
XYZ Monitor: IoT Monitoring of Infrastructures
using Microservices

Marc Vila1,2, Maria-Ribera Sancho1,3, and Ernest Teniente1

1 Universitat Politècnica de Catalunya, Barcelona, Spain
{marc.vila.gomez,maria.ribera.sancho,ernest.teniente}@upc.edu

2 Worldsensing, Barcelona, Spain
mvila@worldsensing.com

3 Barcelona Supercomputing Center, Barcelona, Spain
maria.ribera@bsc.es

Abstract. One of the main features of the Internet of Things (IoT)
is the ability to collect data from everywhere, convert this data into
knowledge, and then use this knowledge to monitor about an undesirable
situation. Monitoring needs to be done automatically to be practical
and should be related to the ontological structure of the information
being processed to be useful. However, current solutions do not allow to
properly handle this information from a wide range of IoT devices and
also to be able to react if a certain value threshold is exceeded. This is the
main purpose of XYZ Monitor, the system we propose here: to monitor
IoT devices so that it can automatically react and notify when a given
alarm is detected. We deal with alarms defined by means of business rules
and allow setting ontological requirements over the information handled.

Keywords: IoT · Monitoring · API · Microservices · Framework

1 Introduction

Several authors recognize the IoT to be one of the most important developments
of the 21st century [14]. According to them, the IoT represents the most exciting
technological revolution since the Internet because it brings endless opportuni-
ties and impact in every corner of our planet. IoT devices are used as human
consumables such as wearables or health trackers; but they are also key to the
success of industrial applications such as Smart Cities, Industry 4.0, Smart En-
ergy, Connected Cars or Healthcare. I.e., almost all industrial environments are
currently highly dependant from the IoT.

IoT devices and systems are intended to collect and process data from the
least expected places, and its expansion is allowing to operate sensors in a
wide range of applications; energy management, mobility, manufacturing, Smart
Cities [18] or healthcare, where there is the need of services able to monitor the
medical condition of a patient [7]; or even operated in private use at home, for
example to monitor the home safety.

Thus, one of the inherent capabilities of such IoT systems is the ability to
automatically monitor the information associated to the raw data they are pro-

Vila, M.; Sancho, M.-R.; Teniente, E. XYZ Monitor: IoT monitoring of infrastructures using microservices. A: Workshop on Smart
Data Integration and Processing on Service Based Environments. "Service-Oriented Computing, ICSOC 2020 Workshops: AIOps,
CFTIC, STRAPS, AI-PA, AI-IOTS, and satellite events: Dubai, United Arab Emirates, December 14-17, 2020: proceedings". Berlín:
Springer, 2020, p. 472-484. ISBN 978-3-030-76352-7. The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-76352-7_43

2 M. Vila et al.

cessing. This has to be achieved by transforming raw data into relevant knowl-
edge of the system domain, and then specifying conditions over this knowledge,
referred to as alarms, that allow identifying and handling undesirable situations.

Microservices are in the core of providing a solution for such monitoring sys-
tems. It is an architectural style which promotes developing an application “as
a suite of small services, each running in its own process and communicating
with lightweight mechanisms with the others” [6]. There is a need for managing
IoT platforms through microservices-based architectures to facilitate IoT devel-
opment in itself, improving scalability, interoperability and extensibility [17].

This is particularly important when automatic IoT monitoring is concerned,
since microservices and IoT share a lot in common in terms of architectural
goals [3]. However, to our knowledge, previous work used to assume monolithic
architectures [7,8,11], without taking into account all the benefits of a microser-
vices orientation. An exception can be found in [4], which implements a service-
oriented architecture (SOA) for monitoring in agriculture; and in [10] that defines
microservices architecture about security monitoring in public buildings.

Summarizing, we can see that previous proposals dealing with microservices,
monitoring and IoT consider only very specific domains, and are intended to
monitor a certain data, from a particular sensor to achieve a single given re-
sponse. I.e., they are tailor-made and there is no general purpose domain inde-
pendent proposal.

Our work is related to the industrial research and innovation at Worldsensing
(www.worldsensing.com), which focuses on the monitoring of industrial environ-
ments through IoT systems. In this sense, one of the company’s main goals is to
develop a generic environment (assuming different device types and data from
different providers) able to monitor systems and alarms, as defined through cus-
tomizable business rules, and based on a microservices architecture. This is, in
fact, the main contribution of this paper. The system we have developed, called
XYZ Monitor, is Open Source, easy to use and applicable to different domains.

