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Abstract

Quantum particles are continuously interacting with the environment hence quantum information is always
susceptible to errors. Consequently when encoding information into quantum bits a special treatment is
required such that there is a recovery map between the information sent and the information received
capable to correct certain class of errors. We allow the quantum bits to take two orthogonal values
(qubits) and we encode k logical qubits on n physical qubits. We first present the already well known class
of quantum codes called stabiliser codes and its geometry from which one can deduce the code parameters.
Finally we shall study the much less known class of quantum codes called non additive codes, result of
direct sums of stabilizer codes, and for which we provide a geometric framework which appears to be new.
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The first two chapters, devoted to introduce quantum codes and study quantum stabilizer codes, are
based on chapters 2 and 10 from Nielsen & Chuang [1] while the third chapter, devoted to the geometry of
stabilizer codes, is based on Glynn et al [2] despite the F4 trick presented there is not used here. Actually
for the first three chapters we have followed the expository paper [3] which also uses the above main
sources as guidance. Finally the most original part is chapter 4 where we present non additive quantum
codes together with a geometric framework which fully characterizes them and which appears to be new.

1. Quantum Codes

1.1 Qubits and Hilbert Space

Analogous to a bit in classical information theory, a quantum bit or qubit is the basic unit of quantum
information consisting in a two-state quantum-mechanical system: typically the intrinsic angular momentum
(spin) of an electron where the spin can be ”up” or ”down” or the polarization of a single photon where
the polarization can be ”vertical” or ”horizontal”. We shall focus on the first example but the main idea is
the same for both electrons and photons. Electrons can take a continuum of possible spin-directions while,
surprisingly, when measuring we only obtain two discrete values. The measurement indicates in which of
two mutually exclusive states the qubit is found after the measurement. Qubits are the states of quantum
particles described as the superposition of two mutually exclusive states together with the probabilities p
and (1 − p) to obtain these two values when measuring. We will not go deeper in the theory behind the
counter-intuitive behaviour of quantum particles but we refer the interested reader to the book of Sakurai
[6].

Mathematically a qubit is defined as a unit vector in the Hilbert space C2 equipped with the inner
product

(z , w) := z · w = z1w1 + z2w2

where z , w ∈ C2 and z denotes the complex conjugation. In quantum mechanics the columns vectors are
denoted by | 〉 and called ket while the row vectors are denoted by 〈 | and called bra. To switch form
one to another we simply must transpose and and apply complex conjugation. Then given two vectors
|α〉 , |β〉 ∈ C2 the inner product, denoted by 〈α|β〉 and called braket, is

〈α|β〉 = (α1,α2)

(
β1
β2

)
= α1β1 + α2β2

The inner product Cn × Cn −→ C satisfies:

1. Conjugate-linear on the first argument: 〈
∑

i λivi |w〉 =
∑

i λi 〈vi |w〉

2. Linear on the second argument: 〈v |
∑

i λi |wi 〉 =
∑

i λi 〈v |wi 〉

3. 〈v |w〉 = 〈w |v〉

4. 〈v |v〉 ≥ 0 with equality if and only if |v〉 = 0

We can use the inner product to represent linear operators with what is known as the outer product
representation. Let |v〉 ∈ V and |w〉 ∈ W where V and W are Hilbert spaces. We define |v〉 〈w | to be
the linear operator from V to W whose action is ruled by

(|v〉 〈w |)(|v ′〉) ≡ |w〉 〈v |v ′〉 = 〈v |v ′〉 |w〉
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The above action can be interpreted as the result of multiplying |w〉 by the complex number 〈v |v ′〉 or
as the (much more interesting) result of the operator |v〉 〈w | acting over |v ′〉. Indeed the two potential
meanings coincide as the second one is defined in terms of the first one.

Let |i〉 be any orthonormal basis for the Hilbert space V . Then for any |v〉 ∈ V we have |v〉 =
∑

i vi |i〉.
Recall that 〈i |v〉 = vi hence (∑

i

|i〉 〈i |

)
|v〉 =

∑
i

|i〉 〈i |v〉 =
∑
i

vi |i〉 = |v〉

which it is true for all |v〉 ∈ V hence we end up with what is known ad the completeness relation∑
i

|i〉 〈i | = I

The completeness relation let represent any linear operator in outer product notation as follows: Let A be a
linear operator from V to W and let {|vi 〉} and {|wi 〉} be the orthonormal basis for V and W respectively.
Then

A = IW AIV =
∑
i ,j

|wj〉 〈wj |A |vi 〉 〈vi | =
∑
i ,j

〈wj |A |vi 〉 |wj〉 〈vi |

where A |vi 〉 is a ket hence 〈wj |A |vi 〉 is a complex number. Thus, the above expression is the outer product
representation of A. Observe that the entry of A in the i-th column and j-th row, with respect to the input
basis {|vi 〉} and and output basis {|wi 〉}, is precisely 〈wj |A |vi 〉.

Coming back to qubits, the mutually exclusive states spin up and spin down are represented by an
orthonormal basis of C2. By convention we assign the spin up state to the column vector |0〉 while the
spin down state is assigned to the column vector |1〉 where

|0〉 :=

(
1
0

)
; |1〉 :=

(
0
1

)
Clearly 〈0|0〉 = 〈1|1〉 = 1 and 〈0|1〉 = 〈0|1〉 = 0 therefore effectively {|0〉 , |1〉} forms an orthonormal

basis.

An arbitrary qubit state |ψ〉 ∈ C2 is described as the linear combination of the spin up and down states.
Thus

|ψ〉 = α0 |0〉+ α1 |1〉 with α0,α1 ∈ C

We say the qubit is in superposition of both states. After measuring, the probability to find the qubit on
state |0〉 is α0α0 while the the probability to find the qubit on state |1〉 is α1α1. The sum of the above
probabilities must be 1 hence

〈ψ|ψ〉 = α0α0 + α1α1 = 1

which implies the normalization of |ψ〉, namely, |ψ〉 must be a unit vector.

A system of n qubits is mathematically described as a unit vector in the n-fold tensor product of the
one-qubit spaces, namely, the 2n-dimensional Hilbert space (C2)⊗n = C2⊗ ...⊗C2 (n times). For example
for n = 2 a basis of C4 is:

|0〉 ⊗ |0〉 := |00〉 ; |0〉 ⊗ |1〉 := |01〉 ; |1〉 ⊗ |0〉 := |10〉 ; |1〉 ⊗ |1〉 := |11〉

where we use the short hand notation |ψ〉 ⊗ |θ〉 ≡ |ψ θ〉.
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1.2 Observables and Pauli Group

Through this section we briefly present some well known results of linear algebra. We also show the basics
of quantum mechanics notation which should be more than enough to follow the whole text. Anyway, we
refer the interested reader to chapter 2 of [1] or any standard book of linear algebra to go deeper on these
topics.

A unitary transformation of C2 is represented by a non singular 2 × 2 matrix U which preserves the
inner product. Thus

〈Uα|Uβ〉 = 〈α|β〉

The set of unitary transformations in C2 forms the special unitary group SU(2) and their matrix represen-
tations take all eigenvalues modulo 1, namely, of the form e iθ for some θ ∈ R.

Let the set {|vi 〉} be an orthonormal basis and define |wi 〉 = U |ψ〉 vi where U is an unitarian operator.
Then U can be written in terms of an outer product as

U =
∑
i

|wi 〉 〈vi |

The hermitian conjugate M† of a linear operator M is defined as the operator which satisfies

〈Mψ|θ〉 = 〈ψ|M†θ〉

Observe that the above shows how to move an operator between the two elements of the inner product.

A linear operator M is called Hermitian if

M = M† which implies 〈Mψ|θ〉 = 〈ψ|Mθ〉

For a matrix representation A of M the above condition is equivalent to A∗
T

= A. Hermitian operators
have the property that their eigenvalues are real and that the eigenvectors belonging to different eigenvalues
are all orthogonal.

Observe that a unitary operator can be defined in terms of the hermitian conjugate as those operators
fulfilling U†U = I:

〈Uα|Uβ〉 = 〈α|U†Uβ〉 = 〈α|β〉

An operator N is called normal if

NN† = N†N

The spectral decomposition theorem states that any normal operator N on a Hilbert space V is diagonal
with respect to some orthonormal basis for V . Conversely, any diagonalizable operator is normal. Note
that both unitarian operators (U†U = I) and hermitian operators (M = M†) are normal and hence by
spectral decomposition theorem they are diagonalizable.

Let M be a linear operator over a Hilbert Space with orthonormal basis {|i〉}. The trace of M is defined
as

tr(M) :=
∑
i

〈i |M|i〉

In matrix terms tr(M) is equal to the sum of the elements on the principal diagonal.
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Using the completeness relation we can easily check that the trace is invariant under a change of basis.
Let {|j〉} be another orthonormal basis, then

tr(M) =
∑
i

〈i |M|i〉 =
∑
j

∑
i

〈i |j〉 〈j |M|i〉 =
∑
j

∑
i

〈j |M|i〉 〈i |j〉 =
∑
j

〈j |M|j〉

In quantum mechanics the measurements or observables are represented by hermitian operators: the
result of the measurement (eigenvalue) is a real number and the state of the particle after the measurement
(eigenvector) has no superposition because the eigenvectors of different eigenvalues are orthogonal.

Let Â denote an observable hence represented by an Hermitian matrix A and let {mi} and {|mi 〉} be
its sets of eigenvalues and eigenvectors. When measuring the observable Â on a quantum state |ψ〉 we
obtain the eigenvalue mi with probability

pi = | 〈ψ|mi 〉 |2

Then, after the measurement the original state |ψ〉 becomes |mi 〉. Then intuitively the expected value 〈Â〉
is

〈Â〉 =
∑
i

pimi

which implies

〈Â〉 = 〈ψ|A|ψ〉 =
∑
i

〈i |A|ψ〉 〈ψ|i〉 = tr(A |ψ〉 〈ψ|)

In the classical framework an error is a bit-flip between 0 and 1. In the quantum framework an error is
represented by an non-identity unitary transformation, namely, an element of SU(n). Thus, the errors may
vary the probabilities of the superposed states but they preserve the normalisation of qubit states.

Recall that any element of SU(n) decomposes in terms of the matrix basis. We choose the Pauli group
Pn as such a basis i.e. the group generated by all possible tensor products of the four Pauli matrices

σ0 =

(
1 0
0 1

)
; σx =

(
0 1
1 0

)
; σz =

(
1 0
0 −1

)
; σy =

(
0 −i
i 0

)
together with the phases {±1,±i}. The Pauli matrices form a basis for the space of 2 × 2 matrices and
any error affecting a single qubit can be written as a linear combination of Pauli matrices. Similarly, any
error affecting n qubits can be written as a linear combination of elements of the Pauli group. Below we
summarize the main properties of Pauli matrices:

1. Anti-commutation: σiσj = −σjσi for i 6= j and i , j ∈ {x , y , z}

2. Hermitian: σi = σ†i

3. Unitarian: σ†i σi = σ2i = I

4. Product rules: σxσy = iσz ; σyσz = iσx ; σzσx = iσy

5. The eigenvalues of σi for i ∈ {x , y , z} are ±1 while σ0 has eigenvalue 1.

6. They act over |0〉 and |1〉 ad follows: σ0 acts as the identity, σ0 flips the probabilities of the superposed
states, σz indicates if the spin is up or down and σy = −iσzσx adds a phase i , change the sign and
flips the states.

σ0 |0〉 = |0〉 ; σx |0〉 = |1〉 ; σz |0〉 = |0〉 ; σy |0〉 = i |1〉
σ0 |1〉 = |1〉 ; σx |1〉 = |0〉 ; σz |1〉 = − |1〉 ; σy |1〉 = −i |0〉
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Thus, Pn is a non abelian group formed by 4n tensor products of the Pauli matrices together with 4
phases {±1,±i} hence it has size 4n+1.

Example 1.1. Let |ψ〉 ∈ C2 be a qubit described by

|ψ〉 = α0 |0〉+ α1 |1〉

We want to measure the spin up/down expected value of a particle. The individual measurement σz can
only take two values ±1, namely, the eigenvalues of σz . After the measurement the original state |ψ〉
becomes |0〉 if the value obtained is 0 and |1〉 if the value obtained is 1. The probabilities p0 and p1 of
each event are

p0 = | 〈ψ|0〉 |2 = |α0|2 = α0α0 ; p1 = | 〈ψ|1〉 |2 = |α1|2 = α1α1

The expected value σ̂z obtained by the repeated measurement of identically prepared spin particles is

〈σ̂z〉 = 〈ψ|σz |ψ〉 = tr(σz |ψ〉 〈ψ|) = α2
0 − α2

1

Alternatively, we can compute the expected value in the usual way, namely, as the sum of the possible
values multiplied by their probabilities:

〈σ̂z〉 = p0(+1) + p1(−1) = α2
0 − α2

1

A quantum correcting error code is a linear subspace Q of (C2)⊗n into which a number of logical
qubits are encoded into n physical qubits with a special treatment such that all errors of certain type can
be detected and corrected. Thus, given a noisy channel which propagates errors of certain type over the
quantum information sent through it, we must find a recovery map such that the original information can
be restored.

In classical code theory the simplest way to equip a code with error-correcting capabilities is to add
redundancy to the bits. For example, we can encode 0 as 000 and 1 as 111. Then we can correct up to
one error by majority decision. For example the codewords 001 and 010 decode as 0 while the codewords
110 and 101 decode as 1.

In quantum code theory this is no longer possible due to the no-cloning theorem which states that it is
impossible to create an independent and identical copy of an arbitrary unknown quantum state.

Theorem 1.2. (no-cloning). There is no linear operator from |ψ〉 to |ψ〉 ⊗ |ψ〉 for all |ψ〉 ∈ (C2)⊗n

Proof. Suppose such an operator exists and let |ψ〉 , |θ〉 ∈ (C2)⊗n. Then there is a map:

|ψ〉 −→ |ψ〉 ⊗ |ψ〉 ; |θ〉 −→ |θ〉 ⊗ |θ〉

But this map is not linear since

|ψ〉+ |θ〉 −→ (|ψ〉+ |θ〉)⊗ (|ψ〉+ |θ〉) 6= |ψ〉 ⊗ |ψ〉+ |θ〉 ⊗ |θ〉

Example 1.3. (Shor Code). Shor introduced a quantum code in [5] capable to correct any single-qubit
error by introducing a majority decision in both bits and sings.

