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Abstract

In order to push the performance of current and future particle colliders, it is necessary to drive

the beams at the locations of the experiments to decreasingly smaller sizes. This progress towards

smaller beam sizes in the interaction points requires accelerators that must accommodate larger

beam sizes in the surroundings and therefore strong magnetic errors in these regions must be

suppressed. This thesis presents a study on the consequences of these magnetic errors and several

mitigation techniques to correct their influence.

As a specific example, in this thesis the quadrupole triplet of the future HL-LHC is studied.

Simulations of its expected magnetic errors are carried out and their correctability is assessed.

For this a new automatic local correction algorithm is also presented which allows to perform

Monte-Carlo simulations of the errors and their corrections.

In recent years it has become clear that the main limiting factor to control the beam size in

the interaction points is the quality of the measurement of the β-function at this point. In this

thesis some of the limitations of the current measurement method, K-modulation, are studied,

some developments made to improve the accuracy of this method are discussed and two new

complementary techniques that are expected to surpass its accuracy are presented.

These new techniques are the computation of the minimum β near the IP using the betatron phase

measured with new instrumentation and a procedure to locate the beam waist via luminosity scans.

These two techniques are presented both with their theoretical framework and their experimental

validation on the LHC. These are the first results of a possible complement to the K-modulation

method in future colliders.

The optics scheme that has been used in the LHC and is going to be used in HL-LHC pushes the

β-functions to higher values also far away from the interaction regions. It has been observed in

the LHC that this scheme enhances the magnetic errors of the arc magnets too, where there are

no correctors to control local errors available. In the thesis, in order to counteract these errors, it

is proposed to implement optics correction using orbit bumps over sextupoles, thus correcting the

optics errors via feed-down for the first time in the LHC.

These results suggest that drastic changes in the commissioning strategy will be necessary in the

HL-LHC, as they will require intermediate luminosity measurements.

To accommodate the larger beam sizes expected in HL-LHC, the new Nb3Sn superconductor tech-

nology is going to be used in the HL–LHC triplet, which allows to increase the magnets aperture

while keeping the same magnetic field strength on the central axis. However, the superconductors

built using this technology show an unstable behaviour during magnetic-field ramps, this effect is

called flux jumps.

In this thesis the effect of flux jumps on the beam emittance is studied for the first time. The

studied case is of two 11 T dipoles that are going to be installed in the LHC, in the HL–LHC

triplet and in the main bending dipoles of the FCC-hh.



Finally, many of the software improvements developed during the studies presented in this thesis

are also described. These include a thorough process of refactoring of outdated software tools,

introducing modern data analysis frameworks. A graphical user interface to handle the automatic

local correction algorithm which makes easier the computation of these sometimes complex cor-

rections is briefly presented. A new harmonic analysis framework designed to replace older tools,

whose development had been frozen, is also described. This new framework has allowed to further

develop the harmonic analysis algorithms for optics measurements, improving their precision and

performance.
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Chapter 1

Introduction

Accelerator Physics is the branch of physics that studies machines designed to store and typically

accelerate charged particles using electromagnetic fields under controlled conditions to be used com-

monly for medical or industrial applications or for fundamental research. Furthermore, this science

tries to describe the behaviour of the particles inside these machines, called Particle Accelerators.

The discovery of the atomic nucleus using natural radioactive sources and the interest in studying

it deeply, motivated the invention of the first man-made particle accelerator, designed in collab-

oration by J. D. Cockcroft and E. Walton with which they achieved the first artificial nuclear

disintegration [1].

Since then, the progress of high energy physics, which has historically been the main drive of the

progress of accelerator physics, has required particle beams of increasing energy.

This requirement of higher energies motivated the design of different accelerator geometries, be-

ing the successor of the Cockcroft-Walton electrostatic accelerator the Cyclotron, invented by

E. O. Lawrence. In cyclotrons the beam is kept in a curved trajectory using a magnetic field

and is accelerated many times by an oscillating electric field making the beam to move in spiral

outwards as it energy increases.

Cyclotron energy is limited to few percent of the speed of light though, when relativistic effects

start to be significant. The synchrotron, invented by V. Veksler in 1944, is a more complicated

particle accelerator that keeps the particle beam turning with a constant radius. To achieve this, the

bending strength of dipoles is kept synchronized with the increasing energy of the beam. Nowadays,

the world’s most energetic particle beams have been achieved using synchrotrons being nowadays

the largest the Large Hadron Collider (LHC).

The LHC and its high luminosity upgrade, High Luminosity LHC (HL-LHC), are the central focus

of this thesis. In this chapter an introduction to transversal beam dynamics and beam optics

follows, describing then the main characteristics of the LHC and the HL-LHC and providing an

introduction on how the beam optics are measured and corrected on this machine.

Chapter 2 studies if current approaches used to measure and correct strong localised magnetic

errors will be precise enough on the HL-LHC. Some issues of current approaches to characterise

the beam optics at the interaction points will be described and a full alternative will be provided,

theoretically and experimentally in the LHC. Local magnetic errors sources in the arcs that have

been observed in the LHC and will arise in the HL-LHC due to its optics configuration are also
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studied and it is demonstrated how to correct this error sources, also with experimental results in

the LHC. Most of the studies presented in Chapter 2 have been published in [2].

Chapter 3 presents a study on flux jumps, a type of magnetic errors that happen in superconducting

magnets. Flux jumps are expected to be stronger in the HL-LHC final focus triplet as it uses the

new Nb3Sn superconducting technology. The effect on the beam emittance, orbit and tune caused

by these flux jumps in the HL-LHC triplet (and the reaction of its current-regulation loop) is

studied, with measurements of the effect being performed on prototypes of the magnets. The effect

of the flux jumps is also studied on the 11 T dipoles that are planned to be installed in the LHC

after Long Shutdown 2. Additionally, flux jumps on the hadron-hadron Future Circular Collider

are explored, as this machine is being designed to use this new technology in many more magnets

than the HL-LHC. This study has been published in [3].

Chapter 4, presents a summary of many improvements which have been proposed in the framework

of this thesis and introduced to the Optics Measurements and Corrections (OMC) software tools.

A brief description of these tools is presented, showing the effort that was made on refactoring and

adding new features. A new Python Graphical User Interface (GUI) used to easily perform local

corrections is described. Also, Harpy, a new implementation in Python of the Laskar algorithm is

presented, to serve as a replacement for legacy tools.

Chapter 5 wraps up this thesis summarising its main results and exposing some of the possible

follow-ups for the future to the work presented here.

1.1 Beam optics

This section introduces the basics of transverse beam dynamics and more specifically beam optics

necessary to define the concepts, equations and figures of merit discussed in the rest of the thesis.

Therefore, it will not be an exhaustive manual of beam dynamics. In the present section the

transverse equations of motion of beam particles in circular accelerators are introduced. For a

more extensive view on general accelerator physics the following books are recommended: [4, 5, 6].

To force the particles inside the accelerator to describe a closed trajectory, they are put through

magnetic fields that deflect their trajectories. The force applied to the beam is the Lorentz force

FL given by the equation:

~FL = q
(
~E + ~v × ~B

)
, (1.1)

where q is the particle charge, ~E the magnetic field, ~v the particle velocity and ~B the magnetic

field induction. The particles speed |~v|, which in most accelerators is close to the speed of light

makes the force excerpted by the magnetic field significantly stronger than the one produced by

the electric field for reasonable values of | ~B| and | ~E| , respectively. Therefore, magnetic fields are

typically used to guide particles in high energy accelerators.

To steer the beam, dipole magnets with a magnetic field B perpendicular to the beam trajectory

are used (Fig. 1.2). For a more convenient description of the trajectory of particles around the

accelerator the local moving coordinate system shown in Fig. 1.1 is typically introduced, where s

denotes the position of the particle along the ideal orbit (with an arbitrary initial point s = 0) and

x and y are the horizontal and vertical deviations of the particle position with respect to this ideal
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Figure 1.1: Illustration depicting the coordinate system used to describe the particle trajectory. The
coordinate system moves with the particle with s describing the path length of the particle along the ideal
orbit from some arbitrary initial point s = 0 and x and y measuring respectively the horizontal and vertical
distance from this ideal orbit.

�
�

Figure 1.2: Illustration of a dipole magnet producing a magnetic field perpendicular to the beam trajectory.
The Lorentz force applied to the beam makes it follow a curved trajectory.

orbit.

The magnetic bending force plays the role of the centripetal force of the beam as it passes through

a magnet while moving along the machine ring. Therefore, defining the magnetic field strength and

bending radius as functions B(s) and ρ(s) of the position s in the accelerator and denoting v = |~v|,
we can derive:

mγ
v2

ρ(s)
= qvB(s) , (1.2)

where m is the mass of the particle, γ =

(√
1− v2

c2

)−1

denotes the relativistic Lorentz factor.

Rearranging the terms and introducing the particle momentum p = γmv the normalised bending

strength
1

ρ(s)
=
eB(s)

p
, (1.3)

is obtained.

Restoring forces are needed to keep the particles oscillating around the ideal trajectory and to

stop them from drifting away. Therefore, a Lorentz force, and thus a magnetic field that increases

linearly with the transverse deviation from the ideal orbit is needed:

Bx = −gy

By = −gx, (1.4)

with Bx, By being the magnetic field components and g being the magnetic gradient. Quadrupole

magnets are used to generate such magnetic fields, acting as magnetic lenses, focusing or defocusing

beam trajectories with respect to the ideal orbit. Deflected by these magnetic forces, particles in the

accelerator oscillate around the ideal trajectory. These oscillations are called betatron oscillations.

Because of the similarity of these restoring forces to optical lenses, the branch of Accelerator Physics

that studies the motion of particles under focusing forces is named Beam Optics.
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Figure 1.3: Illustration of a quadrupole magnet effect acting on positively charged particles moving into
the plane of the drawing away from the reader. Thin lines with arrows are magnetic field lines, thick arrows
are magnetic force vectors. On the left, a horizontally focusing magnet is shown, describing how it focuses
horizontally deviated particles towards the ideal trajectory and defocuses vertically deviated ones away from
it. On the right, a quadrupole magnet with opposite polarity causes a vertically focusing and horizontally
defocusing force.

Quadrupole fields though, cannot act as focusing lenses in both the horizontal and vertical planes

at the same time, as shown in Fig. 1.3. A horizontally focusing quadrupole defocuses the beam in

the vertical plane and the other way around.

Similar to the bending strength, the quadrupole strength k is given by the gradient g normalised

to the beam momentum, k = gq/p.

The focusing force linear in the particle deviation from the ideal orbit can be interpreted as a restor-

ing force of a harmonic oscillator. The quadrupole force can be viewed as the force excerpted by a

spring compressing and elongating to push the particle towards the rest position, namely the ideal

orbit at the central axis of a quadrupole. Therefore, the equation of motion of particles subjected

to the quadrupole magnetic field is the general differential equation of a harmonic oscillator:

z′′ +Kz = 0, (1.5)

where the prime denotes the derivative with respect to the path length s, z is either x or y and K

is the “spring constant” of the oscillator. This equation can be specified for the x- and y-planes as:

x′′ +

(
1

ρ2
− k
)
x = 0 (1.6)

y′′ + ky = 0 (1.7)

The term 1/ρ2 that appears in the horizontal plane accounts for the so called “weak focusing” of

the dipoles, which applies a restoring force in the horizontal plane even in absence of quadrupoles,

but it is weak for large accelerators rings.

The general solution of the differential equation Eq. (1.5) is the linear combination of two indepen-

dent solutions C(s) and S(s):

x(s) = C(s)x0 + S(s)
x′0√
K

x′(s) = C ′(s)x0 + S′(s)
x′0√
K
, (1.8)

where x0 and x′0/
√
K are the coefficients of this linear combination that can be found by imposing
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Figure 1.4: Schematic of the FODO cells used to achieve both planes focusing. These are placed in series
all over the accelerator circumference.

the initial conditions at s = 0. Considering the motion inside a horizontally focusing quadrupole

(positive K) the following specific solution is obtained:

x(s) = x0 cos
(√
|K|s

)
+

x′0√
|K|

sin
(√
|K|s

)
(1.9)

x′(s) = −x0

√
|K| sin

(√
|K|s

)
+ x0 cos

(√
|K|s

)
. (1.10)

The change of the trajectory from the entrance of the quadrupole at s = s0 to its exit at s = s1

can be expressed in matrix notation as:(
x

x′

)
s1

= Mfoc

(
x

x′

)
s0

, (1.11)

with, for a quadrupole of length l given by

Mfoc =

 cos(
√
|K|l) 1√

|K|
sin(

√
|K|l)

−
√
|K| sin(

√
|K|l) cos(

√
|K|l)

 (1.12)

The transport matrices for a horizontally defocusing quadrupole (negative K) and for a drift space

(K=0) are:

Mdef =

 cosh(
√
|K|s) 1√

|K|
sinh(

√
|K|s)√

|K| sinh(
√
|K|s) cosh(

√
|K|s)

 , Mdrift =

(
1 l

0 1

)
. (1.13)

In a vertically focusing quadrupole the focusing and defocusing planes swap w.r.t a horizontally

focusing quadrupole, and so do their matrices: Mhor
foc = Mver

def and Mver
foc = Mhor

def . With these

definitions, the overall effect of several focusing and defocusing quadrupole magnets and drift

spaces between them on particles trajectories can be computed by multiplying the corresponding

matrices.

To achieve an effective focusing in both planes, sets of cells of focusing-defocusing quadrupole pairs,

called FODO cells, are used. The typical structure are like the one shown in Fig 1.4. Such cells are

put is series all around the accelerator.

While traversing these FODO cells, the beam crosses the spaced focusing and defocusing quadrupoles

turn by turn. Therefore, it sees a non-continuous “spring constant” K, which must be a periodic

function of the position s in the accelerator with period L, the accelerator ring length (perimeter),

so that K(s) = K(s+ L).
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Using these properties, the equation of motion in the horizontal plane can be written as:

x′′(s)−K(s)x(s) = 0. (1.14)

This is the equation of a harmonic oscillator with periodic restoring properties, in mathematics it

is called “Hill’s Equation”. Its general solution can be written as:

x(s) =
√
ε
√
β(s) cos(ψ(s) + φ) (1.15)

x′(s) = −
√
ε√

β(s)
[α(s) cos(ψ(s) + φ) + sin(ψ(s) + φ)] (1.16)

where β(s) is the so called β-function, a periodic function (β(s) = β(s + L)) which is determined

by the magnetic lattice of the accelerator, the function α(s) is defined as α(s) = −1
2 β
′(s), ε is called

the single particle emittance and is a constant determined by the initial conditions, and φ is the

initial phase. The function ψ(s) is given by

ψ(s) =

∫ s

s0

ds

β(s)
, (1.17)

that can be checked by introducing Eq. (1.15) into Eq. (1.14). This is the “phase-advance” function

between the points s0 and s of the particles trajectory in the accelerator. The phase-advance for a

full revolution around the accelerator is called the tune of the machine and describes the number

of oscillations of the particles with respect to the ideal orbit per revolution:

Q =
1

2π

∮
ds

β(s)
, (1.18)

Combining Eq. (1.15) and Eq. (1.16) and defining γ(s) = 1+α(s)2

β(s) the following relation can be

obtained:

ε = γ(s)x2(s) + 2α(s)x(s)x′(s) + β(s)x′2(s). (1.19)

This equation defines an ellipse in the (x, x′) phase space for each point s in the accelerator, as

shown in Fig. 1.5. The particle positions in the phase space at a specific point of the accelerator

ring moves around this ellipse according to the tune of the machine.

The parameter ε called emittance, defines the area of this ellipse, πε. From the optics point of

view, in absence of additional influences like coupling between planes (Sec. 1.3.1) or acceleration,

the emittance is a constant of motion around the accelerator. More details are given in Sec. 1.1.1.

The β-function defines the maximum deviation of the particle trajectory from the ideal one:

x̂ =
√
εβ(s) (1.20)

at any point in the accelerator, the so called beam envelope. This quantity determines the beam

size at each point of the accelerator.

Using Eq. (1.8) and Eq. (1.19) an expression for the matrix transformation of α(s), β(s) and γ(s),

10
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Figure 1.5: Illustration of the phase-space ellipse at an arbitrary point of the accelerator ring. Particle
position in the phase space revolve moves the ellipse turn-by-turn according to the tune. The points of
maximum beam size and maximum beam divergence are marked with their corresponding Twiss parameters.

called Twiss parameters, between any two points in the machine can be obtained:βα
γ


s

=

 C2 −2SC S2

−CC ′ SC ′ + CS′ −SS′

C ′2 −2S′C ′ S′2


βα
γ


0

(1.21)

Here C and S are the independent solutions of the Hill’s Equation introduced above. This matrix

is called the transfer matrix of the Twiss parameters and is determined by the focusing properties

of the magnetic lattice.

1.1.1 Beam emittance

The emittance describes the area of the phase spaces ellipse in the (x, x′) or (y, y′) coordinates

space and it is typically expressed in m · rad units. It defines, together with the β-function, the

beam size and beam slope. As far as the beam system is only affected by conservative forces, i.e.

it has no way to interchange energy with its environment, the emittance is a constant of motion of

the particles around the accelerator. However, there are certain effects that can effectively increase

the emittance, for example mismatches between the optics in injection lines and the accelerator

ring optics [7] or fast transitional changes in the optics of the machine [8].

Assuming the beam system is indeed conservative (a good approximation in a proton storage ring)

the emittance cannot be reduced by optics means. Therefore, it is critical to reduce the effect of

these emittance growth mechanisms in order to keep the beam sizes small. In Chapter 3 the impact

of flux jumps, a type of field errors present in the new superconductor magnets used in the HL-LHC

triplet, on the emittance will be studied.

Under acceleration though, it can be proven [9] that the emittance behaves as:

ε ∝ 1

βγ
, (1.22)

if the relativistic factors β and γ change. This means that the emittance and therefore the beam

size, shrinks during acceleration. As a consequence, at low energies the optics configurations must
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have smaller maximum β-function value β̂ for the beam to fit in the beam pipe aperture, whereas

β̂ can be increased after the beam has achieved higher energies. The normalised emittance is then

defined as:

εN = εβγ, (1.23)

which is constant during acceleration. To distinguish these two quantities, the emittance defined

in Eq. (1.19) is typically called geometric emittance, εgeom.

1.2 Collider performance

In the previous section the basics of transversal beam dynamics were introduced. The type of

accelerator described there is what is called a storage ring, i.e. a set of FODO cells whose only

task is to keep the beam circulating for an indefinite time. The focus of this thesis is, however, on

particle colliders which include special sections dedicated to make particle beams interact under

controlled conditions.

The performance of particle colliders is typically measured by the two quantities, the total center

of mass energy of particle collision and the number of particle interaction per unit of time they can

achieve which is called luminosity.

Accelerators can produce particle collisions in two ways, either shooting the beam towards a static

target or having two counter-rotating particle beams and making them to cross at particular lo-

cations. For two particles of mass m and the energy of the incident particle equal to E in a fixed

target experiment the collision center of mass energy is Ecoll =
√

2Emc2 (assuming that E � mc2)

[10]. In a two beam collider of energy E per beam the achieved center of mass collision energy

is Ecoll = 2E. However, two beam particle colliders are typically much more complex to build as

most of the accelerator lattice has to be duplicated in order to store and accelerate the two beams.

As the objective of building particle accelerators for high energy experiments is to produce collisions

of particles in order to study certain physical phenomena under controlled conditions, the rate at

which these physical processes happen is a crucial performance parameter of this type of machines.

The physical process event rate can be written as [10]:

dR

dt
= σpL, (1.24)

where dR
dt is the number of events per unit of time, σp is the process cross-section to be explored

and L is the accelerator luminosity.

For a collider with Gaussian shape profile of particle bunches the luminosity is given by:

L =
NbfN1N2

4πσxσy
S (1.25)

where N1, N2 are the number of particles in the first and second beam (the beams intensities),

f is the beams revolution frequency, Nb is the number of bunches in the machine, σx, σy are

the horizontal and vertical standard deviations of the bunch sizes at the Interaction Point (IP)

considering identical bunch shapes in both beams and S is the luminosity reduction factor, which
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depends on the way the beams cross.