2 Related Work

We distinguish between IoT in monolithic and microservice architectures, and
monitoring in IoT in both architectures.

2.1 IoT in Monolithic Architectures

In these architectures, systems are built, tested, and deployed as one large body
of code, as a unique solution [12]. This is the classical way of building applications
in software deployments. Everything is unified and, thus, there is no modularity.

Among the relevant work in this area we may find [5], which focuses on a
Service Oriented Middleware; [2] which designs a Service Oriented Architecture
(SOA) for wireless sensor networks; and [15] that expands the SOA concept
with cloud-based Publish/Subscribe Middleware and also implements the Web
of Things (WoT) concept.

www.worldsensing.com

XYZ Monitor: IoT Monitoring of Infrastructures using Microservices 3

The main drawback of these solutions is that of successfully handling IoT
environments which are increasingly complex, with many kinds of devices that
are heterogeneous as far as their use and operation. Monolithic systems have their
main limitations here. Everything is linked, if there is a change, improvement or
correction to make, even if it is minimal, the whole system has to be deployed,
tested and restarted. If one part of the system stops working, it is very likely that
the whole system will stop working. Moreover, their reusability is very limited.

2.2 IoT in Microservice Architecture

The microservice architecture emerged as a solution to overcome previous draw-
backs [12]. In this architecture, systems are developed as a set of self-contained
components, or loosely coupled services, also called microservices. Each microser-
vice encapsulates its logic to implement a single business function, and commu-
nication is done through web interfaces (APIs). This approach has contributed
to improved fault isolation, simplicity in understanding the system, technology
flexibility, faster technical deployments, scalability, and reusability [13].

Several works are intended to provide IoT solutions through a microservice
architecture. [9] explores how the service-oriented architecture paradigm may
be revisited to address challenges posed by the IoT for the development of dis-
tributed applications. [3] investigates patterns and best practices used in mi-
croservices and analizes how they can be used in the IoT. [17] proposed an
architecture of a microservice based middleware, to ensure cohesion between
different types of devices, services and communication protocols. [1] proposes
a modular and scalable architecture based on lightweight virtualization, with
Docker. [16] proposes an open microservice system framework for IoT applica-
tions. [19] provides an environment to transform automatically functionalities
from IoT devices to a Service Oriented Architecture based IoT services.

2.3 Monitoring in IoT

Some proposals have also been devoted to monitoring on IoT. [7] discusses the
integration of IoT devices for health monitoring. [8] extends the previous concept
to include safety protocols for data transmission also in healthcare. [11] proposes
an IoT-based solution to monitor Smart Cities environments. However, all these
proposals are based on monolithic architectures.

Moving to non-monolithic architectures, [4] implements a SOA for monitor-
ing in agriculture; while [10] develops a microservice based architecture for a
monitoring system to improve the safety of public buildings. It is worth noting
that both applications are very domain-specific and that they handle only very
concrete devices.

Summarizing, the use cases are very specific. Input elements to the systems
are very limited, only certain devices are available. And once the data is in
the system, it follows a closed monitoring flow. They include a business rules
with notification system. But, this is also closed to modifications and cannot be
changed externally.

4 M. Vila et al.

3 XYZ Monitor System Overview

Our goal is aimed at overcoming the limitations of previous proposals. With
this purpose, we have built the XYZ Monitor system, which is able to monitor
data from different IoT devices and reporting if certain conditions over this data
are met. Input data is generic and extensible to changes to support different
elements. IoT devices communicate with the system via HTTP calls, through
APIs. Once the data is in the system, it is analyzed and monitored. If the user
has specified an alarm by means of a business rule, it will be monitored by
sending notifications to an email address indicated in the system. XYZ Monitor
relies on a microservices architecture, with the advantages that this entails.

XYZ Monitor gets the input of data from the devices themselves since we nat-
urally assume that the real-world objects, sensors and devices can autonomously
infer their state and submit this information to the service. This is a feasible as-
sumption in the context of the IoT, where environmental data can be collected
by the objects, which can then infer their own state.

Once in the system, this data will serve us to monitor the behaviour of the
devices and also to activate alarms if certain conditions over the data are met.

