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Abstract: This paper presents the benefits of using the random-walk normalized Laplacian matrix
as a graph-shift operator and defines the frequencies of a graph by the eigenvalues of this matrix.
A criterion to order these frequencies is proposed based on the Euclidean distance between a graph
signal and its shifted version with the transition matrix as shift operator. Further, the frequencies of
a periodic graph built through the repeated concatenation of a basic graph are studied. We show
that when a graph is replicated, the graph frequency domain is interpolated by an upsampling factor
equal to the number of replicas of the basic graph, similarly to the effect of zero-padding in digital
signal processing.
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1. Introduction

A signal can be seen as a function that assigns values to a set of indices, which represent
time instants in temporal signals, as, for instance, audio signals, and space coordinates in
spatial signals, as in images. A discrete signal is typically obtained after sampling an analog
signal generated by a physical phenomenon, like the vibration of the vocal cords or the light
reflected from a visual scene. These discrete signals are defined in a Euclidean domain and
can be processed using conventional Discrete Signal Processing (DSP) techniques. On the
other hand, graph signals [1,2] are signals whose domain is given by a graph that represents
pairwise relations between elements. Graph signals arise in applications of very diverse
fields that involve a network as in neuroscience, biology, genomics, telecommunications,
and economics. For instance, in sensor networks the graph represents the relative positions
between the sensors and the graph signal is the data measured by the sensors [3,4]. In
brain networks, each node in the graph represents a region of the brain and the edges the
functional relations between these regions; graph signals record the activity of the brain
regions [5,6]. In general, graphs are irregular non-Euclidean manifolds so that conventional
DSP methods render rather useless to analyze and extract information from graph signals.

Graph Signal Processing (GSP) [1,2] is a recently developed framework useful to study
graph signals that merges algebraic graph theory with both classical frequency analysis and
filtering design tools from DSP. GSP provides methods for the analysis of brain activity or
data gathered in social networks for the identification of contours in images [7,8], the com-
pression and distributed processing of graph signals gathered in a sensor network, among
others. Moreover, GSP is gaining momentum with the generalization of Convolutional
Neural Networks (CNNs) to process graph data using graph filters in the convolutional
layers [9–11].

With regards to the frequency analysis of a discrete signal, it is widely accepted that the
Discrete Fourier Transform (DFT) provides the frequency components of a signal ordered
from low-pass to high-pass components. However, the frequency analysis of graph signals
and, in particular, the definition and ordering of frequencies of graph signals from low-pass
(or smooth) to high-pass modes still causes certain controversy [12]. The Graph Fourier
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Transform (GFT) generalizes the concept of Fourier transform to graphs and is given by the
eigenvectors of the so-called graph-shift operator [13]. Indeed, a graph-shift operator is a
matrix that characterizes the evolution of signals across the graph similarly to time shifts
in temporal signals. The most commonly used graph-shift operators for graph spectral
analysis are the Laplacian matrix [2] and the adjacency matrix [14].

The spectrum of the Laplacian matrix has already been studied in algebraic graph
theory, see, e.g., in [15–17]. However, graph theory mainly focuses on the construction,
analysis, and manipulation of graphs rather than graph signals. In GSP, spectral graph
theory is instead used as a tool to define the frequency spectrum of graph signals and
the modes of the GFT [2]. The spectrum of the Laplacian matrix renders a measure of
smoothness of graph signals as typically the larger the magnitude of an eigenvalue of the
Laplacian matrix is, the higher its associated eigenvector varies across the graph. Therefore,
the eigenvalues of the Laplacian matrix are often considered the frequencies of the graph,
and from now on we will refer to the eigenvalues of a graph-shift operator as the frequencies
of the graph, without distinction. With regards to the use of the adjacency matrix for the
frequency analysis in graphs, its eigenvalues do not measure the smoothness of graph
signals. Therefore, the authors of [1] use the distance between a graph signal and its shifted
version using a normalized adjacency matrix to measure the smoothness of graph signals
and supports an ordering criterion of the eigenvalues of the adjacency matrix.

In this work, we propose an alternative graph spectral analysis method where the
graph frequencies are the eigenvalues of the random-walk Laplacian matrix. Even though
the random-walk Laplacian matrix is recently mentioned in [18] as a graph-shift operator,
here we present the benefits of using this matrix to define the GFT in terms of its eigenvalues,
eigenvectors, and smoothness on the graph and compare it to other Laplacian matrices.
Indeed, the criterion to order the frequencies is related to the total variation of the graph
transition matrix, which is intimately related to the random-walk Laplacian matrix. In
addition to that, we also show that the replication of a graph results in an upsampling in
the frequency domain of the graph when the random-walk Laplacian matrix is used for
the GFT. This property further supports the use of the random-walk Laplacian to define
the Fourier transform in graphs.

