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Abstract

The fifth generation (5G) mobile networks are enabling operators and
stakeholders to enhance and innovate new services in response to an
increasing market demand. 5G architecture provides scalability and flexibility for
adapting its infrastructure to a customizable communication system by means
of Cloudification.

Softwarization and virtualization are key terms for upcoming industries that will
require ultra-low latency, only possible if the infrastructure equipment that
traditionally was centralized in the communication network core is physically
moved closer to the user,  at the network edge.

The main objective of this master thesis was to implement a Reinforcement
Learning algorithm (Q-Learning Temporal Difference) aimed at next generation
networks to optimally allocate Virtualized Network Functions (VNF) to 5G
network Edge Computing (EC) centers.

In order to evaluate the algorithm performance and compare it, two more
algorithms have been developed to achieve a solution under the same network
circumstances. The first one, Best Fit, was inspired by a classical network load
balancing algorithm (Weighted Round Robin), whereas the second, MDP, was
approached through dynamic programming (Policy Iteration), having posed the
network dynamics as a finite Markov Decision Process.

The several tests that have been carried out indicate that Q-Learning performs
better than the Best Fit and almost as close as the MDP. It shows that the
Q-Learning algorithm is able to allocate optimally the incoming VNF demands
when EC centers' available resources are somehow restricted.

Keywords
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ii

Resumen

Las redes móviles de quinta generación (5G) permiten a los operadores y
partes interesadas mejorar e innovar nuevos servicios en respuesta a la
creciente demanda del mercado. La arquitectura 5G proporciona escalabilidad
y flexibilidad para adaptar su infraestructura a un sistema de comunicación
personalizable mediante tecnologías como la “Cloudification”.

La softwarización y la virtualización son aspectos clave para las industrias
futuras que requerirán de una latencia ultrabaja, sólo posible si los equipos de
infraestructura que tradicionalmente estaban centralizados en el núcleo de la
red de comunicaciones, son instalados físicamente más cerca del usuario, en el
borde de la red.

El objetivo principal de esta tesis de maestría ha sido la de implementar un
algoritmo de aprendizaje por refuerzo (Q-Learning Temporal Difference) dirigido
a redes de próxima generación con el fin de asignar, de manera óptima, las
funciones de red virtualizadas (VNF) en los distintos centros de “Edge
Computing“ (EC) de una red 5G.

Para poder evaluar el rendimiento del algoritmo y compararlo, se han
desarrollado dos algoritmos más que obtienen una solución en las mismas
condiciones de una red. El primero, Best Fit, está inspirado en un algoritmo
clásico de balanceador de carga de red (Weighted Round Robin), mientras que
el segundo, MDP, se ha enfocado a través de programación dinámica (Policy
Iteration), habiendo planteado la dinámica de la red como un proceso de
decisión finito Markoviano.

Las diversas pruebas que se han llevado a cabo indican que Q-Learning
obtiene mejores resultados que Best Fit y se encuentra próximo, en cuestión de
rendimiento, del MDP. Q-Learning, muestra que es capaz de asignar de
manera óptima las distintas demandas de VNF cuando los recursos disponibles
de los centros de EC están limitados.

Palabras clave

5G, Cloudification, Softwarization, Virtualization, Virtualized Network Functions,
Edge Computing,  Reinforcement Learning, Markov Decision Process.
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Resum

Les xarxes mòbils de cinquena generació (5G) permeten als operadors i a les
parts interessades millorar i innovar nous serveis en resposta a la creixent
demanda del mercat. L'arquitectura 5G proporciona escalabilitat i flexibilitat per
adaptar la seva infraestructura a un sistema de comunicació personalitzable
mitjançant tecnologies com la "Cloudification".

La softwarització i la virtualització són aspectes clau per a les indústries futures
que requeriran de latències ultra baixes, només possible si els equips
d'infraestructura que tradicionalment estaven centralitzats en el nucli de la
xarxa de comunicacions, són instal·lats físicament més a prop de l'usuari, a la
vora de la xarxa.

L'objectiu principal d'aquesta tesi de mestratge ha estat la d'implementar un
algoritme d'aprenentatge per reforç (Q-Learning Temporal Difference) dirigit a
xarxes de pròxima generació per tal d'assignar, de manera òptima, les funcions
de xarxa virtualitzades (VNF) en els diferents centres de "Edge Computing"
(EC) d'una xarxa 5G.

Per poder avaluar el rendiment de l'algorisme i comparar-lo, s'han desenvolupat
dos algorismes més que obtenen una solució en les mateixes condicions d'una
xarxa. El primer, Best Fit, està inspirat en un algoritme clàssic balancejador de
càrrega de xarxa (Weighted Round Robin), mentre que el segon, MDP, està
enfocat a través de la programació dinàmica (Policy Iteration), havent plantejat
la dinàmica de la xarxa com un procés de decisió finit Markovià.

Les diverses proves que s'han dut a terme indiquen que Q-Learning obté
millors resultats que Best Fit i es troba pròxim en qüestió de rendiment de
l'MDP. Q-Learning, mostra que és capaç d'assignar de manera òptima les
diferents demandes de VNF quan els recursos disponibles dels centres d'EC
estan limitats.

Paraules clau

5G, Cloudification, Softwarization, Virtualization, Virtualized Network Functions,
Edge Computing,  Reinforcement Learning, Markov Decision Process.
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INTRODUCTION

5G is the fifth generation of mobile network, a communication standard that
introduces new enhancements with regard to legacy mobile network systems (4G).
It accomplishes faster data speeds, up to 100 times faster than 4G and ultra-low
latency times (<1ms), independently whether or not other devices are connected at
the same time.

5G is no longer a hype, it is the present and the driver of hyperconnectivity, digital
transformation and the economy of the future. It is a technological evolution that
paves the way for endless products, services and applications. It provides the
automotive industry with a wide spectrum of opportunities, for the development and
deployment of automated driving and as an essential prerequisite for the future
smart factory. 5G is, along with other disruptive technologies, such as the Internet
of things (IoT), Artificial Intelligence (AI), robotics, cloud computing, virtual and
augmented reality (VR/AR), etc., a key element in the digital transformation in
which we are immersed.

According to [1], the autonomous vehicle industry is expected to generate $12.9
billion by 2026, in 5G related software expenditures and $39 billion in Edge
Computing (EC) infrastructure to support such industry. Grand View Research [2]
states that the 5G services market size is estimated to reach $664 billion with a
compound annual growth rate (CAGR) of 46.2%  by the year 2028.

5G networks will deploy more cells and antennas with advanced technologies such
as virtual Radio Access Network (vRAN), allowing for partial or full virtualization of
networks. 5G relies heavily on Edge Computing centers cutting the distance
between the end user and the technological resources. By locating such centers at
the network edge, data is no longer stored or processed at some distant data
center which translates in a considerable low latency.

The latter offers flexible upgrades as well as innovations in services. The 5G
technologies handle a huge increase in capabilities, all in a multi vendor
environment with an ultra low latency data transmission emphasis. No wonder that
5G networks become such complex systems hindering the tracking down of a
service outage or any other issue. The plethora of possibilities as far as provided
services even makes it more difficult to determine the optimal way to provide
services in the future and to foresee the demand of them in order to deploy an
infrastructure in the most efficient way. With such a huge diverse vertical industry
potential market, Mobile Network Operators (MNO) and services providers search
for strategies to increase their revenues and lower their expenditures; Capital
Expenditure (CAPEX) and  Operating Expenditure (OPEX).
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Such a complex system requires advanced methods to prevent potential failures
and control of their networks. As stated by the 5G Infrastructure Public Private
Partnership (5G-PPP) [3], AI and Machine Learning (ML) will be included as new
technology forms to overcome such challenges. AI/ML allows MNO to bring to 5G
customers its benefits, to improve the current model of centralized networks
straining themselves to deliver the increasingly demanding services. AI/ML can
efficiently manage resource deployment based on infrastructure required
conditions and for the network to perform effectively. For MNO, it implies the
possibility to forecast the overall demand and foresee a plan for 5G network and
multiple-input and multiple-output (MIMO) site configuration as well as base
stations (BS) deployments.

Objectives

This master thesis aims at the following purposes:

● Introduce the technological key aspects that drive 5G to accomplish some of
the defined standards by the (3GPP). To present the 5Growth platform that
aims to validate the operating of 5G systems deployed on vertical industries
and optimize the performance, empowering automation and AI driven
solutions.

● Introduce the fundamental theory aspects of Reinforcement Learning (RL) in
order to understand some of the implemented algorithms.

● Implement a RL algorithm (Q-Learning Temporal Difference), a second RL
algorithm (Policy Iteration) and a third algorithm inspired by a classical
network load balancer implementation (Weighted Round Robin) to manage
the optimal assignment of Virtualized Network Functions (VNF) demands
over a 5G network and its EC centers.

● To conduct an analysis between the different algorithms from its simulation
results to evaluate how good the Q-Learning algorithm performs against the
other two algorithms.

Thesis outline

Chapter 1 broadly introduces the 5G expected features in terms of technological
specifications to satisfy the three main foreseen relevant usage scenarios defined
by the International Telecommunication Union, International Mobile
Telecommunication 2020 (ITU IMT-2020). It also presents the concepts of Network
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Functions Virtualization (NFV) and EC, technological key aspects for 5G. 5Growth
architecture and its AI/ML platform are presented in order to contextualize the
implementation of the Q-Learning algorithm. Finally all theory fundamentals
regarding RL are explained so as to understand the functioning of the implemented
RL algorithms.