3.1 Conceptual Overview

The workflow of our proposal is summarized in Figure 1. Initially, the Data Col-
lection component receives information inputs from the different devices. These
devices are onboarded in the Data Management system by the user. These data
can be visualised on the platform itself as passive monitoring, Monitoring com-
ponent. At the same time that the data is being received, the system, performs
Data Analysis. This is done through business rules, predefined by the platform
user, it is also called alarm monitoring. When an alarm occurs, i.e. a business
rule detects that something is not right, like a value out of range, the system
warns through the Notification component, automatically.

Fig. 1. Workflow of our proposal

One of the main features of our system is its ability to handle alarms that
are defined by means of business rules, specified over the conceptual ontology
of the information handled. This conceptual ontology is defined in Figure 2. We
use UML in the figure because it is a widespread language and because it allows
abstracting the concepts of interest from its technological implementation.

XYZ Monitor: IoT Monitoring of Infrastructures using Microservices 5

Fig. 2. Ontology of the information handled by XYZ

An event is an input of data sent by an IoT device to our system. We assume
two different types of events, although our proposal is easily extensible by as-
suming additional subclasses of events with different types. A device is the smart
object intercepting the events (such as a sensor or a thermometer). Each device
has a location in coordinates format or it is named with a label. A device belongs
to a device category which manages it and serves to indicate what type of events
that device is sending. Finally, a business rule (also called alarm) allows stating
a complex condition to be monitored over the data stored by means of a query
and also notify to whoever has been determined in the system.

3.2 Architectural Overview

Our system has been designed to operate through a microservices architec-
ture. Each functional module is isolated and communicates with each other over
HTTP interfaces. This architecture is specified in Figure 3.

Fig. 3. Microservice architecture of our proposal

When a user or an IoT device wants to communicate with our system, our
API Gateway will be in the front-line. An API Gateway takes all the HTTP
requests from a client determines which services are needed and then routes
them to the appropriate microservice. It translates between web protocols and
web-unfriendly protocols, used internally. Among the existing, Netflix Zuul,

6 M. Vila et al.

Kong, Apache Apisix, etc., we have chosen Kong (https://konghq.com/kong/),
an Open Source Software, simple to configure, it works well and meets our needs.

Among the existing OSS data visualization systems for monitoring, e.g.
Kibana, Prometheus, Grafana or Chronograf, we decided to use Grafana (https:
//grafana.com) because it is easy to use and fits well with most types of IoT
data we are dealing with. We are able to have a monitoring and visualization
system with the data reported by the devices.

Our system incorporates an element that allows it to react to certain circum-
stances. Node-Red (https://nodered.org), its OSS, and permits creating flows
for actions through custom JavaScript functions. Within this system we have
created a flow to check these circumstances or business rules.

Also a frontend has been developed in React (https://reactjs.org), which
is an OSS JavaScript framework. The backend is done with Flask (https://
flask.palletsprojects.com), an OSS micro framework in Python. As database,
PostgreSQL (https://postgresql.org) is used, an OSS object-relational database.

The system architecture has been deployed under microservices by the means
of Docker (https://docker.com) and Docker-compose (https://docs.docker.com/
compose/). Docker is an open source project providing a systematic way to
automate the faster deployment of Linux applications inside portable containers.

4 Proposal in a nutshell

4.1 Data Collection

Our system is easily extensible. Therefore, to exemplify its input we have chosen
to distinguish between two types of inputs available for the system. If the user has
the need to add another type of input, it can be done easily. This is why all input
elements have a superior element, which generalizes their values. More precisely,
XYZ Monitor is able to handle two types of possible elements: EventA and
EventB, respectively. Both kind of inputs are specializations of input type Event,
which is a communication trigger that is the base type for a device reading.

Events An Event includes the information of the device to which the data is
being input (device name), and also the date of sample collection (datetime); but
it does not have the ability to know what value that sample has. The value of the
sample is obtained from the classes inherited from Event. Which can be EventA
or EventB. For this, an API (/api/events) has been developed to gather Events
sent to the system. It is defined following the JSON Schema 4 specification:

Listing 1.1. Event JSON Schema simplification

1 "event": {
2 "type": "object",
3 "properties": {
4 "device_name": {
5 "type": "string",
6 "$ref": "#/ definitions/device/properties/name"
7 },

4 JSON Schema - A Media Type for Describing JSON Documents: https://tools.ietf.
org/html/draft-handrews-json-schema-01

https://konghq.com/kong/
https://grafana.com
https://grafana.com
https://nodered.org
https://reactjs.org
https://flask.palletsprojects.com
https://flask.palletsprojects.com
https://postgresql.org
https://docker.com
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://tools.ietf.org/html/draft-handrews-json-schema-01

XYZ Monitor: IoT Monitoring of Infrastructures using Microservices 7

8 "datetime": {
9 "type": "string",

10 "format": "date -time",
11 "example": "2020-04-01T10:54:03+00:00"
12 }
13 },
14 "required": ["device_name", "datetime"] }

EventA is an input value in the form of a string, i.e. it can be any alphanumeric
element. For example, ”heat”, ”1.0”, ”1”, etc.