Notation (unless otherwise specified): boldface lowercase letters x denote vectors and
boldface uppercase letters X denote matrices. A lowercase letter with sub-index xi denotes
the ith component of a vector and a boldface uppercase letter with a double sub-index Xij
denotes the element in row i and column j of a matrix. Uppercase calligraphic letters X
are used to denote sets. RN and CN stand for the N-dimensional real and complex vector
space, respectively. Finally, diag(x) denotes a diagonal matrix with x in its diagonal.

2. Graph Spectral Analysis and Smoothness

Given a graph G = (V , E) with N = |V| vertices, where V = {1, . . . , N} denotes
the set of vertices and E ⊆ V × V the set of edges, a graph signal x = [x1, . . . , xN ]

T ∈ RN

defined on G is a mapping that assigns to each vertex in the graph a real number [1]. A
graph shift of signal x is an operation that replaces the current value of each vertex with
a linear combination of its current value and the values at the neighboring vertices [19]
as follows,

yi = ∑j∈Ni
sijxj (1)

where Ni ⊆ V denotes the set of neighbors of vertex i ∈ V and {sij} ∀j ∈ Ni are the
weights of the linear combination. A graph-shift operator is defined in [19] as the matrix
S ∈ RN×N whose entries are the weights sij ∈ R. The shifted graph signal y ∈ RN in (1)
can be computed in a compact form as follows,

y = Sx (2)

A graph-shift operator satisfies the following properties:

• Sij = sij ∈ R for i 6= j if the edge (i, j) ∈ E ;
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• Sij = 0 for i 6= j if the edge (i, j) /∈ E ; and
• Sii ∈ R ∀i ∈ V , i.e., the diagonal entries may take any value.

The most common shift operators found in the literature are the adjacency matrix
A ∈ {0, 1}N×N , defined for unweighted graphs as Aij = 1 if the edge (i, j) ∈ E , and Aij = 0
otherwise, and the Laplacian matrix is defined as

L = D−A (3)

where D = diag(d1, d2, ..., dN) is the degree matrix, a diagonal matrix where di = ∑j∈Ni
Aij.

Another commonly used variant of the Laplacian matrix is the normalized Laplacian
matrix, defined as

L(n) := D−
1
2 LD−

1
2 = I−D−

1
2 AD−

1
2 (4)

Let S = VΛV−1 be the eigendecomposition of S, where V = [v1, ..., vN ] ∈ RN×N

is the matrix whose columns are the eigenvectors of S and Λ = diag(λ1, ..., λN) is the
diagonal matrix of eigenvalues of S. The GFT of a graph signal x ∈ RN is defined as
x̃ = V−1x, and the inverse GFT by x = Vx̃ [18]. As x = ∑N

i=1 x̃ivi, each value x̃i weighs the
contribution of vi, and therefore of the frequency λi, to build the graph signal x. In DSP,
the measure of smoothness of eigenvectors is straightforward using the DFT, as they are
unit complex exponentials whose variation is fully defined by their frequency. However,
when it comes to GSP, smoothness is not uniquely defined and heavily depends on the
selected shift operator. The works by Shuman et al. [2] and Sandryhaila et al. [1] proposed
two different approaches for frequency analysis in GSP. As explained below, the former is
based on the Laplacian matrix and the second one on the adjacency matrix.

The measure of the variation of a function is a well-studied problem in the continuous
setting through the use of differential operators. Discrete calculus on graphs [20] defines
functions on the vertex set V of a graph, such as, e.g., graph signals, and translates the
traditional continuous differential operators to discrete differential operators on graphs.
The authors of [2,21] use this mathematical framework to obtain a formal measure of
smoothness of graph signals based on the Laplacian matrix, using the discrete differential
operators described in [22–24] as follows. Let H(V) and H(E) be the Hilbert spaces of
the real-valued functions defined on the vertices and the edges of a graph G = (V , E),
respectively. The difference operator ∂j : H(V) → H(E) of a graph signal x ∈ RN along
the edge (i, j) ∈ E is defined as