Chapter 2 introduces the problem statement to be tackled as well as the different
strategies than have been followed in order to accomplish each algorithm
implementation. Details the aspects for modeling the required scenario, what it is
called the environment in RL. Finally major considerations on each algorithm are
presented in order to understand the complexity of each implementation.

Chapter 3 Analyzes the simulation results from each algorithm. Different tests are
carried out in order to see how, either the EC available resources or the VNF
demands, affect the performance on each algorithm. Important concepts, like
learning rate, discount factor or exploration/exploitation are tested in order to see
how it affects the final results of the Q-Learning algorithm.

Complementary resources are added in the annex in order to support some of the
explanations in chapter 2 or provide extra simulation graphs to have a different
perspective of the results.

CHAPTER 1. FUNDAMENTAL ASPECTS

This chapter gives a brief overview about the 5G key features related with usage
scenarios. Section 2.2 introduces the elemental aspects of 5Growth platform and
the innovations included concerning AI and ML. Section 2.3, 2.4 and 2.5 describes
all theoretical fundamentals needed to understand the RL algorithms that further on
will be implemented.

1.1. 5G

5G is the fifth generation of mobile communications systems. A standard beyond
4G Long Term Evolution (LTE) and LTE-Advanced. The increasing demand in data
traffic continues growing year after year forcing the 4G to reach its limits. Hence it
makes sense to define a whole new system rather than trying to improve an
obsolete one.

Towards the end user, perhaps the most notable advantage of the 5G is the high
speed and low latency. Further than being able to download ultra high resolution
videos in a matter of seconds, the 5G represents a large technological
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breakthrough giving birth to what is known as the 4th industrial revolution. If
globalization changed the way of understanding business, now the industry will go
one step further thanks to a total interconnection between machines and people.
Figure 2.1 depicts a comparison of key capabilities between the 4G and 5G
networks.

Fig. 2.1. Comparison of IMT-Advanced (4G) with IMT-2020 (5G) capabilities
(source [4])

The ITU IMT-2020 defines three main foreseen relevant usage scenarios [4]:

1. Enhanced Mobile Broadband (eMBB): This scenario points to a usage
case where high data rates and high user density exceed the actual legacy
networks. eMBB is seen as addressing human-centric communication.

2. Massive machine type communications (mMTC): Aimed at pure machine
communications, this dimension is designed to cope with a large number of
devices connected to the internet, the well known IoT.

3. Ultra-reliable and low-latency communications (URLLC): This usage
block aims at both human- and machine-centric communications. Provides
the lowest latency which makes it ideal for those critical applications where
real time communication is a must.

Currently, as of the date of this master thesis, 5G is in its 16th release by the 3GPP.
It specifies the second phase network deployment complying with the ITU global
requirements, offering superior data speeds, advanced solutions for network
slicing, VNF or support for massive IoT simultaneous device communications,
among others.
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1.1.1. Network Functions Virtualization

NFV refers to a virtualized task previously performed by proprietary and dedicated
hardware. NFV moves network functions away from dedicated hardware devices
into software. This allows specific functions that required hardware devices in the
past (e.g. Equipment Identity Register (EIR), routers, firewalls, etc) to work on
Commercial-Off-The-Shelf (COTS) hardware, expediting cost-effective commercial
deployments.

NFV allows 5G to customize and optimize resources tailored to different vertical
markets1. This is achieved through Network Slicing where a physical network can
be split into several virtual networks supporting multiple RAN.

Fig. 2.2. The NFV reference architecture diagram from the European
Telecommunications Standards Institute (ETSI) specifications (source [18])

As seen in figure 2.2, NFV interacts between COTS resources and VNF, controlled
by the Element Management System (EMS) which at the same time is controlled
by the MNO’s Operations Support System/Business Support System (OSS/OBS).
It is the NFV Management and Orchestration (MANO) task to orchestrate,
provisioning VNF with resources during their life cycle.

NFV provides a number of advantages, CAPEX- and OPEX-wise, which revert in
MNO 5G investments. Allows to minimize the costs of dedicated hardware
expenditure in favor of COTS hardware. This also makes it great in terms of
provisioning since there's no need for it. It also benefits power consumption as well
as cooling, since several VNF can run from a single server. There’s a total
decoupling between software and hardware on physical networks breaking any
compromise with End-of-Life (EOL) product lifecycle or its vendors.

1 A vertical market is a market that englobes products or services in a particular industry.



6

The SDN concept goes hand in hand with NFV. SDN represents an architectural
model in which networks use software or application programming interfaces to
manage networking traffic and communicate with the underlying hardware
infrastructure. This is a different approach than traditional networks which
employed dedicated hardware devices to direct networking traffic. SDN is not tied
up only to virtual networks, it can also control traditional hardware networks using
software.

1.1.2. Edge Computing

5G offers advanced services for technical and business innovations through
virtualization of the network functions. A motivation to implement cloudification,
facilitating intelligent services which in turn optimizes connectivity, latency and
other key performance indicators, in which vertical markets (e.g. energy, food,
agriculture, manufacturing, automotive, etc) can use it to boost their businesses.

5G heavily relies on data centers, such centers may be centralized located or at
the network’s edge, closer to the end user. This forces MNO or independent
service providers to forecast for server capacity, data storage, equipment cooling,
etc.

Virtualized services run in software environments where COTS hardware is being
used, evolving in such a way that BS processing power can and does take place in
the cloud, leaving BS to overtake the cloud processing power when cloud’s reach a
certain threshold power limit.

A main advantage of EC centers in 5G is that it minimizes the latency because of
the proximity between data centers and users as depicted in figure 2.3. Some of
the data to be processed may be offloaded, at 5G data rates, from the edge into
the user equipment (UE) and be processed in situ by the UE. All these
characteristics facilitate some of the 5G specification standards depicted in figure
2.1.

Fig. 2.3. Edge cloud (source [15])
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EC centers are offering high profitable opportunities to established and new
stakeholders. Opens the door for MNO to lease their cloud processing and
capacity to third parties, as an Infrastructure-as-a-Service (IaaS) business model.
Even the virtualization of the 5G itself generates a completely new level of
opportunities. The MNO infrastructure can be composed of purchased and owned
services, into account of deployment areas and the potential reaching on optimized
Return Of Investment (ROI). The latter, brings up the term Service Level
Agreement (SLA) which guarantees the service up-time, forcing the MNO or the
service provider to adopt geo-redundant services dependending on how
demanding the service is.

1.2. 5Growth

The present master thesis has been developed aimed at next generation networks,
taking as context the 5Growth framework.

5Growth is a Horizon 2020 Infrastructure Public Private Partnership 5G-PPP
phase-3 project that aims to validate the operating of 5G systems deployed on
vertical industries and optimize the performance, empowering automation and AI
driven solutions. Launched in 2019, is led by a consortium of 21 partners2 across
several European countries and it is planned to last until the February of 2022 with
a total budget of 14M€.

1.2.1. 5Growth architecture

The 5Growth inherits the baseline architecture from 5G-Transformer [5], a phase-2
from the same 5G-PPP project mentioned earlier, enhancing usability, flexibility,
automation, performance and security. The architecture englobes three main
blocks as seen in figure 2.4:

5Gr-VS (5Growth Vertical Slicer): It is the storefront for vertical requests. A
Vertical Service Blueprint (VSB) catalog allows verticals for provisioning services
through an oriented interface with the OSS/BSS, employing a template as a
starting point. Then, vertical requesters can tailor their necessities by specifying the
demanding service-oriented parameters. The 5G-VS is in charge for managing the
requested vertical service and the network slices, created by affording NFV
network services requested to the Service Orchestrator (SO).

2 Among the consortium partners is the Centre Tecnològic de Telecomunicacions de Catalunya
(CTTC), the responsible entity that has supervised this present thesis.
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5Gr-SO (5Growth Service Orchestrator): This core block provides network
service and resource orchestration capabilities. Orchestrates NFV-Network
Services (NFV-NS) either to a single or multiple domains, managing their life-cycle.
It also serves the 5Gr-VS with a view of the services, since it receives the service
requirement in the form of a Network Service Descriptor (NSD) describing the
service requirements. It is the 5Gr-SO that, based on availability and resource
capabilities, among other administrative domains, informed by the 5Gr-RL, decides
the optimal configuration for the NFV-NS. Monitoring tasks take place at the
5Gr-SO for self-adaptation in front of demanding events, in order to avoid any SLA
violation.

5Gr-RL (5Growth Resource Layer): Responsible for managing local and transport
resources. It provides resource orchestration and VNF instantiation as well as
control over the physical transport, network, computing and storage infrastructure
where network slices and services are executed.