Shor code encodes a single logical qubit into 9 physical qubits such that the given qubit

|ψ〉 = α0 |0〉+ α1 |1〉
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is encoded by a linear map as
|ψL〉 = α0 |0〉L + α1 |1〉L

where
|0〉 −→ |0L〉 = (|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)

|1〉 −→ |1L〉 = (|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉)

Hence we end up with

|ψL〉 = α0(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉+ |111〉)
+

α1(|000〉 − |111〉)⊗ (|000〉 − |111〉)⊗ (|000〉 − |111〉)

Suppose there is a bit-flip error σx on the 4-th bit. Since

σx |0〉 = |1〉 ; σx |1〉 = |0〉

the term α0 changes to

(|000〉+ |111〉)⊗ (|100〉+ (|011〉)⊗ (|000〉+ |111〉)

which it is enough to detect the error, identify it as σx and correct it by majority decision decoding

|100〉+ |011〉 as |000〉+ |111〉

Suppose we have a σz error on the 7-th bit. Since

σz |0〉 = |0〉 ; σz |1〉 = − |1〉

the term α0 changes to

(|000〉+ |111〉)⊗ (|000〉+ |111〉)⊗ (|000〉− |111〉)

which it is enough to detect the error, identify it as σz and correct it by majority decision decoding

|000〉− |111〉 as |000〉+ |111〉

Since σy = iσxσz we can also correct this single error since the majority decisions to correct σx and σz
are independent of each other while the scalar factor i is indifferent when decoding.

1.3 The Orthogonal Projection

As we shall show the measurement operators, which are hermitian, act over a qubit by arising an eigenvalue
and projecting the qubit state onto the corresponding eigenspace.

Let Q be a subspace of (C2)⊗n. Let Q⊥ be the subspace of (C2)⊗n orthogonal to Q. Thus

Q⊥ = {u : 〈u|v〉 = 0 for all v ∈ Q}

Any ψ ∈ (C2)⊗n can be written as a sum of a vector P |ψ〉 ∈ Q and a vector P⊥ |ψ〉 ∈ Q⊥. The operator
P which maps |ψ〉 ∈ (C2)⊗n to P |ψ〉 ∈ Q is called the orthogonal projection onto Q.
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Lemma 1.4. Let {ψi} be an orthonormal basis of Q. Then

P =
∑
i

|ψi 〉 〈ψi |

Proof. For any j ≤ k we have

P |ψj〉 =
k∑

i=1

|ψi 〉 〈ψi |ψj〉 = |ψj〉

Hence P |ψ〉 = |ψ〉 for all |ψ〉 ∈ Q.

Observe that if |ψ〉 ∈ Q⊥ then P |ψ〉 =
∑

i |ψi 〉 〈ψi |ψ〉 = 0. Also recall that

P =
∑
i

|ψi 〉 〈ψi | =
∑
i

Pi

where Pi = |ψi 〉 〈ψi | is the projection onto the subspace spanned by |ψi 〉. By definition P2 = P while by
Lemma 1.4 P is hermitian since each Pi is hermitian.

Lemma 1.5. If P is a linear operator such that

(i) P2 = P

(ii) P is hermitian.

(iii) The image of P is in Q

Then P is the orthogonal projection onto Q.

Proof. If P is hermitian then it is normal hence it is diagonalitzable. Also the fact it is hermitian implies
it has real eigenvalues. Suppose P |ψ〉 = λ |ψ〉 for some |ψ〉 ∈ (C2)⊗n. Since P2 = P is idempotent then

P2 |ψ〉 = λP |ψ〉 = λ2 |ψ〉 → λ = λ2

Thus, the eigenvalues of P are 0 and 1.

By the spectral decomposition theorem any normal operator N is diagonalitzable, namely,

N =
∑
i

λi |ψi 〉 〈ψi |

for some orthonormal basis {|ψi 〉} where λi and |ψi 〉 are the eigenvalues and eigenvectors of N. In terms
of projectors Pi it yields to

N =
∑
i

λiPi

where Pi is the projector onto the λi -eigenspace of N.

Since P is hermitian it normal too hence

P =
∑
i

|ψi 〉 〈ψi |

where {|ψi 〉} is an orthonormal basis for its eigenspace with eigenvalue 1.

Since P |ψi 〉 = |ψi 〉 for all i then Im(P) = Q is contained on the eigenspace with eigenvalue 1 while
the eigenspace with eigenvalue 0 is Im(P)⊥. Thus, P is the orthogonal projection onto Q.
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1.4 Error Weights

A code of length n is a subset C ⊆ An, where A is a finite set called the alphabet. An element of C is
called a codeword.

The Hamming distance or simply distance d(u, v) between two codewords u, v ∈ C is the number of
coordinates in which they differ. We denote by d the minimum distance between all codewords of C .

Lemma 1.6. Let u, v , w ∈ An. The Hamming distance satisfies the triangle inequality

d(u, v) = d(u, w) + d(w , v)

Proof. If u and v differ in the i-th coordinate then w must differ from u or v in the i-th coordinate too.

The nearest neighbour decoding is the decoding map such that a received codeword v is decoded as u
where u is the closest codeword to v with respect to the Hamming distance.

Lemma 1.7. Using nearest neighbour decoding, a block code of minimum distance d can correct up to
b(d − 1)/2c errors

Proof. By lemma 1.6 any codewords w , u, v ∈ An and codewords u and v satisfy

d ≤ d(u, v) = d(u, w) + d(w , v)

Hence, there is at most one codeword at distance at most b(d − 1)/2c from w .

A linear code C is a subspace of An where A is a finite field and for all u, v ∈ C and λ,µ ∈ A we have

λu + µv ∈ C

The weight w(u) of a codeword u ∈ C is defined as the number of non-zero coordinates of u. Linear
codes are subspaces hence 0 ∈ C , thus

w(u) = d(u, 0)

Lemma 1.8. Let C be a linear code over a finite field. Then the minimum distance d of C is equal to its
minimum weight.

Proof. Suppose that u is a codeword the codeword of C with minimum weight which we denote by w .
Then since C is linear 0 ∈ C hence d(u, 0) = w ≥ d .

Next let u, v ∈ C be two codewords which differ in exactly d coordinates. Since C is linear u − v ∈ C
and has weight d and since w is the minimum weight of C we have d ≥ w .

In the quantum case the weight of an element M ∈ Pn is defined as the number of tensor components
different to σ0. For example, the following element has weight 3:

M = σx ⊗ σx ⊗ σ0 ⊗ σ0 ⊗ σy ⊗ σ0

Let Ed denote the set of elements of Pn with weight at most b(d − 1)/2c

Ed = {E ∈ Pn | wt(E ) ≤ b(d − 1)/2c}

Conceptually similar to its classic analog, the minimum distance of a quantum code is defined as the
positive integer d such that all errors in Ed are correctable. We shall see in later sections which is the
syndrome of a quantum error and how to correct it.
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1.5 Error-Correcting Conditions

Quantum particles are continuously interacting with the environment hence quantum information is always
susceptible to errors. When sending (unknown) quantum information through a noisy channel there are
three major problems to take into account:

1. The quantum system is in superposition of states and any measurement fixes it to one of the basis
states. Thus, if we measure to obtain an error syndrome we may modify the quantum system.

2. The set of errors is continuous rather than discrete hence a first sight it seems that we can not delimit
the errors.

3. The no-cloning theorem states that unknown quantum states can not be copied therefore we can not
add redundancy when encoding as in the classical case.

Which can be solved by the following three approaches:

1. The error syndrome measurements are chosen such that the code states are not modified while
erroneous states are modified in a reversible way.

2. Quantum mechanics are linear hence if a set of discrete errors is correctable then their span is
correctable too. In other words, there are infinite unitary operators representing errors but all of
them can be written in terms of the Pauli group.

3. The quantum information (k logical qubits) is encoded through many systems (n physical qubits)
where k ≤ n and thus ”hidden” from errors of certain type while avoiding to add redundancy by
cloning.

The following theorem provides a necessary and sufficient condition for the existence of a recovery map
between the information sent and the information received capable to correct all errors in the set E . It
is taken from Nielsen and Chuang [1], theorem [10.1], and is due to Bennett, DiVincenzo, Smolin and
Wootters [8] and Knill and Laflamme [13]. For the proof, which it is quite long and technical, we redirect
to [1].

Theorem 1.9. (Knill-Laflamme Conditions). Let Q be a quantum code and let P be the orthogonal
projector onto Q. Suppose E is a quantum operation with operation elements {Ei}. A necessary and
sufficient condition for the existence of an error-correction map (recovery map) correcting E on Q is that

PE †i EjP = αijP

for some Hermitian matrix α of complex numbers.

Remark. By multiplying both sides of the equality by 〈θ| and |ψ〉 where |θ〉 and |ψ〉 are elements of an
orthonormal basis of Q the above necessary and sufficient condition is equivalent

〈θ|E †i Ej |ψ〉 = αij 〈θ|ψ〉

for all elements |θ〉 and |ψ〉 of an orthonormal basis of Q.

A set of errors E detectable if and only if all errors E †i Ej with EiEj ∈ E are correctable.

Theorem 1.9 implies the following major conclusions:
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1. Orthogonal states of Q remain orthogonal under the action of errors. Thus, given a pair |θ〉 , |ψ〉 ∈ Q

If 〈θ|ψ〉 = 0 then 〈θ|E †i Ej |ψ〉 = 0 for all EiEj ∈ E .

This implies we can apply a convenient error syndrome measurement such that the codeword |ψ〉
remains unchanged while an erroneous state E |ψ〉 where E ∈ E is modified in a reversible way. Thus,
all errors in E fulfill the above condition hence they are detectable.

2. The expectation value of E †i Ej is the same for all code states of Q. Thus

〈Ê †i Ej〉 = tr(E †i Ej |ψ〉 〈ψ|) = 〈ψ|E †i Ej |ψ〉 = 〈θ|E †i Ej |θ〉 = αij for all |ψ〉 , |θ〉 ∈ Q

which implies the quantum information encoded in Q is ”hidden” from the errors in E .

The aim is to construct codes capable to correct all errors of weight at most b(d − 1)/2c. Thus, all
errors in the set

Ed = {E ∈ Pn | wt(E ) ≤ b(d − 1)/2c}

Any error is represented by a unitary operator hence it can be written in terms of the Pauli group, namely, it
can be discretised. Therefore we must focus only on how to correct the errors represented by the elements
of the Pauli group. Then the constructed codes will be able to correct any linear combination of the errors
in Ed .

Example 1.10. Let |ψ〉 ∈ Q describe a system of n qubits and let P be the orthogonal projector onto
the quantum code Q. In the proof of Lemma 1.5 we have shown that P has eigenvalues 1 and 0 where
the +1-eigenspace contains Im(P) = Q while the 0-eigenspace contains im(P)⊥. Also, by Lemma 1.5 the
projector P is hermitian hence it can be considered a measurement. Indeed, P can be used as an error
syndrome measurement, more precisely, it can be used to check if some error has occurred or not.

Suppose an error E occurs. Then the resulting state is E |ψ〉. By Theorem 1.9 an error E ∈ Pn is
detectable for Q if and only if for any |θ〉 ∈ Q such that 〈θ|ψ〉 = 0 we have

〈θ|E |ψ〉 = 0

Suppose the measurement P returns 1, namely, PE |ψ〉 = +1E |ψ〉. If E is detectable then given
|θ〉 ∈ Q such that 〈θ|ψ〉 = 0 we have

〈θ|PE |ψ〉 = 〈θ|E |ψ〉 = 0

which implies PE |ψ〉 is a multiple of |ψ〉 because 〈θ|ψ〉 = 0 too. Thus, PE |ψ〉 ∈ Q hence we can recover
the original state |ψ〉 up to a scalar factor. Indeed, no ”effective” error has occurred as the scalar factor is
irrelevant when decoding.

Suppose the measurement P returns 0, namely PE |ψ〉 = 0 |ψ〉 = 0. Then

E |ψ〉 ∈ Q⊥

Which implies the new state E |ψ〉 no longer belongs to the quantum code Q. Thus, we can ensure some
error has occurred. The capability of Q to uniquely identify and correct the error will depend on the weight
of the error as we shall see in future sections.
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2. Quantum Stabilizer Codes

2.1 Definition

Much of the currently known quantum codes belong to the class of Stabilizer codes. These codes are
efficiently described due to their connection to classical linear codes.

A Quantum stabilizer code Q(S) is the joint +1-eigenspace of all elements of an abelian subgroup S
of the non-abelian Pauli group Pn where −I /∈ S (details below). Such subgroup S us called the stabilizer.

For convenience, we define S as being generated by n−k commuting independent generators M1, ... , Mn−k
of Pn. By independent we mean that by removing a generator the remaining set no longer generates S .
Thus:

S = 〈M1, ... , Mn−k〉 = {
∏

Mα1
1 ... M

αn−k

n−k : αi ∈ {0, 1}}

where S is abelian so MiMj = MjMi and αi ∈ {0, 1} because the square of any Pauli matrix is I and each
Mi ∈ Pn is a tensor product of Pauli matrices hence M2

i = I. Recall that S has size 2n−k as its elements
are all possible combinations of n − k generators without taking into account the order as S is abelian.

The definition of Q(S) as the joint +1-eigenspace of the elements in S can be equivalently formulated
in terms of its generators:

|ψ〉 ∈ Q(S) ⇐⇒ Mi |ψ〉 = +1 |ψ〉 for all i ∈ {1, ... , n − k}

Therefore Q(S) is the intersection of the +1-eigenspace of each Mi .

Observe that if |ψ〉 ∈ Q(S) then∏
i∈J

Mi |ψ〉 = +1 |ψ〉 for all J ⊆ {i , ... , n}

therefore any element of S has any vector |ψ〉 ∈ Q(S) as eigenvector of eigenvalue +1 and, equivalently,
Q(S) is the intersection of the +1-eigenspace of each element of S .

Recall that if |ψ1〉 , |ψ2〉 ∈ Q(S) then:

Mi (λ |ψ1〉+ µ |ψ2〉) = λMi |ψ1〉+ µMi |ψ2〉 = λ |ψ1〉+ µ |ψ2〉 for all i ∈ {1, ... , n − k}

Hence λ |ψ1〉+ µ |ψ2〉 ∈ Q(S) and thus Q(S) is a subspace of (C2)⊗n.

We assume that there is no coordinate between the n possible such that all elements of S have a σ0
on it because then we can simply delete that coordinate while keeping the same error correcting properties
of the code.

On the other hand, in the definition of Q(S) we have required −I /∈ S . The reason is that if

−I ∈ S → −I |ψ〉 6= +1 |ψ〉 → Q(S) = {0}

because the +1-eigenspace of −I is the zero vector and consequently Q(S), defined as the intersection of
all elements in S , results on the zero vector too. Also note that the phase of any element in S must be
±1 and never ±i because if

M = ±iσ1 ⊗ ...⊗ σn → M2 = −I ∈ S

hence again Q(S) = {0}. We will always assume the phase of any element in S to be 1. However, changing
the sign of some of Mi has deep implications as detailed in a later section.
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We will use many times the following short-hand notation:

σ0 = I σx = X
σy = Y σz = Z

Observe that, taking into account how the product between Pauli matrices work, we can quickly verify that
a given set of generators commute by making sure that different σx , σy , σz coincide in the same position
in distinct pairs Mi and Mj an even number of times. For example, consider the following two generators:

M1 = I X Z
M2 = I Y X

They have different σx , σy , σz in both the second and the third position, namely, they have different
σx , σy , σz in an even number of positions hence they commute.