∂jxi := γ(j, i)xj − γ(i, j)xi (5)

where γ : E → R+ is a real function on the edges. Then, the graph gradient of x at vertex
i ∈ V is defined as

∇xi :=
[
∂jxi : j ∈ Ni

]
(6)

The local variation at vertex i, which is a measure of the local smoothness of x at vertex
i, is defined as the norm of the graph gradient

‖∇xi‖ =
√

∑j∈Ni

(
∂jxi

)2 (7)

The p-Dirichlet form provides a global measure of the smoothness of a function, and
for a graph signal x becomes

Sp(x) =
1
p

N

∑
i=1
‖∇xi‖p (8)

Different smoothness measures Sp(x) arise for different values of γ(i, j) and p. For
instance, when γ(i, j) =

√
Aij, S1(x) is the total variation of the signal and S2(x) = xTLx;

if γ(i, j) =
√

Aij/di, then S2(x) = xTL(n)x, which is denoted hereafter by S(n)
2 (x) for the

sake of clarity.
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A relaxed definition of the local variation is proposed in [1,14] that uses the normalized
adjacency matrix Ā = |λmax|−1A as a shift operator. This matrix guarantees that the energy
of the shifted signal is not scaled up as ‖Āx‖2/‖x‖2 ≤ 1. Then, the local variation at vertex
i ∈ V is defined as

||∇x(a)
i || :=

∣∣∣xi −∑j∈Ni
Āijxj

∣∣∣ (9)

A smoothness measure is then given by the following p-Dirichlet form,

S(a)
p (x) =

1
p

N

∑
i=1
||∇x(a)

i ||
p (10)

With p = 1, S(a)
1 (x) = ‖x− Āx‖1 defines the global smoothness of the graph signal

as the l1-distance between the graph signal and its shifted version. For p = 2, S(a)
2 (x) =

1
2‖x− Āx‖2

2 is a measure proportional to the Euclidean distance between signals. In [14],
it is also shown that graph frequency order based on the total variation (p = 1) and the
quadratic form (p = 2) is equivalent.

In the next section, we use the random-walk normalized Laplacian matrix to propose
a measure of smoothness of graph signals based on S(a)

2 (x).

3. Random-Walk Normalized Laplacian Matrix for Frequency Analysis in Graphs

A random walk defined in G [25] is a path given by a sequence of S vertices {v1, . . . , vS},
where {vt ∈ V ; ∀t = 0, . . . , S− 1}, obtained as a result of a stochastic process defined by a
random walker that at time t ≥ 0, is located at vertex vt = i and jumps to the next vertex
vt+1 = j with transition probability pij := P(vt+1 = j|vt = i) = Aij/di ∀j ∈ V . Note that
in graphs with self-loops, the random walker can stay in the same vertex.. If the random
walk is a Markovian stochastic process, i.e., only depends on the current state, then it is
completely described by the transition matrix P ∈ [0, 1]N×N , which can be computed as
P := D−1A and Pij = pij ∀i, j ∈ V . The random-walk normalized Laplacian matrix is a
normalized version of the Laplacian matrix defined as

L(rw) := D−1L = I− P (11)

where I is the identity matrix. For undirected graphs, i.e., no direction is assigned to the
edges so that (i, j) ∈ E → (j, i) ∈ E ∀i, j ∈ V , matrices L and L(n) are symmetric and,
therefore, they diagonalize with an orthonormal basis given by L = VΛVH and L(n) =
V(n)Λ(n)V(n)H , respectively. However, the random-walk Laplacian L(rw) diagonalizes as
L(rw) = V(rw)Λ(rw)V(rw)−1 as it is not normal. Interestingly, diagonalization of L(rw) is
guaranteed because it is similar to L(n) as L(rw) = D−1/2L(n)D+1/2.

3.1. Spectral Properties of the Random-Walk Laplacian

In undirected graphs, the eigenvalues of the Laplacian matrix are real and graph-
dependent as their upper bound depends on the value of the highest vertex degree or
max-degree, i.e.,

0 ≤ λ1 ≤ · · · ≤ λN ≤ 2dmax (12)

With regards to L(rw) and L(n), they share the same set of eigenvalues as they are
similar matrices. As opposed to {λi}N

i=1 in (12), the upper bound of the eigenvalues of
L(rw) and L(n) is graph independent, i.e.,

0 ≤ λ
(rw)
1 = λ

(n)
1 ≤ λ

(rw)
2 = λ

(n)
2 ≤ · · · ≤ λ

(rw)
N = λ

(n)
N ≤ 2, (13)