Fig. 2.4. 5Growth architecture framework(source [17])

1.2.2. AI/ML Platform (5Gr-AIMLP)

The Artificial Intelligence/Machine Learning platform (5Gr-AIMLP) [5] is, together
with RAN support and Vertical-oriented Monitoring System (5Gr-VoMS), the main
architectural innovations on 5Growth. The 3GPP TS 23.501 version 16.6.0
Release 16 [6] introduces mechanisms in order to automate the 5G core using ML
and data analytics. One of the entities that allows for it, is the Network Data
Analytics Function (NWDAF).
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Fig. 2.5. 5Gr-AIML platform workflow (source [16])

The AIMLP presents several trained models3 susceptible to be tuned or generate
new ones from the composite of existing ones. The entity in need of decision
making, in the literature known as the agent, will determine the needed ML model
along with the parameters that the model must contemplate and what data needs
to be monitored in the system. Through the 5Gr-VoMS, the AIMLP will require the
data that must be monitored. For RL models, the agent obtains precise input model
data from the 5Gr-VoMS. Such data is then also used by the AIMLP in order to
optimize the model parameters. Once the model is tailored, it is passed to the
agent to be executed with performance metrics coming from the 5Gr-VoMS.

This master thesis takes the 5Growth framework as reference at a general level
and focuses on AI-related algorithms that could be run by the 5Growth architectural
entities to take decisions on VNF placement according to certain operational
requirements (e.g., guaranteeing an efficient use of edge resource while
maximizing the number of deployed services over the shared infrastructure).

1.3. What is Reinforcement Learning?

1.3.1. Introduction

RL is a subfield of ML, an AI paradigm that mimics the human learning procedure
based on behavioral psychology, concretely in operant conditioning. A key aspect

3 A ML model is a file that has been trained to recognize certain patterns.
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describing a learning method which employs rewards and punishments as a
behavior result.

Back in 1951, Marvin Minsky (1927-2016), regarded as one of the fathers of AI,
created a computer that continuously learned to solve a virtual maze. Such a
computer was inspired by physiologist Ivan Pavlov (1849-1936), well known for
using dogs to show how animals learned by positive (reward) and negative
(punishment) reinforcement.

Humans gain knowledge with experience and outcomes. A child might learn that
pushing a chair and climbing it to reach a cupboard will lead him to achieve a
candy bar resulting in an immediate reward, but in the long term the kid will also
learn that its parents' punishment will be less sweet, hence, the child will end up
learning to ask for the sweets to its parents rather than taking it whenever pleases.

1.3.2. Reinforcement Learning (RL)

How do we transfer a human learning procedure into a computational approach?.

Let us define some formalisms concerning RL:

Agent: an entity that learns to take optimal actions by interacting with the
environment in exchange for a reward. Such agents must be able to take into
account each particular environment state.

Environment: the set of states that compound the space where the agent interacts
with. The environment not only will accept the agent's actions but will also respond
with the relevant agent's reward (positive or negative).

Action: each decision the agent makes when faced with an environment state.

State: represents the environment status after the agent has taken an action or
when resetting the environment for the first time.

Reward: an environment feedback mechanism, in the form of a scalar, that lets the
agent know how valuable its taken actions results. The reward encodes the
challenge in such a manner that motivates the agent to learn the optimal action at
each state.

In a RL scenario we encounter the agent which learns and interacts with the
environment as shown in figure 2.6.



11

Fig. 2.6. Agent/Environment interaction (source [8])

The dynamics are as it follows:

● Each interaction between the environment and the agent is generated at
discrete time steps; .

● As a consequence of the agent’s previous action that lead it to the
current state , it receives a reward from the environment .

● Based on what the agent perceives from the current state , selects an
action , out of the set of possible actions; . Such
action provokes the environment to transition to a time step later state

and pass on the agent with a new reward .

RL consists of an agent in an environment, whose dynamics are unknown to it, to
take the optimal decisions when confronted with a complex problem by means of
trial and error. It is not told what actions to take, rather learn by itself which are the
optimal chain of actions to accomplish the final goal, by maximizing a cumulative
numerical reward. The agent learns which actions yield more profit and which
don’t. It is important to highlight that each taken action will affect all subsequent
rewards, i.e., an action may lead to a highly rewarded state but neither of all
possible subsequent actions will allow the agent to obtain a reward, whereas, if the
agent would have chosen a previous less rewarded action, perhaps it would have
allowed it to land onto a different state with higher rewarded actions.

1.3.3. Exploration and Exploitation dilemma

One of the RL challenges arises from the correlated actions for subsequent
rewards, the dilemma between exploration and exploitation which, nowadays,
remains unresolved. “The agent has to exploit what it has already experienced but
it also has to explore in order to make better action selections” [7]. The latter is of
relevant importance given that in stochastic scenarios, the agent must try all
actions several times to gather reliable estimation of the expected reward.

https://www.codecogs.com/eqnedit.php?latex=(R_t)#0
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1.3.4. Markov Decision Processes

Markov Decision Processes (MDP) model controlled stochastic dynamic systems,
that is, systems whose evolution is subject to random factors and which can be
modified by means of certain decision or control variables selection. MDP can
describe a RL environment providing a mathematical model for learning sequential
decision making, where actions not only provide immediate rewards but also
subsequent states.

The environment must be fully observable and each current state characterises the
process. Mathematically speaking, an MDP is a tuple of:

(1.1)

● finite set of states
● finite set of actions
● state transition probabilities
● reward function
● discount factor

1.3.4.1. Markov property

From figure 2.6, it is intuited that consecutive time steps raise a sequence of
states, actions and rewards known as the History. Each state encapsulates all
relevant information for the agent in order to take an action. Furthermore, the future
state will be determined only by the current state where the agent is at a time step

, and not by virtue of the past visited states; . This is the main
concept of an MDP and it is known as the Markov property. A state will be
considered to accomplish the Markov property if and only if:

(1.2)

1.3.4.2. State transition probabilities

A Markov Process is a random process, and so are the random variables and
which are defined by discrete distributions probabilities that will depend on the

agent’s action selection from the previous state. Therefore, there must be a
probability for those random variables to occur at each time step that implicitly

https://www.codecogs.com/eqnedit.php?latex=P#0
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defines a transition probability from state to state. Such probability can be defined
as:

(1.3)

The function inherits the Markov property previously exposed and encloses the

mathematical definition for an MDP. The next state and reward depends
only on the precedent state and action taken. The state transition
probability defines the MDP dynamics.

1.3.4.3. Reward function

The aim of the agent is to maximize the cumulative rewards until reaching its goal,
in the literature is known as the expected return .

Defining the reward function as the immediate reward an agent is envisaged
to get from the state where is at:

(1.4)

allows for the expected return to also be characterized as a chain of expected
immediate rewards, a Markov Reward Process:

(1.5)

where denotes an absorbing state, a terminal state when the agent achieves its𝑇
goal or commits some error that forces the environment to restart again. Thus, we
referred to such scenarios as episodic tasks, since the chain of consecutive states
form an episode. Not all MDPs must have a terminal state as will be seen in
chapter 2.4.3 when exposing the development of the present master thesis; such
cases are known as continuing tasks.

What prevents an agent from returning infinitely to a state aiming to accumulate
rewards, is the discount factor, , a value that determines how worth an
immediate reward is. Hence, we can rewrite the expected return as:

(1.6)
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When , the agent will prioritize the expected future rewards rather than the
immediate ones. On the contrary, if , the agent will strongly take into account
the immediate rewards.

1.3.4.4. Value Function

Up to now key elements for a RL scenario have been defined, nevertheless, there
still is a need for a linkage between the agent's action and the state that transitions
to, in terms of how good it is for the agent to be in a particular state. The the
agent might get for being in a certain state rather than other is computed by the
state-value function, :

(1.7)

a function that pairs states to rewards which implicitly implies a relation between
states and actions.

Another question that might arise is, how to compute the if it depends on future
rewards. Answer to it is, having the agent iterate over the state space and learn to
map states to actions in order to gather the largest expected return.

The value function can be decomposed recursively into two parts and this
particularity holds as a fundamental relationship property to introduce the Bellman
Equation, an equation that relates the value of a given state and its successors
states value:

(1.8)

distinguishing:

● The immediate reward:
● The discounted value of next state:

https://www.codecogs.com/eqnedit.php?latex=G_t#0
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An easy way to interpret the Bellman Equation is as a one step look ahead (backup

diagram) from state where we average all possible outcomes together
giving us the value function from state .

Fig. 2.7. Backup diagram for (source [8])

Note: A Bellman equation process on a simulated environment is detailed in annex
A.

1.3.4.5. Policy

It is clear that the aim for any RL scenario would be to implement an agent that
generates the largest accomplishing its goal in the minimum time steps. Such
an agent's strategy is called policy and it is under the agent's control:

(1.9)

Equation 2.7 can also be interpreted in terms of giving place to a state-value
function definition:

(1.10)

It can recursively be decomposed into the same elements as in equation 2.8 to
obtain the Bellman Equation in terms of as stated by Sutton R. S and Barto A.
G. in their work [8]:

(1.11)

describing how good it was for the agent to follow its policy in a given state, taking
an action and transition to another state. The immediate reward plus the

https://www.codecogs.com/eqnedit.php?latex=(%5Cpi)#0
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state-value function of the landed state determines how good the original state
was.

There’s another type of value function that rather than mapping states to rewards,
relates states to actions, therefore it is called action-value function and in
terms of :

(1.12)

can also be decomposed in order to obtain the Bellman Equation:

(1.13)

Equation 2.13 is describing the starting from state , choosing action
and following policy .