One can define a basis for Q(S) by analysing the coefficients of an arbitrary vector of Q(S). Let the
family {ϕi} be basis (C2)⊗n, namely, all possible vectors |a1a2 ... an〉 with ai ∈ {0, 1}. Thus, we have 2n

of such vectors. Let |ψ〉 be an arbitrary vector in (C2)⊗n:

|ψ〉 =
2n∑
i=1

αi |ϕi 〉

Then

|ψ〉 ∈ Q(S) ⇐⇒ Mj |ψ〉 = +1 |ψ〉 ⇐⇒ ∀j ∈ {1, ... , n − k}

Therefore, we must find the values of the coefficients αi ∈ C such that the above holds. Then the resulting
vectors in the linear combination to build |ψ〉 provide a basis for Q(S). This becomes laborious even for
lower n and n − k . Luckily, in practise we only need the orthogonal projection P of Q(S) and there is no
need to find a basis of Q(S) but we provide the following easy example to illustrate the idea.

Example 2.1. Let n = 2 and let S bi an abelian subgroup of Pn of size 2 generated by M = I Z .

Let |00〉 , |01〉 , |10〉 , |11〉 be a basis of (C2)⊗2. For an arbitrary vector |ψ〉 ∈ (C2)⊗2 we have:

|ψ〉 = α00 |ϕ00〉+ α01 |ϕ01〉+ α10 |ϕ10〉+ α11 |ϕ11〉

As commented in previous sections we have

σx |0〉 = |1〉 ,σx |1〉 = |0〉 ,σz |0〉 = |0〉 ,σz |1〉 = − |1〉

Therefore

M |ψ〉 = α00 |ϕ10〉 − α01 |ϕ11〉+ α10 |ϕ00〉 − α11 |ϕ01〉

Finally we request M |ψ〉 = |ψ〉 which it is fulfilled if and only if α00 = α10 and α01 = −α11.

Therefore any vector in Q(S) must have the form:

|ψ〉 = α00(|00〉+ |10〉) + α01(|01〉+ |11〉)

Thus, a basis of Q(S) is {|00〉+ |10〉 , |01〉+ |11〉} and so dim Q(S) = 2.
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2.2 Dimension

By Lemma 1.4 given an orthonormal basis {|ψi 〉} of the subspace Q(S) the orthogonal projection P onto
Q(S) is

P =
∑
i

|ψi 〉 〈ψi |

and by Lemma 1.5 any linear hermitian operator P fulfilling

P2 = P and P |ψ〉 ∈ Q for all |ψ〉 ∈ (C2)⊗n

is the orthogonal projection onto Q(S)

Lemma 2.2. Let E be an arbitrary element of S. The orthogonal projection P = P(S) onto Q(S) is

P =
1

|S |
∑
E∈S

E

Proof. Let M be an arbitrary element of S . Then:

MP = PM =
1

|S |
∑
E∈S

EM =
1

|S |
∑
M∈S

M = P

where we use the fact that EM is another arbitrary element of S so we relabel it as M.

Suppose that |ψ〉 ∈ Q(S). Then P |ψ〉 = |ψ〉 and therefore |ψ〉 ∈ Im(P).

Now the backward implication, if P |θ〉 = |ψ〉, namely, |ψ〉 ∈ Im(P), then for all M ∈ S

M |ψ〉 = MP |θ〉 = P |θ〉 = |ψ〉

hence |ψ〉 ∈ Q(S) and therefore Q(S) = Im(P).

The Pauli matrices are hermitian (σ†i = σi ) and E =
∏
⊗σi hence E † = E for all E ∈ Pn which implies

P† = P. Furthermore

P2 = P
1

|S |
∑
E∈S

E =
1

|S |
∑
E∈S

PE =
1

|S |
∑
E∈S

E = P

Therefore, by Lemma 1.5 P = P(S) is the orthogonal projector onto Q(S).

Theorem 2.3. Let SPn be an abelian group of size 2n−k . Then the subspace Q(S) has dimension 2k .

Proof. By Lemma 2.2 the orthogonal projection onto Q(S) is

P =
1

|S |
∑
M∈S

M

Then P |ψ〉 ∈ Q(S) for all |ψ〉 ∈ (C2)⊗n, namely, the image of P is its +1-eigenspace and also Q(S).

P is hermitian hence diagonalitzable. Since P is idempotent (P2 = P) its eigenvalues are 0 and/or 1
because if P |ψ〉 = λ |ψ〉 then

P2 |ψ〉 = P(P |ψ〉) = λP |ψ〉 = λ2 |ψ〉
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The trace of P is equal to the sum of its eigenvalues which in the case of P is the dimension of the
+1-eigenspace hence

Dim Q(S) = Tr P(S)

Observe that

tr(σ1 ⊗ ...⊗ σn) = tr(σ1) ...σn)

hence for all M ∈ Pn \±I with phase ±1 we have tr(M) = 0 because tr(σx) = tr(σy ) = tr(σz) = 0 while
tr(I) = 2n because tr(σ0) = 2.

Finally,

Dim Q(S) = Tr P(S) =
1

|S |
∑
M∈S

tr(M) =
1

2n−k
2n = 2k

2.3 Minimum Distance

Let Cent(S) denote the centralizer of S , namely, all elements of Pn which commute with all elements of
S . Thus

Cent(S) = {x ∈ Pn : xy = yx , ∀y ∈ S}

Note that S ⊆ Cent(S) ⊂ Pn.

Lemma 2.4. If we encode with Q(S) then E ∈ Pn is an undetectable error if and only if E ∈ Cent(S) \S.

Proof. We seek for contradiction.

(⇒) Suppose E ∈ Pn is undetectable but E /∈ Cent(S) \ S . EM = ±ME for any pair of elements
E , M ∈ Pn hence E /∈ Cent(S) then EM = −ME for some M ∈ S .

Let |ψ〉 , |θ〉 ∈ Q(S). Then M |ψ〉 = |ψ〉 and M |θ〉 = |θ〉 for all M ∈ S . Also let 〈ψ|θ〉 = 0. Then

〈ψ|E |θ〉 = 〈ψ|ME |θ〉 = −〈ψ|EM|θ〉 = −〈ψ|E |θ〉

Therefore 〈ψ|E |θ〉 = 0 which implies that the error E preserves the orthogonality between states, namely,
|ψ〉⊥E |θ〉. Finally, by Theorem 1.9 E is detectable which contradicts the initial assumption.

(⇐) Suppose E ∈ Pn is detectable but E ∈ Cent(S) \ S . Then for any |ψ〉 ∈ Q(S) and M ∈ S we
have M |ψ〉 = |ψ〉 and

ME |ψ〉 = EM |ψ〉 = E |ψ〉

hence E |ψ〉 ∈ Q(S).

We extend |ψ〉 to an orthonormal basis B of Q(S). The error E is detectable hence

〈θ|E |ψ〉 = 0

for all |θ〉 ∈ B \{ψ}. Then E |ψ〉 ∈ (B{ψ})⊥. The subspace B{ψ})⊥ has basis {ψ} (〈ψ|θ〉 = 0) therefore:

E |ψ〉 = λψ |ψ〉

for some λψ ∈ C hence |ψ〉 is an eigenvector of E .
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By Theorem 1.9

〈θ|E |θ〉 = λE

for all θ ∈ B. Recall that 〈ψ|ψ〉 = 〈θ|θ〉 = 1 therefore the above implies λψ = λE .

We can apply the same argument for |ψ〉 over all |θ〉 ∈ Q(S). Thus, for all |θ〉 ∈ Q(S), since E /∈ S
and λE 6= 1, we have

E |θ〉 = λE |λ〉

The subgroup generated by S and λ−1E E defines a smaller stabilizer code hence there is a |ψ〉 ∈ Q(S)
such that

λ−1E E |ψ〉 6= |ψ〉

contradicting the above. Hence, E is not detectable.

Next we wonder which errors are not only detectable but also correctable. The following definition is
justified in Theorem 2.6.

Definition 2.5. The minimum distance d of Q(S) is defined as:

(i) k > 0→ d := min{wt(E ) : E ∈ Cent(S) \ S}

(ii) k = 0→ d := min{wt(E ) : E ∈ S \ I}

Thus for k > 0 the minimum distance of Q(S) is equal to the minimum weight of the undetectable
errors of Q(S). If k = 0 then S = Cent(S) and Dim Q(S) = 1 hence Q(S) can not store quantum
information but the subgroups of S are still of interest.

Let Ed denote the set of elements of Pn with weight at most b(d − 1)/2c

Ed = {E ∈ Pn | wt(E ) ≤ b(d − 1)/2c}

Theorem 2.6. Let Q(S) be a stabilizer code with k ≥ 1. The minimum weight of Cent(S) \ S is equal to
d if and only if there is a recovery map which corrects all errors in Ed when encoding with Q(S).

Proof. (⇒) Suppose Ei , Ej ∈ Ed . Then both Ei and Ej have weight at most (d − 1)/2 hence E = EiEj

has weight at most d − 1. But the elements of Cent(S) \ S have weight at least d therefore

E 6∈ Cent(S) \ S

Recall that E 6∈ Cent(S) \ S implies there is an element M ∈ S such that ME = −EM or E ∈ S which
implies EM = ME for all M ∈ S .

The projector onto Q(S) is

P =
2k∑
i=1

|ψi 〉 〈ψi |

where {|ψi 〉 | i = 1, ... , 2k} is an orthonormal basis for Q(S). Recall that M |ψ〉 = + |ψ〉 for all M ∈ S
and all |ψ〉 ∈ Q(S).
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If E /∈ Cent(S) then

PEiEjP = PEP =
2k∑

r ,s=1

|ψr 〉 〈ψr |E |ψs〉 〈ψs |

=
2k∑

r ,s=1

|ψr 〉 〈ψr |EM |ψs〉 〈ψs | = −
2k∑

r ,s=1

|ψr 〉 〈ψr |ME |ψs〉 〈ψs | = −PEP

which implies PEP = 0.

If E ∈ S then E |ψ〉 = +1 |ψ〉 for all |ψ〉 ∈ Q(S). Thus

PEiEjP = PEP =
2k∑

r ,s=1

|ψr 〉 〈ψr |E |ψs〉 〈ψs | =
2k∑

r ,s=1

|ψr 〉 〈ψr |ψs〉 〈ψs | = P

Therefore in both cases by Theorem 1.9 there is a recovery map.

(⇐) We assume there is a recovery map which corrects all errors in Ed . Let E ∈ Ed and suppose
E ∈ Cent(S) \ S . We want prove that then E is undetectable.

If E is detectable then by Theorem 1.9 we have

PEP = αP

By Lemma 2.2 the projector onto Q(S) is P = 1
|S|
∑

M∈S M. Thus

PEP = EPP = EP = αP

Which implies E ∈ Cent(S).

The projector P onto Q(S) fulfils P |ψ〉 = |ψ〉 for all |ψ〉 ∈ Q(S) hence

EP |ψ〉 = E |ψ〉 → αP |ψ〉 = E |ψ〉

and therefore
E |ψ〉
α

= |ψ〉

Thus, E/α takes eigenvalue +1 for all |ψ〉 ∈ Q(S) which implies E/α is equal to some multiplication of the
generators of S . Therefore E ∈ S which contradicts the initial assumption hence E is undetectable.

Definition 2.7. An stabilizer code Q(S) is called impure if there are elements of S whose weight is less
than the minimum distance of Q(S). Otherwise is called pure.

A quantum code in (C2)⊗n of dimension K and minimum distance d is denoted by the shorthand
notation ((n, K , d)) while the notation [[n, k , d ]] denotes a quantum code of dimension 2k .
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2.4 Syndrome Decoding

Quantum Information is constantly susceptible to errors hence correcting capabilities are fundamental when
encoding with qubits. Let [[n, k , d ]] be a stabilizer code and let E ∈ Pn be an error such that E /∈ Cent(S)\S
and E ∈ Ed , in other words, let E be a correctable error.

Pauli matrices commute or anticommute hence EM = ±ME for all elements M ∈ S . Consider the set
of M1, ... , Mn−k generators of S . Then E ∈ S if and only if EMi = MiE for all i ∈ {1, ... , n − k}.

If E /∈ S then EMi = −MiE for some generator Mi of S . One can define a patron of n − k signs ±
where we write + if MiE = MiE and − if MiE = −MiE and i runs from 1 to n − k.

Lemma 2.8. The patron of signs of the n− k ”measurements” Mi over the errors E ∈ Ed are all distinct.

Proof. Let E , E ′ ∈ Ed be two different errors. Assume they are really errors hence E , E /∈ S and suppose
they return the same patron of signs, namely, for each generator of S they both commute or anti-commute.

Consider the error EE ′. Then for any element M ∈ S :

If EM = ME and E ′M = ME ′ then EE ′M = MEE ′.

If EM = −ME and E ′M = −ME ′ then EE ′M = −EME ′ = MEE ′.

Hence in both cases EE ′ commutes with any element M ∈ S ,namely, EE ′ ∈ Cent(S) \ S .

The minimum distance is the minimum weight of the elements in Cent(S) hence

w(EE ′) ≥ d

On the other hand both w(E ) and w(E ′) are at most bd−12 c hence

w(EE ′) ≤ w(E ) + w(E ′) ≤ d − 1

which it is a contradiction.

We can identify which error has occurred by computing the following lookup table:

• Compute all possible errors of weight at most b(d − 1)/2c

• Compute the characteristic patron of n − k signs ± for each error E .

By lemma 2.8 the patron of signs for each E , called its syndrome, is unique hence we can use the above
lookup table to identify which error has occurred and correct it. An important remark is that when we
perform the ”measurement” Mi over the received state E |ψ〉 (|ψ〉 ∈ Q(S)) we obtain

MiE |ψ〉 = ±EMi |ψ〉 = ±E |ψ〉

Therefore we really do not modify the information received when measuring with Mi .

Example 2.9. Consider the code [[5, 1, 3]] generated by:

M1 = X Z Z I X
M2 = Z X I Z X
M3 = I Z X Z Y
M4 = Z I Z X Y

It can correct all errors E ∈ Pn with wt(E ) ≤ b(d − 1)/2c = 1 hence its corresponding lookup table is:
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M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

XIIII + − + − ZIIII − + + + YIIII − − + −
IXIII − + − + IZIII + − + + IYIII − − − +
IIXII − + + − IIZII + + − + IIYII − + − −
IIIXI + − − + IIIZI + + + − IIIYI + − − −
IIIIX + + − − IIIIZ − − − − IIIIY − − + +

2.5 Transformation to Linear Codes

As already commented stabilizer codes are efficiently described thanks to their connection with classical
linear codes. This section is devoted to such transformation of the subspace Q(S) of (C2)⊗n into classical
linear codes {0, 1}2n.