This makes both L(rw) and L(n) better suited than L to study and compare graphs
with different max-degree in the spectral domain. The eigenvectors of L and L(rw) with
associated eigenvalue equal to 0 are both equal to an all ones vector. That is, both Laplacian
matrices share the property that a constant or DC graph signal is built only with the zero
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frequency of the graph. However, this property is not satisfied by L(n) as L(n)1 6= 0. Indeed,
the interpretation that the eigenvalues of a Laplacian matrix is a measure of the smoothness
of their eigenvectors across the graph is different for the three Laplacian matrices. It is not
difficult to see that the mth eigenvalue of matrices L, L(n) and L(rw) of an undirected graph
can be written, respectively, as

λm = S2(vm) =
1
2 ∑(i,j)∈E Aij

(
vm,i − vm,j

)2 (14)

λ
(n)
m = S(n)

2 (v(n)
m ) =

1
2 ∑(i,j)∈E Aij

 v(n)m,i√
di
−

v(n)m,j√
dj

2

(15)

λ
(rw)
m =

1
2 ∑

(i,j)∈E
Aij

(
v(rw)

m,i − v(rw)
m,j

)v(rw)
m,i√

di
−

v(rw)
m,j√

dj

 (16)

where vm,i, v(n)m,i , and v(rw)
m,i denote the ith component of eigenvectors vm, v(n)

m , and v(rw)
m

for m = 1, . . . , N, respectively. The eigenvalues of L depend on the squared difference
between the entries of the associated eigenvector that correspond to connected vertices,
and therefore render a measure of smoothness. However, the eigenvalues of L(n) depend
on the eigenvector entries normalized by the square root of their associated vertex degree,
and they do not measure smoothness unless di = dj ∀i, j ∈ V . As for L(rw), when an
eigenvector varies smoothly across the graph, expression (16) tends to

lim
v(rw)

m,i →v(rw)
m,j

λ
(rw)
m = lim

v(rw)
m,i →v(rw)

m,j

1
2 ∑

(i,j)∈E
Aijv

(rw)
m,i

√
dj −
√

di√
didj

(
v(rw)

m,i − v(rw)
m,j

)

That is, similarly to L, the eigenvectors associated to small eigenvalues of L(rw) can be
seen as graph signals that vary smoothly across the graph.

In summary, the eigenvalues of the random-walk Laplacian matrix are a good option
to define the frequencies in a graph as they are bounded within a range that is independent
of the graph max-degree, and the zero frequency corresponds to a DC graph signal. For
an undirected graph, the eigenvalues of L(rw) are real and positive, and therefore they
can be ordered and measure the smoothness using (8). However, in directed graphs the
eigenvalues of L(rw) are complex and, therefore, they cannot be ordered. Therefore, in
the next section we propose to use the quadratic form S(a)

2 (x) in (10) replacing Ā by the
transition matrix P, as a measure of smoothness and as a frequency ordering criterion that
proves to be useful even in the complex case.

3.2. Quadratic Form with the Transition Matrix

According to the work in [14], the Euclidean distance between a graph signal x ∈ RN

and its shifted version is a proper measure of global variation in (10). Using the transition
matrix as shift operator, i.e., S = P, the quadratic form S(a)

2 (x) becomes

S(p)
2 (x) = ‖x− Px‖2

2 (17)

where factor 1
2 is omitted for simplicity. The smoothness of an eigenvector v(rw)

m is equal to

S(p)
2 (v(rw)

m ) = ||v(rw)
m − Pv(rw)

m ||22 = ||L(rw)v(rw)
m ||22 = |λ(rw)

m |2 (18)

as v(rw)
m is unit-norm. Let us consider two eigenvalues λ

(rw)
m and λ

(rw)
n with associated

eigenvectors v(rw)
m and v(rw)

n . If the eigenvalues satisfy |λ(rw)
m | > |λ(rw)

n |, then

S(p)
2 (v(rw)

m )− S(p)
2 (v(rw)

n ) =
(
|λ(rw)

m |2 − |λ(rw)
m |2

)
> 0 (19)
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To summarize, (19) provides a criterion to order the eigenvalues of the random-walk
Laplacian similar to that in [14] and allows us to interpret the eigenvalues of L(rw) as
frequencies of the graph. The next section includes an example for a directed cyclic graph.