Notice how the state-value function and the action-value function are related, both
representing the same concept but at different levels of granularity. Whereas the
state-value function denotes the expected reward averaged over all actions, the
action-value function, at a higher resolution, provides which actions and states are
the optimal ones.

1.3.4.6. Optimal policy

It is the agent's mission to find an optimal policy with the purpose of expecting
the maximum return. Out of all possible policies, there's at least one to be better or
equally as good to all other policies4 achieving the optimal state-value function and
the optimal action-value function:

(1.14)

(1.15)

4 The total number of policies can be computed by the number of the action space (A) to the power
of the state space (S) number.
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An agent will be able to determine an optimal policy by iterating over the state
space and updating the state values from maximizing over or :

(1.16)

(1.17)

1.4. Dynamic Programing

In most cases, obtaining the optimal solution in a RL scenario is an unresolvable
challenge due to processing and memory computational costs. Not in all RL
environments, an optimal solution to Bellman's equation can be computed.
Sometimes the only way is an approximation to it. For some tasks, the state space
is so large that the agent might not even face some of those states ever, hence not
computing a state-value function nor an action-value function for such states. It
should be recalled, as mentioned previously, that a way to obtain an optimal value
function is by having the agent iterating through the state space.

In some RL projects, solutions can be expressed recursively in mathematical terms
by means of a recursive algorithm. However, as previously discussed, the
execution time of the recursive solution, normally of exponential order and
therefore impractical, can be substantially improved by means of Dynamic
Programming (DP). DP is a convenience method when the environment is fully
known and the number of the state space does not reach large numbers. In such
cases, the literature refers to it as Model-based, since all environment aspects are
known; (set of states), (set of actions), (state transition probability),
(reward function) and (discount factor).

Algorithms as Policy iteration allow to find optimal value functions that satisfies the
Bellman optimality equations:

(1.18)

or:

(1.19)
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1.4.1. Policy Iteration

Policy Iteration algorithm is structured in two sub-algorithms; Policy Evaluation and
Policy Improvement. The first, computes the state-value function for a
given policy . The second, improves the previous given policy
obtaining a new policy .

Fig. 2.8. Policy Iteration algorithm process (source [8])

Policy Iteration algorithm on a Model-based MDP computes the optimal agent’s
policy by treating the Bellman’s equation as a linear contractive operator.

Sutton and Barto in [8] detail the Policy Iteration algorithm steps in order to
estimate 𝝅 ≅ 𝝅* as:

https://www.codecogs.com/eqnedit.php?latex=(%5Cpi_i(s))#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7B1.~Initialization%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7B2.~Policy~Evaluation%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7B3.%20Policy~Improvement%7D#0
https://www.codecogs.com/eqnedit.php?latex=policy%20%5C_%20is%20%5C_stable%20%5Cleftarrow%20False#0
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Note: A Policy Iteration example is described in detail in annex B.

Note: A demonstration of linear contractive operators is described in annex C.

1.5. Q-Learning

Sometimes not all environment aspects are known as in model-based MDPs. Such
cases are named by the literature as Model-free environments, since there’s no
need to know the state transition probabilities nor the reward function. The agent
must learn from its own actions without a given policy, therefore it is also an
Off-Policy model.

Q-Learning algorithm (C.J.C.H. Watkins 1989) [9] thrust the agent learning by
assigning values to state and action pairs. A matrix, as a data structure, is used for
the assignment, where rows represent each possible environment state and
columns hold the Q-value for each possible action within the state. Q-values define
how good an action is at a given state for the agent. Is the expected cumulative
discounted reward for being in state and taking action .

If all the Q-values were known a priori by the agent, it could use the information to
make the appropriate decisions at every state, nevertheless, this is not the case at
the beginning of an episode since it lacks such information. It is the agent’s main
goal to achieve this assignment as closely as possible. As Q-values depend not
only on future rewards but also on current ones, it is needed to provide a method
able to compute the final Q-value from immediate and local values.

If an action at a state causes an undesired result, it must be learnt not to take the
same decision in that state. On the contrary it will be learnt to take the same action
in that state whenever the result of doing so draws a positive result.

If all possible actions within a state yield a negative outcome, it will be convenient
to avoid that particular state. That is, the agent must not take any actions from any
other possible states that could transition it to that particular state. On the other
hand, if all possible actions within a state result in a positive payoff, it will be a must
to learn how to reach that particular state. As a matter of fact, this is what allows
the propagation of state and action pairs rewards to adjacent states pairs.

Q-values can be computed by means of:

(1.24)
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Similarly, as explained in chapter 1.3.4.3, will set the weight for future
rewards. The sum of the immediate reward , being in state and
taking action , and the best discounted Q-value to
be achieved, allows to obtain the optimal Q-value. In order to approximate a fixed
point where all values converge, it is needed to initialize all the Q-values to a fixed
random value (e.g. 0). Afterwards the agent will update the stored Q-value pairs
(state, action) by iterating through the states considering as true the annotations
taken from other pairs, some of which will have been approximated in previous
steps.

1.5.1. Q-Learning (off-policy Temporal Difference (TD))

Equation 2.24 updates the Q-values somewhat abruptly in certain directions. By
introducing a learning rate factor it is possible to control the variation of
Q-values. The learning rate defines in which grade the agent overrides the old
data with new one. A factor will force the agent to take into account the most
recent information, whereas will make the agent learn nothing.

(1.25)

The new Q-value is the weighted combination of the old Q-value
and the new information that the agent must believe. The agent must iterate over
the states to refine the optimal Q-value by updating the previous estimate.

could be interpreted as a Temporal Difference (TD)
algorithm (one-step look-ahead) allowing the rest of the equation to project one
step forward so the agent can forecast future trajectories for optimal outcomes.
The function is scanning over all Q-values for each possible action for the
future state from the current state.

Q-Learning (TD) algorithm will converge to an optimal value allowing sufficient
learning rate and exploration throughout the environment states that satisfies
the Robbins-Monro (Robbins and S.Monro, 1951) conditions [10][11].

Sutton and Barto in [8] also details a Q-Learning (off-policy TD) algorithm for
estimating 𝝅 ≅ 𝝅*:
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1.5.2. ϵ-greedy algorithm

A drawback that Q-Learning encounters is that its agent can only learn from those
updated Q-values from actions taken in visited states. There's no learning from the
untaken actions. This brings us the Exploitation/Exploration dilema introduced in
section 1.3.3. It might be interesting for the agent, specially at the beginning of its
training5, to adopt an explorer profile in order to visit as many states as possible
and try as many actions as possible from those states. As the agent learning
process reaches a certain level it is more advantageous to exploit those known
actions that yield a higher reward when revisiting the known states.

Let us formalize the above discussed in probability terms. It can be determined that
the higher the Q-value of an action, the higher the probability of being chosen.
Even low Q-value actions may be eligible at the beginning of the training. It may
also be convenient to align the exploration probability with the learning time the
agent has taken so far. At the beginning, exploration is motivated, since what the
agent could have learnt is not yet reliable due to the amount of possible choices
that are left to try. As the agent learning progresses and time passes by, it might be
more convenient to promote the exploitation from the known actions at known
states. At this point the agent's knowledge is more trustful comparing it as it was at
the very beginning of training. Sancho F. C. (2/3/2019) [12] summarizes the above
in the following equation:

(1.26)

5 In Q-Learning there’s no training concept as such, as there's in other ML fields (e.g. Recurrent
Neural Networks, Regression models, etc). Nevertheless, we refer to training for the first episodes
attempts where the agent is populating its Q-Table.
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● is an exploration constant
● is the set of actions that are possible on each state
● represents each time step
● is the current state Q-value

Fig. 2.9. Exploration and exploitation trade-off formalization (source [12])

As increases due to the exponential function, actions with the highest Q-value
are more prompted to be chosen.

A mathematical function can be described to represent the exploration-exploitation
trade-off:

(1.27)

(1.28)

1.6. Summary

Chapter 1 has introduced the fundamentals to understand the context in which the
proposed algorithms are going to be implemented. It also has described the theory
aspects to understand how reinforcement learning works and has distinction
between model-based and model-free scenarios, a very important consideration to
take into account when implementing an MDP and a Q-Learning algorithm. It is
clear that for implementing an MDP it is a requirement to have all contents of an
MDP tuple, hence it will be necessary to compute all the state transition
probabilities as well as all possible valid states to tackle the master thesis problem.

CHAPTER 2. WORKING ENVIRONMENT

This chapter provides the problem statement to be addressed. Section 2.3 details
all the needed modeling that is required as far as implementing the environment to

https://www.codecogs.com/eqnedit.php?latex=%5Cepsilon#0
https://www.codecogs.com/eqnedit.php?latex=A_s_t#0
https://www.codecogs.com/eqnedit.php?latex=s_t#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=Q(S_t%2C%20a_t)#0
https://www.codecogs.com/eqnedit.php?latex=t#0
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which the agent must perform. Finally, main considerations for each individual
algorithm are described.

All RL algorithms have been developed in Python 3.8 and under the Open AI Gym
framework. As stated in its website "Gym is a toolkit for developing and comparing
RL algorithms...” [14]. It comes out of the box with several modeled environments
for a wide variety of RL applications. It also allows one to model a customized
environment, as in the present thesis.

