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Abstract

This thesis presents the construction of the étale fundamental group of a connected scheme. We prove that
given a connected scheme X , there exists a profinite group π(X ), uniquely determined up to isomorphism,
such that the category of finite étale coverings of X is equivalent to the category of finite sets with a
continuous action of π(X ). The profinite group mentioned in this theorem is what we call the étale
fundamental group. We will also prove that it is a generalization of the Galois group to the scheme-
theoretic setting.

We start by introducing the formalism of Galois Categories, that characterizes axiomatically all the
categories that are equivalent to the category of finite sets with a continuous action of a certain profinite
group. This allows us to reduce the proof to checking that the category of finite étale coverings of a
connected scheme satisfies this set of axioms. Then we study the category of finite étale coverings, first
from an affine perspective through the concept of projective separable algebras and then in the general
case. We introduce the concept of totally split morphisms, which simplifies the treatment of finite étale
morphisms, and allows us to prove the theorem. At the end we give an explicit description of the étale
fundamental group in the case of a locally noetherian normal integral scheme of dimension one.

Resum

En aquest treball presentem la construcció del grup fonamental étale per esquemes connexos. Demostrem
que, donat un esquema connex X , existeix un grup profinit π(X ), únic llevat d’isomorfisme, tal que la
categoria de recobriments finits étales de X és equivalent a la categoria de conjunts finits amb una acció
cont́ınua de π(X ). El grup profinit esmentat és el que anomenem grup fonamental étale. També demostrem
que aquest grup és una generalització del grup de Galois per a esquemes connexos.

Comencem introduint el formalisme de Categories de Galois, que catacteritza de manera axiomàtica
les categories que són equivalents a la categoria de conjunts finits amb una acció cont́ınua d’un cert grup
profinit. Això ens permet reduir la demostració a una verificació dels axiomes. A continuació estudiem
la categoria de recobriments finits étales, en primer lloc des del punt de vista af́ı a través del concepte
d’àlgebres projectives separables, i després en el cas general. Introdüım el concepte de morfismes totalment
descomposats, que simplifica el tractament dels morfisimes finits étales i ens permet demostrar el teorema.
Finalment, donem una descripció expĺıcita del grup fonamental étale pel cas d’un esquema normal, ı́ntegre
i localment noetherià de dimensió u.

Resumen

En este trabajo presentamos la construcción del grupo fundamental étale para esquemas conexos. De-
mostramos que, dado un esquema conexo X , existe un grupo profinito π(X ), único salvo isomorfismo, tal
que la categoŕıa de recubrimientos finitos étales de X es equivalente a la categoŕıa de conjuntos finitos con
una acción continua del grupo π(X ). Este grupo π(X ) es el que denominamos grupo fundamental étale.
Tambén demostramos que dicho grupo es una generalización del Grupo de Galois en el contexto de los
esquemas conexos.

Empezamos introduciendo el formalismo de las Categoŕıas de Galois, que caracteriza de forma ax-
iomática todas aquellas categoŕıas que son equivalentes a la categoŕıa de conjuntos finitos con una acción
continua de un cierto grupo profinito. Esto nos permite reducir la demostración a una verificación de los
axiomas. A continuación, estudiamos la categoŕıa de recubrimientos finitos étales, en primer lugar desde
un punto de vista af́ın, y luego de forma general. Introducimos el concepto de morfismos totalmente
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descompuestos, que simplifica el tratamiento de los morfismos finitos étales y permite probar el teorema.
Finalmente, damos una descripción expĺıcita del grupo fundamental étale para el caso de un esquema
ı́ntegro, normal y localmente noetheriano de dimensión uno.
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Introduction

This thesis is an study of the construction of the étale fundamental group of a connected scheme. Roughly
speaking, given a connected scheme X we will assign to it a profinite group π(X ) that totally characterizes
the finite étale coverings of X , that is, the set of finite étale morphisms of schemes with target X . To
give a precise definition of finite étale morphisms of schemes, we need to introduce the concept of free
separable algebras.

Definition. Let A be a ring, B an A-algebra that is free and finitely generated as an A-module. For every
b ∈ B we can define an A-linear map mb : B → B by mb(x) = bx . Denoting by TrB/A(b) the trace of this
morphism, this defines an A-linear map TrB/A : B → A. Then, we say that B is a free separable A-algebra
if the A-linear map

ϕ : B −→MorA(B, A)

b 7−→ ϕ(b) : B −→ A

x 7−→ (ϕ(b))(x) = Tr(bx)

is an isomorphism of A-modules.

Definition. A morphism of schemes f : Y → X is called finite étale if there exists a covering of X by open
affine subsets Ui = Spec(Ai ) such that f −1(Ui ) = Spec(Bi ), where Bi is a free separable Ai -algebra.

Given a scheme X , we define the category of finite étale coverings of X as follows:

• Objects: Finite étale morphisms of schemes with target X.

• Morphisms: Given two objects f : Y → X and g : Y ′ → X , a morphism from f to g is a morphism

of schemes h : Y → Y ′ satisfying f = gh, i.e. making commutative the diagram
Y Y ′

X

h

f
g

Then, the assignation X 7→ π(X ) arises from the proof of the following theorem:

Theorem. Let X be a connected scheme. Then there exists a unique profinite group π, uniquely determined
up to isomorphism, such that the category of finite étale coverings of X is equivalent to the category of
finite sets on which π acts continuously.

The underlying idea is analogous to the procedure of Galois Theory for fields, where for a given field
K , one builds a profinite group -the absolute Galois group of K - which totally characterizes the separable
extensions of K . Moreover, it will be seen in Section 2.7 that this is more than an analogy, and that the
theory of the étale fundamental groups of connected schemes generalizes the classical Galois Theory for
fields.

After an introductory section with some background (Section 1), in Section 2 we introduce Grothendieck’s
formalism of Galois Categories, which characterizes axiomatically the categories that are equivalent to the
category of finite sets on which π acts continuously, for some profinite group π. Then the statement
of the theorem reduces to verifying that the finite étale coverings of X form a category which satisfies
Grothendieck’s axioms. Sections 3 and 4 are dedicated to the study of finite étale coverings: Section
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3 deals with the affine algebraic setting of finite étale morphisms, and in Section 4 this information is
translated to the scheme-theoretic setting and we prove the theorem.

We will expose the theory behind the construction of the étale fundamental group given by Lenstra in
[5]. Therefore, the proofs of the auxiliary results that are left for the reader in [5] are the only original
part of this thesis. We assume some basic background from commutative algebra ([1]) and scheme theory
([3], Chapter II, Sections 1-5). However, whenever we use results from these books, the particular result
will be pointed out. Sometimes we will use results that are stated but not proved in [3] or [1]. When this
happens, a proof can be found in Appendix A.2.
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1. Background knowledge

1.1 Categories

This section contains a very basic introduction to Category Theory, based on [4]. We also give the definitions
of some objects that are involved in the axioms of Galois Categories, which are needed in Section 2.

Definition 1.1. A category 1 C consists of

1. A set of objects, denoted Ob(C),
2. ∀A, B ∈ Ob(C), a set of morphisms, denoted MorC(A, B)
3. ∀A, B, C ∈ Ob(C), a map

MorC(A, B)×MorC(B, C )→ MorC(A, C )

which is denoted (f , g) 7→ g ◦ f , and is called the composition of g with f .

Satisfying that following properties:

1. The composition is an associative operation, that is, given f ∈ MorC(A, B), g ∈ MorC(B, C ),
h ∈ MorC(C , D) we have h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

2. ∀A ∈ Ob(C), ∃idA ∈ MorC(A, A) satisfying that ∀B ∈ Ob(C) and f ∈ MorC(A, B), f ◦ idA = f and
∀f ∈ MorC(B, A), idA ◦ f = f .

A morphism f ∈ MorC(A, B) is usually denoted as an arrow f : A→ B. We say that f : A→ B is an
isomorphism if it has an inverse: There exists g : B → A such that g ◦ f = idA and f ◦ g = idB . The set
of automorphisms of A, denoted AutC(A) is the set of invertible elements of MorC(A, A), and is a group
under composition.

Definition 1.2. Let C be a category. The opposite category to C, denoted Cop, is the category whose
set of objects is Ob(Cop) = Ob(C), and for any two objects A, B ∈ Ob(Cop), its set of morphisms is
MorCop(A, B) = MorC(B, A).

Let C, C′ be two categories.

Definition 1.3. A functor from C to C′ consists of

1. A map F : Ob(C)→ Ob(C′),
2. ∀A, B ∈ Ob(C), a map F : MorC(A, B)→ MorC′(F (A), F (B)) satisfying

(a) ∀A ∈ Ob(C), F (idA) = idF (A)

(b) ∀A, B, C ∈ Ob(C), and f : A→ B, g : B → C , F (g ◦ f ) = F (g) ◦ F (f )

A contravariant functor from C to C′ is a functor from Cop to C′.

Definition 1.4. Let F , G : C → C′ be two functors. A morphism of functors σ : F → G is a set of
morphisms (σA)A∈Ob(C), σA : F (A) → G (A) such that for every f : A → B the following diagram is

1In fact, this is the definition of a small category. In general, the objects of a category can form a class (a collection which
is ”bigger” than a set). The difference is subtle and comes from set theory. As we will see, we are only interested in small
categories. Therefore, we will specify it when we require a category to be small, but we will not give a detailed treatment of
this distinction.
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commutative:

F (A) F (B)

G (A) G (B)

F (f )

σA σB

G(f )

Remark 1.1. Given two categories C, C′, the functors from C to C′ form a category, where the objects
are functors and the morphisms are morphisms of functors. This allows us to speak about isomorphisms
between functors and automorphisms of functors.

Definition 1.5. A functor F : C → C′ is an equivalence of categories if ∃G : C′ → C and isomorphisms
of functors σ : G ◦ F → idC and ε : F ◦ G → idC′ . If an equivalence of categories exists between C and C′

we say that C and C′ are equivalent.

If a contravariant functor F : C→ C′ is an equivalence of categories, we say that it is an antiequivalence
of categories, and that C and C′ are antiequivalent.

Proposition 1.1. F : C → C′ is an equivalence of categories if and only if the two following conditions
are satisfied:

i) Every object in C′ is isomorphic to one of the form F (A), for a certain A ∈ C.
ii) For any A, B ∈ Ob(C), F induces a bijective map MorC(A, B)→ MorC′(F (A), F (B)).

Proof. ⇒ Let F : C → C′ and G : C′ → C be the functors of the equivalence of categories. Let
X , Y ∈ Ob(C′), A, B ∈ Ob(C). Then ∃ isomorphisms of functors σ, ε that make commutative the
following diagrams, ∀f : A→ B and ∀g : X → Y .

A B

GF (A) GF (B)

f

σA σB

GF (f )

X Y

FG (X ) FG (Y )

g

εX εY

FG(g)

First note that X ∼= FG (X ), so (i) is satisfied by taking A = G (X ).

Now let’s proceed to prove (ii). Suppose that we have F (f1) = F (f2). Then, f1 = σ−1
B GF (f1)σA =

σ−1
B GF (f2)σA = f2. This proves that the map F : MorC(A, B) → MorC′(F (A), F (B)) is injective. The

same reasoning shows that G yields an injective map G : MorC(F (A), F (B)) → MorC′(GF (A), GF (B)).
Moreover, the map MorC(A, B) → MorC′(GF (A), GF (B)), f 7→ GF (f ) is bijective, and in particular
injective.

Then let g ∈ MorC′(F (A), F (B)) and f := σ−1
B G (g)σA ∈ MorC(A, B). F (f ) ∈ MorC′(F (A), F (B)),

and σ−1
B G (g)σA = f = σ−1

B GF (f )σA, so by the injectivity of the maps shown above, we have g = F (f ),
and so (ii) is also satisfied.

⇐ By (i) we have that every X ∈ Ob(C′) is isomorphic to one of the form F (A) for a certain
A ∈ Ob(C). Let θX : X → F (A) denote this isomorphism. Suppose that we have Y ∈ Ob(C′), Y ∼= F (B),
and g : X → Y . Then, define G : C′ → C by G (X ) = A, and G (g) = φ−1

A,B(θY gθ−1
X ), where φAB is the

bijection MorC(A, B)→ MorC′(F (A), F (B)) given by F .

Note that G is a functor because F is a functor, and so the maps φA,B send the identity to the
identity and behave well with respect to compositions, that is φA,C (g ◦ f ) = φB,C (g) ◦ φA,B(f ). In
particular, the maps φAB send isomorphisms to isomorphisms. Then we define ∀B ∈ Ob(C), εB =
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φ−1
B,GF (B)(θF (B)) = G (θY ) : B → GF (B), which is an isomorphism. Given a morphism f : A→ B we have

ε−1
B GF (f )εA = G (θ−1

Y F (f )θX ), so applying the definition of G we have that ε−1
B GF (f )εA = φ−1

AB(F (f )) = f .
On the other hand, every g : X → Y is of the form F (f ) for a certain f , and satisfies FG (g) = FGF (f ) =
F (φ−1

AB(θY gθ−1
X )) = θY gθ−1

X . In conclusion, we have built a functor G : C′ → C and isomorphisms of
functors θ = (θX )X∈Ob(C′), ε = (εA)A∈Ob(C) that make F into an equivalence of categories.

Definition 1.6. We say that Z ∈ Ob(C) is terminal if ∀A ∈ Ob(C) ∃! morphism f ∈ MorC(A, Z ). A
terminal object is usually denoted by 1.

Definition 1.7. We say that Z ∈ Ob(C) is initial if ∀A ∈ Ob(C)∃! morphism f ∈ MorC(Z , A). An initial
object is usually denoted by 0.

Definition 1.8. Let X , Y , S ∈ Ob(C), and let f : X → S , g : Y → S be morphisms. The fibred product
of X and Y over S (built with respect to f and g) is a triple (X ×S Y , p1, p2), with X ×S Y ∈ Ob(C),
p1 : X×S Y → X , and p2 : X×S Y → Y morphisms called projections, such that p1, p2 make commutative
the diagram with f and g , and the following property is satisfied: ∀Z ∈ Ob(C) and morphisms h1 : Z → X ,
h2 : Z → Y making commutative the diagram with f and g , ∃!θ : Z → X ×S Y such that makes the
following diagram commutative:

Z

X ×S Y X

Y S

h1

h2

θ

p1

p2 f

g

If S is a terminal object in C, the fibred product is called just product and it is denoted X × Y . It
is trivial that it satisfies the following universal property: ∀Z ∈ Ob(C) and morphisms h1 : Z → X ,
h2 : Z → Y , ∃!θ : Z → X × Y such that h1 = p1θ and h2 = p2θ. In this situation, we usually denote
θ = (h1, h2).

Definition 1.9. Let (Xi )i∈I be a collection of objects in C. The sum of the objects (Xi )i∈I is a pair
(
∐

i∈I Xi , (qi )i∈I ), where
∐

i∈I Xi ∈ Ob(C) and (qi )i∈I is a set of morphisms, one for each i ∈ I , qi : Xi →∐
i∈I Xi that satisfy the following property: ∀Y ∈ Ob(C), and (fi )i∈I collection of morphisms fi : Xi → Y ,
∃!f :

∐
i∈I Xi → Y such that ∀i ∈ I makes commutative the diagram

Xi
∐

i∈I Xi

Y

qi

fi
f

We say that the sum is finite if #I <∞.

Definition 1.10. Let X ∈ Ob(C) and G ⊂ AutC(X ) a finite subgroup. The quotient of X by G is a pair
(X/G , p), where X/G ∈ Ob(C) and p : X → X/G is a morphism satisfying p = pσ ∀σ ∈ G , such that
∀Y ∈ Ob(C) and f : X → Y satisfying f = f σ ∀σ ∈ G , ∃!f ′ : X/G → Y making the following diagram
commutative

X X/G

Y

p

f
f ′

9



Definition 1.11. Let X , Y ∈ Ob(C) and f , g : X → Y . We say that the pair (E , θ), with E ∈ Ob(C) and
θ : E → X is an equalizer of f and g if ∀Z ∈ Ob(C) and h : Z → X satisfying fh = gh, ∃!h′ : Z → E such
that the following diagram commutes:

Z X Y

E

h

h′

f

g

θ

Remark 1.2. The objects just defined may not exist in certain categories. However, it can be seen that all
of them are unique up to isomorphism if they exist. See Appendix A.1 for the proofs of these uniquenesses.

Proposition 1.2. Let C be a category such that a terminal object exists in C, and the fibred product of
any two objects over a third one exists in C. Then any pair of morphisms f , g : X → Y in C has an
equalizer.

Proof. Let f , g : X → Y and h : Z → X satisfying fh = gh, and let ((X ×Y X ), (p1, p2)) be the fibred
product with respect to f , g . Now consider the maps a = (id, id) : X → X × X and b = (p1, p2) :
X ×Y X → X × X . Let’s build the fibred product of X and X ×Y X over X × X with respect to the
maps a, b: (X ×X×X (X ×Y X ), (q1, q2)). Then, given h : Z → X satisfying fh = gh, ∃!θ which makes the
following diagram commutative:

Z

X ×Y X X

X Y

h

h

θ

p1

p2 f

g

As we have (p1θ, p2θ) = (h, h), ∃!χ making commutative the following diagram:

Z

X ×X×X (X ×Y X ) X

X ×Y X X × X

h

θ

χ

q1

q2 a

b

Reciprocally, any such θ in the second diagram must satisfy p1θ = p2θ = h and so arises from the first
diagram. Then, the pair (X ×X×X (X ×Y X ), q1) satisfies that for every Z ∈ Ob(C) and any morphism
h : Z → X satisfying fh = gh, ∃!χ : Z → X ×X×X (X ×Y X ) satisfying q1χ = h, so it is an equalizer of
f , g .

Definition 1.12. Let A, B ∈ Ob(C), and f : X → Y a morphism. We say that f is an epimorphism if
∀Z ∈ Ob(C) and morphisms h1, h2 : Y → Z satisfying h1f = h2f we have h1 = h2. Similarly, we say that
f is a monomorphism if ∀g1, g2 : Z → X satisfying fg1 = fg2 we have g1 = g2.

Definition 1.13. Given X , Y ∈ Ob(C), and q1 : X → Y , we say that q1 is an isomorphism of X with a
direct summand of Y if ∃Z ∈ Ob(C) and q2 : Z → Y such that Y = X q Z , with morphisms q1, q2.

10



1.2 Profinite groups

Definition 1.14. Let I be a partially ordered set. We say that I is directed if for any pair i , j ∈ I , ∃k ∈ I
such that k ≥ i , k ≥ j .

Definition 1.15. A subset of a partially ordered set is called cofinal if ∀i ∈ I ∃j ∈ J such that j ≥ i .

Definition 1.16. A projective system is a triple (I , (Si )i∈I , (fij)i≥j), where I is a directed partially ordered
set, (Si )i∈I a collection of sets (one for each i ∈ I ), and for each i , j ∈ I , i ≥ j , fij : Si → Sj is a map
satisfying

1. fii = idSi for every i ∈ I
2. fik = fjk ◦ fij for every i , j , k ∈ I with i ≥ j ≥ k

Definition 1.17. Given a projective system (I , (Si )i∈I , (fij)i≥j), the projective limit of the system, denoted
lim←−i∈I Si is the set

lim←−
i∈I

Si =

{
(xi )i∈I ∈

∏
i∈I

Si such that fij(xi ) = xj ∀i ≥ j

}

Observation 1.1. If Si are groups and fij are group homomorphisms, then lim←− Si has a natural group
structure. If Si are topological spaces, lim←− Si can be made into a topological space by giving the product
topology to

∏
i∈I Si and lim←− Si the induced topology.

Proposition 1.3. Let (I , (Si )i∈I , (fij)i≥j) be a projective system, with (Si )i∈I non-empty compact Hausdorff
spaces, and fij continuous maps. Then lim←− Si is non-empty, compact and Hausdorff.

Proof. By the Thikonov theorem, the product of compact spaces is compact, so
∏

i∈I Si is compact.

If fij are continuous, and Sj is Hausdorff, then Sj \ {xj} is open in Sj , and f −1
ij (Sj \ {xj}) is open,

which implies that C ′ij := {(xi , xj) ∈ Si × Sj such that fij(xi ) = xj} is closed. Then, as the projection∏
i∈I Si → Si × Sj is continuous, the preimage of the set C ′ij (denoted Cij) is closed in

∏
i∈I Si . By

definition lim←−i∈I Si =
⋂

i≥j Cij and so the projective limit is closed in
∏

i∈I Si , and therefore compact.

Moreover, if lim←−i∈I Si = ∅, the complements of Cij (let’s denote them Uij), form an open cover of∏
i∈I Si . By compactness, we can extract a finite subcover {Ui1,j1 , ... , Uin,jn}. But as the set is directed,

take l ≥ ik∀k = 1, ... , n, take x ∈ Sl and let xik = flik (xl) and xjk = fljk (xik ), and xt arbitrary for all other
index. Then, this element belongs to

∏
i∈I Si but is not in any of the sets Uik jk , which is a contradiction

that implies lim←−i∈I Si 6= ∅.

Finally, the product of Hausdorff spaces is Hausdorff, and any subspace of a Hausdorff space with the
induced topology is also Hausdorff.

Definition 1.18. A profinite group π is a group that is isomorphic to the projective limit of a system of
finite groups {πi}. If we turn every πi into a topological space by giving it the discrete topology, π has
also a structure of topological space. An homomorphism of profinite groups is just a homomorphism of
topological groups.

Observation 1.2. Using Proposition 1.3, and the fact that the discrete topology in a finite set is a compact
Hausdorff topology, it is clear that every profinite group is a compact Hausdorff space. Therefore, every
continuous and bijective group morphism between profinite groups is also a homeomorphism, and therefore
an isomorphism of profinite groups.
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Example 1.1. • Every finite group can be seen to be isomorphic to the projective limit of the system
{G/H}H , where H are the normal subgroups of G , ordered by G/H ≥ G/H ′ ⇐⇒ H ′ ⊇ H and with
projection transition maps. Therefore every finite group is profinite.

• Consider p a prime number, I the set of positive integers ordered in the usual way. The groups
(Z/pnZ)n>0, with usual projection transition maps, form a projective system whose limit is the set
of p-adic integers lim←−Z/pnZ = Zp.

Proposition 1.4. If (πj)j∈J are profinite groups, then
∏

j∈J πJ is a profinite group.

Proof. Let πj = lim←−i∈Ij
πi , with transition maps f j

nm. Consider κ the set of sets of the form K = {ij1 , ... , ijn}
where each jm ∈ J and ijm ∈ Ijm . Consider also the system of finite groups τK = (

∏
i∈K πi )K∈κ. Let’s

define an order in κ by K ≥ K ′ ⇐⇒ ∀i ∈ K ′, and i ∈ Ij ,∃l ∈ Ij ∩K such that l ≥ i in Ij . If K ≥ K ′, let’s

define the morphism of groups fKK ′ as the product of the transition maps f j
li .

Then lim←−K∈κ τK is a profinite group. Note that an element of lim←−K∈κ τK is totally determined by the

coordinates K = {i} where i ranges over all possible indexes in
∐

Ij . Then, we can define a natural group
homomorphism from lim←−K∈κ τK →

∏
j∈J
∏

i∈Ij πi by the identity on each respective index i . That map has

image
∏

j∈J πj and is injective. Therefore, lim←−K∈κ τK
∼=
∏

j∈J πj , which concludes the proof.

Proposition 1.5 (Subgroups of profinite groups). Let π = lim←−i∈I πi be a profinite group, and π′ ⊂ π a
subgroup of π. Then

i) π′ is open ⇐⇒ π′ is closed and of finite index.
ii) π′ is closed ⇒ π′ is profinite

Proof. i) As π is a topological group, fixed an a ∈ π, the map ma : π → π defined by σ 7→ aσ is
continuous. Then, if π′ is open, all the cosets gπ′ are open. Therefore, π′ = π \

⋃
g /∈π′ gπ

′, and so
π′ is closed. Moreover, as π is compact, we can extract a finite cover from the open cover

⋃
g∈π gπ′,

and so π′ has finite index. Reciprocally, if π′ is closed and of finite index, we have π′ = π \
⋃n

i=1 giπ
′,

and so π′ is open.
ii) Let π′ = π \ (π ∩

⋃
α∈Γ Vα), where Vα = (

∏
i∈Jα Ui ×

∏
i /∈Jα πi ) for certain Jα finite subsets of I .

Now fix an α and let V = Vα. Using that the set I is directed, we can take l ≥ j , ∀j ∈ Jα, and let
Ul = {x ∈ πl such that fli (xl) ∈ Ui ,∀i ∈ Jα}.
Then π ∩ V = π ∩ (

∏
i 6=l πi × Ul). Now denote by lα the corresponding index for each set Vα.

Then, π′ = π ∩
∏

i∈I Ci , where Clα = πlα \ Ulα and Ci = πi if i 6= lα for any α ∈ Γ. Now take
ρi = {x ∈ Ci such that ∃z ∈ π′ with zi = x}. We have π′ = π ∩

∏
i∈I ρi , where each ρi is a

subgroup of πi . Then, we have π′ ∼= lim←−i∈I ρi , where the morphisms are the restrictions of fij to ρi .

We also state two more properties of profinite groups (without proof) that we will need at a certain
point.

Proposition 1.6 ([7], Proposition 1.1.10). Let (I , (πi )i∈I , (fij)i≥j) be a projective system of finite groups,
with fij surjective morphisms. Let π be the projective limit of the system. Then, the projection morphisms
fi : π → πi are surjective.

Proposition 1.7 ([2], Corollary 1). i) In a compact, totally disconnected group, every neighbourhood
of 1 contains an open normal subgroup.

ii) If G is a profinite group, G ∼= lim←−G/H, where H runs through all open normal subgroups of G .

12



1.2.1 π-sets

Definition 1.19. Let π be a profinite group. A π-set is a set E equipped with an action π× E → E , that
is continuous if we give E the discrete topology. A morphism of π-sets is a map f : E → E ′ satisfying
f (σe) = σf (e), ∀σ ∈ π, e ∈ E .

It is immediate from these definitions that π-sets form a category. The finite sets with a continuous
action of π also form a category, that we will denote π-sets. We are mainly interested in finite π-sets, so
unless otherwise stated, when we refer to a π-set we are assuming that it is finite.

Observation 1.3. We should also note that a bijective morphism of π sets is an isomorphism: Indeed,
let f : E → E ′ be a bijective morphism of π-sets, and let e ′ = f (e). Then, f −1(σe ′) = f −1(σf (e)) =
f −1(f (σe)) = σe = σf −1(e ′).

Proposition 1.8. Let π be a profinite group (not necessarily finite) acting on a set E . Then,

i) The action is continuous ⇐⇒ ∀e ∈ E the stabilizer πe = {σ ∈ π : σe = e} is open in π.
ii) If E is finite, the action is continuous ⇐⇒ the kernel of the action, {σ ∈ π : σe = e ∀e ∈ E} is

open in π.
iii) Any finite transitive π-set is isomorphic to π/π′ for a certain π′ open subgroup of π.

Proof. i) Let A : π × E → E denote the action. Let e ∈ E . If the action is continuous, the set
U = A−1({e}) = {(σ, g) such that σg = e} is open. Then, U ∩ (π × {e}) = πe is also open.
Reciprocally, let πe denote the orbit of e ∈ E . Let e ′ ∈ πe, and τe′ ∈ π such that τe′e = e ′. Then,
m−1
τe′

(πe) = {σ : σe ′ = e} is open. Then, A−1({e}) =
⋃

e′∈πe(m−1
τe′

(πe)× {e ′}) is open, and so the
action is continuous.

ii) The kernel of the action (denoted π′) is the intersection of all the stabilizers. If E is finite, then if
the stabilizers are open the kernel is also open. Reciprocally, using Proposition 1.5, we know that
π′ has finite index. Let (τi )

n
i=1 be the representatives of the different classes, and suppose that for

i = 1, ... , m, with m ≤ n, we have τie = e ⇒ τiπ
′e = e. Then πe =

⋃m
i=1 τiπ

′, and so the stabilizers
are open.

iii) Let e ∈ E and let π′ = πe . Then, consider the morphism of π-sets f : π/π′ → E given by f (π′) = e,
and f (σπ′) = σe. It is a well defined morphism of π-sets and it is surjective, because E is transitive. It
is also injective: Indeed, let τ ,σ such that f (τπ′) = f (σπ′)⇒ σe = τe ⇒ τ−1σe = e ⇒ τ−1σ ∈ π′,
and so they’re representatives of the same class ⇒ f is injective. In conclusion, f is an isomorphism
of π-sets.

13



2. Galois Categories

Definition 2.1. Let C be a category and F : C→ sets a functor from C to the category of finite sets. We
say that the pair (C, F ) is a Galois category, or that C is a Galois category with fundamental functor F , if
the following axioms are satisfied:

G1 There is a terminal object in C and the fibred product of any two objects over a third one exists in
C.

G2 An initial object exists in C, finite sums exist in C, and for any object in C the quotient by a finite
group of automorphisms exists.

G3 Any morphism u in C factors as u = u′u′′ , where u′ is a monomorphism and u′′ is an epimorphism.
Every monomorphism f : X → Y in C is an isomorphism of X with a direct summand of Y .

G4 The functor F transforms terminal objects into terminal objects and commutes with fibred products.
G5 The functor F transforms initial objects into initial objects, commutes with finite sums, sends epi-

morphisms to epimorphisms and commutes with passage to the quotient by a finite group of auto-
morphisms

G6 If u is a morphism in C such that F (u) is an isomorphism, then u is an isomorphism.

2.1 Examples of Galois Categories

Example 2.1. The pair (sets, id), where sets is the category of finite sets and id the identity functor, is a
Galois Category.

Proof. It is immediate that the identity functor satisfies G 4−G 6, so we just have to check that the axioms
G 1− G 3 are satisfied in sets.

G1 One-element sets are terminal objects in sets.

Given X , Y , S finite sets, and morphisms f : X → S , g : Y → S , the set Z = {(x , y) ∈ X ×
Y such that f (x) = g(y)}, together with morphisms p1 : Z → X , (x , y) 7→ x and p2 : Z → Y ,
(x , y) 7→ y is a fibred product of X and Y over S . Indeed, the projection morphisms form a
commutative diagram with f , g , as every pair (x , y) ∈ Z satisfies that f (x) = g(y). Moreover, given
any finite set T and morphisms h1 : T → X , h2 : T → Y satisfying fh1 = gh2, there is a map
θ : T → Z given by t 7→ (h1(t), h2(t)), which satisfies piθ = hi . It is the unique map with that
property: Indeed, if we had another map T → Z with this property, and given t ∈ T we denote its
image in Z by (x , y), piθ = hi ⇒ x = h1(t), y = h2(t). In conclusion this proves that the fibred
product of any 2 objects over a third one exists in C.

G2 sets has an initial object, which is the empty set ∅: Given any finite set X , there is a unique map
(the void map) from ∅ to X .

Given a finite collection of sets (Xi )
n
i=1, we can take the disjoint union of the sets X =

∐n
i=1 Xi , and

together with the inclusion maps qi : Xi → X , we will check that this is the sum of the (Xi )
n
i=1.

Indeed, given an object Z , and maps fi : Xi → Z , there is a unique map f : X → Z satisfying
fi = fqi , which is given by f (x) = fi (x) if x ∈ Xi . This proves that sets has finite sums.

Given a finite set X and a subgroup of automorphisms G ⊆ Aut(X ), consider the set X/G to be
the set of orbits of X under G , that is, the set of elements of X with the equivalence relation that
x ∼ y ⇐⇒ ∃σ ∈ G such that σ(x) = y . Let’s denote by p the projection map that sends every
element to its class. It is clear that p = pσ ∀σ ∈ G . A morphism f : X → Y such that f = f σ
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satisfies that every element in an orbit has the same image by f , so this defines a map g : X/G → Y
given by g(x) = f (x), and this map is clearly unique. This proves that the quotient of X by any
finite group of automorphisms exists in sets.

G3 First we will prove that in sets a map is an epimorphism if and only if it is surjective, and that it is a
monomorphism if and only if it is injective. Let f : X → Y be a surjective map between finite sets,
and g , h : Y → Z satisfying hf = gf . Let y ∈ Y . Then y = f (z) for a certain z and so we have
hf (z) = gf (z) ⇒ h(y) = g(y). This proves that h = g and so f is an epimorphism. Reciprocally,
suppose that we have an epimorphism f : X → Y . Then consider the maps h, g : Y → {0, 1} such
that g(y) = 1 ∀y ∈ Y and h(y) = 1 if y ∈ f (X ) and h(y) = 0 if y /∈ f (X ). We do have gf = hf ,
so as f is an epimorphism we have that g = h, which allows us to conclude that f (X ) = Y , i.e. f
is surjective. Now let f : X → Y be an injective map, and let g , h : Z → X satisfying fh = fg . If
there exists a z ∈ Z , such that h(z) 6= g(z) that means that fg(z) 6= fh(z) by injectivity, which is a
contradiction. In conclusion we have g = h and f is a monomorphism. Reciprocally, suppose that
f : X → Y is a monomorphism. If it is not injective, ∃x , y ∈ X such that f (x) = f (y). Then, let
g : X → X be the identity, and h : X → X given by h(x) = y , h(y) = x , and h(x ′) = x ′∀x ′ 6= x , y .
Clearly fg = fh but g 6= h, which is a contradiction that proves that f is injective.

Now it is clear that every morphism factors as the composition of an epimorphism and a monomor-
phism, as every morphism of sets is a surjection followed by an injection: X → f (X )→ Y . Moreover,
given a monomorphism f : X → Y (that is, an injective map), we have that Y = f (X )q (Y \ f (X )),
so every monomorphism X → Y is an isomorphism of X with a direct summand of Y .

Example 2.2. The category π-sets of finite sets endowed with a continuous action of a profinite group π,
is a Galois category with fundamental functor F : π-sets→ sets being the forgetful functor.

Proof. G1 Terminal object: One-element sets endowed with the trivial action of π are terminal objects
in π-sets.

Fibred product: Given E1, E2, S π-sets, and morphisms f1 : E1 → S , f2 : E2 → S , the set Z =
{(x , y) ∈ E1 × E2 such that f1(x) = f2(y)}, with the induced action σ(x , y) = (σx ,σy), together
with morphisms p1 : Z → Ei , (x , y) 7→ x and p2 : Z → E2, (x , y) 7→ y , is a fibred product of
E1 and E2 over S . To prove this claim, we first need to check that both Z and the projection
maps are well defined. Z is clearly a finite set and, if f (x) = f (y), then σf1(x) = σf2(y) and so
f1(σx) = f2(σy), which proves that ∀σ ∈ π, and (x , y) ∈ Z , σ(x , y) ∈ Z and so Z is a well defined
π-set. Moreover, p1(σ(x , y)) = p1(σx ,σy) = σx = σp1(x , y). The same calculation works for p2

and so the projections are indeed morphisms of π-sets.