Among the parameters of this equation, the beam sizes σx,y have actually been defined in the

previous section: these are the beam envelope sizes as defined in Eq. (1.20), σx,y =
√
εx,yβ∗x,y. The

β-function at the IPs, β∗, is an extremely important parameter of the machine optics and actually,

different optics configurations are usually labelled according to the β∗ they intend to achieve.

The β∗ defines the performance of the accelerator from the optics point of view: the smaller the β∗

is the more luminosity can be achieved. The downside of achieving small beam sizes is that they

cause a large beam divergence. This can be understood by using the expression for the β-function

in a drift space:

β(s) = β∗ +
s2

β∗
, (1.26)

here the parameter s indicates the distance to the IP. As usually these interactions take place in

the centre of very large particle detectors, there is no space near the IP to place quadrupoles to

keep the β-function low. As it will be shown in the next section, because of this optics perturbation

in those regions have a great impact on the global optics quality and therefore also on the safety

of the machine.

To achieve a very small value of β∗ at the IPs, the periodic lattice of the accelerator is interrupted

and insertion regions are introduced. These insertions consist of a quadrupole triplet (or doublet)

final focus system to squeeze the beam at the IP and a matching section that consists of several

quadrupoles to match the periodic optics functions in the arcs to the required optics parameters

at the entrance of the final focus quadrupoles section.

In Section 1.4 the lattice of the Large Hadron Collider and its experimental insertions are discussed

in more detail.

1.3 Optics perturbations

In the previous sections the optics properties of an ideal circular accelerator have been discussed.

However, the magnets the beam is put through are subjected to manufacture and installation

tolerances and therefore the magnetic field they produce deviates from the design one.

As it will be shown in this section, measuring and correcting these imperfections is of crucial

importance for the accelerators to operate according to their design performance and also safely.

Following the same way as in the previous sections, the first question to be asked is what happens if

a bending dipole has an error in its magnetic field. Dipole errors drive the beam into a new closed

orbit, CO(s), different from the design one, which corresponds to CO(s) = 0. It can be shown that

at each point s in the machine CO(s) can be expressed as:

CO(s) =

√
β(s)

2 sin(πQ)

∑
i

√
βiθi cos(πQ− |ψ(s)− ψi|) , (1.27)

where the ith dipolar error is at a point at which the β-function is to βi, giving an angular kick θi

and with the phase advance between the ith dipole error and the point s given by |ψ(s) − ψi|. It

should be noted that the absolute magnitude of this orbit perturbation is scaled with 1/ sin(πQ),

which diverges when the tune of the machine approaches an integer number. A quadrupole placed
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Figure 1.6: Tune diagram of the LHC [11], showing the resonance lines nQx + mQy = N up to the fifth
order. The black dot shows the operating point of the LHC.

with a transverse missalignment w.r.t. its design position in the machine acts as a correctly aligned

quadrupole plus a dipole error at its position.

The most influential magnetic error, from an optics point of view, is an error in the magnetic field

of quadrupole magnets. A single source of quadrupole error affects the tune of the machine as:

∆Q ≈ ±βk∆kL
4π

(1.28)

where ∆kL is the integrated quadrupole strength of the error and βk is the β-function at the

position of the quadrupole error, with the sign being positive for the horizontal plane and negative

for the vertical one. The quadrupole error also causes a deviation of the design β-function all

around the machine as:

∆β

β
(s) ≈ ∆kLβk cos(2πQ− 2|ψ(s)− ψk|)

2 sin(2πQ)
, (1.29)

where ∆β
β (s) is the relative deviation of the β-function w.r.t. its design value at the position s

along the accelerator. This characteristics is called the β-beating and it is typically used as a the

observable that determines the optics quality of the machine.

Similar to the formula in Eq (1.27), there is a global factor 1
sin(2πQ) which describes an instablity for

tunes close to half-integers driving the β-functions to infinity in the presence of quadrupole errors.

Similar instabilities also appear for higher order multipole magnetic errors. They happen when

the tune is at the resonance frequencies satisfying nQx + mQy = N , and this situation should be

avoided when choosing the tune of the machine. Fig 1.6 shows the resonances frequencies up to

the 5th order with the operating point of the LHC marked in black.
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Figure 1.7: A quadrupole tilted along its longitudinal axis is equivalent to a combination of a straight up
ideal quadrupole and a skew quadrupole.

1.3.1 Betatron coupling

Using the definitions for the transfer matrices Eq. (1.12) and Eq. (1.13) the transfer matrix for

both planes across a horizontally focusing quadrupole can be written as
x

x′

y

y′


1

=

(
Mfoc 0

0 Mdef

)
x

x′

y

y′


0

(1.30)

From this it can be concluded that the motion of the particle across the quadrupole is totally

independent in the x and y directions. This makes sense, as we defined the forces exerted by the

quadrupoles in each direction to be proportional to the displacement in that direction only (see

Eq. (1.4)):

Fx = −evgx, Fy = evgy. (1.31)

This is only true in the ideal case though. If a quadrupole is installed with a slight tilt along its

longitudinal axis (Fig 1.7), the particle crossing the quadrupole will feel a force in the x-direction

that is proportional to its y-displacement (and the other way around). Then the motion in both

planes becomes coupled.

This betatron coupling between the planes makes the horizontal and vertical tunes impossible to

approach below a threshold typically named ∆Qmin [12], which measures how strong this x − y
coupling is. Coupling can drive the tunes into dangerous values close to resonances.

1.3.2 Beam momentum deviation

In the analysis done previously, it was assumed that all the particles in the beam have the same

momentum. This is not true in a real machine as the beam has a non-zero longitudinal size

and therefore the particles in the radio-frequency system are accelerated slightly differently. The

deviation of a particle momentum relative to its design value is denoted as ∆p
p .

This momentum deviation changes the ideal closed orbit of the particle xβ(s) to x(s) = xβ(s)+xD(s)

where:

xD(s) = D(s)
∆p

p
. (1.32)

Here D(s) is the dispersion function which is another function determined by the focusing properties

of the accelerator. The dispersion function can alter the orbit at the IPs significantly and therefore
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the optics of the machine has to be configured in such a way as to suppress it. Usually this is

achieved by adding a set of quadrupoles, called dispersion suppression section, to the matching

section with the aim to cancel the dispersion at the Interaction Region (IR).

The relative momentum deviation ∆p
p also alters the strength of the focusing forces produced by

the quadrupoles. Particles with larger momentum receive a smaller push than those with lower

momentum. This is analogous to the optics where light beams of different wave lengths (momentum

of photons) are focused differently by a lens , this effect is called chromaticity. The ∆p
p also causes

a change of the tune ∆Q in accordance with Eq. (1.28). The chromaticity of the machine is then

defined as [13]:

Q′ =
∆Q

∆p/p
→ Q′ = − 1

4π

∮
k(s)β(s)ds (1.33)

As each of the particles in the beam have a slightly different ∆p
p , the tune of a machine has a certain

spread so that the operating point at the resonance diagram of Fig. (1.6) has a non-zero size. If

the spread is too large, a large fraction of the particles in the beam will hit resonances and get lost.

The chromaticity is controlled by using sextupole magnets, which exhibit a controllable momentum

dependent focusing when placed in dispersive locations. A sextupole magnet placed with a trans-

verse missalignment, or traversed by the beam off-centre, acts as a sextupole plus a quadrupole

whose strength is related to the strength of the sextupole and the magnitude of the missalign-

ment. This feature will be used in Sec. 2.7 to correct quadrupole errors in at locations where no

quadrupole correctors are available.

1.4 LHC accelerator complex and the HL-LHC

In the previous sections the basics of the transverse beam dynamics of circular accelerators have

been introduced in a general accelerator-independent form, in the rest of the Introduction will be

devoted to the Large Hadron Collider (LHC) and its High Luminosity Upgrade (HL–LHC) as the

present thesis is focused on this machine.

The LHC, situated at the French-Swiss border near Geneva in Switzerland is the world largest

particle accelerator, with a total circumference of about 27 km. It is part of the CERN’s Accelerator

Complex (Fig. 1.8), a chain of particle accelerators that progressively accelerate protons (and heavy

ions) up to a 14 TeV centre-of-mass energy.

Specifically, a series of proton bunches is injected into the LHC from the Super-Proton-Synchrotron,

at an energy of 450 GeV into two counter-rotating beam pipes. The beams are then accelerated

by the LHC to up to 7 TeV per beam energy and cross at 4 IPs, colliding the proton bunches at

centre of mass energy of up to 14 TeV.

The LHC contains two beam pipes to store, accelerate and collide the beams: Beam 1 (rotating

clockwise) and Beam 2 (rotating counter-clockwise). The machine is divided in 8 sectors, each of

them is composed of an arc (bending) section and a special purpose straight section (Fig. 1.9). In

four of these straight sections the two beam pipes merge and the beams cross at interaction points

surrounded by general purpose detectors of the ATLAS [14] and CMS [15] experiments at points

1 and 5, of ALICE [16], an experiment dedicated to the study of heavy ion collisions at point 2,

and LHCb [17], an experiment intended to perform precise measurements of the CP violation and
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Figure 1.8: The CERN’s Accelerator Complex. For the typical operation of the LHC a proton beam is
produced by LINAC 2 and follows the chain: LINAC 2 → BOOSTER → PS → SPS → LHC.

17



Figure 1.9: Schematic of the layout of the LHC showing its different sectors and experiments. Each of the
8 sectors are named after they limiting points, e.g. the sector between point 1 and point 2 is named sector
12.

B hadrons decays at point 8.

Each of the LHC arcs are 2.45 km long, having a total of 153 bending dipoles and 23 106.9 m long

FODO cells. The quadrupoles in the FODO cells are powered by two power supplies only, one for

the focusing quadrupoles and one for the defocusing ones and therefore can only be trimmed in

groups.

The straight sections have a more heterogeneous architecture as their purpose differ heavily. In

general they are composed of a matching section (containing the dispersion suppressor mentioned

in Sec. 1.3.2) to accommodate the beam optics to the specific purpose of the section plus the

specific equipment. The straight sections containing the IPs are composed of 16 matching section

quadrupoles and a final focus triplet system composed of 8 quadrupoles. In general, the quadrupoles

in the matching sections are individually powered and therefore can be trimmed individually.

Figure 1.10 shows the β-function in sector 5 at injection optics and optics squeezed to 30 cm β∗.

The injection optics on the top plot have a very low β-function to accommodate for the larger beam

sizes at injection. After the beams are accelerated, the beam size at the IP is reduced by strongly

focusing the beam. This increases the β-function in the triplet region to several kilometres (and

therefore the beam size) making the aperture of the triplet the main limiting factor to reach smaller

β∗. Moreover, this very large β-function enhances greatly the magnetic errors in the triplet area, as

it was explained in Section 1.3, making the optics corrections in this region of critical importance.

The optics corrections in this regions will be addressed in Sec. 1.7.

After Run 3 of the LHC, there is little reason to keep running the LHC at its current luminosity

output as it would take 10 years to halve the statistical error of a given measurement of the main

experiments. This motivated the High-Luminosity LHC (HL-LHC) project [18], which aims to

increase the integrated luminosity of the LHC by a factor of 10 and which is planned to be in

operation by 2027.

Equation (1.25) defines the luminosity output of a particle collider and HL-LHC aims to improve
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Figure 1.10: β-function of the LHC around IP5 at injection optics (Top) and an optics configuration to
squeeze the β∗ to 30 cm. Notice the different scale in the vertical axis. The matching section marked in the
plot includes the dispersion suppressor.

Parameter LHC HL-LHC

Nb [1011] 1.15 2.2
N1 and N2 2808 2748
Minimum β∗ [m] 0.55 0.15
εn [µm] 3.75 2.5

Table 1.1: Comparison of the LHC and the HL-LHC parameters that affect the luminosity [18].

a number of the parameters in this formula. A comparison of some of the parameters of the HL-

LHC with those of the LHC is given in Table 1.1. It should be noted though that many of these

parameters have been already improved in the current LHC configuration.

The injection chain of the LHC has also undergone several improvements in the frame of the LHC

Injector Upgrade (LIU) that will allow a large increase in the beams intensity in the HL-LHC,

keeping the emittance at low values. The increase on the beams intensity will also require an

extensive upgrade of the collimation system. More information on these upgrades can be found

in [19].

1.4.1 The new quadrupole triplet of the HL-LHC

To achieve the reduction of the minimum β∗ down to the value given in Table 1.1, the current

LHC final focus quadrupole triplet is not suitable anymore as its aperture would be too small to

accommodate the beam size at points where the maximum β-function in the ring has values of

about 40 km in certain configurations of the optics.

Therefore, one of the main upgrades of the HL-LHC is its new quadrupole triplet. The new system

is going to be installed at the IRs 1 and 5 and is composed of 6 quadrupoles per side of the IP

19



(instead of 4 per side in the LHC). These quadruples will also have a larger aperture of 150 mm

(instead of 70 mm in the LHC) and will be longer. As the new quadrupoles have a larger aperture

they have to produce a stronger magnetic field in order to maintain the same gradient as the

quadrupoles of the old LHC triplet.

The NbTi technology used in the LHC superconducting magnets cannot reach the necessary field

strengths and therefore will be replaced by the Nb3Sn technology which can produce magnetic

fields up to 50% stronger than the NbTi one. However, superconductors of these type exhibit the

so called flux jumps that disturb the magnetic field produced by the magnet. A study of the effect

of the flux jumps on the beam is one of the main results of this thesis and its results are presented

in Chapter 3.

1.4.2 The ATS optics scheme

When pushing β∗ to smaller values and therefore β̂ to higher ones, a new challenge arises which is

compensation of the chromatic effects produced by the triplet quadrupoles (Eq. (1.33)).

As the beam size gets smaller when the beam reaches its full energy, an aperture margin that allows

to increase the β-function appears in the arcs. The Achromatic Telescopic Squeeze (ATS) optics

scheme [20] modifies the matching sections around the main IPs to send a β-beating wave down

the arcs. This wave makes the β-function peak at the sextupoles in the those arcs, enhancing their

strength.

This optics scheme has been extensively tested at the LHC [21] and has become the operational

optics scheme in Run II. In HL-LHC this will also be the operational optics scheme, but as the

minimum β∗ is planned to be smaller, the ATS enhanced arcs will get even larger β-functions.

This has the collateral effect of enhancing local errors in the arcs also which will be studied in

Section 2.7, as well as a successful technique to correct them.

1.5 The FCC-hh

The hadron-hadron Future Circular Collider (FCC) [22] is a project to build a circular hadron

collider of about 100 km long circumference (Fig. 1.11) with a centre of mass energy of 100 TeV

that has recently passed its conceptual design phase.

This accelerator will be a part of the CERN accelerator complex and the current LHC will become

its injector. Being heavily based in the LHC, it will also have 4 interactions points and its optics

configuration will be very similar to that of the LHC. This project requires the new superconductor

technology mentioned in Section 1.4.1 in all of its main dipoles and quadrupoles. Therefore, the

effect of flux jump in the FCC-hh can be critical and will be studied in Chapter 3.

1.6 Global optics measurements and corrections in the LHC

It was shown in section 1.3 how magnetic errors can alter the design optics in the way that can be

dangerous for the machine performance and safety. Measuring and correcting these optics errors is

therefore of critical importance.

From the point of view of optics corrections, the LHC has two significantly different areas:
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Figure 1.11: Schematic view of the future location of the FCC.

• The regions around the IPs with very large β-functions (at least in squeezed optics) which

makes the optics errors to have very strong influence, but also where the quadrupoles are

mostly individually powered, thus allowing for many degrees of freedom to find corrections

for specific quadrupoles. This corrections are typically called local corrections and are imple-

mented first, because most of the β-beating in the machine usually arises in these regions.

• The arcs and matching sections far from the IPs, where the β-function is typically much lower

and the quadrupoles are mostly powered in large series. The corrections performed in these

regions, called global corrections, aim to reduce the overall β-beating of the machine without

addressing specific magnetic errors.

The way the optics corrections are performed in the LHC is explained in Sec. 1.7 for the local

corrections and Sec. 1.6.2 for the global corrections.

1.6.1 Optics measurements in the LHC

To measure the optics parameters of the machine the main diagnostic device is the Beam Position

Monitor (BPM). These monitors record the position of the beam as it passes through them turn-by-

turn and therefore they can measure the betatron oscillations of the beam from which the optics

parameters can be extracted. There are over 500 BPMs in the LHC per plane and per beam

distributed around the machine.

However, LHC proper betatron oscillations of the beam are too small to be measured in the LHC.

The beam therefore has to be excited using kicker dipoles in order to increase the amplitude of

the oscillations. Historically such excitations have been performed in two ways, either using a fast

single kick or an Alternating Current Dipole (AC-dipole).

The single kick excitation is the simplest, as it provides a fast dipolar kick rapidly displacing the

beam into larger amplitudes. However, the beam naturally decoheres very rapidly (depending on

the machine non-linear errors) and therefore its effective emittance and thus beam size grow, that

requires to inject a new beam into the machine for each excitation, which makes this method slow
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and impractical for its use at high energies.

The AC-dipole excites the beam by slowly ramping up an oscillating current dipole at a frequency

close to the natural tune of the betatron oscillations. It stays at a fixed amplitude for many thousand

turns, and then ramps down slowly. If the ramping up and down processes are done slowly enough,

the beam emittance does not grow significantly [8]. This allows for many measurements to be

performed sequentially and therefore this is the way the optics measurements are performed in the

LHC.

The turn-by-turn BPM records then undergo a noise cleaning process, namely a Singular Value

Decomposition (SVD) is applied to the matrix formed by all the data samples of all BPMs and only

the largest few SVD modes are kept. This removes the uncorrelated signals of the BPMs which are

associated mainly to the noise.

A specific harmonic analysis [23, 24] is then applied to the cleaned BPM signals from which different

oscillations modes can be extracted.

The spectral line of the harmonic analysis that corresponds to the machine tune frequency contains

the information of the betatron oscillations in its Fourier coefficient. For the ith BPM the complex

Fourier coefficient at the tune frequency is given by

Xi = Aie
iφi , (1.34)

where Ai is the amplitude of this line and φi the phase of the line.

The β-function can be obtained at any BPM from this coefficient by using two main methods: β

from phase and β from amplitude technique.

The β-function from the amplitude of the betatron oscillations is the most intuitive and simple

among the β-function measurement techniques. Eq. (1.20) gives a relation between the amplitude

of the betatron oscillations and the β-function. Denoting βi the β-function at the ith BPM and

J = ε/2, called action, related to the strength of the AC-dipole kick, the following formula can be

obtained:

Ai =
√

2Jβi → βi =
A2
i

2J
(1.35)

which gives a direct relation between the tune line amplitude and the β-function. If the AC-dipole

is used to excite the beam, this is actually the “forced” β-function result of the excitation and it

must be compensated to obtain the natural β-function [25]. The main problem with this method is

that in the LHC the calibration of the BPMs is generally unknown, which amounts to an unknown

calibration factor Ci in this relation,

βi =
A2
i

2JC2
i

(1.36)

In the absence of further knowledge of these factors for each BPM, this method shows a bias that

makes it unpractical for corrections in the LHC. In the last few years though there has been a big

effort to measure these factors in certain critical BPMs. A much more detailed description of this

method and the measurement of the calibration factors can be found in [25, 26].

The β from phase technique uses, instead, the phase advance of the betatron oscillations to compute
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the β-functions. The relation between the β-function and the phase advance between a set of any

3 BPMs (contiguous or not) is given by [27]:

βi =
εijk cotφi,j + εikj cotφi,k

εijk
M11(i,j)
M12(i,j) + εikj

M11(i,k)
M12(i,k)

(1.37)

where βi is the β-function at the ith BPM, εijk is the Levi-Civita tensor, φnm = φm − φn is the

phase advance between the nth and the mth BPMs and M11(i, j) and M12(i, j) the (1, 1) and

(1, 2) elements of the ideal phase space coordinates transfer matrix between the ith and the jth

BPMs. This equation gives a relation between the turn-by-turn data, from which the tune line

phase advance can be extracted, and the β-function. Once again, if the AC-dipole is used, this

forced β function has to be processed in order to obtain the natural β-function [28].