Let τ be a map between Pauli matrices and the finite field of 2 elements:

τ : {σ0,σx ,σy ,σz} −→ F2
2

such that

τ : σ0 → (0|0) ; τ : σx → (1|0) ; τ : σz → (0|1) ; τ : σy → (1|1)

We extend τ to Pn by applying τ to each element of Pn componentwise so the Pauli matrix in the i-th
position is mapped to the i-th and i + n-th coordinates of the resulting vector. For example:

τ(σx ⊗ σ0 ⊗ σz) −→ (100|001)

where the line | between the n-th and the n + 1-th coordinates is added only for readability sake.

The function τ is defined as a quotient respect to the possible phases λ = {±1,±i} of the elements in
Pn, namely, τ(λM) = τ(M).

Lemma 2.10. for all M, N ∈ Pn it holds

τ(MN) = τ(M) + τ(N)

Proof. The multiplicative structure, up to phase factor, is isomorphic to the additive structure of F2
2 and,

consequently, there is a bijection between the elements of Pn \ {±1,±i} and F2n
2 .

An an example of the above proof, consider the product σxσy = iσz :

τ(σxσy ) = τ(iσz) = τ(σz) = (0|1)

τ(σx) + τ(σy ) = (1|0) + (1, 1) = (2|1) mod 2 = (0|1)

Next we wonder how the fact that S ⊂ Pn is abelian affects to the corresponding map τ(S). Observe
that Lemma 2.10 implies that S is an abelian subgroup of Pn if and only if τ(S) is a subspace of F2n

2 . In
the above observation we request S to be abelian because if not there is no bijection between S and τ(S)
as the inverse map of τ(M) + τ(N) has as image both MN or NM.

Definition 2.11. We define the alternating form of a pair u, w ∈ F2n
n as

(u, w)a =
n∑

j=1

(ujwj+n − uj+nwj)
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Lemma 2.12. Let M, N ∈ Pn \ {±1,±i}. Then MN = NM if and only if (τ(M), τ(N))a = 0

Proof. Let u = τ(M) and v = τ(N). One can check directly that

ujwj+n − uj+nwj = 0

if and only if the Pauli matrices in the j-th position of both M and N commute. Otherwise

ujwj+n − uj+nwj = ±1

Observe that, taking into account how the product between Pauli matrices work, NM = MN if and only
if there are an even number of positions such that the Pauli matrices do not commute. This happens
if and only if there is an even number of coordinates j such that ujwj+n − uj+nwj = 1 which implies
(τ(M), τ(N))a = 0.

Definition 2.13. Given a subspace C of F2n
2 we define its orthogonal subspace C⊥a as

C⊥a = {u ∈ F2n
2 : (u, w)a = 0,∀w ∈ C}

By Lemmas 2.10 and 2.12 one can easily deduce that C = τ(S) is always contained in C⊥a . Furthermore

C⊥a = τ(Cent(S))

Definition 2.14. We define the symplectic weight of a vector v ∈ F2n
n as the number of pairs of coordinates

i and i + n such that not both are zero. Thus:

|{i ∈ {1, ... , n} : (vi , vi+n) 6= (0, 0)}|

Observe that the weight of any element M ∈ S is equal to the symplectic weight of τ(M) because the
symplectic weight of τ(M) is equal to n minus the number σ0’s in M, namely, w(E ).

Theorem 2.15. S is an abelian subgroup of Pn of size 2n−k if and only if C = τ(S) is a (n−k)-dimensional
subspace of F2n

2 .

(i) If k ≥ 1 then the minimum distance of Q(S) is equal to the minimum symplectic weight of the
elements of C⊥a \ C .

(ii) If k = 0 then the minimum distance of Q(S) is equal to the minimum symplectic weight of the
non-zero elements of C = C⊥a .

Proof. By theorem 2.6 for k ≥ 1 the minimum distance is equal to the minimum weight of the elements
in Cent(S) \ S . As the minim weight of an element M ∈ S is equal to the minimum symplectic weight
of τ(M) the theorem follows. For k = 0 the minimum distance is defined as the minimum weight of the
elements in S \ I and, again, applying τ the theorem follows.

Given a linear code C = τ(S) we define its (n − k) × 2n generator matrix G (S) whose i-th row is
τ(Mi ).

Lemma 2.16. S is an abelian subgroup of Pn of size 2n−k if and only if the generator matrix G (S) has
rank n − k.
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Proof. Consider the linear combination of a set of rows G defined by∑
j∈J

αjτ(Mj)

where αj = {0, 1} and J ⊆ {1, ... , n − k}. Then∑
j∈J

αjτ(Mj) = 0;

where not all αj = 0 if and only if the rank of G is not n − k which, by Lemma 2.10 this happens if and
only if ∏

j∈J
Mj = I

3. The Geometry of Stabilizer Codes

This section is devoted to the equivalence between the group setting Q(S) and some geometric features in
an associated projective space. We first briefly present the projective geometry formalism and we summarize
the basic results needed. Next we present the geometric equivalence for classical linear codes and finally
we extend a similar approach to stabilizer codes.

3.1 Projective Geometry

The aim of projective geometry is to remove the anomaly of the zero vector which it is different from
the other vectors since it is contained in any linear subspace. The zero vector is naturally removed by
”projecting” from it which results in a quotient of all scalar multiple vectors, namely, two vectors in the
same direction become equivalent.

We define the projective space PG (k−1, q) of the vector space Fk
q by identifying the points of PG (k−

1, q) with the lines of Fk
q , the lines of PG (k − 1, q) with the planes of Fk

q and, in general, the (d − 1)-

dimensional subspaces of PG (k − 1, q) with the d-dimensional subspaces of Fk
q .

Subspaces in finite projective geometry are understood as the collection of points they contain and
their intersection is determined by their corresponding intersection in the vector space. By the shift in the
dimension usual geometric properties still hold, for example, two points are joined by a line the intersection
of two plains is a line etc. If the intersection of two subspaces is empty then we say they are skew, otherwise
we say they are incident.

The number of set of r linear independent vectors in Fk
q is

(qk − 1)(qk − q) ... (qk − qr−1)

This can be easily deduced as follows: Consider all qk points of Fk
q . We first have freedom to choose any

point except 0. Next we can choose any point expect those q multiples of the first point chosen and so
on.
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The number of (r − 1)-dimensional subspaces in PG (k − 1, q) is(
k

r

)
q

=
(qk − 1)(qk − q) ... (qk − qr−1)

(qr − 1)(qr − q) ... (qr − qr−1)

because the number of (r−1)-dimensional subspaces in PG (k−1, q) is precisely the number of r -dimensional
subspaces of Fk

q which can be computed as the number of choices of r linearly independent vectors of Fk
q

divided by the number of sets of r linearly independent vectors of Fr
q.

Applying the q-analog binomial it follows that the that the number of points in PG (k − 1, q) is(
k

1

)
q

=
qk − 1

q − 1
= qk−1 + qk−2 + ... + q + 1

Similar to the standard binomial, its q-analog is also symmetric hence the number of hyperplanes in
PG (k − 1, q) is, again, (

k

k − 1

)
q

=

(
k

1

)
q

= qk−1 + qk−2 + ... + q + 1

Indeed there is a natural duality between the set of points and the set of hyperplanes by mapping each
point (a1, ... , ak) to the hyperplane a1X1 + ... + akXk = 0 and vice versa.

The number of (r − 1)-dimensional subspaces of PG (k − 1, q) containing a fixed (s − 1)-dimensional
subspace is (

k − s

r − s

)
q

because the quotient Fk
q/U where U is a s-dimensional subspace of Fk

q is a (k − s)-dimensional vector
space. Then a r -dimensional subspace containing U is a (r− s)-dimensional subspace in the quotient space
and by taking into account the dimension shift of the projective space the result follows.

Setting s = 1 and r = 2 we obtain that each point in PG (k − 1, q) is incident to
(k−1

1

)
q

lines. On the
other hand, setting k = 2 and r = 1 in the binomial q-analog formula we obtain that each line is incident
to
(2
1

)
q

= q + 1 points. In our particular case of interest, PG (k − 1, 2), each line is incident to 3 points.

3.2 Classical Linear Codes

A linear code of length n over a finite field Fq (q = ph,p prime) is a subset C ⊆ Fn
q such that if v , w ∈ C

and λ,µ ∈ Fq then

λv + µw ∈ C

Thus, C is a subspace of dimension at most n.

The elements of C are called codewords. The distance between two codewords in C is defined as the
number of coordinates in which they differ and the minimum value between all pairs u, v ∈ C is called the
minimum distance of the code C . The weight of a codeword of C is defined as its number of non-zero
coordinates.

Lemma 1.8 states that if C is a linear code over a finite field Fq then the minimum distance d of C is
equal to its minimum weight.

A k-dimensional linear code C over Fq of length n and minimum distance d is denoted by [n, k , d ]q.
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Let G be the k × n generator matrix of C , namely, a matrix whose k rows form a basis of C . Then for
any codeword u ∈ C there is a row vector at ∈ Fk

q such that

u = atG

which is nothing else than express u ∈ C as a linear combination elements of the basis of C . The above
expression can be regarded as the encoding through G of the message a into the codeword u of C such
that u is ready to be sent over a noisy channel.

The columns of G , which we denote by X , are a multi-set (the columns can be repeated) of n vectors
of Fk

q . Let u = (u1, ... un) = atG and let z be the i-th column of G . Then

ui = a · z = a1z1 + ... + akzk

The above implies that the i-th coordinate of u is 0 if and only if z is incident to the kernel of the linear
form

a1X1 + ... + akXk

This property is unaffected if we replace z by λz where λ ∈ Fq \ {0} hence it is natural to consider X as
a multi-set of n points of PG (k − 1, q) instead of n vectors in Fk

q .

Theorem 3.1. An [n, k , d ]q linear code over Fq is equivalent to a multi-set of points X in PG (k − 1, q)
such that:

(i) Every hyperplane of PG (k − 1, q) contains at most n − d points of X .

(ii) Some hyperplane of PG (k − 1, q) contains exactly n − d points of X .

Proof. Let G be the generator matrix of the [n, k, d ]q linear code and let X be the multi-set of columns
of G regarded as points in PG (k − 1, q).

Let u = (u1, ... , un) = atG and let z be the i-t column of G . Then

ui = 0 ⇐⇒
k∑

j=1

ajzj = 0.

The above implies that i-th coordinate of u is null if and only if the point z ∈ X is incident to the
hyperplane πa (codimension one) in PG (k − 1, q)

a1X1 + ... + akXk = 0

hence the codeword u = atG has weight w if and only if n−w coordinates of u are 0, namely, if and only
if n − w points of X are incident to πa.

By Lemma 1.8 the minimum distance d of a linear code is equal to the minimum weight. Then by the
previous argument there is an hyperplane which contains exactly n − d points of X (his proves (ii)) while
all hyperplanes contain at most n − d points of X (this proves (i)).
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3.3 The Geometry of Stabilizer Codes

Thanks to their connection to linear codes, quantum stabilizer codes can also be described in geometric
terms. We shall show the equivalence between the group setting Q(S) and the geometrical setting X
where X is a multi-set of lines in PG (n − k − 1, 2) fulfilling certain condition.

By Theorem 2.15 a stabilizer code Q(S) where S ⊂ Pn is an abelian group of size 2n−k is fully equivalent
to the (n−k)− dimensional linear code C = τ(S) of length 2n which it is contained in C⊥a = τ(Cent(S)).

Given the (n− k)× 2n generator matrix G of C we construct a multi-set X of n lines (possibly points)
as follows: for each i ∈ {1, ... , n − k} we span the i-th and (i + n)-th column of G in PG (n − k − 1, 2).
Each span results in a point in PG (n− k − 1, 2) if and only if the i-th and (i + n)-th column are either the
same vector or at least one is the zero vector. Otherwise the span results in a line in PG (n − k − 1, 2).

On the other hand, given X , one can identify two points incident to each line (or point) in X and
consider them as the i-th and the (i +n)-th column of the Generator matrix G of C . As commented before,
each line in PG (k − 1, q) is incident to q + 1 points. In our case q = 2 hence each line is incident to 3
points and we must choose two points of each line when building G . Indeed this choice is equivalent to
invoking an arbitrary permutation between σx , σy , and σz on the i-th component of each M1, ... , Mn−k .
Recall that after such a permutation S is still abelian. Therefore we consider equivalent all quantum codes
obtained by applying such permutation or, analogous, by choosing different points of the lines to construct
G .

Example 3.2. Consider the code [[5, 0, 3]] generated by

M1 = X Z I I Z
M2 = Z X Z I I
M3 = I Z X Z I
M4 = I I Z X Z
M5 = Z I I Z X

Its generator matrix

G =


1 0 0 0 0 0 1 0 0 1
0 1 0 0 0 1 0 1 0 0
0 0 1 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1 0 1
0 0 0 0 1 1 0 0 1 0


Next we apply the permutation X → Z , Z → Y , Y → X over the first, second and fourth components of
M1, ... , M5 so we get the generators:

M ′1 = Z Y I I Z
M ′2 = Y Z Z I I
M ′3 = I Y X Y I
M ′4 = I I Z Z Z
M ′5 = Y I I Y X

Applying τ to M ′i we construct the generator matrix

G ′ =


0 1 0 0 0 1 1 0 0 1
1 0 0 0 0 1 1 1 0 0
0 1 1 1 0 0 1 0 1 0
0 0 0 0 0 0 0 1 1 1
1 0 0 1 1 1 0 0 1 0
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Let ei be the i-th element of the canonical basis of F5
2 and regard the columns of G an G ′ in terms of

such basis. Then the quantum set of lines X and X ′ is

X = {〈e1, e2 + e5〉, 〈e2, e1 + e3〉, 〈e3, e2 + e4〉, 〈e4, e3 + e5, 〉, 〈e5, e1 + e4〉}

X ′ = {〈e2 + e5, e1 + e2 + e5〉, 〈e1 + e3, e1 + e2 + e3〉, 〈e3, e2 + e4, 〉, 〈e3 + e5, e3 + e4 + e5〉, 〈e5, e1 + e4〉}

where 〈ei , ej〉 denote the line incident to the points ei and ej . One can check that the rows of G span
the same subspace C as the rows G ′. Thus, they represent the same stabilizer code and the quantum set
of lines remains unchanged.

It is also possible to choose the phase ±1 of M. We set up the phase be always 1 however when
building non additive quantum codes the freedom on the phase will become crucial.

Lemma 3.3. The i-th and i + n-th columns of the generator matrix G span a line (instead of a point) of
PG (n − k − 1, 2) for all i ∈ {1, ... , n} if and only if the minimum weight of Cent(S) is at least 2.

Proof. The span of the i-th and (i + n)-th column of G results on a point in PG (n− k − 1, 2) if and only
if the i-th and (i + n)-th column are either the same vector or at least one is the zero vector. This occurs
if and only if the i-th component of all generators of S are the same Pauli matrix: if the i-th component
of all generators of S is σ = σ0 then the columns Ci and Ci+n of G are both the zero vector. If σ = σx
or σ = σz then one the two columns Ci and Ci+n is the zero vector. If σ = σy then both columns Ci and
Ci+n are the vector with all entries equal to 1.