It is clear that the projections form a commutative diagram with f1, f2, as every pair (x , y) ∈ Z
satisfies that f1(x) = f2(y). Moreover, given any π-set E ′ and morphisms h1 : E ′ → E1, h2 : E ′ → E2

satisfying f1h1 = f2h2, there is a morphism θ : E ′ → Z given by e ′ 7→ (h1(e ′), h2(e ′)). This is clearly a
morphism of π-sets as θ(σe ′) = (h1(σe ′), h2(σe ′)) = σ(h1(e ′), h2(e ′)) = σθ(e ′). θ satisfies hi = piθ
and it is the unique map with that property, as given an element e ′ ∈ E ′, any other map φ : E ′ → Z
with that property maps e ′ to a certain element (x , y) and piφ = hi ⇒ x = h1(e ′), y = h2(e ′)
∀e ′ ∈ E , so φ = θ. This proves that the fibred product of any 2 objects over a third one exists in
π-sets.

G2 Initial object: π-sets has an initial object, which is the empty set ∅.

Finite sums: Given a finite collection of π-sets (Ei )
n
i=1, we can take the disjoint union E =

∐n
i=1 Ei ,
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and define a π action induced by the action on each of the sets Ei . Together with the inclusion maps
qi : Ei → E (which are clearly morphisms of π-sets by the way that we have defined the action on E )
we will check that this is the sum of the (Ei )

n
i=1. Indeed, given an object Z , and maps fi : Ei → Z ,

there is a unique morphism of π-sets defined by f : E → Z satisfying fi = fqi , which is given by
f (x) = fi (x) if x ∈ Xi . This proves that π-sets has finite sums.

Quotient by a subgroup of automorphisms: Given a π-set E and a subgroup of automorphisms G ⊆
Aut(E ), consider the set E/G to be the set of orbits of E under G , that is, the set of elements of X
with the equivalence relation that x ∼ y ⇐⇒ ∃τ ∈ G such that τ(x) = y . Consider p the projection
map that sends every element to its class. Let’s check that the action induced by E on E/G is still
well defined. Indeed, if x ∼ y , then ∃τ ∈ G such that τ(x) = y . Then, τ(σx) = στ(x) = σy , and
so σx ∼ σy . With that definition of action in E/G it is immediate that p is a morphism of π-sets.

It is also clear that p = pσ ∀σ ∈ G . Then, given a morphism f : X → Y satisfying that f = f σ, it
means that every element in an orbit has the same image by f , so this defines a map g : X/G → Y
given by g(x) = f (x), which is unique. Moreover g(σx) = f (σx) = σf (x) = σg(x), which proves
that g is a morphism of π-sets. In conclusion, the quotient of X by any finite group of automorphisms
exists in π-sets.

G3 First we will prove that in π-sets a map is an epimorphism if and only if it is surjective, and it
is a monomorphism if and only if it is injective. The implications injective ⇒ monomorphism and
surjective ⇒ epimorphism are clear.

Suppose that we have an epimorphism f : X → Y . Then consider the maps h, g : Y → {0, 1} such
that g(y) = 1∀y ∈ Y and h(y) = 1 if y ∈ f (X ) and h(y) = 0 if y /∈ f (X ), with trivial action of π.
These are morphisms of π-sets (note that y ∈ f (X ) ⇐⇒ σy ∈ f (X )∀σ ∈ π). We do have gf = hf ,
so as f is an epimorphism we have g = h and so f (X ) = Y , and f is surjective. Now suppose that
f : X → Y is a monomorphism. If it is not injective, ∃x , y ∈ X , x 6= y such that f (x) = f (y). Then
consider Z the fibred product of X over Y with respect to f twice, and the projection maps p1, p2.
It is clear that fp1 = fp2. We have that (x , y) ∈ Z but p1(x , y) = x 6= y = p2(x , y). So fp1 = fp2

but p1 6= p2, which is a contradiction, and this allows us to conclude that that f must be injective.

Every morphism of sets is a surjection followed by an injection: X → f (X ) → Y . Moreover, if f is
a morphism of π-sets, then f (X ) is also a π-set, with action given by σf (x) = f (σx). Therefore,
the factorization of every morphism as an epimorphism followed by a monomorphism exists in π-
sets. Moreover, given a monomorphism f : X → Y (that is, an injective map), we have that
Y = f (X ) q (Y \ f (X )), so every monomorphism X → Y is an isomorphism of X with a direct
summand of Y .

G4-G5 It is clear from the construction above that the forgetful functor commutes with finite sums, fibred
products, and quotients by groups of automorphisms, and that sends initial objects, terminal objects,
and epimorphisms to initial objects, terminal objects and epimorphisms in sets.

G6 A morphism in π-sets is an isomorphism if and only if it is bijective (Observation 1.3). Therefore, if
F (u) is bijective, u is also bijective and therefore it is an isomorphism.

The following example is more relevant, as we will see later that it is a particular case of the general
situation of finite étale coverings that we want to deal with. We will first need a lemma that characterizes
free separable algebras over fields.

Observation 2.1. Let {wi}ni=1 be a basis of B over A. It is immediate from the definition that B is free
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separable over A if and only if det(Tr(wiwj)i ,j) ∈ A∗.

Lemma 2.1. Let K be a field with algebraic closure K . Let B be a finite dimensional K -algebra. Then,
the following assertions are equivalent:

i) B is free separable over K
ii) B ⊗K K is free separable over K .
iii) B ⊗K K ∼= K

n
as K -algebras, for some n ≥ 0

iv) B ∼=
∏t

i=1 Bi as K -algebras, where each Bi is a separable field extension of K .

Proof. (i) ⇐⇒ (ii) Let {w1, ... , wn} be a base of B over K . Then, {w1 ⊗ 1, ... , wn ⊗ 1} is a K base of

B ⊗K K . As (wi ⊗ 1)(wj ⊗ 1)(wk ⊗ 1) = wiwjwk ⊗ 1, TrB/K (wiwj) = TrB/K ((wi ⊗ 1)(wj ⊗ 1)), and so B

is free separable over K if and only if B ⊗ K is free separable over K .

(ii)⇒ (iii) Using the structure theorem of Artin rings ([1], Theorem 8.7), every finite algebra over

a field must be of the form B ⊗ K =
∏n

i=1 Ci , with Ci certain local K -algebras with nilpotent maximal
ideals mi . As B ⊗K K is free separable over K , then each Cj must be free separable: Indeed, if {w i

j }j is a

basis of Ci , then {ei ,j = (0, ... , 0, w i
j , 0, ... , 0)}i ,j is a basis of B⊗K K . Then the determinant of the matrix

Tr(ei ,jei ′,j ′) is the product of the determinants of the matrices {Tr(w i
j1

w i
j2

)}j1,j2 , and so B ⊗K K is free

separable if and only if each Ci is free separable. Now fix a certain index i and a linear map φ : Ci → K .
Then, ∃c ∈ Ci such that φ(x) = Tr(cx), ∀x ∈ Ci . If we pick x ∈ mi , then the map y 7→ (cx)y is nilpotent,
because x is nilpotent. Using the Jordan form of the linear map, it is easily seen that a nilpotent map has
all eigenvalues equal to 0, and therefore it has trace 0. This implies that mi ⊆ ker φ. As that works for
every φ, then we must have mi = {0}, and so Cj is a field. Since it is a finite extension of K , it must be
K itself.

(iii)⇒ (ii) Take the basis ei = (0, ... , 0, 1, 0, ... , 0). Then, Tr(eiej) = id, so B⊗K K is free separable.

(iv)⇒ (iii) By the primitive element theorem, we have Bi = K (βi ) ∼= K [X ]/(fi ), where fi is the

irreducible polynomial of βi over K , and it is a separable polynomial as Bi is free separable. Then,
Bi := Bi ⊗K K ∼= K [X ]/(fi ). fi splits into different linear factors in K [X ], as K is algebraically closed, so

fi =
∏deg(fi )

i=1 (X − αij). Then by the Chinese reminder theorem, Bi
∼=
∏deg(fi )

i=1 K [X ]/(X − αij) ∼= K
deg(fi ).

In conclusion, B ⊗ K ∼= K
n
, where n =

∑t
i=1 deg(fi ).

(iii)⇒ (iv) Using again the structure theorem for Artinian rings ([1], Theorem 8.7), let’s write B =∏t
i=1 Bi , with Bi local K -algebras with nilpotent maximals mi . For each b ∈ B, the sub-algebra K [b] is

isomorphic to K [X ]/(fb), for some fb. Tensoring the injective map K [X ]/(fb)→ K [b]→ B with K we get
an injective map K [X ]/(fb) → B ⊗K K , as K is a field and therefore an absolutely flat ring. As B ⊗K K
has no nilpotent elements other than 0, K [X ]/(fb) has no nilpotent elements other than 0. In particular:
(a) if b is nilpotent, then X n ∈ (fb) for a certain n, and as (fb) is prime we have X ∈ (fb)⇒ b = 0. This
proves that mi = {0} and so all Bi are fields. (b) the polynomial (fb) is separable. If b = (b1, ... , bt) ∈ B,
then fb is the least common multiple of the irreducible polynomials of bi , so all of them are separable. This
proves that Bi is a separable field extension of K .

Example 2.3. Let K be a field and Sch(K ) denote the category of schemes over K . Let C be the
category whose objects are affine schemes over K of the form Spec(B), where B is a free separable
K -algebra, and whose morphisms are morphisms of affine schemes. Let F : C → sets be the functor
MorSch(K)(Spec(Ks),−). Then (C, F ) is a Galois Category.
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Proof. Using [3] Proposition II.2.3, we know that given K -algebras A, B, there is a bijective correspondence
between morphisms of K -algebras A→ B and morphisms of affine schemes over K , Spec(B)→ Spec(A).
We will use this result several times in the verification of the axioms G1-G6. Let’s also note that a free
separable K -algebra A can be written as A =

∏n
i=1 Ki , where each Ki is a separable field extension of K .

Then, the prime ideals of A are of the form pi = (K1,× · · ·×Ki−1×{0}×Ki+1×· · ·×Kn), and so Spec(A)
is a topological space of n points {Pi}, each one corresponding to the ideal pi . The topology on Spec(A)
is the discrete topology and the sheaf of rings is given by O(Pi ) = Ki . A morphism Spec(Ks)→ Spec(A)
is then totally characterized by the image of the unique point in Spec(Ks), that must be one of the points
Pi ∈ Spec(A), and an embedding Ki → Ks .

G1 Terminal object: Spec(K ) is a terminal object in the category of schemes over K , and as K is a free
separable K -algebra, Spec(K ) is also terminal in C.

Fibred product: (Spec(B ⊗A C ), (p1, p2)) is a fibred product of Spec(B) and Spec(C ) over Spec(A),
where p1 : Spec(B ⊗A C ) → Spec(B) is the morphism of schemes over K corresponding to the
morphism of K -algebras B → B⊗A C , b 7→ b⊗1; and p2 : Spec(B⊗A C )→ Spec(C ) corresponding
to C → B ⊗A C , c 7→ 1⊗ c ([3], Chapter II, Theorem 3.3).

To prove that the fibred product of any two objects over a third one exists in C, it is enough to
show that B ⊗A C is a free separable K -algebra if A, B, C are free separable K -algebras. If B, C are
free separable, then B ⊗K K ∼= K

n
, C ⊗K K ∼= K

m
as K -algebras. We have (B ⊗K C ) ⊗K K ∼=

(B⊗K K )⊗K (C⊗K K ) ∼= K
nm

. On the other hand we have (B⊗AC )⊗K K ∼= (B⊗K K )⊗A(C⊗K K ).
Then we have the surjective map (B ⊗K K ) ⊗K (C ⊗K K ) → (B ⊗K K ) ⊗A (C ⊗K K ) mapping
b⊗K c 7→ b⊗A c . The kernel of this map must be an ideal of (B ⊗K K )⊗K (C ⊗K K ) ∼= K

nm
, so it

is isomorphic to K
l
, for a certain l ≤ nm. Then (B ⊗K K )⊗A (C ⊗K K ) ∼= K

nm−l
, and so B ⊗A C

is a free separable K -algebra.
G2 Initial object: Spec(0) is an initial object in C.

Finite sums: Let (Spec(Ai ))ni=1 ∈ Ob(C). Let (
∏n

i=1 Ai , (pi )
n
i=1) be the product of the algebras Ai .

It is immediate from Lemma 2.1 (iv) that
∏n

i=1 Ai is a free separable K -algebra. Let fi : Spec(Ai )→
Spec(B) be morphisms in C, and φi : B → Ai be the corresponding morphisms of K -algebras. Then
∃!φ : B →

∏n
i=1 Ai satisfying that piφ = φi . Let f : Spec(

∏n
i=1 Ai )→ Spec(B) be the morphism of

affine schemes corresponding to φ, and qi : Spec(Ai ) → Spec(
∏n

i=1 Ai ) be the morphisms of affine
schemes corresponding to pi . Then fqi = fi ∀i , and so (Spec(

∏n
i=1 Ai ), (qi )

n
i=1) is the finite sum of

(Spec(Ai ))ni=1. This proves that finite sums exist in C.

Quotient by a subgroup of automorphisms: Let A be a free separable K -algebra and let G be a
subgroup of automorphisms of Spec(A). G corresponds to a group of K -algebra automorphisms of
A (that we will also denote G making an abuse of notation). Write A =

∏n
i=1 Ai for certain Ai finite

separable field extensions of K . For every σ ∈ G , the map Ai −→
qi

A −→
σ

A −→
pi

Ai , where qi is the

inclusion and pi the projection, is an automorphism of Ai . Then any K -automorphism of A is the
product of K-automorphisms of the fields Ai , and so G =

∏n
i=1 Gi , where each Gi is a subgroup

of K -automorphisms of Ai . Then, AG =
∏n

i=1 AGi
i . As AGi

i is a finite separable extension of K ,
therefore AG is a free separable K -algebra.

Consider the inclusion morphism p′ : AG → A, and its corresponding morphism of schemes p :
Spec(A) → Spec(AG ). Suppose that we have a morphism f : Spec(A) → Spec(B) satisfying that
f = f σ ∀σ ∈ G , and let f ′ be the corresponding morphism of rings f ′ : B → A. We have then
σ′f ′ = f ′ ∀σ′ ∈ G ′ ⇒ f ′(B) ⊆ AG , and so we can restrict the co-domain to AG : g ′ : B → AG .
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Clearly p′g ′ = f ′, and g ′ is unique with this property. So the pair (Spec(AG ), p) is the quotient of A
by G in C.

G3 We will prove first that every epimorphism of K -algebras is surjective. Let f : X → Y be an
epimorphism and suppose that it is not surjective. Write Y =

∏n
i=1 Bi , with Bi is a separable field

extension of K . Now consider πi (f (A)) the projection on the i − th coordinate. If πi (f (A)) 6= 0 then
K ⊆ πi (f (A)) ⊆ Bi , and as Bi is integral over K , it is also integral over πi (f (A)), and therefore
πi (f (A)) is a field ([1], Proposition 5.17), and we can write f (A) =

∏n
i=1 Ki , where each Ki is

either 0 or a separable field extension of K contained in Bi . If f is not surjective, then ∃j such that
Kj 6= Bj . Suppose that j = 1 without loss of generality. Now let Gi = Gal(Ks/Ki ), where Ks is a
separable closure of K , and let also B1 = K (α). As K1 6= B1, ∃τ ∈ Gal(Ks/K1) such that τ(α) 6= α.
Then consider the automorphism B → B given by σ = (τ ,σ2, ... ,σn), where each σi ∈ Gi . Clearly
σf = idf but σ 6= id, which is a contradiction. This proves that every epimorphism is surjective, and
we have also obtained that if f : A → B is a morphism between 2 free separable K -algebras, then
f (A) is a free separable K -algebra.

Factorization of morphisms: Every morphism of K -algebras u : A → B factors as an epimorphism
followed by a monomorphism: A 7→ f (A) 7→ B. By the bijective correspondence between morphisms
of K -algebras and morphisms of schemes over K , monomorphisms correspond to epimorphisms and
epimorphisms to monomorphisms. Then, every map Spec(B)→ Spec(A) factors as an epimorphism
followed by a monomorphism, Spec(B)→ Spec(f (A))→ Spec(A).

Monomorphisms are direct summands: Let f : Spec(A) → Spec(B) be a monomorphism in C, cor-
responding to the surjective map ϕ : B → A. ϕ induces an isomorphism B/ ker(ϕ) ∼= A. Write
B =

∏n
i=1 Bi , where each Bi is a separable field extension of K . As ker(ϕ) is an ideal of B, it

is of the form
∏n

i=1 Ki , where each Ki is either 0 or Bi . Let {i1, ... , it} be the indices such that
Ki = Bi . Let ψ : B →

∏t
j=1 Kij =: C be the projection on these coordinates. It is now clear that

B ∼= A ×
∏t

j=1 Kij , so then Spec(B) = Spec(A) q Spec(C ) and so f is an isomorphism of Spec(A)
with a direct summand of Spec(B).

G4 Terminal objects: #MorSch(K)(Spec(Ks), Spec(K )) = 1, so F maps terminal objects in C to terminal
objects in sets.

Fibred products: There is a bijective correspondence between MorSch(K)(Spec(Ks), Spec(B ⊗A C ))
and pairs of morphisms Spec(Ks)→ Spec(B), Spec(Ks)→ Spec(C ) that agree when composed with
the maps f : Spec(B)→ Spec(A) and g : Spec(C )→ Spec(A). Then, F (Spec(B ⊗A C )) is the set
{(h1, h2) ∈ F (Spec(B)) × F (Spec(C )) such that F (f )(h1) = F (g)(h2)}, which is a fibred product
of F (Spec(B)) and F (Spec(C )) over F (Spec(A)) in sets.

G5 Initial object: MorSch(K)(Spec(Ks), Spec(0)) = ∅, so F sends initial objects to initial objects.

Sums: Suppose that A =
∏n

i=1 Ai , with Ai a free separable K -algebra. By the remark made at the be-
ginning of the proof, it is clear that MorSch(K)(Spec(Ks), Spec(A)) ∼=

∐n
i=1 MorSch(K)(Spec(Ks), Spec(Ai )).

Then, F (
∐n

i=1 Spec(Ai )) is the disjoint union
∐n

i=1 F (Spec(Ai )), and so F commutes with finite
sums.

Epimorphisms: Let A =
∏n

i=1 Ai and B =
∏m

i=1 Bi the usual expressions as products of separable
extensions of K . An epimorphism f : Spec(A)→ Spec(B) corresponds to a monomorphism φ : B →
A. We will now prove that it has to be an injective map. Indeed, suppose that ∃x , y ∈ A such that
f (x) = f (y). Then take id = ψ1 : A → A and ψ2 : A → A defined by a 7→ a + x − y . ψ1 6= ψ2

but φψ1 = φψ2, which is a contradiction. Now we want to check that F (f ) is an epimorphism. It
will be enough to show that ∀g ∈ F (Spec(B)) = MorSch(K)(Spec(Ks), Spec(B)), g = f ◦ h, for a

19



certain h ∈ F (A). Let g = (g , g #) ∈ F (B). Then, (g , g #) is defined by g(Spec(Ks)) = Pi and the
embedding Bi ↪→ Ks . As φ is injective, the image of f is dense in Spec(B) (Proposition A.1). The
topology on Spec(B) is the discrete topology and therefore f is surjective. Then, ∃Qj ∈ Spec(A)
such that f (Qj) = Pi . Consider Bi as a subfield of Aj through the map on stalks Bi ↪→ Aj given by
f #. Aj is an algebraic extension of Bi and so we can extend the morphism Bi ↪→ Ks to a morphism
τ : Aj ↪→ Ks . Now consider (h, h#) ∈ F (A) defined by h(Spec(Ks)) = Qj and the embedding τ , and
we have (g , g #) = (f , f #) ◦ (h, h#).

Passage to the quotient: Let A =
∏n

i=1 Ai and AG =
∏n

i=1 AGi
i , where K ⊆ AGi

i ⊆ Ai . Let {Pi}ni=1

and {P ′i }ni=1 be the points on the underlying topological space of Spec(A) and Spec(AG ), respectively.
Note that every morphism of schemes over K , Spec(Ks)→ Spec(AG ), defined by a point P ′i and an

embedding τ ′ : AGi
i ↪→ Ks gives rise to a morphism of schemes Spec(Ks)→ Spec(A) defined by the

point Pi and extending the immersion τ ′ to τ : Ai ↪→ Ks . Note that Ai ⊆ AGi
i is a Galois extension,

and therefore there are as many possible extensions of τ ′ to Ai as [Ai : AGi
i ], each one given by the

composition of τ ′ by an element of Gi .

Reciprocally, every morphism of schemes over K Spec(Ks)→ Spec(A), defined by a point Pi and an
embedding τ : Ai ↪→ Ks gives rise to a morphism of schemes Spec(Ks)→ Spec(AG ) defined by the
point P ′i and composing τ with the inclusion AGi

i ↪→ Ai . Two morphisms f , g : Spec(Ks)→ Spec(A)
with the same image give the same morphism Spec(Ks)→ Spec(AG ) if and only if the image of the
topological space Spec(Ks) is the same and the respective embeddings are the same on AGi

i , that is,
if f = gσ for a certain σ ∈ G . In conclusion, F (AG ) is the set of orbits of F (A) under F (G ), and so
F commutes with passage to the quotient.

G6 This is a direct consequence of the Yonneda Lemma. See [4], Corollary 1.4.7.

2.2 Statement of the main theorem

Proposition 2.1. Let (C, F ) be a small Galois category, Then, Aut(F ) is a profinite group acting contin-
uously on F (X ), ∀X ∈ Ob(C).

Proof. The group of automorphisms of a finite set is its group of permutations. The automorphism group
Aut(F ) is a subgroup of

∏
X∈Ob(C) SF (X )

2, where SF (X ) is the permutation group of F (X ). In particular,
Aut(F ) = {(σX )X ∈

∏
X∈Ob(C) SF (X ) such that ∀Z , Y ∈ Ob(C) and f : Y → Z ,σZF (f ) = F (f )σY }.

Now fix Z , Y ∈ Ob(C) and f : Y → Z . The set Cf = {(σX )X ∈
∏

X∈Ob(C) SF (X ) such that σZF (f ) =
F (f )σY } is closed, as it is the finite union of the closed sets (

∏
X∈Ob(C),X 6=Z ,Y SF (X )) × {σY } × {σZ},

where (σY ,σZ ) is a pair satisfying σZF (f ) = F (f )σY . Then Aut(F ) is the intersection of closed sets Cf

as f varies among all morphisms in C, and therefore it is a closed subgroup of
∏

X∈Ob(C) SF (X ).

Each SF (X ) is finite and in particular profinite, and so
∏

X∈Ob(C) SF (X ) is the product of profinite groups
and it is profinite (Proposition 1.4). Then Aut(F ) is a closed subgroup of a profinite group, so it is also
profinite by Proposition 1.5.

The map Aut(F ) × F (X ) → F (X ) defined by ((σX )X∈Ob(C), a) = σX (a) defines an action of Aut(F )
on F (X ) with open kernel Aut(F ) ∩ (

∏
Ob(C)3Y 6=X SF (Y ) × {idX}), so it is a continuous action by Propo-

sition 1.8.

2The product must range over a set. Therefore, when we write
∏

X∈Ob(C) SF (X ), we are implicitely requiring C to be a small
category.
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Remark 2.1. Given any morphism f : Y → Z , and (σX ) ∈ Aut(F ), the map F (f ) : F (Y ) → F (Z )
respects the Aut(F ) action, because it is satisfied that σZF (f ) = F (f )σY . Therefore, given (C, F ) a
Galois category, we can define a functor H : C → Aut(F )-sets by mapping every X ∈ C to the set F (X )
endowed with the Aut(F ) action just defined, and every f : Y → Z to F (f ), which we have just seen that
is indeed a morphism of Aut(F )-sets.

Remark 2.2. As already remarked, the argument we made in order to regard Aut(F ) as a profinite group
only holds if C is a small category. In the following argumentation, we can replace any category by an
equivalent one, so it will be enough to require our categories to be essentially small, that is, equivalent to
a small category.

Theorem 2.1 (Main Theorem). Let (C, F ) be an essentially small Galois category. Then

i) The functor H : C→ Aut(F )-sets is an equivalence of categories.
ii) If π is a profinite group such that the categories C and π-sets are equivalent by an equivalence that,

when composed with the forgetful functor π-sets→ sets yields the functor F , then π is canonically
isomorphic to Aut(F ).

iii) If F ′ is a second fundamental functor on C, then F and F ′ are isomorphic.
iv) If π is a profinite group such that the categories C and π-sets are equivalent, then there is an isomor-

phism of profinite groups π ∼= Aut(F ) that is canonically determined up to an inner automorphism
of Aut(F ).

Note that the axioms of a Galois category, together with the main theorem, give an axiomatic charac-
terization of all the categories that are equivalent to π-sets, for a certain profinite group π. The purpose
of the rest of the chapter is to develop the necessary tools to prove the theorem. The strategy of the proof
is a little bit intricate: We will first build a profinite group π, define an action of π on F (X ) and prove
that this induces an equivalence H ′ between C and π-sets, that yields F when composed with the forgetful
functor. Then we prove (ii) and apply it to the equivalence already constructed to prove (i).

From now on, let (C, F ) be a small Galois category.

2.3 Subobjects and connected objects

Definition 2.2. Let X ∈ Ob(C). Consider the set {Y → X monomorphism }/ ∼, Where ∼ is the

equivalence relation that identifies two monomorphisms f : Y → X ∼ f ′ : Y ′ → X ⇐⇒ ∃Y
∼=−→ Y ′

isomorphism making the diagram commutative:
Y Y ′

X

∼=

f
f ′

Every equivalence class is called a subobject of X .

Lemma 2.2. f is a monomorphism ⇐⇒ F(f) is injective.

Proof. Let f : Y → X . First we prove that f is a monomorphism ⇐⇒ p1 : Y ×X Y → Y is
an isomorphism. If f is a monomorphism, then (Y , idY , idY ) satisfies the definition of fibred product.
Therefore we have Y ×X Y ∼= Y and p1 = idY θ, where θ is the isomorphism Y ×X Y → Y ⇒ p1 is an
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isomorphism. Reciprocally, consider the following commutative diagram:

Y

Y ×X Y Y

Y X

id

id

θ

p1

p2 f

f

We have p1θ = id, but as p1 is an isomorphism, ⇒ θ = p−1
1 . Now, as p2θ = id⇒ p1 = p2.

Then, given Z ∈ Ob(C), and h1, h2 : Z → Y satisfying fh1 = fh2, ∃φ making commutative the diagram
with the fibred product, and so we have h1 = p1φ, h2 = p2φ, but as p1 = p2 ⇒ h1 = h2. Then f is a
monomorphism.

Now using the fact that F commutes with fibred products, that every monomorphism in sets is injective
and G 6, we have the following implications: F (f ) injective ⇐⇒ F (p1) isomorphism ⇐⇒ p1 isomorphism
⇐⇒ f monomorphism.

Lemma 2.3. Two monomorphisms f : Y → X and f ′ : Y ′ → X are representatives of the same subobject
of X ⇐⇒ F (f )(F (Y )) = F (f ′)(F (Y ′)) as subsets of F (X ).

Proof. ⇒ Let f = f ′θ, with θ an isomorphism. Then, F (f )(F (Y )) = F (f ′)F (θ)(F (Y )) but F (θ) is an
isomorphism and therefore surjective, and so F (θ)(F (Y )) = F (Y ′)⇒ F (f )(F (Y )) = F (f ′)F (Y ′).

⇐ As F commutes with fibred products, we have the following commutative diagrams:

Y ×X Y ′ Y

Y ′ X

p1

p2 f

f ′

F (Y ×X Y ′) F (Y )

Y ′ F (X )

F (p1)

F (p2) F (f )

F (f ′)

But F (Y ×X Y ′) ∼= {(y , y ′) ∈ F (Y ) × F (Y ′)|F (f )(y) = F (f ′)(y ′)}. As F (f ), F (f ′) are injective, and
the images of F (Y ), F (Y ′) are the same in F (X ), then F (p1) and F (p2) are bijective, and so they’re
isomorphisms. Using G 6, we have that p1, p2 are isomorphisms. Now using the commutative diagram of
the fibred product, we have f ′p2p−1

1 = f , and so f , f ′ are representatives of the same subobject of X .

To simplify notation, if Y → X is a monomorphism, we will usually identify F (Y ) with its image in
F (X ) and write F (Y ) ⊂ F (X ).

Definition 2.3. We say that an object X ∈ Ob(C) is connected if it has exactly 2 subobjects, 0→ X and
id : X → X .

Proposition 2.2. Every object in C 6= 0 is the sum of its connected subobjects.

Proof. Let’s argue by induction on #F (X ). If #F (X ) = 1, then X is connected, because there are only
two possible subsets of F (X ), the empty set and F (X ) itself. Now suppose that #F (X ) ≥ 1 and that X
is not connected. Then, ∃q1 : Y → X subobject of X which is not the initial subobject nor the total (in
particular, ∅ 6= F (Y ) ( F (X )). As q1 is a monomorphism, applying G3 we know that ∃q2 : Z → X such

22



that X ∼= Y q Z . Note that F (q2) is injective and so q2 is a monomorphism, and therefore representative
of a subobject of X . We have #F (Y ), #F (Z ) < #F (X ), and so applying the induction hypothesis on
Y , Z , we have that Y =

∐n
i=1 Yi and Z =

∐m
j=1 Zj , where Yi is a connected subobject of Y and Zj

is a connected subobject of Z . As the composition of monomorphisms is also a monomorphism, then
Yi , Zj are also connected subobjects of X . Therefore X = (

∐n
i=1 Yi )q (

∐m
j=1 Zj), and so X is the sum of

connected subobjects of X . Now we should check that every connected subobject is in that sum. Consider
X ∼=

∐n
i=1 Xi and Y1 a subobject of X . We can make the same construction and obtain X ∼=

∐
j Yj . Let∐

i Xi
∼=
∐

j Yj , with Xi , Yj connected, and consider the monomorphism qi : Xi →
∐

i Xi . Composing with
the isomorphism θ :

∐
i Xi →

∐
j Yj , we obtain a monomorphism Xi →

∐
j Yj . By connectedness of Xi

and Yj , we must have F (Xi ) = F (Yj) for a certain j , and so they’re the same subobject.

Let’s see some examples of connected objects and how this last proposition applies in several Galois
categories.

Example 2.4. An object in the category of π-sets is connected if and only if it is transitive. Indeed, if
E is not transitive, then we can split it into orbits: E =

∐n
i=1 Ei , and the inclusion map fi : Ei → E

is a monomorphism of π-sets, which is not the identity nor the empty map. Then, E is not connected.
Reciprocally, let f : E ′ → E an injective morphism of π-sets, with E transitive. If im(f ) = ∅, then f
is a representative of the initial subobject. Otherwise, let e ∈ im(f ), e = f (d). ∀e ′ ∈ E , ∃σ such that
σf (d) = σe = e ′. Then, e ′ = f (σd) and so f is surjective. In conclusion, f is a representative of the
identity subobject. This proves that E is connected.

Moreover, every X ∈ Ob(π-sets) is the sum of its orbits, which are the connected subobjects of E .
This is an example of the statement of the proposition above.

Example 2.5. Let C be the category of affine schemes of the form Spec(B), with B a free separable K -
algebra (see Example 2.3). An object in C is connected if and only if X = Spec(A), with A a separable field
extension of K . Indeed, a monomorphism Spec(B) → Spec(A) corresponds to an epimorphism A → B.
Then Spec(A) is connected if and only if the only epimorphisms A → A′ are either isomorphisms or the
zero map. If A is a field, this is clearly satisfied, as every ring morphism A → A′ is either 0 or injective.
Reciprocally, if A is not a field, it can be written as A =

∏m
i=1 Ai , where each Ai is a separable field

extension of K . Then each projection A→ Ai is a surjective morphism of K -algebras and therefore it is a
subobject of A different from 0, A.

Then, last proposition states that in C, the decomposition Spec(A) =
∐n

i=1 Spec(Ai ) is the expression
of A as the sum of its connected subobjects.

Proposition 2.3. Let A be a connected object in C, and a ∈ F (A). Then, ∀X ∈ Ob(C) the map

MorC(A, X ) −→ F (X )

f 7−→F (f )(a)

is injective.

Proof. Let f , g ∈ MorC(A, X ). Let (C , θ) be the equalizer of f , g , which we know that exists by Propo-
sition 1.2. As F commutes with fibred products, it also commutes with equalizers and so we have that
(F (C ), F (θ)) is an equalizer of F (f ), F (g), and so F (C ) ∼= {b ∈ F (A) : F (f )(b) = F (g)(b)}. Therefore
F (θ) : F (C ) → F (A) is injective, and θ is a monomorphism. Moreover, F (C ) 6= ∅, because a ∈ F (C ),
and by the connectedness of A we must have F (C ) = F (A), so F (θ) is an isomorphism. By G6, θ is an
isomorphism, which implies f = g .
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Remember that our purpose is to define an action on F (X ) by a profinite group π. To do that, we will
replace the functor F by an isomorphic functor that will provide us with a more natural way to define an
action.

Now let’s consider the set I = {(A, a)|A connected , a ∈ F (A)}/ ∼, with ∼ the equivalence relation
(A, a) ∼ (B, b) ⇐⇒ ∃f : A→ B isomorphism such that F (f )(a) = b. Let’s define a partial order on I by
(A, a) ≥ (B, b) ⇐⇒ ∃f : A→ B such that F (f )(a) = b. It is straightforward to check that this is indeed
an order relation on I , and that I is directed:

• Reflexivity: Taking f = idA, we have F (id)(a) = a, so (A, a) ≥ (A, a).

• Anti-symmetry: If (A, a) ≥ (B, b), and (B, b) ≥ (A, a), there exist f : A → B and g : B → A such
that F (f )(a) = b and F (g)(b) = a. But then we have F (fg)(b) = b and F (gf )(a) = a, so by the
injectivity of the last proposition, fg = idB , gf = idA, and so f is an isomorphism and therefore
(A, a) and (B, b) are representatives of the same class in I .

• Transitivity: Let (A, a) ≥ (B, b) ≥ (C , c) ∈ I and f : A → B, g : B → C the maps satisfying
F (f )(a) = b, F (g)(b) = c . Then, g ◦ f : A→ B satisfies F (g ◦ f )(a) = F (g)◦F (f )(a) = F (g)(b) =
c , and so (A, a) ≥ (C , c).

• I is directed: Let (A, a), (B, b) ∈ I and consider the element (C , (a, b)), where C is the connected
component of A × B containing the element (a, b). Then (C , (a, b)) ∈ I . Then, compose the
monomorphism C → A×B with the projections p1 : A×B → A and p2 : A×B → B. Let’s name the
resulting maps f1 and f2. Then, F (f1)(a, b) = a and F (f2)(a, b) = b, so (C , (a, b)) ≥ (A, a), (B, b).