Listing 1.2. EventA JSON Schema simplification

1 "event_a": {
2 "type": "object",
3 "allOf": [{ "$ref": "#/ definitions/event" },
4 { "properties": {
5 "value": {
6 "type": "string",
7 "example": "1"
8 }
9 },

10 "required": ["value"] }] }

EventB events are defined in a similar way, but the input value that is in the
form of a number, so it can have numerical values, even with decimal values.

XYZ Monitor shows the events that have been correctly received by the
system (see Figure 4). In particular, XYZ monitor provides for each event: its
identifier, device to which it reports, value and date of reception.

Fig. 4. Frontend showing the Events yet in our system

4.2 Data Management

We have seen how to send an Event to the system. Next we will see how to indi-
cate that a certain event is from a specific device. And how the other attributes
of a device are handled.

Devices The system is prepared to handle an infinite amount of devices. A
device can be an element of the world as well as virtual. Infinite elements can
coexist in the system. Since the same user is in charge of registering them in the
system.

8 M. Vila et al.

A Device can have only one point of measuring, which is why it is associated
with a type of reading, the category field. But also a Device can be located into
an Area, this is field is optional and its named Location. For this purpose, an API
(/api/devices) has been developed that acts as an on-boarder to the system.
This is achieved by means of a JSON schema similar to the previous ones.

XYZ Monitor shows the existing devices as illustrated in Figure 5. For each
device, our system provides its name, its category, the type of event it reports
and its location. Moreover, on the right side of the figure, we show how Grafana
is reporting in real time the events that are being received in that device.

Fig. 5. Frontend with a Device and its Events, showing Grafana to monitor it

Device Categories At this point we already know how to insert a Device and
its Events into our system. However, we have not yet defined how to differentiate
Events from one Device to another. The category field inside the device com-
ponent gives us a small clue. A Category is a set of possible types of elements
defined by its name and the data type field, which is an string-enumeration of
the possible types of Events available in the system (EventA or EventB). This
is achieved by means of a JSON schema similar to the previous ones and it is
accessible through the endpoint (/api/device-categories).

Locations As mentioned, a Device has the possibility of being located in one
area. The location of a device is given by a name, in addition, there is the
possibility of including coordinates, latlng, in order to have a precise location, in
latlng format. Can be accessed in the API endpoint (/api/locations). This is
achieved by means of a JSON schema similar to the previous ones.

4.3 Monitoring

At this point, our system is able of receiving external, sensor-based, information
and classify it accordingly, by type of data, category and also by its location.
To observe the data, the system has been equipped with a data visualization
environment for the sake of monitoring.

XYZ Monitor: IoT Monitoring of Infrastructures using Microservices 9

Figure 6 shows the visualization system, built with Grafana /grafana. It is
displaying all the Events that have been received from the ABC-1001 device,
which are of type EventA on the date from 14:49 to 15:49 of 19/05/2020.

It can be observed that the data has arrived well between 14:49 - 14:50, 15:16
- 15:18 and 15:48 - 15:49, while no data has been received for the other ranges.
The system therefore draws a continuous line with no variation between them
to note that there is no data there.

Fig. 6. Grafana panel showing the Device’ Events in our system

The graph in Figure 6 is generated from an SQL query, specified in Listing
1.3. This SQL query is a traditional query against a PostgreSQL database. The
advantage of running sql queries in Grafana is that the text starting with $ are
the variables, and these can be sent by the browser to the system, at the time of
accessing the URL, which allows to dynamically generate these kind of graphs.
/grafana/device-dashboard?var-device name=ABC-1001&var-event type=event a

Listing 1.3. SQL query to show Device’s data in Grafana

SELECT event . datet ime as ” time ” ,
$event type . value ,
event . device name

FROM event
INNER JOIN dev i ce ON event . device name=dev i ce . name
INNER JOIN $event type ON event . id=$event type . id
WHERE event . device name = ’ $device name ’

4.4 Business Rules

Figure 7 shows the flow of the Business Rules to achieve notifications. Its im-
plemented with the Node-Red tool, which works by execution flows. The whole
processing of Business Rules is based in a single flow, /nodered endpoint.