2.1. Problem statement

Mobile networks, integrating cloudification capabilities have to be flexible enough
since the increasing user equipment data demand, has created the necessity to
optimally manage resources at the network edges so as to adapt to the required
services. MNO infrastructure requires monitoring the network status at all times to
prevent failures.

A distributed edge cloud structure provides redundancy for service deployments in
case of potential edge point failure but it also needs an optimal resource
management to not trifle away unused resources, hence losing potential profits.

Fig. 3.1. Edge Computer nodes across different network regions

Whenever edge cloud Life Cycle Management (LCM) and transport Key
Performance Indicators (KPI) are managed separately [13], it will be harder to
provide scalability for the MNO. When running NFVs, LCM and transport KPI can
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be managed from the Network Function Virtualization Orchestrator (NFVO), which
allows modification of services without direct request from the OSS/BSS. Moreover,
the NFVO is able to react to network events and decide what parameters to modify
for the changing network event related service. The latter can be achieved by
means of containers (e.g. Kubernetes) although such containers are not aware of
other mobile network regions KPI’s.

The figure 3.1 depicts a faulty EC backbone link (red link) precluding one of its
nearby affected (red) base stations (BS) to be served for any requested service. By
only considering cloud or transport aware parameters the requested service can
not be satisfied. The selection of the EC center needs to depend on both cloud and
transport parameters. A ML model could joint transport and cloud parameters for
EC selection and even foresee having an EC running out of its resources or a link
reaching its limit bandwidth.

2.2. Followed strategies for the thesis development

The aim of the present work is to implement a RL algorithm, more precisely a
Q-Learning (off-policy TD) algorithm, to optimally allocate VNF requested by BSs to
an EC center. RL is a good technique to solve complex challenges achieving long
term results. The learning procedure is very similar to the human’s making it ideal
to reach almost perfect solutions. In RL when the agent learns to avoid an error, it
is very unlikely to commit the same error. The agent can learn from its experiences.

There are other tabular RL algorithms like SARSA but it is an on-policy based
algorithm, hence it needs a policy to estimate the value of the current policy
whereas Q-Learning directly learns the optimal policy. SARSA on the other hand
might show some conservative performance whenever the risk of gathering a large
negative reward is close to the optimal policy path.

In order to accomplish a close scenario as stated in 2.1, the environment requires it
to be custom modeled with specific dynamics to interact with the agent.

In order to evaluate the Q-Learning algorithm performance, two more algorithms
have been implemented to be compared and extract final conclusions from the
obtained results.

The first of the algorithms (Best Fit) has been inspired by the concept of a classic
load balancing algorithm, Weighted Round Robin, adapted to the needs of the
treated thesis matter. Each server has a weight based on the administrators criteria
of their choosing. The server with the highest weight serves the client petitions.
This approach follows a classical problem of client-server petition, setting aside the
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differences. It increases efficiency and reduces node downtime. A load balancer
algorithm improves resource utilization while also avoiding some nodes over load.

The second implemented algorithm (Model-based MDP) is a Policy Iteration
algorithm using iterative policy evaluation for estimating the optimal agent's policy.
For it, all state transition probabilities need to be computed in advance, as well as
all possible valid states. This is an algorithm that allows one to obtain the optimal
policy out of all possible policies, it is a way to compare how good the Q-Learning
algorithm performs since the optimal policy can be achieved through Policy
iteration.

Finally, a Q-Learning (model-free and off-policy Temporal Difference (TD))
algorithm is implemented, where not all environment key aspects are known and
the agent will learn its optimal policy by means of trial and error, reaching its goal
by maximizing the discounted cumulative state rewards from the environment.

The main objective is to have three algorithms performing under the same
environment dynamics where an agent receives a reward for every optimal
decision it takes on each state. By having the same environment it can be assured
that the agent side is interacting with the environment exactly the same way across
all algorithms, hence the agent’s policy can be evaluated objectively without the
environment's influence.

2.3. Modelings

2.3.1. Modeling the network

To tackle the problem stated in chapter 2.1 the following network structure is
considered.

Fig. 3.2. Mobile Network infrastructure to be modeled
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Such a scenario allows us to be able to model the problem from a theoretical
perspective across all three algorithms and compare it with an optimal solution to
see how close we are from it.

Two ECs network nodes will be modeled, and 6. Each EC will be defined
by:

● Available number of Central Processing Units (CPU): ,
● Number of used CPUs: ,
● Available link bandwidth (BW): ,
● Used link bandwidth: ,

Therefore, at any time, the network status can be described by the following vector:

Table. 3.1. Network status vector

2.3.2. Modeling VNF requests

VNF requests are generated as a sequence of requests, each with its interarrival
time as well as duration time and stored in a .csv file to be imported by the
environment side.

A BS VNF request is compounded by:

● Arrival rate
● Departure rate
● VNF type

The VNF arrival rate ( ) defines the average number of VNF that a BS may
request per unit of time. Whereas the departure rate ( ) defines the average
number of VNF that are terminated from the system per unit of time. Both rates
follow a Poisson distribution, many events follow such a distribution; like the
number of patients arriving into a hospital emergency room, the number of failures
of ultrasound machines for cleaning purposes or the number of requests to a
server. A Poisson distribution describes the number of event occurrences, it is a
stochastic and discrete process and its events are independent from each other.

6 For convenience purposes M is employed to refer to mec, but from ahead now, M and mec will
mean the same.
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In spite of a Poisson distribution models the number of event occurrences, the
interarrival time of such events can be modeled using a continuous exponential
distribution.

Finally, the VNF type describes the different types of requests. Details the
requested number of CPUs and BW for the VNF service.

Table. 3.2. VNF request vector

Note: Annex D describes the modeling process for VNF requests.

2.3.3. Modeling the environment

The environment must be the same for all algorithms, that is, the interaction signals
between the agent and the environment must be the same, as depicted in figure
2.6.

From modeling the network, it is clear that the possible actions are two, M1 and
M2.

The state must contain all the network information relevant to the agent, it needs to
reflect not only the network status but the VNF request that arrives into the network
to foresee the EC assignment.

For the reward function, several strategies can be implemented. The agent could
be positively rewarded when assigning a VNF to a EC, or be negatively rewarded
when a VNF rejection occurs, or be both. During the development stage of
Q-Learning, rewarding the agent positively and negatively, showed to diminish the
agent’s performance. It was decided to only reward the optimal actions to enhance
the optimal policy. It should be recalled that rewards are reflected in the Q-Table in
the form of state-action pair values that are constantly updated with each action.
Having two policies, an optimal one and one to be avoided results in too much
information for the agent to learn.
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The environment is also in charge of triggering each VNF request according to its
interarrival time. Also, keeps track of each VNF departure time and terminates it
when required to, returning back the MEC resources to the network. After each
agent action, the environment updates the network status.

2.4. Algorithms considerations

2.4.1. Best Fit

The Best Fit algorithm is inspired by a classic load balancing algorithm, Weighted
Round Robin. There's no RL concept in it since the "agent" algorithm does not
learn anything. It only visualizes the current network state and assigns the
incoming VNF to whichever MEC shows the highest network metric value.

The metric value is what is used to weight each MEC. First the MEC link
congestion is computed, for it, it is obtained as the ratio between the used link BW
over the total network BW.

(2.1)

Afterwards, the final metric ( ) is computed, as the ratio of the link congestion ( )
times the available number MEC CPUs over 100, plus the ratio between the
remaining network link BW over the number of hops between the BS and the MEC.

(2.2)

The functioning of Best Fit is straightforward, first checks if all MECs have enough
CPU and BW resources, if not a rejection is generated. If there are MEC resources
it will check if there's only one MEC out of all MECs with resources, if so, the VNF
will be assigned to that MEC. In case all MECs have the same amount of available
resources, the assignment will be random. It could also be assigned based on
proximity distance to the BS. Finally if all MECs have enough resources, the VNF
will be assigned to whichever MEC proves to have the highest weight ( ).

https://www.codecogs.com/eqnedit.php?latex=k#0
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Note: A detailed Best Fit algorithm flowchart is described in annex F.

2.4.2. Model-based MDP

From chapter 2.4 it is known that an algorithm like Policy iteration when applied to
a model-based MDP, it is possible to compute the one and only optimal policy out
of all existing policies. For it, it is necessary to know all possible valid states as well
as all state transition probabilities.

One may ask, at this moment, why bother with any other algorithm (Q-Learning)
when it is possible to obtain the optimal policy with Policy Iteration? A Policy
Iteration algorithm becomes very slow when the number of possible valid states
reaches a certain number and not always the state transition probabilities are
known nor all valid possible states.

Let us remember with an example what a state looks like in Q-Learning. Let's
consider an initial network status as follows:

Let’s also consider that the different VNF types are:

and is the first to arrive into the network. The initial state that the agent sees
is:

Suppose that the agent chooses to assign the first VNF to M1 and that is the
next request to arrive:

Two different states have been generated, how many possible states are in total
following the example? Certainly it would take some computational power to
compute all possible states. Also, what are the transition state probabilities with
such a state structure?