We will denote (A, a) ≥f (B, b) if we want to specify the morphism f : A→ B satisfying F (f )(a) = b.

Proposition 2.4. There is an isomorphism of functors

lim−→
(A,a)∈I

MorC(A,−) −→ F (−)

f 7−→F (f )(a)

Proof. First let’s check that the limit lim−→(A,a)∈I MorC(A, X ) is well defined ∀X ∈ Ob(C). Indeed, given

(A, a) ≥f (B, b) ∈ I , we have morphisms fBA : MorC(B, X ) → MorC(A, X ) defined by g 7→ g ◦ f .
These morphisms form an injective system, as fAA = idA and if (A, a) ≥f (B, b) ≥g (C , c) we have
fCA(h) = h ◦ (g ◦ f ) = (fBA ◦ fCB)(h).

Then, let’s consider the maps φA : MorC(A, X )→ F (X ) given by f 7→ F (f )(a). If (A, a) ≥g (B, b) ∈ I ,
then φA ◦ fBA = φB , because φA(fBA(f )) = F (f ◦ g)(a) = F (f )(b) = φB(f ). Therefore, by the properties
of the injective limit, ∃! map φ : lim−→(A,a)∈I MorC(A, X )→ F (X ) given by φ(f ) = φA(f ) if f ∈ MorC(A, X ).

Now let’s prove that it is an isomorphism, i.e. a bijective map.

Suppose that we have F (f )(a) = F (g)(b) for certain (A, a), (B, b) ∈ I . Let C be the connected
component of A×B such that c = (a, b) ∈ F (C ), and let p′1, p′2 denote the compositions of the projection
maps p1 : A × B → A and p2 : A × B → B with the monomorphism C → A × B. Then we have
fAC (f ) = fp′1, fBC (g) = gp′2, so F (fp′1)(c) = F (gp′2)(c) ⇒ fAC (f ) = fBC (g), and this implies that f = g
in lim−→(A,a)∈I MorC(A, X ). To prove surjectivity, take x ∈ F (X ) and consider f : A → X the connected

component of X such that x ∈ F (A). Then (A, x) ∈ I and F (f )(x) = x .
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Finally, we have to check that the map induces an isomorphism of functors. Let X , Y ∈ Ob(C). Then,
the following diagram

lim−→(A,a)∈I MorC(A, X ) F (X )

lim−→(A,a)∈I MorC(A, Y ) F (Y )

f ◦− F (f )◦−

is commutative, as an element g ∈ lim−→(A,a)∈I MorC(A, X ) is sent to F (f ◦ g)(a) = F (f ) ◦ F (g)(a). This

completes the proof and we have an isomorphism of functors lim−→(A,a)∈I MorC(A,−) ∼= F (−).

2.4 Galois objects

If A is a connected object, we have the following inequalities: #AutC(A) ≤ #MorC(A) ≤ #F (A). In
particular, the set of automorphisms of A is finite, and therefore it makes sense to talk about the quotient
of an object by its group of automorphisms.

Definition 2.4. A ∈ Ob(C) is a Galois object if the quotient A/AutC(A) is a terminal object.

Observation 2.2. If C is a connected Galois object, using that F commutes with quotients and terminal
objects, we have F (A)/AutC(A) is terminal, so AutC(A) acts transitively on F (A). This implies that the
chain of inequalities #AutC(A) ≤ #MorC(A) ≤ #F (A) become equalities, and so MorC(A) = AutC(A).
Therefore, in a connected Galois object, every endomorphism is an isomorphism.

Reciprocally, if AutC(A) acts transitively on F (A), F (A)/AutC(A) is terminal, and so by axiom G6
A/AutC(A) must also be terminal, which implies that A is Galois.

Example 2.6. In the category of π-sets, connected Galois objects are sets of the form π/π′, where π′ is
an open normal subgroup of π.

Proof. We already know that a connected object must be isomorphic to π/π′, with π′ an open subgroup
of π. First note that every endomorphism f ∈ Aut(π/π′) is totally determined by f (π′) = aπ′ for a certain
a ∈ π, because then, as f is a morphism, we have f (τπ′) = τaπ′. Moreover, a, a′ determine the same
morphism if and only if a′a−1 ∈ π′, that is, if and only if they belong to the same lateral class. Now, if f is
an automorphism, it has an inverse map, g defined by g(π′) = bπ′. We must have then fg(π′) = abπ′ = π′,
for example b = a−1. But for the automorphism to be well defined, we must have aσa−1 ∈ π′, for every
σ ∈ π′ ⇒ a ∈ ρ, where ρ is the normalizer of π′ in π. Then, if we want Aut(π/π′) to act transitively on
π/π′, we must have that π′ is normal in π.

Example 2.7. The connected Galois objects in the category (C, F ) of Example 2.3 are sets of the form
Spec(E ), where E is a finite Galois extension of K .

Proof. We already know that connected objects correspond to Spec(E ), with E a separable field extension
of K . We know that Spec(E ) is connected if and only if AutC(Spec(E )) acts transitively on F (Spec(E )).
Remember that F is the functor MorSch(K)(Spec(Ks),−). In the case where E is a field, there is a bijective
correspondence between morphisms of schemes over K Spec(Ks)→ Spec(E ) and morphisms of K -algebras
E → Spec(Ks).

Fix f : Spec(Ks)→ Spec(E ). Spec(E ) is connected if and only if for every morphism g : Spec(Ks)→
Spec(E ), g = f σ for a certain σ ∈ AutC(Spec(E )). Passing from the language of schemes to the language
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of K -algebras, that means that every K -embedding g ′ : E ↪→ Ks satisfies g ′(E ) = f ′(E ), that is, E is
normal, and so E is a finite Galois extension of K .

Proposition 2.5. Let X ∈ Ob(C). There exists (A, a) ∈ I with A Galois such that the map Mor(C)(A, X )→
F (X ), f 7→ F (f )(a) is bijective.

Proof. Let Y = X #F (X ) be the product of #F (X ) copies of X . As F commutes with products, we have
F (Y ) = F (X )#F (X ). Now let’s index the coordinates of Y by the elements of F (X ), and let a ∈ F (Y )
having as x-th coordinate the element x . Then consider A the connected component of Y such that
a ∈ F (A), and fx : A→ Y → X be the composition of the monomorphism A→ Y and the projection on
the x-th coordinate px : Y → X . Then fx ∈ MorC(A, X ) and F (fx)(a) = x . As a has all the elements of
F (X ) in its coordinates, then as fx varies we obtain all the elements x ∈ F (X ), and so the map is bijective
(as we already knew about the injectivity by Proposition 2.3).

Moreover, we have also obtained that the only morphisms in MorC(A, X ) are the ones of the form fx for a
certain x ∈ F (X ). Now let’s check that A is Galois. Let a′ ∈ F (A), a′ 6= a. The map MorC(A, X )→ F (X )
given by f 7→ F (f )(a′) is bijective, as it is injective and we have just seen that the two sets have the same
cardinality. As ∀g ∈ MorC(A, X ), g = fx for a certain x , this proves that a′ has all the elements of F (X )
in its coordinates.

Now we will prove that there is an automorphism of Y that sends a to a′. Let a = (ax)x∈F (X ),
and let (a′) = (aσ(x))x∈F (X ), where σ is a permutation of the set F (X ). Note that MorC(Y , Y ) =∏

x∈F (X ) MorC(Y , X ). Now consider the map f =
∏

x∈F (X ) pσ(x). Then, F (f )(a) =
∏

x∈F (X ) F (pσ(x))(a) =

(aσ(x))x∈F (X ) = a′. Taking the inverse permutation to σ we see that f is an isomorphism. Then, the map

A→ Y
σ−→ Y is a monomorphism, which induces an automorphism A ∼=τ A′ from A to another connected

component A′ of Y . Moreover, as a′ ∈ F (A)∩F (A′), and A, A′ are connected, we must have F (A′) = F (A)
and so A = A′ and therefore τ is an automorphism of A which sends a to a′. In conclusion, AutC(A) acts
transitively on F (A), and therefore A is Galois.

Observation 2.3. Proposition 2.5 proves that the subset J ⊂ I corresponding to connected Galois objects
is a cofinal subset of I , so

lim−→
J

MorC(A,−) ∼= lim−→
I

MorC(A,−) ∼= F

2.5 Construction of an equivalence to π-sets

Lemma 2.4. Let A be a connected Galois object, and B a connected object such that MorC(A, B) 6= ∅.
Then, the action

AutC(A)×MorC(A, B) −→MorC(A, B)

(σ, f ) 7−→ f ◦ σ

is transitive.

Proof. Let f ∈ MorC(A, B). Then f factors as f = gh with h an epimorphism and g a monomorphism.
By the connectedness of B, g must be an isomorphism, so F (f ) is surjective. This implies that, given
f ′ : A → B, ∃a′ ∈ F (A) such that F (f )(a′) = F (f ′)(a). As A is Galois, ∃σ ∈ AutC(A) such that
F (σ)(a) = a′. Then, F (f σ)(a) = F (f ′)(a), and by injectivity of that map, f σ = f ′.
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Lemma 2.5. Let (A, a), (B, b) ∈ J, (A, a) ≥f (B, b). Given σ ∈ AutC(A), ∃!τ ∈ AutC(B) such that
τ f = f σ, and the mapping σ 7→ τ is a surjective group homomorphism.

Proof. Let F (σ)(a) = a′, b′ = F (f )(a′). Then, as B is Galois, ∃τ ∈ AutC(B) such that F (τ)(b) = b′.
Then, F (f σ)(a) = F (τ f )(a) ⇒ f σ = τ f by the injectivity in Proposition 2.3. To prove the uniqueness,
suppose that we have two automorphisms τ1, τ2 satisfying the property. Then F (τ1τ

−1
2 )(b) = b, and again

by injectivity we have τ1τ
−1
2 = id⇒ τ1 = τ2.

It’s clear that the identity maps to the identity. Given σ1 7→ τ1 and σ2 7→ τ2, we have f σ1σ2 = τ1f σ2 =
τ1τ2f , and so σ1σ2 7→ τ1τ2. This proves that σ 7→ τ is a group morphism. Moreover, as the action of
AutC(A) on MorC(A, B) is transitive (Lemma 2.4), given τ ∈ AutC(B), ∃σ such that τ f = f σ, and so the
morphism is surjective.

Definition 2.5. This lemma gives rise to a projective system, and so we have a profinite group π :=
lim←−J

AutC(A).

Proposition 2.6. ∀X ∈ Ob(C), the action

lim←−
J

AutC(A)× lim−→
J

MorC(A, X ) −→lim−→
J

MorC(A, X )

((σA)A∈J , f ) 7−→ f ◦ σ−1
A

defines a functor H ′ : C→ π-sets.

Proof. First of all, we have to check that the action is well defined. Let fA ∈ MorC(A, X ), fB ∈ MorC(B, X )
be representatives of the same element in lim−→J

MorC(A, X ). This means that ∃(C , c) ∈ J such that

(C , c) ≥f1 (A, a) and (C , c) ≥f2 (B, b), and fB f2 = fC , fAf1 = fC . Then, (σC , fC ) = fCσ
−1
C = fB f2σ

−1
C and

(σC , fC ) = fCσ
−1
C = fAf1σ

−1
C . But σ−1

A f1 = f1σ
−1
C and σ−1

B f2 = f2σ
−1
C . Therefore, fCσ

−1
C = fAσ

−1
A f1 =

fBσ
−1
B f2, so fBσ

−1
B = fAσ

−1
A in lim−→J

MorC(A, X ).

Now let’s check that the action is continuous. Let f ∈ MorC(A, X ) be a representative of an element
f ∈ lim−→J

MorC(A, X ). Then, its preimage by the action is the set
⋃

g∈Mor(A,X ) U × {g}, where U ⊂ π =

{(σA) ∈ π : gσ−1
A = f }. U is open in π and therefore the preimage of f by the action is open.

Finally, we have to check that it is indeed a functor. Given a morphism f : X → Y , H ′(f ) maps
(fA)A∈J 7→ (f ◦ fA)A∈J . Then it is clear that H ′ preserves compositions and maps the identity to the
identity.

Remark 2.3. We have defined a functor H ′ : C→ π-sets by endowing the functor lim←−J
MorC(A,−) with a

continuous π-action. By the existence of the isomorphism of functors lim←−J
MorC(A,−) ∼= F (−) deduced in

Observation 2.3, it is immediate that we can induce a π-action on F (X ) for every X , and that H ′ induces
a functor C→ π-sets that is equal to F when composed with the forgetful functor π-sets→ sets.

To show that there is an equivalence of categories C→ π-sets that gives F when composed with the
forgetful functor, it is then enough to show that H ′ is an equivalence of categories, which is what we will
proceed to do now. First we need to prove some more properties.

Proposition 2.7. Let B be a connected object in C. Then B ∼= A/G , for a certain A Galois and G a
subgroup of automorphisms of A.

Proof. Take A Galois as in Proposition 2.5. Then, MorC(A, B) ∼= F (B) ∼= lim−→J
MorC(A, B) and AutC(A)

acts transitively on MorC(A, B) by Lemma 2.4, so AutC(A) acts transitively on H ′(B), and therefore
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we have H ′(B) ∼= AutC(A)/G , where G is the stabilizer of a certain element f ∈ H ′(B). In particular
#F (B) = #AutC(A)/G . Apart from that, we also have f σ = f ∀σ ∈ G , and therefore we have a morphism
g : A/G → B induced by f . F (g) is surjective, because F (f ) is surjective. Moreover, #F (A/G ) =
#F (A)/G = #AutC(A)/G , and therefore F (g) is an isomorphism (surjective between sets of the same
cardinal). By G6, g is also an isomorphism and so B ∼= A/G .

Proposition 2.8. The functor H ′ maps connected objects to connected objects.

Proof. For every connected object B, choose A Galois such that Mor(A, B) ∼= F (B). Then AutC(A) acts
transitively on MorC(A, B). By Proposition 1.6, then also π acts transitively on H ′(B), and so H ′(B) is a
transitive π-set, that is, a connected object of the category π-sets.

Lemma 2.6. Let f : X → Z be an epimorphism in a Galois Category, and g : W → Z a subobject 6= 0, Z .
Then, W ×Z X → X is a subobject 6= 0, X . In particular, if X → Z is an epimorphism and X is connected,
then also Z is connected.

Proof. First let’s prove that it is indeed a subobject, that is, the map p2 : W×Z X → X is a monomorphism.
Indeed, let s, t : Y → W ×Z X satisfying p2s = p2t. Therefore, composing with f on both sides we get
fp2s = fp2t and so gp1s = gp1t. As g is a monomorphism, this implies that also p1s = p1t. In conclusion,
both s, t fit in the commutative diagram of the fibred product:

Y

W ×Z X W

X Z

p1s=p1t

p2s=p2t

p1

p2 g

f

Therefore by uniqueness we must have s = t. This proves that p2 is a monomorphism, and therefore
p2 : W ×Z X → X is a subobject of X . Now we just have to check that it is not the identity nor
the initial subobject. It is enough to check that F (W ×Z X ) 6= 0, F (X ). Note that F (W ×Z X ) =
F (W )×F (Z) F (X ) = {(a, b) ∈ F (W )× F (X )|F (f )(b) = F (g)(a)}.

• If F (W ×Z X ) = F (X ), then as f is an epimorphism it means that ∀z ∈ Z , ∃(a, b) ∈ F (W ) ×
F (X ) such that F (f )(b) = z , F (g)(a) = z . Then F (g) is surjective, and as by hypothesis g is a
monomorphism, then F (g) is an isomorphism (c.f. Lemma 2.2), and therefore also g is by G6. In
conclusion, W → Z is the identity subobject.

• If F (W ×Z X ) = 0, then @(a, b) ∈ F (W ) × F (X ) satisfying F (g)(a) = F (f )(b). But as f is an
epimorphism, this means @a ∈ F (W ) such that F (g)(a) = z , for any z ∈ Z , and so F (W ) = ∅ and
it is the initial subobject.

Lemma 2.7. If f , g : X → Y are two morphisms in C satisfying F (f ) = F (g), then f = g .

Proof. By G4, Let θ : E → X , (E , θ) the equalizer of f and g . As F commutes with equalizers, then
(F (E ), F (θ)) is the equalizer of F (f ) and F (g), but as the two morphisms are equal, then F (θ) is an
isomorphism and so θ is itself an isomorphism, which implies that f = g .
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Theorem 2.2. The functor H ′ : C→ π-sets is an equivalence of categories.

Proof. To prove the theorem, we will show that the two conditions in Proposition 1.1 hold in this situation.
To prove that every π-set is of the form H ′(X ) for X ∈ Ob(C), it is enough to prove it for a transitive
π-set , as every π-set is isomorphic to the direct sum of is orbits, which are transitive, and the functor H ′

preserves finite sums.

Note that every transitive π-set is of the form AutC(A)/G , for some G ⊆ AutC(A), and A connected
Galois. Indeed, every transitive π-set is isomorphic to a set of the form π/π′, and π′ is open, so using

that π′ is compact, it can be expressed as π ∩
(∏

B 6=A AutC(B)× GA

)
. As the projection π → AutC(A)

is surjective (Proposition 1.6), then π/π′ ∼= AutC(A)/GA. This means that it’s enough to show that for
every π-set of the form AutC(A)/G , there is an object X in C such that H ′(X ) ∼= AutC(A)/G .

Now note that the map

AutC(A) −→ H ′(A)

f 7−→F (f )(a)

is bijective (we know that the map is injective, and as A is Galois, the sets have the same cardinality).
Therefore the map

H ′(A) −→AutC(A)

F (f )(a) 7−→ f −1

is a bijection, and F (f σ−1) 7→ σf −1, so the map respects the π-action, and it is therefore an isomorphism
of π-sets. Then, H ′(A/G ) ∼= H ′(A)/G ∼= AutC(A)/G , which proves the first property.

As for the second property, we already know that MorC(X , Y )→ Morπ−sets(H ′(X ), H ′(Y )) is injective,
by Lemma 2.7. Therefore it will be enough to prove that the sets have the same cardinality. Let’s see first
that we can reduce again to the case of connected objects.

• ∀X ∈ Ob(C), we can write its decomposition into connected components, X =
∐n

i=1 Xi , and, by the
universal property of finite sums, we have MorC(X , Y ) ∼=

∏n
i=1 MorC(Xi , Y ). As H ′ commutes with

finite sums, we also have MorC(H ′(X ), H ′(Y )) ∼=
∏n

i=1 MorC(H ′(Xi ), H ′(Y )) and we can reduce to
the case where X is connected.

• Let X → Y morphism. By G3 we can factor it as X
epi−→ Z

mono−−−→ Y . If X is connected,
Lemma 2.6 tells that Z is also connected, and therefore Z → Y is a connected component of
Y . This shows that any morphism X → Y factors through connected components of Y , so
MorC(X , Y ) ∼=

∐m
j=1 MorC(X , Yj) (for X connected). Using that H ′ maps connected components

to connected components, we also have MorC(H ′(X ), H ′(Y )) ∼=
∐m

j=1 MorC(H ′(X ), H ′(Yj)) so it’s
enough to reduce to the case where both X , Y are connected.

Now choose A ∈ Ob(C) large enough so that X ∼= A/G1, Y ∼= A/G2. This can always be done:
For example, one can take A a connected component of X #F (X ) × Y #F (Y ) and repeat the same proof
of Proposition 2.5, and then use Proposition 2.7. Then we have that H ′(X ) ∼= AutC(A)/G1, H ′(Y ) ∼=
AutC(A)/G2. Consider a morphism of π-sets, f : AutC(A)/G1 → AutC(A)/G2. Then, f (τG1) = τσG2,
for a certain σ that totally characterizes f . The morphism is well defined ⇐⇒ two representatives of
the same class are mapped to the same element ⇐⇒ ∀g ∈ G1, gG1 7→ σG2 ⇐⇒ ∀g ∈ G1, gσG2 =
σG2 ⇐⇒ ∀g ∈ G1, gσ ∈ σG2 ⇐⇒ G1σ ⊆ σG2. Then,

#Morπ−sets(H ′(X ), H ′(Y )) = #{σG2 ∈ AutC(A)/G2 such that G1σ ⊆ σG2}
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On the other side, the choice of A implies that AutC(A) acts transitively on both MorC(A, X ) and

MorC(A, Y ). Then, consider the projection morphisms A
h1−→ A/G1 and A

h2−→ A/G2. Given f : X → Y ,
∃σ ∈ AutC(A) such that h2σ = fh1.

A A/G1 = X

A A/G2 = Y

h1

σ f

h2

This implies that, for a certain a′ ∈ F (A), with F (h2)(a′) = F (fh1)(a), and σ with F (σ)(a) = a′. Then
h2σ = h2σ

′ ⇐⇒ σ′σ−1 ∈ G2 ⇐⇒ G2σ = G2σ
′, so f uniquely determines the coset G2σ. Reciprocally,

an element σ ∈ AutC(A) gives rise to a morphism f : X → Y ⇐⇒ h2σ factors through A/G1, that is, if
and only if h2στ = h2σ, ∀τ ∈ G1 ⇐⇒ σG1 ⊆ G2σ. This proves that

#MorC(X , Y ) = #{G2σ ∈ AutC(A)/G2 such that σG1 ⊆ G2σ}

In conclusion, #MorC(X , Y ) = #Morπ−sets(H ′(X ), H ′(Y )), and this completes the proof.

2.6 Proof of the main theorem

Until now we have proven that a Galois category is equivalent to π-sets, for a profinite group π defined
in terms of Galois objects of the category (see Definition 2.5). For now, we haven’t seen yet that π is
isomorphic to Aut(F ), and that’s what we will do in this section, in which we finally prove Theorem 2.1.

Lemma 2.8. Let π be a profinite group, F the forgetful functor π-sets→ sets. Then, Aut(F ) ∼= π.

Proof. We want to find an isomorphism π → Aut(F ). Note that, given θ ∈ Aut(F ), the action of θ on
every π-set is determined by the action on transitive π-sets, and as every π-set is isomorphic to one of the
form π/π′, with π′ open subgroup of π, the action of θ is totally determined by the action on the sets of
this form.

Moreover, we know that in a compact, totally disconnected group, every neighbourhood of 1 contains
an open normal subgroup (Proposition 1.7). Therefore, ∃π′′ open normal subgroup of π such that π′ ⊇ π′′.
Then, consider the natural morphism of π-sets f : π/π′′ → π/π′. The automorphism θ of F has to
commute with f . Let σ ∈ π such that θπ/π′′(τπ

′′) = τσπ′′. Then we have f ◦ θπ/π′′(τπ′′) = τσπ′, and so
θπ/π′ ◦ f (τπ′) = τσπ′. As f (τπ′′) = τπ′, we have then σπ/π′(τπ

′) = τσπ′. In conclusion, the action of
θ ∈ Aut(F ) is totally determined by the coordinates θπ/π′ , where π′ runs over open normal subgroups of
π.

Let π′ be an open normal subgroup of π. Note that Autπ−sets(π/π′) ∼= π/π′, with the following
isomorphism: Autπ−sets(π/π′)→ π/π′, f 7→ τ−1π′ if f (π′) = τπ′.

Now let f : π/π′ → π/π′ a set theoretic map commuting with all π-set automorphisms. Then,
f (τπ′)σ = f (τπ′σ) ⇐⇒ f (π′τ)σ = f (π′τσ). Let f (π′) = aπ′. Then, f (π′σ) = f (σπ′) = f (π′)σ = aπ′σ,
so f is given by left product by an element of π/π′. Therefore, we can define a map ψ : π → Aut(F )
by ψ(σ)π/π′(π

′) = σπ′, for every π′ open normal subgroup of π. Let’s proceed to check that this is an
isomorphism of profinite groups.

30



• Well defined: To see that ψ(σ) ∈ Aut(F ), it is enough to check that it commutes with every
morphism of π-sets, and this can be reduced to prove that it commutes with every morphism
π/π′ → π/π′′, where π′, π′′ are open normal subgroups of π. Let f : π/π′ → π/π′′ defined by
f (π′) = aπ′′. Let x ∈ π′, x /∈ π′′. Then, xaπ′′f (xπ′) = f (π′) = aπ′′ ⇒ xπ′′a = π′′a, ∀x ∈ π′. This
implies π′′ ⊇ π′, and it’s clear that ψ(σ) commutes with f , so ψ is well defined.

• Injective: We have seen that an element θ ∈ Aut(F ) is totally characterized by the coordinates
θπ/π′ ∈ π/π′, and π ∼= lim←−π′ open normal

π/π′.

• Surjective: The fact that every morphism π/π′ → π/π′ commuting with all π-sets automorphisms
is given by left product by an element of π/π′, implies that every element of Aut(F ) has to be defined
by left product by an element of lim←−π/π

′ = π.

• Continuity: Let U = Aut(F ) ∩
(∏

i∈J HEi
×
∏

i /∈J SEi

)
, where |J| < ∞, and HEi

6= SEi
. Then,

ψ−1(U) can be expressed as π ∩ V , with V ⊂
∏
π′ open normal π/π

′, V only fixing the coordinates
corresponding to sets π/π′, where π/π′i ,j is isomorphic to an orbit of a set Ei . As every set has finite
orbits, and J is a finite set, the coordinates that are not free in V are a finite number, and so in
conclusion the preimage of an open set by ψ is open, and so ψ is continuous.

Finally, it is obvious that the functor H : π − sets → Aut(F )-sets is the identity when seen through
the isomorphism just defined.

Now we can begin with the proof of Theorem 2.1.

Proof. (b) Let π be a profinite group, and H : C → π-sets an equivalence that composed with the
forgetful functor F1 : sets→ π-sets yields F . Then we have Aut(F1) ∼= π by Lemma 2.8. Therefore
it will be enough to check that Aut(F ) ∼= Aut(F1).

Note that an automorphism ε ∈ Aut(F1) induces naturally an automorphism of F , ψ(ε) := (εH(X ))X∈Ob(C).
Indeed, we have for every A, B ∈ π-sets, and f : A→ B the commutative diagram

F1(A) F1(B)

F1(A) F1(B)

F1(g)

εA εB

F1(g)

Given Y , Z ∈ Ob(C), and f : Y → X we can take A = H(X ), B = H(Y ), g = H(f ) and substituting
into the diagram above, taking into account that F1 ◦ H = F , it yields

F (Y ) F (Z )

F (Y ) F (Z )

F (f )

εH(Y ) εH(Z)

F (f )
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Reciprocally, let’s see how every automorphism of F will induce an automorphism of F1. As H is an
equivalence, we have that ∃G : π-sets→ C, and an isomorphism of functors θ : id→ HG :

A B

HG (A) HG (B)

g

θA θB

HG(g)

Then let σ ∈ Aut(F ), and take Y = G (A), Z = G (B), f = G (g). We have then

F (Y ) F (Z )

F (Y ) F (Z )

F (f )

σY σZ

F (f )

F1HG (A) F1HG (B)

F1HG (A) F1HG (B)

F1HG(g)

θG(A) θG(B)

F1HG(g)

Then, we can define φ(σ) := (φ(σ)A)A∈Ob(π−sets) = (F1(θ−1
A )σG(A)F1(θA))A. Let’s prove that φ(σ)

is an automorphism of functors: Indeed, F1(g) = F1(θ−1
B ◦ HG (g) ◦ θA) by the diagram of the

equivalence of categories. Then

F1(g) ◦ φ(σ)A = F1(θ−1
B ◦HG (g) ◦ θA)F1(θ−1

A )σG(A)F1(θA) = F1(θ−1
B ) ◦ F1(HG (g)) ◦ σG(A) ◦ F1(θA)

And similarly,

φ(σ)BF1(g) = F1(θ−1
B ) ◦ σG(B) ◦ F1(HG (g)) ◦ F1(θA)

Using that σ is a morphism of functors, we have that σG(B)F1HG (g) = F1HG (g)σG(A), and so
F1(g) ◦ φ(σ)A = φ(σ)B ◦ F1(g) and φ(σ) is a well defined automorphism of the functor F1.

So far we have defined mappings ψ : Aut(F1)→ Aut(F ), φ : Aut(F )→ Aut(F1), and it is also clear
that ψ is continuous and that ψ, φ respect the group operations. Therefore, it will be enough to
prove that φψ = idAut(F1) and ψφ = idAut(F ) to see that we have an isomorphism of profinite groups
Aut(F1) ∼= Aut(F ).

Let σ ∈ Aut(F ) and consider ψφ(σ) = (ψφ(σ)X )X = (F1(θ−1
H(X ))σGH(X )F1(θH(X ))). As σ is an

automorphism of functors, it commutes with the morphism θH(X ), namely σGH(X )F1(θH(X )) =
F1(θH(X ))σX , and therefore ψφ(σ)X = σX ⇒ ψφ(σ)X = idAut(F ).

On the other hand, let ε ∈ Aut(F1). φψ(ε) = (φψ(ε)A)A = F1(θ−1
A )εHG(A)F1(θA). Using that ε

commutes with θA, so εHG(A)F1(θA) = F1(θA)εA., and therefore φψ(ε) = ε ⇒ φψ = idAut(F1). This
finalizes the proof of (b).

(a) Let’s apply (b) to the profinite group π = lim←−(A,a)∈J AutC(A) and the functor H ′ constructed in

Proposition 2.6. We proved that H ′ is an equivalence of categories, that yields F when composed
with the forgetful functor F1. Then π ∼= Aut(F ), and via this isomorphism we can identify H ′ and
the previously defined H : C→ Aut(F )-sets (it is easily observed from the proofs of Lemma 2.8 and
(b) that the functor identification via the group morphisms defined yields the identity). Therefore,
H is an equivalence of categories.
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(c) Let F ′ : C → sets be a second fundamental functor. Then we have lim−→J
MorC(A,−) ∼= F ,

lim−→J′
MorC(A,−) ∼= F ′. Note that all the pairs (A, a) ∈ J with the same A are isomorphic, so

we can replace J by J0 ⊂ J with exactly one pair (A, a) for each A Galois; similarly, we replace J ′ by
J ′0 ⊂ J ′ with exactly one pair (A, a) for each A Galois. Note here that the notion of Galois objects
is independent of the fundamental functor.

Now, given (A, a), (B, b) ∈ J0, g : A→ B morphism, ∃!β ∈ AutC(B) such that F (β)(F (g)(a)) = b.
Then, f = βg satisfies F (f )(a) = b so (A, a) ≥f (B, b) in J0, and this happens ⇐⇒ (A, a′) ≥f ′

(B, b′) in J ′0, but the morphisms f , f ′ : A→ B, are not necessarily the same.

But it is true that ∀α ∈ AutC(A),∃γ ∈ AutC(B) making the following diagram commute:

A B

A B

f

α γ

f ′

Now mapping α 7→ γ we obtain a system of morphisms between the finite nonempty groups AutC(A),
giving rise to a projective system. This limit is nonempty (endow the sets with discrete topol-
ogy and use Proposition 1.3). This implies that we can make a simultaneous choice (αA)(A,a)∈J0

such that all the diagrams commute. This induces an isomorphism of functors lim−→J0
MorC(A,−) ∼=

lim−→J′0
MorC(A,−), and so F ∼= F ′.

(d) Let H ′ : C → π-sets be an equivalence, and F ′ the composite of H ′ with the forgetful functor.
Then π ∼= Aut(F ′) by (b) and F ′ ∼= F by (c). The isomorphism between functors F , F ′ induces
an isomorphism σ : Aut(F ) → Aut(F ′) by letting ε′ ∈ Aut(F ′) correspond to ε: ε = σε′σ−1. In
conclusion, π ∼= Aut(F ) canonically.

2.7 Galois Theory for Fields

In this section we will develop the example already introduced in Example 2.3. The finite separable algebras
over a field form a set. Then, the category of affine schemes over Spec(K ) of the form Spec(B), where B
is a free separable K -algebra is an essentially small Galois Category (we already proved in Example 2.3 that
it is a Galois Category). We would like to give an explicit description of Aut(F ) for this category. However,
given an essentially small Galois Category (C, F ), a priori we don’t know how to calculate Aut(F ) in terms
of well-known groups. The only tool provided by Theorem 2.1 that can serve for this purpose is (d): If we
are able to find a profinite group π such that C and π-sets are equivalent, then we have Aut(F ) ∼= π.

Theorem 2.3. Let K be a field and Ks its separable closure. Then, the category of affine schemes over K
of the form Spec(B), with B a free separable K -algebra, is equivalent to the category of Gal(Ks/K )−sets.

Proof. The category in the statement of the problem is antiequivalent to the category of finite free separable
K -algebras (denoted from now on KSAlg), so it will be enough to prove that KSAlg is antiequivalent to
π − sets, for π = Gal(Ks/K ) the absolute Galois group of K .

Let’s proceed to define the functors of the equivalence of categories. First, we define F : KSAlg →
π − sets:
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• Objects: Given B a finite free separable K -algebra, we define F (B) = AlgK (B, Ks), that is the set of
K -algebra morphisms from B to Ks . We should check that this is well defined, i.e., that AlgK (B, Ks) is
a π-set. Indeed, π acts on AlgK (B, Ks) on the left by composition: Given g ∈ AlgK (B, Ks), σ ∈ π,
then also σ ◦ g ∈ AlgK (B, Ks). Using the decomposition of Lemma 2.1 (iv), we can write B =∏t

i=1 Bi , where Bi is a finite separable field extension of K . Then, by the Galois correspondence,
Bi = Kπi

s , for πi ⊂ π an open subgroup of π. We claim that AlgK (B, Ks) ∼=
∐t

i=1 AlgK (Kπi
s , Ks). If

we denote by {ei}ti=1 the canonical basis of B =
∏t

i=1 Kπi
s , we have that ei is a root of x(x − 1),

and therefore every morphism of K -algebras f : B → Ks maps ei either to 1 or 0. At least one of
the elements of the basis must be mapped to 1, as otherwise f (

∑t
i=1 ei ) = f (1) = 1 would yield a

contradiction. On the other side, f (ei ) = f (ej) = 1, also yields a contradiction 1 = f (ei )f (ej) =
f (eiej) = 0. Therefore, ∀i and g ∈ Alg(Kπi , Ks), ∃!g ′ ∈ Alg(B, Ks) defined by g ′(b1, ... , bt) = g(bi ).
This defines a bijection AlgK (B, Ks) ∼=

∐t
i=1 AlgK (Kπi

s , Ks) which respects the π action, and so the
claim is proved. Finally, note also that the map π/π′ → Alg(Kπi

s , Ks) defined by σ 7→ σ|Kπis
is a

bijection which respects the π-actions. Therefore, we can identify AlgK (B, Ks) ∼=
∐t

i=1 π/πi as sets
with an action of π. This shows that AlgK (B, Ks) is a finite set, and, moreover, that the kernel of
the action is

⋂t
i=1 πi , which is an open subgroup of π. Then, Proposition 1.8 tells us that the action

of π on AlgK (B, Ks) is continuous. With this we conclude that AlgK (B, Ks) is indeed a π-set.