The execution is as follows: every 5 seconds (timer box) a query is prepared
(query box) and the database that contains all the data is queried (Postgres #1
box), to check if there exists any Business Rules in executing state. The result

10 M. Vila et al.

is checked to see if there are any (prep array-loop and array-loop boxes). In the
case that there is no business rule or its is not in executing state, the flow ends
here. In the case of having active Business Rules, the system checks one by one
(prepare BR query box) and executes the query against the database (Postgres
#2 box) to check for alarms. If there is any, an email is prepared (generate email
message box) and sent through the Notification system (notification box).

A Business Rule is identified by a name and it contains a query field where
the designer specifies the SQL query identifying the alarm. For instance: SELECT
* FROM Event where device name = ’ABC-1001’. And the executing field is
where the Business Rule can be started or stopped temporarily, and act as an
status of it. The query system is an SQL call, because in this way, the options for
the user are not limited. This is achieved by means of a JSON schema similar to
the previous ones. Business rules can be specified on: Device Categories, Device
Locations, Devices, Events and any kind of combinations between them.

Fig. 7. Our flow to check Business Rules in Node-Red

4.5 Notifications

The notification system has been implemented in the Node-Red microservice, as
an independent code block. It supports sending of notifications via email to a
predefined recipient added in the system. These emails are sent via SMTP (Sim-
ple Mail Transfer Protocol), and its content warns about an alarm; informing
regarding the device, the date and the values that provoked it.

Listing 1.4. SMTP Email sample sent from our Node-red

FROM: sender@example . com
TO: rece iver@example . com
DATE: Wed. , 29 Apr . 13 :02
SUBJECT: New alarm from Node−Red
BODY:

There i s an alarm , the f o l l o w i n g e lements are invo lved :
Device : ABC−1001
Value : 0 .10
Datetime : Tue Apr 29 2020 13 : 0 1 : 12 GMT+0200 (CEST)

XYZ Monitor: IoT Monitoring of Infrastructures using Microservices 11

5 Experimentation

The XYZ Monitor system has been implemented under a microservices archi-
tecture. Specifically on Docker and Docker-compose. An overview of the Docker
recipe that makes the system work is available in Section 5.1.

The project code is Open Sourced and it is available in GitHub, at www.
github.com/worldsensing/xyz-iot-monitoring. The project has been tested under
Ubuntu 18, Linux. Although it should be compatible with any Linux operating
system. Making small changes, it could be used in MacOS or even Windows,
but this is out of the scope of the project since Worldsensing’ main systems run
on Linux. Inside the repository, the steps to follow to setup, initialize and run
the whole system work are clearly stated. Everything is prepared so that the
modifications required to make it work are minimal since the scripts we have
prepared take care of most of the work.

5.1 Orchestration

A microservices architecture requires having, at least, a file with the information
of the services that will be deployed. In our case, with Docker and Docker-
compose we have written the orchestration file, in .yaml format, that contains
the instructions to make the whole system work 5.

Listing 1.5. Docker-compose orchestration

1 services:
2 # API Gateway - Base Image - Kong 2
3 # Frontend - Custom - Nginx 1.17.9 + Alpine + React 16.13
4 # Monitoring - Custom - Grafana 6.6.2
5 # Business Rules - Base - Node -red
6 # Backend API - Custom - Python 3.8.2 + Alpine 3.11 + Flask
7 # Main Database - Base Image - PostgresQL 11.7

6 Conclusions and Further Work

We have presented the XYZ Monitor system as an extensible solution to suc-
cessfully handle general purpose alarms defined over different kinds of devices
in an IoT environment. In our system, alarms are defined by means of business
rules specified over the ontological structure of the information handled by these
devices. The solution we have developed is based on a microservices architecture,
to facilitate the assignment of responsibilities among the components involved in
alarm monitoring. Our solution is fully Open Source and it is publicly available.

As further work, we plan to enrich further the ontological structure of the
information and to develop techniques to incrementally compute whether an
alarm has been activated. In addition to observing how the system behaves
when there are many devices sending information at the same time. Overall, the
final goal of this work is to put this system into practice at Worldsensing.