3.3. Prominent Example: Directed Cycle Graph

A discrete periodic signal may be regarded as a graph signal that evolves on a di-
rected cycle graph. The adjacency matrix A of a directed cycle graph is non-symmetric
but normal, so that the eigendecomposition of the adjacency matrix is A = 1

N FΛ(a)FH ,
where the eigenvector matrix F = [f1, f2, . . . , fN ] ∈ CN×N is the Fourier matrix and
Λ(a) = diag

(
e−jω1 , e−jω2 , . . . , e−jωN

)
is a diagonal matrix with the eigenvalues, where

ωm = 2π(m−1)
N ∀m = 1, . . . , N. The mth eigenvector of the adjacency matrix is given

by fm = [1, ejωm1, . . . , ejωm(N−1)]T ∈ CN and equals the unit-norm complex exponential
used to compute the mth component of the DFT of a graph-signal at frequency ωm. The
eigenvalues of the adjacency matrix are given by λ

(a)
m = e−jωm , shown in Figure 1.

In the directed cycle graph each vertex has unit degree, i.e., D = I, and the random-
walk Laplacian becomes L(rw) = I − A = 1

N F
(

I−Λ(a)
)

FH , with eigenvalues equal to

λ
(rw)
m = 1− e−jωm ∀m = 1, . . . , N. Then,

S(rw)
2 (v(rw)

m ) =
∣∣∣λ(rw)

m

∣∣∣ = 2
∣∣∣sin

ωm

2

∣∣∣ (20)

If the adjacency matrix were used as graph-shift operator to define the GFT, the phase
of the eigenvalues of A would encode the frequency information of the graph as shown in
Figure 1. This would not be in accordance with the well-known property that the maximum
frequency of the DFT is located at ω = π and not at ω = 2π. Instead, the 2-Dirichlet form
in (20) measures the smoothness of an eigenvector of the random-walk Laplacian matrix
as the Euclidean distance between 1 and the corresponding eigenvalue of the adjacency
matrix λ

(a)
m = e−jωm . As seen in Figure 1, this distance is maximum for ω = π and it

is the same for eigenvectors with the same frequency, a fact that is consistent with the
interpretation of frequency in the DFT.

R

I

λ
(rw)
1 = 0

|λ (rw
)

2
|

|λ (rw)3 |
|λ(rw)

4 |

|λ
(rw

)

5
|

|λ
(r

w
)

6
| λ

(a)
1

λ
(a)
2λ

(a)
3

λ
(a)
4

λ
(a)
5 λ

(a)
6

Figure 1. Eigenvalues of A given by {λ(a)
m ; ∀m} and modulus of the eigenvalues of L(rw) given by

{λ(a)
m ; ∀m} in blue, of a directed cyclic graph with N = 6 vertices.

4. Frequency Analysis in Periodic Graphs

This section studies the relation between the eigenvalues of the random-walk Lapla-
cian matrix of a graph and a periodic or replicated version. As seen in Section 3.2, the
modulus of these eigenvalues is a measure of the variation of the eigenvectors across the
graph and, therefore, the eigenvalues are well suited to be seen as frequencies of the graph.
First, we define a periodic graph and study the spectrum of its random-walk Laplacian
matrix compared to the spectrum of the basic graph. Interestingly, we show that when one
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graph is replicated, there is an upsampling effect in the frequency domain of the graph and,
therefore, a frequency resolution increase.

4.1. Random-Walk Laplacian of Periodic Graphs

We refer to a periodic graph as a graph where a given pattern or basic graph is repeated
several times across the graph. As a toy example, the graph in Figure 2a shows the basic
graph given by G = (V , E) with N = 5 vertices, while the one in Figure 2b is a periodic
version of G with P = 3 replicas and NP = P · (N − 1) + 1 = 13 vertices denoted by
GP = (VP, EP).

1

2

3 4 5

(a)

1

2

3 4 5

6

7 8 9

10

11 12 13

(b)

Figure 2. (a) Basic graph G = (V , E) [26]. (b) Periodic graph with P = 3 replicas GP = (VP, EP).

The Laplacian matrix of GP is denoted by LP and is built by sliding the Laplacian
matrix of G, denoted by L, N − 1 positions across its diagonal as many times as replicas of
the basic graph includes GP. Figure 3 shows the resulting Laplacian matrix of a periodic
graph using P = 2 replicas. Clearly, the entry LNN overlaps with L11, meaning that the Nth
vertex of GP increases its degree with respect to the Nth vertex of G by summing up the
neighbors of vertex 1. If P replicas were present in the periodic graph, the vertices indexed
by U = {N, 2N − 1, 3N − 2, . . . , PN − P + 1} would increase its degree by |N1|. Without
loss of generality, we assume that the vertex of the basic graph selected to concatenate the
pattern is indexed by node N.