Equation (1.37) though, is not sensitive to BPM calibration as the β from amplitude technique

does. The cotangent function in the numerator is one of the drawbacks of the method: it diverges

when the phase advance between one of the pairs of BPMs approaches nπ.

Historically this method has been applied to contiguous triplets of BPMs (3-BPMs method), how-

ever, in the last few years, it has been proven that using several combinations of BPMs improves

the precision and the knowledge of the uncertainties of the method significantly. Deeper description

of this technique and its advancements can be found in [27, 29, 30].

This method requires a precise measurement of the phase advance between BPMs. From Eq. (1.17)

it can be seen that the magnitude of the phase advance is roughly inversely proportional to the

magnitude of the β-function. In the LHC interaction regions the β-function can reach values of

tens of kilometres which makes the precision of the measurement of the phase advance in the region

to be very poor. In Sec. 1.7 the techniques used to overcome this limitation will be described.

As the limitations of the phase advance method explained above affect only certain specific regions

of the accelerator, it is the technique used to measure the β-function and assess the global optics

quality in the LHC.

1.6.2 Global optics corrections in the LHC

Global optics corrections in the LHC are performed by correcting globally the betatron phase and

dispersion using a response matrix [31].

The measured phase-advances of the betatron oscillations is used instead of the actual β from phase

as it is independent of the BPM calibration and also independent of the ideal model of the machine.

Before the corrections are computed, it is of critical importance to clean any possible measurement

artefact coming from faulty BPM measurements. The SVD denoising method described before also

acts as a faulty BPM cleaning technique because it removes over-dominant spatial vectors from the

SVD decomposition. This is not sufficient though, and the BPMs spectral results are also analysed

and manually or automatically cleaned. Machine learning techniques have been used in the last

few years to perform this automatic faulty BPM detection with great success [32, 33].
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Then the task at hand is to compute and invert a matrix Rresp in the relation
∆~φx

∆~φy

∆ ~NDx

∆Qx

∆Qy

 = Rresp ×


∆k1

∆k2

.

.

.

 (1.38)

where ∆~φx,y are the horizontal and vertical phase advance deviations at every BPM, ∆ ~NDx is the

normalised horizontal dispersion (ND(s) = D(s)/β(s)) at every BPM, ∆Qx,y are the horizontal

and vertical tunes that are included so that they are kept constant by the correction and ∆ki are

the variation of the strength of the knobs (combinations of quadrupoles) that are going to be used

for correction.

The Rresp matrix is computed using a model of the LHC simulated with MAD-X [34] by changing

the strength of each knob individually and recording the optics response. Then this matrix is

inverted and applied to the measured optics to obtain a set of corrections:
∆k1

∆k2

.

.

.

 = R−1
resp ×


∆ ~φx

∆ ~φy

∆ ~NDx

∆Qx

∆Qy


meas

(1.39)

This provides a set of knobs that can be applied to the measurement data directly.

1.6.3 Coupling corrections in the LHC

As it was described in Section 1.3.1 the betatron coupling between the two transverse planes can

be dangerous for the machine stability and therefore must be corrected.

The coupling produces a minimum distance between horizontal and vertical tunes ∆Qmin. The

most direct method of measuring this betatron coupling is to use a quadrupole adjustment to change

the horizontal and vertical tunes towards the same value and observing this minimum distance.

This gives a direct indication of the global coupling in the machine but does not give any indication

of the location of individual sources of coupling. ∆Qmin is related to the strength of the coupling

sources in the machine by the formula:

∆Qmin =

∣∣∣∣ 1

2π

∫ L

0
ds
√
βxβykse

i(φx−φy−2π∆s/L)

∣∣∣∣ , (1.40)

where ks is the strength of the skew quadrupole force and ∆ is the difference between the horizontal

and vertical tunes. Betatron coupling exhibits a similar behaviour to the normal optics errors, as the

strength of a coupling source depends on the β-functions at the position of the source. Therefore,

coupling is also corrected locally close the IPs, and globally in the LHC arcs.

To find local sources of coupling the turn-by-turn data analysis of the previous section can also

be used. As the betatron coupling manifests itself as a leakage of the quadrupolar forces of one
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plane into the other, in the turn-by-turn data harmonic analysis of one of the planes this effect

will appear as a Fourier coefficient at the tune frequency of the other plane. The relation between

the magnitude of this secondary line and the main tune line can be used to compute the so called

f1001 Resonance Driving Term (RDT) [35], a complex number whose magnitude stays constant in

absence of coupling sources but exhibits abrupt jumps when these sources appear [36]. The f1001

RDT is related to the ∆Qmin by the formula [37]:

∆Qmin =

∣∣∣∣ 4∆

2πr

∮
dsf1001e

−i(φx−φy)+is∆/r

∣∣∣∣ , (1.41)

where r is the radius of the machine. In practice the integral is evaluated at the position of the

BPMs only.

The betatron coupling is corrected by using purposely placed skew quadrupoles, that is, quadrupoles

that are tilted by 45 degrees w.r.t. a normal focusing quadrupole and therefore are coupling sources

used to counteract the effect of the unwanted ones.

The same approach as in the previous section can be used to correct the global coupling by using

a response matrix over the real and imaginary parts of the f1001 RDT to compute the necessary

strength of the skew quadrupoles in the arcs. This is, once again, an effective correction whose goal

is to reduce the global coupling of the machine without addressing local sources individually.

1.7 Local optics Corrections in the LHC

The correction of the optics error sources in the triplet regions is of critical importance, as the

β-functions in these regions can reach several km, enhancing said errors and making the machine

unsafe to operate.

As different optics configurations change extensively the β-functions, increasing it in some locations

and reducing it in others, different configurations enhance a different set of local errors and therefore

the corrections have to be computed, or at least checked, for every target β∗. Specifically, the optics

corrections are typically very different at injection optics as compared to the squeezed optics,

but once computed for given configurations the corrections usually stay stable over years, though

they can change as a result of change of the beam energy, after long shutdowns or change of

configurations, or even for other yet unclear reasons as happened in the 2015 commissioning [38].

Therefore the optics corrections are checked yearly, after every shutdown.

The general procedure to find and correct local errors is as follows: Two beams are injected in the

LHC consisting of one low intensity bunch per beam. These low intensity bunches called “probes”

are used to perform corrections and experiments that would be dangerous for the machine with full

physics beams. The probes are then ramped up to the required energy and the optics is set to the

target β∗. The machine optics is then measured using the procedure described in Sec. 1.6.1.

The technique used to isolate and measure local errors in certain parts of the machine is called

Segment-by-segment [31, 39]. This technique isolates regions (segments) of the accelerator that are

likely to contain strong local error sources.

A model containing the design optics of this segment, generated using MAD-X [34], is extracted

from the full accelerator model and treated like an individual beam line. The measured optics at
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the starting BPM are used as initial conditions of the segment model, so that all errors coming

from outside of the segment to be neglected. These segments are usually the areas around the IPs

but, to obtain a precise local model, it must be ensured that the optics measurement in the initial

BPM of the segment have a good precision. Therefore it is common to take the starting point in

the dispersion suppressors where the β-function is smaller.

To the optics parameters measured on each BPM inside the segment an uncertainty is assigned.

It depends on both the optics measurement uncertainty at that BPM itself and a propagation of

the error from the initial point BPM of the segment, as the precision of the local model depends

on this measurement. Results of a recent progress on the evaluation of these uncertainties can be

found in [40].

The optics parameters measured across the segment can then be compared with the local model

of the segment to obtain the deviations of the different optics parameters caused by errors in the

region.

An effective model of the measured local optics can be found by matching the measured deviations

w.r.t. the reference local model using a second model. The values of the variables of this second

model are varied until it reproduces the measurement as closely as possible. As this model is

configured to mimic the local optics deviations pattern in the segment, i.e. its an effective model

of the segment, it can be used to compute corrections by just flipping the sign of the variables used

to match these measured optics deviations.

As the direction in which the segments are traversed is arbitrary (in fact Beam 1 and 2 traverse them

in opposite directions), the final BPM of the segment can be used as the initial one and the other

way around. This provides a new set of local deviations in the segment called “back propagation”,

that are different from the “forward propagation”, as the optics errors in the segment are in general

not symmetric under the inversion of direction. This new set of deviations can be used to provide

more constraints when generating the effective model.

1.7.1 Local phase correction

As it was described in Sec. 1.6.1, the phase advance can be used to measure the optics of the

machine and this approach is BPM calibration and model independent. Historically this has been

the observable used to find and correct local errors with great success. The first successful use of

this technique took place in 2010 where a 1% error in the main warm quadrupoles in IR3 and IR7

was found [41]. Moreover, in 2012 a cable swap that caused a 100% β-beating was found using this

technique [42].

Figure 1.12 shows an example of the Segment-by-segment technique applied to a segment of about

1 km around IP2 (from a measurement in an ion run) at β∗ = 50 cm optics. The blue line shows

the measured phase deviations w.r.t. the local model starting at s = 0. The plot demonstrates

how in the region of the actual sources of errors, namely the triplet regions marked in grey, the

phase measurement lies below the error bar of the measurement. The effect of the local error in

the triplet is only visible downstream, where the β-functions are much smaller and therefore the

relative uncertainty of the phase is much better.

The orange line on Fig. 1.12 shows an effective model of the errors in the segment. The change of
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Figure 1.12: Example of a local phase match to compute local errors. The blue line shows the measured
local phase deviation from the model of the segment. The orange line is a simulated set of trims that matches
the measured deviations.

the strengths of the quadrupoles found to generate this effective model can be used as corrections

by flipping their sign, which would cancel out the phase deviations.

As the quadrupoles of the triplet are shared by the two beams, the matching of the effective model

has to be performed simultaneously for the phase deviation of both planes on both beams, i.e. for

four data sets like the one plotted in Fig. 1.12.

1.7.2 β∗ measurements and corrections

During the optics commissioning of 2015, a loss in luminosity of about 5% was found even after

seemingly successful local phase corrections in the main IRs. Later it was found that this was due

to a shift of the beam waist, i.e. the point with the minimum β-function close to the IP was not

centred in the IP itself [38]. This not only spoils the performance of the accelerator by reducing

the delivered luminosity, it also produces a luminosity imbalance between ATLAS and CMS which

causes that one of the experiments records more events than the other.

Figure 1.13 shows an example of such waist displacement. In an optics drift, the β-function describes

a parabola given by Eq. (1.26), the blue line shows the behaviour of an ideal β-function across the

IP drift, where the minimum of the β-function is at the IP, the position of the beam waist. The

green line however, has a waist that is away from the IP, which causes the β∗ to be larger at the

IP itself, producing a larger beam size at the IP and therefore lowering the luminosity.

In Sec. 2.5 it will be demonstrated that the phase advance is sensitive to the minimum of the

β-function, but it is blind to the actual waist location. The local optics corrections using the phase

advance were therefore ineffective against this beam waist displacements.

For larger β∗ the parabola in Fig. 1.13 is wider and therefore a small displacement of the waist

is not that prominent. However for smaller β∗, this parabola becomes very sharp and therefore a

small waist displacement has a very large impact on the luminosity. In fact, in the most recent

runs of the LHC and the future HL-LHC the waist displacements are the main cause of loss of

luminosity if not properly corrected.

To address this issue, the Segment-by-segment technique described before can be enhanced by

including additional measurements of the optics functions around the IP. This can be, equivalently,

the β-functions in the quadrupoles or BPMs closest to the IPs or the value of the β∗ and the waist
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Figure 1.13: Plot of the parabolic behaviour of the β-function in the IP. The curve in blue is the ideal
β-function with the position of its minimum at the IP, β(IP ) = β∗

ideal. The curve in green is the β-function
parabola affected by optics errors causing the minimum of β to be displaced to a non-zero waist position
w 6= 0. In the latter case β∗ = β∗

error is larger than the design one.
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Figure 1.14: Example of the use of a K-modulation measurement matching to correct waist displacements.
The blue line shows the β-beating measurements of K-modulation w.r.t. the local model of the segment.
The orange line shows a simulated set of trims that matches the measured deviation.

28



displacement. This adds new constraints to the effective model matching problem, at least 8 per

IP (horizontal and vertical, β∗ and waist of Beam 1 and 2), of a different nature than the phase

advance, that makes the manual matching to become a very difficult task. An automatic matching

routine will be presented in Sec. 2.1 that can import these new constraints and find a solution that

satisfies the phase advance deviation and β∗ constraints automatically.

In recent runs of the LHC, K-modulation (described in the next section) has been the tool used

to provide this information accurately, however it does not seem to be precise enough for HL-LHC

(Sec. 2.4). Figure 1.14 shows the Segment-by-segment technique applied to the measurement of the

β-function from K-modulations in the BPMs closest to the IP. The blue line shows the β-beating

w.r.t. the local model of the segment of the K-modulation measurement. The orange line shows

the matched β-beating of the model computed to serve as effective model.

The β from the amplitude method described in Sec. 1.6.1 is another candidate to give precise β-

functions in this region where the phase advance measurement is not useful. However, as it was

explained, they are affected by the BPM calibration factors which are in principle unknown even

though there have been recent advancements in measuring these factors in the IRs [25, 26].

The phase advance from DOROS BPMs to measure the β-function at the waist and luminosity

scans to measure the waist position are other two techniques proposed as alternatives to the K-

modulation at HL-LHC, they will be described in Sec. 2.5 and Sec. 2.6.

1.7.3 K-modulation

During Run 2 of the LHC, the main technique used to measure and correct β∗ has been the

K-modulation. This technique consists in changing the strength of individual quadrupoles and

recording the tune response to this change. The relation between the change in strength of the

quadrupole and the tune response is proportional to the average β-function across the quadrupole

(βAVx,y) [4]:

βAVx,y = ± [cot (2πQx,y) (1− cos (2π∆Qx,y)) + sin (2π∆Qx,y)]
2

∆kL

≈ ±4π
∆Qx,y
∆kL

, (1.42)

where ∆K is the strength change of the quadrupole, L its length and ∆Qx,y the induced change

of tune in the machine.

Specifically, in the LHC, the most prominent use of this technique has been the modulation of

quadrupoles closest to the IP in order to obtain a precise measurement of their βAVx,y and propagate

it to the IP, obtaining the β∗ [43].

The exact procedure in the LHC begins with the modulation of the quadrupole from which the

tunes and strength change are recorded. Figure 1.15 shows one of the K-modulations performed in

the first quadrupole of the left side of IP1. The top plot shows the modulation function running over

time in the current of the quadrupole, it is a sinusoidal function that allows to scan smoothly all

the available space before the horizontal and vertical tunes approach too much and hit the coupling

resonance. The bottom plot shows the response of the tunes in Beam 1. As this quadrupole is
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Figure 1.15: Example of a K-modulation of the first quadrupole of the left of IP1. On the top plot the
change on the strength of the quadrupole is shown. The bottom plot shows the response of the horizontal
and vertical tunes of Beam 1.

shared by Beam 1 and 2, the tunes of Beam 2 also change.

After having performed the modulation, the four relations between the quadrupole strength k and

Qx,y of Beams 1 and 2 are accumulated into equally sized time bins to obtain error bars on the

measurements. Figure 1.16 shows this process for the same modulation as in Fig 1.15 but plotting

the value of Qx versus the magnet strength. This data is manually or automatically cleaned for

outliers. Then, a linear fit over the points is computed to obtain the slope, i.e. ∆Qx,y/∆K, from

which βAVx,y for Beam 1 and 2 can be obtained using Eq. (1.42). The values of the resulting β∗

are computed from the βAV by using numerical optimisation methods [43].

The speed of this method is limited mainly by the speed at which the power supplies can change the

current in the quadrupoles. As it can be also checked in Fig 1.15, modulation of a single quadrupole

takes about 4 minutes, and must typically be repeated for the 4 quadrupoles in IP1 and IP5 and

the two quadrupoles around IP2 in heavy ion collision runs.

The precision on the resulting β∗ depends strongly on the quality of the measurement of the tunes.

Several techniques are used to try and improve the tune measurement, one of which is the outlier

cleaning mentioned before. Also, to improve the precision of the measurement, one can increase

the amplitude of the modulation which would decrease the uncertainty on the slope of the Q/K

relation, however, as the modulation strength increases the horizontal and vertical tunes approach

and the ∆Qmin produced by betatron coupling mentioned in Sec. 1.3 alters the tune measurements.

In Sec. 2.4 an attempt to improve this situation using the tune feedback will be explained.

There is also a inherent noise in the tunes of the machine, mainly produced by the jitter of the
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Figure 1.16: Relation between the change on the modulated quadrupole strength and the response of the
horizontal tune.

power supplies that power the quadrupoles. As explained before, quadrupoles in locations with

large β-functions have a larger impact on the tune. Therefore, at low β∗ configurations, the main

contributors to the tune noise are the triplet quadrupoles. In Section 2.4.1 some advancements

made in the HL-LHC circuit design that will allow the reduction of the tune noise in HL-LHC are

discussed.
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Chapter 2

Local optics corrections in the HL–LHC

During the LHC Run 2, the optics corrections have brought the global r.m.s. β-beating in the

machine to the 2% level and the r.m.s. β∗-beating down to the 1% level [42, 38, 44]. The target

for HL-LHC is to keep the optics quality at least of on the same level as has been achieved in the

LHC. However, the continuous effort to reduce the beam sizes at the interaction points is starting

to bring up the limitations of current optics measurements and correction methods. For HL-LHC

this is viewed as one of the main challenges from the optics correction point of view [45]. A failure

to control local optics in strongly squeezed configurations can lead to reduced luminosity and to a

luminosity imbalance between ATLAS [14] and CMS [15] (and ALICE [16] in case of ion physics).

Accurate optics control is also fundamental to ensure the machine safety.

K-modulation explained in Section 1.7.3 has been the tool used to measure β∗ and waist shifts

during LHC Run 2, which has been essential to achieve an unprecedented performance of the

machine during the run. Recent measurements during experimental studies at low-β∗ and flat

optics (different horizontal and vertical β∗) have revealed significant limitations in β∗ measurements

for these optics regimes. Also, theoretical studies for HL-LHC [43, 46] show that K-modulation

will not reach the precision requirements to ensure the expected performance of the machine.

Therefore, for the future of the LHC it will be essential to count on alternative methods for β∗

control to complement or replace K-modulation, one of which will be demonstrated theoretically

and experimentally in this chapter, using a combination of phase advance measurements across the

IR (Sec. 2.5) and luminosity scans with waist shifts (Sec. 2.6).

The Achromatic Telescopic Squeeze (ATS) scheme [20] has become operational in the LHC and it

is the baseline for HL-LHC. This optics scheme uses the arcs around the low-β∗ insertions, namely

arcs 81/12 and arcs 45/56, to aid the matching section quadrupoles to match the optics in the

interaction regions and correct the chromatic effects by allowing an increase of the β-function in

these arcs, peaking at lattice sextupoles. As a downside, this increase of the β-function in the arcs

also enhances the effects from magnetic or alignment errors and affects the optics quality. The lack

of individually powered quadrupoles in the arcs makes these errors very challenging to correct.

In this chapter of the thesis are presented the theoretical framework and experimental proof-of-

principles on two techniques to improve the performance of optics local corrections in Run 3 and in

HL-LHC: the calculation of the βw from phase advance and the determination of the waist position

using luminosity scans.

Additionally, this thesis presents a way of correcting the enhanced local errors in the arcs caused
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by strong optics squeeze using the ATS scheme using orbit bumps in sextupoles to produce a

quadrupolar fields via feed-down. The first experimental results of this technique, performed during

machine development studies in the LHC are also presented here.

In Section 2.1 the need and implementation of an automatic local-optics correction tool are discussed

together with performance results from measurements and simulations. In Section 2.4 the issues

found experimentally in K-modulation measurements together with possible mitigation techniques

are presented. In Section 2.5 an alternative to K-modulation to measure the minimum β-function in

the interaction regions using phase-advance is presented. In Section 2.6 a complementary method

to find the location of the beam waist by displacing it and measuring luminosity is also presented.

In Section 2.7 the large β-beating produced by local errors in the high-beta ATS arcs observed

in the LHC and expected for HL-LHC are shown and the implemented and foreseen solutions are

discussed.