Suppose that the i-th component of all generators of S is the same Pauli matrix . If σ0 = σ0 we
can delete that component such that the length of the code decreases to n − 1 without affecting its error
correcting properties. Consider σ ∈ {σx ,σy ,σz}. Then there is an element E ∈ Pn such that all its
components are equal to σ0 except the i-th component which it is σ. Clearly this element is in Cent(S)
and has weight 1.

Let d be the minimum distance of Q(S), namely, equal to the minimum weight of Cent(S) \ S . If the
code is pure (min{w(S)} ≥ d) then the condition min{w(Cent(S))} ≥ 2 in Lemma 3.3 can be replaced
by d ≥ 2. If the code is impure this replacement is not necessarily true.

The following theorem states the equivalence between the group setting Q(S) and the geometrical
setting X where X is a multi-set of lines in PG (n − k − 1, 2) fulfilling certain conditions.

Theorem 3.4. There is an [[n, k , d ]] stabilizer code Q(S) where S is an abelian subgroup of Pn of size
2n−k such that min{w(Cent(S))} ≥ 2 if and only if there is a multi-set of n lines (not points) X spanning
PG (n − k − 1, 2) such that every codimension 2 subspace is skew to an even number of lines in X .

Proof. (⇒)

C⊥a is defined in 2.13 as

C⊥a = {u ∈ F2n
2 : (u, w)a = 0,∀w ∈ C}

By Lemmas 2.10 and 2.12 one can easily deduce that C = τ(S) is always contained in C⊥a = τ(Cent(S)).

Let u, w ∈ C . Then u = atG and w = btG for some a, b ∈ Fn−k
2 and

(u, w)a =
n∑

j=1

(ujwj+n − uj+nwj) = 0
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Consider a single term j in the above sum. Let x , y ∈ Fn−k
2 be the j-th and the (j + n)-th column of

G respectively. Since u, w ∈ C we have

uj = a · x ; uj+n = a · y ; wj = b · x ; wj+n = b · y

Thus,

ujwj+n − uj+nwj = (a · x)(b · y)− (a · y)(b · x)

which it is 0 if and only if the determinant of(
a · x a · y
b · x b · y

)
is null, namely, the above matrix has rank 1. This implies its rows and columns are not linearly independent
and span subspaces of dimension lower than 2 hence there is a pair λ,µ ∈ F2 such that{

a · (λx + µy) = 0
b · (λx + µy) = 0

Let πa denote the hyperplane

a · X = a1X1 + ... + an−kXn−k = 0

Recall that all hyperplanes in PG (n− k − 1, 2) can be defined as above hence any codimension 2 subspace
of PG (n − k − 1, 2) can be defined as πa ∩ πb for some pair of hyperplanes πa and πb.

The above two conditions are equivalent to request that the point (λx + µy) ∈ Fn−k
2 , which belongs

to the line of X spanned by x and y , is incident to πa ∩ πb.

Summarizing,

(u, w)a =
n∑

j=1

(ujwj+n − uj+nwj) = 0

if and only if there is an even number of terms 1 in the above sum. On the other hand, each line of X is
skew to πa ∩ πb for some a, b ∈ Fn−k

2 contribute to the sum with a term 1. Thus, for any codimension 2
subspace πa ∩ πb of PG (n − k − 1, 2) the number of lines of X skew to it must be even.

(⇐) Let X be a multi-set of n lines (not points) X spanning PG (n − k − 1, 2) such that every codi-
mension 2 subspace is skew to an even number of lines in X . Let G be the (n − k) ⊗ 2n matrix whose
i-th and (i + n)-th columns are two distinct points spanning the i-th line of X . Let C = τ(S) be the
(n − k)-dimensional linear code generated by G .

As proved in the forward implication, if every codimension 2 subspace of PG (n − k − 1, 2) is skew to
an even number of lines of X then (u, w)a = 0 for any pair u, w ∈ C . Then C = τ(S) is contained in
C⊥a = τ(Cent(S)) and by Lemma 2.16 this implies S is an abelian subgroup of Pn of size 2n−k .

Definition 3.5. A quantum set of lines is defined as a multi-set of n lines (not points) X spanning
PG (n − k − 1, 2) such that every codimension 2 subspace is skew to an even number of lines in X .

Remark. By Lemma 3.3 and Theorem 3.4 X the condition min{w(Cent(S))} ≥ 2 grants there is a quantum
set of lines characterizing a stabilizer code Q(S).
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A set of r points are called independent if they span a (r − 1)- dimensional subspace, otherwise they
are called dependent. For example, 4 points on a plane are dependent while if we remove one point
the remaining 3 become independent. The following geometric definition of the minimum distance d(X )
together with its remark is justified in Theorem 3.7.

Definition 3.6. The minimum distance d(X ) of the code characterized by the quantum set of lines X is
defined as the minimum number of dependent points that can be found in distinct lines of X .

Remark. If k ≥ 0 we must not taken into account the dependencies for which there is an hyperplane of
PG (n − k − 1, 2) which both contains all dependent points and also all lines of X not incident to the
dependent points. If k = 0 then d(X ) can be equivalently defined as the minimum positive integer d such
that there is an hyperplane of PG (n − k − 1, 2) which contains n − d lines of X .

If two lines of X are incident in the same point p (or even they are the same line) then p is considered
”dependent with itself”. Thus, the minimum set of dependent points in distinct lines is p two times because
the set has size two while spans a 0-dimensional subspace. If k = 0 then d(X ) = 2. If k ≥ 1 we first must
check the exceptions in the dependencies noted on the above remark.

Theorem 3.7. There is an [[n, k , d ]] stabilizer code Q(S) where min{w(Cent(S))} ≥ 2 if and only if there
is a quantum set of lines X spanning PG (n − k − 1, 2) and such that d = d(X ).

Proof. By Theorem 3.4 the equivalence between Q(S) with min{w(Cent(S))} ≥ 2 and the quantum
set of lines X spanning PG (n − k − 1, 2) is already granted hence it only remains to prove that the
minimum distance d of Q(S) follows the definition 3.6 and its remark. Let G be the generator matrix of
C = τ(S) and let X be the set of n lines where the line lj is spanned by the j-th and (j +n)-th column of G .

k ≥ 1:

By Theorem 2.15 the minimum distance d is equal to the minimum symplectic weight of C⊥a \ C . Let
v ∈ C⊥a be a vector of F2n

2 of symplectic weight w and let W be the set of coordinates which contribute
to its weight. Thus,

W = {j ∈ {1, ... , n} : (vj , vj+n) 6= (0, 0)} ; |W | = w

Let u = (u1, ... , u2n) be an arbitrary vector of C . Then u = atG for some a ∈ Fn−k
2 and uj = a·xj where

xj ∈ Fn−k
2 is the j-th column of G and j ∈ {1, ... , 2n}. Since v = (v1, ... , v2n) ∈ C⊥a then (v , u)a = 0 for

all u ∈ C hence ∑
j∈W

(xjvj+n − xj+nvj) = 0

Each term in the above sum correspond to some point of the line lj therefore there are w = |W | points
on distinct lines {lj : j ∈ W } which are dependent which are dependent. But the minimum distance d is
equal to the minimum symplectic weight of C⊥a \ C hence if v ∈ C we must disregard this dependency.
Observe that v ∈ C if and only if v = atG for some a ∈ Fn−k

2 hence vj = a · xj for all j ∈ {1, ... , 2n}.
Consider the coordinates j /∈W of v , namely, the coordinates which do not contribute to the symplectic

weight. For each j /∈W we have

vj = a · xj = 0 and vn+j = a · xn+j = 0

if and only if the line lj is contained in the hyperplane πa defined by a ·X = 0. Thus, the lines {lj : j /∈W }
are contained in πa.
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Next Consider the coordinates j ∈ W of v , namely, the coordinates which do contribute to the sym-
plectic weight. Then since vj = a · xj and vj+n = a · xj+n we have

a · (vn+jxj − xn+jvj) = vn+j(aj)− vj(a · xn+j) = vn+jvj − vjvn+j = 0

therefore the dependent points are also contained in πa.

Thus, the definition of the minimum distance d(X ) in 3.6 is justified through the light of this proof.

k = 0:

By Theorem 2.15 the minimum distance d is equal to the minimum symplectic weight of C = C⊥a . Let
v ∈ C , then v = atG for some at ∈ Fn−k

2 hence vj = a · xj where xj is the j-th column of G and
j ∈ {1, ... , 2n}.

Suppose v is the element of C with minimum weight and let W be the set of coordinates that contribute
to the symplectic weight of v . Thus,

W = {j ∈ {1, ... , n} : (vj , vj+n) 6= (0, 0)} ; |W | = d

Then for all j /∈W we have
a · xj = 0 and a · xn+j = 0

which it is equivalent to the line lj ∈ X being contained in πa. Therefore there is a hyperplane of
PG (n−k−1, 2) containing n−d lines of X which coincides with the definition of d(X ) in 3.6. Equivalently,
similar to the case k ≥ 0 a vector v ∈ C⊥a of symplectic weight d implies a dependency of d points of
distinct lines of X , which coincides with the definition of d(X ) in 3.6.

Example 3.8. Consider the [[9, 1, 3]] code (Shor Code) which has generator matrix

G 8×18 =



0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0


Observe that S contains elements of weight 2, for example, the first row τ(M1) of G has symplectic

weight 2 hence M1 ∈ S has weight 2. Since the minimum distance is 3 the shore code is impure.

Let ei be the i-th element of the canonical basis of F8
2. The i-th and (i + n)-th columns of G with

i ∈ {1, ... , 2n} span the 9 quantum set of lines

X = {〈e1, e7〉, 〈e1+e2, e7〉, 〈e2, e7〉, 〈e3, e7+e8〉, 〈e3+e4, e7+e8〉, 〈e4, e7+e8〉, 〈e5, e8〉, 〈e5+e6, e8〉, 〈e6, e8〉}

where 〈ei , ej〉 denotes the line incident to the points ei and ej .

The point e7 is incident to the first two lines hence, as detailed previously, e7 is ”dependent with itself”.
It seems that d(X ) = 2 but as k ≥ 1 we first must check the exceptions in the dependencies of the
definition of d(X ).

Observe that the remaining 7 lines span a six dimensional subspace since the two planes 〈e3, e4, e7 +e8〉
and 〈e5, e6, e8〉 span a five dimensional subspace while the line 〈e2, e7〉 spans an independent one dimensional
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subspace. Recall that e7 belongs to this line 〈e2, e7〉 hence this 6 dimensional subspace is an hyperplane of
PG (7, 2) both containing all dependent points (e7) and containing all lines not incident to the dependent
points (the 7 lines commented above). Thus, we do not count this dependency on e7. Finally, the
dependency of the points {e1, e2, e1 + e2} imply d(X ) = 3.

4. Non additive quantum codes

In this section we present a new kind of codes called non additive quantum codes which are constructed as
direct sums of subspaces representing stabilizer codes. We provide a general geometric framework for such
constructions which appears to be new and, similar to stabilizer codes, we provide an equivalence between
the group setting and the geometric setting. Furthermore, we show how stabilizer codes can be regarded
themselves as direct sums under certain conditions. Finally, we explore some examples and concrete results.

4.1 Construction

As previously detailed a [[n, k , d ]] stabilizer code is characterized by an abelian group S = 〈M1, ... , Mn−k〉 ⊂
Pn of size 2n−k where the subspace Q(S) is defined as the joint +1-eigenspace of all elements of S . Thus,

Mi |ψ〉 = +1 |ψ〉 for all |ψ〉 ∈ Q(S) and i ∈ {1, ... , n − k}

Two major results are that Dim(Q(S)) = 2k (Theorem 2.3) and that the undetectable errors for Q(S)
belong to Cent(S) \ S (Lemma 2.4). Finally, Theorem 2.6 states that the minimum distance d of Q(S) is
equal to the minimum weight of Cent(S) \ S for k 6= 0 while it is equal to the minimum weight of S for
k = 0. Summarizing, an [[n, k, d ]] stabilizer code encodes k logical qubits in n physical qubits such that
there is a recovery map which is able to correct all errors in

Ed = {Ei ∈ Pn | wt(Ei ) ≤ b(d − 1)/2c}

As commented previously, when working with stabilizer codes we always request −I /∈ S because
−I |v〉 = +1 |v〉 implies |v〉 = 0 hence the resulting joint (+1)-eigenspace Q(S) the zero vector. Also if
Mi = ±iσ1 ⊗ · · · ⊗ σn then M2

i = −I ∈ S and again Q(S) = {0}. Hence each generator Mi must have
overall phase ±1 and never ±i .

We define the element t = (t1, ... , tn−k) ∈ Fn−k
2 . Different from stabilizer codes where we assume all

elements of S have phase 1 we now let the generators of S have overall phase ±1 or, equivalently, to take
eigenvalues ±1. We fix the eigenvalues of (−1)ti Mi to +1 as follows:

• If ti = 0 then Mi |vi 〉 = +1 |vi 〉 hence (−1)ti Mi |vi 〉 = +1 |vi 〉.

• If ti = 1 then Mi |vi 〉 = −1 |vi 〉 hence (−1)ti Mi |vi 〉 = +1 |vi 〉.

Definition 4.1. Let T ⊆ Fn−k
2 . For a given t ∈ T we define the stabilizer code

Qt(S)

as the joint +1-eigenspace of (−1)ti Mi for all i ∈ {1, ... , n − k}.
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Effectively, Qt(S) is a stabilizer code too because despite now the generators can take eigenvalues ±1
the resulting subspace is still the joint +1-eigenspace of (−1)ti Mi with i ∈ {1, ... , n − k} hence the proof
that Qt(S) has dimension 2k is mimetic to the proof of Theorem 2.3 for Q(S).

Lemma 4.2. Let Q(S) be a stabilizer code and let t and u be two distinct elements of Fn−k
2 . Then the

subspaces Qt(S) and Qu(S) are orthogonal.

Proof. If t 6= u then tj 6= uj for at least one j ∈ {1, ... , n − k}. Without lost of generality suppose they
differ in the first coordinate hence tj = 1 and uj = 0 which implies Mj |ψt〉 = − |ψt〉 for all |ψt〉 ∈ Qt(S)
and Mj |ψu〉 = + |ψu〉 for all |ψu〉 ∈ Qu(S). Then

〈ψt |ψu〉 = 〈ψt |Mj |ψu〉 = −〈ψt |ψu〉 = 0

Therefore Qt(S) and Qu(S) are orthogonal.

Choosing u = 0 in Lemma 4.2 we get Qu(S) = Q(S) hence note that by simply switching the eigenvalue
of at least one Mi we obtain a subspace Qt(S) orthogonal to Q(S).

Let H and K be subspaces of a vector space V such that H∩K = ∅. The direct sum H⊕K , which it is
the smallest vector space containing both subspaces H and V , is defined as the componentwise operation:

H ⊕ K ={w + v : w ∈ H; v ∈ K}

where H ⊕ K ⊆ V , Dim(H) + Dim(K ) = Dim(H ⊕ K ) and if the vector sets BH and BK are basis of H
and K respectively then BH ∪ BK is a basis of H ⊕ K .