L2 =
L

L

Figure 3. Laplacian matrix of a periodic graph GP with P = 2.

Interestingly, the random-walk Laplacian of the periodic graph given by L(rw)
P =

D−1
P LP cannot be built by sliding the random-walk Laplacian of the basic graph L(rw) across

the diagonal as the Laplacian matrix does. This is because the rows of LP corresponding
to the overlapping nodes U would be divided by the new degree. Besides, note that the
periodic graph is not equivalent to the Kronecker product graph of the basic graph with
another graph [27].

4.2. Random-Walk Laplacian Eigenvalues of Periodic Graphs

We are now interested in studying the eigenvalues of the L(rw)
P in comparison with

the eigenvalues L(rw). The next theorem establishes that the eigenvalues of L(rw) are also
eigenvalues of L(rw)

P .

Theorem 1. Given a basic graph G = (V , E) with N vertices and random-walk Laplacian matrix
L(rw), consider a periodic graph GP = (VP, EP) with NP vertices and random-walk Laplacian
matrix L(rw)

P built by concatenating P replicas of the basic graph at the set of vertices U = {N, 2N−
1, 3N− 2, ..., PN− P + 1}. It holds that the eigenvalues of L(rw) denoted by {λ(rw)

1 , . . . , λN(rw)}
are also eigenvalues of L(rw)

P .
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Proof. We consider first P = 2. Without loss of generality let us denote by λ(rw) any of the
eigenvalues of L(rw). This eigenvalue satisfies that det(L(rw) − λ(rw)I) = 0, which means
that the rows of (L(rw) − λ(rw)I) denoted by {hT

1 , . . . , hT
N} are linearly dependent. Let us

now inspect (L(rw)
P − λ(rw)I) for P = 2.

L(rw)
2 − λ(rw)I =



hT
1 | 0T

. . . | . . .
hT

N−1 | 0T

dN
dN+d1

hT
N(1 : N − 1) (1− λ(rw)) d1

dN+d1
hT

1 (2 : N)

0T | hT
2

. . . | . . .
0T | hT

N


(21)

where 0 is a zero vector of length N− 1, dn is the degree of the nth vertex of the basic graph
G, and hn(l : m) is a vector built selecting from entry l to entry m of vector hn.
As {hT

1 , . . . , hT
N} are linearly dependent, there exists a set of scalars {αn}N

n=1, where at least
one of them different from 0, such that ∑N

n=1 αnhT
n = 0. Two cases can be distinguished:

(i) Both α1, αN 6= 0. In this case, there surely exists a linear combination of {hT
1 , . . . , hT

N−1}
equal to− dN

dN+d1
hT

N and another linear combination of {hT
2 , . . . , hT

N} equal to− d1
dN+d1

hT
1 .

Therefore, there exists a linear combination of the N − 1 first and ending rows of
(L(rw)

2 − λ(rw)I) in (21) equal to[
− dN

dN + d1
hT

N(1 : N − 1)
∣∣∣ β
∣∣∣ − d1

dN + d1
hT

1 (2 : N)

]
(22)

where the term in the middle is equal to

β = −dN · hN(N) + d1 · h1(1)
dN + d1

(23)

As per construction of L(rw)
2 we have that h1(1) = hN(N) = 1− λ(rw), and then β in

(23) is also −(1− λ(rw)). Therefore, (22) is equal to the Nth row in (21), which means
that the rows of (L(rw)

2 − λ(rw)I) are linearly dependent, det(L(rw)
2 − λ(rw)I) = 0, and

λ(rw) is an eigenvalue of L(rw)
2 as well.

(ii) At least one of {α1, αN} is equal to 0. In this case, there exists a linear combination
of {hT

1 , . . . , hT
N−1} (and/or {hT

2 , . . . , hT
N}) that is equal to 0T . This means that the

first (and/or last) N − 1 rows of the matrix in (21) are linearly dependent and, there-
fore, det(L(rw)

2 − λ(rw)I) = 0 and λ(rw) is an eigenvalue of L(rw)
2 as well. Note that

det(L(rw)
2 − λ(rw)I) = 0 when both α1 = αN = 0.