• Morphisms: Given a morphism of K -algebras f : B → C , we define F (f ) : F (C ) → F (B) as
F (f )(g) = g ◦ f , for every g ∈ AlgK (C , Ks). This is well defined: Indeed, its clear that it respects
the composition and the identity so its functorial. Moreover, it is a morphism of π-sets as σF (f )(g) =
σ ◦ g ◦ f = F (f )(σg).

Now let’s define the functor G : π − sets→ KSAlg:

• Objects: Given E a π-set, we define G (E ) = Morπ(E , Ks). Note that the set Morπ(E , Ks) has a
natural K -algebra structure induced by the structure of Ks by pointwise multiplication. We have to
check that it is finite and separable. Let {Ei}ni=1 be the set of orbits of E , E ∼=

∐n
i=1 Ei . Then its

clear that G (E ) ∼=
∏n

i=1 G (Ei ). Let’s study G (Ei ), i.e. how the functor G acts on transitive π-sets.
We know by Proposition 1.8 that every transitive π-set is isomorphic to one of the form π/π′, for a
certain π′ open subgroup of π. Every morphism of π-sets g ∈ Morπ(π/π′, Ks) is totally determined
by g(π′) = a ∈ Ks , as g(σπ′) = σg(π′) = σ(a). So an element a ∈ Ks defines a morphism of π-sets
π/π′ → Ks if and only if a ∈ Kπ′

s . In conclusion, given a π-set E , E ∼=
∐n

i=1 π/πi , with πi open
subgroup of π, we have G (E ) ∼=

∏n
i=1 Kπi

s , which is the product of finite separable extensions of K ,
and therefore a free separable K -algebra by Lemma 2.1.

• Morphisms: Given a morphism of π-sets f : E → D, we define G (f ) : G (D)→ G (E ) as G (f )(g) =
g ◦ f , for every g ∈ Morπ(E , Ks).

We will now proceed to prove that the functors just defined are indeed an equivalence of categories.
First, we define the morphism of functors θ : id

KSAlg → GF by

θB : B −→GF (B) = Morπ(AlgK (B, Ks), Ks)

b 7−→ θB(b) : AlgK (B, Ks) −→ Ks

g 7−→ g(b)
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For every f : B → C , θ induces a diagram

B C

GF (B) GF (C )

f

θB θC

GF (f )

which is commutative, as (θC ◦ f )(b) maps a morphism g ∈ Morπ(AlgK (C , Ks), Ks) to θC (f (b))(g) =
g(f (b)) and, on the other hand, (GF (f )◦θB)(b) = θB(b)◦F (f ) maps a morphism g ∈ Morπ(AlgK (C , Ks), Ks)
to θB(b)(g ◦f ) = g(f (b)), so (θC ◦f ) = (GF (f )◦θB) and the diagram commutes. It should be checked that
θB is an isomorphism for every B, but this is true, as we can express θB as the composition of isomorphisms
already defined above:

B ∼=
t∏

i=1

Kπi
i
∼=

t∏
i=1

Morπ(π/πi , Ks) ∼= Morπ(
t∐

i=1

π/πi , Ks) ∼=

∼= Morπ(
t∐

i=1

Alg(Kπi
s , Ks), Ks) ∼= Morπ(Alg(

t∏
i=1

Kπi
s , Ks), Ks)

Indeed, this chain of isomorphisms sends b 7→ (bi ) 7→ (gi ), where each gi satisfies gi (πi ) = bi , and the
image of (gi ) in Morπ(

∐t
i=1 Alg(Kπi

s , Ks), Ks) is defined as follows. Take an element f ∈ AlgK (Kπi
s , Ks)

defined by an element σ of the Galois group. Then, this f is mapped to σ(bi ), which is equal to f (bi ).
This corresponds to θB when composed with the last isomorphism.

Similarly, we define the morphism of functors η : idπ−sets → FG by

ηE : E −→FG (E ) = AlgK (Morπ(E , Ks), Ks)

e 7−→ ηE (e) : Morπ(E , Ks) −→ Ks

g 7−→ g(e)

Given f : E → D, the morphism η yields a commutative diagram, as (ηD ◦ f )(e)(g) = g(f (e)), which
agrees with (FG (f ) ◦ ηE )(e)(g) = (ηE (e) ◦ G (f ))(g) = ηE (e)(g ◦ f ) = g(f (e))

E D

FG (E ) FG (D)

f

ηE ηD

FG(f )

And the same argument as above proves that ηE is indeed an isomorphism: In particular, it is the compo-
sition of the following known isomorphisms:

E ∼=
n∐

i=1

π/πi ∼=
n∐

i=1

Alg(Kπi
s , Ks) ∼= Alg(

n∏
i=1

Kπi
s , Ks) ∼= Alg(

n∏
i=1

Morπ(π/πi , Ks), Ks) ∼=

∼= Alg(Morπ(
n∐

i=1

π/πi , Ks), Ks) ∼= Alg(Morπ(E , Ks), Ks)
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This theorem may be seen as a reformulation of the classical statement of Galois Theory for fields (i.e.
there is a correspondence between finite separable extensions of a field K and open subgroups of its absolute
Galois group). It should be noted that we haven’t used at all the theory of Galois Categories to prove this
equivalence, just classical Galois Theory. However, when we combine this result with Theorem 2.1, we
obtain that Gal(Ks/K ) is the unique profinite group (up to isomorphism) such that the category of free
separable algebras over K is equivalent to the category of finite sets with a continuous action of the profinite
group. This result is better that Theorem 2.3 alone, as it also has uniqueness, and is more concrete than
Theorem 2.1 as it gives a more manageable description of the profinite group. The fact that the group is
not unique, but unique up to isomorphism accounts here for the different choices of separable closures of
K , which yield isomorphic Galois groups.

This example will be very relevant, as we will see that it is a particular case of the general theory for
schemes that we want to develop, and, moreover, that we will need it to proof the general theory.

2.8 Functoriality

Theorem 2.1 gives rise to an assignation (C , F ) 7→ Aut(F ) of a profinite group for every Galois category.
To finish this section on Galois Categories, we will prove that this assignation is actually functorial, and
some properties that arise from this fact.

Theorem 2.4. Let (C, F ) and (C′, F ′) be two essentially small Galois categories, and G : C→ C′ a functor
such that F = F ′G . Let H : C → π − sets and H ′ : C′ → π′ − sets, where π and π′ denote Aut(F )
and Aut(F ′). Then, there is a natural continuous group homomorphism π′ → π such that the functor
G ′ : π − sets → π′ − sets that endows a π-set with the π′ action induced by π′ → π gives rise to a
commutative diagram

C C′

π − sets π′ − sets

G

H H′

G ′

Proof. Let’s define a mapping Aut(F ′)→ Aut(F ) by

(σ′Y )Y∈Ob(C′) 7→ (σ′G(X ))X∈Ob(C)

σ′G(X ) acts on F1(G (X )) = F (X ), so it is a permutation of F (X ) and therefore the map is well

defined, and it is clearly a group homomorphism. Moreover, let U =
∏

X /∈J SF (X ) ×
∏

X∈J S ′F (X ), for

#J < ∞ a basic open set of Aut(F ), and S ′F (X ) ⊂ SF (X ). Its preimage is exactly the set σ′ ∈ Aut(F ′)

such that σ′G(X ) ∈ S ′F (X ), for X ∈ J, which is also a basic open set of Aut(F ′). Therefore, the map

Aut(F ′) → Aut(F ) just defined is indeed a morphism of profinite groups. We just have to check that G ′

makes the diagram commutative. When composed with the forgetful functor to sets, both H ′G and G ′H
yield F (X ). Therefore it is enough to check that the action of an element of Aut(F ′) is the same in H ′G
and G ′H. Let X ∈ Ob(C), (σ′Y )Y∈Ob(C′) ∈ Aut(F ′). Then, (σ′Y ) acts on H ′G (X ) as the permutation
σ′G(X ), which agrees with the action on G ′H(X ) by the definition of the map Aut(F ′)→ Aut(F ) above.

Definition 2.6. We denote by Gal the category of small Galois Categories, that is defined as follows:

• Objects: Small Galois categories, that is, pairs (C, F ) with C small.
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• Morphisms: A morphism (C, F )→ (C′, F ′) is a functor G : C→ C′ satisfying F = F ′G .

Proposition 2.9. The assignment (C, F ) 7→ Aut(F ) extends to a contravariant functor from Gal to the
category of profinite groups.

Proof. Let’s define a functor J : Gal → GrpProf that extends the assignment J(C, F ) = Aut(F ). Let
G : (C, F ) → (C′, F ′) be a morphism in Gal. Then, we are under the situation of Theorem 2.4, and so
we have already seen that G induces a morphism of profinite groups Aut(F ′)→ Aut(F ), (σ′Y )Y∈Ob(C′) 7→
(σ′G(X ))X∈Ob(C). Let’s define J(G ) to be this morphism.

It is clear that this assignment sends the identity functor id : (C, F ) → (C, F ) to the identity id :
Aut(F ) → Aut(F ). Moreover, given (C′′, F ′′) another object of Gal, and a morphism G ′ : (C′, F ′) →
(C′′, F ′′), we have

J(G ′ ◦ G )((σ′′Z )Z∈Ob(C′′)) = (σ′′G ′G(X ))X∈Ob(C) = J(G ) ◦ J(G ′)((σ′′Z )Z∈Ob(C′′))

Therefore J defines a contravariant functor from Gal to the category of profinite groups.

Example 2.8. Let K ′ be a field and K a subfield. Let C be the category of affine schemes over K of the
form Spec(B), where B is a free separable K -algebra. Similarly let C′ be the category of affine schemes
Spec(B), with B a free separable K ′-algebra. Let F : C → KSAlg → sets, where the last functor is
AlgK (−, Ks), and similarly let F ′ : C′ → K ′SAlg → sets, with AlgK ′(−, K ′s) as second functor. The
functor KSAlg → K ′SAlg sending A 7→ A⊗K K ′ induces a functor G : C→ C′, which satisfies F = F ′G .
Therefore this gives rise to a continuous group homomorphism Gal(K ′s/K ′) → Gal(Ks/K ), which is the
map restricting the action of Gal(K ′s/K ′) to Ks , which is a subfield of K ′s .

Proposition 2.10. Let π′ → π be a morphism of profinite groups, and G ′ : π − sets → π′ − sets the
functor induced by endowing a π-set with the π′ action induced by π′ → π. Then,

i) π′ → π is surjective if and only if G ′ sends connected π-sets to connected π′-sets.
ii) π′ → π is injective if and only if for every connected object X ′ of π′-sets there is an object X of

π-sets and a connected component Y ′ of G ′(X ) such that there is a π′-homomorphism Y ′ → X ′

Proof. Let’s denote by f the morphism of profinite groups π′ → π. Let’s remind that G ′ does not change
the underlying set, just the action. So we will denote without distinction the elements of E and G ′(E ). It
should also be reminded that connected objects in the category of π-sets are the transitive π-sets.

i) ⇒ Let E be a connected π-set, and e ∈ E . Then, ∀e ′ ∈ E ∃σ ∈ π such that σe = e ′. By
surjectivity of f , ∃σ′ ∈ π′ such that f (σ′) = σ. Therefore σ′e = f (σ′)e = σe = e ′, which proves
that G ′(E ) is transitive.

⇐ Suppose that f is not surjective, that is, ∃σ ∈ π such that f −1(σ) = ∅, and let {πi} be the
set of open subgroups of π. These groups are in particular closed, and then, so are σπi , for every
σ ∈ π. Therefore, the sets f −1(σπi ) are also closed. By Proposition 1.7, as f is not surjective,⋂

i f −1(σπi ) = ∅. But as π′ is profinite and therefore compact, a finite number of these sets will do
to intersect to the empty set. Let σπ1, ... ,σπn be these sets. Take an open subgroup π̃ ⊂ π such
that π̃ ≥ πi for every i = 1, ... , n (that is πi ⊆ π̃). As the connected π-set π/π̃ is sent by G to a
connected π′-set, ∃σ′ ∈ π′ such that f (σ′)π̃ = σπ̃, and so f (σ′)πi = σπi , for i = 1, ... , n, which is a
contradiction.

ii) ⇐ Suppose that ∃σ1,σ2 ∈ π′ such that f (σ1) = f (σ2). Take π′′ an open subgroup of π, and denote
X ′ = π/π′′. By hypothesis, there is an Y ′ connected π′-set and a morphism φ : Y ′ → π′/π′′. Take

37



e ∈ Y ′. Without loss of generality we can assume that φ(e) = π′′. If f (σ1)e = f (σ2)e, applying φ
we get that σ−1

1 σ2 ∈ π′′. As this holds for every open π′′, Proposition 1.7 tells us that σ1 = σ2.

⇒ If π′ → π is injective, we can consider π′ a subgroup of π. For every open subgroup of π′,
π′′ ⊂ π′, ∃π̃ open subgroup of π such that π′′ = π∩ π̃. The subset of π/π̃ given by Y ′ = f (π′)π̃ is a
connected component of G ′(π/π̃). Then we can easily define a map f (σ)π 7→ σπ′′. This morphism
of π′-sets is well defined, as f (σ1)−1f (σ2) ∈ π̃ ⇒ σ−1

1 σ2 ∈ π̃ ∩ π′ = π′′.
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3. Projective modules and projective algebras

In this section we introduce and treat the main properties of projective modules and algebras, and also the
notion of projective separable algebras. This concepts are key, as we will see later that, in the affine setting,
finite and locally free morphisms of schemes correspond to finite projective algebras in the ring language,
and finite étale morphisms of schemes correspond to projective separable algebras. This chapter should be
regarded as something like the affine characterization of finite étale coverings.

3.1 Projective modules

Definition 3.1. An A-module P is called projective if the functor HomA(P,−) on the category of A-

modules is exact. Recall that this means that for every exact sequence M0
f1−→ M1

f2−→ M2, the induced
sequence

HomA(P, M0)
f1◦−−−−→ HomA(P, M1)

f2◦−−−−→ HomA(P, M2)

is exact as an A-module sequence.

Now we will proceed to give some equivalent characterizations of the concept of projective A-module.

Definition 3.2. An exact sequence of A-modules 0 → M0
f−→ M1

g−→ M2 → 0 splits if there exists an
isomorphism of A-modules θ : M1

∼= M0 ⊕M2 making the following diagram commutative

0 M0 M1 M2 0

0 M0 M0 ⊕M2 M2 0

f

id

g

θ id

Lemma 3.1. The following assertions are equivalent:

i) 0→ M0
f−→ M1

g−→ M2 → 0 splits.

ii) ∃ an A-linear map h : M1 → M0 such that M0
f−→ M1

h−→ M0 is the identity map.

iii) ∃ an A-linear map h′ : M2 → M1 such that M2
h′−→ M1

g−→ M2 is the identity map.

Proof. (i) ⇐⇒ (ii) Let θ : M1
∼= M0 ⊕M2 denote the isomorphism. Then, given p : M0 ⊕M2 → M0

the projection map, p ◦ θ : M1 → M0 yields the identity when composed with f , by commutativity of the
diagram

M0 M1

M0 M0 ⊕M2 M0

f

id θ

id

p

Reciprocally, given the morphism h : M1 → M0, let’s build the map φ : M1 → M0 ⊕ M2 sending

39



x 7→ (h(x), g(x)). It’s clear that the map φ yields the commutative diagram

0 M0 M1 M2 0

0 M0 M0 ⊕M2 M2 0

f

id

g

φ id

so it’s only left to check that φ is an isomorphism to prove that the sequence splits.

Indeed, let (x , y) ∈ M0 ⊕ M2. By the surjectivity of g , ∃a ∈ M1 such that g(a) = y . Then take
b = a− f (h(a)) + f (x), and we have that g(b) = y , h(b) = h(a)− h(a) + h(f (x)) = x , so φ is surjective.
Now suppose that h(x) = h(y), g(x) = g(y). By the fact that M1/M0

∼= M2, g(x) = g(y)⇒ x = y+f (z),
for a certain z ∈ M0. Now, applying h, we have h(x) = h(y) + hf (z)⇒ z = hf (z) = 0⇒ f (z) = 0, and
so x = y .

(i) ⇐⇒ (iii) Given the isomorphism θ : M1
∼= M0⊕M2, consider the natural inclusion map i : M2 →

M0 ⊕M2, x 7→ (0, x). The composition with the projection M0 ⊕M2 → M2 yields the identity, and so we
have the following commutative diagram

M1 M2

M2 M0 ⊕M2 M2

g

id

i

id

p

θ−1

and, in conclusion, h′ := θ−1 ◦ i is the desired morphism.

Reciprocally, consider the morphism φ : M0 ⊕M2 → M1 given by (x , y) 7→ f (x) + h′(y). It is clearly
satisfied that the diagram

0 M0 M1 M2 0

0 M0 M0 ⊕M2 M2 0

f

id

g

idφ

is commutative, so it will be enough to check that φ is an isomorphism. Note that every element of
M1 can be written as h′g(y) + a, with a ∈ f (M0), because M1

∼= M2/M0. Then, given y ∈ M1, we can
write y = h′g(y) + f (x), and φ(x , g(y)) = y , so φ is surjective.

On the other side, suppose that we have φ(x1, y1) = φ(x2, y2). Applying g , we get y1 = y2. Then,
h′(y1) = h′(y2), and so f (x1) = f (x2), and finally, by injectivity of f , we have x1 = x2, and so φ is
injective.

Proposition 3.1. Let A be a ring and P an A-module. The following statements are equivalent.

i) P is projective.
ii) The functor HomA(P,−) is right-exact.
iii) Every exact sequence 0→ M0 → M1 → P → 0 splits.
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iv) ∃ an A-module Q such that P ⊕ Q is free.

Proof. (i)⇒ (ii) is trivial, as if the Hom functor is exact, it is in particular right-exact.

(ii)⇒ (iii) The fact that HomA(P,−) is right-exact means that for every A-linear map g : M → N

which is surjective, and ∀f : P → N, ∃ an A-linear map h : P → M that makes commutative the diagram

P

M N 0
h

f

g

Therefore, given an exact sequence 0 → M0 → M1 → P → 0, we can take M = M1, N = P, f = id
and g : M1 → P, we see that ∃h satisfying characterization (iii) of Lemma 3.1, and so the sequence
0→ M0 → M1 → P → 0 splits.

(iii)⇒ (iv) Let’s map a free module to a set of generators of P, ϕ :
⊕

i∈I A→ P, which is a surjective

map. Therefore, 0 → kerϕ →
⊕

i∈I A
ϕ−→ P → 0 splits, and so P ⊕ kerϕ ∼=

⊕
i∈I A, and P is a direct

summand of a free A-module.

(iv)⇒ (i) Suppose that we have P ∼=
⊕

i∈I Pi . Using HomA(P, M) ∼=
∏

i∈I HomA(Pi , M) (universal

property of sums), it is immediate that the functor HomA(P,−) is exact if and only if HomA(Pi ,−) is
exact for all i ∈ I . Therefore, P is projective ⇐⇒ Pi projective ∀i .

Now, first of all note that A is a projective A-module, as HomA(A, M) ∼= M, and through this isomor-
phism the functor HomA(A, M) can be seen as the identity, so it is exact. In consequence, free A-modules
are projective, and direct summands of free A-modules are also projetive.

Observation 3.1. If P a finitely generated module over a ring A, then P is projective ⇐⇒ ∃Q A-module
such that P ⊕ Q ∼= An for a certain Q which is finitely generated. This is immediate because if P is
projective the sequence 0→ ker φ→ An → P → 0 splits, and so we have P ⊕Q ∼= An, where Q := ker φ.
Q must be finitely generated as both P, An are finitely generated.

Observation 3.2. Note that every projective module is also flat. Indeed, A is flat as an A-module, and a
sum of modules is flat ⇐⇒ each summand is flat. Therefore, free modules are flat and direct summands
of free modules (that is, projective modules) are also flat.

Example 3.1. Let’s see some examples of projective modules:

i) Free modules are projective modules. For example, if A = k is a field, every A-module (that is, every
k-vector space) is free, and therefore projective.

Another particular case is the case of principal ideal domains: Every ideal is isomorphic to A as an
A-module, and so every ideal is free and therefore projective.

ii) Hereditary rings:

Definition 3.3. A ring is called hereditary if every ideal is projective.

Proposition 3.2. In a hereditary ring every submodule of a free A-module is isomorphic to a direct
sum of ideals of A. In particular, every projective module is the sum of ideals of A.

Proof. Let M be a submodule of a free A-module. Let’s consider the maps fi defined as
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0 M
⊕

i∈I A A
fi

πi . fi (M) is an ideal of A, that we can denote as Ji . As Ji is

projective, ∃hi : Ji → M such that fi ◦ hi = idJi . Then, by the universal property of the direct sum,
there is a map gi :

⊕
i∈I Ji → M corresponding to the set of maps (0, ... , 0, hi , 0, ... , 0), satisfying

fj ◦ gi = δij . Then, there is a map
⊕

i∈I Ji → M, (xi )i∈I 7→
∑

i∈I gi (xi ), and this guarantees that
M 7→

⊕
i∈I Ji is surjective, and therefore an isomorphism.

Proposition 3.3. Dedekind domains are hereditary rings.

Proof. In a Dedekind domain A, every non-zero fractional ideal of A is invertible ([1], Theorem 9.8).
Therefore, let I be an ideal of A, and we know that (A : I )I = A, so ∃x1, ... xn ∈ I , y1, ... yn ∈ (A : I )
such that

∑n
i=1 xiyi = 1. Now consider the maps ϕ : I → An, x 7→ (xyi )

n
i=1, and ψ : An → I ,

(ai )
n
i=1 7→

∑
aixi

. Then, ψ ◦ϕ = idI , and so the sequence 0→ kerψ → An ψ−→ I → 0 splits, and so I
is a direct summand of a free module ⇒ I is projective.

This gives us the first particular example of a projective module that is not free: An ideal in a
Dedekind domain that is not principal. For instance, the typical example of this case is the ideal
(2, 1 +

√
−5) in the Dedekind domain Z[

√
−5].

iii) Let A = A1 × A2 as rings. Then, A1 is a projective A-module, induced by the projection map
p1 : A → A1. Indeed, as A1 ⊕ A2

∼= A1 × A2 = A, A1 is a direct summand of a free A-module.
Clearly A1 itself is not free in the general case (for example take A1 = A2).

3.2 Local characterization of projective modules

After introducing the concept of projective modules, we will see how finitely generated projective modules
can be locally characterized.

Lemma 3.2. If A is a local ring, every finitely generated projective A-module is free.

Proof. Let A be a local ring, with maximal ideal m. Let P be a finitely generated projective A-module.
Take x1, ... , xn ∈ P satisfying that xi ⊗ 1 form a base of the A/m vector space P ⊗ A/m. Then, the map
f : An → P, ei 7→ xi satisfies that f ⊗ idA/m : (A/m)n → P ⊗ A/m is an isomorphism (using surjectivity
and that they have the same dimension).

Take M = coker(f ). As tensoring is right-exact, we have that An ⊗ A/m
f⊗idA/m−−−−−→ P ⊗ A/m →

M⊗A/m→ 0 is exact. But the fact that f ⊗ idA/m is an isomorphism implies that 0 = M⊗A/m ∼= M/mM.
In conclusion, M = mM, and so by Nakayama’s lemma we have M = 0. Therefore f is surjective.

Therefore, we have the exact sequence 0 → ker f → An → P → 0. As P is projective, the sequence
splits, and therefore there is an isomorphism An ∼= P ⊕ ker f , and in particular ker f is finitely generated.
Then, An⊗A/m ∼= (P⊗A/m)⊕ (ker f ⊗A/m), and so ker f /m ker f = 0. Using Nakayama’s lemma again,
we conclude that ker f = 0 and so f is an isomorphism, and P is free.

Definition 3.4. We say that an A-module M is finitely presented if ∃ an exact sequence Am → An →
M → 0.
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Lemma 3.3. Let M, N be A-modules, and M finitely presented. Let S ⊂ A be a multiplicatively closed
subset of S . Then, the map

S−1HomA(M, N) −→HomS−1A(S−1M, S−1N)

h/s 7−→ h′ : S−1M −→ S−1N

a

t
7−→ h(a)

ts

is an isomorphism of S−1A-modules.

Proof. Note that we have the maps φ : HomS−1A(S−1A, S−1N) → S−1N, φ(f ) = f (1) and ψ :
S−1HomA(A, N) → S−1N, ψ(f /s) = f (1)/s, which are isomorphisms of A-modules. The composition
φ−1 ◦ ψ : S−1HomA(A, N) → HomS−1A(S−1A, S−1N) yields the natural map of the statement, for the
case M = A. So for the case M = A, the map of the statement is an isomorphism. Taking into account
that HomA(An, N) ∼=

⊕n
i=1 Hom(A, N), and HomS−1A((S−1A)n, S−1N) ∼=

⊕n
i=1 HomS−1A(S−1A, S−1N),

the result also holds for free (and finitely generated) A-modules.

Now let’s deal with the case where M is finitely presented: We can write the following exact sequence:

Am f−→ An g−→ M → 0. Now using that HomA(−, N) transforms a right exact sequence into a left exact
one, and that S−1 is an exact functor, we have the following exact sequences:

0→ S−1HomA(M, N)
S−1g−−−→ S−1HomA(An, N)

S−1f−−−→ S−1HomA(Am, N)

0→ HomS−1A(S−1M, S−1N)
S−1g−−−→ HomS−1A((S−1A)n, S−1N)

S−1f−−−→ HomS−1A((S−1A)m, S−1N)

Where we have denoted S−1h := −◦h
1 and S−1h := − ◦ h

1 .

Given a morphism h : M ′ → M, the natural map of the statement of the lemma induces a commutative
diagram

S−1HomA(M, N) S−1HomA(M ′, N)

HomS−1A(S−1M, S−1N) HomS−1A(S−1M ′, S−1N)

S−1h

S−1h

And, in consequence, we have the commutative diagram

0 S−1HomA(M, N) S−1HomA(An, N) S−1HomA(Am, N)

0 HomS−1A(S−1M, S−1N) HomS−1A((S−1A)n, S−1N) HomS−1A((S−1A)m, S−1N)

S−1g S−1f

S−1g S−1f

Now, as the vertical maps are isomorphisms in the free case, the remaining vertical map (the first one,
for the case of M) has to be an isomorphism too.

Lemma 3.4. Let {fi}i∈I ⊆ A, with
∑

i∈I Afi = A. Let M be an A-module.

i) If Mfi = 0 ∀i ∈ I , then M = 0.
ii) If Mfi is a finitely generated Afi -module ∀i ∈ I ; then M is a finitely generated A-module.
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Proof. i) As
∑

i∈I Afi = A, then ∃f1, ... , fn, fi ∈ {fα}α∈I , and ai ∈ A, i ∈ {1, ... , n}, such that∑n
i=1 ai fi = 1. Let x ∈ M. As Mfi = 0, ∃m1, ... , mn such that f mi

i x = 0. Now let m =
∑n

i=1 mi −
n + 1. We have (

∑n
i=1 ai fi )

m = 1, and expanding the sum we see that each summand is of the form∏n
i=1 f di

i , with
∑

di = m. Therefore, there is at least one i such that di ≥ mi , and that happens for
every term of the sum. In conclusion, we have 0 = x(

∑n
i=1 ai fi )

m = x . As this holds ∀x ∈ M, we
conclude that M = 0.

ii) Let y ∈ M, {fi}ni=1 chosen as before. Then, for every i = 1, ... , n, we have the expression

y
1 =

∑ti
j=1 xij

aij

f
mij
i

in Mfi , where the set

{
xij

f
mij
i

}ti

j=1

is a set of generators of Mfi . Taking Mi =

maxj(mij), we can write it as y
1 = 1

f Mi
∑ti

j=1 xij

aij

f
Mi−mij
i

. This implies that ∃Ki such that (f Mi
i y −∑ti

j=1 xijaij f
Mi−mij

i )f Ki
i = 0. If we rename M ′i := Mi + Ki we get the following expression

f
M′i
i y =

ti∑
j=1

xijaij f
M′i−mij

i

Let’s remind that, if (fi )
n
i=1 = (1), then for arbitrary exponents (αi )

n
i=1, αi ≥ 0, we have that

(f αi
i )ni=1 = (1) (see the proof of part (i)). Therefore, ∃b1, ... , bn such that

∑n
i=1 bi f

M′i
i = 1. Then,

y =
∑n

i=1 bi
∑ti

j=1 xijaij f
M′i−mij

i . This proves that the set (xij)i ,j generates M, and as it is a finite
set, M is finitely generated.

Now we are ready to prove the theorem giving the local characterization of finitely generated projective
modules.

Theorem 3.1. Let A be a ring, and P an A-module. The following statements are equivalent:

i) P is a finitely generated projective A-module.
ii) P is finitely presented, and Pm is a free Am-module for every m maximal ideal of A.
iii) ∃(fi )i∈I elements of A with

∑
i∈I Afi = A such that ∀i ∈ I , Pfi is free of finite rank as an Afi -module.

Proof. (i)⇒ (ii) By Observation 3.1, there exists a finitely generated A-module Q such that P⊕Q ∼= An.

This implies that P is finitely presented. Moreover, given a maximal ideal m, tensoring the isomorphism
P ⊕Q ∼= An with Am we get Pm ⊕Qm

∼= An
m ⇒ Pm is a finitely generated projective Am-module. As Am is

a local ring, Pm is free by Lemma 3.2.

(ii)⇒ (iii) Let’s fix a maximal ideal m, and let’s denote h : Pm
∼= An

m and g = h−1. As both An, P

are finitely presented, therefore using Lemma 3.3 we have that g = g ′/s, h = h′/t, where h′ : P → An,
g ′ : An → P and s, t ∈ A \m. Then,

g ◦ h = idPm ⇒ ∃u ∈ A \m such that u(g ′ ◦ h′ − st idP) = 0

h ◦ g = id(Am)n ⇒ ∃v ∈ A \m such that v(h′ ◦ g ′ − st idAn) = 0

Let f = stuv ∈ A \ m. Note that we can write g ′′ := tuvg ′/f = g ′/s, h′′ := suvh′/f = h′/t. These
maps are inverse to each other, and are defined between the modules An

f and Pf , so Pf
∼= An

f . Varying m,
we obtain the desired collection (fi )i∈I , where in this case I is the set of maximal ideals of A. It’s clear that
the set (fi )i∈I generates A, because for every maximal ideal m of A, the corresponding element fm doesn’t
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belong to A, so the ideal generated by (fi )i∈I cannot be a subset of any maximal, and therefore it must be
the whole ring.

(iii)⇒ (i) Note that we can select a finite subset of the set (fi )i∈I , denoted f1, ... , fn such that∑n
i=1 ai fi = 1. Consider for each i = 1, ... , n, an isomorphism gi : A

n(i)
fi
→ Pfi . Note that we can choose

gi mapping the basic elements into the image of P in Pfi (as the image of P in Pfi generates Pfi as
Afi -module). Then, gi is induced by a certain g ′i : An(i) → P, and the set of maps g ′i combine to form a
map g ′ : A

∑n
i=1 n(i) → P.

As each g ′i ⊗ idAfi
is surjective (because it is an isomorphism), we have that g ′ ⊗ idAfi

is surjective.

Then, the cokernel M of g ′ satisfies that Mfi = 0 ∀i , and using Lemma 3.4 (i), we conclude that M = 0.

Now we will proceed to prove that P is finitely presented. Note that g ′ ⊗ idAfi
has kernel A

∑
j 6=i n(j)

fi
,

as we have a sequence 0 → ker(g ′ ⊗ idAfi
) → A

∑n
i=1 n(j)

fi
→ Pfi → 0 that splits because Pfi are free and

therefore projective, and so A
∑

j 6=i n(j)

fi
∼= ker(g ′ ⊗ idAfi

). So the kernel of g ′ ⊗ idAfi
is finitely generated ∀i ,

and therefore by Lemma 3.4 (ii) we conclude that P is finitely presented.

Suppose that we have a surjective A-lineal map h : M → N, and consider the map HomA(P, M)
h◦−−−→

HomA(P, N). Tensoring this map with Afi , and recalling that we are allowed to use Lemma 3.3 as P is
finitely presented, we have the following commutative diagram:

HomA(P, M)⊗ Afi HomA(P, N)⊗ Afi

HomAfi
(Pfi , Mfi ) HomAfi

(Pfi , Nfi )

h⊗idAfi
◦−

∼= ∼=
hfi ◦−

Where we have denoted hfi the Afi -linear natural map Mfi → Nfi induced by h. As h is surjective, hfi is
also surjective, and therefore the map hfi ◦− is surjective because Pfi is projective. As the vertical maps of
the commutative diagram are isomorphisms, also h⊗ idAfi

◦− is surjective. Therefore, applying Lemma 3.4
(a) to the cokernel of the map HomA(P, M)→ HomA(P, N) we get that it is also surjective, and therefore
P is projective, by the second characterization of Proposition 3.1.

Observation 3.3. Let P be a finitely generated projective module over a ring A. We can reformulate (iii)
of the last theorem in the scheme-theoretic language, as follows: There exists an open cover of Spec(A)
(namely Xfi

∼= Spec(Afi ), ranging over a set I ), such that the sheaf associated to P on Spec(A) satisfies

Γ(P, Xfi )
∼= Pfi

∼= A
n(i)
fi

.

Therefore, if we choose a prime ideal p ∈ Spec(A), and fi /∈ p, we have Pp
∼= Pfi ⊗ (Afi )p

∼= A
n(i)
p . So

it makes sense to talk about the rank of Pp for each p ∈ Spec(A), as it is free. Moreover, this rank will be
locally constant (in Spec(A)). This tells us that the following definition makes sense.

Definition 3.5. Let P be a finitely generated projective A-module. The rank of P is a function rankA(P) :
Spec(A)→ Z defined by rankA(P)(p) = n if Pp = An

p .

The observation we just made tells us that this is a well defined locally constant function, and therefore
continuous. In particular, if Spec(A) is connected, then rankA(P) is constant. If the ring A is clear from
the context, we may denote just rank(P) instead of rankA(P).

Definition 3.6. Let P be a finitely generated projective A-module. We say that P is faithfully projective
if rank(P) ≥ 1, that is, rank(P)(p) ≥ 1, ∀p ∈ Spec(A).
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Proposition 3.4. Let A be a ring and P a finitely generated projective A-module. Then, the following
statements are equivalent.

i) P is faithfully projective
ii) The map A→ EndZ(P) that gives the A-module structure is injective
iii) P is faithful, i.e. an A-module M = 0 ⇐⇒ M ⊗A P = 0
iv) P is faithfully flat, i.e., a sequence of A-modules M0 → M1 → M2 is exact if and only if M0 ⊗ P →

M1 ⊗ P → M2 ⊗ P is exact.