Definition 4.3. Let T ⊂ Fn−k
2 . We define

Q(S , T ) =
⊕
t∈T

Qt(S)

as the direct sum of orthogonal subspaces Qt(S) for each distinct t ∈ T .

Let t, u ∈ T \ {0} with t 6= u and let At,u be a (n − k) × (n − k) non-singular matrix whose first
two columns are t and u. We don’t apply any constrain on the other columns of At,u rather than the
requirement that the whole set of n − k columns must be linearly independent. Thus At,u is a change of
basis operator.

Let G be the generator matrix of the code C whose i-th row is τ(Mi ). Then A−1t,uG is another generator
matrix for C i.e. the rows of A−1t,uG are another basis for C and we can find another set

{M ′i : i = 1, ... , n − k}

of generators of S where τ(M ′i ) is the i-th row of A−1t,uG .

Lemma 4.4. Let t, u ∈ T \ {0} and let |ψt〉 ∈ Qt(S) and |ψu〉 ∈ Qu(S). Then:

(i) M ′1 |ψt〉 = − |ψt〉 and M ′i |ψt〉 = + |ψt〉 for i = {2, 3, 4, ... , n − k}

(ii) M ′2 |ψu〉 = − |ψu〉 and M ′i |ψu〉 = + |ψu〉 for i = {1, 3, 4, ... , n − k}
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Proof. Qt(S) and Qu(S) depend on the parameters t and u given and the set of generators Mi of S chosen.
By applying the change of basis At,u where its first and second columns are precisely t and u the set Mi

is re-expressed as the set M ′i while t an u are re-expressed as (1, 0, 0, ... , 0) and (0, 1, 0, ... , 0). Therefore
in the new basis the eigenvalues of M ′i over Qt(S) and Qu(S) are parameterized by (1, 0, 0, ... , 0) and
(0, 1, 0, ... , 0), thus, they follow (i) and (ii).

Lemma 4.4 requires a moment thought. The i-th row of G is τ(Mi ) and the function τ fulfills

τ(Mi ) + τ(Mj) = τ(MiMj)

Thus, to sum rows of G , which are a basis of C , is equivalent to multiply generators of S hence to change
the basis of the generator matrix G is nothing else than to find an alternative generator set of S . Therefore
Lemma 4.4 simply shows that after applying a convenient change of basis we can find a new generator set
M ′1, ... , M ′n−k such that t and u become elements of the canonical basis i.e. The M ′i have their eigenvalues
parameterized by e1 and e2. The latter will be extremely useful in the next section to simplify computations
when projecting the quantum set of lines X through the points t and u.

Example 4.5. We shall explicitly check Lemma 4.4 over the code [[5, 0, 3]]. Its generator matrix is:

G =


1 0 0 1 1 0 0 0 1 1
0 1 0 0 1 0 0 1 0 1
0 0 1 1 0 0 0 1 0 1
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1 1


Suppose that the eigenvalues of the generators of S are parametrizated by the following two elements

of F5
2:

t = (1, 0, 1, 1, 1) ; u = (0, 0, 1, 1, 0)

We construct the non-singular 5×5 matrix At,u whose first and second columns are t and u and the whole
set of columns are linearly independent such that At,u is a change of basis. Thus, our choice for At,u is:

At,u =


1 0 0 1 1
0 0 0 1 1
1 1 0 0 0
1 1 0 1 0
1 0 1 1 1

 ; A−1t,u =


1 1 0 0 0
1 1 1 0 0
1 0 0 0 1
0 0 1 1 0
0 1 1 1 0


Therefore

A−1t,uG =


1 1 0 1 0 0 0 1 1 0
1 1 1 0 0 0 0 0 1 1
1 0 0 1 1 0 1 1 0 0
0 0 1 1 0 1 0 0 1 1
0 1 1 1 1 1 0 1 1 0


where A−1t,uG is another generator matrix of C = τ(S) whose i-th row is τ(M ′i ) and S = 〈M ′1, ... , M ′5〉.

In order check Lemma 4.4 we must find the relations between both sets of generators Mi and M ′i for
i ∈ {1, ... , 5}. Recall that when we multiply A−1t,u by G to build the new generator matrix A−1t,uG we are
simply making linear combinations of rows of G with coefficients in A−1t,u . Thus

τ(M ′i ) =

j=5∑
j=1

a−1ij τ(Mj)
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Therefore by checking the coefficients a−1ij of A−1t,u we can easily express the rows of A−1t,uG in terms of
the rows of G :

τ(M ′1) = τ(M1) + τ(M2)
τ(M ′2) = τ(M1) + τ(M2) + τ(M3)
τ(M ′3) = τ(M1) + τ(M5)
τ(M ′4) = τ(M3) + τ(M4)
τ(M ′5) = τ(M2) + τ(M3) + τ(M4)

Finally applying τ(Mi )+τ(Mj) = τ(MiMj) we end up with the relation between both sets of generators:

M ′1 = M1M2

M ′2 = M1M2M3

M ′3 = M1M5

M ′4 = M3M4

M ′5 = M2M3M4

M1 = X I I Y Y
M2 = I X Z I Y
M3 = I I Y X Z
M4 = Z I Z Z I
M5 = I Z Z Z Z

M ′1 = X X Z Y I
M ′2 = X X X Z Z
M ′3 = X Z Z X X
M ′4 = Z I X Y Z
M ′5 = Z X Y Y X

Observe that we have not taken into account the phases {±1,±i} when multiplying the Pauli matrices
of the generators, for example, M1M2M3 indeed is −M ′2 and not M ′2. This omission is delivered due to
the function τ is a quotient respect to the phases of the generators, namely, the map does not distinguish
between phases. Furthermore, as detailed previously all generators of S must have overall phase ±1 and
never ±i because then M2

i = −I ∈ S and hence Q(S) = {0}.
Given t = (1, 0, 1, 1, 1) and u = (0, 0, 1, 1, 0) we already know that:

Mi |ψt〉 = − |ψt〉 for i = {1, 3, 4, 5} and M2 |ψt〉 = + |ψt〉

Mi |ψu〉 = − |ψu〉 for i = {3, 4} and Mi |ψu〉 = + |ψu〉 for i = {1, 2, 5}

And by Lemma 4.4 we expect

M ′1 |ψt〉 = − |ψt〉 and M ′i |ψt〉 = + |ψt〉 for i = {2, 3, 4, 5}

M ′2 |ψu〉 = − |ψu〉 and M ′i |ψu〉 = + |ψu〉 for i = {1, 3, 4, 5}

Therefore, applying the relations between both sets of generators we check Lemma 4.4 holds:

M ′1 |ψt〉 = M1M2 |ψt〉 = − |ψt〉
M ′2 |ψt〉 = M1M2M3 |ψt〉 = + |ψt〉
M ′3 |ψt〉 = M1M5 |ψt〉 = + |ψt〉
M ′4 |ψt〉 = M3M4 |ψt〉 = + |ψt〉
M ′5 |ψt〉 = M2M3M4 |ψt〉 = + |ψt〉

M ′1 |ψu〉 = M1M2 |ψu〉 = + |ψu〉
M ′2 |ψu〉 = M1M2M3 |ψu〉 = − |ψu〉
M ′3 |ψu〉 = M1M5 |ψu〉 = + |ψu〉
M ′4 |ψu〉 = M3M4 |ψu〉 = + |ψt〉
M ′5 |ψu〉 = M2M3M4 |ψu〉 = + |ψu〉

By the example above it becomes clear what Lemma 4.4 implies, namely, that given any two distinct
elements t, u ∈ T \ {0} ⊂ Fn−k

2 and a set of n − k generators Mi of S we can always apply a convenient
change of basis At,u such that we obtain an alternative set of generators M ′i of S with eigenvalues in Qt(S)
and Qu(S) parameterized by (1, 0, ... 0), (0, 1, 0, ... , 0) ∈ Fn−k

2 instead of the original t, u ∈ Fn−k
2 .

Let {M ′1, ... , M ′n−k} generate S and fulfill Lemma 4.4. Let St,u denote the group generated by
{M ′3, ... , M ′n−k}. Observe that the n − k − 2 generators of St,u take eigenvalue +1 in Q(S). When
deleting an element of the generator set of a group what it remains is a subgroup of it hence
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St,u = 〈M ′3, ... , M ′n−k〉 ⊂ S = 〈M ′1, ... , M ′n−k〉 = 〈M1, ... , Mn−k〉 ⊆ Pn

In stabilizer codes the minimum distance is equal to the minimum weight of Cent(S) \ S for k 6= 0
while equal to the minimum weight of S for k = 0. We look for an analogous version for non-additive
codes.

Definition 4.6. The minimum distance of Q(S , T ) is the minimum weight of Cent(St,u) \ St,u where the
minimum is taken over all possible pairs t, u ∈ T \ {0}. Thus

dQ(S ,T ) = min{ dt,u : t, u ∈ T \ {0}}

where dt,u = min{wt(E ) : E ∈ Cent(St,u) \ St,u}

The following theorem justifies the above definition of dQ(S ,T ).

Theorem 4.7. Let T ⊂ Fn−k
2 and let d be the minimum weight of Cent(St,u)\St,u where the minimum is

taken over all pairs t, u ∈ T \ {0}. If we encode with Q(S , T ) then there is a recovery map which corrects
all errors in Ed .

Proof. Suppose Ei , Ej ∈ Ed . Then both Ei and Ej have weight at most (d − 1)/2 hence E = EiEj has
weight at most d − 1. But the elements of Cent(St,u) \ St,u have weight at least d therefore

E = EiEj 6∈ Cent(St,u) \ St,u

for any t, u ∈ T , since the elements of Cent(St,u) \ St,u have weight at least d . Thus there are two cases
to analyse:

1. For all t, u ∈ T \ {0} there is an element Mt,u ∈ St,u such that Mt,uEiEj = −EiEjMt,u and by
Lemma 4.4

Mt,u |ψu
s 〉 = |ψu

s 〉 and Mt,u |ψt
r 〉 = |ψt

r 〉

for all r , s ∈ {1, ... , 2k} where {|ψt
r 〉} and {|ψu

s 〉} are orthonormal basis for Q(St) and Q(Su) respec-
tively.

2. E ∈ S hence E |ψ〉 = +1 |ψ〉 for any |ψ〉 ∈ Q(S).

The projector onto Q(S , T ) is

P =
∑
t∈T

2k∑
i=1

|ψt
i 〉 〈ψt

i |

where {|ψt
i 〉 | i = 1, ... , 2k} is an orthonormal basis for Q(St).

Case 1

PEiEjP = PEP =
∑
t,u∈T

2k∑
r ,s=1

|ψt
r 〉 〈ψt

r |E |ψu
s 〉 〈ψu

s |

=
∑
t,u∈T

2k∑
r ,s=1

|ψt
r 〉 〈ψt

r |EMt,u |ψu
s 〉 〈ψu

s | = −
∑
t,u∈T

2k∑
r ,s=1

|ψt
r 〉 〈ψt

r |Mt,uE |ψu
s 〉 〈ψu

s | = −PEP

From which it follows that PEP = 0.
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Case 2

PEiEjP = PEP =
2k∑

r ,s=1

|ψr 〉 〈ψr |E |ψs〉 〈ψs | =
2k∑

r ,s=1

|ψr 〉 〈ψr |ψs〉 〈ψs | = P

Hence by Theorem 1.9 in both cases there is a recovery map.

Recall that [[n, k , d ]] denotes a 2k -dimensional code while ((n, k , d)) denotes a k-dimensional code.

Theorem 4.8. Let S be an abelian group which characterise an [[n, k , d ]] stabilizer code. Then Q(S , T ) is
a ((n, |T |2k , dQ(S,T ))) code.

Proof. The parameter n is the number of physical qubits, which conform a quantum entanglement-system
described in (C2)⊗n, therefore n does not depend on the mathematical code used to encode. Also, dQ(S,T )

follows from Definition 4.6 so it only remains to prove the dimension parameter. Qt(S) is a stabilizer code
too hence by Theorem 2.3 Qt(S) has dimension 2k and by Lemma 4.2 the subspaces Qt(S) with t ∈ T
are all orthogonal therefore

Dim Q(S , T ) =
∑
t∈T

Dim Qt(S) = |T |2k

Theorem 4.8 shows that non-additive quantum codes are no longer constricted to have dimension a
power of 2. Also observe that a stabilizer code encodes log2(2k) = k logical qubits in n physical qubits
while a non additive quantum code encodes log2(|T |2k) = k + blog2(|T |)c in n qubits hence they have
”more space ”available to encode.

4.2 The Geometry of Non Additive Quantum Codes

An stabilizer code is fully characterized by an abelian group S ⊂ Pn of size 2n−k . Theorem 3.4 states that
if Cent(S) contains no elements of weight 1 then the stabilizer code is also fully characterised by a quantum
set of lines X , namely, a set of lines in PG (n − k − 1, 2) with the property that any co-dimension two
subspace is skew to an even number of the lines in X . The equivalence between the group setting Q(S)
and the geometric setting X is due to the fact that the quantum set of lines X in PG (n − k − 1, 2) are
spanned precisely by the the i-th and (i +n)-th columns of the generator matrix of C = τ(S). Finally, if the
code is pure then the minimum distance d can be obtained from the geometry as the size of the minimum
set of dependent points on distinct lines of X . If the code is impure we must discount the dependencies
in which the lines of X which do not contain dependent points are contained in a hyperplane which also
contains all the dependent points.

In this section we look for an analogous equivalence between the group setting Q(S , T ) where Cent(S)
contains no elements of weight 1 and the geometric setting X together with T ⊂ Fn−k

2 such that the
resulting dQ(S ,T ) is the desired one.

Let T ⊂ Fn−k
2 and pick t, u ∈ T \ {0}. As detailed previously A−1t,uG is another generator matrix for

C = τ(S) whose i-th row is τ(M ′i ) and such that S = 〈M ′1, ... , M ′n−k〉. Then the n − k − 2 generators of
the subgroup

St,u = 〈M ′3, ... , M ′n−k〉 ⊂ S
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all take eigenvalue +1 in Q(S). We construct the (n−k−2)×2n matrix Gt,u whose i-th row is τ(M ′i ) and
which generates Ct,u = τ(St,u). Then the i-th and the (i +n)-th columns of Gt,u with i ∈ {1, ... , n−k−2}
span a quantum set of lines of PG (n − k − 3, 2) . The fact that this set of lines is a quantum set of lines
is justified below.

Definition 4.9. We define

Xt,u

as the quantum set of lines in PG (n − k − 3, 2) obtained from the subgroup St,u = 〈M ′3, ... , M ′n−k〉.

