 using the collection 
of lemmas and propositions of the last subsection.

Proof of Theorem 8.9. Consider the Bishop family {ũt}t∈[0,ε) emanating from the over-
twisted disk as in Theorem 5.4. Note that the loops ũt(∂D) never intersect ∂DOT in view 
of Lemma 5.5. If e(ũt) was bounded, then by Lemma 8.12 we could continue the family 
{ũt}t beyond ε which contradicts maximality of the family. Hence e(ũt) is unbounded. 
Pick a sequence {ũk}k such that ‖∇ũk‖C0(D) → ∞ as k → ∞. We know that there are 
lower and upper bounds for the energy by Lemma 8.16 and Proposition 8.17:

c ≤ E(ũk) ≤ C.

Pick a sequence of points (zk)k∈N ⊂ D so that Rk := |∇ũk(zk)| → ∞. By Proposi-
tion 8.21, bubbling on the boundary cannot happen and we therefore can assume (after 
passing to a subsequence) that zk → z0 and Rkdist(zk, ∂D) → ∞ when k → ∞.
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Here is where the main difference with Hofer’s standard proof occurs: There are two 
possibilities: either the gradient blows up away from the R+-invariant part or it blows 
up inside the R+-invariant part. This was observed already in Proposition 8.17 and we 
repeat similar arguments here.

For the map uk(zk), this is saying that either for k large (up to a subsequence to avoid 
mixed behavior), uk(zk) can satisfy one of the two cases:

(1) uk(zk) remains away from the R+-invariant part. In this case, the standard argu-
ments apply as we can assume that uk(D) ⊂ K, where K is compact (the set K
is as in Definition 8.4). Therefore Arzela–Ascoli theorem applies, as well as the rest 
of Hofer’s arguments. This proves that there exists a periodic orbit away from the 
R+-invariant part. This proves the first part of the theorem.

(2) uk(zk) tends to the R+-invariant part. In this case, as mentioned before, we run into 
compactness issues and therefore the standard arguments do not apply directly.

In what follows, we hence assume that for k → ∞, uk(zk) tends to the R+-invariant 
part and we will prove that this implies that there is a 1-parametric family of periodic 
orbits in the R+-invariant neighborhood.

More precisely, we assume that for all k > k0, uk(zk) = (dk(zk), wk(zk)) as in Equation 
(8.8). Furthermore, we assume without loss of generality that dk(zk) → ∞. Indeed, if 
this was false, we could just enlarge the compact set K and we would be in the first case.

We will do now the bubbling analysis around the point zk as in Hofer and in order to 
apply Arzela–Ascoli theorem, we do a translation in the R+-invariant direction.

Take a sequence εk → 0 so that Rkεk → ∞. We now use the so called Hofer’s lemma 
(Lemma 4.4.4 in [2]) to additionally assume that

|∇ũk(z)| ≤ 2Rk (8.22)

for all z ∈ D with |z − zk| ≤ εk. We define for z ∈ BRk
(−Rkzk) the pseudoholomorphic 

maps vk = (bk, vk) given by

vk(z) :=
(
ak(zk + z

Rk
) − ak(zk), uk(zk + z

Rk
)
)
.

In the standard case (so also in the first case higher up), these maps are shown to 
converge to a non-constant finite energy plane using Arzela–Ascoli theorem. However, 
in this case, Arzela–Ascoli theorem does not apply because uk is not contained in a 
compact space. More precisely, vk(0) = uk(zk) and therefore vk is contained in a Minv

around the origin. To overcome this, we define the following pseudoholomorphic maps, 
which is just a translation of the previous one in the R+-invariant direction. For z ∈
BRk

(−Rkzk) ∩ v−1
k (Minv), we define:

ṽk(z) :=
(
ak(zk + z ) − ak(zk), dk(zk + z ) − dk(zk), wk(zk + z )

)
.

Rk Rk Rk
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We do this translation in the R+-invariant direction because dk(zk) → ∞. We will 
now prove that ṽk converges in C∞

loc to a non-trivial finite energy plane.
Let us denote the components of the map ṽk = (ek, vk) = (ek, fk, qk)
It is clear from the reparametrization that

ek(0) = 0, fk(0) = 0, and |∇ṽk(0)| = 1.

The advantage of the reparametrization ṽk with respect to the one given by vk is that 
the convergence of fk is being taken care of as it is fixed at the origin and Arzela–Ascoli 
theorem applies to qk(z) as it belongs to the compact set ∂K. This was not the case for 
vk.