Proof. (i)⇒ (iii) Let M ⊗A P = 0. Then, tensoring with Ap we get (M ⊗A P)⊗A Ap
∼= M ⊗A An

p
∼= Mn

p ,

with n ≥ 1 as P is faithfully projective. Then, M ⊗A P = 0 ⇒ Mp = 0 ∀p ∈ Spec(A) ⇒ M = 0 by [1],
Proposition 3.8.

(iii)⇒ (i) Let rankA(P)(p) = 0, i.e. Pp = 0. Then, Ap⊗P ∼= Pp = 0, and as P is faithful, this implies

that Ap = 0. But this is impossible, so we must have rankA(P) ≥ 1, and so P is faithfully projective.

(iii)⇒ (ii) Let a ∈ A such that ax = 0 ∀x ∈ P. Then, (a) is an ideal of A, and in particular an

A-module. This means that (a) ⊗A P = 0, and so we have (a) = 0, which implies that a = 0 and so the
map A→ EndZ(P) is injective.

(ii)⇒ (i) Suppose that Pp = 0 for a certain prime Pp. Then, as P is finitely generated, let’s take

{xi}i=1,...,n of generators of P. We know that ∃f1, ... , fn /∈ p such that xi fi = 0, and we must have
f1 ... fn /∈ p, because p is prime. Then, we have (f1 ... fn)x = 0∀x ∈ P. This contradicts (ii), as f1 ... fn 6= 0.

(iv)⇒ (iii) Take the sequence 0→ M → 0.

(iii)⇒ (iv) We already know that every projective module is flat. Therefore we just need to prove the

reverse implication. Consider the sequence M0
f−→ M1

g−→ M2, and let M0⊗P
f⊗idP−−−→ M1⊗P

g⊗idP−−−−→ M2⊗P
be exact. Note that ker(g) ⊇ im(f ), as 0 = (g ⊗ idP) ◦ (f ⊗ idP)(M0 ⊗ P) = g(f (M0))⊗ P, and by (iii)
this implies that g(f (M0)) = 0 ⇒im(f ) ⊆ ker(g)

Then, there is a well defined map g : M1/f (M0) → M2, such that the induced map g ⊗ idP :
M1/f (M0) ⊗ P → M2 ⊗ P is injective. Then, suppose that we have x ∈ M1, x /∈ f (M0) such that
g(x) = 0. Consider x the image of x in M1/f (M0). g(Ax) ⊗ P = 0, which implies Ax ⊗ P = 0 by
injectivity of the map g ⊗ P. Finally, by (iii) this implies that Ax = 0 ⇒ x ∈ f (M0). In conclusion,
im(f ) ⊇ ker(g).

3.3 Projective algebras

Given a ring A and an A-algebra B, we can regard B as an A-module. This way we can apply all the
concepts of projective modules to algebras.

Definition 3.7. Let A be a ring and B an A-algebra. We say that B is a projective algebra if it is projective
as an A-module, and that B is finite projective if it is finitely generated projective as an A-module.

For a finite projective algebra, we denote by [B : A] := rankA(B). We say that B is faithfully projective
if it is faithfully projective as a module.

Proposition 3.5. Let B be a finite projective A-algebra. Then we have

i) The map A→ B is injective ⇐⇒ B is faithfully projective.
ii) The map A → B is surjective if and only if [B : A] ≤ 1, and if and only if the map B ⊗A B → B,

x ⊗ y 7→ xy is an isomorphism.
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iii) The map A→ B is an isomorphism if and only if [B : A] = 1.

Proof. This proof relies basically on [1], Proposition 3.9, which states that an A-module homomorphism φ is
injective/surjective/an isomorphism if and only if ∀p ∈ Spec(A), φp is injective/surjective/an isomorphism.

i) Suppose that [B : A](p) = 0. Then Bp = 0, so Ap → Bp is not injective, and therefore A→ B is not
injective. Reciprocally, let [B : A] ≥ 1. The kernel of the map Ap → Bp anihilates Bp, but as Bp is a
free Ap module, then ker(Ap → Bp) = 0 and the map Ap → Bp is injective. As this holds ∀p, then
the map A→ B is also injective.

ii) First suppose that the map B ⊗A B → B is an isomorphism. Localizing in Ap, it is immediate that

Bp⊗Ap Bp
∼= An2

p , if Bp
∼= An

p as Ap-modules. Then, as we know that two free modules are isomorphic
if and only if they have the same rank (Proposition A.2), we must have [B : A]2 = [B : A], and so
[B : A] ≤ 1.

Now let [B : A] ≤ 1. As it is enough to prove the surjectivity for Ap → Bp, we can assume that A is
local and so B is free and the rank is constant. Let’s analyze the two cases separately.

• [B : A] = 0. This implies B = 0, and so the map is surjective.

• [B : A] = 1. B is free of rank 1 over A, and so also EndA(B) is free of rank 1 over A, and
the identity map forms a basis. Then, we have the injective map ψ : B → EndA(B), b 7→ mb

multiplication by b. The composition A→ B → EndA(B) yields an isomorphism, as it maps a
basis of A (1) to a basis of EndA(B) (the identity). Therefore, A→ B must be surjective.

Finally, if A → B is surjective, we have B ∼= A/a, for a certain ideal of A that anihilates B. So
B ⊗A B ∼= B/aB, and as aB = 0, B/aB = B. The composition of these isomorphisms yields exactly
the map B ⊗ B → B mapping x ⊗ y 7→ xy .

iii) Is an immediate consequence of (i) and (ii).

Lemma 3.5. Let A be a ring, B an A-algebra and P a projective A-module. Then P ⊗A B is a projective
B-module, and the diagram

Spec(B) Spec(A)

Z

rankB(P⊗AB)
rankA(P)

commutes if P is finitely generated.

Proof. If P is projective and finitely generated, there exists a finitely generated module Q such that
P ⊕ Q ∼= An. Therefore, (P ⊗A B) ⊕ (Q ⊗A B) ∼= Bn as B-modules, and so P ⊗A B is a projective
B-module. Now let p ∈ Spec(A), q ∈ Spec(B) such that p = qc . Then, the induced map Ap → Bq induces
the natural Ap-module structure on Bq.

We just need to check that (P ⊗A B) ⊗B Bq and P ⊗A Ap have the same rank. If we denote n =
rankAp(Pp), as Pp = P ⊗A Ap, we have then that Pp ⊗Ap Bq

∼= Bn
q as Bq-modules. We know that 2

free modules are isomorphic if and only if they have the same rank (Proposition A.2), and therefore it
will be enough to prove that (P ⊗A B)⊗B Bq is isomorphic to Pp ⊗Ap Bq as Bq-modules. First note that
(P ⊗A B)⊗B Bq

∼= P ⊗A Bq. So we have to prove P ⊗A Bq
∼= Pp ⊗Ap Bq.
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Now consider the map P×Bq → Pp⊗Ap Bq defined by (p, b
t ) 7→ p

1 ⊗
b
t . This is a well-defined A-bilinear

map, and therefore it induces a map P ⊗A Bq → Pp ⊗Ap Bq. Reciprocally, the map Pp × Bq → P ⊗A Bq

defined by (ps , b
t ) 7→ (p ⊗ b

ts ) is Ap-bilinear.

Let’s check that it is well defined. On the first coordinate, let p
s = p′

s′ ⇒ ∃u /∈ p such that (s ′p−p′s)u =

0. Then, p ⊗ b
ts = p ⊗ bus′

tsus′ = pus ′ ⊗ b
tsus′ = pus ⊗ b

tsus′ = p′us ⊗ b
tsus′ = p′ ⊗ b

ts′ . The argument is
immediate for the second coordinate. It’s clear that the two maps Pp⊗Ap Bq ↔ P ⊗A Bq are inverses, and
so Pp ⊗Ap Bq

∼= P ⊗A Bq and we are done.

Proposition 3.6. Let B be a faithfully flat A-algebra, P an A-module. Then, P is finitely generated and
projective as an A-module if and only if P ⊗A B is finitely generated and projective as a B-module.

Proof. The direct implication is true even if we remove the faithfully flat condition for B, by the lemma
above. Let’s see the other implication. Let {pi ⊗ 1}ni=1 be a finite set of generators of P ⊗A B. Then, we
have a natural A-linear map An → P that maps the i − th basic element of An to pi ⊗ 1. This map is
surjective when we tensor it with B. But as B is faithfully flat, then An → P is also surjective, and this
proves that P is also finitely generated.

Then, we have an exact sequence 0→ Q → An → P → 0. Tensoring with B we obtain 0→ Q ⊗B →
Bn → P ⊗ B → 0, exact sequence (as B is flat). Then, the sequence splits, as P ⊗ B is a projective
B-module. Q ⊗ B is therefore a direct summand of Bn and so Q ⊗ B is projective and finitely generated.
Using the same argument that we just made with P, we conclude that Q is finitely generated, and so P is
finitely presented.

Now let M be any A-module. Consider the map

HomA(P, M)⊗A B −→HomB(P ⊗A B, M ⊗A B)

f ⊗ b 7−→ f ′ : P ⊗A B −→ M ⊗A B

p ⊗ b′ 7−→ f (p)⊗ bb′

We will now prove that, if P is finitely presented (which is our case) this map is an isomorphism of
B-modules.

In the case where P = An, we have HomA(An, M) ∼= Mn ⇒ HomA(An, M) ⊗ B ∼= (M ⊗ B)n and
HomB(An ⊗ B, M ⊗ B) ∼= (M ⊗ B)n, as every homomorphism is totally defined by the image of the basis
elements. Then, the map defined and these isomorphisms yield a commutative diagram

HomA(An, M)⊗A B HomB(P ⊗A B, M ⊗A B)

(M ⊗ B)n (M ⊗A B)n

∼= ∼=

id

which proves our statement for P = An. In the general case P is finitely presented, so we have an exact
sequence Am → An → P → 0. Using the flatness of B and the right-exactness of HomA(−, M) we have
the following commutative diagram

0 HomA(P, M)⊗A B HomA(An, M)⊗A B HomA(Am, M)⊗A B

0 HomB(P ⊗A B, M ⊗A B) HomB(An ⊗A B, M ⊗A B) HomB(Am ⊗A B, M ⊗A B)

3 1 2
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As 1, 2 are isomorphisms, then 3 must also be an isomorphism. In conclusion the map HomA(P, M)⊗A

B → HomB(P ⊗A B, M ⊗A B) is an isomorphism.

To end the proof, suppose that we have 2 A-modules, M and N, and a surjective morphism M →
N. As B is flat, then the map M ⊗A B → N ⊗A B is surjective. As P ⊗A B is projective, the map
HomB(P⊗AB, M⊗AB)→ HomB(P⊗AB, N⊗AB) is also surjective. Now, making use of the isomorphism
we have just found, we know that also the map HomA(P, M) ⊗A B → HomA(P, N) ⊗A B is surjective.
Finally, using that B is faithfully flat, we conclude that the map HomA(P, M)→ HomA(P, N) is surjective.
So we have proved the characterization of Proposition 3.1 (ii), and therefore P is projective over A.

Lemma 3.6. Let A be a ring, and B a finite projective A-algebra. Let P be a finitely generated projective
B-module. Then P is a finitely generated projective A-module when regarded by restriction of scalars.

Proof. Let x1, ... , xk ∈ B be generators of B as an A-module, and let y1, ... , yr be generators of P as a
B-module. Then, the set {xiyj}i ,j generates P as an A-module, so P is finitely generated.

In addition, as B is a finitely generated projective A-module, exists Q such that B⊕Q ∼= Am. Similarly,
there exists a B-module Q ′ such that P ⊕Q ′ ∼= Bn as B-modules. By restriction of scalars, P ⊕Q ′ ∼= Bn

is also an isomorphism of A-modules. Then, P ⊕ Q ′ ⊕ Qn ∼= Bn ⊕ Qn ∼= (B ⊕ Q)n ∼= Anm as A-modules.
Therefore, P is a direct summand of a free A-module, and so it is projective.

3.4 Projective separable algebras

In the Introduction, we gave the definition of a free separable algebra. Now we will extend the notion of
separability to the case of projective algebras. To do that, we need to find a definition of trace that works
for projective modules. Given an A-module M we will denote its dual by M∗ = HomA(M, A).

Lemma 3.7. Let P be a finitely generated projective A-module, and let M be any A-module. Then, the
map

φ : P∗ ⊗A M −→HomA(P, M)

f ⊗m 7−→φ(f ⊗m) : P −→ M

p 7−→ f (p)m

is an isomorphism of A-modules. When there is a possible confusion on the modules involved, we will
denote the map as φP,M .

Proof. Let first P = A. Every A-linear map f : A → M is totally determined by f (1), as then f (a) =
af (1) ∈ M. Reciprocally, every choice of an element of m ∈ M defines an A-linear map fm : A → M by
setting f (1) = m and extending by linearity. Therefore, HomA(A, M) ∼= M via the isomorphism f 7→ f (1).
Moreover, the map M → A ⊗ M defined by m 7→ 1 ⊗ m is an isomorphism (the map induced by the
A-bilinear map A×M → M, (a, m) 7→ am is its inverse).

Then, the composition of the maps M ∼= A⊗M ∼= A∗⊗M
φA,M−−−→ HomA(A, M) ∼= M yields the identity,

and this proves that the map φA,M is an isomorphism, so the case with P = A holds. Using the natural
isomorphism HomA(

⊕n
i=1 A, N) ∼=

⊕n
i=1 HomA(A, N), we have the chain of isomorphisms

HomA(An, N)⊗M ∼=
n⊕

i=1

HomA(A, N)⊗M
φA,M−−−→∼=

n⊕
i=1

HomA(A, M) ∼= HomA(An, M)

49



that yields φAn,M , and so the statement also holds for free modules. Finally, let P be a finitely generated
projective module. Then ∃Q finitely generated such that P ⊕ Q ∼= An, and we have

(P∗ ⊗M)⊕ (Q∗ ⊗M) ∼= HomA(An, A)⊗M
φA,M−−−→∼= HomA(An, M) ∼= HomA(P, M)⊕ HomA(Q, M)

This isomorphism corresponds on the first coordinate to φP,M , and so using that a sum of exact
sequences is exact if and only if each sequence is exact, we conclude that φP,M is an isomorphism.

Definition 3.8. Let P be a finitely generated projective A-module. Then, we define the trace of P over A
as the A-linear map Tr = TrP/A : EndA(P)→ A defined as the composition of φ−1

P,P with the natural map
P∗ ⊗A P → A, f ⊗ p 7→ f (p).

TrP/A : EndA(P)
φ−1
P,P−−→ P∗ ⊗A P → A

Note that the previous lemma tells us that this definition makes sense, as φP,P is an isomorphism and so
we can talk about its inverse φ−1

P,P .

Definition 3.9. Let A be a ring, B a finite projective A-algebra. We say that B is projective separable if
the A-linear map

ϕ : B −→HomA(B, A)

b 7−→ ϕ(b) : B −→ A

x 7−→ (ϕ(b))(x) = Tr(bx)

is an isomorphism of A-modules. When there is confusion on the rings and modules involved, we will
denote ϕB/A.

Observation 3.4. The definition of separability that we have just given is the same that we gave in the
Introduction, but where we have changed the definition of the trace. Therefore, to regard this definition
as an extension of the free module case to the projective case, we just have to check that the definition of
trace just given agrees with the usual one if P is a free module.

Let {wi}ni=1 be a basis of P. Note that P∗ is free, and we can take as a basis {w∗i }, where w∗i (wj) = δij
is the usual dual basis. Now take f ∈ End(P), defined by f (wi ) =

∑n
i=1 aijwj . Note that φ(

∑
i ,j aijw

∗
i ⊗

wj)(wk) =
∑

j akjwj , and so φ−1(f ) =
∑

i ,j aijw
∗
i ⊗wj . Therefore, Tr(f ) =

∑
ij aijw

∗
i (wj) =

∑
i aii , which

agrees with the usual definition of the trace for free modules.

Observation 3.5. The terminology used may usually lead to confusion, because we speak of ”free separable
algebras” and ”projective separable algebras”. In fact, there exists a general definition of a separable algebra
that doesn’t require the algebra to be free or projective, and it can be seen that the definitions that have
been given are equivalent to ”free and separable” and ”projective and separable”, respectively (see [5],
6.10). By the observation above, in our situation we can speak of ”separable algebras” without having
to bother about which definition (”projective separable” or ”free separable”) are we using. However, we
always have to require our algebra to be atleast projective. Moreover, it should also be noted that, in our
situation, when we speak of ”free separable” or ”projective separable” algebras, we always implicitely mean
that these algebras have to be finite.

Let’s now prove some basic properties of projective separable algebras.
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Lemma 3.8. Let A be a ring, B an A-algebra, P a finitely generated projective A-module. Then, the
following diagram is commutative

EndA(P) EndB(P ⊗A B)

A B

⊗idB

TrP/A TrP⊗AB/B

Proof. Let f ⊗ p ∈ P∗ ⊗A P, and consider f ′ = f ⊗ idB : P ⊗A B → B, that is, f ′(p ⊗ b) = f (p)b. Let’s
define the map ψ : P∗ ⊗A P → (P ⊗A B)∗ ⊗B (P ⊗A B) by f ⊗ p 7→ (f ⊗ idB)⊗ (p ⊗ 1). Now, consider
the following diagram:

EndA(P) P∗ ⊗A P

EndB(P ⊗A B) (P ⊗A B)∗ ⊗B (P ⊗A B)

−⊗idB ψ

φP,P

φP⊗AB,P⊗AB

Given f ⊗p ∈ P∗⊗P, φP,P sends it to the map φP,P(f ⊗p) : x 7→ f (x)p. Therefore, φP,P(f ⊗p)⊗ idB :
x ⊗ b 7→ f (x)p⊗ b. On the other side, ψ(f ⊗ p) = (f ⊗ idB)⊗ (p⊗ 1), and so φP⊗AB(ψ(f ⊗ p)) : x ⊗ b 7→
f (x)b(p ⊗ 1) = f (x)p ⊗ b. This proves that the diagram is commutative, and then it is immediate that
the diagram with the horizontal arrows reversed is also commutative.

In addition, let’s consider the diagram

P∗ ⊗A P (P ⊗A B)∗ ⊗B (P ⊗A B)

A B

ψ

with evaluation maps as vertical arrows. This diagram is also commutative. Indeed, take f ⊗ p ∈
P∗ ⊗A P. Then, ψ(f ⊗ p) = (f ⊗ idB)⊗ (p ⊗ 1), and when we evaluate it, it yields f (p)1 ∈ B.

Putting all together, we see that the full diagram of the statement is commutative

EndA(P) EndB(P ⊗A B)

P∗ ⊗A P (P ⊗A B)∗ ⊗B (P ⊗A B)

A B

φ−1
P,P

−⊗idB

TrP/A

φ−1
P⊗AB,P⊗AB

TrP⊗AB/B

ψ

Lemma 3.9. Let 0 → P0 → P1 → P2 → 0 be an exact sequence of A-modules, with P1, P2 finitely
generated and projective. Let g : P1 → P1 be an A-linear map, with g(P0) ⊆ P0, and let h : P2 → P2 be the
map induced by g . Then, P0 is finitely generated and projective, and TrP1/A(g) = TrP0/A(g |P0)+TrP2/A(h).
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Proof. Given an exact sequence M0 → M1 → M2, we have that the induced sequence HomA(P1, M0) →
HomA(P1, M1)→ HomA(P1, M2) is exact, as P1 is projective. As P2 is projective, the sequence 0→ P0 →
P1 → P2 → 0 splits, so we have P1

∼= P0⊕P2, and therefore HomA(P1, N) ∼= HomA(P0, N)⊕HomA(P2, N).
So we have the exact sequence

HomA(P0, M0)⊕ HomA(P2, M0)→ HomA(P0, M1)⊕ HomA(P2, M1)→ HomA(P0, M2)⊕ HomA(P2, M2)

This implies that the sequences when we restrict to each coordinate are exact, and so looking at the
first coordinate we obtain that P0 is projective. The fact that P1

∼= P0⊕P2 implies that P0 is also finitely
generated.

It is immediate that, under the isomorphism P0 ⊕ P2
∼= P1, the endomorphism g corresponds to the

pair of maps (g |P0 , h). Taking into account the expression of the isomorphism P0 ⊕ P2
∼= P1, and the

induced isomorphism on dual spaces, it is also clear that the following diagram is commutative.

P∗1 ⊗ P1 A

(P0 ⊕ P2)∗ ⊗ (P0 ⊕ P2) A

On the other side, let’s consider the diagram

P∗1 ⊗ P1 End(P1)

(P0 ⊕ P2)∗ ⊗ P0 ⊕ P2 End(P0 ⊕ P2)

φP1,P1

φP0⊕P2,P0⊕P2

Consider an element f ⊗ p ∈ P∗1 ⊗ P1, and let (f0, f2) ⊗ (p0, p2) be the corresponding element in
(P0⊕P2)∗⊗ (P0⊕P2). Both paths of the diagram send the element f ⊗p to a map α : P0⊕P2 → P0⊕P2

defined by (x0, x2) 7→ (f0(x0) + f2(x2))(p1, p2), and so the diagram is commutative.

The diagram will remain commutative if we reverse the horizontal arrows (recall that they’re isomor-
phisms). Putting everything together, we have the following commuative diagram

HomA(P1, P1) P∗1 ⊗ P1 A

HomA(P0 ⊕ P2, P0 ⊕ P2) (P0 ⊕ P2)∗ ⊗ (P0 ⊕ P2) A

φ−1
P1

TrP1/A

φ−1
P0⊕P2

Tr(P0⊕P2)/A

Proposition 3.7. Let B be an A-algebra, C a faithfully flat A-algebra such that B ⊗A C is a projective
separable C -algebra. Then B is a projective separable A-algebra.
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Proof. We already know that B is finite projective, by Proposition 3.6. We just need to check that the
map ϕB/A : B → HomA(B, A) of the definition of separability is an isomorphism. As C is faithfully
projective, it is faithfully flat (Proposition 3.4), and therefore it will be enough to show that the map
ϕB/A ⊗ idC : B ⊗A C → HomA(B, A)⊗A C is an isomorphism. Consider the map

B ⊗A C
ϕB/A⊗idC−−−−−−→ HomA(B, A)⊗A C

∼=−→ HomC (B ⊗A C , C ) (1)

Where the second map is the same as in the proof of Proposition 3.6, composed with the usual
isomorphism C ⊗A A ∼= C . It is an isomorphism because we already know that B is finite projective.

Let’s see how this acts on an element of the form b ⊗ c . The first map sends it to ϕB/A(b)⊗ c, and
the image of ϕB/A(b) ⊗ c via the second map is a morphism α : B ⊗A C → C , defined by b′ ⊗ c ′ 7→
ϕB/A(b)(b′)cc ′ = TrB/A(bb′)cc ′.

On the other hand, the map ϕB⊗AC/C : B ⊗A C → HomC (B ⊗A C , C ) maps an element b ⊗ c to a
map b′ ⊗ c ′ 7→ TrB⊗AC/C (bb′ ⊗ cc ′). By C -linearity, TrB⊗AC/C (bb′ ⊗ cc ′) = TrB⊗AC/C (bb′ ⊗ 1)cc ′. Now,
using Lemma 3.8, TrB⊗AC/C (bb′⊗1)cc ′ = TrB/A(bb′)cc ′. Therefore, the map in 1 is exactly the morphism
ϕB⊗AC/C , and therefore, it is an isomorphism as B ⊗A C is projective separable. This implies that also
ϕB/A ⊗ idC is an isomorphism, and we are done.

From the proof of this proposition, it is immediate that the reciprocal also holds:

Proposition 3.8. Let B be a projective separable A-algebra, and C any A-algebra. Then, B ⊗A C is a
projective separable C -algebra.

Proof. If ϕB/A : B → HomA(B, A) is an isomorphism, then tensoring preserves this isomorphism, so
B ⊗A C → HomA(B, A)⊗ C is an isomorphism. Therefore the map in 1 is an isomorphism, and we know
from the proof of last proposition that it is the map ϕB⊗C/C . In conclusion, ϕB⊗C/C is an isomorphism of
C -modules, and so B ⊗A C is a projective separable C -algebra.

This result tells us that base changes preserve the property of being projective separable. The following
tells us that products of projective separable algebras are also projective separable.

Lemma 3.10. Let B1, ... , Bn projective separable algebras over a ring A. Prove that
∏n

i=1 Bi is a projective
separable A-algebra if and only if each Bi is a projective separable A-algebra.

Proof. Let M0 → M1 → M2 be an exact sequence of A-modules. Taking into account that ∀ A-module N
we have an isomorphism HomA(

∏n
i=1 Bi , N) ∼=

⊕n
i=1 HomA(Bi , N), then the sequence HomA(

∏n
i=1 Bi , M0)→

HomA(
∏n

i=1 Bi , M1)→ HomA(
∏n

i=1 Bi , M2) will be exact if and only if the sequence

n⊕
i=1

HomA(Bi , M0)→
n⊕

i=1

HomA(Bi , M1)→
n⊕

i=1

HomA(Bi , M2)

is exact. At its turn, this happens if and only if the sequence is exact on each coordinate. In conclusion,∏n
i=1 Bi is projective if and only if each Bi is projective.

Applying the same arguent on the map ϕ∏n
i=1 Bi/A :

∏n
i=1 Bi → HomA(

∏n
i=1 Bi , A) we see that this

is an isomorphism if and only if each of the maps ϕBi/A : Bi → HomA(Bi , A) is an isomorphism. In
conclusion,

∏n
i=1 Bi is projective separable if and only if each Bi is projective separable.
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Theorem 3.2. i) Let B ′ be a projective separable A-algebra, and f : B ′ → A an A-algebra homo-
morphism. Then, ∃ an A-algebra C and B ′ ∼= A × C isomorphism of A-algebras such that f is the
composition of B ′ → A× C and the projection A× C → A.

ii) Let A be a ring, and B a projective separable A-algebra. Consider the B-algebra B ⊗A B via the

second factor. Then, there exists a B-algebra C and an isomorphism B ⊗A B
∼=−→ B × C such that

the composition with the projection B × C → B yields the map B ⊗A B → B, x ⊗ y 7→ xy.

Proof. i) As B ′ is projective separable, ∃e ∈ B ′ such that f (x) = TrB′/A(ex), ∀x ∈ B ′. Taking
into account that f is an A-algebra morphism, and setting x = 1, we obtain TrB′/A(e) = f (1) = 1.
Moreover, we have TrB′/A(exy) = f (xy) = f (x)f (y) = f (x)TrB′/A(ey) = TrB′/A(f (x)ey). Using the
separability again, we must have ex = f (x)e, ∀x ∈ B ′. In particular, if we take x ∈ ker f , this yields

ex = 0, and so e ker f = 0. On the other side, we have the exact sequence 0→ ker f → B ′
f−→ A→ 0.

Then, using Lemma 3.9, we have that 1 = TrB′/A(e) = Trker f /A(e|ker f ) + TrA/A(f (e)) = f (e), and
so f (e) = 1.

Consider the map A → B ′, 1 7→ e. As the composition with f yields the identity, then the exact
sequence 0 → ker f → B ′ → A → 0 splits, so it induces an isomorphism h : A ⊕ ker f ∼= B ′,
(a, b) 7→ ae + b. Now, taking x = e in the identity ef (x) = ex , we get e2 = e, and combining this
with the fact that e ker f = 0, we have (a1e + b1)(a2e + b2) = a1a2e + b1b2.

Finally, as A, B ′ have units, ker f must also have a unit, and therefore C = ker f is the A-algebra
we were looking for: A × C ∼= A ⊕ C = A ⊕ ker f ∼= B ′. This proves that the map h is in fact an
isomorphism of A-algebras, and not just of A-modules.

Note that an element (a, b) ∈ A×C corresponds via h to ae + b ∈ B ′. f (ae + b) = a, which agrees
with the projection on the first coordinate of (a, b).

ii) We know that B⊗AB is a projective separable B-algebra by Proposition 3.8. The map f : B⊗AB → B
defined by f (x ⊗ y) = xy is a B-algebra homomorphism. Now the result easily follows from applying
(i), taking A to be B, B ′ to be B ⊗A B and the B-algebra homomorphism f .

By now we have introduced the notion of projective separable algebra and given some properties, but
we haven’t already seen any example of projective separable algebras, appart from the case of free separable
algebras over fields that we dealt with in Lemma 2.1.

Example 3.2. Let A be a ring, and f ∈ A[x ] a monic polynomial, f = xn + a1xn−1 + · · · + an such that
(f ′, f ) = (1). Then, B = A[x ]/(f ) is a finite projective separable algebra.

We will need to make some remarks before proving it. First, let B be any A-algebra, and consider the
A-module B∗ = HomA(B, A). We will proceed to define a structure of B-module on B∗ as follows

B × B∗ → B∗

(b, f ) 7→ bf : x 7→ f (bx)

This is indeed a well defined B-module structure:

• b(f + g)(x) = (f + g)(bx) = f (bx) + g(bx) = (bf + bg)(x) so b(f + g) = bf + bg .

• (b + b′)f (x) = f ((b + b′)x) = f (bx) + f (b′x) = bf (x) + b′f (x), and so (b + b′)f = bf + b′f
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• 1f (x) = f (x)⇒ 1f = f

Now suppose that B is a free A-module. With the B-module structure just defined, we claim that the
trace map on B, TrB/A : B 7→ A, b 7→ Tr(b) can be written as TrB/A =

∑n
i=1 eie

∗
i , where {ei}ni=1 is a

basis of B and {e∗i }ni=1 is the associated dual basis.

Indeed, let bei =
∑n

j=1 aijej . Then the trace of b is defined as Tr(b) =
∑n

i=1 aii . On the other hand,∑n
i=1 eie

∗
i (b) =

∑n
i=1 e∗i (bei ) =

∑n
i=1 e∗i (

∑n
j=1 aijej) =

∑n
i=1 aii . So we have proven that

TrB/A =
n∑

i=1

eie
∗
i

Now let’s move to the proof of the example that we are interested in.

Proof. First let’s prove that B = A[x ]/(f ), where f is a monic polynomial with coefficients in A, is a finitely
generated and free A-module. It is obvious that the set {1, x , x2, ... , xn−1} generates B as an A-module.
Let’s check that, in addition, it is a basis of B. Let g(x) =

∑n−1
i=0 cix

i = 0 ∈ B, with ai ∈ A. This implies
that g = fh ∈ A[x ]. Let α be the coefficient of highest degree of h, ie h = αxk + ... . Then, αxn+k is
the term of highest degree of g , but as g has degree n − 1, this implies that α = 0. We conclude that
h(x) = 0, and so g(x) = 0 ∈ A[x ], which means that ci = 0∀i , and so we conclude that {1, x , x2, ... , xn−1}
is a basis of B. Note that we used here that f is a monic polynomial, otherwise this proof doesn’t work.

Now let’s consider the ring B[X ]. To avoid confusions, we will denote as z the class of x ∈ B = A[x ]/(f )
from now on. Consider f (X ) = X n + a1X n−1 + · · · + an as a polynomial in B[X ], and note that f has a
root in B, as f (z) = 0 ∈ B, so f (X ) = (X − z)g(X ), where g(X ) =

∑n−1
i=0 biX

i is a polynomial in B[X ],
that is, bi ∈ B.

Deriving at both sides of the expression f (X ) = (X −z)g(X ), we obtain f ′(X ) = g(X )+(X −z)g ′(X ),
and evaluating at X = z , we get

f ′(z) = g(z)

Consider {e∗i }
n−1
i=0 the basis of B∗ dual to {1, x , x2, ... , xn−1}, and denote by τ the n-th dual basis

element, that is, τ(z i ) = 1 if i = n − 1 and τ(z i ) = 0 otherwise. We claim now that biτ = e∗i . To
prove that, let’s consider the rings C := A[X ], D := A[X ]⊗A B ∼= B[X ]. D is a free C -module with basis
{1⊗ z i}n−1

i=0 . Let’s regard τ as a map D → C , and denote by σ : D → C the A[X ]-linear map defined by
z 7→ X . We claim that the following equality holds.

f (X )τ(h(X )) = σ((X − z)h(X )) ∀h ∈ D

Note that, to prove this equality, it will be enough to prove it for all the elements of the basis h = 1⊗z i ,
for i = 0, ... , n − 1. We will split in two cases:

i < n − 1 In that case, h(X ) = z i , and so τ(h) = 0 and f (X )τ(h(X )) = 0. On the other side,

σ((X − z)z i ) = Xσ(z i )− σ(z i+1) = 0 and so the equality holds.

i = n − 1 In that case, h(X ) = zn−1, and so τ(h) = 1 and f (X )τ(h(X )) = f (X ). On the other side,

σ((X − z)z i ) = Xσ(z i ) − σ(z i+1) = XX n−1 − σ(−
∑n

j=1 ajz
n−j) = f (X ), and so the equality holds too

for i = n − 1.

So the equality above holds, and now we will apply it to the polynomial h(X ) = z i
∑n−1

j=0 bjX
j = z ig(X ).

On the left hand side, we have f (X )τ(
∑n−1

j=0 z ibjX
j) = f (X )

∑n−1
j=0 X jτ(z ibj). On the right hand side, we
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have σ((X − z)z i
∑n−1

j=0 bjX
j) = σ(z i (X − z)g(X )) = σ(z i f (X )) = f (X )X i , where in the last equality we

have used that f (X ) ∈ A[X ] and the A[X ]-linearity of σ.

Now, equating terms of the same degree on both sides of the equality we must have τ(z ibj) = δij . This
finally proves that

biτ = e∗i

This formula allows to find a more useful expression for the trace map:

TrB/A =
n−1∑
i=0

eie
∗
i =

n−1∑
i=0

z ibiτ = g(z)τ = f ′(z)τ

Therefore, taking into account that ∀y ∈ B, it can be written as y =
∑n−1

i=0 ciei =
∑n−1

i=0 e∗i (y)ei , we
have f ′(z)y =

∑n−1
i=0 f ′(z)e∗i (y)ei =

∑n−1
i=0 bi f

′(z)τ(y)z i =
∑n−1

i=0 biTr(y)z i =
∑n−1

i=0 Tr(biy)z i . Then, if
(f , f ′) = 1, that is, f ′(z) is a unit in B, then we can write

y = (f ′(z))−1
n−1∑
i=0

Tr(biy)z i

Recall that proving that B is a separable A-algebra is equivalent to proving that the map ϕ : B 7→
HomA(B, A) defined by ϕ(y) : x 7→ Tr(yx) is an A-module isomorphism. Consider the map ψ :
HomA(B, A) → B defined by u 7→ (f ′(z))−1(

∑n−1
i=0 u(bi )z i ). It is clear that the composition ψ ◦ ϕ

yields the identity, and so ϕ is injective.

On the other hand, every map u ∈ B∗ can be written as u =
∑n

i=0 αie
∗
i =

∑n
i=0 αibiτ = bi f

′(z)−1TrB/A.