Following the same procedure, it is not difficult to see that λ(rw) is also an eigenvalue
of L(rw)

P ∀P > 2.

Remark 1. Theorem 1 also holds for the normalized Laplacian matrix as it has the same set of
eigenvalues as the random-walk Laplacian matrix. Further, following a similar procedure, it can be
proved that the eigenvalues of L are also eigenvalues of LP.

5. Numerical Results

This section includes numerical experiments that illustrate the advantage of using the
random-walk Laplacian matrix as a graph shift operator for graph spectral analysis and
universal graph filtering. Further, some results are included to support Theorem 1.
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First of all, we present a simple visual example to show the spectral properties of L(rw)

provided in Section 3.2. Figure 4 depicts the eigenvectors { v(rw)
1 , v(rw)

2 , v(rw)
6 , v(rw)

11 , v(rw)
51 ,

v(rw)
101 , v(rw)

501 , v(rw)
801 } of L(rw) for the GSPlogo graph [28] ordered according to the absolute

value of the associated eigenvalue and represented as graph signals. The GSPlogo graph is
an undirected connected graph with N = 1130 nodes and |E | = 3131 edges. Clearly, the
smaller the absolute value of an eigenvalue is, the smoother the associated eigenvector
varies across the graph. Furthermore, the eigenvector associated to λ

(rw)
1 = 0 is an all ones

vector.

Figure 4. Eigenvectors of L(rw) for the GSPlogo graph corresponding to eigenvalues λ
(rw)
1 , λ

(rw)
2 ,

λ
(rw)
6 , λ

(rw)
11 , λ

(rw)
51 , λ

(rw)
101 , λ

(rw)
501 , and λ

(rw)
801 .

5.1. Random-Walk Laplacian for Graph Signal Denoising

Here, we use the random-walk Laplacian matrix as a graph-shift operator for the
design of universal graph filters [29]. A universal graph filter is defined for a continuous
range of λ’s rather than for the set of eigenvalues of a particular graph and, therefore, it
can be used for graphs with different number of nodes or degrees. As the eigenvalues are
λ(rw) ∈ [0, 2], the random-walk Laplacian L(rw) is a suitable graph shift operator to design
these filters.

An FIR graph filter of order K with graph-shift operator L(rw) is given by H = ∑K
k=0 φk ·

(L(rw))k, and its frequency response by h(λ(rw)
m ) = ∑K

k=0 φk · (λ
(rw)
m )k. The objective here is

to design the coefficients {φk; k = 0, . . . , K} such that the frequency response of the FIR
graph filter approximates an ideal low-pass filter given by

h̃(λ) =
{

1 0 ≤ λ ≤ λc
0 λ > λc

(24)

where λc is the cut-off frequency. Then, the same set of coefficients can be used to filter a
noisy signal defined on two different graphs.

Following the procedure in [29], the coefficients are found solving the least-squares problem:

{φ̂0, . . . , φ̂K} = arg min
∀φ1,...,φK∈R

L−1

∑
l=0

(
h̃( fl)−

K

∑
k=0

φk · f k
l

)2

(25)

where { fl =
l·2
L for {l = 0, . . . , L− 1}. That is, the coefficients {φ̂0, . . . , φ̂K} minimize the

mean square error between L samples of the ideal low-pass frequency response h̃(λ) taken
uniformly in the range of frequencies [0, 2], and the frequency response of the FIR graph
filter at those frequency samples. As the error depends linearly on the coefficients, the
solution to (25) is

φ̂ = Ξ† · h̃ (26)
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where φ̂ = [φ̂0 · · · φ̂K]
T , h̃ = [h̃( f0) · · · h̃( fL−1)]

T and Ξ is the Vandermonde matrix

Ξ =


1 f0 f 2

0 · · · f K
0

1 f1 f1 · · · f K
1

...
...

...
. . .