Consider the domains Ωk := BRk
(−Rkzk) ∩BεkRk

(0) ∩ v−1
k (Minv).

For k sufficiently large, we claim that vk(Ωk) ⊂ Minv. Indeed, as z ∈ BεkRk
, |zk −

z
Rk

− zk| < εk. As vk(zk) ∈ Minv, we thus obtain that for k > k0, vk(Ωk) ⊂ Minv.
Furthermore it follows from Rkdist(zk, ∂D) → ∞ that 

⋃
k>k0

Ωk = C. The gradient 

boundedness (Equation (8.22)) translates into

|∇ṽk(z)| ≤ 2 on Ωk.

By the C∞
loc-bounds (Theorem 4.3.4 in [2]), we conclude that (up to choosing a subse-

quence) ṽk converges in C∞
loc to a J-holomorphic plane

ṽ = (b, v) : C → R×Minv

which is non-constant because |∇ṽ(0)| = 1. We compute that the energy of ṽ is finite 
using the standard arguments. Let Q ⊂ C be a compact set and take k > k0 large. We 
obtain

sup
φ∈C

∫
Q

ṽ∗kd(φα) ≤ sup
φ∈C

∫
BRk

(−Rkzk)

ṽ∗kd(φα) (8.23)

= sup
φ∈C

∫
D

ũ∗
kd(φα) = E(ũk) ≤ C. (8.24)

We now take the limit k → ∞ and take the supremum over all compact Q ⊂ C to obtain 
that E(ṽ) < ∞. Moreover the image of v lies in a compact subset of Minv, to be precise 
in {0} × ∂K since this is true for all the maps vk.

Hence we found a finite energy plane in the R+-invariant part of M , and by The-
orem 5.3 this yields a periodic orbit in Minv. By the R+-invariance, this yields a 
1-parametric family of periodic orbits in every {cst} × ∂K. �
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9. The singular Weinstein conjecture

The last subsections lead us to revisiting the standard approach in symplectic and 
contact topology to apply it in the singular set-up.

Let us consider the desingularization of almost-convex b2k-contact forms. As a con-
sequence of the desingularization theorem, Theorem 2.10, the properties related to the 
family of contact structures coming from the desingularization can be translated to prop-
erties of the initial b2k-contact form.

Lemma 9.1. Let (M, α) be an almost convex b2k-contact manifold. Consider the family of 
contact forms αε associated to the desingularization. Assume that there exists ε such that 
there is a periodic Reeb orbit of the Reeb vector field Rαε

outside of the ε-neighborhood
Nε. Then this orbit corresponds to a periodic orbit of the Reeb vector field Rα.

Proof. The desingularization does not change the dynamics outside of the ε-neighbor-
hood. �

Note that the same would hold for the desingularization of b2k+1-contact structures, 
where the resulting geometric structure would is folded contact, see [37].

Let (M, α) be an almost-convex compact b2k-contact manifold of dimension 3. Assume 
that the periodic Reeb orbits of Rαε

for fixed ε (which is known to exist due to [50]) 
crosses the tubular neighborhood Nε of Z. We will see that the desingularization changes 
the Reeb dynamics whenever the Reeb vector field is not everywhere regular or singular 
around a connected component of the critical set.

Lemma 9.2. Let (M, α) be a almost-convex b2k-contact manifold. Then in the ε-neighbor-
hood of the critical set, the Reeb flow associated to the desingularization is a reparametri-
zation of the initial Reeb flow if and only if semi-locally, the Reeb vector field is every-
where regular or everywhere singular.

Proof. As in Theorem 2.10, we write Rα = gz2k ∂
∂z + X and the expression of the 

desingularized Reeb vector field is given by Rαε
= g 1

f ′
ε

∂
∂z +X. The flow of the first one is 

a reparametrization of the second one if and only if Rα = fRαε
for a smooth function f . 

This is clearly only the case if the Reeb vector field is everywhere singular or everywhere 
regular. �

One is tempted to take the limit of ε → 0. However, the continuity of the family of 
periodic orbits with respect to ε cannot be guaranteed. Therefore, limit arguments do not 
work without any further assumptions on the b2k-contact form. A necessary condition is 
non-degeneracy for the family of contact forms {αt}t∈]0,ε].
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Fig. 5. Singular periodic orbits.

In fact, periodic orbits can be associated to critical points of the action functional

Aαε
(γ) =

∫
γ

αε

for γ in the loop space C∞(S1, M). The non-degeneracy of the family of contact 
forms {αt}t∈]0,ε] can be thought of as non-degeneracy as critical points in this infinite-
dimensional space.