Therefore, the element
∑n−1

i=0 αibi (f ′(z))−1 is mapped to u by ϕ, and this proves that ϕ is surjective, and
so B is a projective separable A-algebra (in particular a free separable A-algebra)

For the example that we have just done, we do not need the notion of projective separable algebras,
just the notion of free separable algebras. Just for completness, let’s also give an example of a case that
is projective separable but not free separable.

Example 3.3. Let A be a ring, and regard A as an A2-algebra via the projection on the first coordinate
p1 : A2 → A. Then, A is a finite projective separable A2-algebra.

Proof. It is finite, because it is generated by the element 1 ∈ A. It is also projective, because A is a direct
summand of A2: A ⊕ A ∼= A2. The difficult part to prove is the separability. To prove that, we need to
consider some isomorphisms.

a) A∗ = HomA2(A, A2) ∼= A, via the isomorphism

θ : A −→A∗

b 7−→θ(b) : a 7−→ (ab, 0)

Note that the injectivity is trivial: Given f1, f2 ∈ imθ, fi = θ(bi ), we have b1 = p1(f1(1)) =
p2(f2(1)) = b2. As for the surjectivity, note that every element in A∗ is completely determined
by the image of 1 ∈ A. Let f ∈ A∗, and f (1) = (a, b) ∈ A2. By A2 linearity, we must have
(a′, b′)f (1) = f (a′), ∀(a′, b′) ∈ A2. Taking b′ = 0, a′ = 1 we get f (1) = (a, 0), so f = θ(a) and θ is
surjective.
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b) HomA2(A, A) ∼= A via the isomorphism

σ : A −→HomA2(A, A)

b 7−→θ(b) : a 7−→ ab

It is immediate to check that the map HomA2(A, A)→ A, f 7→ f (1) is the inverse of σ.

In order to be able to discuss if A is separable as an A2-algebra, we need to determine what is the trace
map.

The map φA,A : A∗ ⊗A2 A → HomA2(A, A) sends an element θ(a) ⊗ 1 to φA,A(θ(a) ⊗ 1) : b′ 7→
θ(a)(b′)1 = ab′, which is exactly the map σ(a). Note that, as we saw on (a), the evaluation map
A∗ ⊗A2 A → A2 has image (A, 0), and sends θ(a) ⊗ 1 → (a, 0). Putting all this together, we see that
TrA/A2 : HomA2(A, A)→ A2 is defined by σ(a) 7→ (a, 0).

Therefore, ϕA(a) is defined by b 7→ TrA/A2(ab) = (ab, 0), and so ϕA = θ, which we have already seen
to be an isomorphism.
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4. The étale fundamental group

As it was said in the Introduction, the goal of this thesis is to prove that, given a connected scheme X , the
category of its finite étale coverings is equivalent to the category of π-sets for a certain profinite group π.
This chapter begins translating into geometric language the algebraic concepts of the previous chapter, in
particular, it introduces finite and locally free morphisms of schemes, which correspond to finite projective
algebras. It is also shown that finite étale morphisms (which are our objects of interest, and a particular
case of finite and locally free morphisms) correspond to projective separable algebras. Then, we introduce
the concept of totally split morphisms, which simplify the treatment of finite étale morphisms, and we
finally prove the main theorem that gives rise to the construction of the étale fundamental group.

4.1 Moving from algebra to geometry

Let’s begin with the reminder of some basic concepts of scheme theory.

Definition 4.1. Let f : Y → X be a morphism of schemes.

• f is affine if there exists a covering of X by open affine sets Ui = Spec(Ai ) such that ∀i , f −1(Ui ) is
also affine, f −1(Ui ) = Spec(Bi ).

• f is finite if there exists a covering of X by open affine sets Ui = Spec(Ai ) such that ∀i , f −1(Ui ) =
Spec(Bi ), where Bi is a finite Ai -algebra.

• f is finite and locally free if there exists a covering of X by open affine sets Ui = Spec(Ai ) such that
∀i , f −1(Ui ) = Spec(Bi ), where Bi is a finitely generated and free as an Ai module.

It is immediate from the definitions that every finite morphism is in particular affine. It is well known
that if f : Y → X is affine, ∀U = Spec(A) open affine subset of X , f −1(U) = V = Spec(B) is affine.
Similarly, if f is finite, ∀U = Spec(A) open affine subset of X , f −1(U) = V = Spec(B) is a finite A-algebra
(see Proposition A.3 and Proposition A.4 for proofs). For the case of locally free morphisms we do not
have such a strong result. Instead, we have the following proposition, which is the geometric equivalent of
Theorem 3.1, and states that finite and locally free morphisms of schemes correspond, when restricted to
affines, to projective modules.

Proposition 4.1. Let f : Y → X be a morphism of schemes. f is finite and locally free ⇐⇒ for every
open affine subset of X , U = Spec(A), f −1(U) = Spec(B), where B is a finite projective A-algebra.

Proof. ⇐ Take an open affine covering of X , and apply Theorem 3.1, (i) ⇒ (iii) to show that the
covering can be refined to find a locally free covering.

⇒ Suppose that f is finite and locally free. Let {Ui = Spec(Ai )} be the covering of the definition,
and let U = Spec(A) be any open affine in X . As f is finite, f −1(U) = Spec(B) is affine. Restricting
to smaller open sets Vj ⊂ U ∩ Ui for a certain i ∈ I , we can find a covering of U by affine open subsets
Vj = Spec(Afj ) such that f −1(Vj) = Spec(Bfj ), with Bfj an Afj algebra that is finitely generated and free as
an Afj -module. Now using Theorem 3.1, (iii)⇒ (i), we conclude that B is a finite projective A-algebra.

Given f : Y → X a finite and locally free morphism of schemes, on each open affine subset U ⊂ X ,
U = Spec(A), the finite projective algebra B such that f −1(Spec(A)) = Spec(B), induces a continuous
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rank function Spec(A) → Z (Definition 3.5). This functions agree on the intersection of different affine
open sets, so they can be extended to a function in the whole underlying topological space of X . This tells
us that the following definition makes sense.

Definition 4.2. Given f : Y → X , we call the degree of Y over X the function sp(X )→ Z induced by the
rank functions on each affine open subset of X . We denote it [Y : X ] or deg(f ).

Observation 4.1. As the degree is a locally constant function, it is continuous when we give Z the discrete
topology. Therefore, the set {x ∈ sp(X )|[Y : X ](x) = n} is open and closed in X .

The following proposition shows how the degree tells us some properties of a finite and locally free
morphism of schemes.

Proposition 4.2. Let f : Y → X be a finite and locally free morphism of schemes. Then,

i) Y = ∅ ⇐⇒ [Y : X ] = 0
ii) Y → X is an isomorphism ⇐⇒ [Y : X ] = 1.
iii) Y → X is surjective ⇐⇒ [Y : X ] ≥ 1 (i.e., for every open affine subset of X , U = Spec(A) we

have f −1(U) = Spec(B), with B a faithfully projective A-algebra)

Proof. As the notion of degree is local, we can restrict to affines and assume that X = Spec(A), Y =
Spec(B).

i) It is immediate, taking into account that Spec(B) = ∅ ⇐⇒ B = 0.
ii) Taking into account the equivalence of categories between affine schemes and rings, The map

Spec(B)→ Spec(A) is an isomorphism if and only if A→ B is an isomorphism. By Proposition 3.5
(iii), this happens if and only if 1 = [B : A] = [Y : X ], and so this proves (ii).

iii) ⇐ If [B : A] ≥ 1, the map A → B is injective by Proposition 3.5 (i). Then A can be seen as
a subring of B. As B is a finitely generated A-module, it is in particular integral over A, and [1],
Theorem 5.10 says that Spec(B)→ Spec(A) is surjective.

⇒ Let p ∈ Spec(A), q ∈ Spec(B) such that qc = p. As the map is surjective, B 6= 0, and so
Bq 6= 0 either. This implies that Bp 6= 0, and so [B : A](p) 6= 0. This holds ∀p ∈ Spec(A), so
[Y : X ] = [B : A] ≥ 1.

Lemma 4.1. Let f : Y → X and g : Z → Y be finite and locally free morphisms of schemes. Then, f ◦ g
is finite and locally free.

Proof. Let U = Spec(A) be an open affine subset of X . Then, as f is finite and locally free, V = f −1(U) =
Spec(B), with B a finite projective A-algebra. Similarly g−1(V ) = (f ◦ g)−1 = Spec(C ), and C is a finite
projective B-algebra. Therefore, by Lemma 3.6, C is also a finite projective A-algebra, and so f ◦g is finite
and locally free.

After these considerations on finite and locally free morphisms, let’s recall the definition of our objects
of interest: finite étale morphisms, which are a very special kind of finite and locally free morphisms.

Definition 4.3. A morphism of schemes f : Y → X is called finite étale if there exists a covering of X by
open affine subsets Ui = Spec(Ai ) such that f −1(Ui ) = Spec(Bi ), where Bi is a free separable Ai -algebra.
See Appendix A.3 for an alternative definition of finite étale morphisms.
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The following proposition shows that, the same way that finite and locally free morphisms of schemes
restricted to affine sets correspond to finite projective algebras, finite étale morphisms correspond to pro-
jective separable algebras

Proposition 4.3. Let f : Y → X be a morphism of schemes. f is finite étale ⇐⇒ for every open affine
subset of X , U = Spec(A), f −1(U) = Spec(B), where B is a projective separable A-algebra.

Proof. ⇒ Let f be finite étale, it is in particular finite and locally free, so given U = Spec(A) open affine
subset of X , f −1(U) will be affine, f −1(U) = Spec(B) with B a finite projective A-algebra. Using [1],
Proposition 3.9, we know that the map ϕB/A : B → HomA(A, B) ϕB/A(b) : x 7→ TrB/A(bx) will be an
isomorphism ⇐⇒ the corresponding maps on the stalks (ϕB/A)p : Bp → HomA(A, B)p are isomorphisms
∀p.

Using Lemma 3.3, it yields that (ϕB/A)p will be isomorphisms if and only if the maps ϕBp/Ap
are

isomorphisms, that is, if Bp is a projective separable Ap algebra for every p. But this is true as there is a
covering of Spec(A) by affine open subsets Ui = Spec(Afi ) (maybe restricting the original cover) such that
Bfi is a projective separable Afi algebra.

⇒ As the preimage of every affine subset of X , Spec(A) is the spectrum of a projective A-algebra, the
morphism is finite and locally free, so there is a covering Ui = Spec(Ai ) of X such that f −1(Ui ) = Spec(Bi ),
where Bi is finitely generated and free as an Ai -module. Moreover, Bi is a projective separable Ai -algebra,
and so in conclusion, Bi is a free separable Ai -algebra (Observation 3.4).

4.2 Finite étale morphisms

We will now prove some properties of finite étale morphisms of schemes.

Lemma 4.2. Let fi : Yi → X , i ∈ {1, ... , n} be morphisms of schemes. Let Y := Y1 q · · · q Yn and
f : Y → X the morphism of schemes induced by {fi}. Then,

i) f finite étale ⇐⇒ fi finite étale ∀i .
ii) [Y : X ] =

∑n
i=1[Yi : X ] if Y → X is finite and locally free.

Proof. i) ⇐ Let U be an open affine set of X . Then, (fi )
−1(U) = Spec(Bi ) is also affine. Therefore

we have

f −1(Spec(A)) =
n∐

i=1

Spec(Bi ) ∼= Spec(
n∏

i=1

Bi )

Where the isomorphism comes from Proposition A.5. Then, the morphism f is also affine, and∏n
i=1 Bi is projective separable (Lemma 3.10).

⇒ Let U = SpecA be an open affine set. Then f −1(U) = Spec(B) is also affine. But Spec(B) is
disconnected, as the sets Yi are open and closed in Y , so Spec(B) =

∐n
i=1(Spec(B) ∩ Yi ). Then,

by Proposition A.5, B ∼=
∏n

i=1 Bi and Spec(B) ∼=
∐n

i=1 Spec(Bi ), f −1
i (U) = Spec(Bi ). Using again

Lemma 3.10, it holds that each of the Bi is a projective separable algebra, so each fi is finite étale.
ii) Note that the proof above also holds if we relax the finite étale condition to finite and locally free.

Moreover, if we denote B, Bi as before, given p an Ap module, we have that (Bi )p ∼= A
n(i)
p as

A-modules and Bp
∼=
∏n

i=1(Bi )p ∼=
∏n

i=1(Ap)n(i) ∼= (Ap)
∑n

i=1 n(i). Therefore the formula [Y : X ] =∑n
i=1[Yi : X ].
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4.2.1 Base changes

The following proposition, which will be key in the verification of the axioms, tells us that the finite étale
property is preserved if we make a base change.

Proposition 4.4 (Base change of a finite étale morphism). Let f : Y → X be finite étale, and g : W → X
any morphism of schemes. Then,

i) The map p2 : Y ×X W →W is finite étale.
ii) The diagram

sp(W ) sp(X )

Z

deg(p2)
deg(f )

is commutative.
iii) If f is surjective, then Y ×X W →W is also surjective.

Proof. i)

Y ×X W W

Y X

p2

p1 g

f

Let {Ui = Spec(Ai )} be an open affine cover of X such that f −1(Ui ) = Spec(Bi ), Bi free separable
Ai -algebra. If we restrict to each affine open set, we have that (fp1)−1(Ui ) is a fibred product for
g−1(Ui ) and f −1(Ui ) over Ui

(fp1)−1(Ui ) g−1(Ui )

f −1(Ui ) Ui

p2

p1 g

f

Let {Vij = Spec(Cij)} be an affine open cover of g−1(Ui ). By [3] Theorem II.3.3 Step 4 we have
that (fp1)−1(Ui ) ∩ p−1

2 (Vij) is a fibred product for f −1(Ui ) and Vij over Ui . But Ui = Spec(Ai ),
f −1(Ui ) = Spec(Bi ), Vij = Spec(Cij), and so we know that Spec(Bi ⊗Ai

Cij) is a fibred product. By
uniqueness of the fibred product, we have then that

(gp2)−1(Spec(Ai )) ∩ p−1
2 (Spec(Cij)) = p−1

2 (Spec(Cij)) ∼= Spec(Bi ⊗Ai
Cij)

In conclusion, there is an affine open cover of W , namely {Vij}i ,j such that p−1
2 (Vij) = Spec(Bi ⊗Ai

Cij) is affine. Moreover, if B is free projective as an Ai -algebra, then Bi⊗Ai
Cij is free as a Cij -module

(by distribution of direct sum and tensor product). Moreover, using Proposition 3.8 Bi ⊗Ai
Cij is free

separable as a Cij -algebra. In conclusion, p2 : Y ×X W →W is a finite étale morphism.

ii) Let Ai , Bi , Cij as in the proof of (i). Let n(i) such that Bi
∼= A

n(i)
i as Ai -modules. Then, Bi⊗Ai

Cij
∼=

C
n(i)
ij as Cij -modules. Therefore, rankCij

(Bi ⊗Ai
Cij) = rankAi

(Bi ) = n(i). Localizing at every point,
we obtain that the diagram of the statement is commutative.

iii) This is an immediate consequence of Proposition 4.2. Indeed, f : Y → X is surjective⇒ [Y : X ] ≥ 1.
But by (ii), also [Y ×X W : W ] ≥ 1, and using Proposition 4.2 again⇒ Y ×X W →W is surjective.

61



Observation 4.2. The same proof holds if we replace finite étale by the weaker condition of finite and
locally free. Therefore, as a corollary we have that, if f : Y → X is finite and locally free, and g : W → X
is any morphism of schemes, then

i) The map p2 : Y ×X W →W is finite and locally free.
ii) The diagram

sp(W ) sp(X )

Z

deg(p2)
deg(f )

is commutative.
iii) If f is surjective, then Y ×X W →W is also surjective.

We will see now that the condition for the reciprocal to hold is exactly that the extension is surjective,
finite and locally free.

Observation 4.3. A morphism of schemes Y → X is surjective, finite and locally free ⇐⇒ ∀U open affine
subset of X , f −1(U) = SpecB, for B a faithfully projective A-algebra. This is an immediate consequence
of Proposition 4.2 and Proposition 4.1.

Proposition 4.5. Let f : Y → X be an affine morphism of schemes, and g : W → X a morphism that is
surjective, finite and locally free. Then, f is finite étale if and only if Y ×X W →W is finite étale.

Proof. ⇒ Holds in general (there’s no need to require g to be surjective, finite and locally free), see
Proposition 4.4.

⇐ Let U = Spec(A) be an affine open subset of X . As f is affine, f −1(U) = Spec(B). Then, it will
be enough to prove that B is projective separable over A. By the observation above, g−1(U) = Spec(C )
for a faithfully projective A-algebra C . Then, the inverse image of Spec(C ) under Y ×X W → W is
Spec(B ⊗A C ) ([3], Theorem II.3.3). As Y ×X W → W is finite étale, B ⊗A C is a projective separable
C -algebra. Now using Proposition 3.7, we conclude that B is a projective separable A-algebra.

4.2.2 Totally split morphisms

Definition 4.4. A morphism of schemes f : Y → X is called totally split if X can be written as a disjoint
union of schemes X =

∐∞
i=0 Xn, such that ∀n the scheme f −1(Xn) is isomorphic to the disjoint union of

n copies of Xn, f −1(Xn) ∼=
∐n

i=1 Xn.

In particular, totally split morphisms are finite étale: Indeed, if take an open affine cover of X such that
every set Spec(A) of the covering is totally included in a disjoint piece Xn, we will have that its preimage is
isomorphic to n disjoint copies of itself, f −1(Spec(A)) =

∐n
i=1 Spec(A) = Spec(An), and An is a projective

separable A-algebra, as it is the product of projective separable A-algebras. We will see now that with a
well-chosen base change every finite étale morphism can be reduced to a totally split one.

Proposition 4.6. Let f : X → Y be a morphism of schemes. Then, f is finite étale ⇐⇒ f is affine and
there exists a surjective, finite and locally free morphism of schemes, W → X such that Y ×X W →W is
totally split.

Proof. ⇐ If f is affine, and Y ×X W → W is totally split, (in particular, finite étale) for a certain
W → X , surjective, finite and locally free, then Proposition 4.5 tells us that f is finite étale.
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⇒ Let’s assume now that f : Y → X is finite étale. First we will deal with the case where the degree is
constant. Let [Y : X ] = n. We have to construct a morphism W → X such that Y ×X W →W is totally
split. Let’s proceed by induction on n. For the base case n = 0, we have Y = ∅, and so Y ×X W = ∅
too. Therefore, taking for instance W = X and W → X the identity morphism, which is surjective, finite
and locally free, Y ×X W →W corresponds to ∅→ X , which is totally split.

Now suppose that n > 0. Let’s first prove that the diagonal morphism d : Y → Y ×X Y (that is, the
morphism induced by two identity maps Y → Y ) is both an open and a closed immersion. We will start
with the affine case: As f is finite étale, if X = Spec(A), then Y = Spec(B), with B a projective separable
A-algebra. By Theorem 3.2, ∃ an A-algebra C such that B ⊗A B ∼= B ×C as B-algebras, and through this
isomorphism the morphism of B-algebras u : B ⊗A B → B, x ⊗ y → xy becomes the projection on the
first coordinate. This map satisfies the following commutative diagram

B

B ⊗A B B

B A

u

q1

id

q2id

Where the maps q1, q2 are defined as x 7→ x ⊗ 1 and x 7→ 1 ⊗ x . Through the anti-equivalence of
categories between rings and affine schemes, this diagram corresponds to the diagram

SpecB

SpecB ×SpecA SpecB SpecB

SpecB SpecA

id

id

d

p1

p2

In conclusion, the map corresponding to u is exactly d when we apply the Spec functor. As u composed
with the isomorphism B ×C ∼= B ⊗A B is the projection on the first coordinate, therefore the composition

Spec(B)
d−→ Spec(B ⊗A B)

∼=−→ Spec(B)q Spec(C )

is the identity on SpecB, and therefore this is an open and closed mapping, and so must be d . This proves
the affine case. In the general case, we can cover X by open affine subsets {Ui = Spec(Ai )} so Y is
covered by {f −1(Ui ) = Spec(Bi )}, and Y ×X Y is covered by Spec(Bi ⊗Ai

Bi ) ∼= Spec(Bi ) q Spec(Ci ).
Then, the image of Y in Y ×X Y i open, as it is the union of the sets Spec(Bi ) in

⋃
i Spec(Bi )qSpec(Ci ),

but also Y ×X Y \ d(Y ) is open, as it is the union of the sets Spec(Ci ). In conclusion, d : Y → Y ×X Y
is an open and closed immersion.

Therefore, we can write Y ×X Y = Y q Y ′ for a certain Y ′. As f is finite étale, so is Y ×X Y → Y
(Proposition 4.4) and it also has constant degree n. Therefore, the same applies to the induced map
Y q Y ′ → Y . As id : Y → Y has degree 1, then using Lemma 4.2 we know that Y ′ → Y (the restriction
of Y q Y ′ → Y to Y ′) will be finite étale of degree n − 1. Now we can apply the induction hypothesis
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on the map Y ′ → Y , and so there exists a scheme W , and a morphism g : W → Y surjective, finite and
locally free such that Y ′ ×Y W →W is totally spit.

We will now prove that the composition f ◦ g : W → X satisfies the property that we want. Note first
that Y ×Y W ∼= W , and so the projection Y ×Y W → W is totally split of rank 1. It is trivial that the
direct sum of totally split morphisms is totally split, and so (Y ×Y W )q (Y ′×Y W )→W is totally split.
Then, the induced map Y ×X W →W is also totally split:

Y ×X W ∼= Y ×X (Y ×Y W ) ∼= (Y q Y ′)×Y W ∼= (Y ×Y W )q (Y ′ ×Y W )→W

It should be checked that this chain of isomorphisms respects the projections to W . Take into account
(as in [3], II, Proof of Theorem 3.3) that it will be enough to check that this holds locally on affine sets.
Then, let X = Spec(A), Y = Spec(B), Y ′ = Spec(B ′), W = Spec(C ).

• Y ⊗X W →W corresponds to the morphism of rings C → B ⊗A C defined by c 7→ 1⊗ c .

• Y ×X W ∼= Y ×X (Y ×Y W ) corresponds to the isomorphism B ⊗A (B ⊗B C ) → B ⊗A C defined
by b ⊗ (c ⊗ c ′) 7→ b ⊗ cc ′.

• The isomorphism Y ×X (Y ×Y W ) ∼= (Y qY ′)×Y W corresponds to a ring isomorphism B ×B ′ ∼=
B ⊗A B, so (1, 1) 7→ 1⊗ 1.

• (YqY ′)×Y W ∼= (Y×Y W )q(Y ′×Y W ) corresponds to the ring isomorphism (B⊗BC )×(B ′⊗BC )→
(B × B ′)⊗B C , defined by (b ⊗ c , b′ ⊗ c ′) 7→ (b, b′)⊗ cc ′

• (Y ×Y W )q (Y ′ ×Y W )→W corresponds to the morphism of rings C → (B ⊗B C )× (B ′ ⊗B C )
defined by c 7→ ((1⊗ c), (1⊗ c)).

Therefore, this diagram is commutative

C

(B ⊗B C )× (B ′ ⊗B C ) (B × B ′)⊗B C B ⊗A B ⊗B C B ⊗A C

as both paths send an element c to 1 ⊗ c . In conclusion, these canonical isomorphisms respect the
projections, and this finishes the proof that the projection Y ×X W →W is totally split.

Moreover, [Y : X ] ≥ 1, so Y → X is surjective. W → X is then the composition of surjective finite
and locally free morphisms, so it is also surjective, finite and locally free (Lemma 4.1).

By now we have proven the case where [Y : X ] = n is constant. In the general case, let X =
∐∞

i=0 Xn,
with sp(Xn) = {x ∈ sp(X )|[Y : X ](x) = n}. Then f −1(Xn) → Xn is finite étale of constant degree n,
and so ∃Wn → Xn surjective, finite and locally free such that Yn ×Xn Wn →Wn is totally split. Then, the
same holds for the induced map

∐∞
i=0 Wn →

∐∞
i=0 Xn: This is trivial for the ”totally split” and ”surjective”

conditions. It is also true for the ”finite and locally free” condition as it is a local condition.

As we will see in the following sections, the proposition we have just proven is key, as it will allow us
to easily prove properties of finite étale morphisms by reducing to simpler case of totally split morphisms.
But to be able to use the full potential of totally split morphisms, we still need to develop some results and
properties about them.
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Notation. Let X a scheme, and E a finite set, #E = n. Then, we can write X ×E to refer to the disjoint
union of n copies of X . On the other hand, if A is a ring and E is a finite set, we will denote by AE the
ring of functions E → A, with pointwise addition and product.

Lemma 4.3. i) Let X , Y be schemes, and E a finite set. There is a bijection between the set
MorSch(X × E , Y ) and the set of maps E → MorSch(X , Y ).

ii) Let A be a ring, and let E be a finite set. Then Spec(A)× E ∼= Spec(AE ).
iii) If A is a ring without non-trivial idempotents, and E , D are two finite sets, every A-algebra morphism

AE → AD is induced by a map D → E .

Proof. i) Consider a morphism f :
∐

E X → Y . If we restrict to each X , we get a collection of
morphisms {fi : X → Y }i∈E . Reciprocally, a map E → MorSch(X , Y ) corresponds to a collection of
maps fi : X → Y , one for each i ∈ E . At its turn, this induces a map

∐
E X → Y . Therefore we

have a bijective correspondence as we wanted.
ii) Note that Spec(A)× E ∼=

∐
E Spec(A) ∼= Spec(

∏
E A) (c.f. Proposition A.5). On the other side, we

have the isomorphism Spec(
∏

E A) ∼= Spec(AE ) induced by the isomorphism of rings corresponding to
evaluation: AE →

∏
E A, f 7→ (f (e))e∈E . The composition of these isomorphisms yields Spec(A)×

E ∼= Spec(AE ).
iii) Using (ii), it is enough to prove that every morphism

∏
E A →

∏
D A is of that form. Let u :∏

E A→
∏

D A be such a map, and let {ei}i∈E be the canonical basis of
∏

E A. As u is a morphism
of A-algebras, u(ei ) = u(e2

i ) = u(ei )
2. As A doesn’t have non-trivial idempotents, the images of the

basis elements must have either a 0 or a 1 on each coordinate. Apart from that, if we have u(ei ) and
u(ej) having a 1 in the same coordinate, then we reach a contradiction, as 0 = u(0) = u(eiej) =
u(ei )u(ej) 6= 0. Then, ∀d ∈ D, ∃ at most one element i ∈ E such that u(ei )d = 1. Moreover, as∑

i∈E u(ei ) = u(1) = 1, we conclude that ∀d ∈ D ∃!i ∈ E such that u(ei )d = 1. Therefore, u
is totally determined by the map D → E that sends each d ∈ D to the element i ∈ E such that
u(ei )d = 1.

Proposition 4.7. Let X , Y , Z be schemes, and f : Y → X , g : Z → X totally split morphisms of schemes.
Let h : Y → Z satisfying f = gh. Then, ∀x ∈ X there is an open affine neighbourhood U of x such
that f , g , h are trivial above U, that is, there are finite sets D, E and isomorphisms α : f −1(U)→ U ×D,
β : g−1(U)→ U × E , and a map φ : D → E such that the following diagram commutes.

f −1(U) g−1(U)

U × D U × E

U U

h

∼=
α

f

∼=
β

g
idU×φ

idU

Proof. Restricting to a neighbourhood of x , we can assume that X = Spec(A) and that f and g are both

of them of constant degree. Then, Y
∼=−→ X × D ∼= Spec(AD) and Z

∼=−→ X × E ∼= Spec(AE ), for certain
finite sets E , D. (we have used here the isomorphisms of Lemma 4.3 (ii)). Then, we only have to find an
open set U ⊂ X such that the A-algebra homomorphism AE → AD corresponding to h is induced by a
map φ : D → E on U. Taking into account Lemma 4.3 (iii), it will be enough to prove that there is an
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open affine set U ⊆ X such that U = Spec(A′) and A′ doesn’t have trivial idempotents. As local rings
don’t have non-trivial idempotents (Proposition A.6), the map in the stalks f ∗x : AE

x → AD
x , is induced by

a map φ : D → E . Then, φ induces a map ψ : AE → AD , that, when it is localized and viewed through
the isomorphism of Lemma 3.3 yields the map f ∗x : AE

x → AD
x . This equality as morphisms in the stalks

can be lifted to a certain open set, that is, ∃a ∈ A, a not belonging to the prime ideal corresponding to
the point x , such that f ∗ and ψ yield the same map in A[1/a]E → A[1/a]D . Then, U = Spec(A[1/a]) is
the open affine set that we wanted.

4.3 The category FEtX

Definition 4.5. Let X be a scheme. Let’s remind that the category of finite étale coverings of X is defined
as follows

• Objects: Finite étale morphisms of schemes with target X.

• Morphisms: Given two objects f : Y → X and g : Y ′ → X , a morphism from f to g is a morphism

of schemes h : Y → Y ′ satisfying f = gh, i.e. making commutative the diagram
Y Y ′

X

h

f
g

From now on, we will denote this category by FEtX .

Recall that the main theorem that we want to prove is the following one:

Theorem 4.1 (Main Theorem of Galois Theory for Schemes). Let X be a connected scheme. Then there
exists a profinite group π, uniquely determined up to isomorphism, such that the category FEtX of finite
étale coverings of X is equivalent to the category π-sets of finite sets on which π acts continuously.

It should be noted that, as a consequence of Theorem 2.1, to prove the main theorem it will be enough
to see that that FEtX is an essentially small Galois Category. Therefore, we need to find a fundamental
functor and check that all the axioms of a Galois Category are satisfied. As we will see, this process is
greatly simplified if we deal with totally split morphisms, by making base extensions by maps W → X that
are surjective, finite and locally free. In the following, we will use this technique to prove some properties
of finite étale morphisms and FEtX .

Proposition 4.8 (Composition of finite étale morphisms). Let g : Z → Y and f : Y → X be finite étale
morphisms of schemes. Then the composed morphism Z → X is finite étale.

Proof. First assume that f is totally split of constant degree n: Y ∼= Xq· · ·qX . Then, we can take the the
preimage by g of each of the direct summands of Y that are isomorphic to X , and write Z = Z1q· · ·qZn,
and it is immediate (as finite étale can be checked as a local property) that Zi → X is finite étale for each
i . Then, when we glue, the corresponding map Z1 q · · · q Zn → X , which is exactly f ◦ g , is finite étale.
The same argument now holds if f is totally split of non constant degree, as we can split it as a direct sum
of totally split morphisms of constant degree.

In the general case, choose W → X such that Y ×X W →W is totally split. Then, if we tensor with
the map Z → Y , we obtain a morphism Z ×Y (Y ×X W ) ∼= Z ×X W → Y ×X W which has to be finite
étale by Proposition 4.4. Then, by the case dealt above, the composition Z ×X W → Y ×X W → W is
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finite étale, and this map is exactly the projection Z ×X W →W , corresponding with the maps f ◦ g and
W → X . Therefore, by Proposition 4.5, Z → X is also finite étale.

Lemma 4.4. Let g : Z → X and f : Y → X be affine morphisms of schemes, and suppose that we have
a morphism h : Y → Z making a commutative diagram with f and g , i.e. f = gh. Then h is also affine.

Proof. Let {Ui} be an affine open cover of X . Then g−1(Ui ) = Vi is affine and f −1(Ui ) = Wi is affine.
Therefore, the sets {Vi} form an affine open cover of Z such that h−1(Vi ) = h−1g−1(Ui ) = f −1(Ui ) = Wi

are affine. Therefore f is affine.

Proposition 4.9. Let f : Y → X , g : Z → X be finite étale morphisms of schemes. Let h : Y → Z
satisfying that f = gh. Then h is finite étale. In other words, given a scheme X , morphisms in the category
FEtX are in particular finite étale morphisms of schemes.

Proof. If f and g are totally split, we can select a covering by open affine sets of X such that f , g are
trivial in the sense of Proposition 4.7. Let U = Spec(A) be one of the sets of this covering. Then
h : U ×D → U × E is induced by a map φ : D → E , and so ∀e ∈ E , we have that h−1(β−1(U × {e})) =
α−1(

∐
d∈φ−1(e) U) = α−1(

∐
d∈φ−1(e) Spec(A)) ∼= α−1(Spec(

∏
d∈φ−1(e) A)). And, as

∏
d∈φ−1(e) A is a finite

projective separable A-algebra, this proves that h is finite étale.

Now let’s deal with the general case in which f and g are not totally split. Let’s choose surjective,
finite and locally free morphisms W1 → X and W2 → X such that Y ×X W1 →W1 and Z ×X W2 →W2

are totally split. Then, by Observation 4.2 and Lemma 4.1, the morphism W := W1 ×X W2 → X is
also surjective, finite and locally free. We claim that this morphism makes both f ′ : Y ×X W → W and
g ′ : Z ×X W →W totally split. Indeed, let W1 =

∐∞
i=0 W1i such that f −1(W1i ) = W1i q ...i times qW1i .

Then, consider W = (
∐∞

i=0 W1i ) ×X W2
∼=
∐∞

i=0(W1i ×X W2), and the preimage of each of the sets
(W1i ×X W2) is Y ×X (W1i ×X W2) =

∐
i times(W1i ×X W2). This proves that f ′ is totally split, and the

same argument with W2 shows that g ′ is totally split and the claim is proved.

By the properties of the fibred product, h induces a morphism h′ : Y ×X W → Z ×X W : If we denote
s : W → X and p : Y ×X W → Y , we have sf ′ = fp = (gh)p = g(hp).

Y ×X W

Z ×X W W

Z X

f ′

h◦p

h′

g ′

q s

g

Then, we have totally split morphisms f ′ : Y ×X W → W , g ′ : Z ×X W → W and a morphism h′

satisfying that f ′ = g ′h′ so, by the case proved above, h′ is finite étale.

We already know that h is affine by the Lemma 4.4 above. As W → X is surjective, finite and locally
free, then the morphism q : Z ×X W → Z is also surjective, finite and locally free by base change. When
we base change h by q, we obtain exactly the map h′ : Y ×X W = Y ×Z (Z ×X W )→ (Z ×X W ), which
is finite étale. Therefore, Proposition 4.5 implies that h is finite étale.

The following results will characterize monomorphisms and epimorphisms in the category FEtX . It is
important to note that a morphism h in the category FEtX is a monomorphism or an epimorphism in FEtX
if and only if it is a monomorphism or an epimorphism when regarded in the category of schemes.
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Proposition 4.10. Let f : Y → X and g : Z → X be finite étale morphisms, and let h : Y → X a
morphism from f to g in FEtX , that is, f = gh. Then, h is an epimorphism in FEtX if and only if h is
surjective.