In the group setting we obtain Xt,u from X by carrying out a change of basis At,u such that the
eigenvalues of the new set of generators of S are parameterized by (1, 0, ... , 0) and (0, 1, 0, ... , 0) instead
of the original t, u. Then we proceed to delete the first and second rows τ(M ′1) and τ(M ′2) of A−1t,uG so we
obtain Gt,u whose i-th and (i +n)-th columns for i ∈ {1, ... , n−k−2} span Xt,u in PG (n−k−3, 2). Recall
that in order to project from the i-th canonical basis element we simply must delete the i-th coordinate.
Thus, in the geometric setting we equivalently obtain Xt,u from X by simply projecting the quantum set
of lines X from the points t and u into PG (n − k − 3, 2).

X is a quantum set of lines if and only if every codimension 2 subspace of PG (n−k−1, 2) is skew to an
even number of the lines of X . Actually two skew subspaces can intersect after a projection but projections
preserve the codimension, namely, the projection of a codimension 2 subspace of PG (n − k − 1, 2) results
on a codimension 2 subspace in PG (n − k − 3, 2). Therefore the projection Xt,u is only a quantum set of
lines if it is a set of lines. We have to choose T so that the projection from t and u is onto a set of lines.

Definition 4.10. The minimum distance of Q(S , T ) is defined as

dQ(S,T ) = min{ d(Xt,u) : t, u ∈ T \ {0}}

where d(Xt,u) is the size of the minimum set of dependent points on distinct lines of Xt,u for all pairs
t, u ∈ T \ {0}.

The following theorem justifies the above definition of dQ(S,T ) and its equivalence with the definition
in 4.6. Furthermore, it provides the equivalence between the group setting Q(S , T ) and the geometric
setting X together with certain subset T ⊂ Fn−k

2 .

Theorem 4.11. Let T ⊂ Fn−k
2 and let X be a quantum set of lines given by the abelian subgroup S such

that Cent(S) contains no elements of weight 1. The code Q(S , T ) is a ((n, |T |2k , d)) code, where d is
the minimum over all possible d(Xt,u) with t, u ∈ T \ {0}.

Proof. We have seen that the geometric way to obtain Xt,u from X is to project X onto a quantum set
of lines in PG (n− k − 3, 2) from the points t and u. By changing the basis through At,u the points t and
u become the points e1 and e2. Then to project X from e1 and e2 we simply must delete the first and
second coordinates of X to obtain Xt,u or, equivalently, delete M ′1 and M ′2 from S to obtain St,u and then
construct Xt,u.

By Theorem 4.7 the minimum distance of Q(S , T ) is the minimum weight of Cent(St,u) \ St,u where
the minimum is taken over all possible pairs t, u ∈ T \ {0}. On the other hand the the minimum weight of
each Cent(St,u)\St,u is equal to the minimum distance of each Xt,u hence we can define d as in definition
4.10 and we are done.
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Thus, the geometry of a non-additive quantum code Q(S , T ) is given by a quantum set of lines X
of PG (n − k − 1, 2), together with a set of points T \ {0}, such that the projection of X from any pair
of points t, u ∈ T \ {0} is onto a quantum set of lines of PG (n − k − 3, 2). The minimum distance of
Q(S , T ) is the minimum of d(Xt,u), where the minimum is taken over all t, u ∈ T \ {0}.

4.3 Stabilizer Codes as Direct Sums

In this section we show how to construct stabilizer codes as the direct sum of stabilizer codes for some
subset T fulfilling certain conditions.

Let T ⊂ Fn
2 be the set of all elements of the form

n-k times︷ ︸︸ ︷
(0, ... , 0)∪〈en−k+1, ... , en〉

where 〈en−k+1, ... , en〉 means all possible sums modulo 2 of the i-th elements of the canonical basis
with i ∈ {n − k + 1, ... , n}. For example, for n = 5 and k = 3 the elements of T ⊂ F 5

2 are

(0, 0, 1, 0, 0) (0, 0, 0, 1, 0) (0, 0, 0, 0, 1) (0, 0, 1, 1, 0)
(0, 0, 0, 1, 1) (0, 0, 1, 0, 1) (0, 0, 1, 1, 1) (0, 0, 0, 0, 0)

Observe that T ⊂ Fn
2 is a k-dimensional subspace because it is spanned by k elements of the canonical

basis and if t, u ∈ T then t + u ∈ T . Also recall that a k-dimensional vector space over Fq has qk points
because there are k positions to fill with q possible values hence |T | = 2k .

Theorem 4.12. Let S ⊂ Pn be an abelian group of size 2n−k . Then Q(S) = Q(S ′, T ) for some group
S ′ ⊇ S of size 2n and some k-dimensional subspace T ⊂ Fn

2.

Remark. In other words, any [[n, k]] stabiliser code can be constructed as the direct sum of a stabiliser code
[[n, 0]] for some k-dimensional subspace T .

Proof. Suppose T ⊂ Fn
2 is a k-dimensional subspace. Then |T | = 2k and by applying a change of basis

the elements of T are of the form
n-k times︷ ︸︸ ︷

(0, ... , 0)∪〈en−k+1, ... , en〉

Let S = 〈M1, ... , Mn−k〉 be an abelian subgroup of Pn of size 2n−k which characterises a stabilizer code
[[n, k]]. Observe that to decrease k in one unit is equivalent to move an element from Cent(S) to S . Then
by moving k independent elements {Mn−k+1, ... , Mn} from Cent(S) to S we construct a bigger abelian
group S ′ ⊃ S of size 2n. Note that these elements have to be added to S one by one, namely, we move
an element from Cent(S) to S , we compute the new centralizer, next we move another element and so on
until we have added k independent elements to S obtaining the bigger abelian group S ′ of size 2n which
characterises a [[n, 0]] stabilizer code.

Then for each t = (0, ... , 0, tn−k+1, ... , tn) ∈ T there is a subspace Qt(S ′) defined as the joint +1-
eigenspace of the operators

M1, ... , Mn−k , (−1)tn−k+1Mn−k+1, ... , (−1)tnMn

Observe that S ′ = S ∪ 〈Mn−k+1, ... , Mn〉 where S = 〈M1, ... , Mn−k〉 and

Mi |ψt〉 = +1 |ψt〉
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for all i ∈ {1, ... , n− k}, all |ψt〉 ∈ Qt(S ′) and all t ∈ T . Thus, the joint +1-eigenspace of all elements of
S defines Q(S).

Summarizing, there are |T | = 2k of such subspaces Qt(S ′), all of them orthogonal, all 1-dimensional
and each of them represents a [[n, 0]] stabilizer code where the eigenvalues of the n generators of S ′ are
parameterized by the corresponding t ∈ T .

Finally we construct the ((n, 2k)) code

Q(S ′, T ) =
⊕
t∈T

Qt(S ′)

and it follows that Q(S ′, T ) = Q(S). Thus, a [[n, k]] stabilizer code is equivalent to the direct sum of 2k

[[n, 0]] stabilizer codes through some k-dimensional subspace T of Fn
2.

Example 4.13. Consider the abelian group S2 = 〈M1, M2〉 of size 4 which characterises a [[4, 2]] stabilizer
code. By Theorem 4.12 this code is equivalent to the direct sum of 22 = 4 stabilizer codes [[4, 0]] through
a 2-dimensional subspace T ⊂ F4

2. The code [[4, 0]] is characterised by an abelian group S4 ⊃ S2 of size
16 generated by M1, M2, M3, M4 while the 2-dimensional subspace T is chosen such that each subspace
Qt(S4) is the joint +1-eigenspace of

M1, M2, (−1)t3M3, (−1)t4M4

for each of the four points t = (0, 0, t3, t4) ∈ T with ti ∈ {0, 1}.
We define

M1 = X X X X
M2 = Z Z Z Z

Actually they are are the generators of [[4, 2, 2]]. We must move two independent elements, one by one,
from Cent(S2) to S2 = 〈M1, M2〉 in order to obtain a larger group S4 of size 24 = 16· Since Pauli matrices
fulfill

σiσj = −σjσi for i 6= j and i , j ∈ {x , y , z}

σxσy = iσz ; σyσz = iσx ; σzσx = iσy ; σ2i = 1

we propose the element M3 = X X Z Z . Observe that M3M1 = M1M3 and M3M2 = M2M3 while
clearly M3 /∈ S2 hence M2 ∈ Cent(S2) \ S2. We add M3 to S2 to obtain a larger group

S3 = 〈M1, M2, M3〉 ; |S3| = 23 = 8

We now propose the element M4 = Z Z X X . Recall that M4Mi = MiM4 for i ∈ {1, 2, 3} while
M4 /∈ S3 hence M3 ∈ Cent(S3) \ S3. We add M3 to S3 to obtain the desired group of of size 24 = 16:

S4 = 〈M1, M2, M3, M4〉 = S2 ∪ 〈M3, M4〉

Regarding the elements of T ⊂ F4
2, actually any 4 points, as long as they form a 2-dimensional subspace,

would work to construct a [[4, 2]] as the direct sum of [[4, 0]] because due to T is 2-dimensional subspace we
can always apply a change of basis such that T is written as (0, 0)∪〈e3, e4〉. We may construct the specific
[[4, 2, 2]] as the direct sum of [[4, 0, 2]]. With the help of a program in GAP (see section 4.4) we find the
following points of T resulting on a minimum distance 2, namely, d(Xt,u) ≥ 2 for all pairs t, u ∈ T \ {0}
and d(Xt,u) = 2 for at least one pair:

t0 = (0, 0, 0, 0) t1 = (0, 0, 1, 1) t2 = (1, 1, 0, 0) t3 = (1, 1, 1, 1)
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Observe that for any pair t, u ∈ T we have t + u ∈ T and the matrix whose rows are the points of T has
rank 2 therefore, as expected by Theorem 4.12, T is a 2-dimensional subspace of F4

2. We choose the two
linearly independent elements t1 and t2 as basis for T and we apply the change of basis defined by the
map t1 → e3 and t2 → e4 hence T is written as (0, 0) ∪ 〈e3, e4〉:

t0 = (0, 0, 0, 0) → 0 = (0, 0, 0, 0)
t1 = (0, 0, 1, 1) → e3 = (0, 0, 1, 0)
t2 = (1, 1, 0, 0) → e4 = (0, 0, 0, 1)
t3 = (1, 1, 1, 1) → e3 + e4 = (0, 0, 1, 1)

Coming back to the group S4 found previously observe that

S4 = 〈M̂1, M̂2, M̂3, M̂4〉 = S2 ∪ 〈M̂3, M̂4〉

Where now the set M̂i are the transformation of the original set Mi under the change of basis which
expresses T as (0, 0) ∪ 〈e3, e4〉. Recall that now the generators of S2 take all eigenvalue +1 in each
subspace Qt(S4) for all t ∈ T , namely,

Q(0,0,0,0) is the joint +1-eigenspace of M̂1, M̂2, M̂3, M̂4.

Q(0,0,1,0) is the joint +1-eigenspace of M̂1, M̂2,−M̂3, M̂4.

Q(0,0,0,1) is the joint +1-eigenspace of M̂1, M̂2, M̂3,−M̂4.

Q(0,0,1,1) is the joint +1-eigenspace of M̂1, M̂2,−M̂3,−M̂4.

Finally, we construct

Q(S4, T ) =
⊕
t∈T

Qt(S4)

which results on a ((4, 4, 2)) code. By Theorem 4.12 we conclude the Q(S4, T ) is, indeed, the [[4, 2, 2]]
stabilizer code characterized by S2.

Theorem 4.14. Let S ′ ⊂ Pn be an abelian group of size 2n−r and let T be a k-dimensional subspace.
Then Q(S ′, T ) = Q(S) for some subgroup S ⊂ S ′ of size 2n−r−k .

Remark. In other words, any [[n, r ]] stabilizer code can be constructed as the direct sum of a stabilizer code
[[n, k + r ]] for some k-dimensional subspace T . Note that if T is not a subspace this does not imply that
Q(S ′, T ) is not a stabiliser code.

Proof. Let S ′ ⊂ Pn be an abelian group of size 2n−r and let T be a k-dimensional subspace. By applying
a change of basis the elements of T are of the form

T = (0, ... , 0) ∪ 〈en−k−r+1, ... , en−r 〉.

Let {M1, ... , Mn−r} generate S ′. Then for all |ψ〉 ∈ Q(S ′, T ) we have

Mi |ψ〉 = |ψ〉 .

Hence,
Q(S ′, T ) ≤ Q(S),

where the subgroup S ⊂ S ′ is generated generated by {M1, ... , Mn−r−k}.
Since dim Q(S ′, T ) = dim Q(S) = 2r+k , we have Q(S ′, T ) = Q(S).
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Example 4.15. The stabilizer code [[7, 1, 3]] is called Steane code. We want to construct a stabilizer code
as the direct sum of the Steane Code. With the help of a program in GAP (see section 4.4) we look for
the subset T ⊂ F6

2 of biggest size (hence the resulting dimension is maximised) such that dQ(S ,T ) does
not decrease too much (equal or one unit less). We find the following subset T of size 8 such that the
resulting non additive code ((n, |T |2r , dQ(S,T ))) has parameters ((7, 16, 2)):

(0, 0, 0, 0, 0, 0) (1, 1, 1, 1, 0, 1) (0, 0, 1, 0, 1, 0) (0, 1, 0, 1, 0, 0)
(0, 1, 1, 1, 1, 0) (1, 0, 0, 0, 1, 1) (1, 0, 1, 0, 0, 1) (1, 1, 0, 1, 1, 1)

Observe that the sum of any pair of points t, u ∈ T also belongs to T and the matrix whose rows are the
points of T has rank 3. Thus, the subset T is indeed a 3-dimensional subspace of F6

2. Finally we apply
Theorem 4.14 to conclude that the code ((7, 16, 2)) found is, indeed, the stabilizer code [[7, 4, 2]].

4.4 Examples and Results

Given a [[n, k , d ]] stabilizer code we look for the biggest subset T ⊂ Fn−k
2 such that d(Xt,u) ≥ d ′ (usually

d ′ = d − 1) for the
(|T |−1

2

)
possible pairs t, u ∈ T \ {0} while d(Xt,u) = d ′ for at least one pair where Xt,u

is the projection of X through the points t, u ∈ T \ {0}. If such a maximized subset T exists then there is
a non additive quantum code Q(S , T ) with parameters ((n, |T |2k , d ′)). Therefore the above presents an
algorithm to find out non additive quantum codes as the direct sum of a stabilizer codes through T such
that, despite we decrease the minimum distance in one unit (the new code is able to correct less errors),
we increase the dimension in a factor |T | hence the resulting code is able to encode k + blog2 |T |c logical
qubits in n physical qubits. We shall always add the zero vector to T because to include Q(S) in the direct
sum does not affect dQ(S ,T ) while it increases the size of |T | hence the dimension of Q(S , T ) grows too.
The generator matrices needed as input can be obtained from the web page ”codetables.markus-grassl.de”.