Instead of working with the desingularization (whose draw-back is the restriction 
on the parity of the singularity and the non-degeneracy condition), it may be more 
appropriate to tackle the problem using variational methods but changing the variational 
set-up. The authors suspect that working with the space of piece-wise smooth loops 
instead of C∞(S1, M) could be a good starting point to capture not only periodic orbits, 
but also heteroclinic orbits that manifest themselves by introducing the aforementioned 
trap construction. To seize those two different types of orbits, we introduce the notion 
of singular periodic orbit.

Definition 9.3. Let M be a manifold with hypersurface Z. A singular periodic orbit γ is 
an orbit such that limt→±∞ γ(t) = p± ∈ Z where Rα(p±) = 0. (See Fig. 5).

Given the non-existence of periodic orbits away from the critical set as proved in 
Section 6, the question about the existence for an appropriate invariant dynamical set 
raises. It turns out that in the examples without periodic orbits away from Z, there 
always exists singular periodic orbits.

Example 9.4. Consider the b-contact manifold S3 ⊂ (R4, ω) where ω ∈ bΩ2(R4) is the 
standard b-symplectic form as in Example 2.3. As already observed, the Reeb vector field 
given by

Rα = 2x2
1

∂

∂y1
− x1y1

∂

∂x1
+ 2x2

∂

∂y2
− 2y2

∂

∂x2

admits infinitely many periodic orbits on Z = {x1 = 0} but none away from the critical 
set. However, there is a singular periodic orbit originating from the two fixed points at 
the critical surface given by (0, ±1, 0, 0). The orbit is topologically given by circle and 
dynamically speaking, it has two marked fixed points corresponding to the two fixed 
points.
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γ2

γ1

Fig. 6. Periodic orbits on the regular part (in blue) and periodic orbits going to infinity (in purple). (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Example 9.5. Consider the example of the 3-torus (T 3, sinϕ dx
sinx + cosϕdy) as in Exam-

ple 2.4. The Reeb vector field is given by

Rα = sinϕ sin x
∂

∂x
+ cosϕ ∂

∂y

has no periodic orbits away from Z and is singular on the critical set when ϕ = ±π
2 . The 

orbits outside of Z limiting to the fixed points set are all singular orbits.

An appropriate reformulation of Weinstein in the singular setting would be, that there 
either exists periodic orbits away from the critical set (as is proved under the assumptions 
as in Section 8) or a singular periodic orbit.

Conjecture 9.6 (Singular Weinstein conjecture). Let (M, α) be a compact bm-contact 
manifold. Then there exists at least one singular periodic orbit.

Note that the possible existence of bm-plugs does not contradict this conjecture: 
morally, the bm-contact plugs changes periodic orbits to singular periodic orbits. Plugs 
for the bm-Reeb flow would give rise to bm-symplectic manifolds with proper smooth 
Hamiltonian functions that do not admit periodic orbits on any level-set. Once more, 
our construction replaces periodic orbits by singular periodic orbits.

In particular if the singular Weinstein conjecture holds true in this new singular set-up 
then,

Corollary 9.7 (Corollary of singular Weinstein conjecture). Any Beltrami field in a man-
ifold with a cylindrical end has at least one of the two:

(1) a periodic orbit.
(2) an orbit that goes to infinity for t → +∞ and t → −∞.

Both situations are illustrated in Fig. 6.
The authors believe that techniques, similar to [21,23] can be adapted to give examples 

of level-sets of bm-symplectic manifolds containing no singular periodic orbit. This would 
be a counter-example to the singular Hamiltonian Seifert conjecture.
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Conjecture 9.8. Let (M, ω) be a bm-symplectic manifold. There exists a H ∈ C∞(M)
proper, smooth Hamiltonian whose level-sets do not contain any singular periodic orbits.

The definition of singular periodic orbits opens the door to an exciting brave new 
world which we are eager to explore: Can these solutions be accepted as “periodic orbits” 
in the singular context and thus can Weinstein’s conjecture be reformulated in those 
terms? Can the Rabinowitz machinery in [45] be extended to this set-up? Can a Floer 
complex be built upon the critical points corresponding to periodic orbits with marked 
singular points? Understanding these questions is an endeavor that leads to a paramount 
extension of the Floer techniques to the barely unexplored land of singular symplectic 
and contact topology and, in particular, ventures into Poisson topology.
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