2.1 Automatic local optics corrections

Traditionally, the betatron phase-advance has been the most robust optics observable as it is inde-

pendent of Beam Position Monitor (BPM) calibration and tilt errors and it does not rely on a model

of the machine. As it was presented in Sec. 1.7, local phase errors in the IRs have been successfully

corrected using the Segment-by-segment technique [31, 39]. The measured phase-advance in chosen

segments of the accelerator can be compared to a model of the segment using MAD-X [34], whose

initial conditions are set from measurements at the initial point of the segment. In this way, only

quadrupolar errors within the segment affect the phase beating between measurement and propa-

gated model. The model of the segment is matched to the local phase deviations by trimming the

quadrupoles in the region. By swapping the sign of these trims an effective correction is obtained.

The effective model described in Sec. 1.7 was historically computed manually, by trying different

settings of the quadrupoles in the region. This was very time consuming and not reproducible. In

order to overcome the limitations of the manually computed local corrections, an automatic match-

ing routine is presented this thesis. This routine generates these effective models, and therefore

local corrections, automatically.

The automatic matching routine addresses the matching problem as an optimisation problem. The

variables or degrees of freedom of the problem are the strengths of the quadrupoles in the segment.

The target or constraints are the difference between the phase advance deviation from the local

model (blue line in Fig. 1.12) and the effective model phase advance deviations (orange line in

Fig. 1.12). By minimising this difference, using the LMDIF routine (a version of the Levenberg-

Marquardt algorithm) included in MAD-X, an effective model is found. The automatic tool fulfils

the following requirements:

• As the two beams traverse a common set of quadrupoles in the triplets region, a common

correction must be found for both beams.

• The tool must be able to include the measurement data of the β-function obtained by the

K-modulation at the IP which must be included as a constraint to avoid significant waist

shifts.
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Figure 2.1: Example of a simulation of the HL-LHC with quadrupolar errors in the triplet and Q4-5. The
blue line shows the deviation of the phase-advance from the design model of the segment. The orange line
is the suggested effective correction and the green the effect of the correction.

• For local coupling correction not only both beams must be matched simultaneously, but such

matching must also be achieved for the real and imaginary parts of the f1001 (see Sec. 1.6.3)

resonance driving term.

• The tool must also allow the simultaneous automatic matching of forward and back propa-

gations. (see Sec. 1.7) of the segments with a double number of constraints.

In addition, apart from fulfilling said requirements, an automatic routine improves the accuracy

and reproducibility of the corrections when compared with those computed manually. Moreover,

in view of HL-LHC where β∗ levelling will be used [47] which will require to commission up to 50

different optics [48], computing local corrections of every one of them would be a extremely hard

task to perform manually. The automatic tool is much faster in performing the corrections for each

optics.

This algorithm has been extensively tested in HL-LHC simulations and put in practice in LHC

optics commissioning and dedicated experiments [49, 50].

In Fig. 2.1 an example of the behavior of the automatic matching tool on the HL-LHC lattice is

shown. The triplet quadrupoles (see layout on top of Fig. 2.2) and the two matching quadrupoles

(Q4-5, displayed in the vertical lines of Fig. 2.1) in each side of the interaction point (IP) are given

random 10−3 relative gradient error and the triplet circuits are used as variables to compensate

the errors. The target solution is constrained by the measured deviation of phase-advance and

β-functions from K-modulation for both beams. The blue line shows the simulated deviation of the

phase-advance from the local model of the segment and in orange the suggested match performed by

MAD-X optimisation. The green line shows the local errors remaining after applying the suggested

matched values with its sign reversed.

The same technique can be used to correct local coupling by targeting the f1001 resonance driving

term [39] as shown in Fig. 2.3. These local coupling errors are caused by random tilts of the triplet

quadrupoles and Q4-5, producing coupling via feed-down. The coupling is corrected using the 2

skew quadrupoles in the IR (Fig. 2.2 top).

The importance of a good local coupling correction was brought to view in the ions run of 2018,

where a human error caused the swap of the left and right corrector strengths given by this technique
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Figure 2.2: Schematic of the quadrupoles layout and β-function in the triplet region of HL-LHC around IP1
for round and flat optics.
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and produced a 50% loss of luminosity in ALICE [51].

2.2 β∗ corrections performance in the HL-LHC

To assess the performance of this technique in the HL-LHC, we performed Monte-Carlo simulations

of the expected field and alignments errors in the interaction region quadrupoles, and applied the

automatic correction described above to each of the simulation seeds.

Specifically, each quadrupole of the triplet and Q4-5 is given a random 10−3 relative quadrupolar

error from a Gaussian distribution and a ±2 mm longitudinal misalignment, the magnet alignment

tolerance expected in the HL-LHC. Sorting (see Sec. 2.4.1) is applied to the two parts of the Q2

quadrupoles with the aim to avoid big relative field imbalances between them.

The resulting phase-advance deviations in the IP1 and IP5 segments are also disturbed with Gaus-

sian noise to simulate the measurement noise. This noise is assumed to be 6 mrad r.m.s. at a BPM

with β=171 m and scaled to the rest with the
√
β at their location.

To simulate the K-modulation measurement, the matching algorithm is also provided with the

value of the β∗ with an uncertainty of 4%, corresponding to a tune uncertainty of 2.5·10−5 as

shown in Fig 2.4. This value of the tune uncertainty is an optimistic estimation of the expected

value that assumes an upgrade of the arcs power supplies that is not in the HL-LHC baseline, as

detailed in [46]. However, the target of the algorithm is to correct down to this β∗ uncertainty

level, therefore this assumption does not bias the results.

Figure 2.5 shows the remaining β∗-beating in IP1 and IP5, after applying the automatic correction

in each seed. The standard deviation of the resulting distribution is σ=3.8%, very close to the given

uncertainty of K-modulation, which indicates that the automatic matching routine successfully

corrects the β∗-beating down to the uncertainty of the β∗ measurement.

Figure 2.6 shows the relative difference between the error in each quadrupole of the triplet and the

correction found by the matching routine. The correction strength stays in general on the level of

the magnetic errors (10−3) but raises to about 5 · 10−3 in r.m.s. in the Q1s. We interpreted this

increase of strength as a compensation for the 2 mm misalignment and Q4 and Q5 errors.
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Figure 2.6: Average, standard deviation, maximum and minimum of the relative difference between the
value of the magnetic errors of each seed and the strength of the correction implemented at each triplet
quadrupole. Small values indicate that the value of the correction applied to a magnet is close to the actual
error in that magnet.
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2.3 Triplet tilt tolerances in the HL-LHC

A tilted quadrupole interacts with the beam as a straight quadrupole plus a skew quadrupolar

component. This skew component will have an effect in the f1001 resonance driving term given

by [52]:

f(s)1001 =
−1

4(1− e2πi(Qx−Qy))

∑
l

kLl

√
βlxβ

l
ye
i(∆φslx −∆φsly ) (2.1)

where kLl is the lth skew quadrupole integrated strength, βlx,y are the β-functions at the position

of the lth skew quadrupole, ∆φslx,y are the phase-advances between the measurement point and the

lth skew quadrupole and Qx,y are the horizontal and vertical tunes. It can be seen how due to the

large β-function across the HL-LHC triplet shown in Fig. 2.2, tilts of the triplet quadrupoles have

the potential to be massive contributors to the magnitude of the f1001 term and therefore, to the

coupling in the region and in the whole machine if not properly compensated locally. In HL-LHC,

a skew quadrupole corrector will be installed in each side of IP1 and IP5 (Fig. 2.2 top schematic)

to cancel out the local coupling produced by the triplet.

In order to define the required strength of these correctors, we performed automatic corrections

of 500 simulation of the HL-LHC triplet expected tilts. On each seed, all the quadrupoles of the

triplet and Q4-5 were given a random tilt within ±1 mrad and ±2 mrad (uniformly distributed).

Also, a random choice among 60 seeds of sextupolar to dodecapolar normal and skew multipolar

errors (b3, a3, b4, a4, b5, a5, b6 and a6) was given to each seed. The simulations were performed

at β∗=30/7.5 cm flat optics (worst case scenario) with a crossing angle of 250 µrad.

Early estimates of the field errors of the quadrupoles of the HL-LHC triplet showed an a2 multipolar

error of about 2 to 3 units [53]. This will produce the same effect as the tilt of the quadrupoles,

inducing betatron coupling. However, performing a MAD-X simulation it can be verified that, if

θ is the tilt in radians and a2 the field error in units, then a2 ≈ 2θ. Therefore, a tilt of 2 mrad

corresponds to about 40 units of a2 field error which makes the effect of the field error negligible

and it is consequently ignored in this study.

Figure 2.7 shows the resulting strengths of the skew quadrupoles as calculated by the automatic

matching routine for each of the 500 seeds. The measurable traditionally used to quantify the

global coupling is the ∆Qmin i.e. the minimum difference between the horizontal and vertical

tunes produced by coupling [37]. For these simulations, after the local coupling corrections, the

uncorrected coupling that leaks from the IR produces a ∆Qmin below 10−3 for all seeds.

The solid lines of Fig. 2.7 show the original design strength of the HL-LHC skew quadrupole

correctors: 10−3m−2. Having such a large margin available, if the tilt is guaranteed to stay within

±1 mrad, which can be assured using the remote alignment system [54], the design strength for the

correctors can be reduced to 0.7 · 10−3m−2 (dashed lines) while still allowing a factor 2 margin in

case one of the correctors stops functioning. The resulting strengths of the right and left correctors

in each seed show a tendency to lay across the diagonal, namely, to set both correctors to a similar

strength.

Quadrupoles can also present local tilts along their length (waviness) as illustrated in Fig. 2.8.

Monte-Carlo simulations of this effect have also been performed, applying local tilts to 10 thick
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Figure 2.7: Required strength of the skew quadrupole correctors in IR1 to cancel the coupling produced by
500 seeds of random tilts of ±1 mrad and ±2 mrad in Q4-5 and the triplet quadrupoles. The solid lines
show the old specification for the strength limit of the correctors and the dashed lines the new specification
set by this work.

slices of each quadrupole of the triplet, concluding that up to ±5 mrad uniformly distributed

waviness has a negligible effect when compared with the average tilt of the magnet. This means

that a ±5 mrad waviness is tolerated if the average tilt is controlled within ±1 mrad.

In conclusion, these simulation results show that the automatic matching routine is able to correct

local optics to the β∗ measurement accuracy. Therefore, the limiting factor for HL-LHC to deliver

the design luminosity and to keep the luminosity imbalance within tolerable levels, is the accuracy

of the measurement of the β∗. In following sections we will describe the problems of currently used

techniques and possible alternatives for HL-LHC. The matching routine also succeeded defining the

required strength of the skew quadrupole correctors in IR1 and IR5, allowing a reduction of these

correctors strengths, reducing the construction cost of HL-LHC.

2.4 K-modulation issues

K-modulation has been the technique used to measure and control the LHC β∗ during Run 2 [38].

However, for low-β∗ optics, this technique is starting to approach its main limitation: the precision

of the measurement reduces with the growth of noise in tune measurements, and this noise increases

mainly with the β function growth in the main triplets quadrupoles.

For instance, in Table 2.1 the average and r.m.s. of beam waist measurements performed at

β∗=30 cm (the operational optics of 2018) is presented, showing a large spread over several mea-

surements. During studies of flat optics with β∗=60/15 cm, this technique showed systematic

unreliable measurements of the β∗ since K-modulation is validated against phase measurements
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Figure 2.8: Illustration of the simulated waviness of one of the quadrupoles of the triplet. The quadrupole
is divided in 10 slices with ±5 mrad rotation each, but the average rotation of the whole triplet is ±1 mrad.

with the AC dipole as explored in the following.

Taking into account the presence of a beam waist, the formula that describes the β-function across

the optics drift around the IP, Eq. (1.26), changes to

β(s) = βw +
(s− w)2

βw
, (2.2)

with β(0)=β∗ the β-function at the IP and w the waist position w.r.t the IP i.e. the point where

β(w) = βw, the minimum β-function in the drift.

Then the phase-advance between the beginning and the end of this optics drift is equal to

φIP = arctan

(
L∗ − w
βw

)
+ arctan

(
L∗ + w

βw

)
, (2.3)

being L∗ the distance between the BPM and the IP, assuming that the BPM is upstream of the

first triplet quadrupole when moving from the IP. As K-modulation provides the βw and waist

position, this φIP can be compared with the φIP measured using BPM turn-by-turn data of beam

excitations with the AC dipole.

Table 2.2 shows K-modulation measurements of Beam 1 performed at β∗=60/15 cm optics for the

vertical plane of IP5 in 2017 [49] and for the horizontal plane of IP1 in 2018. In both cases, the

design β∗ is 60 cm. The measurements show a not too large error and, in principle, should be

trusted.

One of the results of this thesis, however, is the use of Eq. (2.3) to verify the results of K-modulation

against the measurement of the phase advance using the AC dipole. Therefore, Table 2.2 also shows

the deviation of φIP w.r.t. the model for both K-modulation computed using the formula above and

from standard BPM measurements on beam excitations with the AC dipole. The phase measured

from K-modulation is not compatible with that measured by BPMs for these 3 cases. The reason

for this disagreement is not clear, but shows that K-modulation can give unreliable results in certain

conditions.
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Waist [cm] from K-mod from lumi. scan

Beam 1 -5 ± 3 -8.1 ± 1.1

Beam 2 4 ± 2 0.3 ± 0.3

Table 2.1: Comparison of the average over 5 measurements of the vertical waist displacements measured by
K-modulation and the waist obtained using the luminosity scans.

β∗ Waist ∆φK−mod ∆φkicks
[m] [m] [2π10−4] [2π10−4]

2017 No corr. 1.45 ± 0.05 0.72 ± 0.03 -104 ± 8 -4 ± 13

2017 Corr. 1.17 ± 0.06 0.57 ± 0.03 -79 ± 10 -4 ± 12

2018 No corr. 0.83 ± 0.03 0.32 ± 0.03 -26 ± 4 -6 ± 7

Table 2.2: K-modulation measurements before (No Corr.) and after (Corr.) corrections of the β∗, waist
and deviation w.r.t. the model of the φIP both from K-modulation (∆φK−mod, Eq. (2.3)) and from excited
beam BPM recordings (∆φkicks) at flat optics β∗=60/15 cm. The problem appeared in IP5 in the vertical
plane in 2017 and in the horizontal plane of IP1 in 2018, both on Beam 1. The design β∗ is 60 cm in the
vertical plane of IP5 and the horizontal plane of IP1 (the flat plane is swapped in IP1 and IP5).

One option to increase the accuracy of K-modulation could be to increase the strength of the

modulation allowing larger tune changes. The limit of the change in the tune produced by K-

modulation is set to be 1
3(Qx − Qy) = 10−2 [43] at injection tunes, to avoid hitting the coupling

stop-band. In principle, the LHC tune feedback system [55] could be used to compensate the

change on the tune removing this limit and allowing for stronger modulations. In Fig. 2.9, an

attempt to perform K-modulation with the tune feedback active is shown. It should be noted

that the modulation of the tunes is not totally removed, it remains an oscillation of about 10−3.

Also in the vertical tune of Beam 2 a delay time in the reaction of the system can be observed.

These technical difficulties would make this approach unfeasible with the current system. Moreover,

Fig. 2.10 shows a simulation of K-modulation with tune feedback using the arcs tuning quadrupoles

correctors (MQTs) to keep a constant tune. It shows the difference in the tune change from Q1

and the tune change inferred from the feedback quadrupoles (MQTs) versus the Q1 tune change,

demonstrating how the cross talk between the β-beating wave produced by the modulation of Q1

and the MQTs dominates over the error caused by the tune uncertainty for modulations higher

than 10−2. Therefore, K-modulation with the tune feedback presents significant difficulties both

on the technical and analytical sides and it is discarded for the future.

Due to the first unreliable observations of K-modulation during Run 2 and the failure to operate it

with the tune feedback to increase its accuracy, it will be essential to have alternative techniques to

K-modulation for the Run 3 of the LHC and in view of HL-LHC where the β∗ will be even lower.

2.4.1 HL-LHC circuit redesign

In Sec. 1.7.3 it was shown how the measurements precision of K-modulation depend heavily on

the precision of the tune measurement and therefore the tune noise and in which way the triplet

quadupoles are the main source of tune noise at low β∗. To achieve the precision of K-modulation

shown in Fig. 2.4, a study on the design of the power supply layout and circuit design of the
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Figure 2.9: K-modulation performed during ATS optics MD studies in 2016 with the tune feedback system
enabled. A residual oscillation of about 10−3 remains uncompensated. Also the system reacted too late
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Figure 2.10: Simulation of a K-modulation using the tune feedback. Here ∆QQ1 is the change of tune
produced by the trim of the Q1 and ∆QMQT the change of tune produced by the arcs tuning quadrupoles
to compensate the Q1 effect. The horizontal line shows the tune measurement uncertainty of 2.5 · 10−5.
When the curve is above this line the cross-talk between Q1 and arcs tuning quadrupoles is dominating the
error of the K-modulation measurement. The vertical line shows the maximum allowed change of tune in
the absence of tune feedback.
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Figure 2.11: Diagram of the 2-power supply circuit configuration of the HL-LHC triplet
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Figure 2.12: Diagram of the single power supply circuit configuration of the HL-LHC triplet, without the
Q2a trim and with the trim in Q1a purposed for K-modulation.

HL-LHC triplet was made.

Figure 2.11 shows a diagram of the power supply circuit initially designed for the HL-LHC. It

consisted of two main power supplies, one powering Q1 and Q3 and another one powering Q2. A

smaller correction trim was available in the first half of Q2 (Q2a) and on Q3.

The current ripple of these main power supplies is the main source of tune noise. Therefore, it is

desirable that the effect this ripple produces on the tune cancels out as much as possible. Figure 2.12

shows the second proposal for the power supply circuit of the triplet. It consisted of only one main

power supply, a trim in Q1 a trim in Q2a and a trim in Q3. Having only one main power supply

means only one source of noise among the whole triplet, allowing for compensation between the

noises of Q1-3 and Q2.

As the Q1-3 quadrupoles and the Q2 have opposite polarities, it was suspected that having a single

power supply would allow for the tune noise produced to cancel out. Performing Monte-Carlo

simulations in MAD-X, assigning 0.1 parts per million noise on 1000 seeds to the HL-LHC triplet

in IR1 and IR5 in the two different proposed power supply configurations, we proved that the new

power supply layout reduced the impact of the current ripple on the tune noise a factor 2 [56].

To save resources on the construction of this new circuit, we also studied if the trim of Q2a is actually

necessary. This trim was designed to avoid strong imbalances between the focusing strength of Q2a

and Q2b that could not be compensated with a common power supply. These imbalances can be

mitigated by applying sorting in the Q2 quadrupoles, i.e. by measuring the field of each of the

Q2 halves before their installation and pairing together as part of the same Q2 those with the

most similar measured field. In Sec. 2.2 the corrections are performed without the Q2a trim and

simulating the sorting of Q2, proving that the trim in Q2a is not necessary to correct the optics.

This trim has been therefore, removed from the circuit specification [56].

Finally, to achieve the expected results of K-modulation in HL-LHC, we proposed the addition of a

trim in the first half of Q1 (Q1a) alone. The trim of Q1 as a whole can also be used to extrapolate

its average β-function to the β∗, but the independent uncertainties of the two quadrupoles together
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makes this measurement a factor 2 less precise. The trim of Q1a is purposed exclusively to perform

K-modulation and it was designed following to match the speed and amplitude of the K-modulation

measurements in the LHC.

In summary, this study strongly influenced the design of the HL-LHC triplet, allowing for a factor

2 tune noise reduction, the removal of the trim on Q2a with the consequential save in resources

and another factor 2 improvement in K-modulation measurements precision using an independent

trim on Q1a.

2.5 βw from phase-advance

The need to squeeze the beam to very low-β∗ pushes the β-function in the IR region to very large

values and therefore, the betatron phase-advance becomes so small that is barely measurable with

the standard BPM resolution in the LHC. Nevertheless, an expression to obtain the βw from the φIP

can be derived and rely on BPMs with higher precision in the measurement of the phase-advance.