Proof. ⇒ We know that h is finite étale, and therefore the set Z0 = {z ∈ Z |[Y : Z ](z) = 0} is open and
closed in Z , and we have that h−1(Z0) = ∅. Then, let’s write Z = Z0 q Z ′, and consider the morphisms
f1, f2 : Z0qZ ′ → Z0qZ0qZ ′ mapping the points of Z0 to the first and second copies of Z0, respectively.
It’s clear that f1 ◦ h = f2 ◦ h, and so this implies that f1 = f2, which is true only if Z0 = ∅. Therefore
[Y : Z ] ≥ 1 and so h is surjective by Proposition 4.2.

⇐ Suppose that we have p, q : Z → W such that ph = qh. We have to prove that p = q, and so
it will be enough to check it locally, so we can assume that X = Spec(A), Y = Spec(B), Z = Spec(C )
and W = Spec(D). Let p, q, h correspond to maps p′, q′ : D → C , h′ : C → B. If h is surjective, then by
Proposition 4.2 we have that [B : C ] ≥ 1. By Proposition 3.5 this means that h′ : C → B is an injective
morphism of rings, and so h′p′ = h′q′ ⇒ p′ = q′. This proves that p = q and h is an epimorphism.

Lemma 4.5. An open immersion is a monomorphism in the category of all schemes.

Proof. Let f : Y → X be an open immersion. f induces an isomorphism of Y with an open subscheme
U ⊆ X . Let’s denote f |−1

U : U → Y the inverse map. Let g , h : Z → Y satisfying that fg = fh. Note that
im(fg), im(fh) ⊆ U, and therefore, we can apply f |−1

U and we get f |−1
U fg = f |−1

U fh⇒ g = h. In conclusion
f is a monomorphism.

Proposition 4.11. Let f : Y → X and g : Z → X be finite étale morphisms, and let h : Y → X a
morphism from f to g in FEtX , that is, f = gh. Then, h is a monomorphism in FEtX if and only if h is
both an open and closed immersion.

Proof. ⇐ This is trivial by the lemma above.

⇒ As h : Y → Z is a monomorphism, then Y ×Z Y → Y is an isomorphism. This follows from
the proof of Lemma 2.2 (note that in that proof, we only make use of the existence of fibred products,
and so the arguments there are valid in the category of schemes). When we restrict to open affine sets
U = Spec(A) ⊆ X , f −1(U) = Spec(B), g−1(U) = Spec(C ), this yields an isomorphism B ∼= B ⊗C B
sending b 7→ b⊗1. Therefore, by Proposition 3.5 we must have [B : C ] ≤ 1. As this holds for every affine,
we have [Y : Z ] ≤ 1. Then, Z = Z0 q Z1, with h−1(Z0) = ∅, and so h induces an isomorphism of Y with
Z1, and therefore h is an open and closed immersion.

Observation 4.4. These results can be summarized in terms of the degree. Let h : Y → Z a morphism in
FEtX . Then,

• h is a monomorphism ⇐⇒ [Y : Z ] ≤ 1.

• h is an epimorphism ⇐⇒ [Y : Z ] ≥ 1.

In particular, this characterization of monomorphisms implies that an object Z → X is connected in
FEtX (in the sense of Definition 2.3) if and only if sp(Z ) is connected as a topological space. Indeed,
if sp(Z ) is connected, a monomorphism Y → Z has either [Y : Z ] = 1 or [Y : Z ] = 0. The first case
corresponds to the identity subobject and the second one to the initial subobject, and these are the only
possibilities. Reciprocally, suppose that sp(Z ) is not connected. Then, Z = Z1 q Z2 and the natural
inclusion Z1 → Z is a monomorphism different from 0, id, which is a contradiction.
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4.3.1 Quotients under group actions

Finally, for a scheme X , we want to study quotients under group actions in FEtX . To do that, we will
consider first the larger category AffX , which is defined in a very similar manner.

Definition 4.6. Let X be a scheme. The category of AffX of affine morphisms with target X is defined
as follows:

• Objects: Affine morphisms of schemes with target X.

• Morphisms: Given two objects f : Y → X and g : Y ′ → X , a morphism from f to g is a morphism

of schemes h : Y → Y ′ satisfying f = gh, i.e. making commutative the diagram
Y Y ′

X

h

f
g

Proposition 4.12. Let X be a scheme. Then, for any object in AffX , the quotient by a finite group of
automorphisms exists in AffX .

Proof. It will be useful to take into account the following lemma.

Lemma 4.6. Let X be a scheme. Then, the category AffX is anti-equivalent to the category of quasi-
coherent sheaves of OX -algebras. [See Proposition A.7 for a proof of this lemma].

Let A be a quasi-coherent sheaf of OX -algebras, and G a finite group of automorphisms of A. Given
an open subset U ⊂ X , the set A(U)G of G -invariants of A(U) is a sub-OX (U)-algebra of A(U), which
is exactly the kernel of the map

A(U)→
⊕
σ∈G
A(U)

a 7→ (σ(a)− a)σ∈G

Therefore, by [3] Proposition II.5.7, the assignment U 7→ A(U) defines a quasi-coherent sheaf of OX -
algebras, that we denote by AG . For every f : B → A such that σ ◦ f = f , ∀σ ∈ G , f factors through AG

via the inclusion AG → A. Passing to the anti-equivalent category of AffX again, this means that for a
given f : Y → X ∈ Ob(AffX ) and G a finite group of automorphisms of f such that f σ = f , there exists
the quotient of f by G , that is a morphism g : Y /G → X such that for every morphism h : Y → Z such
that hσ = h ∀σ ∈ G , h factors through g .

It is important to note, as we will need it later, that this construction shows also that g−1(U) =
f −1(U)/G for every open set U ⊆ X . Moreover, if we choose an open affine set U = Spec(A), and let
f −1(U) = Spec(B), then g−1(U) = Spec(BG ). We should remark also that our goal is to prove the
existence of quotients by finite groups of automorphisms in FEtX . In account of Proposition 4.12, to do
this it will be enough to show that the morphism Y /G → X ∈ AffX is in fact finite étale. We will first
need an auxiliary result.

Lemma 4.7. Let f : Y → X be an affine morphism, and let G be a finite group of automorphisms of f
in AffX . Let W → X be a finite and locally free morphism. Then, (Y ×X W )/G → W is isomorphic to
(Y /G )×X W →W in AffW .
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Proof. The morphism Y ×X W → W is affine: This can be deduced using the same argument as in
the proof of Proposition 4.4. It’s easy to deduce from the properties of fibred products that G induces a
group of automorphisms of Y ×X W → W as follows: Denote p1, p2 the projections of Y ×X W to Y
and W respectively. ∀σ ∈ G , consider the automorphism σ′ : Y ×X W → Y ×X W corresponding to
the morphisms σ ◦ p1 : Y ×X W → Y and p2, which make a commutative diagram with f and W → X
because f σ = f .

Y ×X W

Y ×X W W

Y X

p2

σ◦p1

σ′

p2

p1

f

This construction allows us to regard G as a finite group of automorphisms of Y ×X W → W , and
with a little abuse of notation we can talk about (Y ×X W )/G as the statement does. Where this may
cause confusion we will denote G ′ to refer to the group of automorphisms of Y ×X W →W .

Let’s denote g : Y → Y /G the natural map of passage to the quotient. In a similar way as we did
with the automorphisms σ ∈ G , we can induce a morphism g ′ : Y ×X W → (Y /G )×X W :

Y ×X W

(Y /G )×X W W

Y /G X

p2

g◦p1

g ′

q

g

The morphism g ′ satisfies g ′σ′ = g ′ ∀σ′ ∈ G ′. This is true because g ′σ′ corresponds to the morphism
induced by p2σ

′ = p2 and gσp1 = gp1. Therefore, by the universal property of the quotient, g ′ factors
through (Y ×X W )/G , that is, there is a morphism of schemes θ : (Y ×X W )/G → (Y /G ) ×X W

that makes commutative the diagram

Y ×X W (Y /G )×X W

(Y ×X W )/G

g ′

θ . In particular θ respects the

projection maps to W , so to prove that (Y ×X W )/G →W is isomorphic to (Y /G )×X W →W in AffW

it will be enough to prove that θ is an isomorphism. This can be checked locally, so we can assume that
X = Spec(A), Y = Spec(B) and W = Spec(C ), with C a finite projective A-algebra. We have to check
that BG ⊗A C → (B ⊗A C )G is an isomorphism. Indeed, we have the exact sequence

0→ BG → B →
⊕
σ∈G

B → 0

As C is a finite projective A-algebra, and in particular flat, when we tensor with C we obtain an exact
sequence

0→ BG ⊗A C → B ⊗A C →
⊕
σ∈G

B ⊗A C → 0
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This shows that BG ⊗A C ∼= (B ⊗A C )G , which completes the proof.

Proposition 4.13. Let f : Y → X be finite étale, and G a finite group of automorphisms of f in FEtX .
Then, the quotient of f by G , Y /G → X , exists in FEtX .

Proof. As we already remarked before, finite étale morphisms are in particular affine, so g : Y /G → X
exists in AffX , and so it will be enough to check that g is finite étale. First consider the case in which f
is totally split. As G is a finite group, we can find an open cover of X by open sets {Ui} such that the
action every σ ∈ G is trivial above {Ui}. Let U be one of the sets of this covering. Therefore, every σ ∈ G
is induced on U by a permutation φσ : D → D, where D is the finite set such that f −1(U) = U × D.
Therefore, we can consider U ×D/G , which is a quotient of U ×D under G in AffU (we are again making
some abuse of notation: when we write D/G we mean the set of orbits of D under the group {φσ}σ∈G ).
Therefore U × D/G ∼= f −1(U)/G ∼= g−1(U), and so g−1(U) → U is totally split, and in particular finite
étale. As being finite étale is a local property, we conclude that g : Y /G → X is finite étale.

In the general case, take a surjective, finite and locally free morphism W → X such that Y ×X W →W
is totally split. By the case already proven, (Y ×X W )/G →W is finite étale (we use here the same abuse
of notation of G already explained in Lemma 4.7). By Lemma 4.7, (Y /G )×X W →W is also finite étale.
Therefore the original morphism g : Y /G → X was already finite étale by Proposition 4.5.

We will prove a last result about quotients in FEtX , which can be seen as a (stronger) version of
Lemma 4.7 in FEtX .

Proposition 4.14. Let f : Y → X be a finite étale morphism, and let G be a finite group of automorphisms
of f in FEtX . Let h : Z → X be any morphism of schemes. Then, (Y ×X Z )/G → Z is isomorphic to
(Y /G )×X Z → Z in FEtZ .

Proof. Consider the morphism (Y ×X Z )/G → (Y /G ) ×X Z constructed as in the proof of Lemma 4.7.
As usual, we will first deal with the case in which f is totally split. In that situation, we can cover X by
open sets such that the action of every σ ∈ G is trivial above every set of the covering. Therefore, for
every open set U in the covering, f −1(U) ∼= U×D, and g−1(U) ∼= f −1(U)/G ∼= U× (D/G ). If we denote
h−1(U) =: V , we have that the preimage of V by the morphisms (Y ×X Z )/G → Z and (Y /G )×X Z → Z
is in both cases isomorphic to V × (D/G ). This proves that (Y ×X Z )/G → (Y /G ) ×X Z is locally an
isomorphism, which is enough to conclude that it is an isomorphism.

In the general case, we choose a surjective, finite and locally free base extension W → X such that
Y ×X W → W is totally split. Then, consider the morphism Z ×X W → W . Applying the case already
proven, we know that

((Y ×X W )×W (Z ×X W ))/G ∼= (Y ×X W )/G ×W (Z ×X W ) (2)

By associativity and commutativity of fibred products we also have the following isomorphism:

(Y ×X W )×W (Z ×X W ) ∼= (Y ×X Z )×Z (W ×X Z ) (3)

Finally, we know that W ×X Z → Z is surjective, finite and locally free by Observation 4.2.

Putting everything together, we have the following isomorphisms:

(Y ×X Z )/G ×Z (W ×X Z ) ∼=4.7 and 3 ((Y ×X W )×W (Z ×X W ))/G ∼=2 (Y ×X W )/G ×W (Z ×X W )
∼=4.7 ((Y /G )×X W )×W (Z ×X W ) ∼=3 (Y /G ×X Z )×Z (W ×X Z )
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And, in conclusion, (Y ×X Z )/G ×Z (W ×X Z ) → (W ×X Z ) is isomorphic to ((Y /G ) ×X Z ) ×Z

(W ×X Z )→ (W ×X Z ) in FEtZ . In other words, our morphism (Y ×X Z )/G → (Y /G )×X Z becomes an
isomorphism after tensoring with×Z (W×XZ ). Recall that W×XZ → Z is finite, surjective and locally free.
If we look at this situation locally, we can take X = Spec(A), Y = Spec(B), Z = Spec(C ), W = Spec(D),
and we have that D ⊗A C is a faithfully projective A-algebra, and that (BG ⊗A C )→ (B ⊗ C )G becomes
an isomorphism after tensoring with D ⊗A C , that is, (B ⊗A C )G ⊗C (D ⊗A C ) ∼= (BG ⊗C )⊗C (D ⊗A C ).
The fact that faithfully projective algebras are faithfully flat (Proposition 3.4) allows us to conclude that
(BG ⊗A C ) → (B ⊗ C )G was already an isomorphism after tensoring, which in scheme language means
that the morphism (Y ×X Z )/G → (Y /G )×X Z is locally an isomorphism, (which is enough to conclude
that it is an isomorphism).

4.4 Proof of the main theorem

We will now prove Theorem 4.1, by checking that all the axioms of Galois Categories are satisfied. It should
be noted that most of the work has already been done in the previous section, when we treated the basic
properties of the category FEtX .

Proof. Fix X a connected scheme. For every affine subset of X ⊃ U = Spec(A), we can consider the set of
projective separable algebras over A. This is a set, and so the product of these sets ranging over all affine
subsets of X is also a set. The objects in FEtX can be regarded as a subset of this product (precisely the
subset that can be glued to form a coherent covering). This proves that the objects in FEtX form a set,
and so FEtX is essentially small. Let’s proceed to check that it is a Galois Category.

G1 Terminal object: id : X → X is a terminal object in C, as for every f : Y → X , the diagram

Y X

X

f

h
id

is commutative ⇐⇒ h = f .

Fibred product: We already know that fibred products exist in the category of schemes. Suppose
that we have Y →W and Z →W morphisms in FEtX , that is, we have the commutative diagram

Y W Z

X

. Then we claim that Y ×W Z → X , together with projections Y ×W Z → Y

and Y ×W Z → Z is a fibred product for Y → X and Z → X over W → X . Indeed, the universal
property is immediately satisfied by the universal property of fibred products of schemes. Moreover,
Y ×W Z → X is finite étale because Y → W and Z → W are finite étale as they’re morphisms
in FEtX (Proposition 4.9). The projection morphisms are then finite étale, as a consequence of
Proposition 4.4. Then, Y ×W Z → X → X is also finite étale as a consequence of Proposition 4.8.

G2 Initial object: ∅→ X is an initial object.

Finite sums: Let {Yi → X}ni=1 be a finite set of objects in FEtX . Then, by Lemma 4.2 we know that
the map

∐n
i=1 Yi → X is finite étale. Moreover,

∐n
i=1 Yi is the finite sum of {Yi} in the category

of schemes. So, by the universal property of finite sums of schemes, the morphism
∐n

i=1 Yi → X ,
together with the inclusion maps qi : Yi →

∐n
i=1 Yi → X is the finite sum of the objects {Yi} in

FEtX .

Quotient by a subgroup of automorphisms: We already showed in Proposition 4.13 that quotients
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by a finite group of automorphisms exist in FEtX .
G3 Factorization of morphisms: Let h : Y → Z be a morphism in FEtX . h is finite étale by Proposi-

tion 4.9, and so we can write Z = Z0 q Z ′, where [Y : Z0] = 0 and [Y : Z ′] > 0. As h−1(Z0) = ∅,
we can factor h as Y → Z ′ → Z0 q Z ′ = Z . As [Y : Z ′] > 0, the first map is surjective, and
therefore an epimorphism (Proposition 4.10). The second map is an open and closed immersion, so
it is a monomorphism by Proposition 4.11.

Monomorphisms are direct summands: This is an immediate consequence of the fact that monomor-
phisms are open and closed immersions (Proposition 4.11).

To prove axioms G 4− G 6 we need to define a fundamental functor.

Definition 4.7. A geometric point of a scheme X is a morphism x : Spec(Ω) → X , where Ω is an
algebraically closed field.

It is a basic property of schemes (see Proposition A.8) that a geometric point of a scheme X is
equivalent to a point x ∈ X and an embedding k(x) → Ω. Therefore, every non-empty scheme
(in particular, a connected scheme) admits a geometric point. Now given Y → X an object in
FEtX and a geometric point x : Spec(Ω) → X , if we base-change to Ω we obtain Y ×X Spec(Ω),
which is an object of FEtSpec(Ω). Similarly, a morphism Y → Z in FEtX induces a morphism in
FEtSpec(Ω) (as in the proof of Proposition 4.9). This defines a functor Hx : FEtX → FEtSpec(Ω).
As Ω is algebraically closed, the absolute Galois group of Ω is trivial, and so the equivalence from
Theorem 2.3 (let’s denote it by J) is in fact an equivalence between FEtSpec(Ω) and the category of
finite sets. Fx := J ◦ Hx defines a functor from FEtX to sets.

Definition 4.8. Let X a connected scheme, x : Spec(Ω) → X a geometric point. We call Fx :
FEtX → FEtSpec(Ω) → sets the fundamental functor of X at x .

We will now proceed to check that this functor satisfies the axioms G4-G6 of Galois Categories. Note
that as J is an equivalence, it will be enough to prove the properties G 4− G 6 for Hx .

G4 Terminal objects: X → X is sent to X ×X Spec(Ω)→ Spec(Ω), which is indeed the terminal object
Spec(Ω)→ Spec(Ω)

Fibred products: Using universal properties of the fibred products, we immediately find the isomor-
phisms (Y×W Z )×X Spec(Ω) ∼= (Y×X Spec(Ω))×W (Z×X Spec(Ω)) ∼= (Y×X Spec(Ω))×W×X Spec(Ω)

(Z ×X Spec(Ω)), which proves that Hx commutes with fibred products.
G5 Initial object: Y → X is an initial object in FEtX ⇐⇒ [Y : X ] = 0. Therefore, Proposition 4.4

(iii) implies that Hx(Y → X ) has degree [Y ×X Spec(Ω) : Spec(Ω)] = 0, and so it is also initial in
FEtSpec(Ω).

Sums: (
∐n

i=1 Yi ) ×X Spec(Ω) ∼=
∐n

i=1(Yi ×X Spec(Ω)), and the isomorphism commutes with pro-
jections to Spec(Ω), so the functor Hx commutes with finite sums.

Epimorphisms: In Proposition 4.10 we showed that h : Y → Z is an epimorphism in FEtX if and
only if [Y : X ] ≥ 1. So, using again Proposition 4.4 (iii), the morphism Y ×X Spec(Ω)→ Spec(Ω)
has also degree [Y ×X Spec(Ω) : Spec(Ω)] ≥ 1 and so it is an epimorphism. This proves that Hx

sends epimorphisms to epimorphisms.

Passage to the quotient: The functor Hx commutes with passage to the quotient, as a consequence
of Proposition 4.14 taking Z = Spec(Ω) in the statement.

G6 As X is connected, [Y : X ] is constant for any object Y → X in FEtX . Therefore by Proposition 4.4
(iii) we also have that [Y ×X Spec(Ω) : Spec(Ω)] is constant. As we know that J : FEtSpec(Ω) → sets
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sends a separable Ω-algebra of rank n to a set of cardinality n, we have #Fx(Y ) = [Y : X ]. Now
suppose that we have a morphism h : Y → Z in FEtX such that Fx(h) is an isomorphism in sets.
By the characterization of isomorphisms in the category sets, we must have

[Y : X ] = #Fx(Y ) = #Fx(Z ) = [Z : X ]

And, in addition, if we write Z = Z0qZ ′ and factor the morphism h as in G3, the fact that Fx(h) is
an isomorphism and that Fx commutes with finite sums implies that Fx(Z0) = ∅⇒ [Z0 : X ] = 0⇒
Z0 = ∅ and so h is surjective.

So we can reduce to prove that if f : Y → X and g : Z → X are finite étale with [Y : X ] = [Z : X ],
and h : Y → Z is a surjective morphism between f and g , then h is an isomorphism. Let’s start by
considering the case with both f and g totally split: In this situation we can choose a covering of X
by open sets such that h is trivial above each set of the covering (c.f. Proposition 4.7). Then, h is
induced by a morphism U ×D → U × E , induced at its turn by a map on finite sets φ : D → E . As
[Y : X ] = [Z : X ], #D = #E , and as h is surjective, so is φ. In conclusion, φ is a surjective map
between finite sets of the same cardinal, and so φ is an isomorphism, and in consequence so is h.
In the general case, let’s consider a morphism W → X that is surjective, finite and locally free and
that makes both Y ×X W → W and Z ×X W → W totally split (this can be done as in the proof
of Proposition 4.9). Then, using Proposition 4.4(iii) we have that

[Y ×X W : W ] = [Y : X ] = [Z : X ] = [Z ×X W : W ]

By the totally split case already dealt with, Y ×X W → Z ×X W is an isomorphism, and so
[Y ×X W : Z ×X W ] = 1 by Proposition 4.2. Finally,

[Y : Z ] = [Y ×Z (Z ×X W ) : Z ×X W ] = [Y ×X W : Z ×X W ] = 1

Which finishes the proof that h : Y → Z is an isomorphism.

4.5 The étale fundamental group

Definition 4.9 (Étale fundamental group). Let X be a connected scheme, x : Spec(Ω)→ X a geometric
point and Fx the corresponding fundamental functor at the geometric point. Then, we denote π(X , x) =
Aut(Fx), and call it the étale fundamental group of X at x .

Consider the category S whose objects are pairs (X , x), with X a connected scheme and x a geometric
point, with a morphism (X ′, x ′)→ (X , x) being a morphism of schemes f : X ′ → X such that f ◦ x ′ = x .
Given a morphism in S, the functor G = −×X X ′ : FEtX → FEtX ′ satisfies Fx ′◦G ∼= Fx , so by Theorem 2.4
it follows that π(−,−) extends to a functor from S to the category of profinite groups.

In the case X = Spec(K ), where K is a field, the result of Theorem 4.1 is nothing else than a reformu-
lation of the classical Galois Theory for Fields, apart from the uniqueness statement (c.f. Theorem 2.3).
So, in a certain sense, Theorem 4.1 can be seen as a generalization of Galois theory to the category of
connected schemes. As well as Galois theory for fields classifies all the finite separable extensions of a field
K in terms of the absolute Galois group, Galois theory for schemes classifies all the finite étale coverings
of a connected scheme X in terms of the étale fundamental group.
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4.6 Examples

In this last section we deal with some examples of interest in number theory. In particular, we will give an
explicit description of the fundamental group of a locally noetherian normal integral scheme of dimension
one (it should be noted that an integral scheme is irreducible by [3], Proposition II.3.1, and so in particular
it is connected and it makes sense to talk about its étale fundamental group). To do this, one needs
to completely characterize the finite étale coverings of a scheme of this type. For this purpose we will
introduce some definitions and auxiliary results.

Definition 4.10. Let f : Y → X be a morphism of schemes locally of finite type, and y = f (x) ∈ Y . We
say that f is unramified at y if OY ,y/mxOY ,y is a finite separable field extension of OX ,x/mx . We say that
f is unramified if it is unramified at every point.

Lemma 4.8 (Affine characterization of unramified morphisms). Let A be a ring, B a finitely generated
A-algebra, q ∈ Spec(B). Then, f : Spec(B) → Spec(A) is unramified at q ⇐⇒ p = f (q) generates the
maximal ideal of Bq and the residue field k(q) is a finite separable extension of k(p).

Proof. The inclusionOX ,x/mx → OY ,y/mxOY ,y , when we translate to the affine setting X = Spec(A), Y =
Spec(B), is identified with the morphism

Ap/pAp → Bq/pBq

It is indeed clear that if pBq = qBq ⇐⇒ pBq is maximal in Bq, which in turn happens if and only if
Bq/pBq is a field. In that case, then the map above is in fact the inclusion k(p)→ k(q), and so if k(q) is
a finite separable field extension of k(p) if and only if the morphism f is unramified.

The following lemma shows the relation between the definition we have just introduced and the definition
of ”unramified” in number theory.

Lemma 4.9. Let A be a Dedekind domain, and let B be the integral closure of A in a finite separable
field extension of the field of fractions of A. Let q be a maximal ideal of B and p = A ∩ q. Then
Spec(B) → Spec(A) is unramified at q if and only if the ramification index e(q/p) equals 1 and B/q is
separable over A/p.

Proof. Let p =
∏n

i=1 q
ei
i , and let q = q1. Then, pBq = qe1 . Therefore, pBq = qBq ⇐⇒ e(q/p) = 1. In

that case, we have
Ap/pAp

∼= A/p→ B/q ∼= Bq/qBq

and so Bq/qBq is a finite separable field extension of Ap/pAp if and only if A/p → B/q is a finite
separable field extension. This concludes the proof.

Definition 4.11. A scheme is normal if all its local rings are integrally closed domains.

Definition 4.12. If X is an integral scheme, then the local ring of the generic point is a field, called the
function field of X . See Proposition A.9 for a proof that this is well defined.

Definition 4.13. Let X be a normal integral scheme, let K be its function field and L a finite separable
extension of K . Considering OX (U) as a subring of K , for every U, define A(U) as the integral closure of
OX (U) in L. The assignment U 7→ A(U) defines a quasi-coherent sheaf of OX -algebras, and so it gives
rise to an affine morphism Y = Spec(A) → X . Under this situation, we say that Y is the normalization
of X in L. We say that X is unramified in L if Y → X is unramified.
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Lemma 4.10. Let X be a locally noetherian normal integral scheme with function field K , K ⊂ L a finite
separable field extension. Then,

i) The normalization of X in L is finite over X .
ii) If X has dimension one, then the normalization of X in L, Y → X is locally free with constant degree

[L : K ] over X .

Proof. i) By definition, the normalization of X in L is the morphism f : Spec(A)→ X , and Spec(A)
satisfies the property that for every open affine X ⊃ U = Spec(A), f −1(U) = Spec(A(U)), where
A(U) is the integral closure of A in L. Then, we can reduce the problem to prove that Spec(B)→
Spec(A) is finite if A is noetherian and integrally closed, and B is the integral closure of A in L. By
[1], Proposition 5.17, ∃ a basis {v1, ... , vn} of L over K such that B ⊂

∑n
i=1 Avi . Then, we have

that A ⊆ B ⊆ C =
∑n

i=1 Avi . C is finitely generated as an A-module and A is noetherian, so we are
under the hypothesis of [1], Proposition 7.8, and we can conclude that B is finitely generated as an
A-algebra. Now using the fact that B is also integral over A, we conclude that it is finitely generated
as an A-module.

ii) If X has dimension 1, then for every affine subset of X , U = Spec(A), A is a Dedekind domain.
Recall that a finitely generated module over a Dedekind domain A is projective ⇐⇒ it is torsionfree
(c.f. Proposition A.10). As the notion of degree is local, we can restrict to open affine subsets of X
Spec(B)→ Spec(A). In this situation, by the result already proven above, B is finitely generated as
an A-module, and torsionfree by the fact that A is a domain and the characterization of projective
modules over Dedekind domains given in Example 3.1. Then B is a finite projective A-algebra, and
therefore it is locally free. Moreover, [L : K ] = [B ⊗A K : K ] = [B : A], which concludes the proof.

Lemma 4.11. Let A be an integrally closed domain, and B a projective separable A-algebra. Then, there
are finite separable field extensions L1, ... , Lt of K such that there is an isomorphism B ⊗A K ∼=

∏t
i=1 Li

of K -algebras, and this induces an isomorphism B ∼=
∏t

i=1 Bi , where Bi is the integral closure of A in Li .

Proof. As B⊗AK is a separable K -algebra, then by Lemma 2.1 we have an isomorphism B⊗AK ∼=
∏t

i=1 Li ,
for Li finite separable field extensions of K for every i . As A is a domain, the map A → K is injective.
The fact that B is projective implies in particular that it is flat over A, and so tensoring the map A → K
with B, it yields that B → B ⊗A K is injective, and so B can be seen as B ⊂

∏n
i=1 Li . In particular, B is

a finitely generated module over A, so every element is integral and therefore the image of B in
∏n

i=1 Li is
contained in

∏n
i=1 Bi . We want to prove that the equality holds.

Given x ∈
∏n

i=1 Bi , and y ∈ B, we have xy ∈
∏n

i=1 Bi . We claim that TrB⊗AK/K (xy) ∈ A. Note that

we can write TrB⊗AK/K =
∑t

i=1 TrLi/K , and therefore it’s enough to prove that TrLi/K (z) ∈ A, for each

z ∈ Bi . Let
∑m

k=0 akX k (with am = 1), be the irreducible polynomial of z over L. Let {1, z , ... , zn−1}
be a basis of K (z) over K , and let {α1, ... ,αr} be a basis of Li over K (z). Then, {wi ,j = z iαj}i ,j is
a basis of Li over K . It’s clear that the map multiplication by z maps wi ,j to wi+1,j if i < n − 1, and
to −

∑m−1
k=0 akwk,j if i = n − 1. Therefore, TrLi/K (z) = −[L : K (z)]am−1. Since A is integrally closed,

[1] Proposition 5.15 implies that the coefficients ak of the irreducible polynomial of z over K lie in A,
and this concludes the proof of the claim. The map B → A sending y 7→ Tr(xy) is A-linear, so by the
definition of separability ∃x ′ ∈ B with TrB⊗AK/K (xy) = TrB/A(x ′y) for all y ∈ B. Then, by K -linearity
Tr(xy) = Tr(x ′y), ∀y ∈ B ⊗A K . By separability of B ⊗A K over K , x = x ′ ∈ B, which concludes the
proof.
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Lemma 4.12. Let X be a topological space that can be written as the union of open irreducible subsets.
Then X can be written as the disjoint union of open irreducible subsets.

Proof. Let X =
⋃

i∈I Xi with Xi irreducible subsets. Note that we can make a partition of the set I by
Iα ⊂ I such that

⋃
α∈J Iα = I and Iα ∩ Iα′ = ∅, for each α,α′ ∈ J, satisfying Xi ∩ Xj = ∅ if i , j belong

to different classes and Xi ∩ Xj 6= ∅ if i , j belong to the same equivalence class. This is possible because
the sets Xi are irreducible, so if Xi ∩ Xj 6= ∅ and Xi ∩ Xk 6= ∅ are nonempty open sets in Xi , as Xi is
irreducible, ∅ 6= (Xi ∩ Xj) ∩ (Xi ∩ Xk) = Xi ∩ Xj ∩ Xk ⊆ Xj ∩ Xk .

Now define Yα =
⋃

j∈Iα Xj . It is clear that the sets {Yj} are pairwise disjoint and that X =
∐
α∈J Yα.

We claim that in addition they are irreducible. Let’s observe that given an nonempty open set U of Yα,
we must have U ∩ Xi 6= ∅, for each i ∈ Iα: Otherwise, suppose that U ∩ Xi 6= ∅, and take j such that
U ∩ Xj 6= ∅. Then the nonempty open sets Xj ∩ Xi and Xj ∩ U of Xj have empty intersection, which is a
contradiction with the irreducibility of Xj . Then, given two open sets U, V of Yα, and i ∈ Iα we have that
U ∩ Xi and V ∩ Xi are nonempty open sets of Xi , so they have nonempty intersection by the irreducibility
of Xi . This proves that Yα is irreducible, which concludes the proof.

We finally prove the result that characterizes all finite étale coverings of a locally noetherian normal
integral scheme of dimension 1. Note that it is enough to characterize connected coverings, as every
covering can be written as the sum of connected coverings, by Proposition 2.2 and the fact that FEtX is
a Galois Category.

Theorem 4.2. Let X be a locally noetherian normal integral scheme of dimension one, with function field
K . Let L be a finite separable field extension of K such that X is unramified in L. Then the normalization
of X in L is a connected finite étale covering of X . Moreover, every connected finite étale covering of X
arises in this way.

Proof. We begin with the proof of the last statement: Let f : Y → X be a connected finite étale covering
of X . Let U = Spec(A) be an open affine subset of X and f −1(U) = Spec(B) ⊂ Y . We are under
the hypothesis of Lemma 4.11, and therefore Spec(B) ∼= Spec(B1) q · · · q Spec(Bt). Each Bi is integral
and therefore Spec(Bi ) is irreducible by [3], Proposition II.3.1, so we can write f −1(U) = Spec(B) as the
disjoint union of open irreducible subsets. Taking the union through all open affine subsets U ⊆ X , and
using Lemma 4.12, we conclude that we can write Y as the union of open irreducible subsets. As Y is
connected, therefore Y itself must be irreducible. On the other side, for every Spec(Bi ) all local rings are
domains, which implies that the same statement is true for Y , and so Y is reduced. Putting everything
together and using again [3], Proposition II.3.1, we conclude that Y is an integral scheme. Let L be
the function field of Y . We claim that Y → X is the normalization of X in L. Indeed, for every open
affine subset of X , U = Spec(A), f −1(U) = Spec(B) and Lemma 4.11 together with the fact that Y is
irreducible, implies that B is the integral closure of A in the field B ⊗A K = L. Therefore, Y → X is the
normalization of X in L, and X is unramified in L by Theorem A.1. This concludes the proof of the second
statement.

To prove the first statement we will use the characterization of Theorem A.1. The morphism f : Y → X
is finite by Lemma 4.10, and it is unramified by hypothesis. Therefore it suffices to prove that Y → X
is a flat morphism. However, using again Lemma 4.10 we know that for every X ⊃ U = Spec(A),
f −1(U) = Spec(B) with B a finite projective A-algebra, and so in particular a flat A-module, and this
proves that f is flat.
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Lemma 4.13. Let B be a free separable algebra over a field K , K an algebraic closure of K and write
B =

∏t
i=1 Bi where each Bi ⊂ K is a finite separable field extension of K . Let L ⊆ K be a field extension

of K . Then, B ⊗K L ∼= LdimK (B) as L-algebras if and only if L contains the normal closure of Bi over K in
K .

Proof. It is enough to prove it for t = 1, that is, B = Bi being a finite separable field extension of K . As a
consequence of the primitive element theorem, in that situation we can write B = K [X ]/(f ), for f ∈ K [X ]
an irreducible separable polynomial. Then, B ⊗K L = L[X ]/(f ). It is trivial that L[X ]/(f ) splits in simple
factors if and only if all the roots of f belong to L, that is, if and only if L contains the normal closure of
B over K .

Definition 4.14. Let K be a field, M a Galois extension of K and B a finite dimensional K -algebra. If
B ⊗K M ∼= MdimK (B) as M-algebras, we say that M splits B.