We carry out all the computations with a program in GAP. The aim is to maximise the size of T ⊂ Fn−k
2

while d ′ does not decrease too much (usually d ′ = d−1). Recall that we do not know the size of T ⊂ Fn−k
2

in advance. Therefore for each possible subset T of Fn−k
2 we look for the biggest ”clique” in the graph

with vertices T ⊂ Fn−k
2 such that t, u ∈ T \ {0} is an edge of the clique if and only if d(Xt,u) ≥ d ′ and at

least one edge fulfills d(Xt,u) = d ′. Computing cliques is a NP-hard problem and the vector space Fn−k
2

has 2n−k points hence we are computationally restricted to use as input stabilizer codes with a small n− k
(around ≤ 7).

Lastly, take into account our algorithm assumes Cent(S) has no elements of weight one which, by
Lemma 3.3, it is equivalent to assume that the i-th and (i + n) columns of the generator matrix span a line
(not a point) in PG (n− k − 1, 2) for all i ∈ {1, ... , n}. This assumption is required in Theorem 3.7 which
states the equivalence between the group setting Q(S) and the geometric setting X . Recall that this is
precisely how our algorithm computes d(Xt,u) for each pair t, u ∈ T \ {0}. Many generator matrices in
”codetables.markus-grassl.de” have a column of 0 which it is a clear indication that the above assumption
is not holding. In these cases we must look for a [[n, k ′, d ′]] stabilizer code with k ′ < k and d ′ ≥ d and a
generator matrix with no column of 0. Then we project it from a point of Fn−k

2 which does not belong to
any of the quantum set of lines X of [[n, k ′, d ′]]. Each projection increases k ′ in one unit and may decreases
d ′. We keep projecting until we obtain a code with the desired parameters but now we have made sure its
centralizer contains no elements of weight one hence we can use it as input in our algorithm.

The Rains, Hardin, Shor and Sloane code ((5, 6, 2))

40

http://codetables.markus-grassl.de
http://codetables.markus-grassl.de


This code first appeared in an article of 1997 by Rains, Hardin, Shor and Sloane [14]. We want to
fit this code into our own approach to non additive codes as directs sums of stabilizer codes and the
geometric framework involved.

First recall that clearly ((5, 6, 2)) can not be a stabilizer code as its dimension is not a power of 2. We
want to show that ((5, 6, 2)) is constructed by the direct sum of 6 stabilizer codes [[5, 0, 3]].

Let S = 〈M1, ... , M5〉 be an abelian group of size 25 which characterises the code [[5, 0, 3]] and let

G =


1 0 0 1 1 0 0 0 1 1
0 1 0 0 1 0 0 1 0 1
0 0 1 1 0 0 0 1 0 1
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1 1


be the 5× 10 generator matrix of [[5, 0, 3]] whose i-th row is τ(Mi ). Then the i-th and (i + n)-th columns
of G span a quantum set of lines X in PG (4, 2). Note that the elements of X are all lines, not points.
Then by Lemma 3.3 Cent(S) has no elements of weight 1 hence by Theorem 3.4 X uniquely characterises
the code too. Let T ⊂ F5

2 with |T | = 6. We look for 6 points t0, ... , t5 such that the resulting non additive
quantum code has minimum distance 2. Thus,

min{ d(Xti ,tj ) : ∀ti , tj ∈ T \ {0}} = 2

Observe that we can set up t0 = 0 because to include the subspace Q(S) in the direct sum does not
modify the minimum distance of Q(S , T ) while increases its dimension. Assume we already know the 6
points which conform T such that dQ(S ,T ) = 2. We construct

(5
2

)
= 10 non-singular 5× 5 matrices Ati ,tj ,

one for each pair ti , tj ∈ T \{0}. Then A−1ti tj G is another generator matrix from which we extract a new set
of generators of S such that their eigenvalues are parametrizated by (1, 0, 0, 0, 0) and (0, 1, 0, 0, 0) instead
of ti and tj .

Now to project from ti and tj we simply remove the first and second rows of A−1ti tj G to end up with

the 3 × 10 matrix Gti tj . The rows of Gti tj define the generators of the group Sti tj of size 23 = 8 while
its columns span the quantum set of lines Xti tj in PG (2, 2). Finally, the minimum distance dQ(S ,T ) is
equal to the minimum weight of Cent(Sti tj ) \ Sti tj where ti and tj run over all possible pairs in T \ {0}
or, geometrically equivalent, the minimum d(Xti ,tj ) between all pairs ti , tj ∈ T \ {0} where d(Xti ,tj ) is the
minimum number of dependent points that can be found in distinct lines of Xti ,tj .

The set T of size 6 can be regarded as a complete graph of 6 vertices and
(5
2

)
= 10 edges where

t, u ∈ T \ {0} is an edge if and only if d(Xt,u) ≥ 2 and at least one edge fulfills d(Xt,u) = 2. Applying
the previous algorithm in GAP for dQ(S ,T ) = 2 we obtain a subset T of size 6:

t0 = (0, 0, 0, 0, 0) t1 = (0, 0, 0, 1, 1) t2 = (0, 1, 1, 0, 1)
t3 = (1, 0, 1, 1, 0) t4 = (1, 1, 0, 1, 0) t5 = (1, 1, 1, 0, 0)

Note that T is not a subspace, for example t2 + t5 /∈ T . Thus, we conclude that the direct sum of [[5, 0, 3]]
through the above subset T found constructs the non additive code ((5, 6, 2)).

Finally, recall that the code ((5, 6, 2)) is optimal because if we increase |T | (and hence the dimension
too) then the minimum distance is no longer 2 and the only stabilizer code with n = 5 and d = 2 is
the [[5, 2, 2]]. To clarify the role of an optimal code respect to the dimension suppose the existence of a
((5, 4, 2)) code for |T | = 4. Clearly this hypothetical code is not the optimal one because despite it is also
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described in (C2)⊗5, namely, describes a quantum system of 5 physical qubits, the ((5, 6, 2)) code spans a
bigger space to encode them. Thus, instead of encoding |00000〉, |00001〉, |00010〉, |00011〉 as logical bits
we may encode |00000〉, |00010〉, |00100〉, |00110〉, |00001〉, |00001〉 as logical bits.

The Non Additive ((9, 12, 3)) Quantum Code

The non additive ((9, 12, 3)) code has been discovered in 2007 in [15]. Again its dimension is not
a power of 2 hence it can not be a stabilizer code. The best comparable stabilizer code has parameters
[[9, 3, 3]] which spans a 8-dimensional subspace instead of a 12-dimensional subspace.

This code is the result of the direct sum of twelve [[9, 0, 3]] stabilizer codes with T ⊂ F9
2 being a subset

(not a subspace) of size 12.

(0, 0, 0, 0, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 1, 1, 0, 0) (0, 0, 0, 1, 1, 0, 0, 0, 1) (0, 1, 1, 0, 0, 1, 0, 1, 0)
(0, 0, 1, 0, 1, 0, 0, 1, 1) (0, 1, 1, 1, 1, 1, 1, 1, 1) (1, 0, 0, 1, 0, 0, 1, 0, 0) (1, 1, 0, 1, 0, 1, 0, 0, 0)
(1, 0, 0, 0, 1, 0, 1, 0, 1) (1, 1, 1, 1, 0, 1, 1, 1, 0) (1, 0, 1, 1, 1, 0, 1, 1, 1) (1, 1, 1, 0, 1, 1, 0, 1, 1)

The elements of T has been taken directly from [15] instead of obtained with our algorithm because the
difference n − k = 9− 0 = 9 is too big hence computing all possible cliques takes too much time.

The abelian group S which characterises the [[9, 0, 3]] code is generated by the nine cyclic permutations
of

σz ⊗ σx ⊗ σz ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I

which results on the generator matrix

G =



0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1


The i-th and (i + n)-th column of G with i ∈ {1, ... , n} span X . Since S is generated by nine

cyclic permutations of the above element, which has weight 3, then Cent(S) has no elements of weight
1. Therefore by Lemma 3.3 the elements of X are all lines (not points) and by Theorem 3.4 X uniquely
characterises the code too.

Next we apply our own geometrical framework for non additive codes. With our algorithm we compute
X (which spans PG (8, 2)) and Xti ,tj (which spans PG (6, 2)) where Xti ,tj is the projection of X from the
pair of points ti , tj ∈ T \ {0}. Recall that for each projection we can apply a change of basis Ati ,tj to
simplify computations. Finally we compute

dQ(S ,T ) = min{ d(Xti ,tj ) : ∀ti , tj ∈ T \ {0}}

and we obtain that d(Xti ,tj ) = 3 for all ti , tj ∈ T \ {0} hence dQ(S,T ) = 3.
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Thus, the code

Q(S ′, T ) =
⊕
t∈T

Qt(S ′)

is a ((9, |T |20 = 12, 3)) non additive code which hence our geometrical framework is able to deduce the
same code as the one obtained in [15].

In [15] they obtain the subset T applying an approach closely related to graph theory. Indeed, the subset
T of any non additive code constructed as the direct sum of [[n, 0, d ]] stabilizer codes can be deduced using
this approach. This includes the previous example ((5, 6, 2)). Despite this approach is powerful it is limited
to use [[n, 0, d ]] stabilizer codes as base codes since it requires a basis of the projective space formed by
exactly one point of each line of X (see Lemma 4.16). Note that our geometrical framework does not
have this constrain since we are able to construct non additive codes as direct sums of arbitrary [[n, r , d ]]
stabilizer codes.

Lemma 4.16. Let X be a quantum set of n lines characterizing a stabilizer code where Cent(S) contains
no elements of weight one. Let B be a set of points such that each point belongs to a distinct line of X .
If B is a basis for the projective space spanned by X then k = 0.

Proof. First note that |B| = n. If k ≥ 1 then the lines of X , which span PG (n− k − 1, 2), are not linearly
independent hence B, which has size n, can not be a basis.

Let k = 0 an suppose B has only n − r independent points of distinct lines of X . Thus, B is a basis
for PG (n − r − 1, 2) and there are r points of B contained in the same subspace.

Since X spans the whole space PG (n − 1, 2) then for each of the previous r points we can always
change it for another point of the same line which it is independent from all other points in B until we end
up with a set of n independent points in distinct lines spanning PG (n − 1, 2).

An adjacency matrix of a finite graph with n vertices is a n× n matrix A whose entries aij are 1 if the
vertices i and j are joined by an edge and 0 otherwise. Recall that aij = aji , namely, A is symmetric.

Theorem 4.17. An stabilizer code has parameters [[n, 0, d ]] if and only if its generator matrix can be written
as G = (I |A) where I is the n × n identity matrix and A is the n × n adjacency matrix of a simple graph
with n vertices.

Proof. (⇒) Let G = (I |A) be a n × 2n generator matrix of a [[n, 0, d ]] code C = τ(S). We must prove
that A is symmetric. Since S is abelian by Lemma 2.12 we have

(u, v)a =
n∑

j=1

(ujvj+n − uj+nvj) = 0

for all codewords u, v ∈ C .

Since the rows of G are a basis of C clearly they are codewords of C too. Let u and v be the i-th and
l-th row of G and let gij denote the entries of G = (I |A). Then

(u, v)a =
n∑

j=1

(gijgl ,j+n − gljgi ,j+n) = gl ,i+n − gi ,l+n = ali − ail

where aij denote the entries of A. Thus, (u, v)a = 0 if and only if A is symmetric.
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(⇐) Let C = τ(S) be an stabilizer code with parameters [[n, k , d ]]. Let C⊥a denote the orthogonal
subspace of C . Thus

C⊥a = {u ∈ F2n
2 : (u, w)a = 0,∀w ∈ C}

C is an (n − k)-dimensional subspace of F2n
2 hence

Dim(C⊥a) = 2n − (n − k) = n + k

By definition (u, v)a = 0 for any pair of codewords u, v ∈ C . Observe that for any u, v ∈ C it also holds

(u, v)a =
n∑

i=1

(uivi+n−ui+nvi ) =
n∑

i=1

(ui (vi+vi+n)−vi (ui+ui+n)) =
n∑

i=1

((ui+ui+n)vi+n−(vi+vi+n)ui+n) = 0

Thus, we can replace the i-th and (i + n)-th columns of G with linear combinations of these columns
without affecting to the relation (u, v)a = 0 between any pair of codewords of C . Recall that we can also
apply Gaussian elimination which simply changes the basis of C , namely, finds another generator set of S .

Finally, we can also add independent elements from C⊥a to C to enlarge the subspace C hence after
moving k independent elements we end up with a n-dimensional subspace. The elements have to be added
one by one, namely, we move an element from C⊥a to C , we compute the new C⊥a , then we move another
independent element and so on.

Then the resulting n-dimensional subspace C ′ = τ(S ′) where S ′ ⊃ S has size 2n represents a [[n, 0, d ]]
and, as proved in the forward implication, its generator matrix can be written as (I |A) where A is a
symmetric matrix.

Coming back to the generator matrix G of [[9, 0, 3]], if we move both 1-th and (1 + 9)-th columns eight
positions so they become the 9-th and 18-th columns then G takes the from (I |A)

(I |A) =



1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0


where A is the adjacency matrix A of the graph in Figure 1. Each element of T , which parameterises the
eigenvalues ±1 of the generators of S , is represented in Figure 1 too.

The argument used in [15] to find out the points of T use some mathematical tools not considered in
this work but it comes down to be equivalent to the familiar projection of X from two points. Before we
have seen that d(Xti ,tj ) = 3 for all ti , tj ∈ T \ {0} where d(Xti ,tj ) is the minimum set of dependent points
in distinct lines of Xti ,tj . Thus, the span of any three points of the quantum set of lines is not equal to
the span of any point or two points of T \ {0}. Then due to the graph is cyclic we can assume one of the
points comes from the span of the 1-th and the (n + 1)-th column, namely, it is one the following points:

(0, 0, 0, 0, 0, 0, 0, 0, 1)
(1, 0, 0, 0, 0, 0, 0, 1, 0)
(1, 0, 0, 0, 0, 0, 0, 1, 1)
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Figure 1: The graph of 9 vertices of [[9, 0, 3]]. Each graph represents a point of T where a coloured vertex vi
indicates the generator Mi takes eigenvalue −1 while an uncolored vertex vj indicates Mj takes eigenvalue −1. The
direct sum of all graphs construct the non additive code ((9, 12, 3)). The image has been taken from [15].

Finally we check that adding two further points on the quantum set of lines, we never get a combination
of two or one of the points of T .

Ah well, that’s only going to be true for pure stabiliser codes. Applying Theorem 4.13 to an impure
stab code, we do not get that the [[n,0]] code has minimum distance d. Theorem 4.13 is still fine, because
you don’t state the min distance.

Nonetheless, the remarkable conclusion is the following: by Theorem 4.12 we can construct any [[n, k, d ]]
pure stabilizer code as the direct sum of a 2k stabilizer codes [[n, 0, d ]] for some k-dimensional subspace
T ⊂ Fn

2 while by Theorem 4.17 any [[n, 0, d ]] stabilizer code comes from a simple graph in n vertices. Thus,
we conclude that, indeed, any pure stabilizer code comes from a graph. Note that we request the code to
be pure because applying Theorem 4.12 to an impure stabilizer code, we do not get that the [[n, 0]] code
has minimum distance d .
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