Expanding Eq. (2.3) around w = 0 up to the second order in w one obtains:

φIP = 2 arctan

(
L∗

βw

)
− 2βwL

∗3

(β2
w + L∗2)2

(
w2

L∗2

)
+O

(
w4

L∗4

)
. (2.4)

This expansion is valid if

w � L∗ . (2.5)

This condition is fulfilled in the LHC where L∗ is of the order of tens of meters and typical waist

shifts are of several centimetres. As it can be seen from Eq. (2.4) to the lowest order the phase

advance φIP behaves as the square of the waist position. This formula can be considered as an

equation for βw. Solving it up to the second order in w/L∗ the following approximate solution can

be obtained

βw ≈
L∗

tan
(
φIP

2

) [1− sin2

(
φIP

2

)(
w2

L∗2

)
+O

(
w4

L∗4

)]
. (2.6)

In Fig. 2.13 the behaviour of φIP is shown versus βw for a ±50% range from 15 cm and versus the

waist position for a range of ±25 cm. The effect of the waist displacement on φIP is four orders of

magnitude lower than that of the βw, becoming smaller for lower βw.

Ignoring the influence of the waist displacement we obtain a simpler formula:

βw ≈
L∗

tan
(
φIP

2

) . (2.7)

This approximation produces a maximum error in βw for the ranges of βw and waist shown in

Fig. 2.13 of about 0.01%.

Defining σ(βw) and σ(φIP ) as the uncertainties of the measurements of βw and φIP respectively,

we obtain:

σ(βw) ≈ L∗

| cos(φIP )− 1|
σ(φIP ), (2.8)
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Figure 2.13: Behaviour of the phase-advance change across the IP optics drift with changing βw (top) and
changing waist shift (bottom). As the change with waist shift depends significantly on the βw the phase
deviation with changing waist shift is shown for the different βw in the upper plot, with corresponding colors.

or in relative terms to βw:
σ(βw)

βw
=

σ(φIP )

| sinφIP |
(2.9)

This φIP is typically close to π. For instance, in the case of β∗=50 cm ion optics the design sin(φIP )

is about 5·10−2. To obtain a 2% precision in σ(βw)/βw a precision of ≈ 2 ·10−2 ·5 ·10−2 = 10−3 rad

in the measurement of the phase is necessary.

2.5.1 The DOROS BPM system

The Diode ORbit and OScillation (DOROS) BPM system [57] is installed in the LHC tertiary

collimators jaws and next to the IPs. This opens the possibility of measuring the βw from phase

measurements coming from this system using Eq. (2.7). It provides better phase resolution than

standard BPMs and can be triggered together with them. This system has been used to obtain

more accurate measurements of the betatron coupling [58].

In order to experimentally validate the studies presented in Sec 2.5, the DOROS BPM system was

triggered during the ion run commissioning of 2018 in the LHC, with 50 cm β∗ optics. A total of 6

acquisitions of the standard BPM system and 8 acquisitions of the DOROS system were triggered.

Using these acquisitions, a standard deviation on the phase advance across the IR of 0.3 mrad was

found using the DOROS system and 1.1 mrad using the standard BPM system, about a factor 4

larger. Applying Eq. (2.7) on this measurement of the phase advance results βw=0.56±0.01 for the

normal LHC BPM system and βw=0.544±0.003 for the DOROS BPM system. The slight difference

between these values might be due to a small drift of the optics during the measurement, but this

remains to be confirmed in future experiments.
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error in βw.

In Fig. 2.14 the previous measurement of the precision of the phase advance across the IR is

extrapolated to smaller β∗ showing how the DOROS system provides a βw measurement below the

required error for 2% precision for all the optics in the range from 50 cm to 7.5 cm βw, positioning

the phase-advance measurement with DOROS BPMs as a good alternative to K-modulation to

measure βw. However, as it was shown before, it does not give information about the actual waist

shift which can strongly impact the β∗. In the next section, the use of luminosity scans to measure

the waist shift is proposed.

2.6 Luminosity scans

An alternative technique to measure waist shifts is to design a set of quadrupole trims that displace

the beam waist. Applying such knobs step by step, the beam waist changes linearly and β∗

quadratically as shown in Fig. 2.15. By monitoring the luminosity the position of the beam waist

can be interpolated.

Luminosity waist scans have been performed in other colliders as SuperKEKB [59, 60], however the

particularities of the LHC make this technique significantly more challenging. In the LHC machine

protection constraints force us to keep the β-beating in the machine within safe values during the

scans, which poses a strong constraint on the design of the waist shift knobs and their operational

range. The luminosity changes for the design waist shift of about 10 cm are in the order of about

1%, significantly smaller than in other colliders, challenging the data acquisition and the analysis

accuracy as described below.

A generalization of Eq. (1.25), without assuming identical bunch sizes in Beam 1 and Beam 2

anymore, the luminosity measured at each IP is the following:

L =
NbfN1N2S

4π

√
εx1β∗x1+εx2β∗x2

2

√
εy1β∗y1+εy2β∗y2

2

, (2.10)

where εx1,y1,x2,y2 are the emittances in each plane. S, the luminosity reduction factor, that can be
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approximated (ignoring the hourglass effect) as [10]:

S =
1√

1 +
(
σs
σx

θ
2

)2
=

1√
1 + φ2

p

, (2.11)

where θ is the crossing angle at the IP, σs the longitudinal beam size and φp is the so-called Piwinski

angle.

For the case of a waist knob designed to displace the horizontal waist of Beam 1, assuming all

emittances ε are equal and using Eq. 2.2 for the horizontal β-function on Beam 1, the horizontal

beam size changes as:

σx(s) =

√
εβ∗x1(s) + εβ∗x2

2
=

√
ε(βw + (s−w)2

βw
+ β∗x2)

2
(2.12)

and normalising to the luminosity at the waist Lw = L(w), the dependency of the luminosity on

the β∗ goes as:

L(s)

Lw
=

1√
1 +

( s−w
βw

)2

1+
βx2
βw

√√√√1 +
φ2p√
2

1+
β∗x2
βw√√√√1 +
φ2p√
2

1+
β∗x2
βw

+
(
s−w
βw

)2

(2.13)

which simplifies to:

L(s)

Lw
=

√√√√√ 1 +
φ2p√

2
+

β∗x2
βw

1 +
φ2p√

2
+

β∗x2
βw

+
(
s−w
βw

)2 , (2.14)

with s being the value of the waist displacement knob, w the actual waist present in the machine

in Beam 1, βw the beta on the waist of Beam 1 and β∗x2 the β∗ of Beam 2.

The full luminosity equation can then be expanded for small (s−w)
βw

as:

L(s)

Lw
= 1− (s− w)2

2β2
w

(
1 +

φ2p√
2

+
β∗x2
βw

) +O

((
s− w
βw

)4
)

(2.15)

The r.h.s. of this equation has the shape of a parabola and the values of the waist position w and

the denominator can be extracted from a fit of the luminosity measurement against several values

of the waist scan knob s. The denominator contains the information of the βw, but the presence of

the Piwinski angle means that a very precise measurement of the crossing angles and longitudinal

beam profile is required to obtain a good measurement of the βw. The typical resolution of both

σs and the crossing angle is about 10% [61] and therefore this method cannot be used to obtain

a precise measurement of the βw. To obtain a precise measurement of the βw the phase-advance

from DOROS BPMs can be used as described in Sec. 2.5.
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Figure 2.15: Simulated effect on the design model with β∗=30 cm optics of one of the waist displacement
knobs experimentally tested in the LHC. The blue line represents the waist displacement and is almost
completely linear with the knob value. The orange line shows the β∗ following the parabola of Eq. (2.2)
as the waist is displaced. The minimum of the parabola is not at the zero knob setting because the design
optics includes a small waist.

2.6.1 Experimental validation of the luminosity scans

Waist scans have been successfully performed in the LHC during a MD session [62] that took place

the 16th of September of 2018 with nominal optics, β∗=30 cm. Using MAD-X, two knobs were

designed to shift the vertical waist of Beam 1 (Fig 2.15) and 2 at IP1.

The luminosity measurements in ATLAS is obtained mainly using the LUCID-2 Cherenkov de-

tector [63], but this measurement is complemented by other detectors and algorithms. A detailed

explanation on the determination of the luminosity produced at ATLAS can be found in [64].

In Fig. 2.16, the instantaneous luminosity acquisition from ATLAS for the first of these scans is

shown. The periods when luminosity optimization was being performed (dips in the signals) or when

the knobs were being trimmed were discarded from the analysis and are shown greyed out. There

is a decay in the raw luminosity signal (blue line) caused by the beam burn-off produced by the

collisions. This means that in Eq. (2.10) the terms N1,2 are time-dependent. To remove this time

dependency, the luminosity is divided by the measured N1(t)N2(t) during the experiment, resulting

in the orange line of Fig. 2.16. After this operation, the signal still has a noticeable decreasing

trend, which can be attributed to emittance blowup during the experiment. As the points with the

same knob settings should have the same luminosity value, additional effects like this emittance

blowup can be removed by fitting a line over measurements with the same settings and rescaling

the luminosity value to the found fit. In this case a line was fitted over two measurements when

the knob waist was set to zero.

After postprocessing the data as described, the parameters of Eq. (2.15) can be fitted to the

scaled luminosity versus knob setting. In Fig. 2.17, the scaled luminosity versus waist knob setting

from -9 to 9 cm is shown, together with the parabolic fit. The measured vertical waist shift is

−8.1 ± 1.1 cm in Beam 1 and 0.3 ± 0.3 cm in Beam 2 as shown in Fig. 2.18. Table 2.1 shows a

comparison between the average and r.m.s. over 5 measurements of the waist position using K-

modulation performed during 2018 and the results of the luminosity scans. It should be noted that

the luminosity scans measurements have a significantly lower uncertainty. These first experimental

results are promising, but to allow their use in operation the luminosity scans will have to be

streamlined and their reproducibility over time must be confirmed with further scans.

48



0.275

0.280

0.285
Intensity (1012 protons)

Beam 1 Beam 2

09:00 09:10 09:20 09:30 09:40 09:50 10:00

0.75

0.80

0.85

0.90

0.95

1.00

L 
/ L

0

0 
cm

3 
cm

6 
cm

-6
 c

m

-3
 c

m

-9
 c

m

0 
cm

-6
 c

m

-4
.5

 c
m

-7
.5

 c
m

9 
cm

-6
 c

m

Raw acquisition Intensity removed Emittance blowup removed

Figure 2.16: Instantaneous luminosity (relative to the first raw measurement) recorded by ATLAS during
the first waist scan. In blue the raw luminosity as given by ATLAS and the orange line is normalised to
the beams intensity. The green line has the emittance blowup decay removed and is the one used to fit the
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Figure 2.17: Luminosity scan of Beam 1 on the vertical plane.
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Figure 2.18: Luminosity scan of Beam 2 on the vertical plane.

Altogether, these are the first successful waist measurement using luminosity scans in the LHC, a

machine with strong machine protection constraints. These results open the gate to complement K-

modulation with a combination of IP phase advance measurements and luminosity scans, allowing

a more precise determination of the β∗, which as was described before, will be of crucial importance

to guarantee the performance of the HL-LHC.

2.7 Local arc corrections with orbit bumps

Number of experimental tests were performed with flat optics i.e. different horizontal and vertical

β∗ of 60/15 cm [65, 49, 50]. The ambitious optics configurations are achieved using the ATS scheme.

The ATS scheme will also be used in the HL-LHC where it is expected to reach a β∗=30/7.5 cm

in flat optics [47].

During the 2017 Machine Development (MD) session on flat optics with β∗=60/15cm [49], it was

not possible to bring the β-beating in arc 45 below 24% after local and global corrections, as shown

in Fig. 2.19, highlighting in grey the problematic arc. 20% peak β-beating is considered the upper

limit to safely operate the LHC and in 2016 with β∗=40 cm the rms β-beating in the machine was

brought down to the 2% r.m.s. level [38].

Using the Segment-by-segment technique on arc 45, this error was identified as a local error in

this arc enhanced by the high design β-function of the ATS optics scheme. The peak β-beating

produced by a gradient error in arc 45 might be enhanced up to a factor 4 when comparing 30 cm

and flat 60/15 cm optics, as shown in Fig. 2.20 (top).

In that region of the accelerator, there are no individually-powered quadrupoles to correct the error,

which explains the difficulties found in 2017 to correct arc 45 using global corrections. However,

it is possible to produce quadrupolar fields via feed-down from sextupoles by traversing them with

an non-zero orbit.

In Fig. 2.21 the results from Segment-by-segment of the phase deviation from the local model of

arc 45 under 60/15 cm flat optics that was measured on 2017 is shown in blue. A solution to match

this phase measurement was found to be a 5.2 mm horizontal orbit bump with maximum in the
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Figure 2.19: Horizontal β-beating measurement at flat 60/15 cm optics with local and global corrections
applied, performed during the 2017 flat optics MD. The grey area shows the arc 45. In this area the
corrections were unable to bring the β-beating below 24%.
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measurement and in orange the effect of the local correction with orbit bumps in sextupoles are shown. The
sextupoles where the bump reaches its peak are indicated.

Magnet Circuit Trim [10−6]

MQML.10R4.B1 RQ10.R4B1 20 m−2

MCBH.16R4.B1 RCBH16.R4B1 8 rad
MCBH.20R4.B1 RCBH20.R4B1 16 rad
MCBH.24R4.B1 RCBH24.R4B1 16 rad
MCBH.28R4.B1 RCBH28.R4B1 8 rad

Table 2.3: Trim settings implemented to correct arc 45 at β∗=60/15 cm. It combines a trim on the Q10
on the right side of IR4 (MQML.10R4.B1) with an orbit bump created using the dipoles shown in the table
(MCBH) that peaks in the main sextupoles MS.18R4.B1, MS.22R4.B1 and MS.26R4.B1 reaching 1.5 mm.

MS.26R4.B1 sextupole. To avoid this large bump, the correction was spread to the MS.18R4.B1

and MS.22R4.B1 sextupoles and a trim of the MQML.10R4.B1 individually-powered quadrupole,

as shown in Fig. 2.20. The effect of the trim on the local model is shown in Fig. 2.21 in the orange

line. Predictions from simulations showed that this fit corrected the error without large orbits or

quadrupolar trims. In Table 2.3 the orbit correction and trim of MQML.10R4.B1 used to produce

the knob are shown.

The effect of this correction on the global β-beating can be seen in Fig. 2.22. The large β-beating

peak in arc 45 was reduced to the 5% level and the overall β-beating in the machine was also

reduced by about 10%.

Orbit bumps have also been used in the same region to correct the spurious dispersion driven by

the crossing scheme at the IPs [20]. This dispersion correction method is likely to conflict with the

correction method presented here and therefore future continuation of these studies must take into

account the interplay between these two correction methods.

2.8 Summary

Local corrections in the LHC interaction regions have traditionally been a manual tedious task.

A new automatic local correction algorithm and tool have been developed to boost the correction
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Figure 2.22: Measurement of the effect on the horizontal β-beating of Beam 1 of the correction with orbit
bumps in sextupoles performed during the flat optics MD that took place in 2018. The previous global
corrections calculated during 2017 were removed. The grey area is the region of the accelerator targeted
by the correction. The 24% peak in arc 45 was reduced to about 5% and the overall β-beating around the
machine was reduced about 10%.

quality and speed.

This algorithm has been used to perform Monte-Carlo simulations with the expected field and

alignment errors of HL-LHC. It has been proven that the algorithm is able to correct down to the

β∗ measurement uncertainty level for both beams. This shows that the factor constraining the

performance of the HL-LHC from the optics point of view is the accuracy of the measurement of

the β∗. The automatic matching routine has also been used to establish a tolerance of ±1 mrad

on the maximum allowed tilts in the HL-LHC triplet quadrupoles and a waviness up to ±5 mrad.

This study also allowed a reduction of the integrated strength of the skew quadrupoles in IR1 and

IR5, reducing the cost of the HL-LHC.

K-modulation has shown unreliable β∗ measurements during Run 2, which further challenges the

accuracy of this technique in HL-LHC with even lower β∗. An improvement of this technique using

the LHC tune feedback system has been explored in experiments and simulations, but has been

ruled out due to technical limitations and the cross-talk between the Q1 beta-beating and the arc

tune quadrupoles.

The phase-advance across the IP has been proven, with a phase uncertainty of 0.3 mrad (for

β∗ = 50 cm optics), to allow a measurement of the βw using the DOROS BPM system, but

blind to waist displacements. Luminosity scans with waist shifts have been tested experimentally

proving that they can be used to measure the waist position with good precision. This is the

first time these scans are performed successfully in a machine like the LHC, where the safety of

the machine is a concern limiting the waist shift range. These two techniques combined provide

accurate measurements of the βw and the waist position, resulting in the only approach to guarantee

the HL-LHC performance and keep the imbalance between IP1 and IP5 within tolerable levels. HL-

LHC will therefore require a totally different IR optics commissioning strategy than currently in

the LHC.
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It has been shown experimentally that the ATS optics scheme enhances local magnetic errors

in the arcs, where local corrections are needed. The lack of individually powered correctors in

those regions makes conventional local corrections with quadrupoles not viable. It has been shown

experimentally that these local errors in the arcs can be corrected with orbit bumps in sextupoles

via feed-down. This kind of corrections will be critical in HL-LHC that will operate with more

ambitious ATS optics schemes and could cause local optics errors in the arcs to render the machine

unsafe to operate.

In summary, the general HL-LHC optics correction strategy will need the new techniques ex-

perimentally demonstrated in this chapter which will significantly modify the traditional LHC

commissioning flow as luminosity measurements will be required in intermediate stages.
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Chapter 3

Flux jumps in future colliders

The challenge of reducing the beam size at the interaction points has a very strong impact on the

aperture requirements of the final focus system of colliders. For HL–LHC, it is expected to have a

β∗ of down to 7.5 cm in certain configurations [18, 47]. To achieve this, the β-function across the

triplet region rises above 40 km which corresponds to a r.m.s. beam size of about 3 mm, with the

crossing angles producing an orbit in the region of about 15 mm.

To accommodate such beam sizes and orbits, the current LHC triplet quadrupoles with 70 mm

aperture will be replaced with a new triplet with 150 mm aperture [66]. To keep the required

magnetic gradient seen by the beam, this new quadrupole package is longer than the one in the

LHC and uses Nb3Sn superconductor technology, which allows to increase the magnetic gradient

by about 50% [67]. This technology is also going to be used in operation from LHC Run 3 by

replacing 4 dispersion suppressor dipoles with shorter ones that use the Nb3Sn technology, to allow

for the installation of additional collimators. The new technology is also expected to be used in all

main dipoles and quadrupoles of the Future hadron-hadron Circular Collider (FCC-hh) [22].

Type I superconductors present superconductivity until they are subject to a magnetic field limit

Hc, a point where the superconductivity is drastically destroyed. Nb3Sn is a type II superconductor,

and the superconductivity is not lost at a single critical magnetic field Hc1, but the material goes

through a mixed state where the superconductivity is maintained until the magnetic field reaches

a second critical magnetic field Hc2 allowing for a significantly higher peak magnetic field. In this

mixed state, the material does not show a complete Meissner effect [68] and the magnetic field

penetrates the bulk of the material. In this region, small spots of normal-conducting material start

to form and the supercurrents circle around them forming vortexes that induce a quantized unit of

magnetic flux. These local vortexes are called fluxoids. The dynamics of fluxoids in the material

can cause local heating, starting a chain reaction called flux jump and either the material is capable

of dissipating the heat as it spreads or the superconductivity is broken producing a quench of the

magnet. During the flux jump, the magnetic flux through the magnet is disturbed, affecting the

magnetic field seen by the beam.

In this chapter the potential effect of these flux jumps on emittance (and orbit) will be studied

based on magnetic measurement values. The results presented here ignore the effect of the presence

of a transverse damper [69].