5 This listing is simplified a lot to avoid making it extremely long here. The actual
one can be found in the root folder of the repository.

www.github.com/worldsensing/xyz-iot-monitoring
www.github.com/worldsensing/xyz-iot-monitoring

12 M. Vila et al.

Acknowledgements: This work is partially funded by Industrial Doctorates Plan
from Generalitat de Catalunya (DI-2019). Also with the support of inLab FIB at
Universitat Politècnica de Catalunya and Worldsensing S.L. The REMEDiAL project,
funded by Ministerio de Economia, Industria y Competitividad (TIN2017-87610-R);
and the Generalitat de Catalunya (2017-SGR-1749) have also contributed.

References

1. Alam, M., Rufino, J., et al.: Orchestration of microservices for iot using docker and
edge computing. IEEE Communications Magazine 56(9), 118–123 (2018)

2. Avilés-López, E., Garćıa-Maćıas, J.: Tinysoa: A service-oriented architecture for
wireless sensor networks. Service Oriented Comp. and App. 3, 99–108 (2009)

3. Butzin, B., Golatowski, F., et al.: Microservices approach for the internet of things.
In: 21st Int. Conf. on Emerging Tech. and Factory Aut. (ETFA). pp. 1–6 (2016)

4. Cambra, C., Sendra, S., et al.: An iot service-oriented system for agriculture mon-
itoring. In: International Conference on Communications (ICC). pp. 1–6 (2017)

5. Caporuscio, M., Raverdy, P., et al.: ubisoap: A service-oriented middleware for
ubiquitous networking. IEEE Transactions on Services Comp. 5(1), 86–98 (2012)

6. Fowler, M., Lewis, J.: Microservices, a definition (2014), http://martinfowler.com/
articles/microservices.html, [Last accessed 12 Aug 2020]

7. Hassanalieragh, M., et al.: Health monitoring and management using internet-of-
things (iot) sensing with cloud-based processing: Opportunities and challenges. In:
ICSOC 2015. pp. 285–292 (2015)

8. Hossain, M.S., Muhammad, G.: Cloud-assisted industrial internet of things (iiot) -
enabled framework for health monitoring. Computer Networks 101, 192–202 (2016)

9. Issarny, V., Bouloukakis, G., Georgantas, N., Billet, B.: Revisiting service-oriented
architecture for the iot: A middleware perspective. In: Sheng, Q.Z., Stroulia, E.,
Tata, S., Bhiri, S. (eds.) ICSOC 2016. vol. 9936, pp. 3–17. Springer, Cham (2016)

10. Mongiello, M., Nocera, F., et al.: A microservices-based iot monitoring system to
improve the safety in public building. In: SpliTech. pp. 1–6 (2018)

11. Montori, F., Bedogni, L., et al.: A collaborative internet of things architecture for
smart cities and environmental monitoring. IEEE Internet of Things Journal 5(2),
592–605 (2018)

12. Namiot, D., Sneps-Sneppe, M.: On micro-services architecture. Interenational Jour-
nal of Open Information Technologies 2(9), 24–27 (2014)

13. Newman, S.: Building Microservices. O’Reilly Media Inc., 1st edn. (2015)
14. SmartDataCollective: Iot is the most important development of the 21st century

(2018), https://www.smartdatacollective.com/iot-most-important-development-
of-21st-century, [Last accessed 06 Sep 2020]

15. Soldatos, J.e.a.: Openiot: Open source internet-of-things in the cloud. LNCS 9001,
13–25 (2015)

16. Sun, L., Li, Y., et al.: An open iot framework based on microservices architecture.
China Communications 14(2), 154–162 (2017)

17. Vresk, T., Čavrak, I.: Architecture of an interoperable iot platform based on mi-
croservices. In: MIPRO 2016. pp. 1196–1201 (2016)

18. Zanella, A., Bui, N., et al.: Internet of things for smart cities. IEEE Internet of
Things Journal 1(1), 22–32 (2014)

19. Zhao, Y., Zou, Y., Ng, J., da Costa, D.A.: An automatic approach for transforming
iot applications to restful services on the cloud. In: ICSOC 2017. vol. 10601, pp.
673–689. Springer (2017)

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://www.smartdatacollective.com/iot-most-important-development-of-21st-century
https://www.smartdatacollective.com/iot-most-important-development-of-21st-century

	XYZ Monitor: IoT Monitoring of Infrastructures using Microservices