Lemma 4.14. Let K be a field, and M a Galois extension of K . The category of K -algebras that are split
by M is anti-equivalent to Gal(M/K )-sets.

Proof. Let B a K -algebra that is split by M, and K an algebraic closure of K containing M. Then,

B ⊗K K ∼= (B ⊗K M) ⊗K K ∼= K
dimK (B)

. Therefore Lemma 2.1 implies that B is a separable K -algebra,
and we can write B =

∏t
i=1 Bi . Using Lemma 4.13, we conclude that M contains the normal closure of

Bi in K for each i . Therefore, the whole argument of the proof of Theorem 2.3 holds in this situation if
we exchange K by M, and therefore we can conclude that the category of K -algebras that are split by M
is anti-equivalent to Gal(M/K )-sets.

Theorem 4.3. Let X be a locally noetherian normal integral scheme of dimension one, K its function
field, K an algebraic closure of K and M the composite of all finite separable field extensions L of K , with
L ⊂ K for which X is unramified in L. Then, the fundamental group π(X ) is isomorphic to the Galois
group Gal(M/K ).

Proof. K ⊂ M is a separable extension, as it is the composition of separable extensions. Moreover, if
X is unramified in L, then for every embedding L′ of L into K , X is also unramified in L′, which proves
that K ⊂ M is normal and therefore Galois, then it makes sense to talk about Gal(M/K ). Now note
that the natural morphism Spec(K ) → X induces a functor G : FEtX → FEtSpec(K), which sends a
morphism Y → X to Y ×X Spec(K ) → Spec(K ). By Theorem 4.2, every connected finite étale covering
of X is the normalization of X at some finite separable extension L ⊃ K . Following the reasoning of
the proof of Theorem 4.2, it is easily seen that the functor G sends a connected covering Y → X to
Spec(L)→ Spec(K ).

This allows us to conclude that the image of the functor G is contained in the set of objects of the form
Spec(B), where B is the product of finite separable extensions of K contained in M. By the observation
at the beginning of the proof, (and using Lemma 4.13) these are exactly the algebras that are split by M,
and so Lemma 4.14 implies that this category is equivalent to Gal(M/K )-sets. In conclusion, we have
induced a functor FEtX → Gal(M/K ) − sets. Composing it with the equivalence FEtX → π(X ) − sets,
we induce a functor H : π(X )-sets → Gal(M/K )-sets. Then Theorem 2.4 gives rise to a continuous
group homomorphism Gal(M/K )→ π(X ), and it will be enough to prove that this morphism is bijective.
For that purpose we will use the characterizations of Proposition 2.10. It is clear that it is surjective, as
G sends connected objects to connected objects, and so do the other functors involved because they’re
equivalences.
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Now let’s proceed to prove injectivity. Again, as H is the composition of G and equivalences, it will be
enough to check that the property holds for G . Let X ′ be a connected object of FEtSpec(K) belonging to the
image of G , X ′ = Spec(L) for L a finite field separable field extension of K contained in M. If X is ramified
in L then we have that the normalization of X in L satisfies the desired property. If this doesn’t happen,
we can always find finite field extensions L1, ... , Lt of K contained in M such that X is unramified in each
Li and such that L is contained in the composite field extension L1L2Lt . Denoting by Yi the normalization
of X in Li , we have that Y = Y1× · · · ×Yt belongs to FEtX , and G (Y ) = Spec(L1⊗K L2⊗K · · · ⊗K Lt).
The natural epimorphism L1 ⊗K L2 ⊗K · · · ⊗K Lt → L1L2Lt sending x1 ⊗ x2 ⊗ · · · ⊗ xt 7→ x1x2 ... xt
shows that there is a monomorphism Spec(L1L2Lt) → G (Y ), and as Spec(L1L2Lt) is connected, it is a
connected component of G (Y ). The inclusion L ⊆

∏t
i=1 Li yields a morphism Spec(L1L2Lt)→ Spec(L) in

FEtSpec(K). Therefore the characterization of Proposition 2.10 is satisfied, and this implies that the map
Gal(M/K )→ π(X ) induced by H is bijective, and so it is an isomorphism of profinite groups.

Corollary 4.1. Let’s see how the theorem above reads in some particular cases:

• If X = Spec(A), where A is the ring of integers of a number field K , then A is a Dedekind domain.
The field extensions L ⊃ K such that X is unramified in L are exactly the field extensions such that
are unramified at every prime of A. Therefore M is the maximal unramified extension of K , and
π(Spec(A)) = Gal(M/K ).

• If X = Spec(A[1/a]), where A is the ring of integers of a number field K , 0 6= a ∈ A, then the
primes of A[1/a] are in one to one correspondence with the primes of A that don’t divide a. Then
M is the maximum field extension of K unramified at all non-zero primes of A that don’t divide a,
and π(Spec(A[1/a])) = Gal(M/K ).

• As a consequence of Minkowski’s theorem ([6], page 130), every extension of Q ramifies at least in 1
point, and therefore, the maximal unramified extension of Q is trivial, M = Q. In consequence, the
étale fundamental group of Spec(Z) is trivial, π(Spec(Z)) = {1}.
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A. Appendix

A.1 Uniqueness of categorical objects

Lemma A.1. Initial objects and terminal objects are unique up to isomorphism if they exist.

Proof. Let Z1, Z2 be terminal objects in C, and h1 : Z1 → Z2, h2 : Z2 → Z1 the unique morphisms. Note
that a terminal object in particular has a unique endomorphism, which must be the identity. So this implies
that h1 ◦ h2 = idZ1 and h2 ◦ h1 = idZ2 , and so Z1

∼= Z2. The argument for initial objects is the same
one.

Lemma A.2. The fibred product of two objects X , Y over a third one S , built over morphisms f , g , is
unique up to isomorphism if it exists.

Proof. Let ((X ×S Y )1, (p1, p2)), ((X ×S Y )2, (q1, q2)) be two fibred products of X and Y over S , with
morphisms f : X → S , g : Y → S . Then, we have the following commutative diagrams:

(X ×S Y )2

(X ×S Y )1 X

Y S

q1

q2

θ

p1

p2 f

g

(X ×S Y )1

(X ×S Y )2 X

Y S

p1

p2

χ

q1

q2 f

g

And so we have that piθχ = pi and qiχθ = qi . Then, we have the following commutative diagrams

(X ×S Y )1

(X ×S Y )1 X

Y S

p1

p2

a

p1

p2 f

g

(X ×S Y )2

(X ×S Y )2 X

Y S

q1

q2

b

q1

q2 f

g

Using now the fact that a = id(X×SY )1
and b = id(X×SY )2

and also A = θχ and b = χθ satisfy the
diagram, and the uniqueness of a, b, we finally get θχ = id(X×SY )1

and χθ = id(X×SY )2
, so (X ×S Y )1

∼=
(X ×S Y )2

Lemma A.3. The sum of a collection of objects (Xi )i∈I is unique up to isomorphism if it exists.

Proof. Let (X , (qi )i∈I ) and (Y , (pi )i∈I ) be two sums of the objects (Xi )i∈I . Then, by the universal property
of the sum, ∃!f : X → Y satisfying pi = fqi and ∃!g : Y → X such that qi = gpi . Therefore we have
qi = gfqi , pi = fgpi . On the other hand, considering the maps qi : Xi → X , we have that ∃!mapa : X → X
such that qi = aqi∀i . But as id satisfies that property, then a = id. This proves that gf = idX . The same
argument on Y proves that fg = idY , and so X ∼= Y .
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Lemma A.4. Given X ∈ Ob(C) and G ⊂ AutC(A), the quotient of X by G is unique up to isomorphism.

Proof. Let ((X/G )1, p1) and ((X/G )2, p2) be two quotients of X by G . The applications pi satisfy
piσ = pi , ∀σ ∈ G , so we have the following commutative diagrams:

X (X/G )1

(X/G )2

p1

p2
g

X (X/G )2

(X/G )1

p2

p1
h

So we have that gp1 = p2 and hp2 = p1, so ghp2 = p2 and hgp1 = p1. By uniqueness, we must have
gh = id(X/G)2

and hg = id(X/G)1
, so (X/G )1

∼= (X/G )2.

Lemma A.5. The equalizer of two morphisms f , g : X → Y is unique up to isomorphism if it exists.

Proof. Suppose that we have (E1, θ1), (E2, θ2) two equalizers of f , g . We have that f θi = gθi , so there
are unique maps h1 : E1 → E2, h2 : E2 → E1 satisfying θ2h1 = θ1 and θ1h2 = θ2. The following diagrams
illustrate the situation.

E1 X Y

E2

θ1

h1

f

g

θ2

E2 X Y

E1

θ2

h2

f

g

θ1

Then we have θ1h2h1 = θ1 and θ2h1h2 = θ2. Then consider the following diagram

E1 X Y

E1

θ1

a

f

g

θ1

We have that both a = h2h1 and a = idE1 make the diagram commutative, so by uniqueness, h2h1 =
idE1 . The same argument shows that h1h2 = idE2 , and so E1

∼= E2.

A.2 Algebra and scheme theory

Proposition A.1. ([1], Exercise 1.21) Let φ : A → B be a ring homomorphism. Let X = Spec(A) and
Y = Spec(B). If q ∈ Y , then φ−1(q) is a prime ideal of A, i.e., a point of X. Hence φ induces a mapping
φ∗ : Y → X . Then,

(i) If b is an ideal of B, then φ∗(V (b)) = V (bc).

(ii) If φ is injective, then φ∗(Y ) is dense in X . More precisely, φ∗(Y ) is dense in X ⇐⇒ Ker(φ) ⊆ R.

Proof. (i) φ∗(V (b)) = V (a), for some ideal a yet to determine. We observe that x ∈ φ∗(V (b)) ⇐⇒
∃y ∈ Spec(B) such that py ⊇ b and px = pcy . Then, it’s clear that a ⊆ pc , ∀p ⊇ b, which implies
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that a ⊆
⋂

p⊇b p
c . As the closure is the smallest closed subset containing φ∗(V (b)), we have the

equality

φ∗(V (b)) = V

⋂
q⊇b

qc


Therefore,

V

⋂
q⊇b

qc

 = V

⋂
q⊇b

q

c = V (r(b)c) = V (r(bc)) = V (bc)

(ii) φ∗(Y ) is dense in X ⇐⇒ φ∗(Y ) = X . We also know that

φ∗(Y ) = φ∗(V ((0))) = V ((0)c) = V (ker(φ))

Therefore, we only have to show that V (ker(φ)) = X ⇐⇒ ker(φ) ⊆ R. That is true because
V (ker(φ)) = X ⇐⇒ p ⊇ ker(φ) ∀p prime ⇐⇒

⋂
p prime p ⊇ ker(φ) ⇐⇒ ker(φ) ⊆ R.

Proposition A.2. ([1], Exercise 2.11) Let A be a ring. Then, An ∼= Am as A-modules ⇐⇒ n = m.

Proof. Let m be a maximal ideal of A, k = A/m and let φ : Am → An be an isomorphism. As tensor
product commutes with direct sums, A/m⊗ Am ∼=

⊕m
i=1 A/m⊗ A ∼= km.

In conclusion A/m⊗Am is a m-dimensional k-vector space and similarly, A/m⊗An is a n-dimensional
k-vector space. The isomorphism between Am and An is equivalent to the exactness of the sequence
0 → Am → An → 0. Then, by 2.18, tensoring the sequence preserves the exactness, and therefore
0 → A/m ⊗ Am → A/m ⊗ An → 0 is exact, which implies that 1 ⊗ φ : A/m ⊗ Am → A/m ⊗ An is an
isomorphism of vector spaces. So the dimensions of the spaces must be the same ⇒ n = m.

Proposition A.3. ([3], Chapter II Exercise 5.17 (a)) If f : Y → X is affine, ∀U = Spec(A) open affine
subset of X , f −1(U) = V = Spec(B) is affine.

Proof. Let’s observe first that if Spec(B)→ Spec(A) is a morphism of schemes, then ∀f ∈ A, the restriction
of this morphism to D(f ) corresponds to the morphism of schemes Spec(Bf )→ Spec(Af ). If we apply this
observation to an open affine covernig of X {Ui = Spec(Ai )} such that f −1(Ui ) = Spec(Bi ), and taking
into account that the sets Di (fj) = Spec((Ai )fj ) form a base of the topology of X , we conclude that every
affine set U = Spec(A) ⊂ X can be covered by open affine sets with affine antiimage, and therefore, we
can reduce to prove the case in which X is affine.

Now let X = Spec(A) and Ui as before. For each point x ∈ X , there exists an element f ∈ A such that
x ∈ D(f ) ⊂ Ui for a certain i . Then, if we denote f for the image of f in Ai , we have D(f ) ∼= Spec((Ai )f ),
and so its antiimage is affine, f −1(D(f )) = Spec((Bi )f . The morphism f : Y → Spec(A) corresponds
uniquely to a map ϕ : A → Γ(Y ,OY ). If we consider the restriction of f to f −1(D(f )), we have that
P ∈ g−1(D(f )) ⇐⇒ g(P) ∈ D(f ) ⇐⇒ ϕ(f )p /∈ mP ⇐⇒ P ∈ Yϕ(f ). Therefore we have proven that
Yϕ(f ) is affine.

By compactness, we can always take a finite number of elements f of this type that generate (1) ∈ A,
and this implies that their images by ϕ also generate 1 ∈ Γ(Y ,OY ), which is enough to conclude that Y
is affine.
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Proposition A.4. ([3], Chapter II Exercise 3.4) If f : Y → X is finite, ∀U = Spec(A) open affine subset
of X , f −1(U) = V = Spec(B) is a finite A-algebra.

Proof. A finite morphism is in particular affine. Therefore, by the result above, for every U = Spec(A) ⊆ X ,
we will have f −1(U) = Spec(B). Now we only have to prove that B is a finitely generated A-module,
but we know that ∃(fi )i∈I , fi ∈ A such that (fi ) = (1) and U can be covered by the sets {D(fi )}, with
f −1(D(fi )) = Spec(Ci ), and Ci is a finitely generated Afi -module. Then Lemma 3.4 (ii) concludes the
proof.

Proposition A.5. ([3], Chapter II Exercise 2.19) Let A be a ring. Then, the following conditions are
equivalent:

i) Spec(A) is disconnected;
ii) there exist nonzero elements e1, e2 ∈ A such that e1e2 = 0, e2

1 = e1, e2
2 = e2, e1 + e2 = 1 (these

elements are called orthogonal idempotents);
iii) A is isomorphic to a direct product A1 × A2 of two nonzero rings.

Proof. (iii)⇒ (ii) Let φ : A1 × A2 → A be an isomorphism. Then consider e1 := φ((1, 0)) and e2 :=

φ((0, 1)). Then e2
1 = φ((1, 0))2 = φ((1, 0)2) = φ((1, 0)) = e1 and analogoulsy with e2, so e2

i = ei .
e1e2 = φ((1, 0))φ((0, 1)) = φ((1, 0)(0, 1)) = φ(0) = 0 and e1 + e2 = φ((1, 0)) + φ((0, 1)) = φ((1, 0) +
(0, 1)) = φ(1) = 1.

(ii)⇒ (i) V (ei ) are closed sets. The ideal generated by e1, e2 is the whole ring, so ∅ = V ((e1, e2)) =

V (e1 ∪ e2) = V (e1)∩V (e2). Moreover (e1)(e2) = (e1e2) = 0, so V (e1)∪V (e2) = V ((e1)(e2)) = V (0) =
Spec(A), and therefore Spec(A) is disconnected.

(i)⇒ (iii) First let’s observe that it is enough to find two ideals a1, a2 such that A is the direct

sum of these ideals, i.e. a1 + a2 = A, a1 ∩ a2 = 0 because A1 × A2 = A1 ⊕ A2 and the application
ψ : A→ A/a1×A/a2, x 7→ (x1, x2), where xi is the class of x in A/ai is bijective. Indeed, ψ(a) = (0, 0)⇒
a ∈ a1 ∩ a2 = 0, so ψ is injective. In addiction each y1 ∈ A/a1 has a representant x1 ∈ a2, and each
y2 ∈ A/a2 has a representant x2 ∈ a1, so ψ(x1 + x2) = (y1, y2) and ψ is bijective.

So now let’s proceed to find these ideals. As Spec(A) is disconnected, ∃a1, a2 6= A such that Spec(A) =
V (a1) ∪ V (a2), which implies that a1a2 is included in the nilradical of A; It also happens that V (a1) ∩
V (a2) = ∅, which implies that a1 + a2 = (1). These ideals are still not what we are looking for because
their intersection is not necessarily 0. But as the sum of the two ideals is the whole ring, ∃ai ∈ ai such
that a1 + a2 = 1. a1a2 ∈ a1a2 and therefore it is a nilpotent element. Let n such that (a1a2)n = 0. Then
1 = 1n = (a1 + a2)n = an1 + an2 + b, where b is a nilpotent element, because it is the sum of elements ak1 am2 ,
with m, k ≥ 1, which belong to a1a2, and therefore are nilpotents. Now an1 + an2 = 1 − b, and therefore
it’s a unit, as it is the sum of a unit and a nilpotent element. In consequence, we have (an1) + (an2) = (1)
and the intersection of these two ideals is equal to their product, as they’re coprime (Proposition 1.10
of [1]). So we have that (an1) ∩ (an2) = (an1)(an2) = ((a1a2)n) = 0. Therefore A = (an1) ⊕ (an2) and so
A ∼= A/(an1)× A/(an2). These rings are both nonzero because ai 6= A (as the close sets V (ai ) are not the
whole ring, otherwise they wouldn’t be a disconnection of Spec(A).

Proposition A.6. ([1], Exercise 1.12) Let A be a local ring. Let x ∈ A such that x2 = x . Then, either
x = 0 or x = 1.

Proof. x2 = x ⇒ x(x − 1) = 0, so x(1− x) belongs to the maximal ideal, which is equal to the Jacobsol
radical because the ring A is local. Then either x or 1 − x belongs to the Jacobson radical. In the first
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case, this implies that 1− x is a unit and in the second case, that x is a unit. On conclusion, multiplying
the expression x(1 − x) = 0 by the inverse of the unit, it yields that either x or 1 − x is 0, so x = 0 or
x = 1.

Proposition A.7. ([3], Chapter II Exercise 5.17 (b)-(d))

i) Let X be a scheme, and A a quasi-coherent sheaf of OX -algebras. Then, ∃!Y and an affine morphism
of schemes f : Y → X such that ∀V ⊆ Y , f −1(V ) ∼= Spec(A(V )) and for every inclusion U ⊆ V ,
f −1(U) ⊆ f −1(V ) corresponds to the restriction A(V )→ A(V ). We denote Y = Spec(A).

ii) For every affine morphism of schemes f : Y → X , then f∗OY is a quasi-coherent sheaf of OY -
algebras, and Y ∼= Spec(A).

iii) Given a scheme X , the category of affine morphisms AffX and the category of quasi-coherent sheafs
of OX -algebras are anti-equivalent.

Proof. i) For each open set U ⊆ X we have a morphism of rings OX (V ) → A(V ). Let’s choose an
open affine covering of X , {Ui = Spec(Ai )}. Then A(Ui ) is an Ai -algebra, so we have a morphism
OX (Ui ) = Ai → A(Ui ), which induces a morphism Spec(A(Vi )) → Spec(Ai ). For each i 6= j ,
there is an open affine subset Uij = Spec(A(Vi ∩ Vj)) ⊆ Spec(A(Vi )) corresponding to the natural
restriction morphism A(Vi ) → A(Vi ∩ Vj). There are also isomorphisms of schemes Uij

∼= Uji .
Therefore we can glue all the schemes Spec(A(Vi )) and this yields a scheme Y satisfying the desired
properties.

ii) As f is an affine morphism, there is an open cover of X by open affine subsets Ui = Spec(Ai ) such
that f −1(Ui ) = Spec(Bi ). Therefore, we have A(Ui ) = Bi , which is an Ai -algebra (and therefore an
Ai -module). This proves that A is a quasi-coherent sheaf of OY -algebras.

iii) The previous results (i), (ii) define an assignment Spec from the category of quasi-coherent sheaves
of OX -algebras to the category of affine morphisms with target X (AffX ), and −∗OX from the
category of affine morphisms to quasi-coherent sheaves. It is immediately seen from the definition of
thie correspondence that it is bijective, so we just have to check that the assignment is functorial, i.e.
that it extends to morphisms of these categories. Indeed, given objects f , g ∈ AffX , and a morphism h

from f to g :

Y X

Z

f

h
g We know that f∗OX and g∗OX are quasi-coherent sheafes of OX -algebras.

Therefore, the morphism h# : OZ → h∗OY (which is a morphism of rings OZ (V ) → OY (h−1(V ))
for every V open set of Z ), when it is restricted to open sets of the form V = g−1(U) yields a
morphism of quasi-coherent sheaves of OX -algebras, g∗OX → f∗OX .

Reciprocally, a morphism of quasi-coherent sheaves of OX -algebras A → B corresponds to morphisms

of OX (U)-algebras for every open set U ⊆ X .

A(U) B(U)

OX (U)

Then this morphisms induce

affine morphisms Spec(B(U))→ Spec(A(U)), which can be glued to form a morphism Spec(B)→
Spec(A).

Proposition A.8. ([3], Chapter II Exercise 2.7) Let X be a scheme. For any x ∈ X , let OX be the local
ring at x and mx its maximal ideal. We define the residual field of x on X to be the field k(x) = OX/mx .
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Now let K be any field. Giving a morphism of Spec(K ) to X is equivalent to give a point x ∈ X and an
inclusion map k(x)→ K .

Proof. Let P ∈ Spec(K ) be the only point of this topological space. Given a morphism of schemes,
(f , f #) : (Spec(K ),OSpec(K)) → (X ,OX ), f is completely determined by a point x ∈ X , the image of

the only point P ∈ Spec(K ). In addition, f # induces a morphism on the stalks f #
P : OX ,x → K . It is a

local morphism because (f , f #) is a morphism of locally ringed spaces, and so ker(f #
P ) = (f #

P )−1(0) = mx

and therefore we can induce an injective morphism k(x) = OX ,x/mx → k . Reciprocally, given an injection
k(x)→ K we can induce a unique local morphism OX ,x → K sending an element to its class in k(x) and
then applying ϕ. We will see now that any morphism f # on the structure sheafs it totally determined by
the induced application on the stalk at P.

Indeed, given an open set U ⊆ X , if x /∈ U then f −1(U) = ∅, so the only possible application
OX (U) → OSpec(K)(f −1(U)) is the zero application. Now let’s observe that if x ∈ U, V and V ⊆
U, then the restriction morphisms from f −1(U) to f −1(V ) is the identity, and therefore f #(U)(s) =
f #(U)(s)|f −1(V ) = f #(V )(s|V ). That means that two elements s, t ∈ OX (U) have the same image by

f #(U) if and only if they’re equal in a neighbourhood of x . In conclusion, the image of an element s by

f #(U) is equal to the image of its stalk at x by the application f #
P .

In conclusion, a morphism of schemes (f , f #) : (Spec(K ),OSpec(K)) → (X ,OX ) is completely deter-
mined by a point x ∈ X and an injection k(x)→ K .

Proposition A.9. ([3], Chapter II Exercises 2.9 and 3.6)

i) If X is a topological space, and Z an irreducible closed subset of X , a generic point for Z is a point
ζ such that Z = {ζ}. If X is a scheme, every (nonempty) closed subset has a unique generic point.

ii) Let X be an integral scheme. Then, the local ring Oζ of the generic point ζ of X is a field, called
the field of functions of X . Moreover, for every open affine subset U = Spec(A) ⊆ X , Oζ ∼= K ,
where K is the field of fractions of A.

Proof. i) Foreach P ∈ Z , let’s consider VP the open neighbourhood of P such that (VP ,OX |VP
) is

isomorphic to the spectrum of a given ring. Let’s fix P ∈ Z and let A such that (VP ,OX |VP
) ∼=

(Spec(A),OSpec(A)). Let f be the homeomorphism f : VP → Spec(A).

Let’s observe that Z ∩ VP is irreducible (as an open set of Z ∩ VP is of the form U ∩ Z ∩ VP and
then (U1 ∩ Z ∩VP)∩ (U2 ∩ Z ∩VP) = (Z ∩VP)∩ (Z ∩U1)∩ (Z ∩U2) which is non empty because
it’s the intersection of nonempty open sets of Z , which is irreducible.

As f is an homeomorphism, then f (Z ∩VP) is irreducible and closed (as a subset of Spec(A)). As it
is closed, ∃a ideal of A such that f (Z ∩ VP) = V (a) = V (r(a)). Now let fg ∈ r(a)⇒ fg ∈ q ∀q ∈
V (a) ⇒ D(fg) ∩ V (a) = ∅. As D(fg) = D(f ) ∩ D(g) (Atiyah-MacDonald, exercise 1.17), then
(D(f ) ∩ V (a)) ∩ (D(g) ∩ V (a)) = ∅. By irreducibility of V (a), either D(f ) ∩ V (a) or D(g) ∩ V (a)
must be empty, so either f or g belong to q, ∀q ∈ V (a). In conclusion, r(a) is a prime ideal, that
we will name p, and f (Z ∩VP) = V (p) = {p}, and p is the only point of Spec(A) with this property.
Then, f −1(p) = QP ∈ VP ∩ Z , and as the closure of image is the image of the closure under an
homeomorphism, then {QP} = Z ∩ VP , where the closure here is the closure in VP . Then, the
closure of QP in Z is {QP} = Z ∩ VP .

Now note that Z \ (Z ∩ VP) and Z ∩ VP are open sets of Z , and their intersection is empty. As Z
is irreducible, one of them must be empty. Z ∩ VP is not empty, as P belongs to this subset, so we
must have Z \ (Z ∩VP) = ∅⇒ Z ∩VP = Z . So, in conclusion, {QP} = Z and we have proved the
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existence of a generic point of Z . Now let’s prove the uniqueness. Note that the point QP is unique
with this property in VP ∩Z (as p was unique, as we already observed), but we could have a different
point QP for each open set VP . However, as {QP} = Z , ∀P ′ ∈ Z and ∀U open neighbourhood of
P ′, Q ∈ U. In particular, taking U = VP′ we have that QP ∈ VP′ , and therefore QP = QP′ (via the
composition of homeomorphisms from VP and VP′ to the corresponding ring spectrums) and so the
generic point is unique, ∃ζ = QP ∀P such that Z = {ζ}.

ii) An integral scheme is irreducible ([3], Proposition II.3.1), and so it has a generic point ζ. The local
ring of the generic point Oζ is the set of equivalence classes of pairs (U, x), with x ∈ Γ(X , U), and

ζ ∈ U. It is clear that every open affine subscheme contains ζ, as {ζ} = X . Moreover, the closure
of ζ in an open subscheme is the whole open set, so ζ corresponds to the prime ideal (0) when the
scheme is affine. If U = Spec(A), the local ring is then the localization of A in (0), which is indeed
the field of fractions of K .

Proposition A.10. ([1], Exercise 9.5) Let M be a finitely generated module over a Dedekind domain A.
Then, M is flat ⇐⇒ M is torsionfree.

Proof. The inverse implication is always true, let’s prove the direct one. Let’s remind that being torsionfree
is a local property: M is torsionfree if and only if Mm is torsionfree for every maximal ideal m. Let {x1, ... xn}
be a minimal set of generators of Mm over Am, which is a DVR. Then, we can consider the map An

m → Mm,
(a1, ... , an) 7→

∑n
i=1 aixi , which is surjective. As Am is a DVR, every nonzero element can be written as

a = bmk , with b ∈ A∗ and m ∈ (m). We will prove that the mapping defined is also injective: Consider∑n
i=1 aixi = 0 and write ai = bim

ki . Assume without loss of generality that min{ki} = k1. We have

n∑
i=1

bim
ki xi = 0⇒ mk1

n∑
i=1

bim
ki−k1xi = 0⇒ x1 =

−1

b1

n∑
i=2

bim
ki−k1xi

This contradicts that the system of generators is minimal. In consequence, we must have ai = 0∀i ,
and the map is injective. In conclusion, Mm is a free module, so M is projective and therefore flat.

A.3 Alternative characterization of finite étale morphisms

Definition A.1. A morphism of schemes f : Y → X is flat if for every y ∈ Y the induced morphism on
stalks OX ,f (y) → OY ,y is flat.

Proposition A.11. Let f : A→ B be a ring homomorphism. Then the following are equivalent:

i) f is flat
ii) For every prime ideal q of B, and p = f −1(q), the induced map Ap → Bq is flat.
iii) The induced morphism Spec(B)→ Spec(A) is flat.
iv) For every maximal ideal q of B, and p = f −1(q), the induced map Ap → Bq is flat.

Proof. (i)⇒ (ii) Let S = A \ p. If f is flat, then so is the induced morphism Ap = S−1A → S−1B, by

[1], 2.20. Moreover by [1], Proposition 3.6, S−1B → Bq is flat. Therefore given an exact sequence of Ap

modules, tensoring with S−1B yields an exact sequence of S−1B modules. If we tensor then again by Bq

the sequence is still exact, so, in conclusion, Ap → Bq is flat.

(ii)⇒ (iii) Is true by definition of flat morphism of schemes.
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(iii)⇒ (iv) Is true by definition of flat morphism of schemes.

(iv)⇒ (i) By [1] 2.19, it is enough to show that for every injective A-linear map M → N, the

induced map M ⊗A B → N ⊗A B is injective. If M → N is injective, then for any maximal ideal q of
B the map M ⊗ Ap → N ⊗A Ap is injective, by flatness of A → Ap (we are using here again [1], 2.20).
Then, by hypothesis M ⊗A Bq → N ⊗A Bq is injective. As B → Bq is flat, then the kernel K of the map
M ⊗A B → N ⊗A B satisfies K ⊗ Bq = 0. As this holds for every maximal ideal, then K = 0 by [1],
Proposition 3.8.

We immediately have the following corollary, which is the application of the proposition to the case of
non affine schemes.

Corollary A.1. Let f : Y → X be a morphism of schemes. Then the following statements are equivalent.

i) f is flat
ii) For any pair of open affine subsets V = Spec(B) ⊂ Y , U = Spec(A) ⊂ X with f (V ) ⊂ U, the

induced ring homomorphism A→ B is flat.
iii) There is a covering of Y by open affine subsets Vi = Spec(Bi ) such that foreach i there is an

open affine subset Ui = Spec(Ai ) ⊂ X with f (Vi ) ⊂ Ui for which the induced ring homomorphism
Ai → Bi is flat.

iv) For every closed point y ∈ Y , the induced ring homomorphism OX ,f (y) → OY ,y is flat.

Definition A.2. A morphism of schemes f : Y → X is called finitely presented if it exists an open affine
covering of X , {Ui = Spec(Ai )} such that for each i the open subscheme f −1(Ui ) is affine, f −1(Ui ) =
Spec(Bi ) and Bi is an Ai -algebra that is finitely presented as an Ai -module.

Lemma A.6. Let P be a module over a ring A. Then P is finitely generated and projective if and only if
it is finitely presented and flat.

Proof. The direct implication was already proven in Theorem 3.1 and Observation 3.2. Let’s prove the
reverse implication. We begin proving that we can extend the result of Lemma 3.7 to the case that P is
finitely presented (instead of finitely generated projective): Let P be a finitely presented A-module, and M
a flat A-module. We claim that the map

φ : P∗ ⊗A M −→HomA(P, M)

f ⊗m 7−→φ(f ⊗m) : P −→ M

p 7−→ f (p)m

is an isomorphism. Note that we already know that the free case works (c.f. the proof of Lemma 3.7). In
the general case, choose an exact sequence Am → An → P → 0. Then, we have the commutative diagram

0 P∗ ⊗A M (An)∗ ⊗A M (Am)∗ ⊗A M

0 HomA(P, M) HomA(An, M) HomA(Am, M)

As the last two vertical arrows are isomorphisms, th first one must also be an isomorphism, and this
proves the claim. Now given P finitely presented and flat, and applying the claim to M = P, we can find
an element

∑t
i=1 fi ⊗ pi ∈ P∗⊗A P such that φ(

∑t
i=1 fi ⊗ pi ) = idP , that is,

∑t
i=1 fi (x)⊗ pi = x ∀x ∈ P.
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Therefore the A-linear maps f : P → At , f (x) = (fi (x))ti=1 and g : At → P, g((ai )
t
i=1) =

∑t
i=1 aipi

satisfy gf = id, and therefore g is surjective and the sequence

0→ ker g → At → P → 0

splits, which implies that P ⊕ ker g ∼= At , and so P is projective.

Corollary A.2. A morphism of schemes is finite and locally free if and only if it is finitely presented and
flat.

Definition A.3. A morphism of schemes f : Y → X is étale if and only if it is flat and unramified.

Theorem A.1. i) A morphism of schemes is finite étale if and only if it is finitely presented and étale.
ii) Let X be a locally noetherian scheme. Then a morphism of schemes f : Y → X is finite étale if and

only if it is finite and étale.

Proof. i) By Corollary A.2, a morphism of schemes is finitely presented and étale if and only if it is
finite and locally free and unramified. As finite étale morphisms are also finite and locally free, and
all the definitions are local, it is enough to prove that an A-algebra B that is finitely generated and
free is separable over A if and only if Spec(B)→ Spec(A) is unramified.

We will first reduce the problem to the case where A is a field. Using [1], Proposition 3.10, it can
be seen that given M, N be finitely generated and free A-modules, and f : M → N an A-linear map,
f is an isomophism if and only if for each p ∈ Spec(A) the induced map A ⊗A k(p) → N ⊗A k(p)
is an isomorphism. Therefore the morphism φ : B → HomA(B, A) of the definition of separability is
an isomorphism if and only if B ⊗A k(p)→ Homk(p)(B ⊗A k(p), k(p)) is an isomorphism, that is, B
is separable if and only if B ⊗ k(p) is separable over k(p). It is also clear that Spec(B) → Spec(A)
is unramified if and only if Spec((B ⊗A k(p)) → Spec(k(p)) is unramified for every prime p. This
reduces the problem to the field case.

In that case, we can write B =
∏n

i=1 Bi , where each Bi is a local ring with nilpotent maximal ideals
(c.f. [1], Theorem 8.7). Then Bi are the localizations of B in the primes q of Spec(B). Therefore
Spec(A) → Spec(B) is unramified if and only if Bi is a separable field extension of A for every i .
Then Lemma 2.1 concludes the proof.

ii) It’s enough to observe that if A is a noetherian ring, then An is a Noetherian module, and therefore,
every submodule will be finitely generated. In particular, for every finitely generated module M over
A, we can define the canonical surjective map f : An → M, for a certain n < ∞. Then, the exact
sequence

0→ ker f → An → M → 0

implies that ker f is a submodule of An and, therefore, finitely generated. This implies that every
finitely generated module is finitely presented, which concludes the proof.
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