In Section 3.1, recent measurements of the flux jumps on the magnetic field of short prototypes of

the 11 T dipole and of the HL–LHC triplets are presented with focus on flux jump duration and
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Figure 3.1: Strongest flux jump observed during the measurement of relative magnetic flux error in an 11 T
dipole model. The dashed lines limit the fast rise up time of the flux jump.

magnitude. In Section 3.2 the mathematical approach used in this study to perform simulations

of the effect of the flux jumps is presented. In Section 3.3, these simulations are discussed for the

HL-LHC triplet with its possible impact on the luminosity of the machine. Section 3.4 shows that

the flux jumps of the 11 T dipoles will have a negligible impact on performance. In Section 3.5 a

similar analysis is performed for the FCC-hh main dipoles.

3.1 Flux jump measurements

Flux jumps measurements have been performed at CERN on prototypes of the 11 Tesla dipoles

and of the MQXF quadrupoles [70, 71].

The effect of the flux jumps on the magnetic field as seen by the beam can be separated in two parts:

the flux jump causing a change of inductance of the magnet [71] and thus directly the magnetic

field, and the reaction of the feedback current-regulation loop of the power supply to the change of

inductance, which can also be seen as a change of voltage across the magnet.

3.1.1 Error in the magnetic field

The effect of the flux jumps on the field itself has been measured on the MBHSP109 prototype of

the 11 T dipole [70]. These measurements were performed by ramping the magnet at the nominal

ramp rate (10 A/s) and by measuring both the current error (∆I) and the magnetic flux error

inside the magnet (∆φ/φ), both relative to their nominal values along the current ramp. The

difference between these two values (∆φ/φ - ∆I/I) measures the error in magnetic flux without

the component coming from the error on the current. This measurement showed that the flux

jumps happen mainly during the first half of the energy ramp of the magnet, between 2 and 3 kA

(corresponding to about 1.2 to 1.8 TeV of beam energy) at a rate of about 4.4 flux jumps per second

(at the nominal ramp rate). In Fig. 3.1, the relative magnetic flux error is shown for the strongest

flux jump observed during the measurement. This displays the typical signature of a flux jump,

consisting in a fast rise of the magnetic flux with a slower recovery towards the nominal value.

A statistical analysis is performed for the 145 flux jumps that are clearly distinguishable from the

noise, Fig. 3.2. For each flux jump the rise time and the change of magnetic flux are recorded.
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Figure 3.2: Statistics of 145 manually selected flux jumps during the measurement of the magnetic flux
error in the MBHSP109 model of the 11 T dipole. The top left plot shows the distribution of the rise times
of the selected flux jumps. The top right plot shows the distribution of the magnetic flux change that the
flux jumps produce. In the bottom plot the distribution of magnetic flux error versus rise time is shown.

The average rise time of the flux jumps is 46 ± 15 ms, or 506 ± 165 turns at the LHC revolution

frequency and the average relative error in flux is (0.2 ± 0.1) · 10−4. There is an approximately

linear relation between the length of the flux jumps and the relative flux error it produces, with a

slope of 0.0047× 10−4/ms, suggesting that the slope of the flux variation is more or less constant.

3.1.2 Reaction of the feedback regulation loop

Power converters supply particle accelerator magnets with very high-precision current thanks to

a dedicated feedback regulation loop. Such feedback loop is often composed of nested ones: the

external one regulates the current and the internal one controls the voltage. Both loops react to

flux jumps hence introducing an additional error in the current and therefore in the magnetic field.

The internal regulation loop measures the voltage across a set of magnets and reacts to the voltage

changes produced by the flux jumps, introducing an additional error in the current and therefore

in the magnetic field. Measurements of the voltage across the MQXFS4b model of the HL–LHC

triplet quadrupoles have been performed and a simplified model of the effect able to match this

measurement (by matching simulated and measured voltage spectra) has been developed. Such

a model allows to predict the reaction of a simulated HL–LHC triplet power converter, ignoring

the effect of the trim circuits. A realistic configuration of the feedback regulation loop, whose
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Figure 3.3: Statistics of the simulation of the current error produced by the regulation loop. The top left
plot shows the distribution of the rise time of the current error. The top right plot shows the distribution of
the total magnitude of the current error. In the bottom plot, the distribution of the length of the current
errors versus the current error magnitude is shown.

bandwidth is limited to a few hertz, has been assumed for this study. Further details of these

measurements and simulations are given in [71] and [72]. These measurements, and therefore the

simulation results, should be considered conservative as they were performed at a ramp rate of

51 A/s, while the nominal ramp rate for HL-LHC triplet quadrupole magnets is 14.6 A/s and the

flux jumps are likely to happen more often for faster current changes.

Figure 3.3 shows a manual selection of 244 flux jumps (again, those visible above the noise level) as

produced by the inductance jump model presented in [71]. As before, the rise time of the error and

the total error in current produced during the jump are considered. The figure demonstrates how

this effect is in general slower than the magnetic field jump, at 58± 37 ms in length or 638± 407

turns at the LHC revolution frequency. This effect is in general a factor 4 weaker than the direct

effect of the magnetic flux, at (0.06± 0.04) · 10−4. As the heat map also shows in this case, there

is an approximately linear relation between the current error and the duration of the flux jump.

The conservative limit of the error bars presented in this section (instead of the average value)

will be used in subsequent simulations, for both the duration and the strength of the jumps. The

reference values used for the flux jump effect on the field itself will therefore be 0.3 · 10−4 of field

error and 31 ms of rise time. For the reaction of the regulation loop, 0.1 · 10−4 relative field error
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and 21 ms of rise time will be used.

Additionally, flux jumps size is assumed equal for dipole and quadrupole magnets for now. Future

measurements on the actual magnets (instead of prototypes) will define the correct values.

3.2 Emittance growth

As the beam traverses the triplet quadrupoles off-center due to crossing angle and separation

bumps, the beam perceives both a dipolar kick (via feed-down) and a quadrupolar disturbance, i.e.

a quadrupolar deformation of the phase space.

3.2.1 Dipolar effect

The dipolar case can be evaluated by computing the single-particle emittance change across the

dipoles or quadrupoles producing flux jumps. If ∆y and ∆y′ are the offsets w.r.t. the closed orbit,

the geometric emittance growth compared with the reference particle can be written, from the

expression of the beam ellipse in Eq. (1.19), as:

∆εgeom = γ(s)∆y2 + 2α(s)∆y∆y′ + β(s)∆y′2, (3.1)

where α, β and γ are the Twiss parameters and s the longitudinal position.

In the case of a dipole magnet and given the relative magnitude of the change of the magnetic

field produced by the flux jumps studied in 3.1, an absolute change ∆θ of its bending angle can

be obtained. If a quadrupole is traversed with an closed orbit xco in the case of an error ∆kL of

its integrated field a dipole effect is produced via feed-down and the equivalent bending angle is

∆θ = xco∆kL.

In the simplest case of a flux-jump in a single magnet, the resulting geometric emittance growth

is:

∆εgeom = βd∆θ
2, (3.2)

where βd is the β-function in the magnet.

The normalised one-turn rise relative emittance growth is then ∆ε1/ε = γrel∆εgeom/ε, the design

normalised emittance. And again for the simplest case of a single magnet field error, the normalised

one-turn rise emittance growth results in

∆ε1
ε

=
βd∆θ

2γrel
ε

. (3.3)

For more complex cases where the error appears in several magnets simultaneously, MAD-X [34]

can be used to compute the difference in orbit and divergence from the nominal model.

The flux jump evolution with time, as can be seen in Fig. 3.1, resembles a linear ramp with a slower

decay. A simplified model of the flux jumps used here is shown in Fig. 3.4.

To compute the emittance growth after a certain number of turns we follow the derivations for

the motion during an AC-dipole excitation described in [8]. Considering that the amplitude of the

AC-dipole increases step-wise every N turns, the periods with constant amplitude can be labelled
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Figure 3.4: Simplified flux jump event shape. It is modelled as a linear ramp towards the full amplitude of
the jump. The duration of the ramp is on average 46 ms (506 turns in the LHC) for the flux jump on the
magnetic field itself and 58 ms (638 turns in the LHC) for the reaction of the regulation loop.

as n and the turn-by-turn motion is described as:

x̂(T )− ip̂x(T ) = z(n)ei2πQxT + δ
(n)
− ei2πQDT − δ(n)

+ e−i2πQDT (3.4)

where x̂ and p̂ are the linear normalised coordinates related to those introduced in Eq.(1.15) and

Eq.(1.16) by:

(
x̂

p̂x

)
=

(
1√
β

0
α√
β

√
β

)(
x

x′

)
, (3.5)

T is the turn number, z(n) is a complex quantity that contains the amplitude and phase of the

natural oscillations and δ
(n)
± describes the motion induced by the modulation of the AC-dipole.

In [8] a modulation with tune QD is assumed on top of the linear increase of the kick. In our

simpler case the modulation tune is zero, QD = 0 the quantity δ± = δ
(n+1)
± − δ(n)

± is equal to

δ± = ±
√

∆ε1
4 sin(πQ)

, (3.6)

with Q the betatron tune. The continuity condition on the particle position between the contiguous

periods n and n+ 1 can be imposed as:

z(n)ei2πQN(n+1) = z(n+1)ei2πQN(n+1) + δ− − δ+, (3.7)

from which the following relation between z(n+1) and z(n) can be obtained

z(n+1) = z(n) + 2δ+e
−i2πQN(n+1), (3.8)

Summing successive terms of this equation we obtain:

z(n+1) = z(0) + 2δ+

n∑
j=0

e−i2πQN(n+1). (3.9)
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Assuming z(0) = 0, the oscillation amplitude in the normalized coordinate after a linear ramp of N

turns according to Eq. (8) in [8] becomes

|z(N)| = 2δ+
sin(πQN)

N sin(πQ)
. (3.10)

Therefore the total relative emittance change after a rise time of N turns is given by

∆ε(N)

ε
=
M ∆ε1/ε sin2(NπQ)

4N2 sin4(πQ)
, (3.11)

where ∆ε1/ε is the average relative one-turn emittance growth over M magnets. For the sake of

simplicity, all the quadrupoles of the triplet will be assumed equally likely to produce a flux jump.

This formula oscillates with the number of turns and to stay in the worst-case scenario an envelope

of the function can be used:
∆ε(N)

ε
≤ M ∆ε1/ε

4N2 sin4(πQ)
. (3.12)

The model of the flux jumps used here (Fig. 3.4) neglects the effect of the slower recovery of the

field which is significantly more adiabatic.

3.2.2 Quadrupolar effect

The fast current change in the quadrupoles also induces a quadrupolar deformation of the phase

space that will also lead to emittance growth. This quadrupole effect can be written as a mismatch of

the α-function after a quadrupolar kick. Using the definition of p̂x in linearly normalised coordinates

given by Eq. (3.5):

p̂x = βx′ + αx , (3.13)

the quadrupole kick in p̂x can be written as:

∆p̂x = βk∆x
′ = βk∆kLx , (3.14)

with βk being the β-function at the quadrupole and ∆kL the integrated quadrupolar error. This

can then be written as a transformation of the α-function:

p̂x → p̂x + ∆p̂x = βx′ + x(α+ βk∆kL) ,

α → α+ βk∆kL . (3.15)

The emittance growth after an optics mismatch follows the equation [7]:

1 +
∆ε

ε
=

1

2

[
βn
βk

+
βk
βn

+

(
αk
βk
− αn
βn

)2

βnβk

]
, (3.16)

with βn, αn the design β and α functions and βk, αk the perturbed β and α functions. In this

case we only transform the α-function so βk = βn and αk = αn + βk∆kL. Then, simplifying the

equation and writing it in relative emittance growth terms:

∆ε

ε
=

(βk∆kL)2

2
. (3.17)
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Figure 3.5: Integrated quadrupolar strength (kl), orbit and β-functions across the triplet of IR1 with injection
optics.

This value is about ∆ε
ε ≈ 7.5 ·10−6 for the quadrupole with highest β-function (3324 m) at β∗=1 m,

two orders of magnitude below the effect produced by the dipolar kick for the HL–LHC triplet and

thus will be ignored. The β2
k term is likely to enhance the effect of the quadrupolar deformation of

the beam shape in future machines, if the flux jumps are present in regimes where the β-function

in the quadrupoles reaches some tens of kilometres.

In conclusion, in this section a general theoretical framework that allows to compute the effect of

flux jumps on the beam emittance has been developed. A formula has been derived that relates

the change of the bending angle produced by a one turn rise flux jump to the emittance growth,

both in dipoles and in the dipole effect of quadrupoles via feed-down. This relation has also been

obtained for the effect produced in the focusing strength of quadrupoles, but has been found to be

significantly weaker than the dipole effect, at least for the HL-LHC parameters. Finally, a general

formula that relates then one turn rise flux-jumps to a linear rise model over several turns has been

derived, providing a full theoretical model of flux-jumps effect on the emittance. In the following

sections, this framework will be applied to the HL-LHC triplet, the LHC 11 T dipoles and the

FCC-hh main dipoles, as they use or are going to use the Nb3Sn technology.

3.3 The HL–LHC triplet

As the combined ramp and squeeze steps for HL–LHC are not yet defined in detail, in this study a

baseline scenario of injection optics (β∗=6 m) at 450 GeV beam energy and a worst-case scenario

of β∗=1 m optics at 3200 GeV are assumed. For reference, in Fig. 3.5 and Fig. 3.6 the β-functions

and orbit across the triplet magnets of IR1 for the two considered scenarios are shown. The HL–

LHC triplets in IR1 and IR5 are identical with the crossing angles in opposite planes. Here, a

vertical crossing in IP1 is considered. Having horizontal crossing in IP1 and vertical in IP5 is under

consideration for HL–LHC [73].
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Figure 3.6: Integrated quadrupolar strength (kl), orbit and β-functions across the triplet of IR1 with β∗=1m
optics.
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Figure 3.7: Relative emittance growth produced by one-turn relative change of 0.3 · 10−4 in the magnetic
field of the quadrupoles of the HL-LHC triplet at injection (left) and 1 m optics (right) optics. Notice the
difference on the vertical axis scale. The values follow the expected dependency on orbit and β-function.

3.3.1 Effect on the emittance

For a one-turn flux jump, MAD-X simulations of the effect of a field disturbance of every magnet

in the triplet is used to compute the beam position change and thus the normalised one-turn

emittance growth ∆ε1/ε relative to the normalised emittance of the HL-LHC at injection ε =

εHL−LHC = 1.7 µm [73].

The one-turn emittance growth produced by a flux jump of 0.3 · 10−4 of the nominal field of each

of the magnets of the triplet is shown in Fig. 3.7, with the expected dependency on the β-function

and orbit in the quadrupoles.

Similarly, the impact of the reaction of the regulation loop on the emittance can be calculated.

As already discussed, only the reaction of the main circuit of the triplet is considered here as it is

unclear how the flux jumps will affect the different circuits of the triplet.

In Fig. 3.8 the relative emittance growth produced by a one-turn change of 0.1·10−4 on the magnetic

field of the triplets at the left and right of IP1 is shown. This effect is significantly smaller than
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Figure 3.9: Decay of the emittance growth with the length in turns (N) of the flux jumps effect on the
magnetic flux itself, with an initial ∆ε1/ε of 8.8 · 10−6 for injection and 4 · 10−4 for β∗=1 m (average of the
values in Fig. 3.7). The clearer line shows the oscillating decay as shown on Eq. (3.11) and the darker line
shows the pessimistic envelope described in Eq. (3.12).

that produced by the flux jump on the magnetic field of each individual quadrupole, as already

shown in the measurements.

Figure 3.9 shows the results of Eqs. (3.11) and (3.12) for the emittance growth produced by the

flux jumps in the magnetic flux itself for a range of rise times of 46 ± 15 ms (341 to 670 turns)

taken from the measurements shown in Fig. 3.2.

Same results for the reaction of the regulation loop are shown in Fig. 3.10 for a range of rise times

58± 37 ms (231 to 1044 turns) as was presented in Fig 3.3.

For the worst-case scenario i.e. the shortest flux jumps using Eq. (3.12), an upper bound of the

emittance blowup caused in a 20 minutes ramp can be given. Table 3.1 and Table 3.2 show the

number of flux jumps needed to produce a 1% emittance growth and the emittance growth that

would be produced after a 20 minutes ramp at a flux jump rate of 4.4 events/s, for the flux jumps

effect in the magnetic field itself and for the reaction of the regulation loop respectively. These

results make the assumption that the flux jumps are equally likely and behave in the same way

during the whole ramp, which is again pessimistic.

Even after these pessimistic assumptions, the worst-case emittance growth during the ramp is about

a 0.1h assuming that IR1 and IR5 are equivalent, producing emittance growths in the vertical and

horizontal planes respectively.
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Figure 3.10: Same results as in Fig. 3.9 but for the reaction of the regulation loop. In this case the initial
∆ε1/ε (average of the values in Fig. 3.8) is 2.5 · 10−6 for injection and 1.2 · 10−4 for β∗=1 m, factor 4 lower
than for the previous effect. The larger spread of lengths causes the worst-case scenario of this effect to be
about 60% of the direct effect on the magnetic flux.

Optics Plane
N. of events for
1% ∆ε/ε [105]

∆ε/ε in 20 min
at 4.4 jumps/s [h]

Injection
Hor. 14238 0.00004
Ver. 206 0.00256

β∗=1 m
Hor. 324 0.00163
Ver. 4 0.11815

Table 3.1: Number of flux jumps in the magnetic field needed to get a 1% emittance blowup and emittance
growth in 20 minutes (approximate duration of an energy ramp) at a rate of 4.4 jumps/s rate for injection
optics and β∗=1 m.

Optics Plane
N. of events for
1% ∆ε/ε [105]

∆ε/ε in 20 min
at 4.4 jumps/s [h]

Injection
Hor. 26685 0.00002
Ver. 337 0.00157

β∗=1 m
Hor. 574 0.00092
Ver. 7 0.07572

Table 3.2: Number of reactions of the regulation loop to the flux jumps needed to get a 1% emittance
blowup and emittance growth in 20 minutes (approximate duration of an energy ramp) at a 4.4 events/s
rate for injection optics and β∗=1 m.
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Optics Magnet
Optics sensitivity

[σ/10−4]
Jump-induced

rms orbit [10−3σ]

Injection

Q1 < 0.01 < 2
Q2 0.01 2
Q3 < 0.01 < 2

Q1–Q3 0.01 2

β∗=15 cm

Q1 0.06 12
Q2 0.28 56
Q3 0.18 36

Q1–Q3 0.48 96

β∗=1 m

Q1 0.02 4
Q2 0.11 22
Q3 0.06 12

Q1–Q3 0.11 22

Table 3.3: R.m.s. closed orbit variation at HL–LHC TCPs under the effect of the expected flux jumps
for each half quadrupole composing the triplet (Q1; Q2; Q3) and for a whole triplet (Q1–Q3) computed in
units of beam sigma. The optics sensitivity in units of beam sigma per unit of magnetic field change is also
reported.

In view of these results, it is safe to assume that the flux jumps will not have a harming effect on

the emittance of HL-LHC.

3.3.2 Effect on the orbit and tune noise

Flux jumps in the HL-LHC triplet will produce a dipolar kick as seen before and therefore will

affect the beam orbit. The main concern is the orbit variation at the Primary Collimators (TCPs)

which could trigger a beam dump by the machine protection system, and therefore a considerable

loss of precious time for physics. Given the slow dynamics of the flux jump with respect to the

revolution frequency, a fair approximation is to assume that a flux jump induces a closed orbit

variation as if it would be generated by a constant kick equal to the magnitude of the flux jump.

Different machine optics have a different sensitivity to kicks generated in the triplet, where the

β functions vary considerably along the cycle. The two extreme cases considered here are the

injection optics and a fully squeezed round optics (15 cm β∗), together with the intermediate value

of 1 m β∗ corresponding to the end of the ramp and squeeze scheme. For all optics it is assumed a

295 µrad half crossing angle horizontal in IP1 and vertical in IP5. Table 3.3 lists the biggest (with

respect to plane and IP) orbit variation at the TCPs under a field error (in units of 10−4) of each

half-quadrupole in the triplet and for a whole triplet (Q1-Q3). The values are given in beam sigma

for the nominal normalised emittance of 2 5µm at 450 GeV (for the injection optics) and 7 TeV

(for the 1 m and 15 cm β∗ optics). This, multiplied by expected amplitude of the flux jumps of 0.2

units of 10−4, gives the expected flux-jump-induced orbit variation at the TCPs, also reported in

Table 3.3. Flux jumps are expected to appear more likely at low energy, i.e. for injection-like optics,

and they should stop once reached the top energy, i.e. once the optics has normally reached 1 m β∗.