...
1 fL−1 f 2

L−1 · · · f K
L−1

 (27)

In this experiment, we consider the GSPlogo graph with N = 1130 (top graph in
Figure 5) and a random geometric graph with N = 800 (bottom graph in Figure 5). The
number of frequency samples is L = 100 and λc = 5 L so that h̃= [1 1 1 0 · · · 0]T . An
FIR graph filter H = ∑K

k=0 φ̂k · (L(rw))k of order K = 8 is computed for each graph using the
same set of coefficients given by (26). This filter is used to denoise a graph signal defined
on each graph and equal to x = v(rw)

2 + n, where v(rw)
2 is the second eigenvector of the

corresponding L(rw) and n is a white Gaussian noise n ∼ N (0, 1
N I). Results are shown in

Figure 5. Signals on the left hand side are the eigenvectors v(rw)
2 , on the center are the noisy

signals x, and on the right the filtered signals given by y = Hx. Clearly, the designed graph
system filters out the noise as the filtered graph signal resembles the original one v(rw)

2 on
the left.

Figure 5. Graphs—Top: GSPlogo, N = 1130 nodes. Bottom: Random graph, N = 800 nodes. Signals:
Left: Graph signals without noise. Center: Noisy graph signal Right: Graph signal filtered with the
graph filter H = ∑K

k=0 φ̂k · (L(rw))k.

5.2. Frequency Aliasing of Replicated Graphs

In this section, we support the results of Theorem 1 through simulations, and compare
the eigenvalues of the three Laplacian matrices when a basic graph is replicated. Given the
basic graph in Figure 2a, the eigenvalues of L(rw) and L(n) are equal to {0, 0.85, 1.25, 1.33, 1.56},
and of L are {0, 2, 4, 5, 5}. The eigenvalues of L(rw)

2 and L(n)
2 are {0, 0.18, 0.85, 1.09, 1.25, 1.33,

1.33, 1.4, 1.56}, and of L2 are {0, 0.6, 2, 4, 4, 4.18, 5, 5, 7.22}. Finally, the eigenvalues of L(rw)
3

and L(n)
3 are {0, 0.1, 0.25, 0.85, 1.04, 1.12, 1.25, 1.33, 1.33, 1.33, 1.36, 1.46, 1.56}, and of L3

are {0, 0.33, 0.84, 2, 4, 4, 4, 4.07, 4.46, 5, 5, 6.54, 7.74}. For clarity, the eigenvalues of LP for
P = {1, 2, 3} are plotted in Figures 6 and 7 for L(rw)

P and L(n)
P . Clearly, Theorem 1 holds for

the three Laplacian matrices.
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0 1 2 3 4 5 6 7 λ

P = 1

0 1 2 3 4 5 6 7 λ

P = 2

0 1 2 3 4 5 6 7 λ

P = 3

Figure 6. Eigenvalues of LP for the graph in Figure 2b for P = {1, 2, 3}.

0 1 2 λ(rw), λ(n)

P = 1

0 1 2 λ(rw), λ(n)

P = 2

0 1 2 λ(rw), λ(n)

P = 3

Figure 7. Eigenvalues of L(rw)
P and L(n)

P for the graph in Figure 2b for P = {1, 2, 3}.

Interestingly, in Figure 7 we also observe that a periodic graph with P replicas inserts
P− 1 additional eigenvalues between two consecutive eigenvalues of L(rw). This is a kind
of nonuniform upsampling in the frequency domain of the graph, and translates into an
increase in the frequency resolution of the graph. Remarkably, as it can be seen in Figure 6,
this is not the case for the eigenvalues of L, as some of the new eigenvalues of LP are
outside the range of eigenvalues of L. On the other hand, as λ(n) = λ(rw), the normalized
Laplacian matrix L(n) also presents the same upsampling in the frequency domain when
a graph is replicated. However, as discussed in Section 3.1 and evidenced by (16), the
eigenvalues of the normalized Laplacian matrix do not properly measure smoothness of
their associated eigenvectors as those of the random-walk Laplacian do.

6. Conclusions

A criterion for frequency ordering in both directed and undirected graphs using the
modulus of the eigenvalues of the random-walk normalized Laplacian matrix is proposed.
Indeed, the random-walk Laplacian matrix proves to be a graph-shift operator suitable
for both graph spectral analysis and graph filter design in undirected graphs due to the
graph-independent bounds of its eigenvalues. We also provide some insights into the
relation between the eigenvalues of the random-walk Laplacian of a periodic graph and
those of the basic graph used to build the periodic one. First, we prove that the eigenvalues
of the basic graph are also eigenvalues of the periodic graph. Numerical results further
show that the additional eigenvalues of the periodic graph appear to upsample those of the
basic graph, in a similar way as zero-padding in DSP albeit not evenly spaced. The spectral
properties of periodic graphs open several interesting research venues such as interpolation
filter design for graph signal filtering, or graph pooling methods for graph CNNs.
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