How to overcome these incognites in a model-based MDP to be solved through
Policy Iteration? The structure of the state needs to be modified, the information
encapsulated in the new structure will be the same to all effects.

https://www.codecogs.com/eqnedit.php?latex=vnf1#0
https://www.codecogs.com/eqnedit.php?latex=vnf2#0
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The new state structure is as follows:

where:

: is a vector of size equal to the number of VNF types describing if a VNF arrives
or departs from the network. Its possible values are:

A vector like indicates that a VNF of type 2 is arriving into the system. A
vector like indicates that a VNF of type 1 is terminated. Notice that only one
vector value will be either ( ), whereas the rest will be 0. Vector value positions
indicate the type of VNF.

: is a vector indicating the number of alive/active VNF types deployed in MEC 1.

: is a vector indicating the number of alive/active VNF types deployed in MEC
2.

As an example, an vector as indicates that MEC 1 is serving 2 VNF of
type 1 and 3 VNF of type 2. The position of each vector value indicates, not only
the quantity but also the type of VNF deployed. The position of each vector value
and the quantity of it, encapsulates the resources that are being used and implicitly
the available ones.

Following the previous example, in a model-based MDP the initial state and the
second one would be:

7

A state like:

7 Notice how the state structure holds the same information as in the Q-Learning state structure:
[1, 0] = [5, 850], [0, 0] = [12, 850], [0, 1] = [2, 300]. Rearranging it: [2, 300, 5, 12, 3, 0, 850, 850, 150,
0].
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Would indicate that a VNF of type 1 must be killed. Since the environment keeps
track of the assigned VNF, it knows to which MEC was the VNF assigned, hence it
can return the resources back to its belonging MEC.

The other element required is each state transition probability, which can be
computed based on the Competing Exponentials theorem [13] from the Poisson
process used to model the VNF inter arrival and departure times.

Note: Refer to annex F to see a detailed explanation on how to compute the state
transition probability applying the Competing Exponential theorem.

2.4.3. Q-Learning

As mentioned in chapter 2.2, the purpose of the present work is to evaluate the
Q-Learning algorithm against two more algorithms. Best Fit and MDP can be
tested directly without the need of a previous training, the first one because it only
takes into account the current state, hence, there is no need to populate a data
structure with state-value functions. The second one, computes the optimal policy
beforehand and once generated, no matter the VNF sequence, it will know how to
optimally assign each VNF to its corresponding MEC.

The Q-Learning algorithm differs somehow from the rest of algorithms, it needs to
populate the Q-Table previously, to test it later on with the same VNF sequence
test files. For such, the Q-Learning will be trained with several VNF sequences files
before putting it to evaluation. To prevent the possibility of the Q-Learning algorithm
facing an unknown state (during the evaluation stage) and failing when trying to
search it in its Q-Table, we'll modify the algorithm so it can also learn during the
test stage. The agent will be able to distinguish between known states and
unknown ones.

Finally, the Q-Learning hyper-parameters and the sub-algorithm parameters,
e-greedy, need to be configured according to chapter 2.2. In the problem that it is
intended to be solved there is no terminal state. In a real scenario, VNF arrives into
the system in an infinite sequence, VNF are demanded and later on terminated.
The problem to be tackled is a continuing tasks scenario, hence, the agent must
be aware of it. For such, a suitable configuration of the Q-Learning
hyper-parameters needs to be accounted for.

2.5. Summary

Chapter 2 has raised the problem to be addressed. The objective is to implement a
Q-Learning algorithm to assign, in an optimal manner, the BS incoming VNF
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demands to a 5G network EC. In order to evaluate such an algorithm performance,
two more algorithms are implemented to compare them against each other. The
concept of weighted EC, has also been introduced by means of computing the
network's metric for the Best Fit algorithm. It has been described the needed
modification the state structure must take in the MDP algorithm and the reasons for
that. Finally it has been justified why Q-Learning needs a training stage prior to
testing it with the common VNF sequence files.

CHAPTER 3. SIMULATION RESULTS

Chapter 3 shows the results across several simulation tests. Annex G describes
the used tests strategy in order to cross-validate each algorithm and verify it is
implementation correctness performance. A test for different values of the
Q-Learning hyper-parameters demonstrates the influence of such parameters in
order for the Q-Learning algorithm to reach convergence when learning. Section
4.3 proves how important it is to properly tune the parameters regarding the
exploration and exploitation Q-Learning sub-algorithm. More detailed simulation
graphs can be found in annex I regarding the Exploration/Exploitation tests. Finally,
sections 3.3, 3.4, 3.5 and 3.6 show the results when comparing each algorithm for
different values either in EC capacity or VNF demands.

3.1. Influence of Q-Learning parameters

The effect of the Q-Learning hyper-parameters, learning rate ( ) and discount
factor , have been explained in chapter 2.5. In order to configure the suitable
settings, several test runs are performed with different and values.

Continuous tasks, as the tackled problem in the present work, force the agent to
make a trade off by achieving a high reward in the long term but giving sufficient
relevance to each current state value. It is interesting for the agent to learn
enough, in order to allocate the VNF demands optimally, but remembering how it
performed when faced with different sequences of VNF demands containing that
particular VNF request. From figure 4.1 it can be seen that mid values for and
shows an optimal starting point for the best learning curve, converging from
episode 60.

Settings Values
No. training files 1

No. episodes 250
No. demands/episode 500

Table 4.1. Simulation settings

https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
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Fig. 4.1. Agent’s learning performance curves during the training stage

Figure 4.1 represents the average reward that the agent achieves for 250 episodes for
different and values with the purpose of showing the hyper-parameters effect in the
agent's learning performance. Nevertheless, an extensive number of simulations were
carried out and can be seen in annex H.

3.2. Exploration and Exploitation algorithm parameters

The implemented sub-algorithm in Q-Learning (e-greedy) that determines how
much of an explorer or exploiter the agent is, has certain parameters that precisely,
defines for how long (for how many episodes) is going to adopt such profiles.
Those parameters are:

● The initialized exploration rate:
● The exploration probability at start of episode:
● The minimum exploration probability to reach:
● The rate at which the value decays after each episode:
● The episode number of all episode range:

The value decays after each episode by means of:

(4.3)

The decay rate ( ) has an enormous influence for achieving convergence on
the agent’s learning performance. Depending on the number of episodes, a very
small rate ( ) might provoke the agent to never get to exploit what has already
learned. By leaving a minimum epsilon value ( ), we open the door for
the agent to explore from time to time, even towards the end of the training stage,

https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma#0
https://www.codecogs.com/eqnedit.php?latex=%5Cepsilon#0
https://www.codecogs.com/eqnedit.php?latex=%5Cepsilon#0
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that’s the reason why certain peaks can be seen along the performance curve once
it has converged (Fig. 4.2 left graph).

Settings Values
No. Training files 1

No. episodes 250
No. demands/episode 2000

Table 4.2. Simulation settings

Fig. 4.2. Exploration/Exploitation influence on the agent’s learning performance

Numerous tests were executed with different (annex I) to study the
performance of the agent in the modeled environment in order to discover the
balance between the number of training episodes and the number of VNF
demands. It should be noted, that the agent is performing in a continuous task
environment and that there is no terminal state, the main goal of the agent is to
optimally allocate the VNF demand to an EC center (at every state) and at the
same time be able to remember certain patterns of consecutive incoming VNF
demands. For such, it needs to remember what has already been learned and not
be motivated to learn everytime faces a known VNF demand in a different VNF
sequence. Hence, it needs to explore for a certain time and gather the knowledge
to exploit it.

3.3. Rejection ratio with respect to VNF arrival rate

In this simulation, the performance of the algorithms are evaluated according to
different values of VNF arrival rates, ( ). For such, we alter the initial values for the
arrival VNF rates multiplying them by a certain factor. The objective is to analyze
how the inter-arrival times between demands affect the EC resources. We force the
agent to deal with consecutive incoming requests in short periods of time and with
large inter-arrival times.
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In simulation 1, the short arrival and departure rate for VNF of type 2, provokes that
such demands arrive and terminate before a new demand arrives, returning the
consumed resources back to its EC center to which it was assigned. This short
inter-arrival time between VNF forces that VNF of type 1 endures over several
timesteps, shortening the number of possibilities for the agent to optimally assign
requests to MECs. The agent, for most of the time, is only learning how to assign
VNF of type 1, the reason why performance between MDP and Q-Learning is
equal, as seen in figure 4.3 (parametrized factor 0.2). As the inter-arrival times
increases between demands, the MDP computes a better policy than Q-Learning
and it can be seen that the gap between both algorithms are very close.

Settings Values
Initial network status [4, 12, 0, 0, 1000, 400, 0, 0]

No. Training files 10
No. VNF demands/training 500

No. episodes/training 250
No. Test files 20

No. VNF demands/test 500
(3, 2)

Table 4.3. Simulation settings

Value/Simulation Simulation 1 Simulation 2 Simulation 3

Parameterized factor x0.2 x1 x2

Arrival rate (0.6, 0.4) (3, 2) (6, 4)

Departure rate (1, 0.5) (1, 0.5) (1, 0.5)

VNF types [(1, 300), (3,50)] [(1, 300), (3,50)] [(1, 300), (3,50)]

Table 4.4. VNF parametrized arrival rate

Fig. 4.3. Performance according to different VNF arrival rates

https://www.codecogs.com/eqnedit.php?latex=%5Clambda#0
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X-axis on Figure 4.3 represents the different values by which the VNF arrival rate
has been multiplied with. On the Y-axis we find the rejection VNF ratio for each
algorithm test performance. Annex J offers boxplots to see the distribution of
rejections for every algorithm and test.