For those two optics, and similarly for any intermediate one, the impact of a single flux jump in any

triplet half quadrupole is unlikely to give an orbit jump at the primary collimators able to trigger

a beam dump by the machine protection system. The worst case scenario when two flux jumps of

0.2 unit amplitude occurs at the same time on the two halves of Q2 would correspond to an orbit

jump at the collimators of about 4% of beam sigma. For comparison, in the unrealistic case where
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Injection β∗ = 1 m

< |∆Q| >[10−5] 1.3 7.8

Table 3.4: Average absolute tune error produced produced by flux jumps in each quadrupole of IR1 and
IR5.

Optics
Optics sensitivity

[σ/10−4]
Jump-induced

rms orbit [10−3σ]

Injection 0.02 4

β∗=15 cm 0.07 14

β∗=1 m 0.07 14

Table 3.5: R.m.s. closed orbit variation at HL–LHC TCPs under the effect of the expected flux jumps at
the 11 T dipoles computed in units of beam sigma. The optics sensitivity in units of beam sigma per unit
of magnetic field change is also reported.

a 0.2 unit flux jump occurs at the fully squeezed 15 cm β∗ optics on a Q2 half magnet, the r.m.s.

orbit variation at the primary collimators would be of 5.6% of beam sigma. Such a fluctuation is

considered to produce noticeable beam losses at collimators, but still unlikely to trigger a beam

dump. Therefore, the orbit variation induced by a flux jumps is expected to be harmless.

As for the tune noise, the average absolute effect per quadrupole can be calculated from Eq. (1.28)

as:

< |∆Q| >=
1

4πM

M∑
i=1

|βi∆kiLi|, (3.18)

where βi is the β-function at the ith quadrupole, ∆kiLi the integrated quadrupolar field error at

the ith quadrupole and M the number of quadrupoles producing errors. Assuming as before a ∆k/k

of 0.3 · 10−4, relative to the design strength of the quadrupoles, the effect for injection and β∗=1 m

optics for the tune of both planes is shown in Table 3.4. These number on the order of 10−5 are on

the level of the tune noise produced by the power supply current stability [74] and therefore they

will have no harmful effect in the HL-LHC.

3.4 The 11 T dipoles

During Long Shutdown 2 of the LHC, 4 dipoles (2 per side) using the Nb3Sn technology are planned

to be installed in the dispersion suppression collimators in IR7 and to be used operationally during

Run 3.

The effect of flux jumps in the dipolar field on the emittance as a one-turn kick is described by

Eq. (3.3). The β-function across these dipoles does not change with different optics configurations,

staying about 30 m. At 3.2 TeV energy, this one-turn emittance growth is ∆ε1/ε = 3 · 10−4 one

order of magnitude lower than the effect of the HL-LHC triplet, together with the fact that there

are only four 11 T dipoles per beam against 12 triplet quadrupoles in HL-LHC. Therefore, it can be

concluded that the effect of flux jumps in the 11 T dipoles in the emittance will also be negligible.

As for the orbit noise, an analysis similar to the one in the case of the triplet magnets can be

carried out. Table 3.5 lists the optics sensitivity and expected closed orbit variation at the primary

collimators under the effect of the expected flux jumps in the 11 T dipoles. As for the triplet
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case, the probability of inducing a beam dump with such an orbit oscillation is considered to be

negligible, even for the fully squeezed optics case.

3.5 Flux jumps in the FCC-hh

The theory developed in Sec. 3.2 has also been applied to the FCC-hh (Future Circular hadron-

hadron Collider) [22] as it will use the Nb3Sn magnet technology in all the 4672 main bending

dipoles. As the nominal dipole current in the FCC-hh will be 11.2 kA [22], the 2-3 kA region

(where most of the flux jump activity happens) will correspond in the FCC-hh to a beam energy

of about 8.9-13.4 TeV. Therefore, similarly to the case studied for the HL–LHC, this region of high

flux jump activity appears in the early energy ramp.

Studying the FCC dipoles the same way as in the previous section, it is found that at injection

optics and energy (3.3 TeV) the average one-turn emittance growth per dipole is about 4.6 · 10−4

relative to the FCC design normalised emittance of 2.2 µm. This effect is greatly amplified by the

large amount of dipoles producing flux jumps (4672 compared with 12 quadrupoles in the HL–LHC)

and the smaller revolution frequency of the FCC which will cause the flux jumps to take less turns

to rise to their full amplitude (92 turns for a 30 ms long flux jump).

The result of Eq. (3.12) at injection energy and optics raises to ∆εmax/ε = 1.3 · 10−4, being 75

flux jumps per individual dipole enough to produce a 1% emittance growth. Assuming the same

event rate (4.4 events/s) and ramp length of HL–LHC (20 minutes), the flux jumps during the FCC

energy ramp could cause about a 70% emittance growth. To these results will have to be added the

effect of any quadrupole being traversed with a non-zero orbit, as described in previous sections.

Nevertheless, to achieve the high field density needed in the FCC magnets, the use of Artificial

Pinning Centers (APC) is expected. By introducing ZrO3 particles (the APCs) into the Nb3Sn

strands, the Nb3Sn grain size is effectively reduced, allowing for almost a factor 2 increase on the

magnet critical current density. APCs have been observed to suppress the effect of flux jumps at

low fields due to reduced low-field magnetizations, as a result of shift in pinning force curve peak

to higher fields [75, 76].

In summary, in FCC-hh the effect of the flux jumps is likely to have an important impact on the

emittance of the beam during the energy ramp. Nevertheless, FCC-hh is going to present a much

stronger synchrotron radiation damping than LHC, thus, the interplay between the flux jumps

emittance growth and the radiation damping, together with the effect of APCs, should be carefully

studied in the future. Also, in view of these results, the impact on all beam parameters of the flux

jumps in both dipoles and quadrupoles should be carefully assessed for FCC-hh.

3.6 Summary

The effect of the flux jumps in the HL–LHC triplet quadrupoles and 11 T dipoles has been studied.

Measurements of the flux jump effect in the magnetic flux of the prototype of the 11 T dipole

have shown a relative magnetic flux error of (0.2 ± 0.1) · 10−4 with a rise time of 46 ± 15 seconds

(corresponding to 506±165 turns) and have been extrapolated to the HL-LHC triplet. Even in the

pessimistic scenario, up to 4 · 105 flux jumps per quadrupole would be required to produce a 1%

emittance growth. At a rate of 4.4 flux jumps per second, in a ramp of 20 minutes the emittance
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growth will be below 0.1h. The reaction of the regulation loop has been found weaker than the

effect on the magnetic flux itself. Therefore, the flux jumps effect on emittance and orbit should

not be considered harmful in the HL-LHC. The 11 T dipoles that are planned to be installed in

the LHC during Long Shutdown 2 will also use the Nb3Sn technology. The effect of flux jumps in

these dipoles on emittance is much smaller than the effect of the HL-LHC triplet quadrupoles, due

to the small horizontal β-function in the region, and can therefore be neglected too. For the same

reason, also the effect on closed orbit variation and consequent possibility of causing a beam dump

can be neglected.

However, for the FCC-hh main dipoles this effect cannot be neglected as the large number of main

dipoles with Nb3Sn technology and the lower revolution frequency are likely to increase the effect

of flux jumps to produce about a 70% emittance growth during the energy ramp, ignoring the flux

jumps in the quadrupoles and the effect of the radiation damping.

Therefore, flux jumps in the magnets using Nb3Sn technology are not a concern for LHC and

HL–LHC, but their effect should be carefully taken into account for future high-energy colliders.
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Chapter 4

OMC software development

A significant part of the results in this thesis has required the implementation of new features and

improvements in the Optics Measurements and Corrections (OMC) software suite [77, 78, 79].

Though this set of tools are used by the OMC team mainly to measure and correct the optics

of the LHC, it has also been applied to other machines. The analysis tools are collected under a

repository (Beta-Beat.src [80]) which contains several different stand-alone codes with a total of

about 48000 lines of code [79]. The developments within this thesis have focused on the following

codes:

• Drive [81] / SUSSIX [23]: a historically used tool for harmonic analysis of the turn-by-turn

data. SUSSIX is a FORTRAN [82] program that implements the Laskar [83] method that

will be introduced in Sec. 4.2. Drive is a wrapper of SUSSIX in C++ [84] whose task is to

read the turn-by-turn data, run SUSSIX for each BPM and write the output.

• Harpy: An alternative to Drive/SUSSIX written in Python [85] (see Sec. 4.2).

• GetLLM: A collection of Python routines that takes the harmonic analysis output and recon-

structs the optics of the machine, providing the phase advances, β-functions, coupling, etc.,

at each BPM.

• Segment-by-segment: Another Python script tasked with computing the local optics devia-

tions of the observables provided by GetLLM, as described in Sec. 1.7.

• Segment-by-segment match: The automatic matching routine implemented in Python. Takes

the local deviations computed by Segment-by-segment and computes an effective model of

the segments as described in Sec. 2.1.

• correct.py: Performs the global corrections described in Sec. 1.6.1.

Together with many other smaller routines, these programs import turn-by-turn data acquired in

the machine and produce optics functions and its corresponding corrections. Figure 4.1 shows a

diagram of the data flow across these tools.

These tools are usually not run manually in the console, but instead a Java [86] Graphical User

Interface (GUI) is used to handle the different inputs and outputs of the Python programs. This

GUI is used in the CERN Control Center (CCC) to perform on-line analysis of the machine optics

and allows plotting of the outputs of the different programs of Beta-Beat.src. Once the optics
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Figure 4.1: Diagram of the Beta-Beat.src analysis tools.

analysis is done and the corrections have been computed, the GUI can upload corrected settings

to the machine directly.

During the studies presented here, I leaded a thorough process of refactoring of these tools. The

data reading, cleaning and harmonic analysis scripts which were spread between Java and Python,

have become a single Python module “hole in one” which eases and speeds up the analysis until

this point. To achieve this, the BPM turn-by-turn data, in Self Describing Data Set (SDDS) [87]

format, have to be loaded directly in Python. These files are provided by the LHC control system

and consist of a plain text header that describes the structure of the data and a binary blob

containing the data itself. The loading of these SDDS files was performed in Java directly, which

then transformed the files into plain text format as input of Drive. With the development of Harpy,

this transformation was no longer necessary and I developed a SDDS loader in Python. This allows

for the turn-by-turn data to be passed directly from the loader to Harpy, making the analysis faster

and easier to maintain.

GetLLM, the Python tool used to obtain the optics functions from the harmonic analysis of the

turn-by-turn data, requires a model of the machine to compute the optics. These models contain the

design optics of the machine at each interesting point (typically BPMs) and are calculated using

MAD-X. The input files required to compute the models define the accelerator layout and the

magnets strengths and therefore are updated frequently. The process of configuring and running

these input files was done in the Java GUI. The addition of new models to the GUI was very

cumbersome and led to significant errors and delays when human mistakes where made during

these model changes. Therefore, we redeveloped this model creation system in Python using an

inheritance model. This system allows to make the minimum possible changes needed to add in each

new model, inheriting general properties of the accelerator. The “accelerator classes” developed to

achieve this, have become the input of most of the analysis scripts, making them able to run on

any accelerator (not only different LHC runs) by just implementing this class which contains very

basic, usually constant, information about the accelerator.

Another important development we introduced during these studies is the use of the Pandas [88]

library. This library is becoming the standard in data analysis in Python and makes the manipu-

lation of data organised in tables (dataframes) much easier. The input and output of most of the

programs of the Beta-Beat.src repository follow the output file format of MAD-X, the Table File

System (TFS) files [89]. A shortened example of a Twiss table provided by MAD-X is as follows:

@ DATE %08s "08/03/18"
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@ TIME %08s "14.36.25"

* NAME S BETX ALFX

$ %s %le %le %le

"BPMYB.5L2.B1" 28.288 148.0431582 1.991695361

"BPMYB.4L2.B1" 48.858 80.30065845 1.30157152

"BPMWI.4L2.B1" 73.3255 82.88352533 -0.4945766312

"BPMSX.4L2.B1" 123.4825 170.2734272 -1.247750499

"BPMS.2L2.B1" 161.394 63.60892316 -1.309565306

"BPMSW.1L2.B1" 171.328 56.92591778 2.164793505

This format fits almost perfectly the data structure provided by the Pandas dataframes. A TFS

file reader was therefore developed to load these files into Pandas. This has allowed a reduction of

many hundreds of lines on the Beta-Beat.src tools, as column-wise or row-wise operations, many

statistical functions and plotting functionalities are provided out of the box and do not have to be

programmed manually.

To ensure that the results of the analysis were unchanged during these modifications, we put in

place an automatic regression testing routine. On every upload to the repository, this routine copies

a specific version of the software which is known to work. Both versions of the software are put

through a battery of tests which compares automatically the results of both versions. If any change

is identified, the user is notified. This kind of tests are of great importance when making code

improvements that are not intended to change the results (refactoring) as the developer is ensured

that the code will be tested automatically in case any errors are made. This system detected several

bugs introduced involuntarily by different developers during the length of these studies.

In the next sections, two projects we developed during the frame of these studies are introduced.

4.1 The automatic local matching GUI

A GUI has been developed to ease the use of the automatic matching tool described in Sec. 2.1.

This GUI is written in Python which allows a direct communication with the rest of the OMC

analysis tools which are also mainly programmed in Python. This is among the first Python GUIs

used in the CCC at the time of its development. Nowadays, there is a significant effort to make

Python usage at the control centre to be at least on par with Java.

This tool has to take as input in a typical correction of the LHC local optics of each of the main

IRs: the phase deviations at each BPM for the two planes and the two beams and the measurement

of the β∗ (typically from K-modulation) in said IR also for both planes and both beams. All of

this has to be computed twice if back-propagation is used. This variety of measurement data is

hard to handle and to evaluate manually and the Segment-by-segment matching GUI aids visually

to try and test during these analyses. Figure 4.2 shows a screenshot of the main view of the GUI.

The GUI allows to add an arbitrary number of “matchers” to the analysis, which establish a set

of constraints and variables. All matcher constraints are evaluated simultaneously. The available

matcher types are:

• Phase: matches the local phase deviations of the segment measured at every BPM inside said

segment using as variables all quadrupolar knobs found in the segment.
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Figure 4.2: Screenshot of the Segment-by-segment matching GUI.

Figure 4.3: Screenshot of the matcher configuration screen of the Segment-by-segment matching GUI.

• β from amplitude: matches the β-beating w.r.t. the local model of the segment on the BPMs

where there is calibration data available. It uses as variables all the quadrupolar knobs in

the segment.

• β from K-modulation: same as β from amplitude but using the β-beating at the BPMs closest

to the IP measured by K-modulation.

• Coupling: matches the real and imaginary parts of the f1001 resonance driving term at every

BPM in the segment using all skew quadrupoles available in the segment, typically the two

inner triplet skew quadrupole correctors.

All of these matchers can be configured to either take into account the errorbars of the measurements

or not. If they are taken into account, a weight of 1/σ will be set to every BPM. The matchers

can also be configured to do the backwards propagation described in Sec. 1.7. Figure 4.3 shows the

configuration window for one of these matchers.

Once all the necessary matchers have been added, the GUI displays the measurements of the

corresponding deviations in several plots. A checkbox for every available variable will be shown

so the user can activate and deactivate them easily. Once the MAD-X matching routine is done,

the GUI colours the variables checkboxes according to how strong the computed trims are. These
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Figure 4.4: Diagram showing the position of the largest DFT coefficients and the actual peak of the DTFT.

found trims are then available in a text file to be put into the machine.

4.2 Harpy: turn-by-turn harmonic analysis in Python.

As it was mentioned in Sec. 1.6.1 the turn-by-turn data spectra is obtained using a specialised

harmonic analysis tool. This tool has historically been SUSSIX, developed in 1998 to be used

initially at the SPS and the LEP. This tool implements in FORTRAN a version of the Laskar

algorithm. The Laskar algorithm target is to reconstruct the largest frequencies contained in a

signal following an iterative method: The largest coefficient of the Discrete Fourier Transform

(DFT) of the signal is taken. As the input signal has a finite number of samples, the DFT is a

sampled grid over the continuous Discrete-Time Fourier Transform (DTFT) of the signal. The

peak value of the DTFT contains the most precise location of the main frequency of the signal and

it is located between the peak of the DFT and its two closest neighbours. SUSSIX uses the Newton

method to find the frequency, ν, with largest amplitude. Amplitude and phase of the peak of the

DTFT are computed at this frequency and stored in a complex variable R̂. From this coefficient

and frequency ν a pure signal x(t) is constructed as:

x(t) = R̂e2πiνt . (4.1)

This pure signal is then subtracted from the original to obtain a new signal. This new signal is

taken as the new input of the Laskar method. This process iterates until all the main frequencies

and coefficients of the signal are found. This set of coefficients and frequencies is used to reconstruct

the linear and non-linear optics of accelerators.

The development of SUSSIX programmed in FORTRAN, was basically halted due to the program

complexity, as any new features costed great effort. A new analysis tool, Harpy, has been developed

to overcome the development complications of SUSSIX. This tool implements the Laskar method

in Python [85] instead.

Python programs tend to run significantly slower than lower level languages like C++ or FOR-

TRAN. However, Harpy manages to achieve processing times equal or even faster than SUSSIX

by implementing the search of the peak of the DTFT using an interpolation function [90] which
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gives the position (δ̂) w.r.t. the frequency of the largest DFT peak where the frequency peak of

the DTFT is situated (Fig. 4.4):

δ̂ =
tan (π/N)

π/N
Real

(
Rk−1 −Rk+1

2Rk −Rk−1 −Rk+1

)
, (4.2)

where Rk is the coefficient of the DFT with maximum amplitude, Rk±1 are the coefficients con-

tiguous to the largest one and N is the number of samples.

The implementation of the Laskar method in this new harmonic analysis tool, takes few more than

15 lines of code in Python. The core function of the tool in Python (with Numpy [91]) is presented

here:

def laskar method ( samples , num harmonics ) :

n = len ( samples )

c o e f f i c i e n t s , f r e q u e n c i e s = [ ] , [ ]

for i in range ( num harmonics ) :

# Compute t h i s harmonic f requency and c o e f f i c i e n t :

d f t da ta = np . f f t . f f t ( samples )

# C a l l the Jacobsen i n t e r p o l a t i o n f u n c t i o n :

f r equency = jacobsen ( d f t data , (0 , len ( d f t da ta ) ) )

# Compute the Fourier c o e f f i c i e n t a t t h a t f requency

# ( in a s e p a r a t e f u n c t i o n ) :

c o e f f i c i e n t = compute coe f ( samples , f r equency ∗ n) / n

# Store f requency and ampl i tude :

c o e f f i c i e n t s . append ( c o e f f i c i e n t )

f r e q u e n c i e s . append ( f requency )

# S u b t r a c t the found pure tune from the s i g n a l :

new s igna l = \
c o e f f i c i e n t ∗ np . exp ( PI2I ∗ f r equency ∗ np . arange (n ) )

samples = samples − new s igna l

c o e f f i c i e n t s , f r e q u e n c i e s = zip (∗ sorted (

zip ( c o e f f i c i e n t s , f r e q u e n c i e s ) ,

key=lambda t : np . abs ( t [ 0 ] ) ,

r e v e r s e=True ,

) )

return f r e q u e n c i e s , c o e f f i c i e n t s
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This simplicity makes the harmonic analysis much easier to understand and eases the development

of new features. The development of this new tool allowed a deeper general understanding of the

harmonic analysis tools which has already triggered new studies like those in Ref. [24].

4.3 Summary

To perform the studies presented in this thesis, that relied on many Monte-Carlo simulations

(Sections 2.2, 2.3, 2.4.1) and large statistical analysis, usable and reliable software tools are of

critical importance.

During these studies there has been a significant effort on improving the tools used to measure and

correct the optics of accelerators. Many of the parts of the analysis that were done directly in the

operational Java tools have been moved to the Python side. This has allowed a much more flexible

interaction between the different pieces of this collection of tools, making the analysis of the data

also easier for the rest of the users, as the amount of users of Python in the community greatly

exceeds the users of other languages.