3.4. Rejection ratio with respect to EC capacity

In this simulation, the performance of the algorithms are evaluated with different
values for MEC CPU cores and BW capacity by means of multiplying each mec’s
capacity by a factor: 0.8, 1 and 1.2. The VNFs inter-arrival and departure rates
follow the same settings as in simulation 2 from section 3.3.

This test allows us to analyze how the agent in the Q-Learning performs as we
increase the available resources on each EC center and how it differs from the
MDP. It also allows us to see how the agent allocates each VNF demand to an EC
center, does it assign VNFs of the same type to a certain EC or does it try to
balance the available resources as it does the Best Fit across all EC centers.

Settings Values
No. Training files 10

No. VNF demands/training 500
No. episodes/training 250

No. Test files 20
No. VNF demands/test 2000

M1, M2:  [CPU, BW] [[5, 1000], [10, 400]]

Table 4.5. Simulation settings

Value/Simulation Simulation 1 Simulation 2 Simulation 3

Parameterized factor 0.8 1 1.2

M1, M2 CPU cores [4, 8] [5, 10] [6, 12]

M1, M2 BW [800, 320] [1000, 400] [1200, 480]

Table 4.6. Mecs parametrized capacity
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Fig. 4.4. Performance according to different mecs capacity values

Figure 4.4 shows the performance difference between MDP and Q-Learning when
EC resources are somewhat scarce, the Q-Learning's policy is better than the Best
Fit but is worse than the MDP. The randomness of the Q-Learning during the
exploration stage, determines somehow the starting point to which to build the path
for the optimal policy. As the exploitation stage starts to be applied, the
probabilities of changing what is already known are less proun. Besides, the
available CPU resources in EC 1 are consumed very quickly making the rest of the
outcome somehow deterministic. As the available resources are increased on each
EC, Q-Learning appears to have more margin to learn and to approach the ideal
policy as the MDP.

Note: Refer to annex J for boxplots version graphs.

3.5. Rejection ratio with respect to EC resource heterogeneity

In this simulation, we fix the number of available resources in EC 1 and we
increase the available number of CPUs in EC 2 while we decrease the available
BW link in EC 2 also. The aim is to see how each EC parameter affects the agent's
decision. The VNFs inter-arrival and departure rates follow the same settings as in
simulation 2 from section 3.3. The performance of the algorithms are evaluated in
different CPU cores and BW by means of:

(4.1)

The VNFs follow the same settings as in simulation 2 from section 3.3.
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Settings Values
No. Training files 10

No. VNF demands/training 500
No. episodes/training 250

No. Test files 20
No. VNF demands/test 2000

M1:  [CPU, BW] [4, 1000]

Table 4.7. Simulation settings

Value/Simulation Simulation 1 Simulation 2 Simulation 3

Parameterized factor

M2 CPU cores [4] [10] [12]

M2 BW [1000] [400] [333]

Table 4.8. Mec 2 capacity parametrized factor

Fig. 4.5. Performance according to resource heterogeneity

In simulation 3 although having increased the number of available CPU cores for
EC 2, the BW has been reduced. This leaves EC 2 to only be able to serve a VNF
of type 1, 6 of type 2 or a mix of both until reaching the maximum MEC capability,
whereas in simulation 2 it can accept not only one VNF of type 1 but also two VNF
of type 2, or 8 of type 2 or a mix of both before running out of resources.
Nevertheless, it can be appreciated how the Q-Learning algorithm performs
similarly to MDP when EC resources are tight, as seen in figure 4.5.

Note: Refer to annex J for boxplots version graphs.
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3.6. Rejection ratio with respect to VNF demand heterogeneity

In this simulation we proceed the same way as in the previous one but affecting the
VNF demands values. For the case, we leave VNF of type 1 static and we modify
the values for VNF of type 2. We've increased the available EC resources to leave
enough margin for the Q-Learning to learn how to assign each VNF demand. For
VNF of type 2, as we increase the number of CPU requests, we decrease the
required link BW. The VNFs inter-arrival and departure rates follow the same
settings as in simulation 2 from section 3.3.

Algorithms are evaluated in different CPU cores and BW VNF demands by means
of:

(4.2)

Settings Values
Initial network status [8, 12, 0, 0, 1000, 1000, 0, 0]

No. Training files 10
No. VNF demands/training 500

No. episodes/training 250
No. Test files 20

No. VNF demands 2000
VNF1:  [CPU, BW] [2, 300]

Table 4.9. Simulation settings

Value/Simulation Simulation 1 Simulation 2 Simulation 3

Parameterized factor

VNF2 CPU [3] [4] [8]

VNF2  BW [200] [150] [75]

Table 4.10. VNF 2 demands parametrized factor
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Fig. 4.6. Performance according to VNF demand heterogeneity

It can be seen from figure 4.6 that Q-Learning is quite far in performance from the
MDP when VNF demands are small and EC resources are enough. Again, it
seems that Q-Learning performs better when resources from EC are constrained
for higher demanded VNF requests performing close to the optimal policy of MDP.

Note: Refer to annex J for boxplots version graphs.
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CONCLUSIONS

There is a striking performance similarity between the Q-Learning and the MDP,
especially when both algorithms are faced with limited EC available resources.
Q-Learning does not obtain the optimal policy that MDP does, even though it is
very close to reaching it. Nevertheless, Q-Learning is a Model-free based algorithm
whereas MDP needs to know all environment dynamics including all possible valid
states beforehand, an arduous task to meet in a real world scenario. MDP is a
great optimization RL model for controlled and small environments, where all
conditioning factors are well known, which is not the 5G case.

It also has been shown how Q-Learning performs better than Best Fit in all cases,
hence confirming that implementations with intelligence could perform better than
the classical load balancer algorithms like the implemented in the present thesis.
Q-Learning has proved to work well considering cloud and transport network
parameters, which was the main aim during the problem statement.

Modeling the environment for all three algorithms has been a challenging task
since not only the agent's side was important but also the environment in order to
simulate as closely as possible a network scenario by not influencing the agent's
decisions.

Future research lines to develop from this thesis, would be to integrate Neural
Networks (NN) in the Q-Learning approach, like Deep Q-Networks (DQN).
Although Q-Learning has proved to perform quite well, the fact of having to store all
Q-values in a data structure makes it infeasible for very large scenarios. The
increase is exponentially, as new possible actions are added, becoming an
impractical model due to the computational cost it requires. By integrating neural
networks, there is no need to save anymore the states and its Q-values, since the
NN can approximate a Bellmans' equation solution to obtain the Q values.

The present master thesis has been somehow constrained by the time and
processing power that simulations require, which denotes how important powerful
computers are required when running RL models, specially if intended to run DQN
or any other NN to accomplish optimal results.
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ACRONYMS

3GPPP 3rd Generation Partnership Project

5G Fifth Generation

5G-SO 5Growth Service Orchestrator

5GPPP Fifth Generation Partnership Project

5Gr-AIMLP Artificial Intelligence/Machine Learning platform

5Gr-RL 5Growth Resource Layer

5Gr-VoMS Vertical-oriented Monitoring System

5Gr-VS 5Growth Vertical Slicer

AI Artificial Intelligence

AR Augmented Reality

BW Bandwidth

CAGR Compound Annual Growth Rate

CAPEX Capital Expenditure

CDF Cumulative Distribution Function

COTS Commercial-Off-The-Shelf

CTTC Centre Tecnològic de Telecomunicacions de
Catalunya

DP Dynamic Programming

EB Exabytes

EC Edge Computing

EIR Equipment Identity Register

eMBB Enhanced Mobile Broadband

EMS Element Management System

EOL End-of-Life
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gNB 5G Radio Base Station

IaaS Infrastructure as a Service

IMT-2020 International Mobile Telecommunication 2020

IoT Internet of Things

ITU International Telecommunication Union

KPI Key Performance Indicators

LCM Life Cycle Management

LTE Long Term Evolution

MANO Management and Orchestration

MDP Markov Decision Processes

MEC Multi-Access Edge Computing

MIMO Multiple-Input and Multiple-Output

ML Machine Learning

mMTC Massive machine type communications

MNO Mobile Network Operators

NFV Network Functions Virtualization

NFV-NS NFV-Network Services

NFVO Network Function Virtualization Orchestrator

NSD Network Service Descriptor

NWDAF Network Data Analytics Function

OPEX Operating Expenditure

OSS/OBS Operations Support System/Business Support
System

PDF Probability Density Function

QoS Quality of Service

RAN Radio Access Network

ROI Return Of Investment
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SDN Software Defined Networking

SLA Service Level Agreement

SO Service Orchestrator

TD Temporal Difference

UE User Equipment

URLLC Ultra-reliable and low-latency communications

VNF Virtualized Network Functions

VR Virtual Reality

vRAN Virtual Radio Access Network

VSB Vertical Service Blueprint
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ANNEX

Annex A: Value function iteration demonstration

With the purpose of demonstrating how to obtain the value function from the states
of an environment, let's assume the following scenario [19]. An agent must reach a
certain state, rewarded with 1, colored green. Whenever falls in the red state,
receives a punishment of -1. In order to motivate the agent to reach the green
state as quickly as possible, we will apply a discounting reward of -0.04 for every
movement it does until reaching the final state. This way we assure that the agent
will try to learn the shortest path.

The action space is: up, down, left and right. Unfortunately, the agent movements
are not totally reliable, that is, 20% of the times will end in a state other than the
intended to. Whereas for 80% of the time it will achieve its desired destination.
Opposite undesired movement to the intended one are not considered. We’ve just
defined our state transition probability.

As mentioned in chapter 2.3.4.4 the Bellman equation computes the value function
in a backup propagation method. Given the initial described circumstances, will
start from the final optimal policy and its value functions.
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From all possible policies, the one above is the optimal one. Suppose our agent
starts at state 1, notice how the optimal path goes through states 2, 3, 4 and 5
avoiding states 7, 8 and 6 due to the high risk of landing in the red state. States 7,
8 and 9 add an extra cost to the agent if it did start on those states (remember
there’s -0.04 for every movement) but even though the expected return is greater
than the risk of ending in state 6 or in the red state.

No matter in which state our agent starts from one the optimal policy is computed,
with the optimal state value functions it will know how to reach the final state in the
shortest possible path. Each of the value functions will tell the agent the expected
return it will perceive until getting to the final state.

For convenience we will assume a discounting factor of .

How do we verify the optimal state value functions? Let’s verify state 5 which is the
last state that allows it to end in the terminal state.

The optimal movement is to the right and that’s what the first term is telling, there’s
80% chances to move to the right and get the final reward of 1. But there’s also a
10% chance of ending down and the state value function of state 6 is 0.660.
There’s also a 10% probability of moving up which will provoke the agent to remain
in state 5 which has an expected return of 0.918. Finally, we must discount -0.04
no matter where the agent ends up.

In order to verify the value function of state 5 we had to know previously what was
the value from itself and from state 6. Also we would need to know the value itself
of state 6 and from state 8, and same thing with the rest of states.

The very first time our agent would see the environment, all states would be
initialized to:
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It is a common practice to initialize all states to cero, although random values for
each state would also work.

Those would be the value functions for each state, no matter from which the agent
would start.

After applying the Bellman equation on the first iteration on each state except state
5, the value functions would be:

State 5 is different because there is an optimal movement that will allow the agent
to get to the final state and earn a reward of 1.

Notice how if our agent would start from any state other than 5, it would not know
which movements to try in order to reach its goal, the expected return is negative in
all of them. This is the reason why at the beginning it is interesting to have an
explorer agent.

On the second iteration when computing the state value functions, states 4 and 6
will have new values because state 5 already has a higher expected return. In the
third iteration, states 3, 4, 5, 6 and 8 will update their state values for the same
reason as before, states 4 and 6 have updated values. This is dynamic
programming, iterating over each state computing the state value function until it
converges to a fixed point reaching the optimal state value function on all possible states
as we saw at the very beginning.
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Annex B: Policy Iteration demonstration

B2.1. Policy Evaluation

Let's consider an MDP [19] representing an Episodic Task environment within a
maze, where the agent’s goal is to reach from an initial state, to a terminal state,

in the minimum time steps .

For such a mission, the agent counts with four possible actions: left, right, up or
down.

In policy evaluation we have a given policy and from it, it is computed the
state-value function (refer to annex A), let’s assume the following agent’s policy:

All states colored in red have a state-value function equal to cero. No matter in
which state (among the colored in red) the agent starts from, it will always end up
in a loop between states and for the given policy. Reason why none of
those states are good in order to reach the terminal state .

It is only from where the state-value function of all successive states rises in
value as the final state is approached. Hence, implicitly defining the optimal
policy for those last states colored in blue.
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B2.2. Policy improvement

After computing the state-value function for the given policy, it is then improved.
Notice how changing the action in triggers the update of several states when
computing again the state-value function for the new policy.

After the first iteration, it is still possible to improve the policy by changing actions
in and .

We iterate again over the last policy to improve it by changing actions in and
.
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Although it could seem that the optimal policy has been reached, the last
improvement in is not the action gathering the highest state-value function,
instead of taking action to the left, it would have been better to take an up action
since is higher in value than . Hence, we still can improve it by changing
the action again.

By repeating the above steps we end up with the optimal policy and also with the
optimal state-value functions.

Annex C: Contractive operator

Assuming as a Bellman operator such that:

(B.3.1)

if is contractive, it can be assure that by means of iterative application of ,
will converge to a fixed value.  Let’s call Bellman operator the application:

https://www.codecogs.com/eqnedit.php?latex=V_n#0
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(B.3.2)

● If , is contractive
● It will converge to an optimal value and policy
● Policy iteration:

a. Policy evaluation:

(B.3.3)

b. Policy improvement:

(B.3.4)

Annex D: Poisson Process

Let be random events in such that:

: is the interarrival time between the process start and the first event
: is the interarrival time between the first and the second incoming event.
: is the interarrival time between the and event.

The exponential distribution of the arrival times can be defined by:

where , is the average occurrences event rate. If the Probability Density Function
(PDF) for is:

and the Cumulative Distribution Function (CDF) is:
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Then the interarrival times in a Poisson process can be modeled applying the
inverse CDF technique feeding different random values following a uniform
distribution :

In Python it can be implemented by using the Numpy library and its function
random.exponential():

import numpy as np

vnf_interArrival = np.random.exponential(1.0 / arrival_rate)
vnf_killTime = np.random.exponential(departure_rate)
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Annex E: Best Fit flowchart

Fig. F.1. Best Fit algorithm flowchart

https://lucid.app/documents/edit/95cc71dd-f0a2-4189-bab8-715bf7edc022/0?callback=close&name=docs&callback_type=back&v=2509&s=595.2755905511812
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Annex F: Computing state transition probabilities

State transition probabilities are key, in order to compute the optimal agent’s policy.
A state transition probability may describe the probability of an agent success
outcoming after choosing an action, i.e., a robot may have a failure probability for
each of its actions. In the present thesis, the state transition probabilities are
computed from the Poisson process applied to the arrival VNF demands into the
network.

Recalling the state structure defined in chapter 3.5.2, the state transition probability
can be computed by applying the Competing Exponential theorem [13].

Let us consider the following scenario:

E.g. 1:

State ( ) is describing one active VNF of type 1 in mec 1 and one active VNF of
type 2 in mec 2 and a new VNF, of type 1, arriving into the system.

According to the previous state, all possible state transitions for each possible
agent’s action are:

If the agent chooses mec 1 to assign the incoming VNF, the following state will
either receive a new VNF arrival or a VNF departure. In case of a new arrival, the
new state will be:

1. for a VNF type 1 arrival

2. for a VNF type 2 arrival

If instead of a new arrival, there’s a departure, then the new state will be:

3. for a VNF type 1 departure
4. for a VNF type 2 departure

https://www.codecogs.com/eqnedit.php?latex=s_t#0
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Probabilities for each of the possible new states is computed as:

Checksum of probabilities:

In case the agent would have chosen mec 2, the procedure would be the same.

E.g.2:

Let us see an example from another possible state.

Killing a VNF is not an agent’s action, it is the environment’s mission, hence the
agent will find itself into a new state. As it can be seen, only a VNF of type 2 will be
killed, so the first four possible states (there’s a total of 8) will be:

All new possible valid states:

1.
2.
3.
4.

State transition probabilities:
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Annex G: Algorithms Cross-validation tests

A way of verifying if all algorithms are correctly implemented is by cross-validation
between them. By specifying certain scenarios and testing them, it is possible to
check for any code issues.

Test 1:

Notice in the network status that only mec 2 has resources, so all algorithms can
only assign VNF to such mec, making the algorithms outcoming deterministic.

Fig. G.1 MDP test results
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Fig. G.2 Q-Learning test results

Fig. G.3 Best Fit test results
Test 2:

Fig. G.4 MDP test results
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Fig. G.5 Q-Learning test results

Fig. G.6 Best Fit test results

In this test, although two VNF are defined, they have the same values, in reality, it
is like having only one VNF type. There’s not enough complexity for either the
Q-Learning or the MDP to learn, ending in a deterministic outcome when assigning
VNF to mecs.
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Annex H: Influence of Q-Learning parameters simulation results



65



66

Fig. H.1. Influence of Q-Learning parameters
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Annex I: Exploration and Exploitation simulation results

Training files 10

0.001

No. episodes/training file8 250

Fig. I.1. Simulation settings

No. VNF /episode = 60 No. VNF /episode = 250

No. VNF /episode = 2000 No. VNF /episode = 60

8 For the first 9 simulation graphs.

https://www.codecogs.com/eqnedit.php?latex=%5Cepsilon_%7Bmin%7D#0
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No. VNF /episode = 250 No. VNF /episode = 2000

No. VNF /episode = 60 No. VNF /episode = 250

No. VNF /episode = 2000 No. episodes/training file = 500
No. VNF /episode = 60
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No. episodes/training file = 500
No. VNF /episode = 250

No. episodes/training file = 500
No. VNF /episode = 2000

Fig I.1. Exploration and exploitation results for different values
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Annex J: Boxplots for simulations 3.3, 3.4, 3.5 and 3.6

Fig. J.1. Rejection rate with respect to arrival rate

Fig. J.2. Rejection rate with respect to capacity
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Fig. J.3. Rejection rate with respect to resource heterogeneity

Fig. J.4. Rejection rate with respect to demand heterogeneity