At the end of the studies presented in this memory, the full set of computations from turn-by-turn

data to local and global corrections can be performed exclusively in Python. The control system of

the LHC, the LHC Software Architecture (LSA), can only be accessed, at the time of writing the

present thesis, through a Java interface. Therefore, the direct communication with the machine in

Python is not yet possible and thus we still rely on Java GUIs to acquire turn-by-turn data and

perform K-modulations. In the future this could be solved by using bridge libraries like JPype [92].

A new Python GUI, among the first to be used in the CCC, has been developed. This GUI allows

for online automatic calculation of local corrections in the LHC. The tool shows the results of the

automatic local matching, allowing the users to quickly and easily add and remove constraints and

variables. This tool has been used operationally many times during the Run 2 of the LHC.

A variant of the Laskar method has been also implemented in Python. This has allowed to start

abandoning the old FORTRAN program that served the same purpose and start using a new tool

that can be developed with the available human expertise, unlocking the development of this part

of the analysis. This new implementation also achieves a similar or better performance than the

old one, thanks to the use of a fast interpolation method.

Finally, I would like to highlight the importance of software quality in Physics. This is often

neglected in the field as the analysis tools are developed with the single purpose of achieving a very

specific task as fast as possible, ending up in many occasions with a disjoint set of programs. If

no effort is put into the quality of these programs, future users typically see them as black boxes

which very heavily hinders their development.

The availability of simple and reliable tools not only makes the analysis simpler, but also moti-

vates new developments. Specifically, the progress presented in this chapter triggered many later

improvements, some of which were motivated just by refactoring and rewriting of previous codes

that were too hard to understand and which developers were unwilling to change.
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Chapter 5

Summary of main results and Outlook

The studies presented in this thesis had a strong impact on the design of the future HL-LHC and will

define its commissioning strategy. An automatic local optics matching routine has been developed,

capable of computing automatically optics corrections for strong localised sources of errors thus

replacing manual optics matching. When correcting the local optics of LHC interaction regions,

the routine is capable of using for both beams and both planes the measured phase deviations and

the β∗ from K-modulation. This tool can also be used to correct the localised sources of betatron

coupling produced in the interaction regions, taking into account the real and imaginary parts of

the f1001 resonance driving term.

The automatic matching routine has been used to perform Monte-Carlo simulations of the HL-

LHC expected field error in the new triplet quadrupoles, demonstrating how the algorithm is

able to correct the β∗ down to the K-modulation uncertainty level. These studies show that

in achieving the project performance of HL-LHC and avoiding intolerable luminosity imbalances

between ATLAS and CMS, the limiting factor (from the beam optics point of view) is the precision

of the measurement of the β∗.

In the thesis the potential of K-modulation, the currently used technique to measure β∗, has been

explored. K-modulation has shown erratic results during Run 2 of the LHC, and it is not expected

to reach the required precision in HL-LHC in its current form. Some improvements made to

approach the required precision level have been explored, mainly with the redesign of the HL-LHC

triplet powering circuit, allowing for better compensation of the tune noise, adding a new trim in

the first half of Q1 which improves the precision of K-modulation a factor 2, and removing the

superfluous trim in one of the halves of Q2 which will help save resources in the construction of

HL-LHC. The possibility of using the tune feedback system to compensate the tune changes during

the modulations allowing for larger modulation amplitudes also has been explored. It has been

demonstrated experimentally that the tune feedback system is not yet ready for this, presenting

technical issues that make this approach unfeasible. With all this, K-modulation is still factor 2

away from the precision necessary to keep the luminosity imbalance between ATLAS and CMS

below 5%.

Monte-Carlo simulations of the betatron coupling produced by the HL-LHC quadrupole tilts and

its corrections using the skew quadrupoles in the interaction regions have also been performed.

This allowed to prove that, as far as the average tilt of the triplet is within ±1mrad, there is a

large strength margin in this correctors and therefore their strength can be reduced by a factor of

2, while still keeping a factor 2 margin in strength in case one of the skew quadrupoles breaks.
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As an alternative to K-modulation, two new complementary techniques have been theoretically and

experimentally explored.

The first of them consists in using the phase-advance across the IP to compute the β-function at

the beam waist. However, it has also been demonstrated that this technique is blind to the position

of the beam waist. It has been shown that the normal BPM electronics are not precise enough in

the measurement of the phase-advance to be a feasible alternative to K-modulation. However, the

BPMs closest to the IPs are equipped with the DOROS electronics, which has been experimentally

proved to provide a measurement of the phase-advance across the IP a factor 3 better in the LHC.

The measurement of the DOROS system has been theoretically extrapolated to squeezed HL-LHC

optics configurations and still provide a measurement of the β-function at the beam waist accurate

enough to control the luminosity imbalance to the required levels.

The idea of the second explored technique is to measure the position of the beam waist with

luminosity scans using beam waist shifts. The theoretical framework of the behaviour of the

luminosity under changing beam waist has been developed, showing how this technique can be

used to measure the position of the beam waist but that it is blind to the value of the β-function

at the waist itself. This technique has been experimentally used in the LHC to measure the beam

waist, the first use of this type of scans in a machine with safety concerns. After an extensive data

processing, documented in the thesis, the luminosity scans provided a more precise measurement of

the waist position than the latest results of K-modulation for the same optics configuration. This

conclusion is based in one single luminosity scan per beam and therefore this experiment must be

repeated in the future to gain statistics.

These two techniques together provide a full alternative to K-modulation, but will require modifica-

tions in the LHC commissioning flow, as the luminosity scans can only be performed with intense

enough beams to precisely measure the luminosity and therefore the machine should be safe to

operate with such beams before these measurements are performed.

An exceptionally high β-beating in one of the LHC arcs, that seemed uncorrectable using the

traditional optics correction techniques, was observed during a machine development test in the

LHC with flat optics using the ATS optics scheme. In this thesis it has been proven that the

source of this high β-beating is a localised error in the arc, enhanced by the large β-function in

the arcs produced by the ATS optics scheme. This new type of error could not be corrected with

quadrupole magnets because of the lack of individually powered correctors in the region. As an

alternative, a knob was designed, which produces an orbit bump across the arc sextupoles and

therefore produces a quadrupolar effect via feed-down. The knob has been experimentally tested

with success in the LHC. In the HL-LHC the ATS optics scheme is going to be used in an even

more pushed configuration and therefore it is likely that this new type of corrections are going to

be necessary.

The new HL-LHC triplet is going to use the Nb3Sn superconductor technology allowing for an

increase of the magnetic field strength of about 50%. Measurements of the magnetic field in

prototypes of the new quadruples have shown that these new technology is susceptible to flux-

jumps, which can cause sudden changes of the magnet current and therefore on the field seen

by the beam. In this thesis a statistical analysis of these measurements has been performed and
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concrete values of the magnitude and length of these events have been obtained. Both the effect of

the flux jump in the current itself and the reaction of the current regulation loop have been studied,

concluding that the effect of the flux jump in the current dominates. Results of the theoretical

analysis of the effect of this change of current on the beam emittance, orbit and tune are presented.

Assuming always conservative error bars in the measurements of the flux jumps in the prototypes,

it has been found that the emittance would only grow about 0.1h in the typical ramp of the

HL-LHC. The effects on the orbit and noise have also been found to be negligible.

For the FCC-hh though, as all the dipoles are projected to use the Nb3Sn technology, flux jumps

can cause about a 70% increase of emittance during the typical energy ramp. Therefore, flux jumps

have been proven not to be a concern in current or near future colliders, but can become a serious

problem in future accelerators when the Nb3Sn technology is more widely used.

In order to meet the necessity to perform the large volume of simulations of the thesis studies many

of the software tools used by the Optics Measurements and Corrections team of the LHC have been

intensively refactored and many improvements and new features have been added. The use of the

Pandas library has been introduced to the team, reducing the length and complexity of many of the

programs. An automatic regression testing system has also been developed, which has prevented

the introduction of many errors during Run 2.

The full analysis of the turn-by-turn data to obtain a measurement of the optics, that used to be

spread among Java, FORTRAN/C++ and Python, can now be fully performed in Python, allowing

faster analysis and more automatic analysis. This includes the generation of models of different

machines from Python, using a generic class structure that makes porting the tools to other LHC

runs or even other accelerators significantly easier.

A new GUI written in Python has been developed to ease the use of the automatic matching

routine. This GUI is among the first Python GUIs to be used operationally in the CERN Control

Centre. It allows to rapidly produce and test different local corrections and has been extensively

used during LHC Run 2.

A new implementation of the Laskar method written in Python, Harpy, has been developed. This

new implementation is significantly simpler than the old FORTRAN/C++ program, which has

opened the door to later studies that improve the harmonic analysis performance and accuracy. It

can achieve a performance similar or better to the old FORTRAN program by using fast interpo-

lation methods.

5.1 Closing remarks and future work

The results presented in this thesis address the challenges that have risen over time in order to

control the beam optics and emittance in the LHC and those expected in the HL–LHC as the β∗

are pushed to lower values. As it has been shown, the control of these parameters is critical to

guarantee the safety and performance of the particle accelerator. Future colliders are expected to

push the β∗ even lower and therefore the results presented here will be of increasing importance

over time.

The new techniques, βw from phase-advance across the IP and luminosity scans, are the only

available complement to K-modulation, which has been shown here to not be accurate enough to
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ensure future colliders performance. Also, the orbit bumps in sextupoles are the only feasible way

of correcting arc local errors. Therefore it is of critical importance that these methods are further

explored in future studies and that they are streamlined to make them leap from experimental

techniques to fully operational tools, integrated with the automatic local optics correction tool also

described here.

The effects of the flux jumps presented in this thesis are the result of the first measurements of this

effect on prototypes of LHC magnets using the Nb3Sn technology, but the theoretical framework

has been provided to extrapolate these results to measurements on the final production magnets.

Therefore, this investigation must be updated in the future when more flux jump data is available.

The software developments shown here have also kick-started the effort to improve the quality of the

tools used to perform optics measurements and corrections and have triggered new studies. This

effort still continues and will prevent future errors in such important analyses for the performance

of accelerators.

In summary, this thesis sets the path for local optics control in current and future particle colliders,

demonstrating the challenges and providing solutions in this area and sets the theoretical framework

and first results on the effects of flux jumps, while demonstrating the importance of software quality

in this branch of science.
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Abbreviations

AC-dipole Alternating Current Dipole.

ALICE A Large Ion Collider Experiment.

APC Artificial Pinning Centers.

ATLAS A Toroidal LHC ApparatuS.

ATS Achromatic Telescopic Squeeze.

BPM Beam Position Monitor.

CCC CERN Control Center.

CERN European Organization for Nuclear Research.

CMS Compact Muon Solenoid.

DFT Discrete Fourier Transform.

DOROS Diode ORbit and OScillation.

DTFT Discrete-Time Fourier Transform.

FCC Future Circular Collider.

GUI Graphical User Interface.

HL-LHC High Luminosity LHC.

IP Interaction Point.

IR Interaction Region.

LEP Large Electron–Positron.

LHC Large Hadron Collider.

LHCb Large Hadron Collider beauty.

LSA LHC Software Architecture.

MD Machine Development.

OMC Optics Measurements and Corrections.

RDT Resonance Driving Term.
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SDDS Self Describing Data Set.

SPS Super Proton Synchrotron.

SVD Singular Value Decomposition.

TCPs Primary Collimators.

TFS Table File System.
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[69] D. Boussard, W. Höfle, and T. P. R. Linnecar, The LHC Transverse Damper (ADT) Per-

formance Specification, Tech. Rep. SL-Note-99-055-HRF, CERN, Geneva, Mar 2000. url:

http://cds.cern.ch/record/702559.

[70] L. Fiscarelli, Measurements and analysis of flux jumps. Presented in the 144th HiLumi WP2

meeting, Mar 2019. url: https://indico.cern.ch/event/803396/.

88

http://dx.doi.org/10.22323/1.340.0228
https://indico.cern.ch/event/686555/contributions/2962552/attachments/1681111/2700857/ichep2018_KEK_A.Morita.pdf
https://indico.cern.ch/event/686555/contributions/2962552/attachments/1681111/2700857/ichep2018_KEK_A.Morita.pdf
https://cds.cern.ch/record/2289680
https://cds.cern.ch/record/2733019
http://dx.doi.org/10.1088/1748-0221/13/07/P07017
http://cds.cern.ch/record/2677054
http://cds.cern.ch/record/2677054
https://cds.cern.ch/record/2275964
http://dx.doi.org/10.1109/TASC.2013.2284970
http://dx.doi.org/10.1109/TASC.2007.898447
http://dx.doi.org/10.1109/TASC.2007.898447
https://doi.org/10.1007/BF01504252
http://dx.doi.org/10.1007/BF01504252
http://dx.doi.org/10.1007/BF01504252
http://cds.cern.ch/record/702559
https://indico.cern.ch/event/803396/


[71] M. Martino, P. Arpaia, and S. Ierardi, Impact of Flux Jumps on High-Precision Powering of

Nb3Sn Superconducting Magnets, Proc. 10th Int. Particle Accelerator Conf. (IPAC’19) (2019),

pp. 1338–1340. url: doi:10.18429/JACoW-IPAC2019-TUPMP040.

[72] M. Martino, Progress on: Impact of Flux Jumps of Nb3Sn Magnets on Power Converter

Performance. Presented in the 144th HiLumi WP2 meeting, Mar 2019. url: https://

indico.cern.ch/event/803396/.

[73] E. Metral, S. Antipov, F. Antoniou, R. B. Appleby, G. Arduini, J. Barranco Garcia,

P. Baudrenghien, N. Biancacci, C. Bracco, R. Bruce, X. Buffat, R. Calaga, L. R. Carver,

E. Chapochnikova, M. P. Crouch, R. De Maria, S. Fartoukh, D. Gamba, M. Giovannozzi,

P. Goncalves Jorge, W. Hofle, G. Iadarola, N. Karastathis, A. Lasheen, T. Mastoridis, L. E.

Medina Medrano, A. Mereghetti, D. Mirarchi, B. Muratori, P. S. Papadopoulou, Y. Papa-

philippou, D. Pellegrini, T. Pieloni, S. Redaelli, G. Rumolo, B. Salvant, M. Solfaroli Camillocci,

C. Tambasco, R. Tomas Garcia, and D. Valuch, Update of the HL-LHC operational scenarios

for proton operation (2018). url: https://cds.cern.ch/record/2301292.

[74] D. Gamba, G. Arduini, M. Cerqueira Bastos, J. M. Coello De Portugal Martinez Vazquez,

R. De Maria, M. Giovannozzi, M. Martino, and R. Tomas Garcia, Beam dynamics requirements

for HL-LHC electrical circuits, Tech. Rep. CERN-ACC-2017-0101, CERN, Geneva, Dec 2017.

url: https://cds.cern.ch/record/2298764.

[75] X. Xingchen, X. Peng, M. Rochester, J. Sumption, and J. Lee, Opportunities and Challenges

with APC Nb3Sn, presented at the 22nd joint Cryogenic Engineering Conference and Interna-

tional Cryogenic Materials Conference (CEC-ICMC 2019) (2019).

[76] X. Xu, M. D. Sumption, and X. Peng, Internally oxidized nb3sn strands with fine

grain size and high critical current density, Advanced Materials 27 (2015), pp. 1346–

1350. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201404335, doi:

10.1002/adma.201404335.

[77] R. Tomás et al., Prospects for the lhc optics measurements and corrections at higher energy,

Proc. 5th Int. Particle Accelerator Conf. (IPAC’14) (2014), pp. 1046–1048. url: doi:10.

18429/JACoW-IPAC2014-TUPRO018.

[78] J. Coello de Portugal, F. Carlier, A. Langner, T. Persson, P. K. Skowronski, and R. Tomás,

OMC Software Improvements in 2014, Proc. 6th Int. Particle Accelerator Conf. (IPAC’15)

(2015), pp. 426–429. url: doi:10.18429/JACoW-IPAC2015-MOPJE056.

[79] R. Tomas et al., Lhc optics measurement and correction software progress and plans, Proc.

10th Int. Particle Accelerator Conf. (IPAC’19) (2019), pp. 2773–2776.

[80] OMC Team, OMC Beta-Beat.src, GitHub . url: https://github.com/pylhc/Beta-Beat.

src.git.
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[83] J. Laskar, C. Froeschlé, and A. Celletti, The measure of chaos by the numerical analysis of

the fundamental frequencies. application to the standard mapping, Physica D: Nonlinear Phe-

nomena 56 (1992), pp. 253 – 269. url: http://www.sciencedirect.com/science/article/

pii/016727899290028L, doi:https://doi.org/10.1016/0167-2789(92)90028-L.

[84] B. Stroustrup, The C++ programming language, Pearson Education India, 2000.

[85] G. Van Rossum and F. L. Drake Jr, Python reference manual, Centrum voor Wiskunde en

Informatica Amsterdam, 1995.

[86] K. Arnold, J. Gosling, and D. Holmes, The Java programming language, Addison Wesley

Professional, 2005.

[87] M. Borland and R. Soliday, “application programmer’s guide for sdds version 1.5”, APS LS

Note . url: http://ops.aps.anl.gov/asd/oag/manuals/sdds/SDDS.html.

[88] The pandas development team, pandas-dev/pandas: Pandas, Feb. 2020. url: https://doi.

org/10.5281/zenodo.3509134, doi:10.5281/zenodo.3509134.

[89] A. Belk, P. Defert, P. Hofmann, and R. Keyser, TFS version 3.1 Table file system reference

guide. Technical Notes - 1991. url: http://cds.cern.ch/record/91632.

[90] C. Candan, A method for fine resolution frequency estimation from three dft samples, IEEE

Signal Processing Letters 18 (2011), pp. 351–354.

[91] S. van der Walt, S. C. Colbert, and G. Varoquaux, The numpy array: A structure for efficient

numerical computation, Computing in Science Engineering 13 (2011), pp. 22–30.

[92] JPype, GitHub . url: https://github.com/jpype-project/jpype.git.

90

http://www.sciencedirect.com/science/article/pii/016727899290028L
http://www.sciencedirect.com/science/article/pii/016727899290028L
http://dx.doi.org/https://doi.org/10.1016/0167-2789(92)90028-L
http://ops.aps.anl.gov/asd/oag/manuals/sdds/SDDS.html
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.5281/zenodo.3509134
http://cds.cern.ch/record/91632
https://github.com/jpype-project/jpype.git

	 Introduction 
	Beam optics
	Beam emittance

	 Collider performance 
	Optics perturbations
	Betatron coupling
	 Beam momentum deviation 

	LHC accelerator complex and the HL-LHC
	The new quadrupole triplet of the HL-LHC
	 The ATS optics scheme 

	 The FCC-hh 
	Global optics measurements and corrections in the LHC
	 Optics measurements in the LHC 
	 Global optics corrections in the LHC 
	 Coupling corrections in the LHC 

	Local optics Corrections in the LHC
	Local phase correction
	beta* measurements and corrections
	K-modulation


	 Local optics corrections in the HL–LHC 
	 Automatic local optics corrections 
	beta* corrections performance in the HL-LHC
	 Triplet tilt tolerances in the HL-LHC 
	 K-modulation issues 
	 HL-LHC circuit redesign 

	 beta waist from phase-advance 
	 The DOROS BPM system 

	 Luminosity scans 
	 Experimental validation of the luminosity scans 

	 Local arc corrections with orbit bumps 
	 Summary 

	 Flux jumps in future colliders 
	 Flux jump measurements 
	 Error in the magnetic field 
	Reaction of the feedback regulation loop

	 Emittance growth 
	 Dipolar effect 
	 Quadrupolar effect 

	 The HL–LHC triplet 
	 Effect on the emittance 
	 Effect on the orbit and tune noise 

	 The 11 T dipoles 
	 Flux jumps in the FCC-hh 
	 Summary 

	OMC software development
	The automatic local matching GUI
	Harpy: turn-by-turn harmonic analysis in Python.
	Summary

	 Summary of main results and Outlook 
	Closing remarks and future work

	Abbreviations
	Bibliography

